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INTRODUCTION

Economic science’s main purpose is the efficient allocation of limited resources, but in our era
of instantaneous communication, along with the management of classic resources, data and
information play a pivotal role in any economic activity.

The exponential growth of modern computational power, and its ever increasing ease of access,
Is enabling researchers to use new approaches to statistical inference and data processing,
without having to resort to extremely expensive mainframes. Even though statistic is always
the best choice to convert data into information, if compared to the past, classic research and
inference tools, such as regression models and statistical tests on datasets, have gained even
more importance in every scientific field.

Following that trend, the trade-off between costs and data quality have increased in importance
as well. Regardless of how well refined a statistical inference method might be, the quantity
and quality of data is the source of the information that is to be processed and conveyed.
Therefore, each and every research has to deal with attenuation biases in estimators and
sampling size problems.

Also in recent years, as much more data for studies and researches becomes available, the topic
of reproducibility of published results became more relevant; even without taking into
consideration all the problem that could arise in the complex process of acquiring, preparing,
setting up datasets and interpreting it, the simple length of the sample studied is an
unquestionable and non-interpretable key factor.

Even in physics publications, where the requisite in testing for null hypothesis is extremely
high: around six-sigma, or one in a three million and half chance of false positive, such false
positives arose in several studies from more than ten published paper in regarding the false
discovery of pentaquarks. The successive researches that didn’t confirm the finding were
simply featuring bigger samples. A similar case happened in astrophysics as well whereas the
results of a nobel-prize study on supernovae stars from 1999, regarding the accelerating
expansion of the universe, has been challenged this year by a replication of the same study with
ten times the sample size of the original (Nielsen J.T. et al., 2015).

The research design for the present thesis is first introduced and explained in details, illustrating
the literature underlying the tests and the simulations. The structure of the simulation is then
analysed and motivated.

A brief summary about the endogeneity problem and attenuation bias is provided, with specific

reference to the model considered, together with an overview of the literature used in the thesis.



The simulation’s results will be divided in two parts: the first will cover various adaptations for
each sampling rate, featuring different levels of focus, the second will test the robustness of the
model by altering the population condition and by parameter’s alterations.

The last section will cover the comparison of the fixed effect model (FE), the split sample
instrumental variable implementation (denoted as SSIV in the text and as IV on the tables), and
the pooled ordinary least square model (POLS)






CHAPTER 1 - THEORETICAL BACKGROUND

1.1 Research design

The aim of this work consists in providing a reference in choosing an effective sample size, and
building a guideline on what kind of bias is to be expected for each given sample size and
population conditions, when using fixed effect models methods. In particular, endogeneity
problems in the independent variables, and attenuation bias, due to both the aforementioned
sample size and sampling problems, will be addressed.

The present thesis will use the framework set up in the published paper “Immigration and
crime: evidence from victimization data” (Nunziata, 2015), to build a simulated population of
ten million individuals distributed over one hundred regions.

The measure of immigration is affected both by endogeneity and attenuation bias: the former
due to the fact that the immigrants are not randomly assigned to regions; and latter is caused by
sampling error due to specific reasons, such as the regional cell size being too small or the
selection bias caused by the fact that immigrants might not take the survey as much as natives.
The simulated population will then feature a proportion of immigrants, which will be subject to
yearly changes in forms of immigration waves. Such waves will be simulated as to represent a
dynamic shock over time: one at a population level, and one at regional level. The strength of
the waves will change each year according to its own variance. The shocks are only positive
and will result in an increase in the overall population. Furthermore, the intensity of the waves
will be increased in later testing; the idea is to reproduce immigration waves similar to those
registered during the European migrant crisis, and also compare them with weaker types of
immigration waves.

The studied relationship between the crime perception and the immigrant share of the
population is be exploited to build an estimator normalized to one, as the relationship between
the share of immigrant in the population and the perception of crime will be set accordingly to
the findings in the paper.

The population will be so that a marginal increase in immigration will lead to a linear increase
of the perceived probability of being a crime victim by 20%, controlling for fixed regional and

time effects:

(1.1) Crit = My B+ Ue + Ve + &
9



Where C stands for the crime perception, m for immigration share; u and y are regional and
time effects accounted for in the population simulation.

This restriction reflects the data in the paper and allows for a coefficient normalized to one.
With this setup, any immigration coefficient in a fixed effect model, built on a sample of the
initial population, will immediately display its own accuracy in its deviation from one. This
framework has been implemented with the use of the STATA software package. Use of Monte
Carlo simulation on fixed effect models has already brought several results in the literature.
Among the last, there’s the measure of statistical power of instrumental variables in the
presence of weak instruments (Semadeni et al, 2014), which was conducted on a simulated
dataset of 500 observations. Population tables will list the characteristics of the different
populations upon which the models are implemented:

POPULATION A

Initial pop. count: 10°000°000 Regions: 100

Immigration Shocks Variance: 1x Proportion of immigrants: 0,10
Time lenght: 4 Error term distr. : N~(0;0,5)

The work will present several variation of the initial population to simulate the results under
different initial conditions.

The next step consists in building fixed effect models. The choice of FE is justified by the fact
that the nation itself and each region have time invariant unobservable factors. On top of that a
simpler pooled OLS will be evaluated to test the strength of the fixed effects upon the end
results. The first model will be computed to check the population true parameters, which will
result to be normalized to one; and several others will be computed using different sampling
rates on the population. As in the paper, the type of fixed effect models build will be with and
without instrumental variables for each level of sampling rate.

In short the analysed models will be:

(1.2)
FE Model - Crit = MyePre + Ue + Uy + &t
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Where u represents time invariant regional and country effects, and X is a matrix of individual
controls.

As for the instrumental variable model, a split sample instrumental variable one will be used by
sampling the immigrant population variable twice, at different sampling rate. As a reference for
the sampled variables, the work will denote variable as END (which was the European Social
Survey in the paper) to indicate the endogenous independent measure of immigration, and INS
(denoted as the Labour Force Survey in the paper) to indicate the instrument.

The spilt sample instrumental variable model is built and denoted as follows

(1.3)
nd
V2 Stage Crit = mf{VD[)’IV + Ut U+ &g
st
IV 1% Stage mit? = miBrsy + M

Each variable is sampled in a wide array of sampling rates; mainly the ones available in surveys,
and then the model is estimated. Monte Carlo simulation are then used to randomly resample
and recompute each model several times. Tiers of 50 and 100 hundred replications of the models
are used, accordingly to the accuracy needed. The resulting coefficients and standard errors are
then averaged out and presented for comparison.

The first group of results will focus on the attenuation bias problem: several sampling rates will
be tested and compared to map the change in the bias. The simulations will be also conducted
swapping the instrumental variables in the split-sample instrumental variable approach.
Robustness checks will involve modification of the above mentioned models to identify the
most suited setup of it: changing in the length of the panel data, removal of time effects from
the controls, and modification in the error term’s distribution. Other checks will be performed
by introducing changes in the population, the intensity of the shocks and the proportion of
immigrants, as to evaluate the behaviour of the bias under different circumstances. Also the
models will be tested against their POLS versions while varying the intensity of the fixed

effects.
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1.2 Models overview.

1.2.1 Fixed effect model

In econometrics, fixed effect models (henceforth: FE) represent a viable choice to analyse and
study panel data, whenever the focus of the research is to explain the behaviour of a variable
over time. FE models explore the relationship between the dependent and independent variables
within a specific level of research: individual, regional, national, and so on, controlling for the
influence of each dependent variable. In particular, the FE model allows to remove the effect
of unobserved time invariant independent variables, simply by exploiting the observation at

different times and cancelling them out.

(1.4) Yie = B1Xie + 1y + uye

In such a setup, FE, are able to pinpoint, over a certain time frame, the effect on a dependent
variable, by an independent variable, within a group, while also controlling for other factors if
needed. Time periods and groups can either be used as controlling factors, or as explanatory to
seize their effect.

The main point, however, consists in the fact that any unobserved factor, can be removed as
long as it is constant over time. If the assumption holds true, then any effect on the dependent
variable is due to non-fixed influences (Stock and Watson, 2003, p.289-290), and the “within

transformation” can be applied to the model.

(1.5) Yie = ¥) = Bi(Xie — X)) + (i — 1) + (wie — ;)

(1-6) Ylt = ﬁlXit + i

Beta coefficients in equation (2) can then be easily estimated using Ordinary Least Squares
(OLS) methods, which can be also denoted as a “within estimator” in this particular case
(Wooldridge J., 2015). Once in form as in eq (2), other several estimation methods could be

used, but research as shown that OLS still retains the best results (Buddelmeyer et al, 2008).
12



Therefore, under the Gauss-Markov assumptions, and if the strict exogeneity conditions are
met, the estimator for the independent variable is unbiased and consistent. As for the case of
OLS estimation, using X to denote the matrix of the explanatory variable, the bias would be

defined as

(1.7) E(B|X) — = X'X)"X'E(ulX)

In the specific case of our model the key condition for estimating the immigration coefficient

would be:
(1.8) Cov(m,s, &) =0, V.
(1-9) Crit = mrtﬁFE + Xitf/1 + Ut U + &y

namely that the idiosyncratic error is independent from the explanatory variable for all times in
the model.

In the model considered however, the immigration explanatory variable is not randomly
assigned to region (Nunziata, 2015), and unlike random effect models, in the baseline FE model
it is assumed that the explanatory variables in the dynamic equation are not random. Therefore,
any correlation between them and the error term will lead to an endogeneity problem as

condition (3) is violated. That will ultimately cause bias in the estimator.

1.2.2 Split sample instrumental variable model

As explained in the paper, one of the solution for endogeneity, and even for the attenuation bias
would be to use split-sample instrumental variable method.

The SSIV estimator is relatively new as it was proposed for the first time in the paper “Split
Sample Instrumental Variable” (Angrist J.D., Krueger A.B., 1993), as a solution to IV bias
caused by weak instruments in finite samples.

In our case the SSIV method will feature two measure of immigration taken form two different
surveys, ESS and LFS respectively, which are independent of each other. The setup can easily
be reproduced by taking two different, independent samples from the population of immigrants

13



in the simulation. If m is a correct, unbiased measurement of immigration, the two survey
measures will still differ from that by an error. So the characteristics of the two measure of

immigration will be:
(1.10) Mess — M= &, Mpps — M= &
Cov(myps, Myps) & M
Even if condition (3) is not met due to endogeneity, the first stage estimation using split-sample

instrumental variable, will exploit the characteristics of the two measure of immigration to

“partial out” the errors, and keep the variance, of the unbiased common part of m, intact.

(1.11) Crie = ME° By + Xud+ pe + ur + &

ESS _ . LFS
mye” = My Brsy + XieV + Mg

The use of SSIV however doesn’t solve the problem of attenuation bias when the sample size
is too small. The following section will investigate the underlying literature to explain how and
why the bias is formed.

14



1.3 Types of bias.

1.3.1 Omitted variable bias

While trying to identify the effect and the dynamics of the attenuation bias, caused by smaller
sampling rates, it is useful to underline its differences with respect to the type of bias that’s the
cause of endogeneity in many models: the omitted variable bias, and how it can affect both FE
and SSIV’s estimations.

Most of the econometric literature on the subject of FE models, studies how the two stage
instrumental variable method, in the presence of endogeneity, is biased towards OLS
estimations (Nagar, 1959; Hausman et al, 2002). Even fixed effect models with instrumental
variable are biased towards OLS.

Using the matrix form for the IV models (Ebbes P et al, 2009), the bias for an 1V model defined
as:

(1.12) {Y=Xﬁ+£

X=Zm+n
is quantified as follows:

Plim By—B __ Pze/Pxe
Plim Bors—B Px;z

(1.13)

The omitted variable bias committed in IV models is then generally dependent on the intensity
of the linear relationship between the instrument and the endogenous variable, and inversely
correlated to the linear correlation between the regressors and the error term of the second stage.
The researchers are especially focused on two broad topics: the quality of the instruments
(Bound J. et al, 1995), and the problem that arise in small sample sizes (Flores-Lagunes A.,
2007).

As shown in the above bias, the explanatory power of the instrument is indirectly proportional
to the bias, as well as the exogeneity of the instrument with respect to the first stage’s error
terms.

Plenty of solutions are available, including different types of estimators such as Higher
Moments and Latent Instrumental Variable (Ebbes et al. 2009), to solve the problem; the

downside being the heavier requirements in terms of sample size and computational power.
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However, in spite of the similarities, SSIV (Split Sample Instrumental Variables) models are
biased towards zero rather than OLS, if no exogenous regressors are included in the model
(Angrist D., Krueger B. 1993).

Provided that the instrument used meets all the requirement for exogeneity constrictions, and
are related to the endogenous variable, SSIV doesn’t suffer from endogeneity bias and the
expected quality of the results in the simulations will mainly depend on the quality of the
instrument in the first stage, and the resulting explanatory power of the second stage.

1.3.2 Attenuation bias

The attenuation bias, instead, needs to be apprehended by considering more specific
circumstances.

The attenuation bias has been studied first by taking the contradictory conclusion of the effect
of immigration on wages (Aydemir A., Borjas J. 2011), elaborated from two different surveys:
one with a sampling rate of a 33% of the population and the other with a less than 10% sampling
rate. Following their work, p,will be the regressor affected by attenuation bias, and m, will be

the unbiased regressor. They will differ by an error term w,:

(114) Pr = Tty + Uy

The distribution of u,depends on the characteristic of the phenomenon observed. Since
immigration is the subject of the research both for the reference paper and our case study, the
error term is geometrically distributed. It is possible to approximate it to a binomial distribution

without changing the characteristic of the error.

At this point the authors define the sampling rate as % = 1; where n is the cell size, and N is
k

the total population considered by the phenomenon. The model considered in the paper is a
fixed effect one, akin to the one used for the simulation.

And for such a model, the attenuation bias should be given by the equation:

plimB-g _ .. p(-p)/n
(1.15) —5 A0
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from which the implication that the difference between the regressor and the unbiased regressor
must be always smaller than that of the “purged variance” of the model (Aydemir A., Borjas J.
2011):

(1.16) Up =pr — T < (1 —R?*)o;
Based on this conclusions, and considering the elements of Eq. (1.15), the attenuation bias that
is expected to be found in the simulations will be proportional to: the sampling rate t; the

average cell size n; the explained variance of the model used, and the variance of the affected

regressor.
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CHAPTER 2 — SIMULATION RESULTS

The following sections will report the results of the fixed effect models used, before focusing
on the tests on the attenuation bias intensity itself, and then will move on to explore the various
changes in bias caused by different characteristics of the population.

The total running time of the simulation is of 2304 hours, is comprised of a total of more than
300 million individuals divided upon 2100 different models. The total amount of data generated
is of 2,27 TB.

All of the simulation results are expected to be explained by the relations highlighted in Eq. (4),
therefore the relationship between the total bias and sampling rates and total population, or cell
size, is expected to be negative: bigger cell sizes will lead to smaller biases; a larger purged
variance should lead to smaller biases in the coefficient as well.

The goal for this second part will be to track the behaviour of the bias across different
populations and different models, and to interpret it as shown in the Eq. (4) grouping them by
the type of effect that they have on the bias: a change in bias’ variance or a change in the

numbers of cell.
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2.1 Cell size and sampling rate

The purpose of this section is to examine the behaviour of the sampling rate, taking into
consideration the effect of immigration on crime rate using the models described in the first
part and to find an ideal cell size range to minimize the bias.

The baseline model from the reference paper will be replicated and each type of population will
be catalogued. As previously explained the phenomenon of reference used to build the
simulation is the effect of immigration on crime rate. The peculiarity of the framework
implemented will then allow for a further manipulation of the population itself: by changing
the population parameters in terms of initial size, initial proportion of immigrants, immigration
waves, strength of fixed effects and length of time, several “population models” will be created.
The goal is to track the behaviour of the bias as these changes occur in the population, and
check on the performance of each model’s estimator.

By taking into account the normalization of the coefficient at once, since the normalization was
computed on average an effect of immigration on crime of 20%, it means that a 50% bias, or a
coefficient of 0.5 for a beta, will register an effect of immigration on crime half as strong than
it actually is.

The changes performed upon the key parameters in this section will solely affect the cell size
indirectly by modifying the number of regions in the simulation and the number of total
individual in the population model:

20



2.2 Baseline Population

For comparison we implemented the FE models to replicate the result from our reference paper
(Nunziata, 2015), where the unbiased coefficient was normalized at one and in which the

characteristic of the population were as follows:

BASELINE POPULATION SETUP

Initial pop. count: 10°000°000 Regions: 100
Immigration Shocks Variance: 2% of total population Average proportion of immigrants: 0,10
Time length: 4 Dependent variable error term distr. : N~( 0;0,5)

The baseline population parameters are a good approximation of actual parameters
for a country in terms of average proportion of immigrants and immigration waves.
For this baseline setup the modification in population size, number of region and

sampling rates covered a good range of cell sizes for both models:

TABLE 2.1 — POPULATION LIST BY PARAMETERS AND CELL SIZE RANGES COVERED

Key parameters Parameter | Cell range Cellrange | Cell range SSIV
value FE model SSIV model | model
Instrument variable | Endogenous variable
R g g 100000 (3, 209) (3, 209) (1, 14)
Initial Population size S = e =
1'0007000; (10, 1043) (10,1043) (14, 104)
10°000°'000; (10, 31299) (104,10433) (104, 1043)
7 50; (209, 20866) (209, 20866) (209, 280)
Regions 100 (104, 10433) (104,10433) (104, 1043)
S$SIV Endogenous variable sampling rate (104, 10433) (10, 1020)

(for immigration waves variance = 4%)

All the modification for the baseline population do not alter the unexplained variance of the
regressor in the denominator of Eq. (1.15) and therefore can be considered as a starting point to

track the bias given fixed conditions.
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2.2.1 Baseline FE model

TABLE 2.2 — BASELINE POPULATION — FE MODEL

S.Rate  0.01 005 0.1 03 05 1 3 5 10 15 20 30
BEE 997 998 996 1 1 1 1 1 1 1 1 1

s.e. 0721 0322 .0228 0131 .0102 .00719 .00415 .00322 .00228 .00186 .00161 .00131
BEE . 0184 0862 153 36 483 .65 854 905 952 97 081 989
s.e. 00995 00955 .00916 .008  .00713 .00585 .00386 .00306 .00222 .00183 .00159 .00131
Obs Cell 104 522 104 313 522 1043 3130 5216 10433 15649 20866 31299
s.e. 53 214 428 128 214 428 128 214 428 642 856 1283

Table 1 refers to the fixed effect model for the baseline population: the first row reports the

coefficient for the population model, as expected the value is one across the whole range; a

minor divergence happens for very small cell sizes.

The beta “sample” coefficient refers to coefficient from the fixed effect model. As shown in the

paper, the FE model results biased for low levels of sampling rate and as average the cell size

and the sampling rate increase, the bias decreases. The key parameter in tracking the

performance of the bias is the observation per Cell: the estimator is performing very poorly

until the cell size hits 3000 observations. In other words, below 1000 the attenuation bias is so

severe that the effect of immigration on crime rate is halved when considering a FE model.

GRAPH 2.1 - BIAS VS CELL SIZE FOR BASELINE FE
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Graph # shows how the bias behaves across the considered cell range: for that population the

bias becomes acceptable only when cell size is above 5000 cells per region. Considering the
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one hundred region used, the total amount of observation needed would be of half a million.
The cell length for the fixed effect also features a standard error but since it is below 2% on
average, it is to be considered solely for high values of the interval. It would be equal to 200
around a cell size of 5000.

An interesting fact is the relationship between bias and cell size which is exponential in the
range studied: 90% of the bias is compressed in the first quarter of the interval. Also the
marginal effect of adding a cell will become less and less meaningful after the first thousand
cells.

23



2.2.2 Baseline FE vs SSIV model

TABLE 2.3 — BASELINE POPULATION — SSIV MODEL

S.Rate 0.1 0.3 0.5 1 3 5 10
BrE 1 998 1 999 .999 1 1

s.e. 0198  .0114 00886 .00626 .00362  .0028  .00198
B e 156 354 484 651 852 908 953
s.e. 00801 .00693 .00628 .0051  .00335  .00268  .00194
BV e o1 -T95 1.1 1.06 1.02 1.02 1.03 1.05
s.e. 294 0257 0163  .00932 .00468  .00356  .0025
Blaoise 01 -154 341 482 658 849 901 936
s.e. 00479 .00416 .00374 .00299 .00196  .00154  .0011
BV e 03 981 997 1.02 1.01 1.02 993 1.01
s.e. 0527 0203 0138 .00829 .0042  .00309  .00217
BIVES o5 166 361 A48 .65 847 921 949
s.e. 00313 .00261 .00232 .00182 .00115  .000914 .000648
BV e 05 106 984 1.02 1.02 1.01 1.03 1.01
s.e. 0553 .0196  .0134  .00821 .00411  .00313  .00211
BIVES o5 151 364 481 641 844 .889 95
s.e. 00266 .0022  .00193 .00149 .000915 .000712 .000503
BV e 1 997 1.01 1 999 1 1 998
s.e. 0513 .0198 013  .00788 .00399  .003 00206
pIvES . 158 351 485 654 853 907 957
s.e. 00225 .00182 .00157 .00116 .000673 .000521 .00036

Obs Cell 104 313 022 1043 3130 2216 10433

NB: Cell sizes value in the “Obs Cell” row apply to endogenous variable as well

In the SSIV model table the sampling rates of the instrumental variable are in the first row,
while the first column reports the sampling rate for the endogenous regressor.

The 2" stage coefficients are unbiased, even for smaller levels of sampling rate in the
instrument.

A problem however lies in the coefficient for the first stage, which, affects the quality of the
second stage estimates: the size of the standard error is smaller whenever the first stage
estimates are higher. Raising the sampling rate of the endogenous variable does not increase

24



the quality of the first stage, which raises only after an increase in the sampling rate of the

instrument.
GRAPH 2.2 — BASELINE COMPARISON FE vs SSIV
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In terms of cell size to bias, the SSIV is outperforming the FE model: the bias at one hundred
cell per region is around 25% for the former and 85% for the latter. The comparison becomes
meaningless as the sampling rate of the endogenous variable raises since the SSIV results
almost unbiased.

Even if the gap in terms of performance between the two model is significant, as explained in
chapter 1, the SSIV one needs to rely on two independent sample of the same measure, and
therefore requires two different surveys. In the simulation the two surveys were independent as
per construction, in real circumstances the simple fact that the surveys would come from

different sources should be enough to guarantee their non-correlation.

2.3 Properties of SSIV

The peculiarity of SSIV consist in having two independent sample of the same endogenous
variable. One sample is to be used as an instrument, generally the smaller one, and the other is
to be used as a measure of the endogenous variable, as depicted in equation #.

Due to this this property, it is possible to swap instrument and endogenous variable in the model

to achieve the same estimates. The only requirement for the two samples is simply to be
25



independent of each other, and swapping them across the model doesn’t affect their non-
correlation in any way.
An application of such properties is presented in Table 3#, which is estimated with the same

parameters as Table 2, and should, at least in principle, provide the same estimations.

TABLE 2.4 — SSIV INSTRUMENT AND ENDOGENOUS VARIABLE SWAP

S.Rate 0.1 0.3 0.5 1 3 5 10

BFE 1 998 1 999 999 1 1

5.0 0198 0114 00886 00626 00362 0028 00198
BEE A55 361 ABT 654 855 914 954

5.6. 00806 00697 00632 .00511  .00336 0027 00194
BIY e oa 12T 988 1.06 964 1.01 1.01 1

5.e. 134 0309 025 0156 00941 00733 00516
BIVES o1 16 .162 154 166 155 151 155
5.0 00485 00183 0012 000721 000355 .000266 000184
BLY e 03 112 1.05 1.03 98 1 1 998
s.e. 047 0212 0159 0105 00607 00476 0033
BIVES .3 34T .35 351 366 361 354 362
5.e. 00723 00263 0017 .001 000481 000353 000243
BlY e 05 104 .995 1.02 997 1.01 1 998
s.e. 0354 0173 0135 00916 00528 00405 00282
Bl Es, o5 A48T 493 484 485 ATT A85 49

s.e. 00828 00299 00193 .0011 000513 000374 000253
BlY e 1 103 2095 1.01 992 1 1.01 2099
s.e. 0295 0149 0115 00781 0045 00354 00244
BivES L 648 65T 645 66 652 641 656
s.e. 00939 00332 00208 00117 000515 000375 000246
Obs Cell 104 313 522 1043 3130 5216 10433

However, there is a slight divergence in Table 3, even though the estimates are roughly the
same, their values differ by a small degree of precision.

For example, the beta estimates for the sampling rate 100/100 are different across the two tables,
but the % of bias is roughly around 30%. The differences between the two tables become
smaller and smaller as we raise the cell size in both variables. Each increase in sampling rate,
from 0.5 to 1, raises the precision from a decimal to a centesimal part.

In principle, if the precision of the simulation could be infinitely high, the estimates would be
exactly the same. They get more and more precise as the number of repetition in the Monte

Carlo simulation raises, or whenever the bias gets smaller and smaller.
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This property can be useful to evaluate the consistency of the estimates across the various
simulation because cell sizes should be diagonally mirrored on a table. For example, the pair
100 for the endogenous, 300 for the instrument and 300 for the instrument and 100 for the
endogenous should have the same estimate or at least the same amount of bias. The only
downside would be the time invested in actually estimating the same cell twice. Ultimately, by
arranging the data diagonally and checking for the mirrored cells it would be possible to check
the precision of the estimation: consistent cell ranges should be very close in terms of bias.
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2.3 Optimal cell size

The criterion to select an optimal cell size would be to choose a cell size that:

reduces the bias by 90% (a pair of cell sizes in the case of SSIV)

is consistent, namely that any higher value for the cell size has at least the same reduction

has a t-statistic lower than 2

The 90% reduction in bias is a good compromise for the best approximation attainable with the
instrument at our disposal: more precision would require both longer computational times and
bigger datasets. Even if the simulation as of now is capable to accurately estimate biases of less
than 0.1% for larger cell sizes, the precision goes down as the cell size becomes smaller. For
FE itis able to accurately predict up to a 1% reduction in bias due to the fact that the bias is still
extremely high even for very large cell sizes. While for the SSIV the bias is actually sizable
only for smaller cell sizes.

Moreover, in the case of SSIV there are two different cell size to select: one for the endogenous
and one for the instrumental variable, the optimal pair would be the one that reduces the bias
by 90%, and above such range the bias should be consistently lower, while all the estimates
should be statistically significant. The endogenous/instrumental cell size pair could be
interchanged due to the properties of SSIV. Since SSIV is extremely good for higher level of

cell size, to find the optimal value it is necessary to explore the lower bounds of the interval.
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GRAPH 2.3 — LOWER CELL SIZE RANGES SSIV
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NB: Each line represents an Endogenous variable sampling rate

Graph # represents lower cell values for the SSIV, each line corresponds to a specific
endogenous variable sampling rate from 0.1 to 1, in terms of cell size they range from 100 to
1000; the cell size of the instrument is on the x axis. The green area highlights a range in which
the coefficients are more consistent: the bias is below 90% and the estimates are statistically
significant. It corresponds roughly to the interval highlighted in table #, for which the
coefficients are more consistent and do not assume extremely biased value for smaller cell sizes.
The only endogenous sampling rate that remains consistent for lower levels is the one for a cell
size of one thousand

Table 3 itself reports a lower range of sampling rates for the endogenous variable in the SSIV
model: from 0.0001 to 0.01. The red section highlights the optimal range value which meet the

required criteria.
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TABLE 2.5 —BASELINE SSIV — LOWER CELL SIZE RANGE

S.Rate 0.1 0.3 0.5 1 3 5 10
BrE 102 997 999 1 996 999 1

5.0. 0620 0362 028 0198 0114 0088T 00627
BEE e 0161 0538 0864 156 361 A95 67T
5.0 00876 00851 00833 00816 00711 00635 00523
Blampie a1 D737 634 163 68 162 89 1.39
5.0 832 706 823 2465 251 182 0681
A o 0122 0297 L0937 137 366 499 64T
5.0 0158 0152 0149 0145 0129 0115 00936
Blompie 03 -2.58 107 948 1.27 7.50 1.14 1.22
5.0 106 213 2.4 262 326 0309 0178
Bivnpie 0a D164 0481 0783 163 328 53 38
8.0 0092 00883 00866 0085 00736 00663 00546
Bivmpie 05 -524  -547 852 2,62 1.04 OR6 1.03
5.0 14 476 513 3.78 0281 0163 0106
Brampte 05 0239 0473 0739 154 76 518 702
5.0 00722 00698 00681 00673 | 00583 00514 0042
H.’.‘;;”Hf . -.665 B0 1.46 {2.1% 1.07 1.06 1.0%
5.6 9.03 585 837 1M 0253 016 00986
Hj.};;;:‘f y  DIST M63 0794 154 361 AR9 648
5.0 00533 00513 005 0049 | 00418 00375 00306
Obs Cell 10.4 313 522 104 313 522 1043

NB: Cell sizes value in the “Obs Cell” row apply to endogenous variable as well

The values of the coefficients become less and less biased as the cell size in both variable
increases. The optimal cell range seems to be located above a value of 300 for the independent
and 50 for the endogenous variable.

Below 100 the coefficients are extremely unreliable in some cases: for the cell 100 and 10 the
value of the coefficient has a 1600% bias; for the cell 10 and 30 instead, even if the coefficient
itself has a low bias, the standard error is exceedingly large. The former doesn’t meet the
required criteria directly; the latter doesn’t meet it in due to the inconsistency of its standard

error.
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TABLE 2.6 — BASELINE SSIV — COEFFICIENT BIAS BY EXTENDED CELL SIZE RANGE

~| Instrument cell size

o

o
o

N
o
o

*Inconsistent range
**T-stat < 2

NB: Optimal cell sizes are highlighted in green. Orange cell sizes are borderline values

Table # reports a much wider range for SSIV model, in which it is possible to identify the
optimal range. The estimated coefficients for the second stage of SSIV can be classified in three
categories: highly biased, borderline and optimal range. The ones in the first two columns and
rows belong to the lowest ranges of cell sizes, the values are generally extremely biased or have
a wide standard error. Some values have less bias but belong to an inconsistent range.

An explanation to justify the inconsistent behaviour of low range estimates can be found in how
the Monte Carlo simulation operates. Picking up random samples in a larger population, that
is by construction normally distributed, there is a chance that the sampling upon which that
specific coefficient has been computed have very few extreme values and that a very small
sample resembles the population distribution more than a bigger one. The problem is ultimately

tied to the lack of precision due to the limited number of repeated sampling done during the
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Monte Carlo simulation. A higher number of repeated sampling operation should highlight how
all the values in the lower cell ranges from ten to fifty are actually biased.

A second tier of estimates is the borderline one: between 150 and 200 for both variables. This
group features a bias below 15% on average, is fairly consistent in terms of bias reduction by
increase in cell size but it doesn’t show a consistent diagonal symmetry: same cell values
repeated can yield different estimates. For example, the cell 200/100 and 100/200 diverge by a
6%; the cells 200/150 and 150/200 instead diverge by 9%.

The estimates tend to become more consistent around the diagonal, for a cell size of 200/200.
This group comprehends the ranges 50/300-1000 and 300-1000/50. Even if the values are fairly
consistent for these cell size and the bias is low, the very short sample of 50 in one the two
variable, especially as seen in the 50/1000 cell, may be biased for higher level of precision of
the simulation.

The last group above the 300/100 range, meets all the criteria for the optimal cell range: the
bias reduction is way above 90-95%, it’s consistent in terms of bias reduction by cell size
increase, doesn’t feature abnormal values, and it’s mirrored up to a decimal precision. The
biggest divergence, around 5%, is located around the limits of the cell range.

To measure the improvement of the alternate modification, the set of coordinates (bias,
endogenous variable cell size, instrument cell size) has been fitted to a non-linear regression in
table 2.7. The volume below the curved plane and inside the boundaries (0.5000) for X and
(0.1000) for Y, will be used to compare the increase or decrease in bias w.r.t. the alternative

populations.
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TABLE 2.7 — SSIV BASELINE POPULATION —
BIAS VS ENDOGENOUS/ INSTRUMENT CELL SIZE

NON-LINEAR REGRESSION

% __/
.

fx,y) = a+y, X +y,Y +y3X2 + 7, XY

Coefficients (with 5% confidence bounds):
a = 2.06 (-19.33, 23.45)
Y1 = -1.85 [-25.9, 22.2)
Y= -1.349 (-13.49. 10.79)
1.087 (-17.17, 19.34)
0.5323 [-11.79. 12.85)

Goodness of fit:
SSE: 3.605e+04
R-square: 0.66/78
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CHAPTER 3 — ALTERNATIVE POPULATIONS

In this third section we'll use the methodology developed in chapter two to study how the
attenuation bias behaves whenever the condition in the initial population change.

In this way, it would be possible not only to select an optimal cell size to build a fixed effect
model of migration, but also to adjust the cell size to make it fit the population’s condition more
realistically.

Moreover, it would be interesting to understand which factor do affect the attenuation bias and
how strong such effect is.

Table # reports the full list of all the changes and modifications done to the initial population,
in order to track the bias’s behaviour.

TABLE 3.1 — ALTERNATIVE POPULATION LIST BY PARAMETERS AND CELL SIZE RANGES

Key parameters Parameter | Cell range Cellrange | Cell range SSIV
value FE model SSIV model | model
Instrument variable Endogenous variable
i+ i i 10%; (10, 31299) (104, 10433) (104, 1043)
Inifial average |mm|gron’r 30%; (113, 5649) (113, 5649) (113,1130)
share (as % of total population) 50%; (122, 6082) (122, 6082) (122, 1216)
i 1 1 2%; (10, 30599) (102, 10200) (102, 1020)
!g?;g:%ﬂfq?e:ﬁﬁ;ﬁ;ﬁggﬁnce 4%; (10, 31299) (104, 10433) (104, 1043)
10%; (11, 33062) (110, 11009) (110, 1101)
27%; (127, 12679) (127, 12679) (127,1268)
2 (10, 20472) (102, 10234) (102, 1024)
::L)J(ri‘rrlfe:m?quo (leirgght 4 (10, 31299) (104, 10433) (104, 1043)
Ty 8 (15, 30355) (152, 15178) (152, 1518)
$SIV Endogenous variable sampling rate (104, 10433) (10, 1043)
(for immigration waves variance = 10%)
Smaller variance in the error term for (10, 31299) (104, 10433) (104, 1043)

dependent variable

Baseline parameters value

The key parameters are chosen to simulate actual circumstances. The modifications will affect:
initial average proportion of immigrants, the variability of immigration's shocks across time,
and the length of time for the model.

The average initial proportion of immigrants was set at 10%. Which is around the average for
western European countries. Whereas values such as 5% would represent the situation in eastern
European countries. Bigger values, up to 30% can be used to replicate the condition of countries
with a strong population of immigrants such as Australia and New Zealand (United Nations
database, 2015).
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The second parameter is immigration waves. It’s measured by how much it affects the total
increase in the final population after the observation period. For example, a 4%, which is the
baseline parameter, would indicate an increase in population due to immigration of 0.5% per
each year. As an upper limit, a 10% increase has been chosen, which corresponds to a 1.25%
increase per year, and 2% as a lower limit, which corresponds to a 0.25% yearly increase in
total population due to immigration.

For comparison, Germany’s yearly immigration causes approximately an increase of 1% in the
population, while the Italian immigration causes an increase of approximately 0.33% (Hawkins
0, 2017). That’ll make so that the variant with the lower bound parameter would be better to
describe the bias on fixed effect models that use Italian data, meanwhile the upper bound variant
would be better suited to track the bias of fixed effect models on German data.

The time length modification is performed to check the consistency of the time frame chosen
and the effect of its alteration upon the bias. It is to be noted that the time unit used in the
simulation corresponds to two years, since it is measured upon the bi-yearly release of Labour
Force Survey data.

The following sections will then cover a brief explanation on the expectation of such
modification, with a reminder of the theoretical basis; an in-depth look to the effects of the
modification on each model, with the identification of optimal cell sizes for each modification.
In addition, to compare all the model across the different modification, each and every model

has been fit with a non-linear regression. The functions used to fit the models are:

(3.1) f(x) = a;e"* + a,e?2*
For FE, where the dependent variable is the bias and x is the cell size.

For SSIV, where the dependent variable is the bias as well and X and Y are the cell sizes used
for the instrument and the endogenous variable. The same framework has been applied to all

models.
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3.1 Unexplained variance

The modifications in this section will not only affect the key parameter of cell size in Eq. (7),
they will also have an effect on the denominator in the equation that defines the bias.

That is due to the reduction of unexplained variance in the regressor, or, in other words, to how
migration becomes “better” at explaining the variance in crime rate. A stronger correlation
between the regressor and the dependent variable leads to a smaller denominator for Eq. (7) and
In return it means a smaller bias.

To test the relation directly in the simulation, the error term in the construction of the simulated
dependent variable has been changed.

When the “crime rate” variable is simulated in the program, a normally distributed error with
zero mean and 0.5 variance is included to its variability. By replacing that error with a smaller
one that is lognormally distributed, and only has 0.1 variance, the explained variance of the
regressor on the dependent variable should become bigger. It should be a consequence of the
reduced “random” part of the crime rate variable.

The hypothesis is tested on both FE and SSIV models. The results for SSIV are on graph #,

while table # displays the full range of results for both models:

GRAPH 3.1 — SSIV COEFFICIENT VALUES BY ERROR TERM
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TABLE 3.2 — REDUCED ERROR TERM IN THE REGRESSAND

S.Rate 0.1 0.3 0.5 1 3 5 10
BFE | 999 1 1 1 1 1 1

5.6. 00879 00508 00393 00278 00161 00124  .000S8
,-’iiim 439 T06 804 892 962 976 989
5.€. 00633 00447 00363 .00267  .00159 00123  .000STT
Ef;’j;wk o1 L02  993 101 1 1.02 995 1

5.€. 0161 00706 00519 00347 00196 00147  .00104
BIVES o1 436 TIT 805 895 953 986 .993
5.6. 00426 0029 0023 00167 000969 000755 000535
BlY e 03 1 1 1.01 1.01 1 1 998
5.6. 0142 00646 00467 00315 00174 00134 000936
;ﬁ;’;;f;gﬂ o3 42 705 801 887 064 0976 093
5.6. 00314 00196 00149 00104 000583  .000444 00031
fi;’;;;m os 994 098 1 096 1 1 097
5.€. 0138 00627 00455 00304 L0017 00131 000915
;?;’;f;fjﬂ as 442 TO8 805 897 (063 973 993
5.6. 00287 00172 00128 000852 000461 000352 000244
.-?ﬂf,,m . a7 996 1 098 2099 1 097
5.6. 0136 00615 00449 003 00167 00128 000898
;ﬁ;’;;f;gﬂ , Adl i | 801 804 063 0976 093
5.6. 00265 00152 00109 000691 000351 000255 .000175
Obs Cell 110 330 551 1101 3303 5505 11009
5.€. 109 327 544 109 327 545 1089
N.of Obs. 400 400 400 400 400 400 400

In graph #, the estimated SSIV coefficients reported on table # are compared together with the
ones on table #. The sampling rate, and consequently the cell size used for both endogenous
variable and the instrument is the same in both groups.

The resulting graph shows how the estimated coefficient for the smaller error term, the one
distributed as a lognormal with zero mean and 0.1 variance are closer to the population
coefficient, for each level of sampling rate, meanwhile the coefficient simulated with the larger
error are way lower and therefore way more biased.

The same results are to be expected from any modification that would reduce the unexplained

variance of the regressor if the cell size remains unchanged.
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3.2 Initial proportion of immigrants

As introduced before, the matter of reducing “the unexplained variability” in the regressor, will
be covered in this section by simulating scenarios that will, ultimately, change the regressor’s
explanatory power. Each modification will be runned by both models

The “initial proportion of immigrants” represents the percentage of immigrants already
included in the population before the immigration waves.

The different scenarios are compared in the table below:

TABLE 3.3 — FE BIAS W.R.T. CHANGE IN INITIAL PROPORTION OF IMMIGRANTS

Q

=

3

& Cell size 300 | 500 3000 [ 5000 Overdll Improvement
: (in % wor.t baseline bias)

@

= 87 72 6 42 19 13 -33%

[=]

=

84 64 o1 34 14

The green represents the region in which the bias is reduced by 90 percentage points. The

+ 46%

+ 44%

proportion of immigrants is listed in the column.

As the proportion is the reduced the bias becomes higher for the same cell size, meanwhile a
bigger initial proportion of immigrants causes the bias to be reduced for the same cell size range.
The ideal range in which the optimal criteria are met are way above 5000, exactly at 6250, for
the lowest range of initial proportion of immigrants, 5000 for 0.1, and down to 3000 for 0.3.

The graph 3.2 shows a direct comparison.
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GRAPH 3.2 — FE BIAS VS CELL SIZE BY INITIAL PROPORTION OF IMMIGRANTS
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TABLE 3.4 —FE BIAS VS CELL SIZE BY INITIAL PROPORTION OF IMMIGRANTS

NON-LINEAR REGRESSION MODEL - FITTED VALUES

Coefficients (with 5% confidence bounds): Coefficients (with 5% confidence bounds):
a= 0.6882 (0.5572, 0.8192) a= 0.5971 (0.4156, 0.7787)
b = -0.001337 (-0.001753, -0.000921) b= -0.001855 (-0.002829, -0.0008811)
c=  0.2805 (0.1347, 0.4263) c= 0.3768 (0.1675, 0.586)
d = -0.000144 (-0.0002496, -3.848e-05) d = -0.0002431 (-0.0003822, -0.000104)
Goodness of fit: Goodness of fit:
SSE: 8.307e-05 SSE: 0.0001488
R-square: 0.99%98 R-square: 0.9997
f&x) = f&x) =
0.68828_0'001337x + 0.28056‘_0'000144‘x 0.59716_0'001855x + 0.3 7688_0'0002431x
Coefficients (with 5% confidence bounds): Coefficients (with 5% confidence bounds):
a= 0.6513 (0.5016, 0.8009) a= 0.6349 (0.4697, 0.8001)
b = -0.002486 (-0.004088, -0.001283) b = -0.002667 (-0.004236, -0.0010%97)
c= 0.2978 (0.1229, 0.4727) c= 0.3226 (0.1293, 0.5159)
d = -0.0003021 (-0.0004957, -0.0001085) d = -0.0003015 (-0.0004981, -0.000105)
Goodness of fit: Goodness of fit:
SSE: 0.0002219 SSE: 0.0002668
R-square: 0.9994 R-square: 0.9993
fx) = f&) =
0.65136_0'002686x + 0.2978e —0.0003021x 0.63496’_0'00266?x + 0.32268_0'0003015x
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The overall improvement in Table 3.3 directly compares the area underneath the baseline’s
graph, with the areas of the other modifications. The function is obtained by a non-linear
regression on the set of coordinates made up by bias in percentage points and cell size, and the
area has been computed by calculating the definite integral of the function in the range (0,
5000).

Ultimately, a reduction of 0.05 in the initial proportion of immigrants leads to an increase of
33% in bias with respect to the bias of the baseline model. Instead, when the initial proportion
of immigrant is at 0.3 or 0.5, the reduction in bias w.r.t. the baseline model is respectively 46%
and 44%.

For SSIV we need to introduce another variable to measure the cell size of the instrument. The
bias in percentage point is summed up in the following tables, one for the reduction and the

other one for the increment:

TABLE 3.5 - SSIV BIAS W.R.T. INITIAL PROPORTION OF IMMIGRANTS( 0.05)

Instrument cell size -

_22 _ ] 4 _8 _3

The optimal cell size when the initial proportion of immigrants is reduced to 0.05 percent of the
total population is located at 500 cells for the endogenous variable and 300 cells for the
instrument. With respect to the baseline population the inconsistent values are more frequent

for lower cell size ranges.
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TABLE 3.6 - SSIV BIAS W.R.T. INITIAL PROPORTION OF IMMIGRANTS ( 0.3)

Instrument cell size -

al
v 50 100 | 300 500 1000 3000
4 size

-1 1 | 0

“ ] i ] N 0 ]

Table 3.6 reports of bias in percentage point, in case of an increase in initial proportion of

immigrants for both endogenous and instrument in an SSIV model.

The results show how the ideal range is located at 300 cells for the endogenous and 50 for the

instrument. The 100/50 range shows a bias lower than 10, but the borderline result at 100/100

is an indicator of low consistency for this range. The green area instead is perfectly consistent

in reducing the bias below 10 percentage points.

The same method for comparing the two models’ improvement has been applied, this time in

three dimensions. The results of the non-linear regression are as reported in table 3.4
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TABLE 3.7 — SSIV B1AS vS CELL SIZE BY INITIAL PROPORTION OF IMMIGRANTS

NON-LINEAR REGRESSION MODEL - FITTED VALUES

0, y) = a+y. X +17Y + yaX2 + y XY

Inifial proportion of immigrants = 0.05 Inifial proportion of immigrants = 0.3

Coefficients (with 95% confidence bounds): Coefficients [th e (;. nfidence bounds):
11.68 [-5.926, 29.25
-24.01
-9.788
9.68 ;
5163 (-4979. 15 / 0. \ugr\ (- Id:ﬂ 2. 1“1]

Goodness of fit: R-square: 0.7403 Goodness of fit: R-square: 0.64659

The non-linear model has been used to compute the volume below the functions, which would
indicate the level of bias, and it has been compared to the volume of the baseline population in
table 2.7. The result indicates that the lower level of initial proportion of immigrants causes a
1037% increase in bias w.r.t the baseline population, meanwhile the higher level causes a

decrease of 77% in bias.
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3.3 Immigration shock’s intensity

Immigration shock ‘s intensity refers to the strength of the immigration waves in the simulation.
Their utility consists in showing how the bias fares whenever there’s a period of peak
immigration. As previously explained they do affect the explained variability of the migration

regressor on the dependent variable.

TABLE 3.8 — FE BIAS W.R.T. CHANGE IN IMMIGRATION SHOCK’S INTENSITY

Cell size 30 | 50 300 | 500 5000 | Overdll Improvement
(in % w.r.t baseline bias)
99 98 97 95 8 8 70 30
96 94 91 85
. 92
5

Modified Populalions

NB: Immigration shock’s intensity 1S measured as percentage of yearly increase in total

population

Change in Immigration shock’s intensity seems to cause a substantial increase or decrease in
bias for FE models. The reduction of the shock down to 0.5% increase per year, causes the
optimal cell size to ramp up to 15000 cells. An increase up to 2.5% drops the cell size, required
to reduce the bias by almost completely, down to 5000. It is to be noted that at around 1000
cells the bias is already reduced by 85 percentage points.

The biggest reduction is obtained by increasing the yearly shock to a 6.75% yearly: the optimal
cell size will be obtained with only 300 cells. Such a result is comparable to the performance

of a SSIV model.
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GRAPH 3.3 — FE BIAS VS CELL SIZE BY INCREASE IN IMM. SHOCK INTENSITY
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The average improvement by change in intensity shock is computed by comparing the area
below each graph with the baseline population: the 0.5% reduction causes a 200% increase in
bias, while increasing the intensity to 2.5% and 6.75% cause a decrease in bias by 64% and
87% respectively.

Table 3.9 and 3.10 report the result for the SSIV model. The reduction in immigration shock’s
intensity causes the optimal cell size to rise up to 1000 cell for the endogenous variable and 300
for the instrument.

TABLE 3.9 - SSIV BIAS W.R.T. CHANGE IN IMMIGRATION SHOCK’S INTENSITY ( 0.05)

Instrument cell size

1000 | 3000
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A raise in immigration shock intensity, up to 2.5% increase in total population per year, causes
the optimal cell size to drop down to 50 cells for both variables. This scenario brings the best

results so far in terms of reduction in attenuation bias.

TABLE 3.10 - SSIV BIAS W.R.T. CHANGE IN IMMIGRATION SHOCK’S INTENSITY (2.5)

500 H 3000 | 5000
0 1 =3 -1

Instrument cell size

Table 3.11 shows the fitted values for non-linear regression on the SSIV models regarding the
change in immigration shock. The change on average with respect to the baseline simulation is
of an increase of 1214% of the bias, in the case of the weaker shock, and a reduction up to 97%

of the bias when the more intense shock occurs.

TABLE 3.11 —SSIV BI1AS vS CELL SIZE BY CHANGE IN IMMIGRATION SHOCK’S INTENSITY

NON-LINEAR REGRESSION MODEL - FITTED VALUES

Immigration shock intensity = 0.5% Immigration shock infensity = 2.5%

Fley) =a+nX + ¥ +r X"+ 1Y flr.y) =a+ 19X +12¥ +12X° +y XY

Coefficients (with 5% confidence bounds):  Coefficients [with 5% confidence bounds):
&= 23.43 [-0.3843, 47.24) a= 0.9291 [-0.997, 2.855)
71 -32.58 [-5%.35, -5.807) y1= -0.3307 [-2.047, 1.388)
¥2 § yz = -0.7622 [-2.413, 0.8853
Y3 11.1 (9.214, 31.42) ya= -0.08476 (-2.189,2.02)
Ya 7.539 [-6.174, 21.25] ya = 0.3422 [-1.185, 1.57)

Goodness of fil: B-square: 0.6673 Goodness of fit: Requare: 0.6933
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3.3.1 SSIV First stage quality

The modification regarding shock’s intensity has been used as a test to track the behaviour of
the first stage in the SSIV model. The literature regarding instrumental variable is often focused
on the quality of the first stage, especially on the explanatory power that comes from choosing
a good instrument (Bound J. et al., 1995). Even if the SSIV builds the instrument using a
different approach, as shown in section 1.2.2, it is still worth to examine the relationship

between the first stage estimate and the resulting bias in the coefficient for the second stage.

TABLE 3.12 — SSIV — FIRST STAGE ESTIMATES BY SHOCK’S INTENSITY

S.Rate 0.1 0.3 05 1 3 3 10

0.5xVar FSIV ESS 1/1000 0566 119 192 328 571 688 .849
0.5xVar FSIV ESS 3/1000  .0317 124 181 312 .57 725 842
0.5xVar FSIV ESS 5/1000 .0398 115 181 307 582 714 847
0.5xVar FSIV ESS 1/100  .0407 121 179 314 586 699 833
LxVar FEIV ESS 1/1000 54 SHL 482 6ER B49 0 901 936
LxVar FSIV ESS 3,/1000 d66 0 361 48 65 84T 921 040
LxVar FEIV ESS 5/1000 A41 640 481 641 844 8RO 95

LxVar FSIV ESS 1/100 A58 0 351 485 654 8R3 007 05T
ZyVar FSIV ESS 1/1000 A3 T1T O 805 895 953 986 993
2xVar FSIV ESS 3/1000 442 J05 801 B8 064 976 093
ZxVar FSIV ESS 5/1000 4432 J08 805 BT 0963 973 093
2xVar FSIV ESS 1/100 A41 71 A01 894 963 976 093
dxVar FSIV ESS 1/1000 J39 0 BOT O 032 0968 088 988 096
deVar FSIV ESS 3/1000 J360 BO6 0 0933 969 986 994 097
deVar FSIV ESS 5/1000 T 806 .038 0972 095 980 099
dxVar FSIV ES5 1/100 J360 805 935 969 989 995 094

Table 3.12 reports the coefficients for the first stage. As expected the first stage estimates
approach one as the sampling rate for the instrument increases. Another expected consequence

of this is the reduction of the bias in the second stage.

47



3.4 Panel data length

TABLE 3.13 — FE BiAs BY PANEL DATA LENGTH

Cell size
Overall

Cell size 1024 3000 5000 10000 15000 Improvement
{in % w.r.t 1 baseline
bias)

The last population modification examined regards the change in panel’s data length. Table

Modified Populations

3.13 reports the bias of FE coefficients by level of panel data length. The lower level and the
baseline offer almost the same level of unbiasedness for 5000 observations, within a close 2
percentage point margin. The resulting average improvement (refer to appendix [table] for non-
linear regression estimates) is of a 28% reduction in bias with respect to the baseline population.
In this case however the 28% value is not a good indication due to the fact that both level have
similar estimates. As shown in graph 3.5 the confidence intervals do overlap for several
intervals in the range considered.

The estimates appear less biased for the lower level of panel length due to the results of cell 10,
50 and 100. In graph 3.4 it is shown how the line are overlapping for the lower cells, as a
consequence the area below the graph for low and baseline level is approximately the same.
The notable result, however, if found when raising the panel data length up to 8. The optimal
cell size for the FE model is already obtained around 500 cells. The resulting overall
improvement with respect to the baseline population is of 63%. The lower ranges of the

simulation still have high level of bias.
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GRAPH 3.4 — FE BIAS BY PANEL DATA LENGTH
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The SSIV results show less similarities with the FE ones in this case. When reducing the panel
length data down to 2 the estimates are more biased: the optimal cell size is located at 500 cells
for the endogenous variable and 1000 cells for the instrument. The 100 range, in the first row
and first column, appears to be biased even for higher values of the instrument as in 100/3000.
With respect to the baseline SSIV, in the cell ranges considered, there’s an increase in bias of

564% on average.

TABLE 3.14 — SSIV BIAS BY PANEL DATA LENGTH (T = 2)

Instrument cell size

HEEEEE
] e 3000 | 5000
o

.-- "
o
B o

Raising the panel data length up to 8 lowers the bias almost to zero as shown in table 3.15. The

decrease in bias is almost of 100% with respect to the baseline model. This result is the best
scenario possible for a SSIV model.

TABLE 3.15— SSIV BIAS BY PANEL DATA LENGTH (T = 2)

Instrument cell size

q Cell
. [ 300 | 500 3000 | 5000
: 1 0 0
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CHAPTER 4 — Pooled OLS

4.1 Model outline

The last part will analyse how the conclusion reached so far for SSIV and FE can be applied to
other models such as pooled ordinary least square (henceforth: POLS).

To test the behaviour of the attenuation bias, and its effect on a POLS model, the fixed effects
have been removed from equation 1.4. The POLS model is then computed to estimate the
coefficient of the baseline population from equation 1.1.

The same model is then used again on the population from 1.1 when the fixed effects for the

population are removed

TABLE 4.1 — POLS ON POPULATION WITH FIXED EFFECTS

S.Rate 0. 0.3 0.5 1 3 5

BrE, 997 1 999 1 999 999

s.6. 0191 .011 00854 00604 00349 0027 ¥ =

-;-':::.I,'j?; 119 985 304 568 805 879 56,52g-D009956x _ 53 )5 g—D.00DIEETX
s.e. .Emm 00605 .{m_.J.:l ..uu.mz _ms_ll. 00251

Ohs Cell 69.7 209 KL GOG 2088 420 SSE: £88.1

5.2, 284 8N 14.7 29.1 B7.5 146 R-square: 0.8503

As described in table 4.1 the POLS is extremely biased whenever the population contains fixed
effects as in the original baseline model. The numbers of observed cell by region have been
changed a little to cover a wider range. An interesting consideration can be made by checking
the fitted model of the regressor on the bias: the usual inverse exponential function has an

extremely high sum of residual squares and as a result doesn’t fit the data quite as well.
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TABLE 4.2 — POLS ON POPULATION WITHOUT FIXED EFFECTS

S.Rate 0.1 0.3 0.5 1 3 5
BEE, 096 996 996 997 997 997
s.e. 00814 0047 00364 00257 00149 00115 [
BLOLY 524 762 848 012 067 078 [EEELERe e P R
s.€. 00636 00428 00345 0025 00147 00114 [ -
. ) _ . I soodness of fil:
Obs Cell 104 313 522 1043 3130 5216 SSE: 2475
s.€. 428 128 214 428 128 214 R-square: 0.9979

Table 4.2 presents the result whenever we remove fixed effects in the population. As a

consequence, the POLS is less biased than in table 4.1 and the results are a better fit for the

usual function that correlates bias and number of cells.

4.1 POLS comparison

GRAPH 4.1 — POLS COMPARISON (WITH AND WITHOUT POPULATION FIXED EFFECT)
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Graph 4.1 presents the bias in percentage points versus the cell size of for baseline FE model,
and the POLS model from tables 4.1 and 4.2.

POLS model, even in presence of time invariant effects in the population, has a performance
similar to that of FE. It is to be noted that POLS remains however more biased than FE. On a

side note, POLS model, by averaging out all the observation across times, often fail to predict
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the actual effect of a regressor for a single time unit, but since the bias on migration can only

be positive there is much less room for error.

TABLE 4.4 — POLS COMPARISON (WITH AND WITHOUT POPULATION FIXED EFFECT)

Cell size

Overdll
Cell size 50 300 | 500 1024 3000 5000 Improvement
0 (in % w.r.t POLS With FE)

POLS 113
With FE

POLS 48 +350%
No FE

F.E 26

Table 4.4 quantifies the bias per cell size and also identifies the optimal cell size for each model.
The green area shows how the POLS without fixed effect in the population is much less biased,
and the optimal cell size per region is 300. Meanwhile, for the POLS with fixed effect on the
population model the optimal cell size rises up to at least 5000 per region. The performance is
however close to the FE model. The improvement obtained by removing the fixed effect in the
population and then computing the POLS is of a 350% reduction in bias w.r.t. the bias in POLS
with FE, namely the POLS with no FE performs 4,5 times better due to the lack of bias from

fixed effects in the population.
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CONCLUSIONS

A solution to the estimation of the attenuation bias, as it has been presented in chapter one, has
been elaborated by using the theoretical framework that identifies the characteristics of the bias
itself in FE models.
Exploiting those characteristics, summed up in equation 1.15, the MCS simulation framework
has been used to define and explore the relationship between attenuation bias and cell size in
FE models. The SSIV application of the model has been considered as well.
The population model used as a reference for the simulation examines the effect of regional
migration on crime rate. Since the final objective is to determine the optimal cell size for each
FE model, any pair of regressor and regressand pair is viable, as long as the theoretical
framework can be applied to the regressor.
The baseline population model simulated a population of ten million individuals with
characteristics of immigration comparable to those of western Europe in terms of average initial
proportion of migrants and yearly immigration shock equal to a 1% increase in total population.
The optimal cell size to achieve a 90% reduction in attenuation bias for such a population is of
5000 observations per region if a FE model is used.
A SSIV model only requires 300 observations per region for the second stage regressor and 100
observations per region for the instrument.
Alteration of the baseline population parameter have been considered to study how the bias
behaves whenever there’s change in the regressor’s information happens.
A raise in the initial proportion of migrants from 0.1 to 0.3 percent of total population causes
in the optimal cell size to 3000 observations per region for FE models, and 300 and 50 for
SSIV’s second stage regressor and instrument. A reduction down to 0.05 for the initial
proportion of immigrants in the population will lead to an increase in the optimal cell size to
6650 observations per region for FE models, and 500 and 300 for SSIV’s second stage regressor
and instrument.
An increase in yearly intensity of migration’s shocks, up to a 2.5% yearly increase in total
population, will cause the optimal cell size per region to be reduced down to a 1000 for FE
models and 50 for both SSIV’s second stage regressor and instrument. A decrease in the same
parameter, down to 0.5% will lead to an increase for the optimal regional cell size up to 15000
for FE and 1000 and 300 for SSIV’s second stage regressor and instrument.
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The last test conducted on the length of the panel data shows how an increase in the unit of time
observed up to 8 will lead to a decrease in terms of optimal cell size down to 500 cells per
region for FE and 50 for both SSIV’s second stage regressor and instrument. A decrease in the
same parameter will lead to an increase in optimal regional cell size up to 5000 for FE and 300
for both SSIV’s second stage regressor and instrument.

The simulation has been repeated for a POLS model using two different populations: one with
time invariant characteristics and one without. The POLS estimates resulted less susceptible to
attenuation bias than FE, and its estimate are more reliable if there are no time invariant
characteristics in the population. That results renders the optimal cell sizes, for the reduction of
attenuation bias, found for FE viable for POLS as well, if there are no fixed effect to account
for in a population model.

The tests show how the information, added to the regressor by the shock’s intensity over time,
is stronger than the information added by the initial proportion of migrants. That might be
explained by the dynamic nature of the shock, which adds information during each time unit
rather than providing it at the beginning of the observed period. The conclusion seems to be
consistent with the increase in panel data length, which by providing more comparisons over
time for the “within estimator” to be computed, adds enough information to the regressor to

reduce the attenuation bias down to a negligible size
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DATA SPEC — TECHNICAL SHEET

Simulation Stats

Total simulation computing time **%2544 hrs (106 days)

Total number of individuals 321'477'100

Models simulated 2400
mount of data generated 2.27 1B

***Runtimes on a desktop IntelCorei5-4430 Processor at 3.20 GHz - 16GB RAM - Win10 x64
by STATA MP14

Master File Structure

Master File Structure

Main folder Sets a custom PATH
code
dataset
EE}, Master.do
/code do M1_format.do
graphs ~
Mods1 Master accesses e/Mods# Folde
Mods2 B3 M4 _format.do
Mods3 [ MC_popd.do
Mods4 R MCS FE_V02 TD.do
Mods5 /dataset ER MCS IV_v03 wTE.do
Mods6 graphs MC_pop# creates a population for each mod
Mods7 Mod1_results
Mods3 Mod2_results MCS Files run the FE models
Mods9 Mod3_results
Mods10 Mod4 _results M#_format elaborates the data for each mod
Mods11 Mod5_results
Mods12 Mod6_7_8_results Outputs in .dta and .tex tables are stored in /dataset/Mod#_re
Mods13 Mod9_results 2xVar_FE.dta
noMods Mod10_results 2xVar_FErow.dta
regtest Mod11_12_results | 2xVar_FErow.tex
Removed Mod13_resuits 2xVar_IV.dta
no_mod 2xVar_Nrow.dta
regtest B 2xVar_Vrow.tex
Regression and graphs are generated by dofiles ( graph.do & regtest.do ) after all the mod elaborations are done, and are stored in et/regtest & /dataset/g
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Model and Population list of parameters mods

1.
2.

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
217.
28.
29.
30.
31.

Population model ( “Mcrime” Line 142) - 2x Variance in random increase in population model
Population model ( “Mcrime” Line 249 & 254) - Pdf of probcrimevictim variable switched from
uniform to lognormal

Population model ( “Mcrime” Line 142) - 0.5x Variance in random increase in population model
Population, IV and FE model (“Mcrime” Line 45, “FE” Line 32, “IV” Line 31) — Year count Y
raised from4to 8

Population, IV and FE model (“Mcrime” Line 45, “FE” Line 32, “IV” Line 31) — Year count Y
reduced from 4 to 2

IV Model ( “IV” from Line 56 to 89) Change in ESS Sampling rate from [0.1; 0.3; 0.5; 1] to [0.05;
0.20; 0.40; 0.80]

IV Model ( “IV” from Line 56 to 89) Change in ESS Sampling rate from [0.1; 0.3; 0.5; 1] to
[0.001; 0.01; 0.03; 0.07]

IV Model ( “IV” from Line 56 to 89) Change in ESS Sampling rate from [0.1; 0.3; 0.5; 1] to [0.15;
0.25; 0.35; 0.45]

IV Model ( “IV” from Line 149 to 191) Swapping instrumented and instrumental variable for each
ESS sampling rate

Population Model (“Mcrime” from Line 232 ) Removing time effects by setting them from 0.01 to
0.00

IV Model ( “IV” from Line 56 to 89)- 2xVar Pop - Change in ESS Sampling rate from [0.1; 0.3;
0.5; 1] to [0.05; 0.1; 0.3; 0.5]

IV Model ( “IV” from Line 56 to 89)- 2xVar Pop - Change in ESS Sampling rate from [0.1; 0.3;
0.5; 1] to [1; 3; 5; 10]

Population model ( “Mcrime” Line 142) - 4x Variance in random increase in population model
1x Var - ESS(end) SR [0.05;0.1;0.3;0.5] 100 Reps

1x Var - ESS (end) SR [1;3;5;10] 100 Reps

1x Var - ESS(Instr. swap) SR [0.05;0.1;0.3;0.5] 100 Reps

1x Var - ESS(Instr. swap) SR [1;3;5;10] 100 Reps

Change in prop. of immigrants (0.30) — Pop Model Line 52

Change in prop. of immigrants (0.50) — Pop Model Line 52

Population, IV model (“Mcrime” Line 45, “IV” Line 31) — Year count Y =1

Population 2xVar, IV model (“Mcrime” Line 45, “IV” Line 31) — Year countY =1

Population reduction — ( down to 1 000 000) - Pop Model Line 57

Region reduction — ( down to 50) - Pop Model Line 41

POLS - Var pop 1x (50) — FE included (0.01), mu (0.01) ***mu = regional FE

POLS — Var pop 0.02x (1) — FE excluded (0.00), mu (0.01)

POLS - Var pop 1x (50) — FE excluded (0.00), mu (0.01)

POLS — Var pop 1x (50) — FE included (0.01), mu (0.01)

POLS — Var pop 1x (50) - FE excluded (0.00), mu (0.00)

POLS — Var pop 1x (50)- FE included (0.1), mu (0.1)

Pop reduction — (down to 500 000) - SR [0.3-05-1-3-5-10-20]

Pop reduction — (down to 100 000) - SR[0.3-05-1-3-5-10-20]
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Baseline Population — 100 Reps

Table 1:No Mod Population Shock - FE

S.Rate 0.01 0.05 0.1 0.3 0.5 1 3 5 10 15 20 30
BrE 097 998 996 1 1 1 1 1 1 1 1 1
s.e. 0721 0322 0228 .0131 .0102 00719 .00415 .00322 .00228 .00186 .00161 .00131
BLE e 0184 0862 .153 .36 483 65 854 005 952 .07 081 989
s.e. 00995 00955 00916 008 00713 .00585 .003s86 .00306 .00222 00183 .00159 .00131
Obs Cell 10.4 52.2 104 313 522 1043 3130 5216 10433 15649 20866 31299
s.e. 53 2.14 4.28 128 214 42.8 128 214 428 642 856 1283
N.of Obs. 400 400 400 400 400 400 400 400 400 400 400 400
I.Pop 137 137 137 137 157 137 137 137 137 137 137 137
I.Pop.Sam .138 138 138 137 137 137 137 137 137 137 137 137
Table 2: No Mod- IV

S.Rate 0.1 0.3 0.5 1 3 5 10

BEE 1 008 1 009 999 1 1

s.e. 0198 0114  .00886 .00626 .00362  .0028  .00108

BEE e 156 354 484 651 852 008 953

s.e. 00801 00693 00628 .0051 00335  .00268  .00104

IV <

BV e 1o 755 L1 106 102 1.02 1.03 1.05

s.e. 204 0257 0163 00032 00468  .00356  .0025

BIVES o 154 341 482 658 849 901 936

s.e. 00479 00416 00374 .00209 00196  .00154  .0011

IV ‘

Bl ple 31000 981 997 102 101 102 003 1.01

s.e. 0527 0203 0138 00820 0042  .00309  .00217

BIVES 00 166 361 48 65 847 921 949

s.e. 00313 .00261 .00232 .00182 00115  .000914 .000648

Blypte sj1000 106 984 102 1.02 101 1.03 1.01

s.e. 0553 0196  .0134  .00821 .00411  .00313  .00211

B sji00 151 364 481 641 844 880 95

s.e. 00266 0022 00103 .00149 000915 000712 .000503

Bl gl 1100 997 101 1 999 1 1 098

s.e. 0513 0198 013 .00788 00399  .003 00206

BIVES e (158 351 485 654 853 907 957

s.e. 00225 00182 00157 .00116 .000673 .000521 .00036

Obs Cell 104 313 522 1043 3130 5216 10433

s.e. 428 128 214 428 128 214 428

N.of Obs, 400 400 400 400 400 400 400

I.Pop 137 137 137 137 137 137 137

1.Pop.Sam 137 137 137 137 137 137 137
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Immigration Shocks on population

Table 3 = 2xVar Population Shock - FE

S.Rate 001 005 01 0.3 0.5 1 3 5 10 15 20 30
BEE, 1 1 1 1 899 1 1 999 1 1 1 1
s.e. 0319 0143 0101 00583 00452 0032 00185 00143 00101 000825 000715 .00
BEE e 0741 282 4 08799 88T 96 974 .99 993 995 99
s.e. 0095 00819 00713 00509 00414 00304 00182 00141 00101 000823 000713 .00C
Obs Cell 11 55 10 330 551 1101 3303 5505 11009 16514 22018 330
s.e. 112 545 109 327 544 109 327 545 1089 1634 2179 326
Nof Obs. 400 400 400 400 400 400 400 400 400 400 400 400
L.Pop 83 182 182 182 182 182 182 182 182 182 182 182
LPop.Sam .184 .182 183  .182 182 183  .182 183 182  .182 182 A8:

Table 4 - 2xVar Population Shock - IV

S.Rate 0.1 0.3 0.5 1 3 § 10

BrE 099 1 1 1 1 1 1

5.€. D0STH 00508 00393 00278 00161  .00124 00088
B e 439 T06 804 892 962 976 989
5.€. 00633 00447 00363 00267  .00159  .00123  .000STT
gIv

BlY e oo 102 993 101 1 1.02 995 1

5.€. 0161 00706 00519 00347  .00196  .00147  .00104
BIVES o0 436 TIT 805 895 953 986 993
5.e. 00426 0029 0023 00167  .000969 000755 000535
GV

BV pie 31000 1 1 101 101 1 1 998
5.€. 0142 00646 00467 00315 00174 00134 000936
B a0 M2 05 801 887 064 976 093
5.€. 00314 00196 00149 00104 000583 000444 00031
Bromple 5000 994 998 1 996 1 1 997
5.€. 0138 00627 00455 00304 0017 00131 000915
Brome 5000 442 TO8 805 897 963 973 993
5.€. 00287 00172 00128 000852 000461 .000352  .000244
Bl e oo 99T 996 1 998 999 1 997
5.€. 0136 00615 00449 003 00167 00128 000598
B e 100 441 T 801 804 963 976 993
5.€. 00265 00152 00109 000691 000351 000255 .000175
Obs Cell 110 330 551 1101 3303 5505 11009
5.€. 109 327 54 109 327 545 1089
N.of Obs. 400 400 400 400 400 400 400
I.Pop ds2 182 182 182 182 182 182
I.Pop.Sam 82 182 182 183 183 182 182
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Table 5 = 0.5xVar Population Shock - FE

S.Rate 0.01 005 01 0.3 0.5 1 3 ] 10 15 20 30
“;"nﬁﬂ 089 1 8996 1 999 999 899 1 1 1 1 1
s.e. 156 0697 0492 0284 022 0156 00809 00697 00493 00402 00348 00284
Eﬁ,ﬁm 00481 02 043 117 181 a1 681 699 A34 AE6 a15 951
5.8 0104 0103 0104 00981 00949 L00RTE 00686 00582 0045 00379 00333 00277
Obs Cell  10.1 al 102 306 510 1020 3060 5100 10200 15300 20399 30599
s.e. 28T 089 1.9 huG6 0.42 19 a6.8 4.6 189 284 a7 H68
N.of Obs. 400 400 400 400 400 400 400 400 400 400 400 400
Table 6 - 0.5xVar Population Shock - IV

S.Rate 0.1 0.3 0.5 1 3 5 10

BrE 999 1 1 1 1 1 1

s.e. 0429 0248 0192 0136 00783 00606 00429

BEE e 0388 118 183 305 583 .71l 832

s.e. 00896 00865 .00825 00756 00602 .00514  .00391

gIv F, .

Bl e w00 168 115 967 985 128 118 1.05

s.e. L09 659  .302  .0355 .0201 .01l 00586

FIVFS

Bivede 1000 (0566 119 192 328 571 688 849

s.e. 00496 00475 00456 .00415 00332 .00279 00215

Blivpte sy1000 189 863 179 112 104 102 1.03

s.e. 794 272 228 0315 .0114  .00TTS 00511

GIVFS :

BlVES oo (0317 124 181 312 578 725 842

s.e. 003 00284 00273 00247 00194 00166 00126

GV < <

Blvpte sjo00 126 123 188 104 104 102 1.01

5.e. 717 102 569 02690 0111 00761 00491

B e 5000 0398 115 181 307 582 714 837

s.e. 00239 .0023 00218 00198 00154 00128 000972

BlY e oo AT2 103 105 989 101 1.03 1.01

5.e. L03 0774 L0485 0248 0105 .00754 00482

B e 1o 0407 121 179 314 586 .699 533

s.e. 00184 00175 .00166 .00148 00112 .000942 000701

Obs Cell 102 306 510 1020 3060 5100 10200

s.e. 1.9 5.66 0 942 19 56.8  94.6 189

N.of Obs. 400 400 400 400 400 400 400
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Table 7: 4xVar Population Shock - IV

S.Rate 0.1 0.3 0.5 1 3 5 10
BFE, 1 1 1 1 1 1 1

s.e. 00425 00246 0019 00135 .0DOTTT 000602 000426
BEE pie 736 806 036 68 099 092 097
s.e. 00413 00245 00191 00135  .0DOTTS 000601 000426
qIv -

ATY e 1000 997 1 1 1 1 1.01 1

s.e. 00579 00305 00233 00161 000922 000715 000502
emnle 171000 <739 897 932 068 938 088 996
s.e. 00206 00164 00123 000855 000484 000374 000262
arv

Bl rapie 31000 999 1 1 999 1 098 1

s.€. 00525 00276 0021 .00145 000833 00064 000452
B sj000  T36 896 933 969 986 994 997
s.e. 00232 00114 000816 .000535 000287 000218 000152
Bl wie 51000 1 1 999 095 995 1 998
s.€. 00515 00269 00204 00141 000806 000628 000441
Bramide sjio00 T34 896 938 972 995 989 999
s.e. 00219 00101 000703 000446 000229 000171 00012
e

By pte 1100 1 1 1 998 1 997 1

s.e. 00505 00265 00201 .00139 000796 000613 000435
Bramsie 1100 -T36 895 935 969 939 995 994
s.e. 00207 000902 000608 000356 000173 000127 0000856
Obs Cell 127 380 634 1268 3804 6339 12679
s.e. 337 101 168 337 1010 1684 3368
N.of Obs. 400 400 400 400 400 400 400

NB: 2xVar = 2.5% yearly increase. 0.5xVar = 0.5% yearly increase. 4xVar = 27% yearly

increase

Alternative error component for the population model

Table #:Lognormal distribution((.0.1)- FE

S.Rate 001 005 0.1 0.3 0.5 1 3 5 10 15 20 30
“]fj.d 1 1 1 1 g9s 1 1 899 1 1 1 1
s.e. 0319 0143 0101 00583 .00452 .0032 00185 00143 .00101 000825 000715 000
BEE b 0T4l 282 44 08 U799 88T .96 974 99 993 995 997
s.e. 0095 .0DS19 00713 00509 00414 00304 00182 00141 .00101 000823 000713 000
Obs Cell 11 55 110 330 551 1101 3303 5305 11009 16514 22018  330%
s.e. 112 545 109 327 544 109 327 545 1089 1634 2179 3268
Nof Obs. 400 400 400 400 400 400 400 400 400 400 400 400
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Table 9:Lognormal distribution(0,0.1) - IV

S.Rate 0.1 0.3 0.5 1 3 5 10
GFE

BrE 999 1 1 1 1 1 1

5.e. 00879 00508 00393 00278 00161 00124 00088
BEE e 439 706 804 892 962 976 989
5.e. 00633 00447 00363 00267 00159 00123 000877
v - -

BlY e oo 102 993 101 1 1.02 995 1

5.e. 0161 00706 00519 00347 00196 00147 00104
BlVES oo 436 TIT 805 895 953 086 993
s.e. 00426 0029 L0023 00167 000969 000755 000535
ETAY

omple 31000 1 1 L0110 1 1 998
5.e. 0142 00646 00467 00315 00174 00134 000036
BIVFS hon 442 705 801 887 964 976 993
5.e. 00314 00196 .00149 00104 000583 000444 00031
BlY e spoo0 994 998 1 996 1 1 997
5.e. 0138 00627 .00455 00304 0017 00131 000015
B e s/o00 442 .T08 805 807 063 973 993
s.e. D028 00172 .00128 000852 .000461  .000352  .000244
BlY e 17100 97 996 1 998 999 1 997
5.e. 0136 00615 00449 003 00167 00128 000898
SIVFS

B 0 M1 T 801 894 963 976 993
s.e. 00265 00152 .00109 000691 .000351 .000255 000175
Obs Cell 110 330 551 1101 3303 5505 11009
s.e. 109 327 544 109 327 545 1089
N.of Obs. 400 400 400 400 400 400 400
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Panel data length tables

NB: Value for years are doubled

Table 10: & Years - FE

S.Rate 001 005 0.1 0.3 0.5 1 3 5 10 15 20
BrE, 1 1 999 1 1 1 1 1 1 1 1

5.e. 0099 00441 00312 0018 0014 .0009SS 00057 000442 000312 000255 .000221
BRE . 212 573 727 888 932 964 989 993 997 998 999
s.e. 0050 00338 00295 00178 00139 000985 00057 000441 000312 000255 .000221
Obs Cell 152 759 152 455 750 1518 4553 7580 15178 22766 30355
s.e. 697 348 696 200 48 696 2087 3478 6956 10434 13011
N.of Obs. 800 800 800 800 800S00 800 800 00 800 800

Table 11: 8 Years - IV

S.Rate 0.1 0.3 0.5 1 3 5 10
BFE, 1 1 1 1 1 1 1

5.€. 00272 00157 00122 .00086 000496 .000385 000272
B e 726 .889 931 964 99 094 997
s.e. 00265 00157  .00122  .00086 000497 .000385  .000272
gIv

BlY e 11000 1 1.01 1 999 1 1 1

5.e. 00381 00201 0015 .00104 000596 000459 000324
BIvES oo 724 881 927 965 986 093 998
s.e. 00195 00109 000818 000567 000323 000249 000175
Blrple sy000 999 999 1 1 1 1 .999
5.e. 0034 00177 00135 .000936 000535 000412 00029
BIVES o 72T 89 93 961 986 993 997
5.e. 00154 000754 000542 000353 000193 000147 000101
BTY e 511000 1 999 1 999 1 1 1

s.e. 00332 00173 00131  .00091 00052 000402 000284
B S0 725 880 931 964 088 992 996
5.e. 00145 000675 000469 .0002904 000153 .000116 000079
v

AT e 1100 1 1 1 1 999 1 1

s.e. 00325 0017 00129  .000892 000509 .000394 000278
S emne 17100 72T 88T 032 964 991 093 995
s.e. 00136 000601 .000402 000238 000115 0000847 0000576
Obs Cell 152 455 759 1518 4553 7589 15178
s.e. 69.6 209 348 696 2087 3478 6956
N.of Obs. 800 800 800 800 800 800 800
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Tahle 12: 2 Years - FE

S.Rate 001 005 01 03 05 1 3 5 10 15 20

Egjd 991 101 101 998 095 1 1 1 1 1 1

.. 109 0487 0345 0199 0154 0109 00629 00487 00344 00281 00244

BEE b 0237 123 209 452 579 .729 898 928 969 979 986

5. 0178 0173 0161 0137 0118 00935 00508 00467 .00339 .00278 .00242

Obs Cell 102 512 102 307 512 1024 3071 5118 10236 15354 20472

.. 422 16 313 932 156 311 934 156 311 467 623

Nof Obs. 200 200 200 200 200 200 200 200 200 200 200
Table 13: 2 Years - IV

S.Rate 0.1 0.3 0.5 1 3 5 10

BFE, 096 1 099 996 1 098 2999

5.6. 03 0173 0134 00947 00547 00424 003

B e 208 458 .58 e 896 936 o971

5.6, 014 0118 0106 00818 .00518 .00412 00296

ETAY . -

BlY e oo 119 221 L1 106 112 L0 1.05

5.8, 124 471 0231 0131 00743 00492 0036

BIvES e 225 431 565 713 849 954 96

5.6, 00679 00553 00492 00374 00237 .00184  .00135

Blvmpte spoo0 107 104 105 104 101 995 1.04

5.8. 0763 0274 0199 0121 00602 .00452 00329

GIVFS - -

BIVES pono 209 451 576 .TI4 901 95 943

5.6, 00448 00359 .0032 00233 .00130 .00109  .0DOTT2

BlY e spooo 104 103 103 994 102 103 1.02

5.8, 0721 0268 019 0113 006 00461 00318

B sioo 206 453 573 T42 884 015 956

5.6. 00397 00303 00262 00186 00108 000862 000599

v

BlY e 1o 101 103 LO0L L0l L0l 1 1.01

5.6, 0687 0265 0184 0114 0059 00444 00311

B 1o 209 447 57T 725 888 038 967

5.6. 00341 00254 00215 00151 00082 .000633 000433

Obs Cell 102 307 512 1024 3071 5118 10236

5.8. 313 932 156 311 934 156 311

N.of Obs. 2000 200 200 2010) 200 2000 200

73



ESS Sampling rate — Baseline

NB: ESS = second stage regressor’s sampling rate

Table 14: ESS sampling rate - IV - part 1

S.Rate 0.1 0.3 0.5 1 3 5 10
BEE 1 098 1 999 999 1 1
s.e. 0198 0114 00886 00626 00362  .0028 00198
BEE e 156 354 484 651 852 908 953
s.e. 00801 00693 .00628 .0051  .00335  .00268  .00194
vmple 1710000 10T 1021 104 104 097 1.01
s.e. 061 0213 0139 00885 .00442 00317 00221
FIVFS - - -
B oo 158 3T 5 641 832 921 959
s.e. 00364 00307 00273 .0022  .00139  .00111 000795
Bowmple sjionpn 1011 Lo 102 101 Lol 992
s.e. 054 0199 0134 00828 00412 0031 .00209
BIVES cponn 161 .36 489 847 851 903 964
s.e. 00285 00236 00200 00164 .00102  .000TST 000557
r".;br
Bovpte s 212 112 116 109 104 1.06 1.09
s.e. 1.33 0312 0222 0121 .00543  .00423  .00307
BIVES oo 153 352 461 648 844 885 923
s.e. 00654 00572 00514 00417 .00275 00218 00158
Bimple 7jo000 102 101 986 1 1 998 1
s.e. 05333 0198 0128 00797 .00401  .003 00207
BIVES ioooo 15T 354 497 656 854 911 953
s.e. 00239 00193 00168 .00127 .000743 .000574 000403
Borpie 11000 795 L1 L06 102 102 1.03 105
s.e. 204 0257 0163 00932 00468 00356 0025
BIVES o eco (134 341 482 658 849 901 036
s.e. 00479 00416 00374 .00299 00196  .00154 0011
Bl e Lspoon 113 103 102 101 102 Loz 1.02
s.e. 0665 0224 0146 .008T6 .00444 00334 00229
omnle 1300 152 335 40 655 846 901 956
s.e. 00407 0035 00313 00248 00161  .00127 000902
Bl e 2one 104 101 103 103 1.03 1 1.02
s.e. 0399 0211 0143 00865 .00437  .0032  .00225
B o 163 339 48 644 841 915 945
s.e. 00363 00304 00272 .00216 00139  .00111 000792
qIv : :
Bivpie 25/000 992 1 102 L02  1.03 996 1.02
s.e. 054 0206 014 00842 L0043 00313 00221
B sy (166 361 481 7 .839 918 944
s.e. 00332 0028 00248 00196 .00125  .000999 00071
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Table 15: ESS sampling rate = IV = part 2

S.Rate 0.1 0.3 0.5 1 3 5 10
aIv
omple s/on0 981 997 102 101 1.02 993 1.01
5.e. 0327 0203 0138 00829 0042 00309 00217
SIVFS
BIVES e 166 361 48 65 847 921 949
s.€. 00313 00261 00232 00182 00115  .000914 .000648
Brample 5000 111 998 101 103 103 1.01 1.01
s.e. 0393 0202 0136 0084 00423 00312 00215
AIVFS
B sy 146 362 484 638 836 905 948
s.e. 00205 00247 0022 .00ITL 00107  .OD0R42  .000597
r"\;t_r
Bovple 4100 109 995 101 102 1.02 102 1.01
5.e. 0577 02 0135 00827 .00417 00313 00214
SIVFS
B yone 148 362 485 644 841 896 947
s.e. 00284 00236 .00200 00162 00101 .0DOT92 000550
Brample 45/000 101 103 1 Lol 996 1 995
s.e. 053 0205 0133 00816 00404 00306 00209
TIVFS [
B s/ 158 349 486 648 859 91 962
s.e. 00275 00227 002 00153 00095 000754 000531
B pie spo00 106 984 102 102 101 1.03 1.01
5.e. 0353 0196 0134 00821 00411 00313 00211
BIVFS =
BIVES o 191 364 481 641 844 889 95
s.e. 00266 0022 00193 00149 000915 000712 .000503
Bl e 000 994 101 998 995 997 1 998
s.e. 0513 0198 013 00788 00399 00302 00206
e /1000 159 333 48T 65T 856 007 958
s.e. 00236 00192 00166 00125 000736 000577 .0004
qIv
BlY e oo 99T L0l 1 999 1 1 998
s.e. 0513 0198 013 00788 00399  .003 00206
B 0 158 351 485 654 853 907 957
s.e. 00225 00182 00157 00116 000673 .000521 00036
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Instrument and instrumented variable swap

Table 16: Instrument and instrumented variable swap - IV

S.Rate 0.1 0.3 0.5 1 3 5 10
ATE 1 998 1 999 099 1 1

5.€. 0198 0114 00886 00626  .00362 0028 00198
B e 155 361 A8T 634 855 914 054

s.e. 00806 00697 00632 00511 00336 0027 00194
BlY e e 127 988 106 964 1.01 Lo 1

5.e. A34 0309 025 0156 00941 00753 00516
B e 11000 16 162 154 166 155 151 155
5.e. 00485 00183 .0012 000721 000355 000266 000184
Blympie sp000 112 105 103 98 1 1 998
s.e. 047 0212 0159 L0105 00607 00476 .0033
BIVES o 34T 35 351 366 361 354 362
s.e. 00723 00263 .0017 001 000481 000353 000243
omple 5000 104 995 102 997 L.01 1 998
5.e. 0354 0173 L0135 00916 00528 00405 .00282
B e spo00 487 493 484 485 ATT A85 49

5.e. 00828 00299 00193 0011 000513 .000374 .000253
BlY e o0 103 995 101 992 1 Lol 999
5.e. 0295 0149 0115 00781 0045 00354 00244
B e 100 48 BT 645 66 652 641 656
5.€. 00939 00332 00208 00117 000515 .000375 .000246
Obs Cell 104 313 522 1043 3130 5216 10433
s.e. 428 128 214 428 128 214 428
N.of Obs. 400 400 400 400 400 400 400
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Alternative Population — Raise in shock’s intensity by ESS Sampling rate —

Table 19: ESS sampling rate = 2xVar - IV

S.Rate 0.1 0.3 0.5 1 3 5 10

BEE | 1 1 1 1 1 1 1

s.e. 1.15e-08  6.61e-09 5.12e-09 3.62e-09 2.09e-09 1.62e-00 1.14e-09
BFE . 16 359 A8 654 854 907 953
s.e. 00179 00135 .0011 000726 00032 000203 000102
BIY e sooe  -334 1.41 282 -.298 1.36 0567 324
s.e. 1.78 6.38 1.14 401 AT5 552 119

ooide 5710000 098 448 671 555 952 08 1.17
s.e. 0463 0398 0368 0292 0199 0156 0114
=V
B e o0 291 2.04 616 2,66 017 1.03 1.13
5.6, 384 6.78 142 955 114 00653 00651

vade 11000 11 405 AT9 765 756 08 948
s.e. 0145 0125 0113 00921 00607 00485 00351
GV
Bl ple spoon 0251 T4 1.19 1.13 1.16 1.09 1.07
s.e. 931 2.11 0328 0116 00694 00406 00266
FIVFS =

e 300 +139 39 518 64 855 895 967
s.e. 0085 00734 00657 00538 00354 00281  .00203
GV
BLY o sroo0 622 1.11 1.21 102 1.14 L0 1.01
5.6, 1.9 0228 0181 00694 00444 00254 00176
FIVFS -

e s 169 369 A45 681 796 922 982
5.6 00668 00573 00517 00413 00272 00219 00157
v
Bl pe 1100 101 999 1 1 1 1 1
s.e. 0137 00617 00447 00301 00167 00128 000903

oode 1100 437 708 804 89 961 976 987
s.e. 00264 00152 00108 00069 000349 000255 000175
FIV

ple syi00 999 1 1 1 996 099 1
s.e. 0134 00611 00441 00208 00164 00127 000892
Baste o0 M 706 804 830 966 077 08T
s.e. 00247 00135 000928 000559 00024 000168 000107
SV -

ovmple 50 998 997 1 997 1 1 1
s.e. 0134 00606 0044 00295 00165  .00126 000888
BV ES sy M 709 804 894 962 976 089
5.6, 00244 00132 000897 000319 000215 .000146  .D000BSG
BLY e 110 998 1 1 1 1 1 1
s.e. 0134 00608 0044 00206 00164 00126  .ODDSSE
BIVES 44 705 804 891 962 976 989
5.6, 00241 00120 .0008T  .ODDMOT 000193 000124 0000715
Obs. Cell 110 330 551 1101 3303 5505 11009
Cell s.e. 10.9 32.7 54.4 109 327 545 1089
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Table 20: FSIV Betas by ESS 5.R. and Pop Shock

S.Rate 0.1 0.3 05 1 3 ! 10

0.5xVar FSIV ESS 1/1000 0666 119 .192 328 571 688 849
0.5xVar FSIV ESS 3/1000 0317 .124  .181 312 .78 .725 .B42
0.5xVar FSIV ESS 5/1000 .0398 115 .181 307 .582 714 837
0.5xVar FSIV ESS 1/100 (407 121 179 314 586 699 833
IxVar FSIV ESS 1/1000 A4 341 482 GBS L8409 901 936
lxVar FSIV ESS 3/1000 66 361 48 0 65 LB4T 921 040
IxVar FSIV ESS 5/1000 A51 640 481 641 844 8RO 05

lxVar FSIV ESS 1/100 A58 0 351 485 654 L8R3 90T 95T
ZxVar FSIV ESS 171000 A6 T1T O 805 895 053 936 003
ZxVar FSIV ESS 3/1000 A42 0 .T0H 801 7064 976 093
2xVar FSIV ESS 5/1000 A42 0 .T08 805 89T 963 973 093
ZxVar FSIV ESS 17100 A41 g1 801 894 963 976 093
dxVar FSIV ESS 171000 T390 HOT O 032 0968 088 038 006
4xVar FSIV ESS 3/1000 J360 806 033 969 9860 994 097
dxVar FSIV ESS 5/1000 J34 BO6 0 038 972 095 930 099
dxcVar FSIV ESS 1/100 J36 0 HOL 035 069 080 095 004
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Alternate Population - Raise in Initial proportion of immigrants

Initial proportion of immigrants: 0.3 - IV

S Rate 0.1 0.3 0.5 1 3 5
BEE, 1 1 1 1 1 1

s.e. 0107 00619 .00479 .00339  .00196  .00152
BEE e 241 496 619 768 909 945
s.e. 00566 .00452 00392 .00304  .00188  .00148
Bl e 01 111 103 102 1.04 998 1.02
s.e. 0337 0117 00805 .00526  .0026  .00204
BIVIS 1 231 493 618 751 919 934
s.e. 00455 00361 .00311 .0024  .00146  .00113
BV e 0s 102 101 102 .995 999 992
s.e. 0248 00965 .00685 .00422  .00225  .00169
BIVES s 239 495 61 775 913 955
s.e. 00314 .00235 .00197 .00148 000877 .000677
BIY e 05 1 .01 101 .993 097 1

s.e. 0234 00933 00652 .00407 00217  .00165
BIVES o5 242 493 617 775 914 944
s.€. 00271 .00199 .00167 .00122  .000693 .000529
BlY e 1011 0996 1.01 1 996
s.€. 023 00899 00628 .00404 00212  .0016
plvIS | 24 497 622 761 909 949
s.e. 00241 .0017 0014  .000965 .000517 .000394
Obs Cell 113 339 565 1130 3390 5649
s.€. 128 385 641 128 385 642
N.of Obs. 400 400 400 400 400 400
L.Pop 38 38 38 38 38 38
LPop.Sam .38 38 38 381 38 38
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Initial proportion of immigrants: 0.5 - IV

S.Rate 0.1 0.3 0.5 1 3 5

BEE 998 998 1 1 1 1

s.e. 0109 00627 00486 00344 00198  .00154
BEE e 228 478 6 75 902 939
s.c. 00554 00452 00392 .00303 .0019  .0015
Bl e 00 101 104 102 101 1.03 995
s.c. 0208 0122 00828 .0051  .00277  .00199
BIVES o1 234 471 506 751 889 055
s.c. 00438 00355 .00306 .00235 .00147  .00114
BIY e 03 104 103 102 1 1 004
s.e. 0264 0102 00704 00434  .00228  .00172
BIVES .5 225 468 503 753 906 95
5.c. 003 .00220 00193 .00146  .000864 .00067
BIY e 05 101 .99 092 .99 994 1

s.e. 0246 .00947 00661 .00413 00219  .00168
Bl 05 23 484 608 .76 91 939
s.e. 00264 00195 00165 .00118 000687 .000526
BIY pien 997 997 996  1.01 1 1

s.e. 0236 0093 00646 0041 00215  .00164
BIVES | 23 48 604 744 902 936
s.c. 00220 00167 .00136 .000943 000515 .00039
Obs Cell 122 365 608 1216 3649 6082
s.e. 214 641 107 214 642 1069
N.of Obs. 400 400 400 400 400 400
LPop 580 580 580 580 589 589
LPop.Sam 580  .580 580 580 589 589
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Population size

Population: 1'000°000 - IV - POP A (1xVar)

S.Rate 0.1 0.3 0.5 1 3 5 10
BrE .02 997 999 1 996 099 1

s.e. 0629 0362 028 0198 0114 .00887 .00627
BFE .. 0161 0538 0864 .156 361 495 677
s.e. 00876 00851 00833 .00816 .00711 .00635 .00523
LY e oq 0737 634 163  -168 162 .89 1.39
s.e. 832 7.96 823 2465 251  .182  .0681
BIvES . 0122 0297 0937 .137 366  .499 647
s.e. 0158 0152 0149 0145 0129  .0115  .00936
Bl e 03 258 10T 948 127 759 114 122
s.e. 106 213 244 262 326  .0309 .0178
BIvES s 0164 0481 0783 163 328 531 638
s.e. 0092 00883 00866 .0085 .00736 .00663 .00546
BlY e 05 524 -547 852 262 104 986 103
s.e. 14 476 513 378 0281  .0163  .0106
BIVES s 0239 0473 0739 154 376 518 702
s.e. 00722 00698 00681 .00673 .00583 .00514 .0042
BlY e 1 665 893 146 2.1 107 106  1.08
s.e. 9.03 585 537 171 .0253 .016  .00986
BIVES . 0157 0463 0794 154 361 480 648
s.e. 00533 00513 005  .0049  .00418 .00375 .00306
Obs Cell 104 313 522 104 313 522 1043
s.e. 53 133 214 428 128 214 428

N.of Obs. 400 400 400 400 400 400 400

Immigration Shock graphs

TABLE Al: ESTIMATION VS SAMPLING RATE BY IMMIGRATION SHOCK’S INTENSITY
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Immigration Var shocks' Beta Coefficients

IIII
o
0 10 20 30
S.Rate
Pop — 1IxVar
2x Var — 0.5x Var

TABLE A2: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES —

GRroup 1
Immigration Var shocks' IVFS Coefficients

0 2 4 6 8 10
S.Rate
1% Var ESS 1/1000 1x Var ESS 3/1000
2% Var ESS 1/1000 ———— 2xVar ESS 3/1000
0.5x Var ESS 1/1000  ———— 0.5x Var ESS 3/1000

TABLE A3: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES

—GROUP 2
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Immigration Var shocks' IVFS Coefficients

0 2 4 6 8 10
S.Rate
1% Var ESS 5/1000 ———— 1xVar ESS 1/100
2x Var ESS 5/1000 —————— 2% Var ESS 1/100
0.5x Var ESS 5/1000 ———— 0.5x Var ESS 1/100

TABLE A4: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES

—GROUP 3

Immigration Var shocks' IVFS Coefficients

-
03_ |
o
'ﬂf |
C\! |
o -
| | I | | I
0 2 4 6 8 10
S.Rate
4x Var ESS 5/1000 — 4xVarESS 1/100
1x Var ESS 5/1000 —— 1x VarESS 1/100
2x Var ESS 5/1000 ————— 2xVarESS 1/100
0.5x% Var ESS 5/1000 0.5x Var ESS 1/100

TABLE A5: SSIV FS ESTIMATION VS SAMPLING RATE BY SECOND STAGE SAMPLING RATES

—GRrRouP4
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Immigration Var shocks' IVFS Coefficients

G —]
T | I I [ T
0 2 4 6 8 10
S.Rate
4% Var ESS 1/1000 ————— 4xVar ESS 3/1000
1% Var ESS 1/1000 ————— 1x Var ESS 3/1000
2x Var ESS 1/1000 ————— 2xVar ESS 3/1000
0.5x% Var ESS 1/1000 0.5% Var ESS 3/1000

TABLE A5B: SSIV ESTIMATION VS SAMPLING RATE BY CELL SIZE — GROUP 5

Immigration Var shocks' IVFS Coefficients

w‘ | ////
o _
‘Q’_ -
C\,! -
O -
I I T T T T
0 2000 4000 6000 8000 10000
obscell
4x Var ESS 5/1000 ————— 4x Var ESS 1/100
1x Var ESS 5/1000 ———— 1x Var ESS 1/100
2x Var ESS 5/1000 ————— 2x Var ESS 1/100
0.5x Var ESS 5/1000 0.5x Var ESS 1/100

Alternative error terms for population graphs

TABLE A6: FE COEFFICIENT BY REGRESSAND’S ERROR PROBABILITY DISTRIBUTION FUNCTION
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FE Coefficient by pdf

.

10 20 30
S.Rate

Pop — Beta N
Beta LgN

TABLE A7: FSIV COEFFICIENT BY REGRESSAND’S ERROR PROBABILITY DISTRIBUTION FUNCTION

Coefficients by pdf

03-_ —
CD__
ﬁ'__
C\!_
T T T
0 2 4

— =

6 8 10
S.Rate
Pop —— N(D;0.5) ESS 1/1000
N(0;0.5) ESS 3/1000 ————— N(0;0.5) ESS 5/1000
N(0;0.5) ESS 1/100 ——— LgN(0;0.1) ESS 1/1000
LgN(0;0.1) ESS 3/1000 LgN(0;0.1) ESS 5/1000
Lgn(0:0.1) ESS 1/100

Panel data length graphs

TABLE A8: FE COEFFICIENT BY PANEL DATA LENGTH. Y =2 YEAR
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Population size graphs

TABLE A9: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE

1m vs 10m IV Beta Comparison 1

o |
=
) —
O -—
o
=
1
o
&4
! T T T T T T
0 2 4 6 8 10
S.Rate
TmESS 0.1 ———— TMmESS 03
10mESS 0.1 —— 10m ESS 0.3

TABLE A10: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE

1m vs 10m |V Beta Comparison 2

[aVE /N
O .
o
1
<
1
o
1
o
1
T T I | I T
0 2 4 6 8 10
S.Rate
1mESS 0.5 — 1mESS1
10mESS05 ——— 10mESS 1

TABLE All: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE — GROUP

1
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Beta IV Var Comparison 1

—
— \
— }{\ o ——
o
co_ -
h-_ -
T T T T T T
0 2 4 6 8 10
S.Rate
1x Var ESS 0.1 — 1xVarESS 0.3
2X Var ESS 0.1 — 2xVarESs 0.3

TABLE Al12: SECOND STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE — GROUP
2

Beta IV Var Comparison 2

©
o 4
—
=
Q _
o
S
=
-4 S
[e)
&
1 T I 1 | I
0 2 4 6 8 10
S.Rate
1x Var ESS 0.5 ——— 1xVarESS 1
2xVarESS 0.5 —— 2x Var ESS 1

TABLE A13: FIRST STAGE COEFFICIENT BY POPULATION SIZE AND SAMPLING RATE
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IVFS 1m vs 10m comparison

4 6
S.Rate
——— 10mESS 0.1 10m ESS 0.3
——— 10mESS0.5 10m ESS 1
———— 1mMESS 0.1 1mESS 0.3
———— 1mESS05 1m ESS 1
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