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1 Introduction

The Standard Model of particle physics [1] is a successful theory which not only
unifies the electromagnetic and weak interactions but also explains almost all the
phenomena of this nature observed at or below the electroweak scale. When this
theory was first formulated by Weinberg in 1967 [2], its particle content was so
economical that the neutrinos were assumed to be massless and hence there was
no lepton flavor mixing. But just one year later solar neutrinos were observed by
Davis et al. [3], and a deficit of their flux as compared with the prediction from
the Standard Solar Model was also established by Bahcall et al. [4]. Such an
anomaly turned out to be solid evidence for new physics beyond the Standard Model,
because it was found to be attributed to neutrino oscillations, a spontaneous and
periodic change from one neutrino flavor to another, which does not take place unless
neutrinos have finite masses. By investigating these oscillations only the absolute
value of the differences between the mass-square eigenstates can be measured, and
thus we don’t know which one is heavier — actually nowadays we know that
mν2 > mν1 thanks to matter effects in neutrino solar oscillations. One of the main
aims of neutrino physics today is to determinate the correct mass hierarchy of the
neutrino mass eigenstates.

1.1 The neutrino mass hierarchy

It is a well-established experimental fact that neutrinos and antineutrinos which
take part in charged current (CC) and neutral current (NC) weak interaction are of
three varieties (types) or flavours: electron, νe and ν̄e, muon, νµ and ν̄µ, and tauon,
ντ and ν̄τ . The flavour is conserved: so νe is the neutrino which is produced with
e+, or produces an e− in CC weak interaction processes; νµ is the neutrino which is
produced with µ+, or produces µ−, etc.

The experiments with solar, atmospheric, reactor and accelerator neutrinos have
provided compelling evidences for the existence of neutrino oscillations, transitions
in flight between the different flavour neutrinos νe, νµ, ντ (antineutrinos ν̄e, ν̄µ, ν̄τ ),
caused by nonzero neutrino masses and neutrino mixing.

The existence of flavour neutrino oscillations implies that if a neutrino of a
given flavour, say να, with energy E is produced in some weak interaction process,
at a sufficiently large distance L from the να source, the probability to find a
neutrino of a different flavour, say νβ, P (να → νβ;E,L), can be different from
zero. P (να → νβ ;E,L) is called the να → νβ oscillation or transition probability. If
P (να → νβ;E,L) 6= 0, the probability that νµ will not change into a neutrino of a
different flavour, i.e., the “νµ survival probability” P (να → να;E,L) will be smaller
than one. If only muon neutrinos να are detected in a given experiment and they
take part in oscillations, one would observe a “disappearance” of muon neutrinos on
the way from the να source to the detector.

Oscillations of neutrinos are a consequence of the presence of flavour neutrino
mixing, or lepton mixing, in vacuum. This means that the flavour eigenstate of the
neutrino νl, |νl〉, will be a coherent superposition of the mass eigenstates |νj〉 with
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the physical mass mj :

|νl〉 =
3∑
j=1

Ulj |νj〉 , l = e, µ, τ ,

where U is the 3×3 Maki-Nakagawa-Sakata-Pontecorvo (MNSP) matrix [5, 6]. The
unitarity of U depends on the mechanism of neutrino mass generation [7], however
the bottom line is that any possible deviation of U from unitarity must be small, at
most at the percent level, as constrained by the available experimental data [8, 9].
That is why U is simply assumed to be unitary in dealing with current neutrino
oscillation data. The same formulas can be applied to describe the antineutrino
mixing by making the replacement U → U∗ (complex conjugate).

If the 3 × 3 MNSP matrix U is exactly unitary, it can be parametrized in terms of
three flavor mixing angles and three CP-violating phases in the following ‘standard”
way:

U =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
s13e

−iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

Pν ,
where cij := cosϑij and cij := sinϑij are defined, and Pν := Diag{ei%, eiσ, 1} denotes
the diagonal Majorana phase matrix which is not sensitive to neutrino oscillations.

Therefore we define the survival probability P (ν̄e → ν̄e;E,L) as the square of
the oscillation amplitude:

P (ν̄e → ν̄e;E,L) := |A(ν̄e → ν̄e)|2

= 1− 4
(∑

i

|Uei|2
)−2∑

i<j

(
|Uei|2|Uej |2 sin2 ∆m2

ijL

4E

)
,

(1.1)

where ∆m2
ij = m2

i−m2
j (eV2), L (km) is the distance from the antineutrino production

site and E (MeV) the antineutrino energy. Thus we can characterize the antineutrino
survival probability with four parameters (in addition to the baseline length L and
the antineutrino energy E): two mixing angles, sin2 2ϑ12 and sin2 2ϑ13, and two
mass-square differences ∆m2

31 and ∆m2
21. Past experiments [11] have measured all

these parameters, but not the sign of ∆m2
31, of which we only know the absolute

value. This leads to the two hypothesis summarized in figure 1, to which we will
from now on refer to as “normal” or ‘inverted” hierarchy.

The JUNO experiment aims to measure the flux rate and energy spectrum of
ν̄e → ν̄e oscillations to an unprecedentedly good degree of accuracy, especially to
pin down the sign of ∆m2

31 or equivalently the neutrino mass ordering.

1.2 The JUNO experiment

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose
neutrino experiment [10]. It was proposed in 2008 to determine the neutrino mass
hierarchy by detecting reactor antineutrinos from the Daya Bay nuclear power plant
(NPP), thus formerly known as “Daya Bay II experiment”. The mass hierarchy
determination requires equal baselines from the detector to all reactor cores to avoid
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Figure 2-1: Illustration for the patterns of normal and inverted neutrino mass hierarchies.

• First, as illustrated in Fig. 2-2 [83], MH helps to define the goal of neutrino-less double
beta decay (0νββ) search experiments, which aim to reveal whether neutrinos are Dirac or
Majorana particles. In particular, the chance to observe 0νββ in the next-generation double
beta decay experiments is greatly enhanced for an inverted MH and the Majorana nature
of massive neutrinos. New techniques beyond the next generation are needed to explore the
region covered by a normal MH.

• Second, MH is a crucial factor for measuring the lepton CP-violating phase. In the long-
baseline accelerator (anti-)neutrino oscillation experiments, degenerate solutions for the MH
and CP phase emerge, and the wrong MH would give a fake local minimum for the CP phase,
thus reduce the significance of the CP measurement. This effect is even more important
for accelerator neutrino experiments with a shorter baseline such as Hyper-K [81, 82] and
MOMENT [84]. Therefore, a determination of the MH independent of the CP phase is
important for the future prospect of neutrino physics.

• Third, MH is a key parameter of the neutrino astronomy and neutrino cosmology. On one
hand, the spectral splits [85] in supernova neutrino fluxes would provide a smoking gun for
collective neutrino oscillations induced by the neutrino self-interaction in the dense environ-
ment. The split patterns are significantly different for the normal and inverted MHs. MH is
also important for the supernova nucleosynthesis, where the prediction of the 7Li/11B ratio is
also distinct for different MHs [86]. On the other hand, MH may have important implications
on the cosmological probe of the neutrino mass scale (i.e.,

∑
mν). As shown in Fig. 2-3,

in the case of an inverted MH, future combined cosmological constraints would have a very
high-precision detection, with 1σ error shown as a blue band. In the case of a normal MH,
future cosmology would detect the lowest

∑
mν at a level of ∼ 4σ.

• Fourth, MH is one of the most important discriminators for model building of the neutrino
masses and flavor mixing. To understand the origin of neutrino mass generation, the MH
information is crucial. Due to the similar and complementary aspects of quarks and leptons,
the normal MH could be related to the quark mass spectrum and attributed to the rela-
tions of Grand Unified Theories (GUTs). On the other hand, the inverted MH predicts a
nearly-degenerate spectrum between the first and second mass eigenstates, which could be
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Figure 1: Neutrino mass hierarchy hypothesis.

cancellation of the oscillation dephasing effect. Due to the complex and unclear
layout of the future nuclear power plants in the neighborhood, the experiment was
moved to Jiangmen city in Guangdong province in August 2012, and named as
JUNO in 2013. The site location is at 53 km from both the Yangjiang and Taishan
NPPs. The JUNO project was approved by Chinese Academy of Sciences in February
2013. Data taking is expected in 2020.

JUNO consists of a central detector, a water Cherenkov pool and a muon tracker.
The central detector is a Liquid Scintillator (LS) detector of 20 kton fiducial mass
with a designed energy resolution of 3%/

√
E/MeV. Both central detector (CD) and

water pool (WP) are equipped with 20” Photomultipliers Tubes (PMTs); they detect
scintillation light in CD and Cherenkov light in WP.

JUNO measures the reactor neutrino signal via the inverse beta decay reaction

ν̄e + p→ e+ + n

in the LS. The reactor antineutrino ν̄e interacts with a proton, creating a positron
(e+) and a neutron. The positron quickly deposits its energy and annihilates into two
511-keV γ-rays, which gives a prompt signal. The neutron scatters in the detector
until being thermalized. It is then captured by a proton, on average 200µs later,
and releases a 2.2-MeV γ-ray. The coincidence of the prompt-delayed signal pair in
such a short time significantly reduces backgrounds. The positron carries almost all
energy of the neutrino in this reaction. All this may be visually schematized as in
figure 2. The WP and an additional Top Tracker are used to measure muon tracks
to reject cosmogenic backgrounds. Further details on JUNO physics can be found in
[10].

2 Reactor antineutrino flux
In this section, it will be briefly discussed the evaluation of how many electron

antineutrinos ν̄e would be detected at a far detector with medium baseline length
from a reactor.

In a nuclear reactor, antineutrinos are mainly produced via beta decay of the
fission products of the four radio-active isotopes 235U, 238U, 239Pu and 241Pu in the
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Figure 2: Antineutrino detection in JUNO via inverse beta decay: the prompt signal
is first detected, the delayed one comes, on average, after 200µs.

fuel. The number of antineutrinos produced per fission depends on their energy Eν̄e

(MeV) [14]

ϕ(Eν̄e) = f235U exp(0.870− 0.160Eν̄e − 0.0910E2
ν̄e

)
+ f239Pu exp(0.896− 0.239Eν̄e − 0.0981E2

ν̄e
)

+ f238U exp(0.976− 0.162Eν̄e − 0.0790E2
ν̄e

)
+ f241Pu exp(0.793− 0.080Eν̄e − 0.1085E2

ν̄e
) ,

where fk denotes the relative fission contribution of the isotope k in a reactor fuel,
derived from the fission rate Nfiss

k of isotope k as

fk := Nfiss
k∑

iN
fiss
i

.

Although fk varies over time as the fuel is burned, it can be approximated for this
type of experiments with the average value of the relative fission contributions:
f235U = 0.58, f239Pu = 0.30, f238U = 0.07 and f241Pu = 0.05 [15]. The event rate of
antineutrinos with energy Eν̄e (MeV) at a reactor of P (GWth) thermal power is
then expressed as

dN

dEν̄e

= P∑
k fkεk

ϕ(Eν̄e) · 6.24 · 1021 , (2.1)

where εk is the released energy per fission of the isotope k: ε235U = 201.7 MeV,
ε239Pu = 210.0 MeV, ε238U = 205.0 MeV and ε234Pu = 212.4 MeV [16]. The numerical
factor comes from unit conversion, 1GW/MeV = 6.24 · 1021.

This rate is then modulated by oscillation. The ν̄e survival probability (1.1) is
expressed as

Pν̄e→ν̄e ≡ Pee = 1− cos4 ϑ13 sin2 2ϑ12 sin2 ∆21

− cos2 ϑ12 sin2 2ϑ13 sin2 ∆31

− sin2 ϑ12 sin2 2ϑ13 sin2 ∆32 ,

(2.2)
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The variablesmi and Ei are the mass and energy of the corresponding mass eigenstate,
while ϑij represent the neutrino mixing angles. The oscillation phases ∆ij are defined
as

∆ij :=
∆m2

ijL

4Eν̄e

= 1.27 · [eV2][m]
[MeV] , (∆m2

ij := m2
i −m2

j )

with a baseline lenght from the reactor L.
While ∆m2

21 is fixed, ∆m2
31 and then ∆m2

32 = ∆m2
31 − ∆m2

21 depend on the
mass hierarchy:

∆m2
31 =

{
m2

3 −m2
1 > 0 (NH)

m2
3 −m2

1 < 0 (IH)
.

As we have seen before JUNO uses protons as targets to detect electron antineutrinos
via the inverse neutron beta decay (IBD) process

ν̄e + p→ e+ + n .

The threshold neutrino energy of this process is Ethr ∼ mn −mp +me ∼ 1.804 MeV,
and the cross section is [17]

σIBD = Ee+ pe+ · 9.52 · 10−44 cm2 , (2.3)

where Ee+ and pe+ are the energy and momentum of the positron in MeV, neglecting
the kinetic energy of the proton and the neutron for a MeV scale antineutrino. The
positron energy is roughly Ee+ ∼ Eν̄e − (mn −mp).

The produced positron then interacts with scintillator, converting its kinetic
energy to photons. Eventually, the positron annihilates with an electron in the
detector and emits two 0.5 MeV photons. The energies of those photons are the
accumulated as the visible energy Evis which is the sum of the positron’s total and
one electron’s rest energies,

Evis ∼ Ee+ +me ∼ (Eν̄e − 0.78) MeV.

As we can see the antineutrino spectrum is simply shifted of 0.78 MeV circa from
the visible spectrum.

Finite detector energy resolution may distort the true visible energy Evis to
the finally observed one Eobs

vis . This effect can be modeled by a gaussian detector
response function G(Evis − Eobs

vis , δEvis) with the energy resolution δEvis

G(Evis − Eobs
vis , δEvis) = 1√

2πδEvis
exp

{
−(Evis − Eobs

vis )2

2(δEvis)2

}
. (2.4)

Generally the detector energy resolution can be modeled as

δEvis
Evis

=

√
a2

Evis
+ b2 (2.5)

(Evis in MeV) and is composed of two parts. The first term in the square-root repre-
sents the statistical uncertainty, and the second one gives the sistematic uncertainty,
which we will not consider in this study. The observed antineutrino distribution by
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Figure 3: Energy spectrum for 105 events, infinite resolution, assuming normal (blue)
or inverted (dashed red) hierarchy. It’s clear how the sin2 2ϑ13 is responsible for the
high frequency oscillation while sin2 2ϑ12 is responsible for the lowest one.

a detector with Np free protons after an exposure time T can then be expressed,
from (2.1), (2.2), (2.3) and (2.4), as

dN

dEobs
vis

= NpT

4πL2

∫ ∞
Ethr

dEν̄e

dN

dEν̄e

Pee(L,Eν̄e) σIBD(Eν̄e)G(Eν̄e − 0.8− Eobs
vis , δE

obs
vis ).

(2.6)
The energy spectrum measured by JUNO assuming infinite and finite energy resolu-
tion is given in figures 3 and 4, respectively.

3 Sensitivity to the mass hierarchy
After obtaining the energy distribution of reactor antineutrinos, a further step

concerns the estimation of the sensitivity in determining the mass hierarchy using a

0
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800

1,000

2 3 4 5 6 7
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vis (MeV)

dN
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Figure 4: Energy spectrum assuming 105 events, a = 3%, and normal (blue) or
inverted (dashed red) hierarchy.
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χ2 analysis. To set the stage, we introduce the χ2 function as

χ2 = χ2
stat + χ2

para . (3.1)

The first term represents the statistical fluctuation, when we introduce binning w.r.t.
Eobs
vis it looks like

χ2
stat =

∑
i

(
Ni −N∗i√

N∗i

)2

,

with the summation running over all the bins. Here N∗i is the number of events
for the ith bin while Ni is the theoretical prediction assuming right or wrong mass
hierarchy.

The second term summarizes the prior knowledge on mixing parameters. In
JUNO these are the mixing angles sin2 2ϑ12 and sin2 2ϑ13, and the two mass-square
differences, ∆m2

21 and ∆m2
31 (the latter with the sign depending on the mass

hierarchy assumption), whose contributions look like

χ2
para =

(
sin2 2ϑ12 − (sin2 2ϑ12)input

δ sin2 2ϑ12

)2

+
(

sin2 2ϑ13 − (sin2 2ϑ13)input
δ sin2 2ϑ13

)2

+
(

∆m2
21 − (∆m2

21)input
δ∆m2

21

)2

+
(

∆m2
31 − (∆m2

31)input
δ∆m2

31

)2

.

We then define ∆χ2 as

∆χ2 := χ2
wrong − χ2

true ,

where χ2
wrong is the minimum of the χ2 calculated assuming the wrong hierarchy

and χ2
true is the minimum of the χ2 calculated assuming the correct hierarchy. It

will be often scaled with the number of degrees of freedom, which is clearly equal to
the number of fitted data minus the constraints: nbin − 6.

4 Data simulation and fitting

All the datasets are simulated within the ROOT Data Analysis Framework [21],
mainly using the built-in Monte Carlo method TF1::GetRandom to take into account
statistical fluctuations. They are all composed of 105 events, which is a realistic
assumption considering that the expected event rate calculated with the JUNO
experimental setup is about 60 events/day1 [10] for a total running time of 5 years.
The values of the two mixing angles and the two mass-square differences used in the
generation are listed in Table 1.

1With two reactors of 36 GW thermal power at 53 km, a 20-kton Liquid Scintillator detector.
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Table 1: The input values Y input and their uncertainties δY taken from [18, 19, 20].

Y sin2 2ϑ12 sin2 2ϑ13 ∆m2
21 eV2 |∆m2

31| eV2

Y input 0.857 0.089 7.50× 10−5 2.32× 10−3

δY 0.024 0.005 0.20× 10−5 0.11× 10−3

To take into account the finite detector resolution (2.5) it has been chosen an
alternative generation method. The adoption of the method presented above for
the infinite resolution case implies having an explicit analytic form (without the
integral) of the spectrum function, which is basically impossible to be found, cfr. eq.
(2.6). We have proceeded as follows: random events (say Etrue

i their energies) were
generated following the ideal distribution (a = 0); then, before filling the histogram,
assigned to a new energy value following the normal gaussian distribution with mean
Etrue
i and variance a

√
Etrue
i . That is a highly efficient way to generate datasets with

finite resolution.
Considering now the fitting procedure, the minimization of (3.1) has required to

use directly the ROOT minimization libraries, in particular the TMinuit algorithm2.
In the minimization procedure all the parameters were left free to vary in their
physical limits, except for the baseline length, which was fixed, assuming a very
small error δL on it.

5 Results

5.1 Infinite resolution: sensitivity and baseline length

We now discuss the results obtained assuming infinite resolution (a = 0). In
this case the number of bins can be arbitrary high, so it has been chosen 200 as
unit. We present the study of the baseline length influence on the sensitivity in
distinguishing between the two theoretical hypothesis, namely between normal and
inverted hierarchy.

Two different setups, at L = 50 km and L = 30 km, have been considered and a
2See the appendix.
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200

400
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Figure 5: Fitting NH data with NH
theory at L = 50 km.
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Figure 6: Fitting NH data with IH
theory at L = 50 km.
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Figure 7: Fitting NH data with NH
theory at L = 30 km.

E (MeV)
2 3 4 5 6 7

dN
/d

E

0

200

400

600

800

1000

1200

Figure 8: Fitting NH data with IH
theory at L = 30 km.

fit on NH data, assuming normal or inverted mass hierarchy, has been performed.
As it can be noticed with an overlook to the results at 50 km presented in figures 5
and 6, the parameter that changes most at the end of the minimization procedure
is sin2 2ϑ13, namely the one who is responsible for the tiny oscillations; moreover
the total lack of adherence to data in the first 2 MeV it’s self-evident. Thus the
difference in the two χ2

min values, ∆χ2, is a powerful statistic test to discriminate
between normal and inverted hierarchy. In this specific case we find ∆χ2/ndf ∼ 0.6.

On the other side, comparing results at 30 km in figures 7 and 8 it can be
noticed how it’s harder to establish which fit is the “wrong” one. That’s because
both theoretical hypothesis seem to fit data accurately, as a matter of fact we find
∆χ2/ndf ∼ 0. As a consequence the sensitivity in discriminating between the two
theories is higher in the first case and we can say for sure that it strongly depends
on the baseline length L.

Distances from 1 to 140 km between the detector and the reactor cores, L, were
considered in the calculation of ∆χ2. It has been chosen to fit Asimov datasets
[13] (where the bin’s content is equal to the expectation value) with 400 bins to
avoid useless fluctuations in the plot. Looking at the results presented in figure 9
it’s clear that exists a range, from 50 km to 70 km, with a maximum in ∼ 55 km,

Baseline Lenght (m)
0 20 40 60 80 100 120 140

310×

Se
ns

iti
vi

ty
 (a

.u
.)

0

0.2

0.4

0.6

0.8

1

Figure 9: Sensitivity in arbitrary units (∆χ2 normalized to 1 at the peak) w.r.t. the
baseline length, assuming a = 0.

12



dN
dE

1 2 3 4 5 6 7
E MeV

a = 2%

a = 4%

a = 6%

Figure 10: Plots of the spectrum 2.6 with a = 2%, 4%, 6% resolution.

in which the sensitivity is maximized, and we can better discriminate between the
two hypothesis. One may look for a second, higher, maximum for L > 140 km, but
since antineutrino rate (see 2.6) is proportional to 1/L2, the time spent collecting
the same amount of data would be prohibitive.

As it’s described in the next section, the study of the sensitivity w.r.t. the baseline
length with finite resolution has not been performed, due to a high computational
time request. In [12] this analysis shows how the peak’s position moves toward
smaller values of L increasing the a value in (2.5).

5.2 Finite resolution: sensitivity and resolution

Introducing a finite resolution in the fitting process is not trivial3, as seen before
the problem involves the the presence of an integral in the expression (2.6). Now we
study the sensitivity comparing spectrums collected at the same baseline length (at
53 km, as planned) but with different values of the experimental resolution. As it
can be seen with just an overlook to the three graphs in figure 10, the difference
between the two curves (normal and inverted hierarchy) vanishes when decreasing the
resolution parameter, from a (experimentally challenging) 2%/

√
E/MeV resolution

3Details of the chosen programming method in the appendix.
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Figure 11: Fitting NH data with NH
theory, a = 3% at L = 53 km.
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Figure 12: Fitting NH data with IH
theory, a = 3% at L = 53 km.
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Figure 13: Sensitivity in arbitrary units (∆χ2 normalized to 1 at 3% resolution)
w.r.t. the statistical factor a in the resolution expression at L = 53 km.

to a much worse 6%/
√
E/MeV. The resolution effect is strong especially in the first

part, between 0 and 2 MeV, where the tiny oscillations are totally smeared out and
the curves are nearly indistinguishable.

Let’s consider the binning issue. Choosing an arbitrary high number of bins
makes not much sense with a finite resolution, therefore a realistic binning of 100
keV, which signifies more or less 62 bins through the entire spectrum, has been
adopted.

We discuss as a preliminary analysis the results of fitting NH data (resolution
3%/

√
E/MeV) either with correct or wrong theory (figures 11 and 12). As can be

seen, comparing this with figures 5 and 6, now it’s very hard to say which fit is
the “wrong” one, the bins are less than the ideal case and the two datasets almost
superimposable. This means that the two χ2 are very similar and we have a smaller
∆χ2.

Now, this kind of minimization, because of the complexity of the expression
(2.6), requires a not negligible amount of computational time when performing it
with the available processors. This drawback is a big limit to the kind of analysis
we want to perform; a plot with the same number of points as the one in figure 9 is,
computationally speaking, too expensive. In addition to this, with a < 2% the ROOT
algorithm fails to compute the integral with the standard level of tolerance, and
increasing it obviously more time-consuming. Then, in the perspective to study the
sensitivity (∆χ2) w.r.t. the resolution parameter a we can only make a qualitative
analysis.

Let’s take a look at the graph in figure 13. Each of the fourteen points is the
result of the mean of three different values of ∆χ2, computed considering three
datasets simulated with the same set of parameters but with a different seed in
the generation of the random events. This cuts out the effects of the statistical
fluctuations on χ2 and any bad-precision issues in the minimization algorithm. The
∆χ2 results are normalized to make the sensitivity at the JUNO designed resolution
3%/

√
E/MeV unitary. It can be easily noticed how the sensitivity rapidly goes

to zero when the resolution gets worse, in particular with a > 3% the ability to
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discriminate between the two hypothesis is practically zero. We can easily conclude
that any resolution equal or better than the designed one is essential to determinate
the mass hierarchy with an acceptable degree of accuracy.

6 Discussion and conclusions
The sensitivity of the JUNO experiment to the determination of the neutrino mass

hierarchy has been studied by performing a χ2 analysis. The results are applicable
to all medium baseline reactor electron-antineutrino oscillation experiments with
scintillation detection system and a simular active mass.

Taking into account statistical fluctuations in the data and finite bin-size effects,
we study the impacts of the baseline length and the energy resolution on the
sensitivity, represented by the ∆χ2, and find that it strongly depends on them. With
infinite resolution (a = 0) the optimal baseline length is found to be in the interval
[50, 70] km and at the actual indicated JUNO site (L = 53 km) an energy resolution
better or equal to the 3%/

√
E/MeV level is needed to determine the neutrino mass

hierarchy pattern. With these experimental settings, JUNO would determine the
mass hierarchy after five or more years of running.
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Appendix: Fitting with the TMinuit class

When we need to perform a fit not only minimizing the standard χ2

χ2
std =

∑
i

(
Ni −N∗i√

N∗i

)2

but a more general function, which we will from now on call χ2, the build-in ROOT
method TF1::Fit is no longer exploitable. This method, given data and a TF1
object, uses the TMinuit libraries in order to minimize χ2

std and efficiently provide
results. Thus our general approach needs to explicitly write the chosen χ2 function
and directly use TMinuit to minimize it.

Let’s first consider the infinite resolution case of the spectrum (2.6), when
its expression it’s explicit. After declaring the TMinuit object who performs the
minimization (gMinuit), we first need to set the function to minimize (myFCN), the
χ2 function, with the command

gMinuit->SetFCN(myFCN);

The implementation of myFCN must be standard [21]:

void myFCN( int &npar, double* gin, double &f, double* par, int flag) {
f = ... ; // implement the function

}

where f is the value of the χ2 function, par is the pointer to the array of function
parameters and npar its dimension; TMinuit will vary the values it points in the
minimization procedure. We will not consider the other arguments. In the specific
case we are considering, we can calculate the value of the χ2

std using a for loop:

double chi2 = 0;
double* xi = new double[1];
for ( int i = 1 ; i <= dataset->GetSize()-2 ; ++i ) {

xi[0] = Emin + (Emax-Emin)/(2*N_div) + (i-1)*(Emax-Emin)/N_div;
// bin’s mid point

chi2 += pow( (spectrum->EvalPar( xi , par ) -
dataset->GetBinContent(i)) / datasetNH->GetBinError(i) ,2);

}
f = chi2;

where spectrum is a TF1 object corresponding to our theoretical distribution with
its parameters and dataset is a TH1F object with N_div number of bins between
the range [Emin, Emax] containing the data to fit. The important thing here is that
spectrum is evaluated in each bin’s mid point and in the parameter values pointed
toby par, the latter passed from the TMinuit object to myFCN to test the χ2 value
during the minimization procedure. This implementation allows to change the χ2

std
expression or add other terms.

Now that the function to minimize is set we can initialize the parameters and
add their limits with the mnparm function, then launch the minimization procedure
with the mnexcm function. There are three algorithms in TMinuit: SEEK consists in
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a preliminary Monte Carlo search of the minimum, SIMPLEX finds quickly its rough
value and MIGRAD improves the estimation. SEEK it’s often used to find the absolute
minimum before improving it, as a matter of fact it can happen that SIMPLEX or
MIGRAD converges to a minimum which is only local.

Applying this procedure to the finite resolution case needs a little code enhance-
ment to bypass the fact we do not have an explicit form of the spectrum as above,
therefore using a TF1 object to represent it is now obviously impossible. The sleight
of hand we use is to to write the integrand of (2.6)

f(E, Ê) = NpT

4πL2
dN

dE
(E) Pee(E) σIBD(E)G(E − 0.8− Ê, δÊ)

as a TF1 with E as the main variable x and Ê as a parameter, then in the calculation
of χ2 integrate in dE for every point using Ê as the main variable. Here is the code:

for ( int i = 1 ; i <= dataset->GetSize()-2 ; ++i ) {

par[7] = Emin + (Emax-Emin)/(2*N_div_R) + (i-1)*(Emax-Emin)/N_div_R;
chi2 += pow( ( integrand->Integral( Ethr , Max , par , 1E-13) -

dataset->GetBinContent(i)) / dataset->GetBinError(i) ,2);
}

The parameter par[7] represents Ê, Ethr it’s the energy threshold, Max a sufficient
high energy value where the antineutrino distribution is practically zero, and the
fourth argument of TF1::Integral is the tolerance set in the ROOT’s integration
algorithm. We also must call back the parameters value from the TMinuit object
before every calculation of χ2 inserting

for ( int i = 0 ; i < npar ; ++i ) {
gMinuit->GetParameter( i , par[i] , parErr[i] );
}

inside the myFCN declaration before the for loop.
This code, unlike the first one, which requires a negligible computational time in

this kind of analysis, it’s definitely time consuming: several minutes are required
for a complete minimization. Responsible for this is the calculation of the integral,
which is not trivial even with numerical methods, and decreasing the tolerance value
obviously worsen things.

The limits given by the complex kind of integration also influence the range of
resolution values we want to test. For a < 2% the integration algorithm with a
tolerance of 10−13 hardly converges all over the points, and the value of χ2 is then
distorted. Clearly a smaller tolerance value prevents this issue, but the amount of
requested time for each iteration becomes unacceptable when we need to iterate it
in a program that acts in a large number of situations.
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