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Abstract
Inventory replenishment is the process of obtaining the items, components, and raw materials
required to make and sell products. It guarantees that items and resources are acquired and
delivered in an e�cient and timely manner. Poorly managed inventory replenishment can have a
severe in�uence on customers and the overall health of a business, which may result in lost revenue,
reduced pro�ts and damaged reputation. Implementing the correct inventory replenishment helps
manufacturers and sellers in avoiding major issues such as stock-outs, delayed deliveries and
overstocking. Accuracy of forecasting is therefore crucial to retailers' pro�tability. Fashion
businesses need precise and accurate sales forecasting tools to prevent stock-outs and maintain a
high inventory �ll rate. This thesis navigates the complex landscape of fashion retail forecasting,
addressing the challenges posed by intermittent time series data and stock management. Advanced
forecasting models have been implemented to account for the intermittent nature of fashion
product demand, resulting in predictions more accurate and reliable.The study extends also to
stock replenishment strategies, emphasizing the importance of the reorder point, the Cycle Service
Level and the safety stock. Lastly, it culminates in the development of a replenishment algorithm
aimed at reducing stock-outs, which is a modi�ed version of the Periodic Review Policy:
Order-Up-To-Level, now tailored to the sporadic nature of intermittent demand.
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1
Introduction

Fashion retail is a highly competitive market where inventory replenishment plays a key role in the
pro�tability of companies. Inventory replenishment planning is not only an important component
of supply chain management, but it is also a key factor of business logistics. Inventory
replenishment is the process of ordering and obtaining from suppliers the necessary stock to meet
customer demand while avoiding stock-outs and overstocks [1], i.e., stock shortages and stockpiling
unnecessary stock. Accurate sales forecasting is therefore fundamental, as poor forecasting might
lead to stock-out or overstock situations, obsolescence, low service level, rush orders, ine�cient
resource utilization and bottlenecks, all of which can have a direct and immediate impact on the
company's pro�tability [2]. An ine�cient forecasting system can also have an impact on customer
service quality. For example, if a customer encounters a stock-out situation, they may decide to
shop at a di�erent retailer [3].

For these reasons, demand forecasting has become a popular research topic and many models for
forecasting fashion products have been proposed in the literature over the past few decades.
However, di�erent business and industry decisions can lead to di�erent methods to calculate
forecasts. For example, in the fashion industry, products are usually characterized by long
replenishment lead times, short selling seasons and nearly unpredictable demand and therefore,
inaccurate forecasts [4]. All these features make the issue of forecasting demand particularly
challenging.

I had the opportunity to work within a company headquartered in Triveneto, a prominent player
in the footwear and clothing industry. My involvement with this company allowed me to explore,
analyze, and �nally develop a thesis on inventory replenishment optimization, a critical aspect of
modern supply chain management. This thesis is centered around the study and implementation
of various forecasting models to be used as basis for the Periodic Review Policy: Order-Up-To-Level
[5] predictive replenishment method. This task was prompted by the company's pursuit of a better
approach to inventory management.

By predicting future stock requirements with greater accuracy, the company aimed to not only
optimize its resource allocation but also ensure a continuous supply of products to ful�ll the
ever-changing demands of its customers.
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This thesis, therefore, represents a comprehensive exploration of the challenges, strategies, and
innovations to enhance predictive replenishment within a company in the fashion industry. By the
end of this research, we aim to provide valuable insights and solutions that can bene�t not only the
company itself but also other organizations seeking to re�ne their replenishment processes and stay
at the forefront of their respective industries.

1.1 Operative Context
In recent years, the fashion industry has experienced a signi�cant transformation due to a
convergence of various factors [6], including:

● Increase in customer requirements and expectations: Customer demands have
evolved, driven by the industry's shift from mass fashion to segmented fashion [7].
Additionally, consumer preferences exhibit a remarkable diversity within the fashion
industry [8] and expect businesses to satisfy their needs in terms of both products and
services. Lastly, one of the key criteria for customer satisfaction is service level quality [9],
i.e., the company's ability to meet customer expectations while optimizing its supply chain
processes.

● Dynamic Pricing Strategies and Inventory Management: Dynamic pricing strategies
and inventory management have emerged as pivotal elements of change within the fashion
industry [10]. These strategies allow businesses to adjust pricing based on real-time factors
such as demand, supply, and market conditions. E�ective dynamic pricing and inventory
management play a crucial role in meeting customer demands while optimizing inventory
levels and ultimately a�ecting a company's pro�tability and competitive positioning.

● New technologies: The fashion industry has been greatly in�uenced by the rapid
dissemination of information and technology. Customers' capacity to instantly learn about
new trends and brands has contributed to raising their expectations. On the �ip side,
manufacturers, distributors, and retailers have gained access to advanced tools for data
gathering, which, in turn, has empowered them to make more informed and strategic
business decisions [11].

As a result, the industry acknowledged the crucial necessity to quickly adapt to changing trends
while responding to the complex and specialized needs of its customers [12].
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As pointed out in [13], products in this industry tend to exhibit the following characteristics:

● Short life cycles: The fashion industry is characterized by short product life cycles,
meaning that products have a limited period of relevance and marketability. This transitory
nature is inherent to the industry as fashion items are designed to capture and express the
prevailing trends, styles, and consumer preferences of a speci�c moment. These products
are often created to mirror the spirit of the times, and as a result, their marketable lifespan is
notably brief [14]. When the relevance of a fashion item fades due to shifting tastes and
preferences, it quickly becomes less desirable.

● Short selling season: To maintain their competitiveness and consumer interest, many
fashion retailers adopt a strategy of increasing the number of "seasons." Each season
represents a distinct collection of products, often re�ecting the latest fashion trends or
themes. By doing so, retailers can frequently refresh their product lines and respond to
changing consumer preferences. This approach accelerates the rate of change and product
turnover within the fashion industry, thus posing a challenge for supply chain
management.

On the other hand, the characteristics of the demand are:

● High volatility: The demand for this type of products is rarely stable or linear. Moreover,
there are many potential sources of uncertainty that can have a direct impact on the sales
such as the weather conditions, holidays, marketing actions, promotions, fashion trends
and even the current economic situation [15]. For these reasons, it is very challenging to
make precise forecasts due to the volatility of demand.

● Impulse purchasing: Additionally, the decision to purchase these products is often made
at the moment of sale. This means that the customers are more encouraged to purchase an
article if presented with it, which is why availability is so important.

● Large variance in demand and product variety: Demand is now more segmented and
consumers are more selective regarding choice and quality. Fashion collections are also
composed of an extremely large number of di�erent products in many di�erent models,
colors and sizes, corresponding to many di�erent stock keeping units (SKUs) [16]. As a
result, the sales volume per SKU is quite low [17] and demand for SKUs within the same
product line might vary considerably [18].
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In addition to the aforementioned characteristics, it is worth highlighting that demand patterns in
the fashion retail industry often exhibit an intermittent behavior. Intermittent demand, which is
characterized by irregular, sporadic, and unpredictable sales patterns, is a well-documented
phenomenon in this industry [19]. The nature of fashion products, heavily in�uenced by factors
such as seasonality, trends, and consumer preferences, leads to instances where certain items
experience surges in demand, followed by extended periods of relative quietness. This intermittency
is further exacerbated by factors like limited editions, unique designs, and the constant emergence
of new collections. As a result of these irregular demand patterns, fashion retailers must contend
with the di�culty of e�ciently managing stocks and optimizing replenishment strategies.

In the context of this thesis and the related research project, the company and its products also
show this kind of intermittent behavior, especially regarding the high volatility and large variance of
its SKUs. The company’s various articles could be divided into three main categories:

1. Shoes: As a cornerstone of the business, footwear plays a pivotal role in the company's
product lineup.

2. Clothing: In parallel with its footwear o�erings, the company also boasts an extensive
range of clothing items, maintaining a strong presence in this sector.

3. Accessories: In addition to shoes and clothing, the company's product line also includes a
variety of accessories.

Moreover, it's important to note that this research was conducted focusing only on the
company-owned stores, which represent a carefully selected and more limited portion of locations
where their articles are available.
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1.2 Thesis Outline
This thesis is divided as follows:

● In Chapter 2 we introduce the literature regarding demand forecasting, highlighting the
challenges of intermittent time series and the advantages and disadvantages of various
forecasting methodologies.

● In Chapter 3 we introduce the dataset provided by the hosting company, exploring its
characteristics and properties and discussing the pre-processing techniques utilized.

● In Chapter 4 are described the forecasting models implemented for this project, namely
Naïve, Croston's method, Light Gradient Boosting Machine (LGBM), Long Short-Term
Memory (LSTM) network, and Neural Basis Expansion Analysis for Interpretable Time
Series (NBEATS). Training and evaluation procedures are also discussed.

● Chapter 5 is centered instead on inventory replenishment, presenting the theory behind the
chosen replenishment algorithm, its implementation and the simulations used to evaluate
its e�cacy in reducing stock-outs.

● In Chapter 6 we present and discuss the results obtained by the forecasting models and by
the simulations of the replenishment algorithm.

● Lastly, Chapter 7 concludes this thesis discussing future research and works.
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2
Demand Forecasting

Demand forecasting is one of the biggest challenges for retailers, wholesalers, and manufacturers in
any industry, and this subject has drawn a lot of interest from both researchers and practitioners.
Accurate predictions of future demand are essential for e�cient inventory management, meeting
customer expectations, and ultimately, ensuring business success. However, the dynamic nature of
fashion, characterized by short product life cycles and unpredictable demand patterns, makes
forecasting particularly complex. The main question is then whether the fashion industry can
leverage forecasting methods e�ectively.

2.1. Intermittent Demand Forecasting

Intermittent demand series, also known as sporadic or count series, are a particular kind of time
series. In this case, the time gaps between the arrival of successive demands are often quite lengthy
and frequent, while the quantities demanded tend to be relatively low [20], as we can notice from
the intermittent time series shown in Figure 2.1. On the other hand, traditional demand time
series, often described as "smooth", tend to be more stable, exhibiting only very occasional gaps
between demand occurrences. Typical products described via an intermittent time series are spare
parts, heavy machinery, electronics [21] and the aforementioned fashion articles.

Figure 2.1: Examples of intermittent time series.
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Forecasting intermittent time series is often recognized as one of the most di�cult forecasting
challenges [22]. As pointed out in [23], this is largely because intermittent demand time series
forecasting introduces two key issues:

1. Determining the timing of demand: In this speci�c context, the main challenge lies in
determining when the next demand period will occur. This issue does not exist in
traditional time series forecasting, where demand tends to follow a more constant and
stable pattern.

2. Estimating the demand volume: When intermittent demand appears, the objective is to
correctly forecast its volume. This aspect is usually more complex to handle, primarily due
to the inherent unpredictability of intermittent time series. First of all, prolonged periods
of zero demand often separate active demand periods from each other, making it generally
more challenging to learn how these periods a�ect each other. Secondly, the sporadic
nature of demand arrivals further intensi�es the complexity compared to traditional
scenarios.

2.2. Forecasting Methodologies

A number of forecasting methods have been developed and employed in the fashion retail industry
over the past few years. Current forecasting techniques are generally divided into two groups:
classical methods based on mathematical and statistical models, and modern heuristic methods
using machine learning (ML) and deep learning techniques.

2.2.1 Statistical Models

Statistical models have been widely used for forecasting both short-term and long-term sales and
demand [24]. Among these models, the most commonly employed are Auto-Regressive Integrated
Moving Average (ARIMA) [25], exponential smoothing [26], regression [27], Box & Jenkins [28]
and Holt Winters [29]. However, these traditional forecasting methods are designed for scenarios
characterized by smooth, high-volume demand. For this reason, they face limitations when applied
to intermittent time series data, which is prevalent in the fashion industry, as we saw previously.
These methods struggle to transform qualitative data features into quantitative ones, especially as
sales patterns in the fashion retail industry exhibit signi�cant variation [30].
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Linear forecast models encounter substantial constraints in capturing the nonlinear relationships
between exogenous variables, addressing outliers, handling missing data, and accommodating
nonlinear components frequently found in real-world time series data [31]. They also fall short in
capturing features like occasional outlying observations and asymmetric cycles, which are common
in fashion demand data.

Furthermore, the complexity of the relationship between time-series data and the variables a�ecting
sales performance demands more than just high precision for accurate forecasting. It requires
reliable historical data for model structure identi�cation and parameter tuning, posing a challenge
when dealing with the unique characteristics of the fashion industry [32]. As demonstrated also in
[33], conventional time-series approaches may not consistently capture nonlinear patterns in data,
necessitating the exploration of more complex systems like Neural Networks (NNs) as an
alternative to overcome these limitations.

2.2.2 Machine Learning Models

Because machine learning (ML) methods are data-driven, they are more generic and easier to adapt
to forecasting series of di�erent characteristics [34]. However, categorizing forecasting methods
into statistical and machine learning is not simple, as various criteria can be used to perform this
task [35]. In this regard, methods based on unstructured, non-linear regression algorithms, such as
NNs, Decision Trees, and Support Vector Machines, are recognized as part of the ML domain [36].

NNs, inspired by the functioning of biological neurons [37], stand out for their pro�ciency in
modeling complex, non-stationary, and nonlinear datasets. This distinct capability, bolstered by
increased computational prowess, has positioned NNs at the forefront of research across diverse
scienti�c domains [24]. They typically consist of three distinct layers: input, hidden and output
layer. These layers are composed of nodes, also called neurons, which are the fundamental
components of the NN and are responsible for processing inputs and producing the corresponding
outputs. Each node of a layer has connections called weights with all the nodes, or a subset, of the
next layer.

The input layer, found at the network's beginning, receives the data that the network is designed to
process. At the opposite end lies the output layer, containing nodes that correspond to the response
variables, which in the context of this study represent forecasting results. Between these two layers,
there may be one or even multiple hidden layers, thus resulting in a Deep Neural Network (DNN).
The nodes within these hidden layers represent the computational core of a NN and determine the
model's capacity to capture complexity in the data, enabling it to �t intricate patterns and
relationships. Figure 2.2 illustrates the multi-layer structure of a DNN.
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Figure 2.2:Architecture of a deep (multi-layer) neural network.

The output of neurons is computed through a series of operations, involving the dot product of
input and weight vectors, the subtraction of bias values, and transformation via an activation
function, typically a non-linear function like the sigmoid or ReLU. This process is repeated until
the information reaches the output layer. Here, the output of the networks is used to compute the
model's error through the loss function, which calculates the di�erence between the actual real
value and the one predicted by the model. The loss function is generally selected based on the
nature of the forecasting problem.

The result is then used to adjust the network's weights and biases in order to reduce the model's
loss. The most common procedure is the back-propagation of errors. This is commonly achieved
via stochastic gradient descent, which computes the gradients of the model's parameters with
respect to the cost function. This is accomplished by applying the chain rule, beginning at the
output layer and working backward through the network. After computing the gradients, the
parameters' values are incrementally adjusted to bring the predictions closer to their true values.

Despite the e�cacy of ML approaches, they have inherent limitations. To begin with, su�cient
data is essential for ML algorithms to fully exploit their capabilities [36]. Moreover, computational
time may become a critical issue, particularly when forecasting several series at weekly and daily
frequencies [38]. To address these constraints, ML methods can be deployed in a cross-learning
(CL) fashion rather than series-by-series [39], allowing models to collectively learn from multiple
time series to enhance their capacity to forecast individual series e�ectively.
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The underlying principle of CL hinges on the idea that shared patterns can emerge across di�erent
time series, especially when data is hierarchically organized and provided with categorical and
exogenous/explanatory variables [40]. The CL technique has a number of advantages. First of all, it
substantially reduces computational time, as a single model can simultaneously forecast numerous
time series [41]. Moreover, data limitations are mitigated, and signi�cant information can be
accessed at the global level, allowing to capture patterns shared among the series, including seasonal
cycles [42]. Additionally, models trained on one dataset can be employed to forecast time series
from di�erent datasets exhibiting similar characteristics [43]. Many researchers have achieved great
results utilizing NN, and among these there are some interesting uses related to fashion demand
[44, 45]. Other state-of-the-art implementations include LSTM [46], Temporal Convolutional
Networks [47], and Temporal Fusion Transformers [48].
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3
Data Exploration and Pre-Processing

This chapter introduces the dataset used and its properties. This real-world data collection was
provided by the hosting company and consists of sales data encompassing various store-SKU
combinations from diverse locations across Europe. In the context of this thesis, we identify with
“SKU” a speci�c size of a distinct article.

3.1 Data Selection
In accordance with the company, a 2-year time horizon from 19/7/2021 to 17/7/2023 was deemed
appropriate in order to avoid post-Covid-19 in�uences and also guarantee su�cient data to work
with. After de�ning the scope of the data, it was agreed to aggregate the sales weekly and to select
only a small subset of data from the dataset to ensure that the selected SKUs had relatively stable
demand while also having the necessary data for performance assessment.

More speci�cally, it was decided to consider only items that existed in the store’s product portfolio
for at least 52 weeks, i.e.,1 year. Moreover, in order to select time series with a relatively stable
demand, we �rst calculated the number of weeks with non-null sales for each SKU of each store.
These were then divided by the corresponding total number of weeks. We then �ltered out the
SKUs with a ratio lower than 0.2, thus selecting the store-SKU combinations with at least 20% of
weeks with actual sales. The reasons for this �ltering are due to the fact that the majority of the
store-SKU combinations, even after the aggregation to weekly data, present a demand pattern
similar to the one shown in Figure 3.1.

Figure 3.1: Examples of extremely intermittent time series that are very common in the full dataset.
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This level of sporadicity is extremely di�cult to forecast accurately. But the main reason to avoid
such series is that they would not really bene�t by the predictive replenishment method that will be
discussed in Chapter 5, as it would simply resend the article it has just been sold, something that
clearly does not require an elaborate method.

3.2 Data Exploration
The resulting subset of weekly sales data consists in 2077 unique store-SKU combinations divided
into 141 stores and 311 distinct SKUs represented by 15 subcategories, which identify the type of
article regardless of its size. These store-SKU time series have di�erent lengths, ranging from 1 year
to 2 years of sales history. Working with time series data of di�erent lengths is generally not
recommended, as many models and forecasting methods assume that data points are observed at
consistent intervals.

To overcome this obstacle, we used the Darts forecasting library [49], which distinguishes itself by
its ability to handle time series of various lengths. Moreover, it provides a powerful toolkit for
implementing various forecasting methodologies, including classical statistical models and modern
machine learning techniques. As we can see in Figure 3.2, the majority of the store-SKU
combinations are centered between 20% and 25% of weeks with actual sales, while the rest is
distributed between 25% and 45%, with one even passing 50%.

Figure 3.2:Distribution of the ratio of weeks with non-null sales.
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However, it is worth mentioning that, even after selecting this more stable subset of products, we
are still dealing with intermittent time series. Figure 3.3 con�rms that the majority of weeks still
have no sales, while the overall volume remains very low.

Figure 3.3:Distribution of the weekly sales of all the 2077 store-SKUs. The x-axis represents the
number of weekly sales, while the y-axis represents the percentage of weeks with the corresponding

sales.

Each of the 2077 combinations has both static and temporal features divided into two categories:
Forecasting features and Replenishment features. The �rst category includes the features used in
the forecasting models that will be described in Chapter 4. The store ID, SKU ID and subcategory
ID are static features, i.e., features that remain constant over time. When dealing with multiple time
series, this time independent information can help models identify the nature of the underlying
series and improve forecasts. The temporal features are instead the weekly sales of each store-SKU
and store-subcategory combination, as well as meteorological data such as the average temperature
and rainfall of the locations where the stores are situated. A quick summary of these features can be
found in Table 3.1.
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Forecasting Features

Feature Name Feature Type Description

Store ID Static Unique identi�er of each store

SKU ID Static Unique identi�er of each SKU, i.e., each
article-size combination

Subcategory ID Static Unique identi�er of each article independently
of its size

Weekly Sales Temporal Weekly sales of each store-SKU combination

Subcategory Weekly Sales Temporal Weekly sales of each store-subcategory
combination

Average Temperature Temporal Average weekly temperature registered in the
store’s location

Average Rainfall Temporal Average weekly rainfall registered in the store’s
location

Table 3.1:Description of the static and temporal features used for forecasting.

It was also proposed to use the “foot �ow”, i.e., the number of customers that entered a store each
week, but unfortunately the data gathered by the company revealed several instances of missing
values, too many to �ll with regular data imputation techniques. Therefore, this feature was
discarded since the performances of the forecasting models were a�ected negatively when we used
it.

Other exogenous features added are the so-called Time-related features. These features are highly
bene�cial for time series forecasting as they can help forecasting models identify correlations
between �uctuations in demand and time. Incorporating time-related features, such as the number
of the week or the month, can help the models �nd patterns relating to seasonality and trends,
improving the accuracy of the models. The time-related features added to the dataset are year,
month, week of the year and the relative position with respect to the forecasting time. How these
features and all the previous ones are encoded and pre-processed will be described in Section 3.3.

Lastly, replenishment features are instead the ones used in the implementation of the
replenishment algorithm and during the simulation of its operation. Here are listed only the input
features and not the ones that will be derived from the forecasts of the best model, as the
implementation of the algorithm and its simulation are both going to be described more in detail in
Chapter 5.
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The static features include store ID, SKU ID, subcategory ID and logistic information such the
average lead time and the “quantity to display”, i.e., the minimum quantity of a SKU to have in
store. Temporal features are instead the daily sales of the selected 2077 combinations, their quantity
of stocks occupied in the stores each week and the forecasts produced by the best model. Table 3.2
contains a short description of each of these features.

Replenishment Features

Feature Name Feature Type Description

Store ID Static Unique identi�er of each store

SKU ID Static Unique identi�er of each SKU, i.e., each
article-size combination

Subcategory ID Static Unique identi�er of each article independently
of its size

Lead Time Static Average time required to send the new stock
from the warehouses to a speci�c store

Quantity to display Static Minimum quantity of each SKU to always have
in store

Forecasted Sales Temporal Weekly forecasted sales generated by the best
model for each store-SKU combination

Daily Sales Temporal Daily sales of each store-SKU combination
during the forecasted period

Stock Inventory Temporal Quantity of stock of each SKU stored in a store
at the end of each week

Table 3.2:Description of part of the static and temporal features used for the replenishment algorithm
and during its simulation.

3.2.1 Distribution

A chi-square test was performed to assess if the dataset follows the Poisson distribution, something
that is important to know for the correct implementation of the replenishment algorithm in
Chapter 5. Intermittent series are often associated with Poisson patterns because of their random
and sporadic characteristics. However, it is important to note that not all intermittent series are
necessarily well described by a Poisson distribution. This distribution is usually used to model rare
and independent events in a �xed interval of time or space, whereas intermittent series can have a
variety of di�erent behaviors
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The Scipy library was used to perform the test and it was used a con�dence of 95% to reject the null
hypothesis. In the chi-squared test, the null hypothesis is a statement that indicates there is no
signi�cant di�erence between the observed data and the expected Poisson distribution, meaning
that the data is likely to follow this distribution. The alternative hypothesis is the opposite of the
null hypothesis. It suggests that there is a signi�cant di�erence between the observed data and the
expected distribution, indicating that the data does not follow a Poisson distribution.

The p-value is a probability value that quanti�es the evidence against the null hypothesis. Since we
are using a 95% con�dence level, if the p-value is lower than 0.05, it suggests that the observed data
signi�cantly deviates from the expected Poisson distribution. In this case, we may reject the null
hypothesis and conclude that the data does not follow this distribution. If instead the p-value is
larger or equal to 0.05, it suggests that the observed data is consistent with the expected Poisson
distribution.

p-value >= 0.05 p-value < 0.05

1915 162

Table 3.3:Results of the chi-square test on the 2077 store-SKU time series

The results of the chi-square shown in Table 3.3 indicate that the majority of the time series follow
a Poisson distribution.

3.2.2 Target and Covariates

Darts di�erentiate between four data types: target, past covariates, future covariates and static
covariates. All except the static covariates are data in the form of time series. Figure 3.4 visualizes the
main di�erences between the time series data types. Covariates are series that we do not want to
forecast, but which can provide helpful additional information to improve the prediction of the
target series. The target feature in this thesis is the Weekly Sales, which is the weekly number of
units sold for a particular SKU of a particular store. The forecasting will therefore yield the
predicted continuation of the target series.
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Figure 3.4: Figure shows how different covariates are used for forecasting relative to the forecast time

[49].

Past covariate are time series with information that can be known only into the past (e.g.,
measurements) up to the time of the prediction and not beyond. Using information from these
past covariate time series beyond the prediction time would mean that the forecasting would use
information about the future that it shouldn't be aware of at that moment. The subcategory sales,
for example, is going to be used as a past covariate, since normally we do not know the future
amount of sales past the prediction point.

On the other hand, future covariate series are time series whose future values are known or can be
easily inferred. For example, the time-related features and the weather data are going to be used as
future covariate, since information for future time steps can be easily obtained also after the
prediction point. It is worth mentioning that Darts’ forecasting models have di�erent support
modes for covariates. Some support all of them, others support only past or future covariates while
some do not support covariates at all.

3.3 Pre-processing
This section describes the techniques used to pre-process the data as well as the reasoning behind
the methods chosen for various types of features. In the case of numerical features, the values are
scaled to make ML models easier to train, improve their performance, and make them more robust.
Darts provides a Scaler package that implements MinMaxScaler to scale the values between 0 and 1.
Scaling the data ensures that the features are on the same scale, thus preventing the models from
favoring features based on their scale and making the models less sensitive to outliers in the data.
Furthermore, scaling the data helps the ML models to converge faster, thus speeding up the
training process.
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Moreover, we utilized Dart’s MovingAverageFilter to incorporate four additional past covariates.
This was achieved by creating sliding windows spanning 4 and 12 weeks for the Weekly Sales and
Weekly Subcategory Sales data, enabling us to examine monthly and quarterly trends as well as
seasonal patterns. In this method, a window of speci�ed length n moves over the data, sample by
sample. The output for each input sample is the average over the window of the current sample and
the n - 1 previous samples. This process aids in recognizing long-term trends, seasonality, and cyclic
patterns that may be concealed in the original data, helping to understand and forecast seasonal
patterns more accurately.

For the categorical features like the store ID, SKU ID and subcategory ID, it was used Dart’s
StaticCovariatesTransformer to implement a technique called One Hot Encoding (OHE) [50]. In
OHE, each value of a feature is transformed into a binary vector representation of that value,
enabling machine learning algorithms to work with these features e�ectively while preserving the
categorical information and avoiding potential biases. Moreover, it preserves the categorical nature
of the data by not introducing any ordinal relationship among categories. This is important
because in our case, the categories have no inherent order, and treating them as numerical values
might lead to incorrect conclusions.

For the time-related features instead, Darts provides a built-in functionality, called “encoders”, to
easily integrate such covariates into forecasting models. The year and the relative position w.r.t the
forecasting time have been encoded numerically, while for the month and the week of the year it
was used a di�erent encoding. The reason is that the �rst and last month of a year would be
encoded as being far away even though they are not. Using a cyclic encoding instead, allows to
express proximity in cycles, thus encoding the last and �rst values in numerical ranges to be close to
each other. This cyclic encoding is performed by transforming the values of a feature into two
dimensions using a sine and cosine transformation shown here:

(3.1)𝑋𝑠𝑖𝑛 =  𝑠𝑖𝑛( 2π𝑥𝑚𝑎𝑥(𝑥) )
(3.2)𝑋𝑐𝑜𝑠 =  𝑐𝑜𝑠( 2π𝑥𝑚𝑎𝑥(𝑥) )

where x is the unique value, e.g., the numerical value of the month or the week, and
max(x) is the highest value of x. Lastly, all the four time-related features are scaled using the
MinMaxScaler Technique.
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4
Forecasting

For the replenishment algorithm to work properly, it needs to have accurate forecasts for the next
two weeks each week. This chapter o�ers the theory needed to understand the methods utilized and
the results obtained. It begins by discussing the forecasting models used in this thesis, namely Naïve
[51], Croston's method [52], LGBM [53], LSTM network [46], and NBEATS [54].

When it comes to intermittent demand forecasting, di�erent models o�er unique advantages and
drawbacks. The Naïve method, while simple and computationally e�cient, tends to be limited in
capturing complex patterns. Croston's method excels in handling intermittent demand, but as we
discussed in Section 2.2.1, conventional time-series approaches may not be the optimal choice,
especially when compared with the more complex ML models. One of these models is LGBM,
which is known for its speed, e�ciency and its robustness, but may require careful tuning to obtain
optimal results. Going in the realm of deep-learning, LSTM and its ability to capture temporal
dependencies allows it to e�ciently handle sequential data like time series. However, its complex
network may be computationally demanding.

Lastly, NBEATS is a powerful non-recurrent neural network designed for time-series forecasting,
able to capture intricate patterns within the data but may require substantial training data and be
computationally expensive like LSTM. All the information regarding the implementation and
training procedures of these models are provided in the following sections, while in the last one, we
discuss the various evaluation methodologies.

4.1 Naïve

In the context of time series forecasting, a "naïve" forecast is one where the prediction for a future
data point is simply set to be equal to the most recent observation in the time series. Naïve models
are characterized by their simplicity, as they involve minimal computational complexity and do not
incorporate any elaborate modeling techniques. They are frequently used as a baseline or
benchmark against which the performance of more sophisticated forecasting methods is compared.
This benchmarking approach helps assess whether the adoption of more complex forecasting
models is justi�ed by the potential improvement in accuracy [51].
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Notably, when dealing with time series data that exhibit a random walk behavior, naïve forecasts
are found to be optimal. A random walk is a stochastic process where each data point is a random
step away from the previous point, making future values unpredictable based on historical data
alone. Consequently, in situations characterized by high volatility and randomness, like the
intermittent demand domain, naïve forecasts can be challenging to outperform, thus playing a
valuable role in setting the performance standards for more advanced forecasting methods.

4.2 Croston’s Method
Intermittent demand, characterized by sporadic periods of demand with extended periods of little
to no demand, presents unique challenges for forecasting. Croston's method is a forecasting
approach speci�cally designed to address this issue. Mathematically, Croston's method is based on
two fundamental components described by two exponential smoothing models [23]:

● Demand size: The �rst component is the demand size of the periods with non-zero values.
A Simple Exponential Smoothing (SES) method is used to predict the values for the days
when there is demand as shown here:

(4.1) 𝑎𝑡+1 = α * 𝑦𝑡 + (1 − α) * 𝑎𝑡
where is the true demand size, is the estimated value and is the smoothing factor,𝑦 𝑎 α
typically set between 0 and 1.

For the days with no demand, the predicted value is instead equal to the previous one.𝑎𝑡+1
● Inter-demand interval: The second step is to use a di�erent SES model to predict the

intervals between days with sales. This step is important because it helps us to predict the
number of days until the next sale occurs. When there is demand the formula for the
Inter-demand interval is:

(4.2)𝑝𝑡+1 = α * 𝑞 + (1 − α) * 𝑝𝑡
where is the estimated time between occurrences and is the time elapsed since the𝑝 𝑞
previous demand occurrence.

For the days with no demand, is instead equal to the previous one.𝑝𝑡+1
The �nal step is to divide the �rst forecast (sales value) by the second forecast (number of days until
the next sale) as follows:

(4.3)𝑦’𝑡+1 = 𝑎𝑡 / 𝑝𝑡
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This gives us an estimate of the demand for each day. An improved variant of this model is the
Teunter-Syntetos-Babai (TSB) Model. This method is inspired by the Croston method but instead
of using the interval between value occurrences, it uses the probability of a value occurring. Like in
Croston, the �rst step in the TSB Model is to use the SES method to predict the values of non-zero
days. The SES is �t to a series of values that exclude the zeros, then it forecasts the next step.

The second step instead, introduces a Exponential Smoothing parameter that modi�es the pβ
parameter . When there is demand we have:

(4.4)𝑝𝑡+1 = 1 * β + (1 − β) * 𝑝𝑡 = β + (1 − β) * 𝑝𝑡
On the other hand, when there is zero demand we have:

(4.5)𝑝𝑡+1 = 0 * β + (1 − β) * 𝑝𝑡 = (1 − β) * 𝑝𝑡
where 1 means there was a non-zero value while 0 means there was not. This step helps us predict
the probability that there will be demand on any given day.

To get the �nal forecast, we instead multiply the �rst forecast (sales value) by the second forecast
(probability of non-zero value) as follows:

(4.6)𝑦𝑡+1 = 𝑝𝑡+1 * 𝑎𝑡+1
4.3 LGBM

Unlike the previous two statistical models, LGBM is a gradient-boosting framework that uses
tree-based learning algorithms. Gradient boosting is a machine learning technique for regression,
classi�cation and forecasting, and consists in iteratively optimizing the predictive performance by
minimizing errors [55]. This iterative process involves the creation of a sequence of decision trees,
with each successive tree aimed at correcting the errors of its predecessor, leading to the gradual
improvement of predictive accuracy. Given a dataset with N samples, M trees in the ensemble, and
a prediction function , the prediction process can be described as follows:𝐹(𝑥)
For the m-th tree, the model learns a function that minimizes a di�erentiable loss function𝑓𝑚 (𝑥)

. The learning process typically employs a gradient descent algorithm. The �nal𝐿(𝑦,  𝑓𝑚(𝑥))
prediction is a weighted sum of the individual tree predictions:𝐹(𝑥)

(4.7)𝐹(𝑥) = 𝑚=1
𝑀∑ 𝑤𝑚⋅ 𝑓𝑚(𝑥)
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Where denotes the prediction of the m-th tree and  signi�es the weight assigned to the𝑓𝑚(𝑥) 𝑤𝑚
m-th tree's prediction. These weights are determined during the training process to minimize the
overall model loss, with the speci�cs depending on the problem at hand.

The "Light" in LGBM's name emphasizes its e�ciency, speed, and lower memory usage, making it
particularly suitable for handling large datasets and real-time applications. LGBM adopts a
leaf-wise growth strategy when constructing decision trees. Unlike conventional depth-wise
growth, which incrementally expands the tree level by level, leaf-wise growth prioritizes nodes that
o�er the most signi�cant reduction in loss. This strategy enables LGBM to construct deeper trees,
facilitating the capture of complex patterns within the data. Additionally, LGBM incorporates
histogram-based learning for data binning, enhancing training e�ciency by organizing data into
histograms and operating on these histograms to make informed splits. Moreover, LGBM excels in
handling categorical features, ensuring that it can e�ectively incorporate pertinent categorical
information into its predictions. However, it is worth mentioning that LGBM requires careful
hyperparameter tuning to obtain optimal results.

4.4 LSTM
The ability to model and predict demand patterns characterized by temporal dependencies is
critical in the �eld of intermittent sales forecasting. Recurrent Neural Networks (RNNs) are
speci�cally designed to handle sequential data, i.e., data where values exhibit interdependence over
time [56]. This inherent capability makes RNNs particularly well-suited for tasks such as natural
language processing, video/audio processing and, more importantly, demand forecasting, setting
them apart from conventional ANNs.

The recurrent layers, which contain neural units sequentially interconnected, are the core of a
RNN, as they allow the network to process data sequences over time. This temporal learning
capacity is particularly crucial when dealing with intermittent demand patterns, in which periods
of minimal or no demand are sporadically interrupted by instances of demand. Nonetheless, while
RNNs have signi�cant advantages, they also have drawbacks. They can be computationally
demanding, limiting their applicability in some situations. Additionally, RNNs are vulnerable to
issues such as exploding and vanishing gradients, which become more pronounced with longer
sequences [57].
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The integration of LSTM units represents a step forward in overcoming these obstacles. LSTMs
are equipped with memory cells capable of selectively retaining or passing information between
units in recurrent layers through a gating mechanism. As described in [58], each cell processes a
single step of a sequence at a time, treating each observation of the time series individually. At the
same time, it maintains an internal state that serves as the network's memory, as it contains
information about previous time steps. Each data point within a sequence is composed of the value
at that speci�c time step and an internal representation derived from previous observations.

Therefore, the LSTM consists of three main components: the internal state, the hidden
representation, and the raw values of the time series. At the start of the sequence, both the internal
state and the hidden representation are initialized to zero. When it receives data from a sequence,
the initial step in the LSTM process involves determining which information should be discarded
from the existing internal state. This decision is made by a "forget gate," a multiplication operation
applied to the input data using a matrix transformed by a sigmoid function. In the subsequent step,
the LSTM updates its internal state with new information. Like the forget gate, an "input gate"
comes into play, dictating which information should be added to the internal state.

Following this, the LSTM merges information from the current internal state with the newly
acquired information from the input series, thereby generating a refreshed internal state. In the
�nal step, the LSTM employs an "output gate" to create the hidden representation to be passed to
the next step based on the current internal state. Figure 4.1 better visualizes the internal structure
of an LSTM cell. This iterative process involving the hidden representation, the updated internal
state, and the next time step of the time series permits the LSTM to e�ectively capture and learn
from temporal dependencies and patterns within the data.
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Figure 4.1: Internal structure and processes of an LSTM cell [59].

Therefore, the LSTM components are described by the following formulas:

(4.8)𝑓𝑡 = σ( 𝑊𝑓⋅ [ ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑓 )
(4.9)𝑖𝑡 = σ( 𝑊𝑖⋅ [ ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 )

(4.10)𝑐𝑡 = 𝑓𝑡 *  𝑐𝑡−1 + 𝑖𝑡 * 𝑡𝑎𝑛ℎ ( 𝑊𝑐⋅ [ ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑐 )
(4.11)𝑜𝑡 = σ( 𝑊𝑜⋅ [ ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 )
(4.12)ℎ𝑡 = 𝑜𝑡 * 𝑡𝑎𝑛ℎ ( 𝑐𝑡 )

where:

●  , , and represents the forget gate, the input gate and the output gate respectively.𝑓𝑡 𝑖𝑡 𝑜𝑡
● , , and  represent the weight matrices of the respective gates. 𝑊𝑓  𝑊𝑖 𝑊𝑐  𝑊𝑜
● , ,  , and  are bias vectors associated with the gates.𝑏𝑓 𝑏𝑖 𝑏𝑐 𝑏𝑜
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4.5 NBEATS
N-BEATS recently emerged as a cutting-edge deep-learning architecture designed exclusively for
time-series forecasting. It distinguishes itself as one of the most successful non-recurrent neural
network architectures, capable of forecasting multiple time-series data without reliance on intricate
time-series-speci�c feature engineering. This exceptional adaptability positions N-BEATS as an
invaluable tool for a wide array of forecasting problems.

At its core, N-BEATS comprises a series of basic building blocks, each designed to receive an input
and produce two outputs: one for forecasting (forward prediction) and the other for backcasting
(backward estimation) [60]. The full architecture is constructed by stacking these blocks in a
hierarchical structure, as it can be seen in Figure 4.2. These building blocks encompass two fully
connected layers arranged in a fork architecture, and they come into play after an initial stack of
fully connected layers processes the input data. The forecast layers focus on generating precise
predictions for future data points, while the backcast layers work on estimating the input values
themselves, staying within the constraints of the functional space available for signal
approximation.

These networks produce forward and backward expansion coe�cients that are crucial for the
prediction process. In N-BEATS, the forecast and backcast outputs are generated using a weighted
combination of these coe�cients. This design allows for modeling both future data points and the
past, giving N-BEATS its forecasting and backcasting capabilities. The forward prediction,
capturing the future trend, is computed using a weighted combination of the forward expansion
coe�cients:

(4.13)𝐹𝑖(𝑥) = 𝑖=1
𝑚∑ 𝑤𝑖𝑓⋅𝑔𝑖(𝑥)

The backward estimation, which focuses on reconstructing the input data, is calculated by a
weighted combination of the backward expansion coe�cients:

(4.14)𝐵𝑖(𝑥) = 𝑖=1
𝑚∑ 𝑤𝑖𝑏⋅ℎ𝑖(𝑥) 

Here, and represent the forward forecast and the backward estimate for the i-th data𝐹𝑖(𝑥) 𝐵𝑖(𝑥)
point, respectively. The weights and are learned during training, determining the𝑤𝑖𝑓 𝑤𝑖𝑏
signi�cance of each forecast and backcast output in the �nal prediction. The functions and𝑔𝑖(𝑥)

represent the fully connected networks in the forward and backward branches.ℎ𝑖(𝑥)
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The stacking of these basic building blocks is orchestrated using a technique known as "doubly
residual stacking" [54], creating a hierarchical structure with residual connections across di�erent
layers. This approach enhances interpretability and fosters a transparent network structure.

Figure 4.2: Internal architecture of NBEATS [54].

Each block's input and output are linked by a residual branch, which subtracts the backcast output
of the previous block from its input, thus crafting a continuous processing chain for the input
signal. This meticulous approach ensures that each block concentrates on speci�c aspects of the
data, ultimately culminating in a more accurate and e�cient prediction. The partial forecasts,
created by individual blocks, each capture di�erent patterns and components of the input data. As
we move through the hierarchical structure, these partial forecasts are combined to form the �nal
output. This creates a hierarchical decomposition of the forecasting process, where forecasts from
the basic building blocks are combined to form the overall prediction.

4.6 Implementation 

All models described previously were implemented using Darts. As mentioned in the previous
chapter, Darts’ forecasting models have di�erent support modes for covariates. Naïve, for example,
does not support covariates, while Croston’s method supports future covariates but only through
Darts' “encoder” function. Therefore, it can only use time-related covariates. LGBM can support
all types of covariates, while LSTM and NBEATS only support past covariates. For this reason, the
future covariates will be converted to past covariates when used on these two models.
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Additionally, some of Darts’ forecasting models, called “global” models, can be trained on multiple
time series at the same time. The advantage of training on multiple series is that a single model can
be exposed to more patterns occurring across all series in the training dataset, allowing to deploy
models in a CL fashion. The global models used in this thesis are LGBM, LSTM and NBEATS.
Therefore, Naïve and Croston’s method will have to be trained on one time series at the time
instead. A �nal comparison between the models highlighting pros and cons of each model can be
seen in Table 4.1.

Model Pros Cons

Naïve
- Simple and computationally e�cient.
- Serves as a baseline for benchmarking.

- Limited ability to capture complex
patterns.
- Can only handle univariate series.
- Statistical model

Croston's
Method
(TCB)

- Designed for intermittent patterns.
- E�ective for handling sporadic demand.
- Supports future temporal-features.

- Sensitivity to data characteristics
may a�ect performance.
- Can only handle univariate series.
- Statistical model

LGBM

- Global model allows CL.
- Supports static, past and future covariates.
- Fast and e�cient.
- Robust handling of categorical features.
- E�cient histogram-based learning for data
binning.

- Leaf-wise growth strategy may lead
to over�tting in small or noisy
datasets.
- Requires careful hyperparameter
tuning for optimal results.
- Less interpretable.

LSTM

- Global model allows CL.
- Supports static and past covariates.
- Memory cells enable selective information
retention and passing.
- E�ective in capturing intricate patterns,
temporal dependencies and non-linear
relationships in sequential data.

- Computationally demanding.
- Potential for over�tting.
- Requires extensive training data.
- Challenging interpretation.

NBEATS

- Global model allows CL.
- Supports static and past covariates.
- Deep-learning architecture designed for
time-series forecasting.
- Non-recurrent neural network capable of
capturing intricate patterns.
- Produces forward and backward forecasts
for enhanced interpretability.
- Hierarchical structure allows capturing
diverse patterns at di�erent levels.

- May require substantial training
data for optimal performance.
- Computationally demanding.
- Challenging interpretation.

Table 4.1:Comparison of the pros and cons of the chosenmodels.
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4.6.1 Training

In order to train the global models, Darts �rst creates a dataset of inputs/outputs examples from the
provided time series. There are several ways this can be done. For example, LSTM and NBEATS
will build all the consecutive pairs of input/output sub-sequences (of lengths input_chunk_length
and output_chunk_length) existing in the series. Figure 4.3 and Figure 4.4 visualize how this
process works with one series or multiple series, respectively.

Figure 4.3: Series of length Nwith input_chunk_length=4 and output_chunk_length=2. For such a

dataset, a series of length Nwould result in a “training set” of K samples, where

K =N - input_chunk_length - output_chunk_length + 1 [49].

Figure 4.4:Dataset with two series of lengths N andM, input_chunk_length = 4 and

output_chunk_length = 2. The total number of samples in the training dataset will be the union of all the

training samples contained in each series [49].
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On the other hand, LGBM allows to indicate which and how many lags to use as a substitute for
input_chunk_length. With lags we indicate the number of past values on which we base our
predictions. Moreover, we can indicate the number of future covariate and past covariate values as
well.

The hyperparameter selection for all the models, except Naïve, were performed using Optuna [61].
This Python library simpli�es the process of �nding the best hyperparameter settings for a model
by treating it as a Bayesian optimization problem. After de�ning the hyperparameter search space,
it uses various algorithms to e�ciently search for the optimal con�guration. Moreover, it o�ers
built-in search algorithms and supports early stopping and other popular machine learning
libraries.

To implement Croston’s TSB variant, we need to specify the parameters αp and αd, which are the
smoothing parameters to apply on probability and demand, respectively. The optimal
values found with Optuna are αp = 0.2 and αd = 0.15. Since they are more complex, the
hyperparameters used for LGBM, LSTM and NBEATS can be found in Table 4.2, 4.3 and 4.4.
However, it is important to mention that Darts’ implementation of LGBM only allows to tune the
number of lags to consider. Lastly, an early stopping criterion was used to avoid over�tting when
training the two deep learning models, thus stopping the training when the loss has not changed by
more than 0.000000005 for the past �ve epochs, which means that the model has stabilized.

LGBM

Hyperparameters Value

lags [-12, -8,-4, -3, -2, -1]

lags_past_covariates [-12,-8, -4, -3, -2]

lags_future_covariates [-12,-8, -4,-3,-2,-1]

output_chunk_length 2

Table 4.2:Hyperparameter selection for LGBM. The number of lags indicates which past values are used

for the predictions.

29



LSTM

Hyperparameters Value

input_chunk_length 12

output_chunk_length 2

n_rnn_layers 4

hidden_dim 25

lr 0.0006706078509496326

batch_size 1024

dropout 0.04037786017766179

Table 4.3:Hyperparameter selection for LSTM: n_rnn_layers is the number of layers in the RNNmodule,

hidden_dim is the size for featuremaps for each hidden RNN layer, lr is the learning rate, batch_size is
the number of time series used in each training pass, dropout is the fraction of neurons affected by the
regularization technique Dropout.

NBEATS

Hyperparameters Value

input_chunk_length 12

output_chunk_length 2

num_layers 6

layer_widths 512

num_blocks 1

num_stacks 30

lr 0.0002697739877476035

batch_size 1024

dropout 0.1709873191774702

Table 4.4:Hyperparameter selection for NBEATS: num_layers is the number of fully connected layers
preceding the final forking layers in each block of every stack, layer_widths is the number of neurons
that make up each fully connected layer in each block of every stack, num_blocks is the number of blocks
making up every stack, num_stacks is the number of stacks that make up the wholemodel. lr is the
learning rate, batch_size is the number of time series used in each training pass, dropout is the fraction
of neurons affected by the regularization technique Dropout.
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4.7 Evaluation

The dataset was split by a chosen timestamp so that each time series is split into two sets. The �rst
set of time series is reserved for training, while the second set is used to evaluate the models. The
1/05/2023 was chosen as the timestamp to split the time series in order to ensure that the time
series of the training set contained at least 70% of the data. The evaluation methods for the models
primarily focus on assessing the accuracy of sales predictions for the upcoming 12 weeks remaining
in the evaluation set.

4.7.1 Evaluation metrics

Three distinct evaluation metrics will be employed to assess the accuracy of our forecasts. These
metrics, namely the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Cumulative Forecast Error (CFE), have been endorsed by research in intermittent demand
forecasting [62, 63], and they are de�ned as follows:

(4.15)𝑀𝐴𝐸 = 1𝑛 𝑖=1
𝑛∑ |𝑦𝑖' − 𝑦𝑖|

(4.16)𝑅𝑀𝑆𝐸 = 1𝑛 𝑖=1
𝑛∑ (𝑦𝑖' − 𝑦𝑖)2

(4.17)𝐶𝐹𝐸 = 𝑖=1
𝑛∑ (𝑦𝑖’ −  𝑦𝑖)

where is the forecasted value, is the true value and n is the total number of values in the𝑦𝑖’  𝑦𝑖
validation set.

MAE is de�ned as the average of absolute di�erence between forecasted values and true values. It is
an unsigned, non-squared error that tells us how big of an error we can expect from the forecast on
average. The lower the MAE value, the better the model is. However, since MAE has shown an
a�nity to zero forecast [64], it is preferable to use MSE based error metrics.

MSE provides the assurance to get an unbiased forecast and is de�ned as the average of squares of
the error. RMSE is an extension of MSE and is de�ned instead as the square root of mean square
error. The reason to use this version is that the RMSE value is expressed in the same units as the
forecasted values, making it easier to understand compared to MSE. Because of the square term,
this metric penalizes more large errors. RMSE can also be compared to MAE to determine whether
the forecast contains large but infrequent errors. The larger the di�erence between RMSE and
MAE the more inconsistent the error size is.
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Lastly, the CFE is one of the key metrics used to evaluate the performance of models for
intermittent time series forecasting. It’s a metric that quanti�es the cumulative di�erence between
forecasted and actual values over a speci�ed time. It provides a measure of the overall forecasting
accuracy, re�ecting both overestimations and underestimations, accumulated across multiple time
points. In our example, we simply take the di�erence between our forecasted sales and the actual
sales that took place. For instance, if our model predicts 3 units sold in a given week, but we sell
only 2 units, the error for that week is 1 unit. This process is repeated for all weeks, and the
cumulative forecast error is the sum of these individual errors. In practice, it doesn’t usually matter
if we will sell the product this week or next week, as long as we know how many units we will sell in
the two weeks.

Another often recommended metric for intermittent time series forecasting is the Mean Absolute
Scaled Error (MASE), but it was excluded because when the time series are essentially on the same
scale (like in our case), the use of a scale-based metric like MASE becomes unnecessary [65]. We've
also excluded commonly employed time series evaluation metrics, such as percentage-based metrics
like the Mean Absolute Percentage Error (MAPE). The reason comes from their formulation,
which involves dividing by the true value, resulting in division by zero due to true values often
being zero.
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5
Inventory Replenishment

One of the biggest challenges in modern retail and manufacturing is stock management.
Overstocking on inventory by replenishing stock too early or without regard to changes in demand
or seasonality can cause dead stock, which increases carrying costs by having unsellable inventory sit
on shelves for too long. On the other hand, if not enough inventory is available, stock-outs may
occur, resulting in missed potential sales and customer dissatisfaction. Inventory management is
therefore a �nancial trade-o� between inventory costs and stock-out costs. Most businesses use one
of the following stock replenishment strategies [1]:

● Demand replenishment: The simplest and most straightforward restocking method. As
its name suggests, this method bases replenishment on the forecasted demand, meaning
that we just reorder enough stock to meet the expected demand. This means that
unexpected sales will be lost.

● Reorder point replenishment: This method maintains consistent inventory levels to
avoid stockout issues, ensuring you have enough stock to meet demand. When the stock
level of an item falls below the reorder point, an automatic replenishment order is triggered
to return it to the reorder point quantity. However, we may have too much stock or not
enough when demand or supply chain shifts.

● Top-o� replenishment: Using this strategy, inventory levels for a particular product are
“topped o�” in their respective storage locations during slower periods or down time, so
that you can maintain a high inventory turnover rate without encountering stock-outs,
ensuring that popular products are always available during peak times. In practice, the
top-o� method is susceptible to supply chain disruption and subject to vendor e�ciency.

● Periodic inventory replenishment: When handling a large portfolio of items with
di�erent replenishment cycle lengths, using a continuous review inventory policy may
cause a higher number of restock orders compared to a periodic one [5], resulting in higher
shipment costs and ine�ciencies. When using this strategy, inventory is restocked at �xed
intervals, such as every 6 weeks or every 3 months, regardless of seasonality or how low
stock levels have dropped in the meantime. For this reason, it is generally recommended to
businesses with predictable customer demand and large warehouse capacity.
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For most retailers, inventory management systems take a �xed, rule-based approach to forecast and
replenishment orders management, which leave them open to unexpected �uctuations in the
demand or in the supply chain. The objective of this thesis is to build a dynamic replenishment
policy that will minimize stock-outs, while also trying to avoid unnecessary overstocks. For this
reason, the advantages of these strategies have been combined into the Periodic order-up-to policy
described in [5], which was modi�ed to account for intermittent sales data. In the following
sections we will discuss the main components of this replenishment method.

5.1 Reorder Point
As discussed before, this method encourages retailers to store a minimum amount of inventory,
below which a replenishment order is triggered. This ensures that we have enough stock to meet
demand during lead time. However, since we are using a Periodic review policy, we also have to
consider the review period in addition to the lead time. This period indicates how often we check
the inventory to see if we have to trigger a replenishment order. In our case this period will be 7
days long. If there were no uncertainty, i.e., if future demand was perfectly known and supply was
perfectly reliable, the reorder point would simply be equal to the average demand during the lead
time and review period. However, because of uncertainties, in practice we have:

𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 =  µ𝐿𝐷+𝑅 +  𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘  
(5.1)=  µ𝑑𝑎𝑦 *  (𝐿𝐷 + 𝑅) +  𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘

In this equation:

● is the average demand during the lead time and review period.µ𝐿𝐷+𝑅
● is the average daily demand, i.e., how many units of a product are sold per day.µ𝑑𝑎𝑦 
● is the average lead time, which is the number of days a store must wait to receive new𝐿𝐷

stock after placing a replenishment order.
● R is the weekly review period.

The reorder point can be described as the point at which you need to order a product before you
start using your safety stock [66]. Safety stock is simply extra inventory held by a retailer or a
manufacturer in case demand increases unexpectedly. This means it’s additional stock above the
desired inventory level that you would usually hold for day-to-day operations.
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One of the reasons that retailers and manufacturers implement a safety stock strategy is to protect
against three external factors over which you have little to no control:

● Changes in consumer demand
● Incorrect forecasts
● Variability in lead times

Moreover, when the lead times to restock stores are large, it can act as a bu�er, avoiding stock-outs
while we wait for the new stock to physically arrive. Even if the forecasts are 100% accurate, if you
can’t send the required stock in time you will inevitably lose some of the forecasted sales. Since we
are going to use a Periodic review policy, this is a crucial issue. However, it can be addressed by
preparing the correct amount of safety stock, which will be described in the next section.

5.2 Cycle Service Level
Before starting, it is important to remember that stock-outs will always occur, no matter how much
you want to prevent them. The safety stock formula is there to prevent the majority of stock-outs,
but can’t prevent all of them, as this would lead inevitably to overstocking. The Cycle Service Level
(CSL) plays a key factor when calculating safety stock. It is the probability that the amount of
inventory on hand during the lead time is su�cient to meet the expected demand, i.e., is the
probability that there will not be a stock-out within a replenishment cycle [66]. This is frequently
used as a performance metric where the inventory policy is designed to minimize cost to achieve an
expected service level, and is described as:

(5.2)𝐶𝑆𝐿 =  1 −  𝑃 [𝑆𝑡𝑜𝑐𝑘𝑜𝑢𝑡] =  1 −  𝑃 [𝑋 > 𝑘] =  𝑃[𝑋 ≤ 𝑘]
where X is the distribution of the customer demand and k is the “service factor”.

In the context of inventory management, the service factor is often expressed as a safety stock
multiplier. It determines the number of standard deviations needed to achieve the desired service
level. To calculate k, it is commonly used the inverse cumulative normal distribution to obtain the
Z-score corresponding to the service level desired. For example, If we are trying to maintain a service
level of 95%, the service factor k will be 1.64. However, as mentioned in Section 3.2.1, the
distribution of our time series follows a Poisson distribution. Hence, we will use the corresponding
inverse cumulative distribution function to obtain the appropriate service factor.
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The speci�c formula for safety stock calculation based on the service factor can vary depending on
the method used, but it generally involves multiplying the standard deviation of the demand by the
service factor k. In our case, the safety stock will be calculated as: 𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 = 𝑘 * σ𝐿𝐷+𝑅 

(5.3)= 𝑘 *  σ𝑑𝑎𝑦 *  𝐿𝐷 + 𝑅 
where is the standard deviation of the demand during the lead time and review period andσ𝐿𝐷+𝑅

is the daily standard deviation of the demand. Hence, the reorder point is equal to:σ𝑑𝑎𝑦
(5.4)𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 =  µ𝐿𝐷+𝑅 + 𝑘 * σ𝐿𝐷+𝑅 

Having zero safety stock would result in a service level of 50% [67], while a 100% service level would
mean you always have stock, but it is usually not the best solution, as shown in Figure 5.1.

Figure 5.1:Relationship between the service level and the inventory level [68].

The key consists in �nding the right balance between the cost of holding inventory and a service
level that avoids most of the stock-outs. Targeting high service levels, typically above 95%, is the
norm in most retail sectors [68]. However, achieving higher service levels is a classic case of
diminishing returns, where each extra marginal e�ort, i.e., extra inventory, yields lower returns, i.e.,
a smaller fraction of stock-outs being eliminated.
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5.3 Implementation
In this section we describe the implementation of the Periodic Review Policy: Order-Up-To-Level
(s, Q), where s is the reorder point and Q is the quantity to order. At each review period R, the level
of the inventory on hand IOH and in transit IT is reviewed. We need to consider the inventory in
transit as well because the lead time of our dataset varies between 5 and 9 days, meaning that some
restock orders might still be active when we reach the next review period. This is done to avoid
resending stock that is about to arrive at the store in the next few days. Therefore, if at the review
period the reorder point is equal or lower than the sum of IOH and IT, we don't reorder anything.
Otherwise, the quantity to reorder Q will be:

(5.5) 𝑄 = 𝑠 − (𝐼𝑂𝐻 + 𝐼𝑇) 
The default implementation expects a static reorder point that never changes. This is inapplicable
in an intermittent demand scenario, as we risk overstocking during periods with no sales and
understocking during active periods. Therefore, it was modi�ed to change the reorder point every
week based on the forecasts of the next two weeks. To obtain the reorder point of the current week,
we �rst calculate the average daily demand of each store-SKU combination by dividing the sum of
the next two weekly forecasts by 14. We then calculate for each combination the corresponding
service factor using the inverse cumulative distribution function of the Poisson provided by the
Scipy library. Since we are using this distribution, we can also assume that the average daily demand
is equal to the daily variance.

Therefore, the and are calculated as follows:µ𝐿𝐷+𝑅 σ𝐿𝐷+𝑅
(5.6)µ𝐿𝐷+𝑅 =  µ𝑑𝑎𝑦 *  (𝐿𝐷 + 𝑅)
(5.7)σ𝐿𝐷+𝑅 = µ𝑑𝑎𝑦 * 𝐿𝐷 + 𝑅 =   σ𝑑𝑎𝑦 * 𝐿𝐷 + 𝑅

The reorder point for each SKU of the current week is then:

(5.8)𝑠 =  µ𝐿𝐷+𝑅 + 𝑘 * σ𝐿𝐷+𝑅 
As requested by the hosting company, when the reorder point calculated is lower than the quantity
to display, i.e, the minimum quantity to always have in store, we set the reorder point to be equal to
the quantity to display instead. Therefore, when the reorder point would be 0 because we expect no
sales in the following two weeks, we set this minimum quantity which is equal to 1 or 2 depending
on the SKU.
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5.3.1 Simulations

In order to evaluate the e�ectiveness of this algorithm and the best CSL to use, we implemented 5
simulations using a CSL of 95%, 97%, 98%, 99% and 99.9%, respectively. The simulations last for
77 days using the 12 weekly values forecasted by the best model among the ones described in the
previous Chapter. For each store-SKU combination, these weekly forecasts were rearranged
consecutively as shown in Figure 5.2, which was necessary to calculate the reorder point of each
week.

Figure 5.2: Rearrangement of the forecasted values to simulate a bi-weekly forecast every week for
each store-SKU combination.
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After that, we calculate all the components of the 11 reorder points for every store-SKU
combination as described previously. As mentioned before in Section 3.2, other variables used for
the simulation include the daily sales of each store-SKU combination and the quantity of stock of
each SKU stored in a store at the end of each week. The �rst will be used to simulate how the sales
reduce the inventory of a given SKU during the simulation period, while the latter will be used to
calculate the average inventory, described in [69] as the mean between the inventory level at the
start point and at the end point of a chosen interval.

The historical average inventory will be compared with the ones obtained during the simulations to
assess the risk of overstocking. The simulations will automatically handle the quantity to order each
week for each store-SKU combination and the variations in the inventory due to sales and restock
orders arrivals. To simulate we are already running at full capacity from the beginning, the initial
stock of each combination is set to half of the initial reorder point, rounded up. It will be also
handled the case in which two restock orders are active at once for stores with long lead times.
Lastly, we will record the number of days a SKU was in stock-out and the number of sales we
would have lost because of it. The results of these simulations can be seen in the following chapter.
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6
Results

This chapter presents how the forecasting models perform and their results. Next, we will use the
predictions of the best model to implement the simulations of the replenishment algorithm to
assess the optimal CSL to use.

6.1 Forecasting Models
This section presents how the 5 chosen models perform compared to each other. Figures 6.1, 6.2,
6.3, 6.4 and 6.5 show the corresponding MAE, RMSE and CFE scores for the predictions of the
2077 store-SKU combinations. All the models were trained with the parameter setups presented in
Section 4.6.1 and evaluated on the 2077 time series using the data splitting method discussed in
Section 4.7.

Figure 6.1:MAE, RMSE and CFE scores of the Naïvemodel used as baseline.
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Figure 6.2:MAE, RMSE and CFE scores of Croston’s method.

Figure 6.3:MAE, RMSE and CFE scores of the LGBMmodel.
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Figure 6.4:MAE, RMSE and CFE scores of the LSTMmodel.

Figure 6.5:MAE, RMSE and CFE scores of the NBEATSmodel.

Table 6.1 shows a summary of the results obtained by the models. As we can see, NBEATS clearly
outperforms the other methods on the MAE and RMSE, with an improvement of 90.48% and
87.67% compared to the baseline. Instead, the best CFE overall was obtained by LGBM, with an
improvement of 59.31% compared to the baseline. Additionally, all models except NBEATS and
Croston’s method have positive CFE scores, indicating that these three models generally have a
positive bias. Since NBEATS’ average CFE score is similar to the one of the baseline, we can declare
it the best model. However, because its CFE is negative, the model tends to slightly underestimate
the number of sales. Therefore, we must keep this in mind when choosing the best CSL for the
replenishment algorithm.
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Model MAE RMSE CFE

Naïve 0.641 0.876 0.440

Croston's Method 0.543 (+15.28%) 0.684 (+21.91%) -1.594 (-262.27%)

LGBM 0.370 (+42.27%) 0.471 (+46.23%) 0.179 (+59.31%)

LSTM 0.175 (+72.69%) 0.254 (+71%) 0.232 (+47.27%)

NBEATS 0.061 (+90.48%) 0.108 (+87.67%) -0.459 (-4.31%)

Table 6.1:Results of themodels evaluated on the validation set. The best result for eachmetric is
marked in bold. In parenthesis there are the percentage improvements compared to the Naïvemodel.

Figures 6.6, 6.7, 6.8, 6.9, and 6.10 show two examples of how each model forecasts.

Figure 6.6:Naïve (MAE=0.641, RMSE=0.876, CFE=0.440).

Figure 6.7:Croston’s method (MAE=0.543, RMSE=0.684, CFE=-1.594).
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Figure 6.8: LGBM (MAE=0.370, RMSE=0.471, CFE=0.179).

Figure 6.9: LSTM (MAE=0.175, RMSE=0.254, CFE=0.232).

Figure 6.10:NBEATS (MAE=0.061, RMSE=0.108, CFE=-0.459).
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As expected, Naïve continuously predicts zero because the last data point of the training set was
zero as well. Croston’s method instead tends to highly underestimate the sales by predicting close
to zero, failing to produce consistent forecasts. Even though it has the best CFE score, LGBM also
struggles to follow the sales, predicting correctly only occasionally. It is only with the deep learning
models that we start to have reliable predictions. However, we can see that LTMS is prone to
overestimation whereas NBEATS tends to slightly underestimate. Despite this, its predictions are
more consistent overall, making it rightfully the best model.

6.2 Replenishment Simulations
This section presents instead how the replenishment algorithm, implemented using the forecasts of
the NBEATS model, performs using 5 di�erent CSLs, which directly a�ect the size of the safety
stock. In Figure 6.11, 6.12, 6.13, 6.14 and 6.15 we can see an example of how the algorithm reacts
to sales and handles inventory and restock orders using a CSL of 95%, 97%, 98%, 99% and 99.9%
respectively.

Figure 6.11: Simulation using a 95%CSL. In red we have the daily sales from 1/05/2023 to 17/07/2023

of a specific store-SKU. In blue we have the quantity ordered at each review period. In greenwe have the

daily inventory on hand while the red dots are the weekly reorder points. Lastly, in yellowwe have the

stock currently in transit while the vertical lines indicate the review period interval.
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Figure 6.12: Simulation using a 97%CSL.

Figure 6.13: Simulation using a 98%CSL.
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Figure 6.14: Simulation using a 99%CSL.

Figure 6.15: Simulation using a 99.9%CSL.
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Table 6.2 shows the results obtained by the simulations regarding the number of days with
stock-outs, the number of sales lost and the average inventory during the �rst half (from 1/05/2023
to 5/06/2023), the second half (from 5/06/2023 to 17/07/2023) and the full simulation period.

CSL 95% CSL 97% CSL 98% CSL 99% CSL 99.9%

Days without stock 5072 4757 4695 4486 868

Days without stock per
store-SKU 2.441 2.290 2.260 2.159 0.417

Sales lost 43 37 36 33 8

Sales lost per store-SKU 0.020 0.017 0.017 0.015 0.003

Average Inventory
(First half) 2474 2517 2552 2722 4155

Average Inventory
(Second half) 2607 2743 2843 3260 5437

Average Inventory
(Full period) 2543 2642 2718 3000 4592

Average Inventory per
store (First half) 17.546 17.851 18.102 19.304 29.471

Average Inventory per
store (Second half) 18.492 19.457 20.166 23.124 38.563

Average Inventory per
store (Full period) 18.039 18.741 19.276 21.280 32.567

Table 6.2: Summary of the results obtained by the simulations using a CSL of 95%, 97%, 98%, 99% and

99.9%.

For comparison, the actual average inventories during these periods were:

● Average Inventory (First half) = 2992
● Average Inventory (Second half) = 3520
● Average Inventory (Full period) = 3445
● Average Inventory per store (First half) = 21.219
● Average Inventory per store (Second half) = 24.964
● Average Inventory per store (Full period) = 24.432
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The results obtained are optimal since the number of days without stock per store-SKU are, on
average, below 3 days, regardless of the CSL used. Moreover, the number of sales lost is also quite
low compared to the number of articles we have considered for this thesis. As expected, the greatest
reduction of stock-outs is achieved using the highest CSL, but at the cost of severely overstocking
each store, as we can see in Figure 6.15 and by considering the fact it greatly surpasses even the
historical inventory levels reached by the hosting company. Therefore, it is better to avoid using it.

We can also safely avoid the 95% as it is the one that provides the least reduction to stock-outs.
However, the di�erence between 97% and 98% on stock-outs is minimal, but since the NBEATS
model we are using tends to slightly underestimate the forecasts, the extra inventory of the 98%
might actually be bene�cial, considering we are still below the historical inventory levels. However,
as shown in Figure 6.16, it is not worth it reaching 99%, as we risk ending up with too much stock
on hand right before a period with no sales starts, thus creating dead stock. Therefore, we could
assume that a CSL of 98% is the optimal solution to minimize stock-outs while also avoiding
unnecessary overstocking.
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Figure 6.16:Comparison between 98% and 99%CSL.We can notice that using a CSL of 99% leads to

storing an extra stock that remains unutilized for over amonth. As discussed in Section 5.3, during

empty periods the reorder point is simply equal to the quantity to display.
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7
Conclusion

In conclusion, this thesis has delved into the intricate realm of fashion retail forecasting, addressing
the challenges posed by intermittent time series data and by stock management, resulting in a
replenishment algorithm that minimizes stock-outs. We discussed the evolution of forecasting
methodologies, from classical methods based on mathematical and statistical models to modern
heuristic methods using ML and deep learning techniques, highlighting the advantages that these
techniques provide compared to statistical methods. Through the application of advanced
forecasting models designed to accommodate the intermittent nature of the time series data, such
as Croston’s method, LGBM, LSTM and NBEATS, this thesis attempted to improve the accuracy
and reliability of predictions of the volatile fashion products, thereby increasing the e�cacy of
decision-making processes in the dynamic fashion retail sector. Despite being designed to handle
intermittent time series, Croston’s method doesn’t come even close to the performances of the
other three models, showing the limits of statistical models compared to ML and deep learning
techniques. However, LGBM showed unremarkable results as well, probably due to Darts not
allowing the customisation of the hyperparameter necessary for this model to shine. LSTM and
NBEATS showed similar results, with the latter having a little edge thanks to its structure designed
for time series forecasting, allowing it to predict with great accuracy even intermittent time series.

We then discussed the various stock replenishment strategies used in this �eld, the concept of
reorder point and CSL, and the advantages of having a safety stock to protect against the
unexpected �uctuation in the demand or in the lead time. To implement the replenishment
algorithm, we have then used the forecasts of NBEATS to power the Periodic Review Policy:
Order-Up-To-Level, which was modi�ed to account for the sporadic nature of intermittent
demand. Lastly, through the implemented simulations, we have determined 98% to be the optimal
CSL to minimize stock-outs while also avoiding unnecessary overstocking.

Various improvements could still be made in the future. New covariates like price, holidays, and
promotions could be added to expand the information used by the forecasting models. Di�erent
pre-processing methods like clustering encoding could be also introduced. Lastly, to address
NBEATS' forecast underestimation, future research could be conducted into alternative
forecasting models like Temporal Convolutional Networks [47], Temporal Fusion Transformers
[48] and other transformer-based models that have recently emerged like Channel-Aligned Robust
Dual Transformer [70].
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