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Abstract

This thesis provides an introduction to self-exciting stochastic process called
Hawkes process. The basic analytic framework will be illustrated and sim-
ulations and estimations will be carried out by using Matlab. An example
of univariate unmarked Hawkes process will be implemented to model the
occurrence of price jumps for some stocks.
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Chapter 1

Introduction

This thesis concerned with theoretical and empirical application of self-
exciting stochastic process called Hawkes process. In particular, our anal-
ysis will be focused on the special case of univariate unmarked Hawkes
process.

The application of self-exciting stochastic models have been shown to be
effective to represent occurrences of earthquakes or dynamics of financial
assets. This work aims to contribute to the growing literature of applica-
tions of Hawkes process in finance. Our main object is to investigate its
application in modelling price jumps in the stock market and to provide the
theoretical background for the analysis.

The underlying theory will be illustrated in Chapter 2 starting from an
introduction to point process and counting measure. The second part of the
chapter will provide an analytical background of Hawkes process and will
give a representation based both on the intensity function and on Poisson
cluster process. Then, we will illustrate a simulation method for Hawkes
process based on Ogata’s modified thinning algorithm.

The estimation of parameters will be subject of Chapter 3. We will il-
lustrate three approaches for the estimation: direct numerical maximization
(DNM) of log-likelihood function; the exact expectation-maximization (EM)
algorithm; and an approximate EM algorithm. It has been showed that the
first two methods produce the same estimates, hence for the practical appli-
cations of our analysis only DNM method and approximate EM algorithm
will be used.

We will use Hawkes process to model the occurrences of price jumps for
five stocks in Chapter 4. The first part of the chapter will provide an ana-
lytical background of stochastic process with jumps and will illustrate the
jump detection method proposed by Corsi, Pirino, and Reno (2010) based
on the separation of the continuous component of stochastic process from
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the discrete one. The result of our analysis will be presented in the second
part of the chapter. Even if for only 3 of 5 stocks considered seems legiti-
mate the use of univariate unmarked Hawkes model, we still conclude that
Hawkes processes can be an useful tool in modelling financial assets.

The simulations and the estimations are carried out by using Matlab.
The most relevant codes used in this work are collected in the Appendix.
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Chapter 2

Hawkes process: Analytical
framework

Point process with clustering property were introduced by Hawkes (1971a)
and Hawkes (1971b), now they are commonly referred to as the Hawkes
processes. In the recent years, Hawkes process has become very popular
in many field such as finance (Bacry et al., 2013), seismology (Ogata, 1988)
and biology (Reynaud-Bouret, Schbath, et al., 2010). This chapter will il-
lustrate the analytical framework of Hawkes process: the first section will
introduce point process in general in order to provide the basis for the later
analysis, the second section will specifically deal with Hawkes process and
its properties.

2.1 Introduction to point process

Point process in general describes the random scattering of points in a cer-
tain space (usually a subset of Rd) or in a certain interval of time, in this the-
sis the specific points are associated with the time at which certain random
events occurs, so only temporal point process will be considered. A sim-
ple point process on the non negative time line is a stochastic phenomena
whose realisations consist of the times t1, t2, ... of events scattered along the
time. An example of the realisation of such a stochastic process is illustrated
in 2.1 where ti is the time at which i-th event of interest occurred. A simple
point process could be used for instance to record the times of earthquakes
or the arrival time of orders for a stock.

A marked point process is obtained if at each occurrence time a mark of
the event is also registered, in this case the realisation of the stochastic pro-
cess is formed by elements (t1,m1), (t2,m2), .... The marks could be used to
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record the magnitude of an event, for instance the magnitude of an earth-
quakes or the quantity of an order in the stock market, or it could be used to
indicate the type of an event, for example to distinguish the sell orders from
the buy orders.

| | | | | | |
0 t1 t2 t3 t4 t5 t6 t7

t

FIGURE 2.1: Realisation of a simple point process, where ti is
the occurrence time of an event of interest.

2.1.1 Counting measure of simple point process

There are many different ways to define mathematically simple point pro-
cess as a sequence of random variables in a given probability space, for ex-
ample the Definition 2.1.1 in Jacobsen (2006) or the definition in page 6 of
Reiss (2012). Here, we will give a representation of simple point process
based mainly on Chapter 3.1 of Daley and Vere-Jones (2002) which focuses
on the counting measure of the process.

Let A denote any subset of non negative real line and let N(A) denote
the number of occurrences of the process in the set A; More precisely.

N(A) = number of indices i for which ti lies in A

= #{i : ti ∈ A}
(2.1)

ti represents the occurrence time of an event of interest with i in some suit-
able index set. In our case we will make the logical assumption that i ∈ N.
Then, if N(A) is finite for bounded sets A, it follows that N(A) is a non-
negative integer and this characteristic distinguishes it from other more gen-
eral non-negative measures as a counting measure.

If A satisfies the consistency requirement, i.e. A can be expressed as the
union of the disjoint sets A1, A2, ..., Ak, namely,

A =
k⋃
i=1

Ai, where Ai ∩ Aj = ∅ for i 6= j,
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it follows from 2.1 that

N(A) = N

(
k⋃
i=1

Ai

)
=

k∑
i=1

N(Ai).

If A is the half-open interval (a, b] with 0 < a < b, we will use the ab-
breviation N(a, b] for the set function N((a, b]). In a similar way, we will use
the contraction N(t) = N(0, t] = N((0, t]) and N(dt) = N(t, t + dt] unless
otherwise stated.

N(t) is a R+ → N step function with N(0) = 0. Note that if 0 < s < t

then 0 ≤ N(s) ≤ N(t) is true. So N(t) is a non-decreasing, right-continuous,
integer-valued and non-negative function.

2.1.2 Stationarity and orderliness

The idea of stationarity for point process is essentially the same for other
stochastic process. Considering the counting measure N(A) and using the
Definition 3.2.I of Daley and Vere-Jones (2002), a point process is stationary
when for every r = 1, 2, ... and all bounded subsets A1, ..., Ar of the domain,
the joint distribution of

{N(A1 + t), N(A2 + t), ..., N(Ar + t)}

does not depend on t. This definition focuses on the structure of process
which is invariant with respect to the translation of the time axis.

Weakly stationarity could be defined in a similar way. A point process is
weakly stationary if for any set A of the domain, the mean and the variance
of the distribution of N(A) are invariant under translations of t, that is

E[N(A)] = E[N(A+ t)] and V ar(N(A)) = V ar(N(A+ t)).

The stationarity of point process could be also defined based on the sta-
tionarity of intervals between two occurrence time, for example in Defini-
tion 3.2.II. of Daley and Vere-Jones (2002).

Following Cox and Isham (1980), a process is orderly if it satisfies the
condition that, for h→ 0+,

Pr{N(t, t+ h] > 1} = o(h) t ∈ R.
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Whereas a process is said to have no multiple simultaneous occurrence if

Pr{N([t]) > 1 for some t ∈ R} = 0,

Where the set t consists of the singleton t ∈ R. 1 The orderliness of a process
can be shown to imply no multiple simultaneous occurrence (Daley, 1974).

In the following work, we will always assume property of orderliness to
be true. Whereas it is unnecessary to assume the stationarity of processes.
The counting measure N(a, b] can be written now as

N(a, b] =

∫
(a,b]

N(ds)

=
∑

j:tj∈(a,b]

1

whereN(ds) = 1 when there is an event of interest in (s, s+ds] andN(ds) =

0 otherwise. The orderliness property excludes the possibility of multiple
occurrence in an infinitesimal interval ds. More generally,∫

(a,b]

g(s)N(ds) =
∑

j:tj∈(a,b]

g(tj)

where g(t) is a R+ → R function.

2.1.3 Conditional intensity function

The behaviour of a point process is typically described by its conditional in-
tensity λ. Intuitively we can imagine λ as the probability with which events
are expected to occur around a specific point in time, conditioned on the
prior history of the point process.

The conditional intensity associated with a point process N could be de-
fined as

λ(t|Ft) = lim
h→0+

Pr{N(t, t+ h] > 0|Ft}
h

(2.2)

where the filtration Ft is the entire history of the point process up to time t.
Another way to define λ is by limiting the conditional expectation

λ(t|Ft) = lim
h→0+

E{N(t, t+ h]|Ft}
h

(2.3)

1Note in this case the notation N([t]) does not mean N((0, t]), but N([t, t]).
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Intuitively, the definition through (2.3) provides the overall intensity of
the process including multiplicities, whereas the definition through (2.2)
gives the intensity of the process of instants at which points occur, without
considering their multiplicities. These two definitions are equal if a process
has no multiple simultaneous occurrence (Leadbetter, 1968). The orderli-
ness of point process will be always assumed in this work and the definition
through (2.2) will be preferred. A rigorous definition of conditional inten-
sity could be find e.g. in the Chapter 7.2 of (Daley and Vere-Jones, 2002).

2.1.4 An example of point process: Poisson process

The archetypal and the simplest point process is the homogeneous Poisson
process. The intensity λ of this process is defined by the requirements that
for all t, as h→ 0+,

Pr{N(t, t+ h] = 1|Ft} = λh+ o(h)

Pr{N(t, t+ h] > 1|Ft} = o(h)

Pr{N(t, t+ h] = 0|Ft} = 1− λh+ o(h)

(2.4)

The essential element in (2.4) is that λ is constant, so it does not depend
on t and on the history of the process Ft. In particular, the probability of
an occurrence in the interval (t, t+ h] is independent on whether there have
been relatively few or relatively many points before t, or if there is an occur-
rence exactly at t. Note that the second equation in (2.4) implies no multi-
ple simultaneous occurrence. An example of realisation of a homogeneous
Poisson with λ = 0.2 is represented in Figure 2.2. The counting measure
N(t) is represented on the vertical axis, whereas the horizontal axis gives
times of occurrence.

There are situations in which the intensity depends on t, for instance
in order to incorporate the time trend or the cyclical fluctuation in the in-
tensity of occurrence. A Poisson process with this characteristic is called
non-homogeneous Poisson process. Compared to the homogeneous case,
the intensity λ in (2.4) is replace by λ(t). Note that in both homogeneous
and non-homogeneous Poisson process the intensity does not depend on
the history of the process Ft.
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FIGURE 2.2: A simulated realisation of a homogeneous Pois-
son process in the interval (0, 50] with λ = 0.2. The vertical
lines on the horizontal axis indicate times of occurrence and

the vertical axis indicates the counting measure.

2.1.5 Marked point process

In many cases, a point process is not itself the main object of the study,
but it contributes as a component of a more complex stochastic model. A
temporal marked point process (MPP) is a point process in R+ ×M space,
where every realisation ti is associated with a mark mi ∈ M (For a rigor-
ous definition see e.g. Chapter 2.1 of Jacobsen (2006) or Chapter 1.4 of Karr
(1991)). The temporal point process associated with a MPP is referred to
as the ground process and it is denoted by notation Ng, whereas the whole
MPP is indicated by notationN . A temporal MPPN , with point occurrences
in R+ and marks inM, is a point process {(ti,mi) : i ∈ N} on R+ ×M with
the additional property that the ground process Ng associated to it is itself
a temporal point process on R+ (Lapham, 2014). A MPP could be used in
many applications due to the great variety of forms that can be taken by the
marks and the variety of dependence relations that can exist between the
marks themselves and the ground process. For instance, it can be used to
model a point process with multiple occurrences in which marks are used to
indicate the number of occurrences at each time; In seismology, marks can
be used to register the magnitude of earthquakes in addition to the point
process which register time of occurrence; A mark could be also a dummy
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variable in order to differentiate buy order from sell order in finance. De-
spite different useful applications of MPP this work will focus on the appli-
cation of simple point process.

2.2 Hawkes process

Hawkes process is a particular case of point process whose conditional in-
tensity depends on the history of the events. The versatility and the increas-
ing popularity of this model is due to its possibility to combine in one model
both a cluster process representation and a simple conditional intensity rep-
resentation (Daley and Vere-Jones, 2002). In this section we will focus on
the conditional intensity representation in order to derive first and second
moment measures, whereas a detailed cluster representation could be find
e.g. in Chapter 4 of Liniger (2009).

In this section we will make a further contraction in the notation. The
realisation of a counting measure will be indicated with Nt = N(t) and
the conditional intensity at time t on the filtration Ft will be indicated with
λt = λ(t|Ft).

2.2.1 Definition and intensity function

Let (Ω,F ,P) be a probability space. The univariate Hawkes process N with
conditional intensity λt can be defined for all t > 0 and h→ 0+ as following:

Pr{Nt+h −Nt = 1|Ft} = λth+ o(h)

Pr{Nt+h −Nt > 1|Ft} = o(h)

Pr{Nt+h −Nt = 0|Ft} = 1− λth+ o(h)

(2.5)

Where Ft is a filtration on the underlying probability space (Ω,F ,P) and it
represents the history of the process. The original definition could be find
in (Hawkes, 1971b).

The main characteristic of Hawkes process is that λt is dependent on the
history of the process Ft, in particular, it is a function of time t and number
of jumps Nt. The two most common models of Hawkes processes are those
with exponential decay function and those with power law function. In this
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work only Hakes processes with exponential decay function will be consid-
ered. Models with power law function are more common in seismology, see
(Ogata, 1988) for reference.

The dynamics of conditional intensity of a Hawkes process with expo-
nential decay function follow the ODE:

dλt = β(λ∞ − λt)dt+ αdNt (2.6)

where:
β > 0 is the constant rate of decay;
λ∞ > 0 is the background intensity;
α > 0 is the magnitude of self-excited jump.

The time effect on the intensity is represented by β(λ∞ − λt) and it has
a negative contribution if β > 0. On the contrary, a jump at a given time
in the counting measure Nt will increase the intensity by α and it increases
the probability of another jump in (t, t + h] through the equation (2.5). This
causes the clustering effect of the Hawkes process and it explains the dy-
namics of "self-exciting" effect. However, there is a finite M such that λt <
M if α < β, so the process does not blow up. The stationarity condition
α

β
< 1 will be showed later in eq. (2.10) and in the proof of the Proposition

2.3
The stochastic process λt is a Markov process, from ODE (2.6). dλt de-

pends only upon λt and dNt, but from (2.5), dNt is defined by λt.
In order to find the full conditional intensity equation we can apply Ito’s

lemma to eβtλt, and the solution of ODE (2.6) is:

λt = c(t) +

∫ t

0

αe−β(t−s)dNs

where

c(t) = λ0e
−βt + βλ∞e

−βt
∫ t

0

eβsds

= λ0e
−βt + λ∞e

−βt(eβt − 1)

= e−βt(λ0 − λ∞) + λ∞

Then, the full equation for λt is:

λt = e−βt(λ0 − λ∞) + λ∞ +

∫ t

0

αe−β(t−s)dNs (2.7)
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Where λ0 > 0 is the initial intensity at t = 0.
Note that the impact of a given jump on the intensity decay exponen-

tially as time passes. If λ0 = λ∞ or if t→ +∞ the equation (2.7) become:

λt = λ∞ +

∫ t

0

αe−β(t−s)dNs (2.8)

The equation (2.8) could be expressed as:

λt = λ∞ +
∑
j:tj<t

αe−β(t−tj) (2.9)

In particular, in the Appendix, the above equation will be used to implement
a simulation in Matlab of Hawkes process with λ0 = λ∞.

2.2.2 Simulation of a Hawkes process

A simulation algorithm for the non-homogeneous Poisson process based
on thinning method was introduced by Lewis and Shedler (1979). The
idea is to simulate a homogeneous Poisson process, and then remove ex-
cess points stochastically so that the remaining points satisfy the conditional
intensity λt. This algorithm requires the conditional intensity to be upper
bounded, so that there is a finite M for which λt ≤M for all t. Hawkes pro-
cess, as the case non-homogeneous Poisson process, is defined by its con-
ditional intensity process, and a generalization of Shedler-Lewis thinning
algorithm, called ’Ogata’s modified thinning algorithm’, was introduced by
Ogata (1981) and it requires only the local boundedness of conditional inten-
sity. In case of Hawkes processes with exponential rate of decay β > 0, λt is
a non-increasing function in the interval between two adjacent occurrences.
This implies λt ≤ λti+ for t ∈ (ti, ti+1), where ti+ indicates a time just after
ti. So a local bound Mt could be set equal to λti+ in the interval (ti, ti+1) and
it has to be updated after each occurrence. However Daley and Vere-Jones
(2002) stated that this algorithm is inefficient, and they introduced a simple
modification by setting Mt = λt+ regardless of whether or not t is a point of
the process and adding a function of time interval of length Lt = κλt+ for
an arbitrary κ. Mt is updated if a new point of the process occurs or if the
time frame Lt has elapsed. Ogata’s modified thinning algorithm based on
Algorithm 7.5.IV of Daley and Vere-Jones (2002) is showed in Algorithm 1
and the pseudo-code converted in Matlab is showed in the Appendix.
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Set t = 0, i = 0, κ = 1/2, H = ∅ ;
while t < T do

Compute Mt = λt+ and Lt = κλt+ ;
Generate an exponential r.v. R with mean 1/Mt ;
if R > Lt then

Set t = t+ Lt ;
else

Generate a r.v. U uniformly distributed on (0, 1) ;
if U > λt+R/Mt then

Set t = t+R ;
else

Set i = i+ 1, ti = t+R, t = ti ;
H = H ∪ ti

end
end

end
return H;

Algorithm 1: Simulation of a Hawkes process on the interval (0, T ),
where κ has been set equal to 0.5 according to Daley and Vere-Jones
(2002). The output is the vector H containing the times of occurrences
(t1, t2, ..., tn).

An example of a Hawkes process with λ∞ = 0.1, α = 0.2 and β = 0.4

over the time interval (0, 100] is showed in Figure 2.3. The initial intensity
λ0 is assumed equal to the background intensity λ∞. The conditional inten-
sity shows vertical jumps at each occurrence time giving the self-exciting
effect. Compared to homogeneous Poisson process, where the events are
uniformly distributed along the time interval, Hawkes process presents a
clustering effect of the occurrences. In the example of Figure 2.3 the number
of total events is 14 (N100 = 14) and we can note a clustering effect around
t = 20 and t = 90.

Ogata’s thinning algorithm is used here to give a representation of Hawkes
process for the simplicity of its implementation. However, other simula-
tion algorithm in the literature could be found. For example, Ozaki (1979)
adopted a simulation based on the conditional Hazard function of the pro-
cess, which can be defined as:

Λ(t|Ft, θ) =
f(t|Ft, θ)

1− F (t|Ft, θ)

Where f(.) is the probability density function and F (.) is the cumulative
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Simulation Hawkes process with λ
∞

=0.1 α=0.2 β=0.4

total events: 14
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FIGURE 2.3: A simulated realisation of a Hawkes process over
the interval (0, 100] using Ogata’s thinning algorithm where
λ∞ = 0.1, α = 0.2, β = 0.4 and λ0 = λ∞. The upper graph
shows the conditional intensity over the time, whereas the

lower graph shows its counting measure.

distribution function. Møller and Rasmussen (2005) introduced a perfect
simulation method based on the cluster representation of the process Same
authors formulated also an approximate simulation method which is less
computation intensive (Møller and Rasmussen, 2006). Dassios, Zhao, et al.
(2013) introduced a numerically efficient simulation algorithm for Hawkes
process with exponentially decaying intensity.

2.2.3 Poisson cluster process representation

An alternative interpretation of Hawkes process is provided by Hawkes and
Oakes (1974), who showed that all stationary self-exciting point process
with finite intensity may be presented as a Poisson cluster process, called
otherwise generalised branching Poisson process (Lewis, 1969). Intuitively,
a Hawkes process can be seen as a combination of two stochastic mecha-
nisms. First, a background homogeneous Poisson process with intensity λ∞
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which continuously and uniformly generates events. Second, an endoge-
nous feedback mechanism, where any generated event has the potential to
lead directly to some future event (Olson and Carley, 2013). The background
effect λ∞ and the feedback effect

∑
j:tj<t

αe−β(t−tj) are clearly separable ac-
cording to eq. (2.9). Similarly the point events of a Hawkes process can be
separated into two types: immigrants (or in seismology main events) without
extant parents, which are generated by the background process; offspring
(or after shocks) that are produced by existing point events (Daley and Vere-
Jones, 2002). The immigrants points are cluster centres and each point event
can generates offspring.

Fig. 2.4 illustrates an example of cluster representation of a Hawkes pro-
cess. The branching structure is represented in the upper part of the figure.
The immigrants points are labelled with zeroes and other numbers (1, 2, 3, 4)
indicate the generation that an offspring belong to, for example a point la-
belled with "1" means that the point is the direct offspring of an immigrant,
and a point labelled with "2" means that the point is offspring of an off-
spring of generation 1. In the example of Fig. 2.4 there are 4 immigrant
points and each of them is the centre of a cluster (different colours are used
to represents different clusters). The blue cluster has the biggest number
of offspring, meanwhile the purple immigrant do not have any offspring.
The lower part of Fig. 2.4 indicates the correspondent realisations of point
events on the time axis. The branching structure is usually unobservable,
we can only observe the times of realisation, but we cannot know whether
a point is an immigrant or it is an offspring.

In a Hawkes process with exponential decay and constant background
intensity, the immigrant points are generated by the homogeneous Poisson
process with intensity λ∞, whereas each existing point at time t can generate
an offspring according to a non-homogeneous Poisson process with inten-
sity αe−β(t−tj), for t > tj , where tj is the occurrence time of point j. Fig. 2.5
illustrates the intensity path of a Hawkes process with λ∞ = 0.2, α = 0.3

and β = 0.4. The grey region represents the background intensity and
it is always constant; the coloured areas represents intensity produced by
each single jump, for instance the yellow area is the intensity caused by the
first jump of the process and its contribution die out exponentially. Fig. 2.5
shows also that the exogenous background mechanism (grey area) is sepa-
rable from the endogenous feedback mechanism (coloured area). Higher is
the intensity at a time t, given the same background intensity λ∞, higher is



2.2. Hawkes process 15

Branching structure Hawkes process

FIGURE 2.4: The branching structure of a realised Hawkes
process (upper part) and the realisation on the time axis (lower
part). Immigrant points are labelled with zeroes and offspring
points are labelled with a number different from zero which
indicates the generation that it belongs. Each cluster is repre-

sented by a different colour.

the probability that the next point event is an offspring rather than an im-
migrant. However, the type of a point event and the branching structure of
the whole process is unobservable.

An important parameter in a cluster process is the branching ration η,
which is defined as the average number of offspring generated by each point
event. The branching ratio defines the stationarity of a system and there
are three types of cluster process based on η: sub-critical, if 0 < η < 1;
critical, if η = 1; and super-critical, if η > 1 (Filimonov and Sornette, 2012).
In the sub-critical case, there are less than one offspring per event: each
immigrant point generates a close cluster with probability 1 and the process
is stationary. In the super-critical case, there are more than one offspring per
event: this corresponds to an explosive process with the number of events
increases exponentially over time. η = 1 is the critical point separating the
two cases and it means on average there is one offspring per each event
(Saichev, Helmstetter, and Sornette, 2005).

In a sub-critical cluster process, the branching ratio is the proportion of
offspring events respect to the total number of events. A simple way to
obtain its theoretical measure given the intensity equation is through the
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Intensity contribution

FIGURE 2.5: Intensity contribution of each point event. the
background intensity λ∞ = 0.2 is represented by the grey area.
Each jump increases the intensity by α = 0.3 and it dies out
with an exponential decay αe−β(t−tj), where β = 0.4 and tj is
the occurrence time of point j. The contribution of intensity
generated by the point events are represented by the coloured

area.

definition:
η =

∫ ∞
0

ω(t)dt

where, ω(t) is the endogenous part of the intensity. In a Hawkes process
with exponential decay ω(t) = αe−β(t), the theoretical branching ratio is:

η =
α

β
. (2.10)

Note that the condition for a sub-critical cluster process is η < 1, so the
stationarity condition for a Hawkes process is

α

β
< 1.

In the context of Hawkes process applied to finance, Filimonov and Sor-
nette (2012) and Lorenzen (2012) claim that the branching ratio is key in pre-
dicting movements and important events in the stock markets. Filimonov
and Sornette (2012) showed also that during the "Flash-crash" of May 6,
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2010, η increased significantly and approached to 1. The authors believe
that knowing the level of endogeneity could help to predict when a market
is critical.

2.2.4 Analytical framework

The derivation of analytical results follows Errais, Giesecke, and Goldberg
(2010) and Chapter 2.1 of Da Fonseca and Zaatour (2014). The main idea
is to exploit a two-dimensional stochastic process Xt consisting of Hawkes
process and its conditional intensity, such that Xt = (λt, Nt). We will derive
the distributional properties of Hawkes process by taking the advantage of
particular properties of Xt.

While the point process Nt itself does not have the Markov property, the
process Xt = (λt, Nt) is a Markov process in the state space D = R+ × N,
since the process λt has Markov property as we saw in the Section 2.2.1.
In the context of piecewise deterministic Markov process theory and using
the results in Davis (1984), Xt has an infinitesimal generator D, defined at a

function g : D → R with continuous partial derivative
∂g

∂λ
(x), such that:

Dg(x) = lim
h→0

Ext [g(Xt+h)]− g(x)

h

with Ext = Ex[.|Ft] and Xt = x.
In the specific case of process Xt = (λt, Nt), the infinitesimal generator

computed using the definition (2.5), the dynamic (2.11) and Taylor series is:

Dg(x) = β(λ∞ − λt)
∂g

∂λ
(x) + λt[g(λt + α,Nt + 1)− g(x)] (2.11)

Moreover, the process:

Mt = g(Xt)− g(X0)−
∫ t

0

Df(Xu)du

is a martingale relative to its natural filtration (A proof is giving in the ap-
pendix of Errais, Giesecke, and Goldberg (2010) or proposition 1.6 of chapter
VII in Revuz and Yor (1999)). By the martingale property, we have for s > t:

Et
[
g(Xs)−

∫ s

0

Df(Xu)du

]
= g(Xt)−

∫ t

0

Df(Xu)du
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which bring to the equation:

Et[g(Xs)] = g(Xt) + Et
[∫ s

t

Df(Xu)du

]
(2.12)

The equation (2.12) is known in the literature also as Dynkin’s formula.
The following derivation of moments of the process Xt and its autoco-

variance will rely on the infinitesimal generator (2.11) and Dynkin’s formula
(2.12). It will be first computed the expected number of jumps and the ex-
pected intensity as they turn to be useful in the later derivation.

Lemma 2.1 Given a Hawkes process Xt = (λt, Nt) with dynamic give by (2.6),
the expected number o jumps E[Nt] and the expected intensity E[λt] satisfy the set
of ordinary differential equation:

dE[Nt] = E[Nt]dt (2.13)

dE[λt] = (βλ∞ + (α− β)E[λt])dt (2.14)

Proof. Consider g(Xt) ≡ Nt, a function from D → N with
∂g

∂λ
(x) = 0. The

infinitesimal generator from (2.11) is:

Dg(Xt) = λt[(Nt + 1)−Nt] = λt

Applying Dynkin’s formula (2.12) we obtain:

E[Nt] = N0 + E
[∫ t

0

λsds

]
Then using Fubini’s theorem we have:

E[Nt] = N0 +

∫ t

0

E [λs] ds (2.15)

Which differentiating with respect to t gives the ODE (2.13).
To obtain the ODE (2.14) consider now g(Xt) ≡ λt. The infinitesimal

generator (2.11) in this case is:

Dg(Xt) = β(λ∞ − λt) + λt[(λt + α)− λt] = β(λ∞ − λt) + αλt
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and Dynkin’s formula (2.12) and Fubini’s theorem results in:

E[λt] = λ0 + E
[∫ t

0

β(λ∞ − λs) + αλsds

]
= λ0 + βλ∞t+ (α− β)

∫ t

0

E[λs]ds

Which leads to (2.14) after differentiating with respect to t. �

Lemma 2.2 Given a Hawkes process Xt = (λt, Nt) with dynamic give by (2.6),
E[N2

t ], E[λtNt] and E[λ2
t ] satisfy the set of ordinary differential equation:

dE[N2
t ] = 2E[λtNt]dt+ E[λt] (2.16)

E[λtNt] = βλ∞E[Nt]dt+ (α− β)E[λtNt]dt+ E[λ2
t ]dt+ αE[λt]dt (2.17)

dE[λ2
t ] = (α2 + 2βλ∞)E[λt]dt+ 2(α− β)E[λ2

t ]dt (2.18)

Proof. Consider the function g(Xt) ≡ N2
t . The infinitesimal generator (2.11)

is:
Dg(Xt) = 0 + λt[(Nt + 1)2 −Nt] = 2λtNt + λt

Dynkin’s formula and Fubuni’s theorem leads to:

E[N2
t ] = N2

0 + E
[∫ t

0

2λuNu + λudu

]
= N2

0 + 2

∫ t

0

E[λuNu]du+

∫ t

0

E[λu]du

(2.19)

Which leads to (2.16) after differentiating with respect to t.
To obtain ODE (2.17) and (2.18) we can use the same procedure for g(Xt) ≡

λtNt and g(Xt) ≡ λ2
t . �

Proposition 2.3 Given a Hawkes process Xt = (λt, Nt) with dynamic given by
(2.6), then the expected value of the number of jumps in a time interval τ for t→∞
is:

lim
t→∞

E[Nt+τ −Nt] =
βλ∞
β − α

τ = Λτ (2.20)

Where Λ = limt→∞ E[λt] = λ∞
1−α/β is the stationary regime expected intensity.

Proof. To compute the expected number of jumps during a time interval
τ we first need to find the expression of E[λt]. To do so, we can find the
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solution of ODE (2.14) with initial condition E[λ0] = λ0 and integral factor
e−(α−β)t. It results in:

E[λt] = λ∞β
e(α−β)t − 1

α− β
+ e(α−β)tλ0 (2.21)

Note that if β < α, limt→∞ E[λt] = +∞. In the above equation we can rec-
ognize the condition for the stability of Hawkes process, which is

α

β
< 1,

coherent with what we found in eq. (2.10). And the stationary regime ex-
pected intensity is:

lim
t→∞

E[λt] =
λ∞

1− α/β
= Λ (2.22)

Then, we can use (2.21) with (2.15) to find the expression for the mean num-
ber of jumps:

E[Nt] = N0 +
e(α−β)t − 1− (α− β)t

(α− β)2
λ∞β +

e(α−β)t − 1

α− β
λ0 (2.23)

Using the above computation, we can now obtain the the expected value of
the number of jumps during a time interval of length τ :

E[Nt+τ −Nt] =
−λ∞βτ
α− β

+
e(α−β)t

(α− β)2
(e(α−β)τ − 1)[λ∞β + (α− β)λ0] (2.24)

Under the stability condition
α

β
< 1 and for limit of t → ∞, the above

expression does not depend on the initial value of the intensity λ0 and it
results in (2.20). �

Proposition 2.4 Given a Hawkes process Xt = (λt, Nt) with dynamic given by
(2.6), then the variance of the number of jumps during a time interval of length τ
for t→∞ is:

V (τ) = lim
t→∞

{
E[(Nt+τ −Nt)

2]− E[Nt+τ −Nt]
2
}

= Λ

(
τκ2 + (1− κ2)

1− e−τγ

γ

) (2.25)

Where: Λ = λ∞
1−α/β , κ = 1

1−α/β and γ = β − α
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Proof. We first need to compute the second moment of number of jumps
during a time interval τ in order to find the variance:

µ2 = E
[
(Nt+τ −Nt)

2
]

= E
[
Et[N2

t+τ ]− 2NtEt[Nt+τ ] +N2
t

]
(2.26)

From equation (2.19) and (2.15) we know that:

Et[N2
t+τ ] = N2

t + 2

∫ t+τ

t

Et[λuNu]du+

∫ t+τ

t

Et[λu]du

Et[Nt+τ ] = Nt +

∫ t+τ

t

Et[λu]du

Using the expressions above, the second moment of the number of jumps in
a given interval (2.26) become:

µ2 = 2

∫ t+τ

t

E[λuNu]du+

∫ t+τ

t

E[λu]du− 2E
[
Nt

∫ t+τ

t

Et[λu]du
]

(2.27)

The first integral of (2.27) can be computed from ODE (2.17) and it leads to:∫ t+τ

t

E[λuNu]du =

=

∫ t+τ

t

e(α−β)(u−t)E[λtNt]du

+

∫ t+τ

t

∫ u

t

e(α−β)(u−s){βλ∞E[Ns] + E[λ2
s] + αE[λs]}dsdu

In the similar way, the third term of (2.27) can be computed from ODE (2.14)
and it gives:

E
[
Nt

∫ t+τ

t

Et[λu]du
]

=

= E
[
Nt

(∫ t+τ

t

e(α−β)(u−t)λtdu+

∫ t+τ

t

∫ u

t

e(α−β)(u−r)βλ∞drdu

)]
=

∫ t+τ

t

e(α−β)(u−t)duE[λtNt] +

∫ u

t

e(α−β)(u−r)drduβλ∞E[Nt]
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Substituting E[Ns] = E[Nt] +
∫ s
t
E[λr]dr in the result of first integral of (2.27)

and after simplification, the expression for the second moment is:

µ2 =2

∫ t+τ

t

∫ u

t

e(α−β)(u−s)
{
βλ∞

∫ s

t

E[λr]dr + E[λ2
s] + αE[λs]

}
dsdu

+

∫ t+τ

t

E[λu]du

Note that the above expression depends only on E[λt] and E[λ2
t ]. These two

expectations depend on the initial intensity λ0, but for t→∞, the contribu-
tion of λ0 become insignificant. The second moment of the number of jumps
over time interval of length τ for t→∞ is:

lim
t→∞

E[(Nt+τ −Nt)
2] = lim

t→∞
τΛ + 2βλ∞Λ

∫ t+τ

t

∫ u

t

e(α−β)(u−s)
∫ s

t

drdsdu

+ 2(Λ2 + αΛ)

∫ t+τ

t

∫ u

t

e(α−β)(u−s)dsdu

Where Λ = limt→∞ E[λt] = λ∞
1−α/β and Λ2 = limt→∞ E[λ2

t ] = Λ

(
α2 + 2βλ∞
2(β − α)

)
.

∫ t+τ

t

∫ u

t

e(α−β)(u−s)
∫ s

t

drdsdu = − τ 2

2(α− β)
− τ

(α− β)2
+
e(α−β)τ − 1

(α− β)3∫ t+τ

t

∫ u

t

e(α−β)(u−s)dsdu = − τ

α− β
+
e(α−β)τ − 1

(α− β)2

The long run variance of the number of jumps during a time interval of
length τ is deduced from the above expressions and (2.20):

lim
t→∞

{
E[(Nt+τ −Nt)

2]− E[Nt+τ −Nt]
2
}

=

=τΛ + 2βλ∞Λ

[
τ 2

2(β − α)
− τ

(β − α)2
− e−τ(β−α) − 1

(β − α)3

]
+ 2Λ

[
α2 + 2βλ∞
2(β − α)

+ α

] [
τ

β − α
+
e−τ(β−α) − 1

(β − α)2

]
− τ 2Λ2

=τΛ

[
1− 2βλ∞

(β − α)2
+
α2 + 2βλ∞
(β − α)2

+
2α

β − α

]
+ Λ

[
1− e−τ(β−α)

(β − α)2

](
2βλ∞
β − α

− α2 + 2βλ∞
β − α

− 2α

)
=Λ

[
β2

(β − α)2
τ +

(
α2 − 2αβ

(β − α)2

)(
1− e−τ(β−α)

β − α

)]
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After rearrangement and substituting κ =
1

1− α/β
and γ = β − α, we

obtain the equation (2.25). �

2.2.5 Marked Hawkes process

A specification of marked point process of Section 2.1.5 and a generalization
of simple Hawkes process is the Marked version of Hawkes process intro-
duced in Hawkes (1972) with a first application in seismology in Hawkes
and Adamopoulos (1973). In this case, the conditional intensity of the ground
process still depends on the history of the events, but in addition, it can be
also influenced by the observed mark values. Assuming λ∞ = λ0, a general
way to express the conditional intensity of a marked Hawkes process is:

λt = λ∞ +
∑
j:tj<t

ω(t− tj,mj)

where ω(t,m) is a generic non negative function andmj are marks. The con-
tribution of marks on the λt can occur in different way. A common model
used literature is:

ω(t,m) = g(m)ω∗(t)

where g(m) is aM → R+ function which incorporates the effects of marks
on the intensity. Note that if g(m) = 1, the conditional intensity is indepen-
dent from the marks and the process degenerates in an unmarked Hawkes
process. The impact of the observed marks usually assumes an exponential
form in the literature, such that g(m) = eγm. A basic example of conditional
intensity of a marked Hawkes process could be:

λt = λ∞ + α
∑
j:tj<t

eγmj−β(t−tj)

Initially, marked hawkes process are used to model the occurrences of
earthquakes, for example (Hawkes and Adamopoulos, 1973), (Ogata, 1988)
and (Vere-Jones and Ozaki, 1982). Recently many applications in finance
could be found, for example Chavez-Demoulin, Davison, and McNeil (2005)
used a marked hawkes process to model extreme returns in financial time
series.
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Chapter 3

Estimation of parameters

This Chapter will illustrate two approaches for the estimation of parame-
ters of a Hawkes process. The classic approach, which uses direct numeri-
cal maximization of log-likelihood; and the Expectation-Maximization (EM)
algorithm.

Early estimations of Hawkes processes are performed by using direct
numerical maximization of log-likelihood function. This method was in-
troduced in the works of Vere-Jones (1978) and Ozaki (1979). Examples of
applications could be found in Ogata (1988) and more recently, in finance, in
the works of Bowsher (2007) and Embrechts, Liniger, Lin, et al. (2011). This
inference strategy will be analysed in the first section of this chapter.

The computation of maximum likelihood estimation (MLE) through EM
algorithm will be subject of the second section. This algorithm is based on
the cluster representation of Hawkes process and the unobservable branch-
ing structure is treated as the latent variables. The estimation of Hawkes
process using parametric EM algorithm is relatively recent and its descrip-
tion could be found in Veen and Schoenberg (2008) and Marsan and Lengliné
(2008) and Olson and Carley (2013).

More recently, non parametric estimations have been proposed by Lewis
and Mohler (2011) and Bacry, Dayri, and Muzy (2012). However, this chap-
ter will focus on the classic numerical optimization approach and on the
parametric EM algorithm.

The presentation and the setting of this chapter follow closely Chapter 3
of Lapham (2014).
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3.1 Direct numerical maximization of likelihood

The likelihood of a point process Xt on (0, T ], with realizations t1, t2, ..., tNT
,

could be defined following the proposition 7.2.III of Daley and Vere-Jones
(2002) as:

L(θ) =

N(T )∏
i=1

λti exp

(
−
∫ T

0

λsds

)
where θ ∈ Θ is the vector of parameters. The log-likelihood ratio relative to
a Poisson process on (0, T ] with constant intensity 1 is:

l(θ) = log
L(θ)

L0(θ)
=

NT∑
i=1

log(λt) +

∫ T

0

(1− λs)ds

In the specific case of Hawkes process with exponential kernel and λ0 =

λ∞, the log-likelihood is expressible as:

l(θ) =

∫ T

0

(
1− λ∞ −

∑
i:ti<s

αe−β(s−ti)

)
ds+

NT∑
i=1

log

λ∞ +
∑
j:tj<ti

αe−β(ti−tj)


after solving the following integral:

∫ T

0

∑
i:ti<s

αe−β(s−ti)ds =

NT∑
i=1

(
α

β
− α

β
e−β(T−ti)

)

we can write the log-likelihood as:

l(θ) = T − Tλ∞ −
α

β

NT∑
i=1

(
1− e−β(T−ti)

)
+

NT∑
i=1

log

λ∞ + α
∑
j:tj<ti

e−β(ti−tj)


(3.1)

The second summation in the equation (3.1) presents a nested sum, it
requires NT (NT − 1) operations in order to be solved. This nested sum is
the most computational intensive part in the log-likelihood evaluation and
it makes the order of the total operations of (NT )2. In the early applications
of Hawkes process model, the computational power was not sufficient for
real-world data sets and the numerical estimation of parameters was dif-
ficult (Liniger, 2009). The increase of computational speed may be one of
the reasons for the increased number of applications (Lapham, 2014). How-
ever there are different methods to reduce the computational burden in the
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estimation of parameters.
In the specific case of Hawkes process with an exponential decay, the

number of operations could be reduced to the order of NT . As noted by
Ogata (1981), the computation of equation (3.1) could be simplified using a
recursive formula. We can see that ∀i > 1

A(i) =
i−1∑
j=1

e−β(ti−tj)

= e−β(ti−ti−1)

(
1 +

i−2∑
j=1

e−β(ti−1−tj)

)
= e−β(ti−ti−1) (1 + A(i− 1))

then, by settingA(1) = 0, we can rewrite the log-likelihood function (3.1) as:

l(θ) = T − Tλ∞ −
α

β

NT∑
i=1

(
1− e−β(T−ti)

)
+

NT∑
i=1

log (λ∞ + αA(i)) . (3.2)

Note that the conditional intensity could be expressed as:

λt = λ∞ + αA(i),

the simplification through the recursive formula lies on the fact that λt is a
Markov process.

In the context of univariate Hawkes process with constant background
intensity λ∞, Ogata (1978) proved the log-likelihood estimator θ̂ = (λ̂∞, α̂, β̂),
defined as θ̂ = arg maxθ∈Θl(θ), to be consistent, i.e. it converges in probabil-
ity to the true value

∀ε > 0, lim
T→∞

Pr[|θ̂ − θ| > ε] = 0;

and asymptotically normal, so that for T →∞

√
T (θ̂ − θ)→ N (0, I−1(θ)),

where I−1(θ) = TE
[

1

λ

∂λ

θi

∂λ

θj

]
i, j = 1, 2, 3 is a 3× 3 matrix.

However there is no closed-form expression for the computation of θ̂,
therefore we have to perform numerical maximization, for example using
fminunc in Matlab, in order to find the solution.
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3.2 Expectation Maximization algorithm

The EM algorithm is an iterative algorithm for computing the maximum
likelihood estimates when the observations can be viewed as incomplete
data (Dempster, Laird, and Rubin, 1977). Each iteration of the EM algorithm
consists of two steps: expectation, or the E-step, and maximization, or the
M-step. In the E-step the latent variables are estimated given the observed
data and current estimates for the parameters. In the M-step the likelihood
function is maximized using the latent variables estimated in the E-step,
this step computes new estimates for the next iteration. The likelihood is
increasing at each iteration, so the convergence is assured (Borman, 2004).
In the context of Hawkes processes, Veen and Schoenberg (2008) proposed
an EM algorithm for the parameters estimation in which the unobservable
branching structure under the Poisson cluster representation is treated as
the latent variables. The computational burden of EM algorithm could be
significant and several approximations could be made in order to make the
estimation less computationally intensive. We will illustrate both the exact
inference and an approximate inference following the work of Veen and
Schoenberg (2008), Olson and Carley (2013) and Lapham (2014).

3.2.1 Exact EM algorithm estimation

Consider a general Hawkes process with conditional intensity:

λt = λ∞ +
∑
j:tj<t

ω(t− tj)

where ω(.) is the endogenous mechanism of the process. Following the
work of Lapham (2014), we introduce a variable ui in order to distinguish
immigrant point events from offspring ones as following:

ui = i if point event i is an immigrant;

ui = j if point event i is an offspring triggered by the point event j.

The complete data of the process consists of occurrences time and ui associ-
ated with each occurrence (t1, u1), (t2, u2), ..., (tNT

, uNT
). The variable ui fully

describe the branching structure of a Hawkes process.
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If the branching structure is observable, we can write the complete data
log-likelihood as:

lCD(θ) =
∑
i:ui=i

log(λ∞)−λ∞T −
NT∑
i=1

∫ T

ti

ω(s− ti)ds+
∑
i:ui 6=i

logω(ti− tui) (3.3)

Intuitively, the first sum in the eq. (3.3) is related to the contribution of
immigrant events which arrive according to the background intensity λ∞.
The last sum in the eq. (3.3) is related to the contribution of offspring events
which arrive according to the feedback mechanism ω(.). The two addends
in the middle with negative sign describes how unlikely it was to have not
seen additional events (Olson and Carley, 2013).

Expectation step

The E-step consists in the computation of the conditional expectation of log-
likelihood with respect to the history of the process FT under the current
estimate of parameters θ(k), where k is the number of iterations already per-
formed in the algorithm. The conditional expected value of log-likelihood
based on the eq. (3.3) could be rewrite as:

Q
(
θ|θ(k)

)
= E

[
lCD(θ)|FT , θ(k)

]
= E

[
log(λ∞)

NT∑
i=1

I{ui=i} − λ∞T −
NT∑
i=1

∫ T

ti

ω(s− ti)ds

+

NT∑
i=1

∑
j 6=i

I{ui=j} logω(ti − tj)|FT , θ(k)

] (3.4)

where I is a dummy variable which assume unit value when the condition
in the subscript is true.

Given the history of the process FT and the current estimate θ(k) we can
define the probability for which whether a point event is an immigrant (ui =

i) or it is triggered by the event j (ui = j, where j < i):

Pr
{
ui = i|Fti , θ(k), ti

}
=

λ
(k)
∞

λ
(k)
∞ +

∑
n:tn<ti

ω(ti − tn|θ(k))

Pr
{
ui = j|Fti , θ(k), ti

}
=

ω(ti − tj|θ(k))

λ
(k)
∞ +

∑
n:tn<ti

ω(ti − tn|θ(k))

(3.5)
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In the complete data log-likelihood, we have the following identities:

E
[
I{ui=i}|FT , θ(k)

]
= Pr

{
ui = i|Fti , θ(k), ti

}
E
[
I{ui=j}|FT , θ(k)

]
= Pr

{
ui = j|Fti , θ(k), ti

}
.

(3.6)

Substituting eq. (3.6) into eq. (3.4) we can rewrite the conditional expected
value of log-likelihood as:

Q(θ|θ(k)) = log(λ∞)

NT∑
i=1

Pr
{
ui = i|Fti , θ(k), ti

}
− λ∞T −

NT∑
i=1

∫ T

ti

ω(s− ti)ds

+

NT∑
i=2

i−1∑
j=1

log(ω(ti − tj))Pr
{
ui = j|Fti , θ(k), ti

}
(3.7)

Maximization step

The objective of M-step is to find the parameters that maximize Q(θ|θ(k)) in
the eq. (3.7). The parameters obtained in this step will be denoted as θ(k+1)

and they will be used in the next iteration of the algorithm.
The maximization is performed by setting the partial derivative ofQ(θ|θ(k))

with respect to each parameter equal to 0. In the exact EM algorithm the
closed-form expression could be found only for λ∞, whereas there is no an-
alytical solution for other parameters of θ(k+1).

Iteration of EM algorithm

Each iteration of EM algorithm increases the log-likelihood of the eq. (3.3),
the details for the monotonicity and the convergence to a stationary value
could be found in the Chapter 3 of McLachlan and Krishnan (2007).

Starting from arbitrary set of parameters θ(0), the EM algorithm is per-
formed through the E and M steps in order to maximize the log-likelihood.
The algorithm stops once the convergence criterion is reached, so thatQ(θ|θ(k+1))−
Q(θ|θ(k)) < ε.

The EM algorithm could summarized as following:

Step 0 Set k = 0 and set the starting value of parameters in θ(0);

Step 1 (E-Step) Estimate the triggering probabilities of eq. (3.5) by using
θ(k) and FT ;
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Step 2 (M-Step) Find θ(k+1) such that eq. (3.7) is maximized;

Step 3 If Q(θ|θ(k+1)) − Q(θ|θ(k)) ≥ ε, return to Step 1, otherwise stop the
algorithm.

In the Hawkes process with exponential decay the log-likelihood is:

l(θ) =
∑
i:ui=i

log(λ∞)− λ∞T −
NT∑
i=1

∫ T

ti

αe−β(s−ti)ds

+
∑
i:ui 6=i

(logα− β(ti − tui)).
(3.8)

The probability that an event i is an immigrant event or it is triggered by the
event j is:

Pr
{
ui = i|Fti , θ(k), ti

}
=

λ
(k)
∞

λ
(k)
∞ +

∑
n:tn<ti

α(k)e−β(k)(ti−tn)

Pr
{
ui = j|Fti , θ(k), ti

}
=

α(k)e−β
(k)(ti−tj)

λ
(k)
∞ +

∑
n:tn<ti

α(k)e−β(k)(ti−tn)

(3.9)

The conditional expect log-likelihood in terms of triggering probabilities is:

Q(θ|θ(k)) = log(λ∞)

NT∑
i=1

Pr
{
ui = i|Fti , θ(k), ti

}
− λ∞T +

α

β

NT∑
i=1

(
e−β(T−ti) − 1

)
+

NT∑
i=2

i−1∑
j=1

(logα− β(ti − tj))Pr
{
ui = j|Fti , θ(k), ti

}
(3.10)

In order to find the parameters that maximize eq. (3.10), we set the partial
derivatives of Q(θ|θ(k)) with respect to each parameter equal to 0:

∂Q

∂λ∞
=

1

λ∞

NT∑
i=1

Pr
{
ui = i|Fti , θ(k), ti

}
− T = 0

∂Q

∂α
=

1

β

NT∑
i=1

(
e−β(T−ti) − 1

)
+

1

α

NT∑
i=2

i−1∑
i=1

Pr
{
ui = j|Fti , θ(k), ti

}
= 0
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∂Q

∂β
=
α

β

[
NT∑
i=1

(
1− e−β(T−ti)

)
/β −

NT∑
i=1

(T − ti)e−β(T−ti)

]

−
NT∑
i=2

i−1∑
j=1

(ti − tj)Pr
{
ui = j|Fti , θ(k), ti

}
= 0

From the equations above we obtain a system of equations for the compu-
tation of θ(k+1):

λ(k+1)
∞ =

∑NT

i=1 Pr
{
ui = i|Fti , θ(k), ti

}
T

(3.11)

α(k+1) =
β(k+1)

∑NT

i=2

∑i−1
i=1 Pr

{
ui = j|Fti , θ(k), ti

}∑NT

i=1

(
1− e−β(k+1)(T−ti)

) (3.12)

β(k+1) =
α(k+1)

[∑NT

i=1

(
1− e−β(k+1)(T−ti)

)
/β(k+1) −

∑NT

i=1(T − ti)e−β
(k+1)(T−ti)

]
∑NT

i=2

∑i−1
j=1(ti − tj)Pr {ui = j|Fti , θ(k), ti}

(3.13)
Only the eq. (3.11) could be solved analytically, whereas the solutions for
α(k+1) and β(k+1) could be found by using a computer software. For example
by substituting the expression of α(k+1) in (3.13), we obtain an equation only
in β(k+1) which could be solved with a root-finding algorithm.

The computation burden of the exact EM algorithm is significant, be-
cause there is no analytical solution for all the parameters in the M-Step.
Many approximation are introduced in the literature in order to reduce the
computational intensity of the estimation.

3.2.2 An approximate EM algorithm estimation

The objective of an approximate EM algorithm is to reduce the computa-
tion burden during the M-Step. Lewis and Mohler (2011) and Olson and
Carley (2013) illustrated an approximation for exponential decay Hawkes
processes such that a closed-form equation could be found for all parame-
ters in the M-Step.

The idea underlying the approximation is that the intensity contribution
generated by each event dies out exponentially. Consider the following ex-
pression in the conditioned expected log-likelihood in the eq. (3.10):

α

β

NT∑
i=1

(
e−β(T−ti) − 1

)
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We know that if t1 � T , e−β(T−t1) → 0 due to the exponential decay rate β.
The only events that could have a significant impact on the above expression
are those observed close to T . However for large data and for big enough
decay ratio β, we can approximate

α

β

NT∑
i=1

(
e−β(T−ti) − 1

)
≈ −α

β
NT . (3.14)

The approximation is more accurate when there are few observations near
the end of interval (0, T ] and if β−1 � T (Lewis and Mohler, 2011).

Using the approximation (3.14), we can rewrite the log-likelihood (3.8)
and conditioned expected log-likelihood in terms of triggering probabilities
(3.10) as:

l̃(θ) =
∑
i:ui=i

log(λ∞)− λ∞T −
α

β
NT +

∑
i:ui 6=i

(logα− β(ti − tui)) (3.15)

and

Q̃(θ|θ(k)) = log(λ∞)

NT∑
i=1

Pr
{
ui = i|Fti , θ(k), ti

}
− λ∞T −

α

β
NT

+

NT∑
i=2

i−1∑
j=1

(logα− β(ti − tj))Pr
{
ui = j|Fti , θ(k), ti

}. (3.16)

Setting the partial derivatives of the above equation with respect to each
parameter equal to 0, we obtain the following estimates of θ(k+1):

λ(k+1)
∞ =

∑NT

i=1 Pr
{
ui = i|Fti , θ(k), ti

}
T

(3.17)

α(k+1) =
β(k+1)

∑NT

i=2

∑i−1
i=1 Pr

{
ui = j|Fti , θ(k), ti

}
NT

(3.18)

β(k+1) =

∑NT

i=2

∑i−1
i=1 Pr

{
ui = j|Fti , θ(k), ti

}∑NT

i=2

∑i−1
j=1(ti − tj)Pr {ui = j|Fti , θ(k), ti}

(3.19)

The analytical solutions can be found for all the three parameters of a Hawkes
process. The stop criterion is now Q̃(θ|θ(k+1))− Q̃(θ|θ(k)) < ε.
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3.3 Simulation and comparison

In this section direct numerical maximization (DNM) method will be com-
pared to EM algorithm using a Monte Carlo simulation. The exact EM
algorithm estimation gives the same result as DNM method according to
Lapham (2014), so the comparison will be carried out between the approxi-
mate EM algorithm and DNM method. Matlab is used to perform the esti-
mation and the code could be found in the Appendix.

Two Monte Carlo simulations with 100 sampling each are performed
over the interval (0, 1000]. The data are generated by using Hawkes process
with given parameters and Ogata’s thinning algorithm described in 2.2.2 .
Two sets of given parameters used in the simulations are:

Set 1 λ∞ = 0.15 α = 0.25 β = 0.5;

Set 2 λ∞ = 0.05 α = 0.04 β = 0.06.

The reason of choosing these two sets of parameters is to analyse the scale
effect, especially for the approximate EM estimation case.

The results are reported in table 3.1 and table 3.2. In the Monte Carlo
simulation with parameters from Set 1, both methods give similar results.
The average of estimates for λ∞ is very close to the given value 0.15 and
two approaches give almost the same result both in terms of average and
standard deviation. The estimates for α are close to the given value 0.25 for
both methods, however estimates from DNM methods give closer result to
the true value on average. The estimates for β are slightly upper biased in
both approaches. The estimates of DNM are proved by Ogata (1978) to be
consistent, so the bias could be caused by the simulation method for which
data are generated. However the true value of all 3 parameters are within a
standard deviation from the average of estimates for both methods.

In the Monte Carlo simulation with parameters from Set 2, the DNM
method gives estimates slightly upper biased, but still close to the true value
of parameters. The results of approximate EM algorithm are more upper
biased both respect to the DNM method and respect to the same algorithm
applied to parameters of Set 1. This positive bias is predictable, because the
approximation (3.14) works better for big value of β, but in the Set 2 β =

0.06, so the feedback effects of final points are not negligible. However the
true value of parameters are within a standard deviation from the average
of estimates for both methods.
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λ∞ α β Execution
Given value 0.1500 0.2500 0.5000 time

DNM method bias 1 0.0016 0.0066 0.0254 0.2424 sDNM std. 0.0195 0.0513 0.1205

Approx EM algorithm bias 0.0018 0.0092 0.0375 1.7428 sApprox EM std. 0.0196 0.0509 0.1202

TABLE 3.1: Estimates of 100 simulations over the interval
(0, 1000] with λ∞ = 0.15, α = 0.25 and β = 0.5 (Set 1). The ex-
ecution times is the average time in seconds required to com-

plete a estimation.

λ∞ α β Execution
Given value 0.0500 0.0400 0.0600 time

DNM method bias 0.0063 0.0002 0.0080 0.1327 sDNM std. 0.0208 0.0152 0.0285

Approx EM algorithm bias 0.0127 0.0058 0.0252 0.6981 sApprox EM std. 0.0215 0.0157 0.0276

TABLE 3.2: Estimates of 100 simulations over the interval
(0, 1000] with λ∞ = 0.05, α = 0.04 and β = 0.06 (Set 2). The
execution times is the average time required to complete a es-

timation

Comparing two simulations, we found that smaller are the value of true
parameters, relatively bigger are the standard deviation of estimates. This
result is coherent with the results of Lewis and Mohler (2011).

From the last column of the table 3.1 and table 3.2 we can notice that the
DNM method is less computationally intensive compared to the approxi-
mate EM algorithm. The first set of parameters (0.15, 0.25, 0.50) requires
longer execution time due to the greater number of occurrences. According
to eq. (2.23), the expect number of events for the set 1 is 299, whereas the set
2 is expected to produce 145 occurrences in the same interval (0, 1000].

1Bias of an estimator = Eθ[θ̃]− θ
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Chapter 4

An application of Hawkes process

This chapter will illustrate an application of Hawkes process with financial
data. The object of our analysis is the occurrences of price jumps in the stock
market.

The dynamics of stock return can be decomposed into continuous Brow-
nian motion and discrete jump component. Many authors showed the pres-
ence of jumps in finance for stock market or for short term interest rate, see
for instance Aıt-Sahalia (2004) and Johannes (2004). Being able to distin-
guish between continuous diffusion and jumps mechanism is important as
it has implications for risk management and asset allocation. (Barndorff-
Nielsen and Shephard, 2006). The early implementation of jumps in finance
focused on Poisson jumps, the main work in this direction has been pro-
vided by Merton (1976). Other works using stochastic differential equations
with jumps could be found for example in Duffie, Pan, and Singleton (2000),
Kou (2002), Schönbucher (2003) or Andersen, Bollerslev, and Diebold (2007).

The first section of this chapter will illustrate the analytical background
of stochastic process with jumps and the statistical test proposed by Corsi,
Pirino, and Reno (2010) for the jumps detection. The second section will
illustrate the results that we obtained by using Hawkes process to model
the occurrence of jumps.

4.1 Analytical background of process with jumps

Our analysis will follow Barndorff-Nielsen and Shephard (2006) and Corsi,
Pirino, and Reno (2010) and it will be based on the special case whereXt, the
logarithmic price of a stock, is a member of the Brownian semimartingale
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with jumps (BSMJ ) class:

Xt =

∫ t

0

µsds+

∫ t

0

σsdWs +

NT∑
j=1

cj (4.1)

Where µ is a predictable locally bounded drift, the volatility σ is a càdlàg,
W is a standard Brownian motion, Nt is a counting process whose intensity
is an adapted stochastic process λt with times of jumps at (τj)j=1,2,...,NT

and
cjs are i.i.d. random variables measuring the magnitude of the jumps. The
first two terms of (4.1) represents the continuous part of the process and the
last term represents the discrete part.

The dynamics of the process Xt is:

dXt = µtdt+ σtdWt + cjdNt (4.2)

The object of interest in our study is the quadratic variation [X] of the
process which can be defined as:

[X]t = X2
t −X0 − 2

∫ t

0

Xs−dXs (4.3)

and the quadratic variation over a time interval of length T is:

[X]t+Tt = X2
t+T −X2

t − 2

∫ t+T

t

Xs−dXs (4.4)

where t indexes the day, as we follow the model proposed by Corsi, Pirino,
and Reno (2010). For example, if T = 1, then [X]t+1

t measures the quadratic
variation of the logarithmic price between the day t and the day t+ 1.

In order to estimate the quadratic variation of [X]t+Tt , we divide the in-
terval [t, t + T ] in n equal sized subintervals of length δ, such that δ = T/n.
In this interval we have n log-return of prices defined as:

∆t,jX = Xt+jδ −Xt+(j−1)δ, j = 1, ..., n (4.5)

In the following work the subscript t will be omitted for simplicity and we
will use the contraction ∆jX = ∆j,tX .
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The quadratic variation [X]t+Tt could be estimated by using the realized
volatility of the process:

RVδ(X)t =

T/δ∑
j=1

(∆jX)2 (4.6)

The realized volatility converge in probability to quadratic variation for δ →
0:

p− lim
δ→0

RVδ(X)t → [X]t+Tt (4.7)

See for example Barndorff-Nielsen and Shephard (2002) for more details
concerning the estimation of quadratic variation.

The detection of the presence of jumps could be carry out by decompos-
ing the quadratic variation [X]t+Tt into its continuous and discrete compo-
nent:

[X]t+Tt = [Xc]t+Tt +
[
Xd
]t+T
t

(4.8)

where [Xc]
t+T

t =
∫ t+T
t

σ2
sds is the integrated variance and [Xd]

t+T

t =
∑Nt+T

j=Nt
c2
j ,

where cj measures the size of the jump at time τj . If there is no jump in
the interval [t, t + T ], the discrete component of quadratic variation is 0,
so [X]t+Tt = [Xc]t+Tt . The basic idea of jumps detection is to test whether
[X]t+Tt − [Xc]t+Tt is equal to 0.

There are different models in the literature to estimate the continuous
component of the quadratic variation. We will follow threshold multipower
variation (TMPV) proposed by Corsi, Pirino, and Reno (2010), which could
be viewed as combination of multipower variation (MPV) introduced by
Barndorff-Nielsen and Shephard (2004) and threshold model of Mancini
(2009).

4.1.1 Estimation by using multipower variation

In order to decompose the continuous quadratic variation from the discrete
one, Barndorff-Nielsen and Shephard (2004) introduced MPV, which is de-
fined as:

MPVδ(X)
[r1,...,rM ]
t = δ1− 1

2
(r1,...,rM )

T/δ∑
j=M

M∏
k=1

|∆j−k+1X|rk (4.9)
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where rk > 0 are parameters indicate the power variation of order rk-th.
For the practical applications in general M ≤ 4. In the special case of MPV
where M = 2, it assumes the specific name of bipower variation, if M = 3 it
is called tripower variation, and so on. MPV is used to estimate the contin-
uous component of quadratic variation and Barndorff-Nielsen, Shephard,
and Winkel (2006) show that:

p− lim
δ→0

MPVδ(X)
[r1,...,rM ]
t =

(
M∏
k=1

µrk

)∫ t+T

t

σr1+...+rM
s ds (4.10)

where µr = E(|u|r) = 2r/2
Γ( r+1

2
)

Γ(1/2)
, and u ∼ N (0, 1).

In general, MPV is used for the estimation of integrated variance,
∫ t+T
t

σ2
sds,

and integrated quarticity,
∫ t+T
t

σ4
sds. We will illustrate as examples the two

most relevant cases of MPV, Bipower variation (BPV) and Tripower varia-
tion (TriPV), which are used by Barndorff-Nielsen and Shephard (2006) to
construct statistical test for the jump detection.

Bipower variation for the estimation of integrated variance is defined as:

BPVδ(X)t = µ−2
1 MPVδ(X)

[1,1]
t = µ−2

1

T/δ∑
j=2

|∆jX| · |∆j−1X| →
δ→0

∫ t+T

t

σ2
sds

(4.11)
where µ1 ' 0.7979. And Tripower variation for the estimation of integrated
quarticity is defined as:

TriPVδ(X)t = µ−3
4
3

·MPVδ(X)
[ 4
3
, 4
3
, 4
3

]
t

= µ−3
4
3

1

δ

T/δ∑
j=3

|∆jX|
4
3 · |∆j−1X|

4
3 · |∆j−2X|

4
3 →
δ→0

∫ t+T

t

σ4
sds

(4.12)

where µ4/3 ' 0.8309. Both BPV and TriPV converge in probability as δ → 0.
Barndorff-Nielsen and Shephard (2006) argue that under sufficient regular-
ity, frictionless market conditions and in the absence of jumps in the price
path,

z = δ−
1
2

(RVδ(X)T − BPVδ(X)T )× RVδ(X)−1
T√(

π2

4
+ π − 5

)
×max

{
1,

TriPVδ(X)T
(BPVδ(X)T )2

} (4.13)

where z → N (0, 1) in distribution as δ → 0. Hence, an abnormally large
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value of standardized difference between realized volatility and bipower
variation is an evidence of a jump over the interval considered.

4.1.2 Estimation by using threshold function

An alternative estimator of integrated variance and integrated quatircity
based on a threshold function Θ(δ) is provided by Mancini (2009). The esti-
mator are defined as follows:

TIVδ(X)t =

T/δ∑
j=1

|∆jX|2I{|∆jX|2≤Θ(δ)}, (4.14)

and

TIQδ(X)t =
1

3δ

T/δ∑
j=1

|∆jX|4I{|∆jX|2≤Θ(δ)}, (4.15)

where Θ(δ) is a deterministic threshold function of the lag δ between the
observations, such that:

lim
δ→0

Θ(δ) = 0, and lim
δ→0

δ log 1
δ

Θ(δ)
= 0. (4.16)

Mancini (2009) showed that for δ → 0 the estimators converge in probability
to the true value:

p− lim
δ→0

TIVδ(X)t =

∫ t+T

t

σ2
sds, p− lim

δ→0
TIQδ(X)t =

∫ t+T

t

σ4
sds.

4.1.3 Estimation by using threshold multipower variation

Although BPV (4.11) and TriPV (4.12) are consistent estimators of integrated
variance and integrated quarticity for δ → 0, Corsi, Pirino, and Reno (2010)
showed that in finite sample they are significantly upper biased in pres-
ence of jumps and this causes an underestimation of the jump component.
This problem cannot be solved by simply reducing δ, because for small δ
the market microstructure noise would make unreliable the estimation of
realized volatility (4.6), which assume the absence of noise (Hansen and
Lunde, 2006). The estimators TIV (4.14) and TIQ (4.15) are potentially less
biased, but they have the problem of being sensitive to the specification of
the threshold. (Corsi, Pirino, and Reno, 2010)
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In order to overcome the problems described above, Corsi, Pirino, and
Reno (2010) introduced estimators of integrated variance and integrated
quarticity by using threshold multipower variation (TMPV), which could
be seen as a combination of mulpipower variation and threshold function.
The thresold multipower variation is defined as:

TMPVδ(X)
[r1,...,rM ]
t = δ1− 1

2
(r1,...,rM )

T/δ∑
j=M

M∏
k=1

|∆j−k+1X|rkI{|∆j−k+1X|2≤ϑj−k+1}

(4.17)
where ϑ is the threshold function, but in contrast to Θ(δ) of Mancini (2009),
ϑ is not a function of δ. The exact expression of ϑ will be provided below.

As in the case of MPV (4.10), Corsi, Pirino, and Reno (2010) showed the
following convergence in probability as δ → 0:

p− lim
δ→0

TMPVδ(X)
[r1,...,rM ]
t →

(
M∏
k=1

µrk

∫ t+T

t

σr1,...,rMs

)
(4.18)

Also, they showed that TMPV has the same distribution of MPV if δ → 0.
However, when δ is large enough to avoid the microstructure noise, authors
argue that TMPV model has best performance.

The threshold ϑ in eq. (4.17) is defined as a multiple of the local variance.
The estimation of local variance is carry out by using a local linear filter of
length 2L+ 1 adjusted for the presence of jumps and by iterating in R:

V̂ R
t =

L∑
i=−L, i 6=−1,0,1

K

(
i

L

)
(∆t+iX)2I{(∆t+iX)2≤c2V ·V̂

R−1
t+i }

L∑
i=−L, i 6=−1,0,1

K

(
i

L

)
I{(∆t+iX)2≤c2V ·V̂

R−1
t+i }

R = 1, 2, ...

(4.19)
where V̂ 0

t = +∞, so that all the observations can be used in the first step;
cV is set by authors equal to 3; L is the number of adjacent observations
considered for the estimation of the local variance, with the exclusion of the
immediate adjacent returns where i = −1, 0, 1; K(.) is the a Gaussian kernel
function where:

K(y) = − 1√
2π

exp

(
−y

2

2

)
,

the choice of the kernel K(.) is not relevant for the application of our model
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(Wand and Jones, 1994). Jumps are detected at each iteration by the condi-
tion (∆t+iX)2 > c2

V · V̂ R−1
t+i and removed by means of the indicator function.

The iterations stop when V̂ R = V̂ R−1, which always happens after 2 or 3

iterations at most in the high frequency data.
The threshold ϑ of TMPV (4.17) is defined as:

ϑt = c2
ϑ × V̂ R

t (4.20)

where cϑ is a dimensionless parameter. Corsi, Pirino, and Reno (2010) showed
that the estimators are robust to the change of cϑ and they set cϑ = 3 for the
practical applications.

Corsi, Pirino, and Reno (2010) proposed a jump detection test which is
a improvement of z statistic test (4.13) proposed by Barndorff-Nielsen and
Shephard (2006). here, TMPV estimators are used instead of MPV estima-
tors. However, in the application of TMPV when |∆jX|2 > ϑj , the corre-
sponding return is removed by the means of the indicator function. This
leads to a negative bias of TMPV under the null hypothesis of no jumps, be-
cause variation larger than the threshold exist also in the absence of jumps.
This issue can be effectively overcome by setting |∆jX|r equal to its ex-
pected value when |∆jX|2 > ϑj . Assuming that ∆jX ∼ N (0, σ2) we have:

E[|∆jX|r |(∆jX)2 > ϑ] =
1

2N

(
−
√
ϑ

σ

)
√
π

(
2σ2
) r

2 Γ

(
r + 1

2
,
ϑ

2σ2

)
(4.21)

where N(x) is the standard normal cumulative function and Γ(α, x) is the
upper incomplete gamma function 1. We can use the realized local variance
(4.19) for the estimation of σ2, so that σ̂2 = ϑ/c2

ϑ from eq. (4.20). Then, the
correct TMPV (C-TMPV) estimator is defined as:

C-TMPVδ(X)
[r1,...,rM ]
t = δ1− 1

2
(r1+...+rM )

T/δ∑
j=M

M∏
k=1

Zrk(∆j−k+1X,ϑj−k+1) (4.22)

1Precisely, N(x) =
∫ x
−∞

1√
2π
e−

1
2 s

2

ds, and Γ(α, x) =
∫ +∞
x

sα−1e−sds
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where Zr(∆X,ϑ) is defined according to (4.21):

Zr =


1

2N(−cϑ)
√
π

(
2
ϑ

c2
ϑ

) r
2

Γ

(
r + 1

2
,
c2
ϑ

2

)
if (∆X)2 > ϑ

|∆X|r if (∆X)2 ≤ ϑ

(4.23)

As in the z statistic test proposed by Barndorff-Nielsen and Shephard
(2006), the relevant estimators for a corrected jump detection test are cor-
rected threshold bipower variation (C-TBPV) with [r1, r2] = [1, 1] and cor-
rected threshold tripower variation (C-TTriPV) with [r1, r2, r3] = [4

3
, 4

3
, 4

3
].

These estimators are defined as following:

C-TBPVδ(X)t = µ−2
1 C-TMPVδ(X)

[1,1]
t = µ−2

1

T/δ∑
j=2

Z1(∆jX,ϑj)Z1(∆j−1X,ϑj−1),

(4.24)
and

C-TTriPVδ(X)t = µ−3
4
3

C-TMPVδ(X)
[ 4
3
, 4
3
, 4
3

]
t

= µ−3
4
3

1

δ

T/δ∑
j=3

Z 4
3
(∆jX,ϑj)Z 4

3
(∆j−1X,ϑj−1)Z 4

3
(∆j−2X,ϑj−2).

(4.25)
Corsi, Pirino, and Reno (2010) proposed the corrected threshold statis-

tical test (C-Tz) based on z test of Barndorff-Nielsen and Shephard (2006).
The C-Tz test statistic is defined as:

C-Tz = δ−
1
2

(RVδ(X)T − C-TBPVδ(X)T )× RVδ(X)−1
T√(

π2

4
+ π − 5

)
×max

{
1,

C-TTriPVδ(X)T
(C-TBPVδ(X)T )2

} (4.26)

the authors showed that C-Tz has more power and it is less biased compared
to z test statistic of (4.13). Also they proved that C-Tz → N (0, 1) in law as
δ → 0.

In the following applications we will use C-Tz test statistic for the jumps
detection.
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4.2 An example of Hawkes model with financial

data

As an example of application, we used Hawkes process to model the inten-
sity of price jumps for some stocks. In the literature there is evidence that
price jumps are followed by increased volatility, see for example Joulin et
al. (2008) or Corsi, Pirino, and Reno (2010). Here, we want to verify if price
jumps could be modelled as a self-exciting stochastic process, i.e. if a price
jump has positive impact on the probability of future price jumps.

The stocks being considered in our example are: Citigroup (C), General
Electric (GE), Pfizer (PFE), Cisco (CSCO) and Microsoft (MSFT). We anal-
ysed the period from January 2nd 1998 to June 5th 2015, for the total of 4384

trading days. For every trading day, C-Tz statistics (4.26) is used to detect
jumps with a confidence level of 99% (C-Tz > Φ99% = 2.58). Within a single
trading day, δ = 5 minutes has been set in order to avoid microstructure
noise. Trades start at 9:30 and end at 16:30, but in order to avoid noise in the
opening, we consider the first price at 9:35 rather than 9:30. We recorded 77
prices per each day for a total of 76 log-returns.

We used both the approximated EM algorithm and DNM method to es-
timate the parameters of Hawkes model according to eq. (2.9):

λt = λ∞ +
∑
j:tj<t

αe−β(t−tj)

the results are reported in the Table 4.1. Whereas EM algorithm gives mean-
ingful estimates for all stocks, DNM method has some issue in the estima-
tion of CSCO and MSFT, so we will not use these results for the comparison.
For C, GE and PFE the estimated α̂ show similar values for both methods.
EM algorithm in general estimates a higher decay rate β̂ compared to DNM
method, but it is compensated by a lower background intensity λ̂∞. This
means EM algorithm attribute a relatively bigger account to the background
process, which can be also noticed by the lower estimated branching ratio
η̂ and lower expected percentage of endogenous jumps compared to DNM
method. However, for C, GE and PFE both methods claim that there is a sig-
nificant percentage of jumps caused endogenously , around 30% according
to EM algorithm and more than 40% according to DNM method.

The Figures 4.1 and 4.2 show the dynamics of intensity λt. The red line is
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λ̂∞ α̂ β̂ η̂ NT E[NT ]
Exp endoge-

nous jumps %
C
EM 0.0840 0.0057 0.0185 0.3101 534 531.04 30.62%
DNM 0.0614 0.0053 0.0104 0.5088 534 535.82 49.74%

GE
EM 0.0908 0.0085 0.0288 0.2944 564 562.13 29.20%
DNM 0.0744 0.0081 0.0188 0.4292 564 566.23 42.39%

PFE
EM 0.0987 0.0068 0.0245 0.2753 597 594.89 27.27%
DNM 0.0762 0.0058 0.0130 0.4494 597 597.65 44.14%

CSCO
EM 0.1067 0.0044 0.0393 0.1108 526 525.62 11.01%
DNM 0.1200 -22227 332613 -0.0668 526 493.05 -6.68%

MSFT
EM 0.1186 0.0056 0.0327 0.1704 627 626.10 16.92%
DNM 0.1430 -31271 246503 -0.1269 627 556.42 -12.69%

TABLE 4.1: Results of EM and DNM estimation. λ̂∞, α̂
and β̂ are estimated parameters of Hawkes process as in
eq. (2.9). η is the branching ratio as in eq. (2.10). NT

is the total number of jumps observed. E[NT ] is the ex-
pected total number of jumps calculated using eq. (2.23).
The percentage of expected endogenous jumps is calculated as
(1−Exp. background jumps/E[NT ]), where Exp. background

jumps is λ∞ × T where T = 4384.
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the fit of DNM method and the blue line is the one from EM algorithm. Two
methods provide similar results graphically for C, GE and PFE. Whereas
the best estimation of DNM method for CSCO and MSFT is a homogeneous
Poisson process with intensity λ∞.

In order to validate the self-exciting nature of jumps process, we per-
formed Ljung-Box test (Ljung and Box, 1978) and Christoffersen indepen-
dent test (Christoffersen, 1998) to find the evidence of autocorrelation in the
jumps process. We applied both statistical tests to the vector h, which is a
binary vector of 4384 elements, where every element is associated to a trad-
ing day and ht = 1 if there is a jump in the day t and ht = 0 otherwise.
The detailed description of statistical tests could be found in the Appendix
and the test results are reported in Table 4.2 and Table 4.3. Ljung-Box test
shows evidence of serial correlation for C, GE, and PFE with 95% confi-
dence and supports the presence of self-exciting nature for these stocks, but
the null hypothesis of serial independence cannot be rejected for CSCO and
MSFT. The latter result is coherent with the estimation of DNM method,
according to which jumps of CSCO and MSFT are distributed following a
homogeneous Poisson process of intensity λ∞. The result of Christoffersen
independent test reported in Table 4.3 shows that the jumps of all stocks
are distributed independently, so this statistical test does not support the
existence of self-exciting nature in the jumps process.

Ljung-Box
test p-value serial independence

C 0.0415 no
GE 0.0021 no
PFE 0.0005 no
CSCO 0.4154 yes
MSFT 0.1649 yes

TABLE 4.2: Ljung-Box test with confidence of 95%. The null
of serial independence is rejected at 95% for C, GE and PFE.

Whereas the null cannot be rejected for CSCO and MSFT

However, both Christoffersen and Ljung-Box test have some issues in
our application. The independent test of Christoffersen is designed for bi-
nary data, but it tests the independence of output of day t from day t − 1.
Each realisation of Hawkes process change all the future intensity with an
exponential decay rate, but Christoffersen’s test cannot capture the effects
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FIGURE 4.1: Intensity dynamics of C, GE and PFE using pa-
rameters estimated by EM (blue line) and by DNM (red line).

Christoffersen
test p-value serial independence

C 0.5915 yes
GE 0.4967 yes
PFE 0.612 yes
CSCO 0.3358 yes
MSFT 0.2687 yes

TABLE 4.3: Christoffersen independent test with confidence of
95%. p-values suggest serial independence for all the stocks.
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FIGURE 4.2: Intensity dynamics of CSCO and MSFT using pa-
rameters estimated by EM (blue line) and by DNM (red line).

Note that the intensity of DNM model is constant.
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of lags bigger than 1 and this could bring to an underestimation of serial
correlation. On the other hand, Ljung-Box tests the overall randomness till
20 lags (Matlab default setting), but it performs poorly with binary data
when the probability of output are unequal (Burns, 2002). In our example
the probability of a jump is around 12-14%, whereas the probability of no
jump is around 86-88%.

Considering the results and the practical issues of independent tests, we
conclude that Hawkes processes could be a possible model at least for the
stocks C, GE and PFE, whereas there is no strong evidence of self-exciting
jumps process in the technology stocks CSCO and MSFT.
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Conclusion

The application of Hawkes process in finance is a very recent subject in the
literature. This thesis provides an analytical background of univariate un-
marked Hawkes process and it shows an example of its application. Despite
the fitness of self-exciting model for the occurrences of price jumps is not ro-
bust in our analysis, Hawkes process can still provide valuable informations
for the investors. A more accurate model could be accomplished by using
multivariate marked hawkes process, for example it can take into account
the sign and the size of jumps.

The potential application of Hawkes process in other area of finance
seems promising. There is a growing literature of self-exciting model in
high frequency trading and financial contagion. Future progress could be
made in these directions by reducing the computational burden of estima-
tion and by implementing forecast model of financial market.
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Appendix A

All the simulations, estimations and data analysis in this work have been
made by using Matlab.

A.1 Simulation of Hawkes process

We assumed that λ0 = λ∞ and the function for the conditional intensity λt
uses equation 2.9:

λt = λ∞ +
∑
j:tj<t

αe−β(t−tj)

The code for the computation of λt in Matlab is the following:

1 func t ion [ lambda ] = cond_int ( t ,H,mu, alpha , Beta )
2 x = length ( t ) ;
3 lambda = mu∗ones ( x , 1 ) ;
4 f o r i = 1 : x
5 h = H;
6 h = h ( h < t ( i ) ) ;
7 i f ~isempty ( h )
8 lambda ( i ) = lambda ( i ) + alpha∗sum( exp(−Beta

∗ ( t ( i )−h ) ) ) ;
9 end

10 end

Where H represents the history of the process. mu, alpha and Beta are pa-
rameters λ∞, α and β. Length(t) is always equal to 1 for the computation of
the conditional intensity, but in order to draw the figure 2.3, x evenly spaced
points are generated in the interval (0, T ] using the function linspace(0,T,x),
in this case t and lambda are vectors of length x containing the conditional
intensity for each of x points in the time axis.
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The matlab code for the simulation of Hawkes process using Ogata’s
thinning algorithm as described in Daley and Vere-Jones (2002) is the fol-
lowing:

1 func t ion [ h ] = Ogata ( T ,mu, alpha , Beta )
2 kappa = 0 . 5 ;
3 t = 0 ;
4 h = [ ] ;
5 while t < T
6 Mt = cond_int ( t + 0 . 0 0 0 0 1 , h ,mu, alpha , Beta ) ;
7 Lt = kappa∗Mt ;
8 R = exprnd (1/Mt) ;
9 i f R > Lt

10 t = t + Lt ;
11 e l s e
12 U = rand ;
13 i f U > ( cond_int ( t +R , h ,mu, alpha , Beta ) / Mt)
14 t = t + R ;
15 e l s e
16 t = t + R ;
17 h = [ h t ] ;
18 end
19 end
20 end
21 end

Where Mt = λt+ and kappa has been set equal to 0.5 according to Daley and
Vere-Jones (2002) in order to give a reasonable compromise between setting
the bound too high, so generating excessive trial points, and setting it too
low, thus requiring too many iterations. The output of this function is a
vector h containing the times of the simulated point events, where length(h)
= NT . This code has been used to simulate the Hawkes process showed in
Figure 2.3.
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A.2 Parameters estimation

A.2.1 DNM of log-likelihood

The log-likelihood is computed according to eq. (3.2):

l(θ) = T − Tλ∞ −
α

β

NT∑
i=1

(
1− e−β(T−ti)

)
+

NT∑
i=1

log (λ∞ + αA(i)) .

and parameters are estimated by minimizing the negative of log-likelihood
using fminunc.

The computation of −l(θ) is the following:

1 func t ion [ neg_ log_ l ike ] = l o g _ l i k e l i h o o d ( par ,H, T )
2 mu = par ( 1 ) ; alpha = par ( 2 ) ; Beta = par ( 3 ) ;
3 NT = length (H) ;
4 sum1 = sum(1−exp(−Beta ∗ (T−H) ) ) ;
5 A = 0 ;
6 f o r i = 2 :NT
7 A( i ) = exp(−Beta ∗ (H( i )−H( i −1) ) ) ∗(1+A( i −1) ) ;
8 end
9 sum2 = sum( log (mu+alpha∗A) ) ;

10 neg_log_ l ike = − ( T − mu∗T − alpha/Beta∗sum1 + sum2 ) ;

where NT is the counting measure of interval (0, T ], A(i) is the recursive
component, and

sum1 =

NT∑
i=1

(
1− e−β(T−ti)

)
sum2 =

NT∑
i=1

log (λ∞ + αA(i))

The output of the above function is the negative of log-likelihood, which is
minimized by the following function to estimate the parameters:

1 func t ion [ t h e t a ] = DNM(H, T )
2 x0 = [ 0 . 1 0 . 1 0 . 1 ] ;
3 f = @( t h e t a ) l o g _ l i k e l i h o o d ( theta ,H, T ) ;
4 [ t h e t a ]= fminunc ( f , x0 ) ;
5 end
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where x0 is the initial guess and theta is a vector of 3 elements containing
estimated parameters [λ̂∞ α̂ β̂].

A.2.2 Approximate EM algorithm

The code for approximate EM algorithm is the following:

1 func t ion [ t h e t a ] = EM (H, T )
2 mu= 0 . 1 ; alpha = 0 . 1 ; Beta = 0 . 1 ;
3 NT=length (H) ;
4 eps i lon =1;
5 k =2; Q( 1 ) =0;
6 p ( 1 , 1 ) =1;
7 while abs ( eps i lon ) >=0.01 | k<100
8 f o r i =2:NT;
9 t i m e d i f f ( i , 1 : i −1)=H( i )−H( 1 : i −1) ;

10 sumd=sum( alpha∗exp(−Beta∗ t i m e d i f f ( i , 1 : i −1) ) ) ;
11 p ( i , 1 : i −1)= alpha∗exp(−Beta∗ t i m e d i f f ( i , 1 : i −1) )

/ (mu + sumd) ;
12 p ( i , i ) = mu / (mu + sumd) ;
13 end
14 t i m e d i f f ( : ,NT) =0;
15 q= t r i l ( p,−1) ;
16 sum1=sum( diag ( p ) ) ;
17 sum2=sum(sum( q ) ) ;
18 sum3=sum(sum( q . ∗ t i m e d i f f ) ) ;
19

20 mu=sum1/T ;
21 alpha= sum2^2 / (NT ∗ sum3 ) ;
22 Beta= sum2 / sum3 ;
23

24 sum4= sum(sum( q . ∗ ( log ( alpha )−Beta∗ t i m e d i f f ) ) ) ;
25 Q( k ) = log (mu) ∗sum1 − mu∗T − alpha∗NT/Beta + sum4 ;
26 eps i lon=Q( k )−Q( k−1) ;
27 k=k +1;
28 end
29 t h e t a = [mu alpha Beta ] ;
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The underlying theory and the notations could be found in Section 3.2.2. In
particular, in our code the initial value of iteration index k has been set equal
to 2 and Q(1)=0 in order to allow the expression Q(k)-Q(k-1). p is the matrix
of triggering probability, and the sums in the code equal to the following
expressions:

sum1 =

NT∑
i=1

Pr
{
ui = i|Fti , θ(k), ti

}
sum2 =

NT∑
i=2

i−1∑
i=1

Pr
{
ui = j|Fti , θ(k), ti

}
sum3 =

NT∑
i=2

i−1∑
j=1

(ti − tj)Pr
{
ui = j|Fti , θ(k), ti

}
sum4 =

NT∑
i=2

i−1∑
j=1

(logα− β(ti − tj))Pr
{
ui = j|Fti , θ(k), ti

}
In the exact EM algorithm and in the most cases of approximate EM al-

gorithm the conditioned expected log-likelihood is an increasing function of
number of iterations, so that the condition Q̃(θ|θ(k+1)) > Q̃(θ|θ(k)) is always
true, see for example Figure A.1. But in the approximate EM algorithm,
especially when the value of parameters are close to 0, the conditioned ex-
pected log-likelihood could be non monotonic as showed in Figure A.2. The
maximum reached after around 20 iterations gives apparently the best esti-
mates, but indeed the estimates are closer to the true values when the func-
tion approach to the horizontal asymptote as number of iterations increases.
The same observation has been made also by Lapham (2014).

In order to make sure that the algorithm does not converge to the appar-
ent best estimates, the stop condition has been set Q̃(θ|θ(k+1)) − Q̃(θ|θ(k)) <

0.01 and k ≥ 100, allowing at least 98 iterations (k = number of iteerations -1).

A.3 Independent tests

A.3.1 Ljung-Box test

Ljung-Box test (Ljung and Box, 1978) is defined as following:

H0: The data are independently distributed;
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FIGURE A.1: Conditioned expected log-likelihood is strictly
increasing in number of iterations.
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A.3. Independent tests 59

H1: The data are not independently distributed. There is serial correlation
in the data.

The test statistic is defined as:

Q = T (T + 2)
h∑
k=1

ρ̂2
k

T − k
(A.1)

where T is the sample size, ρ̂k is the estimated autocorrelation at lag k, and
h is the number of lags being tested. In the default setting of Matlab h =

min[20, T −1], in our analysis T is the total number trading days considered,
which equal to 4384, so h = min[20, 4383] = 20.

The estimated autocorrelation is computed as:

ρk =

∑n
t=k+1 rtrt−k∑n

t=1 r
2
t

where rt is the residual of t−th element of the sample.
Under the null hypothesis the test statistic is distributed as χ2

(h). For
significant level a, we reject H0 if:

Q > χ2
1−a,h.

A.3.2 Christoffersen independent test

Christoffersen independent test (Christoffersen, 1998) is defined as follow-
ing:

H0: There is independence from one period to the next;

H1: There is no independence from one period to the next. Serial correla-
tion with one lag.

Let ti = 0 if there is no jump in the day t and ti = 1 if there is a jump in
the day t. We define the conditional probability of a jump as:

q0 = Pr(ti = 1|t−1i = 0)

q1 = Pr(ti = 1|t−1i = 1)
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In our analysis there are T = 4384 trading days, so there are 4383 consecu-
tive observations (t−1i,t i) such that:

a00 + a01 + a10 + a11 = 4383

where a00 is the total number of consecutive observations of type (0, 0), a10

is the total number of consecutive observations of type (1, 0) and so on (See
Table A.1 for the contingency table). The test want to verify if q̂0 = q̂1 = q̂,
where q̂ is the estimated probability of a jump under the null:

q̂ =
a01 + a11

a00 + a01 + a10 + a11

.

If the null does not hold, we estimate the conditional probability of a jump
at day t as:

q̂0 =
a01

a00 + a01

, and q̂1 =
a11

a10 + a11

.

The test statistic is a likelihood ratio test, where the likelihood is defined
as:

Λ =
(1− q̂)a00+a10(q̂)a01+a11

(q̂0)a01(1− q̂0)a00(q̂1)a11(1− q̂1)a10
(A.2)

−2 log(Λ) is distributed as χ2
(1). For significant level a, we reject H0 if:

−2 log(Λ) > χ2
1−a,1.

ti = 0 ti = 1
t−1i = 0 a00 a01 a00 + a01
t−1i = 1 a10 a11 a10 + a11

a00 + a10 a01 + a11 a00 + a01 + a10 + a11

TABLE A.1: Contingency table of Christoffersen indepen-
dence test
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