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Abstract

In this work, we present an open-source system that will help elderly and people
with severe physical disabilities to use a telepresence robot, by means of brain sig-
nals. Driving a mobile device, such a robot, via Brain Computer Interface (BCI)
can improve the quality of life by allowing patients to join relatives and friends,
located in different rooms, in their daily activities. In order to lighten the bur-
den of driving the robot, we use a shared control approach, so that the user needs
only to concentrate on the final destination, while the robot takes care of obstacle
detection and avoidance. In particular, we propose a semi-autonomous system
where the autonomous navigation uses a potential field approach. The system can
be seen as a Deterministic Finite Automaton where data from different sensors are
merged together, in order to create a dynamic map used by the navigation.
We have developed this system using ROS (Robot Operating System), and tested
it using a Hokuyo URG-04LX-UG01 and a second-generation Kinect on a Turtle-
Bot, modified to be a telepresence robot. To prove the system portability, we
successfully tested our work also with a Pioneer 3-AT which uses a Sick LMS-
100 and a first-generation Kinect as sensors. In order to provide the best benefit
to impaired patients, another contribution of this work is the implementation of a
new interface able to stream video/audio data from the robot. The interface ex-
ploits the GStreamer framework. Finally, we tested the system with a user giving
commands through the BCI.
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Chapter 1

Introduction

The quality of life of a person is negatively impacted when he or she cannot par-
ticipate in everyday activities with family and friends, which is often the case for
people with special needs, e.g. elderly or people with severe disabilities, who are
full time residents at medical and healthcare facilities or are constrained at bed.
Isolation can lead to feelings of overall sadness which bring to additional health
issues [1]. Telepresence robots may be a benefit as they provide a way to make
these people able to engage themselves again in social activities. The term telep-
resence refers to those technologies that allow a person to experience being in a
location (or even have an effect on it) without being physically present there. This
technology has also a great impact on the lives of the other family members: it al-
lows them to keep an eye on the person with special needs without having to stay
in the same room, thus also improving their quality of life. Examples of recent
projects that have developed such a kind of systems are: Giraff [2], Double 2 [3]
and Amy A1 [4] (see Figure 1.1).
The problem is that these systems are not easily controllable by those people with
special needs. Teleoperating a robot requires a skill that it is not simple to obtain
by those people, as they have reduced, if any, mobility. In particular, using a
controller to drive a mobile device could be out of their possibilities.
The final goal of this work is to present an open-source system that will help el-
derly and people with severe physical disabilities to use a telepresence robot, with-
out the need of using their hands. The tool that we will use in order to achieve this
result will be a Brain-Computer Interface (BCI). BCI-driven robots can be guided
through brain signals, so that users with an active mind can use them without
needing to move. However, controlling such an application through an uncertain
channel as a BCI can be complicated and exhaustive, because the commands that
can be delivered are limited. A shared control approach can help in this scenario.
The cooperation between the user and the robot allows the former to only focus
the attention on his/her final destination, while the latter will deal with low level
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(a) Giraff (b) Double 2 (c) Amy A1

Figure 1.1: Examples of telepresence robots.
(Sources: http://www.aal-europe.eu/projects/excite/,

http://www.doublerobotics.com/, http://telepresencerobots.com/)

navigation problems, such as obstacle detection and avoidance.
In order to create such a system, we will start by implementing a potential field
based navigation. We will integrate data from different sensors, keeping the sys-
tem as modular as possible, so that we could add and remove sensors if the need
arises. Then, we will have to create the shared control system, thus we will allow
the user to give simple commands, from a remote laptop, to make the robot rotate
in the desired direction. By using this semi-autonomous approach we will give to
the BCI user a feeling of being able to fully control the robot. After adding a bidi-
rectional audio/video connection, the user will be finally able to join and interact
with relatives and friends that are in different rooms, thus improving their quality
of life and, somehow, their independence.

1.1 State of the Art
In the last years, much work has been done in developing autonomous navigation
by mobile robots. There are three general way to approach the problem of mobile
navigation: teleoperated, autonomous or semi-autonomous.
The teleoperated approach relies on the human operator’s skill to fully control a
mobile robot, so these system are relatively inexpensive, with respect to the sen-
sors needed. These system are often used with telepresence robot. For example in
[5] the authors developed a teleoperated telepresence system, designed specially
for elderly care. In this work they do not address the problem of the senior ability
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to effectively teleoperate the robot. This is usually a major problem, also consid-
ering that they must be able to react in time to avoid possible obstacles that are in
the robot path.
Instead, the autonomous approach focuses on making the robot navigate through
the environment with very little, if any, human control. Such systems needs mul-
tiple sensors and advanced algorithms, which can be economically expensive. A
fundamental component in this type of navigation is the localization of the robot
in an environment, as well as building a map of it. The problem of placing a robot
in an unknown environment and making it incrementally build a consisted map of
this environmente while simultaneously determining its location within this map
is a famous problem called Simultaneous Localization and Mapping (SLAM) [6].
In [7] the authors propose the Adaptive Monte Carlo Localization (AMCL) ap-
proach, which uses a particle filter to track the pose of a robot in a known map,
as a mean to localize the robot. On the other hand, Gmapping [8] proposes to
solve the SLAM problem by using Rao-Blackwellized particle filters [9] on a
grid to learn the map by taking into account the movement of the robot and the
most recent observation, thus creating a map of the environment. Gmapping and
AMCL can be seen as the starting point for many other works. Among the many,
in [10] the authors developed a system for elder care, making the robot navigate
autonomously with both static and dynamic obstacle avoidance. This system is
particularly interesting because of the marked similarities between it and the one
presented in this work. Among the tasks their robot can accomplish, auto-docking
and the automatic coverage of known maps are notable.
When it comes to autonomous navigation, different techniques can be applied.
For example, in [11] the authors developed a navigation system using three dif-
ferent algorithms: genetic algorithm, artificial neural network and A*. Another
technique used in autonomous navigation is based on the concept of potential
field, that is also the method used in this work. In [12] the authors make the
robot navigate through the environment using the potential field method and the
ant-colony paradigm to optimize the results. All the methods presented so far re-
quired a known map of the environment. As we have seen, however, such detailed
information is rarely available and often hard to retrieve. Instead, the algorithm in
our work relies on a dynamic map, thus the computational effort of the planner is
lower and we do not have to localize the robot, because we can rely on the user
will.
This is the principle of the semi-autonomous approach: the robot is able to navi-
gate on its own, but the user can monitor and command the robot as needed. The
work on which our project is based rely on a semi-autonomous approach. In [13]
the authors created a shared control system that could be driven by the BCI. In
our work we extend this solution by adding the possibility to use data from mul-
tiple sensors, specially from the Kinect v2, the Deterministic Finite Automaton
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approach, that allows to obtain different behaviours of the robot to the need, and
the video/audio streaming through GStreamer.

1.2 Thesis structure
The remainder of the thesis is organized as follows:

• In Chapter 2, we will describe methods and libraries used in this work, as
well as the framework on which we based our system: ROS. Then we will
give information about the robots used to test our algorithms and about the
sensors that are mounted on them.

• Chapter 3 describes the basis of autonomous navigation. It will focus on
potential field based navigation, particularly on dynamic navigation, that is
the method that we will use to make the robot move and avoid obstacles.

• In Chapter 4, we will describe the methodologies applied to create the
telepresence apparatus. We will discuss about GStreamer as the framework
to link the robot vision to the laptop of the end-user, and about the BCI as
the tool to help the robot to reach a goal, giving the user intentions.

• In Chapter 5, we will describe the core part of our work, pointing out the
issues occurred and how we overcome them.

• Finally, in Chapter 6, we will report our conclusions and possible future
works.



Chapter 2

Materials and Methods

In this chapter we will describe materials and libraries used in this work. The
algorithms are written in C++ and tested under Ubuntu 14.04 Trusty Tahr.

2.1 Robot Operating System (ROS)

Figure 2.1: ROS Logo. Source: http://ros.org/

ROS (Robot Operating System)[14] is a framework for robot software develop-
ment, providing libraries and tools to help software developers create robot appli-
cations. ROS is considered a meta-operating system, because it provides the ser-
vices that are expected from an operating system: hardware abstraction, low-level
device control, message passing between processes and package management. At
the same time it can be considered a middleware, because it provides methods to
achieve inter-process communication.
ROS was designed to be as distributed and modular as possible, so that develop-
ers could reuse code already written with minimum effort and could devote them-
selves to solve new problems. One of the goals of ROS is, in fact, to guarantee a
software platform compatible with most robots, no matter how diverse. Thanks to
its distributed nature a wide collection of algorithm ready to use is available to the

5
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end-user. To understand ROS modularity, think of a system controlling a movable
robot: one process (called node) controls a sensor, another node uses sensor data
to create a map, a different node calculate the shortest path, another node moves
the robot, and so on.
ROS is based on a graph architecture. From the computational point of view
this graph is the peer-to-peer network of ROS processes that are processing data
together. The main computational graph concepts in ROS are:

• Nodes: A node in ROS is a running process that performs computation.
Nodes are the main entity in the graph. They can communicate with each
other using streaming topics, RPC services or the Parameter Server. A
node is written with the use of a ROS client library, such as roscpp or rospy.

• Messages: A message is a simple data structure, comprising typed fields.
Standard primitive types are supported, but it’s possible to define own mes-
sages. Nodes communicate with each other by publishing messages to top-
ics.

• Topics: A topic is a named bus over which nodes exchange messages. Top-
ics are part of publishers/subscribers pattern. A node that is interested in
certain data will subscribe to the appropriate topic, while, a node that gen-
erates data will publish to an appropriate topic. There can be multiple con-
current publishers and subscribers to a topic. This permits to decouple the
production of information from its consumption.

• Services: A service is an alternative way of communication that does not
use topics and allows to create RPC request/reply interactions. Services are
defined by a pair of message structures: one for the request and one for the
reply.

• Master: The ROS Master provides name registration and look-up to the
rest of the computation graph. Without the Master, nodes would not be able
to find each other, exchange messages, or invoke services.

• Parameter Server: The Parameter Server runs inside of the ROS Master
and is used to store and retrieve parameters at run-time.

• Bags: A bag is a file format for storing ROS message data. ROS permits,
through bags, to record one or more topics and play them back afterward.

An example of the ROS graph is visible in Figure 2.2.
The ROS distribution used in this work is ROS Indigo Igloo.
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Figure 2.2: ROS graph: nodes are represented as ellipses, topics are represented
as rectangles. An outgoing edge means that the node is a publisher for the topic,
while an incoming edge means that the node is subscribed to the topic.

2.2 Point Cloud Library (PCL)

Figure 2.3: PCL logo. Source: http://pointclouds.org/

With the advent of low cost 3D sensors such as the Kinect sensor, 3D perception
has gained more importance in robotics, as well as other fields. The upcoming
need to handle 3D data efficiently has been satisfied by the Point Cloud Library.
The Point Cloud Library (PCL)[15] is a standalone, large scale, open project that
efficiently processes 2D/3D image and point cloud. Point clouds are a way to in-
tuitively represent and manipulate the information provided by 3D sensors, such
as time-of-flight cameras and laser scan, in which the space is sampled in a fi-
nite set of points in a 3D frame of reference. PCL provides a number of data
structures to easily represent the points of the sampled space. PCL also provides
numerous state of the art algorithms for filtering, feature estimation, surface re-
construction, point cloud registration, model fitting and segmentation. Another
reason to use PCL is that it is well integrated in ROS. Indeed, the PCL interface
for ROS provides the means required to communicate PCL data structures through
the message-based communication system created by ROS. In order to do so, a set
of conversion functions are also provided to convert from native PCL data types
to ROS messages.
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PCL has been used to manipulate point clouds from the Kinect v2 sensor. In
detail, PCL has been used for:

• Acquiring point clouds.

• Filtering point cloud by distance through ConditionAnd and PassThrough.

• Downsampling through VoxelGrid.

• Removing noise through Statistical Outlier Removal and Radius Outlier Re-
moval.

• Transforming a point cloud into a Laser Scan.

• Performing the ICP algorithm.

2.3 OpenCV

Figure 2.4: OpenCV logo. Source: http://opencv.org/

OpenCV (Open Source Computer Vision)[16] is a computer vision library de-
signed for computational efficiency and with a strong focus on real-time applica-
tions. One of OpenCV’s goals is to provide a simple to use computer vision in-
frastructure that helps people build fairly sophisticated vision applications quickly.
OpenCV provides many algorithms that span many areas in vision, including fac-
tory product inspection, medical imaging, security, user interface, camera calibra-
tion, stereo vision and robotics.
As for PCL, OpenCV is completely integrated into ROS, which also provides
image type conversions between OpenCV and ROS formats.
In this work we will use OpenCV to:
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• Load and save images;

• Visualize merged laser scans from different sensors;

• Find the obstacles that have the greatest impact on navigation.

2.4 TurtleBot

TurtleBot[17] is a low-cost mobile robot platform useful to get familiar with
ROS and robots in general. It is an open source platform, so many applications are
already available. The default kit is composed of a Kobuki robot as base, a laptop
with ROS and a Xbox Kinect as sensor. With this simple setup the TurtleBot
is able to handle vision, localization, communication and mobility. It can also
be modified for other purposes, in fact the TurtleBot used in this work has been
modified to be a telepresence robot (more about the modification in subsubsection
2.4.2 ).

2.4.1 iClebo Kobuki

TurtleBot’s base is an iClebo Kobuki base (see Figure 2.5). It is a mobile
research base with sensors, motors and power sources and is used exclusively
indoor. This robot is specially designed for education and research on state of
the art robotics, thanks to its customizable structure. Kobuki has highly reliable
odometry and long battery duration. Its battery can also provide power to a laptop
as well as to additional sensors and actuators.
The specifications of the Kobuki are:

• It is round-shaped with a radius of 354mm.

• Its maximum payload is 5Kg.

• Its maximum speed is 0.7m/s, with maximum turning speed of 180deg/s.

• The odometry is built in 3-axis gyrometer and has a high-resolution wheel
encoder.

• The basic battery allows the robot to operate for 3 hours (7 hours with big-
sized battery).

• Bumpers sensors (left, right and center).
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Figure 2.5: iClebo Kobuki. Source: http://dabit.industries/products/iclebo-kobuki

2.4.2 IAS-Lab Turtlebot

The TurtleBot used in this work has been modified to be a telepresence robot (see
Figure 2.6(b)). In detail, these are the modification that have been made:

• The Kinect has been removed.

• The middle platform has been raised.

• An Hokuyo scanning range finder URG-04LX-UG01 has been mounted on
the bottom platform of the TurtleBot, at an height of 15 cm from the floor.

• Two rods have been mounted on the top of the TurtleBot with a little shelf
on the extremity, so that a screen can be placed in front of the TurtleBot, to
make it useful as a telepresence apparatus.

• A Kinect v2 has been placed on the little shelf, at an height 112.2 cm from
the floor.
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(a) TurtleBot (b) IAS-Lab TurtleBot

Figure 2.6: TurtleBot comparison. Source: http://sites.hevra.haifa.ac.il/

2.5 Pioneer 3-AT
The Pioneer 3-AT[18] is a highly versatile four-wheel drive robotic platform. It
is a small four-motor skid-steer robot ideal for all-terrain operations or laboratory
experimentation. The default kit is composed of one battery, an emergency stop
switch, wheel encoders and a micro-controller with ARCOS firmware. It also
comes with the Pioneer SDK advanced mobile robotics software development
package. The core software mainly consists of the Advanced Robot Interface
for Applications (ARIA). ARIA is a C++ library that provides a framework for
controlling and receiving data from all MobileRobots platforms, as well as from
most accessories. It includes open source infrastructures and utilities useful for
writing robot control software, support for network sockets, and an extensible
framework for client-server network programming.
The Pioneer 3-AT can be used in ROS through the package RosAria, that creates
a bridge between the two.
The specifications of the Pioneer 3-AT are:

• it is 508mm long, 497mm wide and 277mm high.

• its maximum payload is 12Kg on tile/floor, 10Kg on grass/dirt and 5Kg on
asphalt.
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Figure 2.7: Pioneer 3-AT. Source: http://www.cyberbotics.com/

• its maximum speed is 0.7m/s, with maximum turning speed of 140deg/s.

• it supports up to three batteries that allows the robot to operate for 2/3 hours.

• it has 6 sonar sensors facing outward placed at 20deg intervals plus one on
each side.

2.5.1 IAS-Lab Pioneer
The Pioneer 3-AT used in this work has been modified to be a telepresence robot
(see Figure 2.8). In detail, these are the modification that have been made:

• A metal apparatus has been mounted on the top of the robot. This apparatus
provides a shelf on which a laptop can be placed and two rods that can be
used to attach a screen to the Pioneer 3-AT, in order to make it useful as
a telepresence apparatus. Between the rods there are three horizontal bars
that keep the rods together and can be used to mount other accessories.

• A Sick LMS-100 laser scanner has been mounted in front of the robot.

• Two Kinects have been placed on the metal bars on the top of the robot.

The Pioneer 3-AT will be used in order to prove the portability of the algorithms
created.

2.6 Hokuyo URG-04LX-UG01
Hokuyo URG-04LX-UG01[19] is a laser sensor for area scanning. The light
source of the sensor is infrared laser of wavelength 785nm with laser class 1 safety.
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Figure 2.8: IAS-Lab Pioneer 3-AT.

The Hokuyo laser scanner uses a rotating mirror to sweep the low-power infrared
laser beam in a circle. Scan area is 240°, with pitch angle of 0.36°, and the sensor
outputs the distance of 683 measurements. Scans are performed at a frequency
of 10Hz. The detection distance is in the range of 20-5600mm, with accuracy of
±30mm within 1000mm and ±3% of measurement otherwise.
Because using time of flight information to calculate distances would require ex-
pensive hardware capable of gigahertz level timing, the laser is subject to ampli-
tude modulation and the resulting phase difference of the reflected beam is used
to calculate the distance. In this way it is possible to obtain stable measurements
with minimum influence from objects color and reflectance, as well as a signifi-
cant decrease of the cost of the device.
The scanner is not typically suitable to outdoor work due to infrared interference
from other light sources.
Hokuyo laser scanner is very well integrated in the ROS environment. The pack-
age used in this work, that allows to use the laser scan, is urg_node.
These are the specification for the node:

• Published topic:
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– /scan: sensor_msgs/LaserScan

• Subscribed topic:

– none

Figure 2.9: Hokuyo URG-04LX-UG01. Source: http://www.hokuyo-aut.jp

2.7 Sick LMS-100
The Sick LMS-100[20] is a laser sensor that can be used for area monitoring,
object measurement, object detection and to determine positions. It operates by
measuring the time of flight of laser (class 1 safety) light pulses: a pulsed laser
beam is emitted and it is then reflected as it meets an object. The distance is
calculated based on the time between the transmission and the reception of the
impulse. The pulsed laser beam is deflected by an internal rotating mirror so that
a fan-shaped scan is made of the surrounding environment.
The angular resolution can be adjusted as needed. With an angular resolution of
0.25° the maximum scanning angle is 270° and the sensor outputs 1081 measure-
ments, while with an angular resolution of 0.50°, the maximum scanning angle
is also 270°, but the sensor outputs 541 measurements. Scans are performed at
a frequency of 25/50Hz. The maximum detection distance is 20m, but with ob-
jects with low reflectivity, like cardboard and matt black, it decreases to 18m. The
accuracy of the measurements is ±30mm.
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Figure 2.10: Sick LMS-100. Source: http://wll.kr/

The sensor is best suited for indoor use as it can be dazzled by sunlight, causing it
to give erroneous readings. It can be connected to the laptop via an ethernet cable.
Due to the use of time of flight technology, which requires expensive hardware,
the Sick laser scanner has a higher price than the Hokuyo laser scanner.
The Sick lasers are implemented in ROS through the package lms1xx. These are
the specification for the node:

• Published topic:

– /scan: sensor_msgs/LaserScan

• Subscribed topic:

– none

2.8 Kinect
The Microsoft Kinect[21] consists of a depth sensor, an RGB camera and a multi-
array microphone. It is also equipped with a motorized pivot that allows to tilt the
sensor vertically in the range of -27° - +27°.
The Kinect can extract depth information by a triangulation process called struc-
tured light. The depth sensor uses an infrared laser projector, which creates a
grid of points by diffraction, and combines it with a monochrome CMOS sensor,
which in turn interprets the infrared light captured. The Kinect then compares the
original pattern and its deformed reflected image and obtains a disparity map on
the basis of variations between both patterns.
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(a) Kinect (b) Kinect hardware

Figure 2.11: Kinect. Sources: http://www.engadget.com/ , http://web.uvic.ca/

Figure 2.12: Depth calculation. Source: http://www.mdpi.com/

Figure 2.12 illustrates the relation between the distance of an object point k and
the measured disparity d. The Z axis is orthogonal to the image plane towards the
object, the X axis is perpendicular to the Z axis in the direction of the baseline
b between the infrared camera center and the laser projector, and the Y axis is
orthogonal to X and Z making a right handed coordinate system. Assume that an
object is at a distance Z0 from the sensor and the disparity measured is d. Using
triangles similarity we have:

D

b
= Z0 − Zk

Z0
(2.8.1)
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and:

d

f
= D

Zk

(2.8.2)

where Zk denotes the depth of the point k, b is the base length, f is the focal length
of the infrared camera, D is the displacement of the point k, and d is the observed
disparity. Substituting D from Equation 2.8.2 into Equation 2.8.1 yields:

Zk = Z0

1 + Z0
fb
d

(2.8.3)

The resulting depth image has a resolution of 640x480 pixels. The depth sensor
deliver images at 30Hz, has a field of view of 57° in the horizontal and 43° in
the vertical direction in a range between 0.4m and 4.0m. The acquisition of depth
data can be corrupted in presence of infrared light that can disturb the view of the
projected pattern, so the sensor can not be used outside. The depth sensor also has
problems with black objects, due to light absorption.
The Kinect sensor has been implemented in ROS, in the package openni, that
creates a bridge between the driver for Kinect(libfreenect) and ROS.
These are the specification of the topics, that openni publishes or subscribes, used
in this work:

• Published topic:

– /camera/depth/points: sensor_msgs/PointCloud2

• Subscribed topic:

– none

2.9 Kinect v2
The Microsoft Kinect v2 (or Kinect One) [22] is equipped with an RGB camera
and a multi-array microphone. The tilting motor has been removed in this version.
The Kinect v2 has three infrared light sources each generating a modulated wave
with different amplitude. In order to capture reflected waves, Kinect v2 also has
an infrared camera.
The infrared sensor in the Kinect v2 is a state of the art 512x424 CMOS array
of differential pixels. The differential pixel distinguishes the time-of-flight sensor
from a classic camera sensor. Each pixel has two photo diodes (A, B) that are
controlled by the same clock signal that controls wave modulation. This clock
signal drives the diodes such that if A is turned on, B is turned off, and vice versa.
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(a) Kinect v2 (b) Kinect v2 hardware

Figure 2.13: Kinect v2. Sources: http://123kinect.com/ , http://ignatiuz.com/

The photo diodes then convert captured light into current which can be measured.
The (A − B) differential signal provides a pixel output whose value depends on
both the returning light level and the time it arrives with respect to the pixel clock.
The pixel output leads to a useful set of output images:

• (A + B) gives a regular gray-scale image illuminated by ambient lighting
(ambient image).

• (A−B) gives phase information after an arctangent calculation (depth im-
age).

•
√

(∑(A−B)2) gives a gray-scale image that is independent of room light-
ing (active image).

Chip optical and electrical parameters determine the quality of the resulting im-
age. Multiphase captures cancel linearity errors and simple temperature compen-
sation ensures that accuracy is within specifications. Reasons to prefer time-of-
flight system include the following:

• One depth sample per pixel: X − Y resolution is determined by chip di-
mensions.

• Depth resolution is a function of transmitted light power, receiver sensitiv-
ity, modulation contrast and lens f -number

• Higher frequency: the phase to distance ratio scales directly with the mod-
ulation frequency resulting in finer resolution.

• Complexity is in the circuit design. The overall system, particularly the
mechanical aspects, is simplified.
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The operation principle, in a time-of-light system, for measuring the distance
is based on measuring the time it takes for light wave to travel from emitter to
object and back to sensor. With a single light pulse, letting d be the distance, we
have:

d = tr − te
2 · c, (2.9.1)

where te and tr represent respectively time for light pulse emitting and receiving
and c is speed of light in air. Although simple, measuring distance through Equa-
tion 2.9.1 is not very practical for scene capturing devices like Kinect. Hence, the
distance is calculated using the phase difference of the emitted light wave and the
detected light wave reflected from the object. Let the transmitted wave

T (t) = sin(wt) (2.9.2)

have modulation frequency w = 2πf . The distance travelled by the modulated
wave is 2d which produces phase shift φ. The received wave

R(t) = β sin(wt− φ) (2.9.3)

has an amplitude factor β, but is not needed for measuring distance. Phase shift
depends on time difference:

φ = w(tr − te) (2.9.4)

Substituting Equation 2.9.4 in Equation 2.9.1 yields:

d = φc

2w (2.9.5)

The phase shift φ can be estimated using different phase-delayed versions of the
reference signal and processing the results using a low-pass filter. Kinect sensor
uses three different phase-shifts of 0°, 120° and 240°.
Since measuring the distance is based on phase shift of the modulated wave, the
maximum distance depends on the wavelength of the modulated wave. Knowing
that phase wraps around 2π, the longer the wavelengths, the longer the maximum
measured distance, but shorter wavelengths gives better resolution. In order to
enable good resolution and also measuring longer distances, Kinect v2 uses three
different frequencies of 120 MHz, 60 MHz and 16MHz. This allows the Kinect
v2 to sense depth at 8m, but for more reliability it is advised to stay in the range
0.5− 4.5m.
The Kinect v2 delivers images at a frame rate of 30Hz, with a resolution of
1920x1080, but lower quality images are also available. Its field of view is 70°
in the horizontal and 60° in the vertical direction. The Kinect v2 also requires an
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USB 3.0 to work, due to the big quantity of data to transmit to the computer. The
sensor can also be used outdoors in overcast and direct sunlight situations, with
the opportune parameters settings. Light absorption problems with black objects
are not solved yet.
The Kinect v2 sensor has also been implemented in ROS, in the package iai_
kinect2, that creates a bridge between the driver for Kinect v2 (libfreenect2) and
ROS.
These are the specification of the topics, that iai_kinect2 publishes or subscribes,
used in this work:

• Published topic:

– /kinect2_head/depth/image: sensor_msgs/Image

– /kinect2_head/depth_ir/points: sensor_msgs/PointCloud2

• Subscribed topic:

– none



Chapter 3

Autonomous Navigation

Navigation[23] is of great importance for any mobile system, since most robotic
tasks require the travelling between different positions avoiding collisions. Given
partial knowledge about the environment and a goal position, navigation encom-
passes the ability of a robot to act based on its knowledge and sensor values so as
to reach its goal as efficiently and as reliably as possible.
There are two key competences required for mobile navigation: path planning and
obstacle avoidance.
Given a map and a goal location, the goal of path planning is to find a trajectory
that will cause the robot to reach the goal location when executed. In order to find
this trajectory, as well as to navigate safely and efficiently, the robot must also be
able to localize itself.
Path planning is formally done in a representation called configuration space.
Suppose that a robot arm has k degrees of freedom. Every state or configuration
of the robot can be described with k real values: q1, ..., qk. The k-values can be
regarded as points in a k-dimensional space called the configuration space C of
the robot. This description is useful because it allows us to describe a complex
3D shape of a robot with a single k-dimensional point, but this also means that we
must inflate each obstacle by the size of the robot’s radius to compensate (assum-
ing that the robot is holonomic).
The problem to find a path in the physical space from an initial position to a goal
position, avoiding all collisions with obstacles, is a difficult one, particularly as k
grows large, but in the configuration space is straightforward. In fact, defining the
configuration space obstacle O as the subspace of C where the robot bumps into
something, we can compute the free space F = C - O, where the robot can move
safely. The result of these simplifications is that the configuration space looks as
a 2D version of the physical space.
The second competence required for mobile navigation is equally important, but
occupies the opposite, tactical extreme. Indeed, given real-time sensor readings,
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the goal of obstacle avoidance is to modulate the trajectory of the robot in order
to avoid collisions.
Although the two competences seem very different from each other, they are
strictly connected. The robot, during execution, must react to unforeseen event,
like obstacles, in such a way that it will still be able to reach the goal. Without
avoiding the obstacle, the planning effort will not pay off, because the robot will
never physically reach its goal. On the other hand, without planning, the reacting
effort cannot guide the overall robot behavior to reach a faraway target and then
the robot will never reach its goal.
Regarding path planning, several methods for navigating in a known environment
have been proposed. These methods change depending on how the operating area
is defined. In fact, the robot’s environment representation can range from a con-
tinuous geometric description to a decomposition-based geometric map or even a
topological map. Path planners differ in how they use the discretized map, derived
from a transformation from the continuous environmental model. There are two
general strategies:

• Graph-based: the operating area is described as a connectivity graph in
free space. The graph construction process is often performed offline us-
ing different methos, e.g, Visibility graph[24], Voronoi diagram[25], Ex-
act/ Approximate cell decomposition [26, 27]. After the creation, the best
path has to be found. This is performed by algorithms like best-first search
(BFS)[28], Dijkstra’s algorithm[29], A* / D*[30, 31], Rapidly Exploring
Random Trees (RRTs)[32].

• Potential field: a mathematical function is imposed directly on the free
space[33]. The robot can be seen as a ball rolling downhill. The goal is to
create a field with a gradient which is attractive toward the desired position
(global minimum) and repellent from the obstacles (local maxima) in the
area[34]. This strategy will be used to create a planner in this work.

Concerning obstacle avoidance, the approach changes depending on the existence
of a global map and on the robot’s precise knowledge of its location relative to the
map.
For example, the Bug algorithm uses the robot’s sensors to avoid obstacles, fol-
lowing the contour of each obstacle in the path between its current position and
its goal.
Other methods scan the environment and compare it to the expected result of the
scan. If a set of measured points deviates too much from the expected position,
they are added to a list of potential obstacles and different counter-measures are
taken to avoid them.
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Finally, the method which inspired the algorithm used in this work creates a Vir-
tual Force Field (VFF), using the idea that obstacles / targets exert repulsive /
attractive forces on the robot, in order to avoid obstacles and reach the targets.

3.1 Potential field path planning
Navigation based on potential field is a common reactive approach for path plan-
ning. The basic idea is to guide the robot through the environment by defining
the goal as attractive forces, and the obstacles as repulsive ones. In Figure 3.1 we
can see that an analogy can be made to animals trying to reach their goal, while
avoiding obstacles.

(a) The fish act as if they are repelled by a uni-
form force emanating from the shark.

(b) The fish act as if they are attracted by a uni-
form force emanating from the light.

Figure 3.1: Animals analogy with potential field.
Sources: http://ulaulaman.tumblr.com/ , http://en.wikipedia.org/

In Figure 3.1(a), the fish keep away from the sharks as if they are repelled by
a uniform force field surrounding the predators. In Figure 3.1(b), the fish are
attracted by the light in a similar way.
The potential field method attempts to formalize this kind of behavior. This ap-
proach treats the robot as a point, at position q = (x, y), under the influence of
an artificial potential field U(q). The goal acts as an attractive force on the robot
while the obstacles act as repulsive forces. The potential field acting on the robot
(see Figure 3.2(c)) can be computed as the sum of the attractive field of the goal
(see Figure 3.2(a)) and the repulsive fields of the obstacles (see Figure 3.2(b)):



24 3.1. POTENTIAL FIELD PATH PLANNING

U(q) = Uatt(q) + Urep(q) (3.1.1)

It is important to note, though, that this is also a control law for the robot. As-
suming the robot can localize its position inside the map taking into account the
potential field, it can always determine its next required action based on the field.

(a) Attractive potential (b) Repulsive potential

(c) Total potential function

Figure 3.2: Superposition of potential fields. Source:
http://voronoi.sbp.ri.cmu.edu/

If we assume U(q) to be a differentiable potential field function, we can define the
related artificial force F (q) acting at position q as:

F (q) = Fatt(q) + Frep(q) = −∇Uatt(q)−∇Urep(q) = −∇U(q), (3.1.2)

where ∇U(q) denotes the gradient vector of U at position q. The vector Frep(q)
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points from the robot toward a point far from the obstacles and Fatt(q) points from
the robot toward the goal.
The attractive potential Uatt should converge to zero for q close to the goal. Such
a potential can be dimensioned as follow:

Uatt(q) = 1
2katt · ‖q − qgoal‖2, (3.1.3)

where katt is a positive scaling factor and ‖q − qgoal‖ is the distance between the
robot and the goal. This attractive potential is differentiable and the corresponding
attractive force Fatt(q) is given by:

Fatt(q) = −katt · (q − qgoal), (3.1.4)

which converges linearly toward zero as the robot reaches the goal. The repulsive
potential Urep, instead, should be zero if the robot is far from the object and should
gradually take larger values as the robot gets closer to the obstacle. One example
of such a repulsive field is:

Urep(q) =

1
2krep

(
1

‖q−qobs‖
− 1

d0

)2
if‖q − qobs‖ ≤ d0

0 if‖q − qobs‖ > d0,
(3.1.5)

where krep is a scaling factor and d0 is the distance of influence of the object. The
repulsive potential function is positive (or zero) and tends to infinity as the robot
gets closer to the object. The corresponding repulsive force Frep is:

Frep(q) =

krep

(
1

‖q−qobs‖
− 1

d0

)
q−qobs
‖q−qobs‖3 if‖q − qobs‖ ≤ d0

0 if‖q − qobs‖ > d0,
(3.1.6)

Under ideal conditions, by moving along F (q) = Fatt(q) +Frep(q) and by setting
the robot’s velocity vector as proportional to this force, the robot can be smoothly
guided in the direction of the goal while staying away from the obstacles.
There are some limitations with this approach. One is local minima, that appears
to depend on the obstacle shape and size and which could also sacrifice complete-
ness (the ability to reach a goal if a path exists). Another problem is the tendency
to cause unstable motion in tight environment, resulting in oscillations between
the obstacles.

3.2 Dynamic Navigation
Autonomy requires systems that are not only capable of controlling their motion
in response to sensor inputs (e.g. when avoiding obstacles), but that are also ca-
pable to react to unexpected events, like qualitative changes in the environment
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or strong perturbations. The navigation path of an intelligent system should not
only contain trace paths, but also contain information for real-time tracking con-
trol. The dynamic approach to autonomous robotics was developed, in part, in
response to this conceptual shift.
The main ideas behind dynamical navigation[35] are:

• Behaviors, that is all processes occurring along the stream from sensing to
acting, are generated by ascribing values in time to behavioral variables.
These variables are chosen such that tasks can be expressed as values of
these variables.

• The time courses of the behavioral variables are obtained as attractor solu-
tions of dynamical systems, the behavioral dynamics, formulated to express
the task constraints through attractive or repulsive forces.

• Sensory information or information from other behavioral modules (dynam-
ical systems of other behavioral variables) determine location, strength and
range of attractive or repulsive contributions to the behavioral dynamics.

An example of behavioral variable is a robot’s heading direction φh, measured
over the behavioral dimension φ relative to a world fixed reference φ0 = 0. If the
task is to drive to a target which is in direction φt, the behavior to be performed is
called target acquisition.
The dynamic navigation solution in this work uses the concepts of potential field
planning in an obstacle avoidance approach, creating a Virtual Force Field [36,
37].
Let the heading direction of the robot, φh, be the fixed world reference frame,
repulsive obstacles are defined around each direction in which obstructions are
sensed.
The obstacle/repellor i is characterized by:

• λi: the strength of the obstacle, that can be made a function of the distance
to the obstacles, so that closer repellors are stronger.

• φi: the direction in which the obstacle is located.

• σi: is the weight of the obstacle. This parameter defines the basin of at-
traction of the obstacle in a way that only if the behavioral state lies within
this range, the robot is affected by the obstacle. The weight can be made a
function of the robot’s diameter and the distance - directly proportional to
the former, inversely proportional to the latter.
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Figure 3.3: Dynamic Navigation in a Virtual Force Field. The obstacles are seen
as peaks and the target is seen as a trough.

Source: U. Orozco-Rosas, O. Montiel, R. Sepúlveda, "Pseudo-bacterial Potential
Field Based Path Planner for Autonomous Mobile Robot Navigation".

Attractors and repellors are characterized in the same way. The only difference
between them is that λi is positive for attractors and negative for repellors.
Defining attractors and repellors in this way, creates a field of potential like the
one we can see in Figure 3.3.
Letting φ̇h be the next direction that the robot have to follow to avoid the obstacles,
the dynamical system can be expressed as:

φ̇h =
∑

i

λi(φi − φh)e
(φi−φh)2

2σ2
i . (3.2.1)

As we can see, the sensing of the obstacles, as well as correctly dimensioning
the three parameters, is of extreme importance to have a safe and successful au-
tonomous navigation.



28 3.2. DYNAMIC NAVIGATION



Chapter 4

The telepresence apparatus

The robot in this thesis will be used as a telepresence mobile apparatus. Such
a robot could enable impaired end-users, who are constrained to remain in bed
because of their severe degree of paralysis, to participate in various activities to-
gether with family and friends.
In this chapter we will discuss about the methodologies applied to create the telep-
resence apparatus: Gstreamer, an open-source library for streaming audio and
video in a network, is here used to enable the communication between the end-
user. Furthermore, the BCI will be used by the user as a tool to help the robot to
reach a destination.

4.1 GStreamer

Figure 4.1: GStreamer logo. Source: http://gstreamer.freedesktop.org/

GStreamer [38] is a multimedia framework based on pipelines to create multi-
media streaming applications such as video editors or media players. The core
framework is written in C programming language with the type system based on
GObject. The main idea of GStreamer is to link together various elements in a
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graph-based way to obtain a stream that meets some desired requirements (see
Figure 4.2). These elements are included in the framework or written by third
party programmers. GStreamer handles managements of these elements, data flow
and negotiation of the formats. Also, it is not restricted to handle multimedia for-
mats only, but can handle any type of data stream. The pipeline design is made to
have little overhead above what the applied filters induce. This makes GStreamer
a good framework for designing even high-end audio applications which put high
demands on latency.

Figure 4.2: A typical GStreamer pipeline.
Source: http://gstreamer.freedesktop.org/

In particular, in this work we will use GStreamer to send video from the Kinect
v2/Webcam and audio from the microphone to another laptop, using the network
as medium.
We will now explain the basic concepts and objects that are necessary to build
such a GStreamer pipeline: elements, pads, bins/pipelines, and communication.

4.1.1 Elements
An element is the most important class of objects in GStreamer. It is usual to
create a chain of elements linked together and let data flow though this chain of
elements. Every element is part of a plugin and has a specific function, which can
be the reading of data from a file, decoding of this data or outputting this data to the
sound card. Elements can be used as black boxes by the application programmer:
given an input, the element will do something with it and will output something
else. For a decoder element, for example, given encoded data as input, the element
will output the decoded data. Several elements can be chained together, creating
a pipeline that can do specific task, for example media playback or capture.
Elements can be broadly classified in the following categories:
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• Sources: these elements generate data for use by a pipeline, for example
by reading from disk or from a sound card. Source elements do not accept
data in input, but only generate data. Figure 4.3(a) illustrates how this kind
of element only has a source pad, an output always on the right, which can
only generate data.

• Filters, convertors, demuxers, muxers and codecs: these elements have
both input and outputs pads, meaning that they can receive a data stream,
process it and provide it for other elements in the pipeline, for example a
videoflip element gets a video in input and outputs a flipped and rotated
version of it. Filter-like elements can have any number of source or sink
pads (see Figures 4.3(b) - 4.3(c) ).

• Sinks: these elements are in the role of consumers in the pipeline. They
receive data streams and perform an action, usually to output the stream to
a sound card, or display the video on a screen. They do not provide data for
other elements in a pipeline (see Figure 4.3(d)). Disk writing, soundcard
playback, video output can be implemented by sink elements.

4.1.2 Pads
Pads are objects associated with elements through which data flows in or out of an
element. Data streams from one element’s source pad to another element’s sink
pad. Pads have specific data handling capabilities: a pad can restrict the type of
data that flows through it. Links are allowed between two elements only when the
data types of their pads are compatible. Data types are negotiated between pads
using a process called caps negotiation.
A pad type is defined by two properties:

• Direction: GStreamer defines two pad directions: source pads and sink
pads. Elements can receive data only on their sink pads and generate data
only on their source pads.

• Availability: a pad can have any of three availability: always (it always ex-
ists), sometimes (it exists only in certain cases and can disappear randomly),
and on request (it appear only if explicitly requested by the applications).

4.1.3 Bins
A bin (see Figure 4.4) is a container for a collection of elements. Since it is an
element itself, a bin can be handled in the same way as any other element. Once an
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(a) Source (b) Filter

(c) Demuxer, multiple source pads (d) Sink

Figure 4.3: Different categories for an element in GStreamer.
Source: http://gstreamer.freedesktop.org/

element is in a bin, there is no need to deal with it individually anymore, because
the bin will manage the elements contained in it. It will perform state changes
on the elements as well as collect, synchronize and forward bus messages. A
specialize type of bin that every application needs to have is the pipeline.
A pipeline is a top-level bin that provides a bus for the application and manages
the synchronization for its children. When a pipeline is set to PAUSED or PLAY-
ING state, data flow will start and media processing will take place. One started,
pipelines will run in a separate thread until stopped or the end of the data stream
is reached.

4.1.4 Communication

GStreamer provides several mechanisms for communication and data exchange
between the application and the pipeline:
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Figure 4.4: A bin.
Source: http://gstreamer.freedesktop.org/

• Buffers: are objects for passing streaming data between elements in the
pipeline. Since streaming is always done from sources to sinks, these ob-
jects always travel downstream.

• Events: are objects sent between elements or from the application to ele-
ments. Since, in some cases, communication needs to be performed both
upstream and downstream, events can travel in both directions. In addition,
downstream events can also be synchronized with the data flow.

• Messages: are objects posted by elements on the pipeline’s message bus,
where they will be held for collection by the application. Messages are used
to transmit information such as errors, tags, state changes, buffering state,
redirects etc. from elements to the application in a thread-safe way. They are
usually handled asynchronously by the application from the application’s
main thread, but can be also intercepted synchronously from the streaming
thread context of the element posting the message.

• Queries: are objects used to query an element about specific information.
They differ from events because they are always synchronously answered.
Queries can be used by the elements or the application to query information
about the current state of an element or of the whole pipeline. They can
travel both upstream and downstream, but upstream queries are more com-
mon. Example of a query is a query to find out the information about the
duration of a video stream.
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Figure 4.5: A GStreamer pipeline with different communication flows.
Source: http://gstreamer.freedesktop.org/

4.2 Brain Computer Interface
The idea of interfacing minds with machines, along with the ability to control them
using high-level commands, has long captured the human imagination. Over the
last years, it has been possible to actually bypass the conventional neural path-
ways, such as muscles or speech, connecting directly the human brain to a com-
puter. The capability to use brain signals as new communication and control chan-
nel is called Brain Computer Interface (BCI). This framework [39, 13] monitors
the users encephalography (EEG) activity and translates their intentions without
activating any muscle or peripheral nerve.
The immediate goal of BCI research is to provide communication abilities to
severely disabled people who are totally paralyzed or "locked in" by neurolog-
ical neuromuscolar disorders, such as amyotrophic lateral sclerosis, brain stem
stroke, or spinal cord injury. In the latter case, people cannot move their arms,
legs, or eyes, and usually depend on an artificial respirator, because any voluntary
control of muscles is lost. BCI in this panorama results an effective and reliable
tool to create an alternative interface, so that they will be able to communicate
with the environment again.
BCI systems can be classed as exogenous or endogenous, depending on the na-
ture of the input signal. Exogenous BCI systems depend on neuron activity evoked
by external stimuli and do not require intensive training. Such stimuli include
Steady State Visual Evoked Potentials (VEPs) or P300 evoked potentials. The
control can be activated with a single EEG channel by analyzing the changes in
the signal right after a visual or auditory stimulus.
In contrast, endogenous systems do not rely on an external stimulus, in fact they
depend on the user’s ability to control their electrophysiological activity, such as
the EEG amplitude in a specific frequency band on a specific area of the cerebral
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cortex. These systems include those based on slow cortical potentials (SCPs) and
on Motor Imagery (sensorimotor rhythms). In particular, those based on Motor
Imagery (MI) exploit the correlation between specific EEG oscillations and the
imagination of movements.
MI is a cognitive process generated when the subject imagines movement per-
formance without actually executing it. It is a dynamic state during which the
representation of a specific motor action is internally activated without any motor
output. In other words MI requires the conscious activation of brain regions that
are also involved in movement preparation and execution, accompanied by a vol-
untary inhibition of the actual movement. The imagination of different types of
movements (e.g. right hand, left hand or feet), results in an amplitude suppression
(event-related desynchronization ERD) or in an amplitude enhancement (event-
related synchronization ERS) of Rolandic mu rhythm (7-13 Hz) and of the central
beta rhythm (13-30 Hz) recorded over the sensorimotor cortex of the user [40].
BCIs based on the SensoriMotor-Rhythms (SMR) are then able to classify, thanks
to this variations in the EEG oscillations, the mental state of the subject, in order
to drive their output. The task that is given to the user can change, depending on
the control signal that has to be extracted and on the application of interest, but it
has to maintain some standard characteristics:

• be simple, because even unhealthy user must be able to perform it multiple
times.

• generate significant brain signals, to ensure repeatability and accurate
interpretation by the classifier.

• The paradigm used must be such as to involve brain processes easy to acti-
vate and to control and fast in the exhaustion.

It is important that the task is well recognized, given these significant signals, be-
cause an unmotivated user can quickly lose interest, if the system is not rewarding.
The lose of interest leads to a worsening of the signal generation resulting in lower
performance, demotivating the user even more.

4.2.1 The BCI loop
Independently to the type used, every BCI has loop-based architecture as the one
we can see in Figure 4.6. The BCI loop is composed by three main different
blocks: subject - signal acquisition, signal processing - machine learning, and
online feedback - AT devices. Each block can have an independent implemen-
tation, even with respect to the same BCI paradigm. Given the modularity of the
loop, we will now explain each block in detail.
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Figure 4.6: The BCI loop

4.2.1.1 Subject - Acquisition Block

The subject represents the starting and the arrival point of the loop. In fact it is
the subject, or user, that generates the input of the loop. This input must be a
repeatable signal that can be classified (e.g. EEG signals) and then used to drive
the framework. Thanks to the online feedback block, at the same time, the user
can adapt to the interface in order to achieve the desired task.
We cannot talk about BCI without putting the subject in the loop. Every BCI
application have to be tested and validated with users included in it.
Regarding the acquisition of the signals, there are several types of Brain Computer
Interfaces that are reported. Those types differ in how much the acquisition device
is invasive into the human body [41]:

• Invasive: these acquisition devices are directly implanted into the brain
tissue from the cerebral cortex. This invasive signal acquisition requires
surgery to implant the sensors. Electrodes are implanted by opening the
skull through a proper surgical procedure called craniotomy and then plac-
ing them on the cortex. The signals acquired are called electro-corticogram
(ECoG) or Invasive EEG. ECoG recording techniques combine excellent
signal quality, very good spatial resolution, and a higher frequency range
thanks to the employments of micro-electrodes array. These techniques are
used to provide functionality to paralyzed people. Invasive BCIs are also
used to restore vision by connecting the brain with external cameras and
to restore the use of limbs by using brain controlled robotic arms and legs.
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Due to surgery requirement these BCIs do not provide a practical instru-
ment, even if they can grant fast and meaningful information. Ethical, fi-
nancial, and other considerations make neurosurgery impractical except for
some users who need a BCI to communicate. Moreover it is still unclear if
these devices can continuously provide strong signals over the years, mostly
because they are prone to scar-tissue build-up, causing the signal degener-
ation. Invasive techniques, due to their drawbacks, are almost exclusively
investigated in animal models or in patients who undergo neurosurgery for
other reasons, such as treatment of epilepsy.

• Non Invasive: They represent the least invasive and lowest cost devices.
They are also considered to be more practical, because they don’t need
surgery operation and they only need to wear a EEG cap. This leads to
a lower signal clarity, poor spatial resolution, and a lower frequency sig-
nals due to the tissue of the cranium that deflects and deforms signals. Non
Invasive BCIs use different techniques to record these signals:

– Surface Electroencephalogram (sEEG) uses electrodes to record
electrical activity.

– Magnetoencephalogram (MEG) records magnetic fields produced by
electrical currents using very sensitive magnetometers.

– Positron Emission Tomography (PET), functional Magnetic Reso-
nance Imaging (fMRI), and optical imaging record brain metabolic
activity, reflected in changes in blood flow.

Most BCIs rely on the sEEG acquisition method because it appears to be
an adequate alternative for its good time resolution and relative simplicity.
The main source of the EEG is the synchronous activity of thousands of
cortical neurons. Therefore measuring EEG is a simple non invasive way to
monitor electrical brain activity, but it does not provide detailed information
on the activity of single neurons (or small brain areas) and is characterized
by small signal amplitudes and noisy measurements.

On the other hand, magnetic field and blood flow based techniques require
sophisticated devices that can be operated only in special facilities. More-
over, techniques for measuring blood flow have long latencies and thus are
less appropriate for real-time interaction, typical of BCI applications for
robotic device control. This mean that, because of its low cost, portability
and lack of risk, sEEG is the ideal modality to bring BCI technology to a
large population.

• Partially Invasive: this kind of devices are implanted inside the skull, but
that rest outside the brain rather within the grey matter. Signal strength
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using this type of BCI is weaker than fully invasive signals. They produce
better resolution signals than non-invasive BCIs where the bone tissue of
the cranium deflects and deforms signals and have less risk of scar tissue
formation in the brain when compared to fully invasive BCIs.

4.2.1.2 Processing - Machine Learning Block

Due to the low magnitude of the raw EEG signals, about 100 µV, a first step of
signal amplification has to be applied. The acquired analogical signals are then,
thanks to a wired/wireless amplifier, magnified up to 10000 times and digitalized.
The resulting signals have to be processed for noise extraction and correction.
EEG recordings typically contains unwanted signals as interference from elec-
tronic equipment, Electromyography (EMG) activity evoked by muscular con-
traction or ocular artifacts, due to eye movement or blinking. Those components
may bias the analysis of the EEG resulting in algorithm performance reduction.
The goal of pre-processing is to improve signal quality by improving the signal-
to-noise ratio (SNR). Lower SNR means that the brain patterns are occluded in
the rest of the signal, so relevant pattern are hard to detect. Higher SNR, on the
other hand, simplifies the BCI’s detection and classification task. The signal is
spatially and frequency filtered in order to achieve the higher SNR as possible.
The brain patterns used in BCIs are characterized by certain features or properties,
as amplitudes and frequency of EEG rhythms, that need to be extracted after the
signal processing. These features depend on the paradigm that is established to
be used. It is important to extract a set of meaningful features, in order to avoid
overfitting problems in machine learning and to reduce the computational time.
The next important step in the BCI loop is the classification of the signals and
the subsequent task identification using these selected features. Classifier are usu-
ally implemented through Machine Learning techniques as Artificial Neural Net-
works (ANN) [42], Support Vector Machines (SVM) [43], Bayesian Networks
[44], Deep Learning [45], etc. The output of the classifier is expressed as a prob-
ability that the input feature set refers to one class with respect to the other.

4.2.1.3 Online Feedback - AT Devices Block

After the features classification, the user must be able to get a feedback indicating
the current mental state recognized by the embedded classifier. This feedback can
be tactile or auditory, but most often it is a visual, graphical representation of a
decision making algorithm output. The decision making algorithm employs the
classifier output probabilities for interpreting the user intention and deliver the
desired command. The feedback is a necessary block in the BCI loop, because
the user must be able to understand the state of the BCI system and adapt to
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Figure 4.7: A BCI user with the feedback from BCI on the right monitor and the
telepresence robot vision on the left monitor

it, improving the final performance. With a feedback the user can have a finer
control of the system. Thanks to the feedback the user can understand if he/she
is performing the right task and, if not, change aptitude to deliver the correct one.
The user can also use the feedback in order to not deliver any mental command
by continuously balance the mental tasks.
The feedback component is really important in the BCI loop also because the final
applications are more demanding to the user than the simply control over BCI, so
it must be as intuitive as possible. In fact, the user must split his/her attention
between the BCI feedback and the application control (dual task). Moreover in
case of particular applications, e.g. telepresence robot control (see Figure 4.7), the
mental task must be performed with certain temporal precision, requiring intense
attention of the subject. For this reason, in the last years many applications for
assistive technology focus their attention on the creation of frameworks able to
relieve the workload on the user, in the so called shared control. In a shared control
system there is a cooperation between the Assistive Technology (AT) devices,
e.g. a mobile robot, and the end-users in order to complete a task. Usually the
AT device will take care of low level task, as the detection and avoiding of the
obstacles, instead the end user will have high level task, as giving direction or
stopping the AT device.
If the feedback is the representation of the state of the system, the AT devices are
the final actuators of the decision making algorithm. In other words, AT devices
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are what allow the user to interface himself/herself to the real world. BCI as a
proof-of-concept has already been demonstrated with several AT devices: driving
a robot (telepresence) or a wheelchair [46], playing video-games [47], operating
prosthetic devices [48], navigating in virtual realities [49], moving cursors [50],
internet browsing [51], supporting spelling device [52], etc.

(a) Playing video-games (b) Internet browsing

(c) Driving a wheelchair

Figure 4.8: AT devices BCI driven



Chapter 5

Implementation Details

In this section we will show how the dynamic autonomous system has been im-
plemented, pointing out the difficulties found and how the system evolved to over-
come them. Since the type of navigation that we use in this work heavily relies
on sensor data acquired in real-time in order to keep the robot from hitting obsta-
cles, the first part of the section will be dedicated to the analysis and merging of
data from different sensors into a consistent map. Then we will show how manual
control, using a keyboard, has been implemented, in order to help the robot to
decide at crossroads. Finally, we will transform the system into a deterministic
finite automaton (DFA).

5.1 Navigation with Hokuyo laser scan
We started by implementing the dynamic navigation algorithm using only the data
derived from the Hokuyo laser scan. The reasons for this choice are:

• Laser scans are easier to use than point clouds because they carry less data
(only a one dimensional slice of the world).

• Laser scan data can be used almost as is.

• Hokuyo laser scanner has a wide scan area (240°), with a long detection
range (up to 5.6m).

The first thing we did was the acquisition of the laser scan data through the topic
/scan. In this topic messages of type sensor_msgs/LaserScan are published by the
Hokuyo sensor. These messages contain these information:

• std_msgs/Header header contains a timestamp, that is the acquisition time
of the first ray in the scan, and the frame_id of the scan.

41
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• float32 angle_min is the starting angle of the scan, measured in radians.
This angle is -2.09 rad (-120°) for the Hokuyo.

• float32 angle_max is the ending angle of the scan, measured in radians.
This angle is 2.09 rad (120°) for the Hokuyo.

• float32 angle_increment is the angular distance between measurements, in
radians. This measure is the pitch angle and with our laser scanner is 0.0061
rad (0.36°).

• float32 time_increment is the time between measurements, in seconds.

• float32 scan_time is the time between scans, in seconds.

• float32 range_min is the minimum range value, calculated in meters. For
the Hokuyo it is 0.20m.

• float32 range_max is the maximum range value, calculated in meters. For
the Hokuyo it is 5.60m.

• float32[] ranges is an array that contains the measured distances, in meters.

• float32[] intensities is an array that contains the measured intensities. Not
all laser scanners calculate intensities and in this case the vector must be
empty, like with the Hokuyo laser scanner.

Figure 5.1: Visualization in RViz of a laser scan
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In Figure 5.1 we can see the RViz visualization of a laser scan taken from the
Hokuyo sensor.
The next step was transforming the laser scan into a useful data type. In order to
do that, we have created a custom message type, dyn_msgs_Obstacle, with this
definition:

• float32[] strength

• float32[] direction

• float32[] weight

The custom message is composed by three arrays that specify the three compo-
nents for the dynamic navigation. It is assumed that the obstacle i will have its
strength, direction and weight defined at the index i of the array.
Once we had created our message type, we were ready to transform a sensor_
msgs/ LaserScan into a dyn_ msgs/ Obstacle. In order to do so, after receiv-
ing the message through its topic, we saved constant parameters like angle_min,
angle_max, angle_increment, range_min and range_max and then we iterated
through the ranges array to get the positions of the obstacles.
In order to get useful information, we had to discard all those measures that
were NAN, meaning that the ray had not found an obstacle, or greater than maxi-
mum_range or lower than minimum_range. The valid obstacles were saved in the
dyn_msgs/Obstacle’s three array, using these formulas:

strength[i] = 1
ranges[i]

direction[i] = angle_min + angle_increment · i

weight[i] = robot_diameter
ranges[i]

(5.1.1)

These formulas have been created by taking into account that strength must be
inversely proportional to the distance from the obstacle. Weight must be directly
proportional to the robot dimension and inversely proportional to the distance
from the obstacle. The direction of the obstacle was calculated keeping in mind
the discarded obstacles, in order to get the right direction.
In this first implementation of the algorithm, the dyn_msgs/Obstacle message was
being sent directly to the node Navigation that controlled the robot movement.
This node took the message from the apposite topic and then used the data in the
message in order to calculate the new direction to follow, through the equation
3.2.1. The angle φh was fixed to 0, because the robot did not move on a pre-
fixed map and so its heading did not influence the calculation to reach a target.
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Initially, the linear velocity was kept constant and low enough to better under-
stand if there were errors during the test, specially in the next direction calcula-
tion. The message, of type geometry_msgs/Twist, was then published on the topic
/cmd_vel_mux/input/navi.
The robot in this work will not have a target. It will navigate through the envi-
ronment keeping a straight direction until an obstacle is found. In this work we
propose a semi-autonomous navigation, thus, the responsibility to stop the robot
when the goal is achieved is upon the user.
A problem that we found during the test phase of the Navigation node was that the
robot moved intermittently after publishing a message. This was probably due to
how the TurtleBot package was designed since, with other robots, the velocity re-
mains constant to the value of the last message. In order to get the same behavior,
no matter the velocity control implementation, a new node has been created.

This node is an intermediate step between the Navigation node and the pub-
lishing of the new velocity to the robot. In its first implementation, it only took
the message from the topic on which the Navigation node published and it con-
tinuously published it on the /cmd_vel_mux/input/navi topic, until a new message
arrived.

This behavior could also be achieved in a single node, but we wanted to dif-
ferentiate the tasks of the nodes: calculation of the new velocity on one node and
maintaining the velocity on the other. The implementation of this node allowed
the robot to perform smooth movements, so we could dedicate ourselves to im-
prove the dynamic system.

5.2 Parameters tuning and map visualization
Using the Equation set 5.1.1, different tests were executed on the real robot, point-
ing out some problems. The most important was that the strength and weight
parameters were not tuned correctly for a real robot. Obstacles were taken into
account only when the robot was very close to them and the corrective measure
adopted was excessive, resulting in a sudden change of direction that could even
make the robot fall on the ground.
The first thing we tried to do was to add some scaling factors to the formulas (in
the Equation set 5.1.1 the direction is bound to be correct), leading to:

strength[i] = max_strength
ranges[i]

direction[i] = angle_min + angle_increment · i

weight[i] = robot_diameter ·max_weight
ranges[i]

(5.2.1)
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We performed different tests in order to tune the max_ strength and max_ weight
parameters, but the results did not change much. Upon increasing max_ strength
the robot would turn more violently. This led to excessive corrective measure,
as the robot took into account only very close obstacles. Upon increasing max_
weight the robot would turn by an angle wider than necessary. This also increased
the maximum distance within which an obstacle was considered. On the other
hand, upon decreasing said parameters, the robot would collide with the obstacles.
So, we needed to find a way to visualize the effects of increasing and decreasing
those parameters, as well as to tune them better.
Another issue linked to the visualization problem was to merge data from different
sensors: even if we sent a dyn_msgs/ Obstacle message to the same topic of the
laser, the obstacles were not saved anywhere and the same obstacle would be
taken into account twice in the summation. This behavior could be desired, but
we decided to use a more general approach: Occupancy Grid Mapping.
One of the contributions of this work is the implementation of occupancy grid
mapping with dynamic navigation.
Occupancy grid maps are spatial representations of the robot’s environment. The
grid representation is based on a multidimensional (2D or 3D) tessellation of space
into cells, where each cell stores a probabilistic estimate of its state. In our case
the state represents whether or not an obstacle is in the cell (binary occupancy
grid). There are several reasons to prefer an occupancy grid mapping approach,
but the most important for us is the easier interpretation and integration of data.
The system was reviewed with the introduction of occupancy grid mapping. One
of the first important changes was the sending of a nav_msgs/ OccupancyGrid
message to the topic in charge of navigation, instead of a dyn_msgs/ Obstacle.
The specifications for a nav_msgs/OccupancyGrid message are:

• std_msgs/Header header contains a timestamp, that is the acquisition time
of the map, and the frame_id of the sensor.

• nav_msgs/MapMetaData info contains the basic information about the char-
acteristics of the occupancy grid, like resolution (m/cell), width (cells) and
height (cells).

• int8[] data is the map data, in row-major order. Probabilities are in the
range [0,100] and unknown is -1.

The parameters defining an occupancy grid (resolution, width and height) have
been dimensioned so that the resolution could take into account the sensors im-
precision and width and height could cover the maximum range of the sensors.
The parameters are settable in a yaml file, but their default values are:
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• Resolution: 0.06 m/cell; this way a distance measured with the Hokuyo
sensor, that has an accuracy of ±3cm, will be wrong by a cell at most.

• Width/Height: 200 cells; so that we could cover an area of 12m x 12m.

The reason why the size of the map is more than twice the maximum range of
the laser (5.6m), is that the robot will be at the center of the map. This is useful
because this way we can use the data measured behind the robot, since the Hokuyo
has a scan area of 240°.
The idea behind the implementation of the occupancy grid is to merge data from
different sensors, so the system design was changed accordingly, as we can see in
Figure 5.2, where the final implementation of the system is represented. Instead of
sending the messages directly to the topic to which the node that moves the robot
is subscribed, the message is sent to another topic (/occupancy_grids). The node
that merges the data takes these messages and it publishes a merged occupancy
grid to the /merged_occupancy_grid topic that is used to draw the map and to
make the robot move.
This way if new sensors were to be added to the robot, it is sufficient to create
an occupancy grid from the sensor data and publish the message on the /occu-
pancy_grids topic. No further modifications are required in order to use the algo-
rithm.

Figure 5.2: Part of the designed system. Nodes are represented as rectangles and
topics as ovals.

With the occupancy grids implementation, the dyn_msgs/Obstacle message has
been changed so that the variables are no longer arrays, but one-dimensional vari-
ables. It has also been incorporated in a new type of message that we created, the
dyn_msgs/DynamicOccupancyGrid message, with the following definition:

• std_msgs/Header header contains a timestamp, that is the moment in which
we started merging the map, and the frame_id of the merger.
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• nav_msgs/MapMetaData info contains the basic information about the char-
acteristics of an occupancy grid, like resolution (m/cell), width (cells) and
height (cells).

• int8[] obstacle is the map data, in row-major order. Probabilities are in the
range [0,100], -1 if the value is unknown.

• bool near_obstacle true if an obstacle is within a security range in the front
of the robot.

• dyn_msgs/Obstacle[] data strength, direction and weight of the obstacles.
The data array and the obstacle array have matching indices.

The Navigation node, after receiving the dyn_msgs/DynamicOccupancyGrid, has
to iterate through the obstacle array, searching for cells with value > 0. Then, in
order to calculate the next direction, it takes the strength, direction and weight at
the indices corresponding to those cell in the same index of those elements. The
near_obstacle variable is useful when the robot is near to an obstacle and it has to
stop, in order to avoid the obstacle more safely.
The node that merges the occupancy grids publishes the merged occupancy grid,
through the dyn_ msgs/ DynamicOccupancyGrid message, on the /merged_ occu-
pancy_ grid topic.
The Draw_Map node subscribes to this topic and uses the map message and
OpenCV utilities to draw the map of the robot field of view. In this way we
can control which obstacles have more influence on the navigation. To do so, we
colored the different obstacles using the following parameter as a reference:

obs_force = obs_strength · e
(obs_direction)2

2·(obs_weight)2 (5.2.2)

This parameter defines the obstacle influence in the calculation of the new di-
rection and, as we can see, it is part of Equation 3.2.1. Two ways to color the
obstacles have been tried:

• Gradient: the maximum force has been calculated and the obstacles with
the maximum force has been given the red color. The other obstacles has
been colored using a shade of red, where higher force has more red com-
ponent. The robot is the green point on the map. As we can see in Figure
5.3(a), the map is not understandable for colors other than red and this ap-
proach has been set aside.

• Different colors: seven different colors have been used. In descending
force order we have: red, dark orange, orange, yellow, light blue, cyan and
dark blue. Each color corresponds to a different percentage range of the
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maximum force. The robot is the black point on the map. In Figure 5.3(b)
we can see that now we can understand more clearly which obstacles have
major and minor impact to the navigation.

(a) Gradient (b) Different colors

Figure 5.3: Dynamic Occupancy Grid visualization. The maps were cropped in
the area behind the robot because there were no obstacles.

With the visualization help and the occupancy grid approach we could dedicate
ourselves to parameters tuning. In order to do that, we created a test node that
simulated a sensor. This node simply sent a nav_msgs/OccupancyGrid message
to the /occupancy_grids topic. The contents of this message could be changed
as needed. For the sake of understanding how the changes in the max_force and
max_weight parameters (in the equation set 5.2.1) affected the systems, we sent
an occupancy grid with every cell occupied by an obstacle. The results can be
seen in Figure 5.4.
The Figure gives a comparison between the implementation of Equation 5.1.1 and
Equation 5.2.1. As we can see in Figure 5.4(b), increasing the parameters permits
to consider more obstacles, but the main problem is that the closest obstacles still
monopolize the navigation. This means that using 1

ranges[i] to calculate strength and
weight does not allow the robot to fully utilize its sensory data to calculate the
new direction. We decided to achieve the inverse proportionality needed, with
respect to the range parameter, using a gaussian, so that the obstacle force would
decrease less quickly. We centered it at a cell distance from the robot, in order
to get the maximum strength at an immediately near obstacle. The corresponding
new equations are:
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(a) Implementation of the equation set 5.1.1 (b) Implementation of the equation set 5.2.1
(with increased strength and weight)

Figure 5.4: Influence of the obstacles in two different implementations.

strength[i] = strength_param · exp−(ranges[i]−resolution)

direction[i] = angle_min + angle_increment · i
weight[i] = weight_param · robot_diameter · exp−(ranges[i]−resolution)

(5.2.3)

The implementation of these equations in our system led to Figure 5.5.
As we can see, we obtained a more predictive system, where the obstacles with
the highest impact are in front of the robot. The obstacles behind the robot are
not almost taken into account, while those at the sides are more prominent than
before.
We tried these parameters on the real robot, achieving a smoother and safer nav-
igation. The robot was able to consider farther obstacles, so it could adjust its
trajectory more gently and could reach farther goals. Although many problems
have been solved using the new equations, new issues arose. In open spaces the
robot navigated avoiding all the obstacles, but in tight places, as corridors, the
robot started to swing to the left and to the right. This was due to the fact that the
two walls were not taken into account both at the same time, so the robot would
see the wall to its right, it would turn in order to avoid it and then it would see the
wall to its left. We tuned the weight_param in order to give more prominence to
the side obstacles. Even though the corridors problem was solved, the robot would
not pass through the doors, because higher weigth_param made it too narrow to
pass.
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Figure 5.5: Implementation of the equation set 5.2.3

In order to overcome these problems, we tried to change approach modifying the
equations, as suggested in [36]. We also introduced a normalizing factor (num-
ber_of_obstacles) in the strength equation, as well as the value of the occupancy
grid cell (map[i]), that will be useful when we will use a probabilistic approach
and not a binary one. The new equations became 1:

strength[i] = map[i] · strength_param ·
( 1

num_of_obstacles

)
· exp−

ranges[i]−resolution
decay_param

direction[i] = angle_min + angle_increment · i

weight[i] = weight_param · arctan
[
tan

(angle_resolution
2

)
+

+ robot_diameter
robot_diameter + ranges[i]

]
(5.2.4)

In Figure 5.6 we can see the results of these new equations.
With this implementation we could finally give meaning to the parameters on
which the equations were based:

• The strength_param defined how much strength an obstacle had, that is,
how much it influenced the final direction of the robot. Greater strength
would make the robot turn more violently, while lower one would make the
robot turn more gently, causing the robot to pass more close to the obstacles.

1In these equations the resolution is the distance in meters between two adjacent cells, while
the angle_resolution is the minimum angle representable in the map. Both are fixed parameters.
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(a) Implementation of the equation set 5.2.4 (b) Implementation of the equation set 5.2.4
(with increased decay param)

Figure 5.6: Influence of the obstacles in the final implementation.

• The decay_param defined the area of influence in front of the robot. If the
decay_param was high, farther obstacles would be taken into account for
the calculation of the new direction (see Figures 5.6(a)-5.6(b)).

• The weight_param defined the area of influence on the side of the robot.
Higher weight_param meant that more obstacles on the side would be con-
sidered.

We tuned the parameters so that we could keep the weight parameter low enough
to pass through doors, but high enough to consider two opposite walls in a corri-
dor. The decay parameter was increased a bit in order to keep into account farther
obstacles, while not too far from the robot. The strength parameter was kept as
in the previous implementation. The final implementation can be seen in Figure
5.6(b). These three parameter can be tuned in a yaml file and, as a consequence,
it is possible to adapt the navigation to different situations and different robots, in
case the default parameters do not work.
During the test phase the robot could navigate autonomously in the environment,
so we got a working system using only the laser. The navigation, however, was far
from being safe: indeed there were multiple problems to the navigation that we
could not overcome. The Hokuyo laser scan cannot yaw, so there were obstacles
that could not be seen from it. Two common examples of these obstacles are
tables(too high) and bases of the chairs (too low to be detected).
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5.3 Navigation with Kinect v2
Once we got a working system, we tried to add a new sensor in our system: the
Microsoft Kinect v2. The first step was to choose which data message would be
of interest for our application, because the iai_kinect2 package publishes mul-
tiple topics with different messages. Since we had to measure distances, in or-
der to find obstacles in the navigation, we used a topic in which is published
a depth image (/kinect2_head/depth/image) and a topic in which is published a
point cloud(/kinect2_head/depth_ir/points).

Figure 5.7: A depth map from the Kinect v2 sensor.

We firstly tried to use the depth image, but we discovered that the images taken
from the Kinect v2 have a lot of noise, specially in the corners (see Figure 5.7).
We searched for state of the art algorithms to remove noise from those images, but
we did not find anything useful. Most of the tips that were given were to use the
disparity image in order to recreate the 3D image. So we decided to use directly
the point cloud that the Kinect v2 gives us after a filtration phase.
In Figure 5.8 we can see a point cloud visualized in RViz, using intensity to color
points. As we can see, there are a lot of flying pixels, specially near the camera;
we have to filter them in order to get a scene in which the object are visible.
The first thing to do was to get the point cloud in a data type that could be handled
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Figure 5.8: Visualization in RViz of a point cloud taken from the Kinect v2 sensor.

efficiently. We used PCL which is well integrated in ROS and provides a method
that converts a ROS message to a PCL point cloud: pcl:: fromROSMsg( sensor_
msgs/ PointCloud2, pcl:: PointCloud<T>).
Once we acquired the point cloud, the next step was to lighten it, so that the
computational time to filter it would be lowered. The time constraint was due to
the fact that the robot needed the filtered data in time to avoid the obstacles that
the laser could not detect.
Firstly, we decided to exclude parts of the point cloud where there could not be
obstacles that could harm the robot, that is all the points above a certain threshold.
To be lighter on computation, we decided not to use any algorithm to remove the
ground plane, but to put a threshold to the minimum height for the point cloud.
We also decided to cut in the depth direction, using the specification range of the
Kinect v2. In order to do that, we used a PCL filter called Conditional Removal.
This filter removes from the cloud all those points that do not satisfy one or more
given conditions that are specified by the user. We imposed conditions in every
direction, so that we could limit the point cloud to specific bounds. At first, we
thought that with a threshold to reject points with a low depth we could remove
most of the noise in the cloud, but this way we also removed obstacles near the
robot and this was not a part of the intended behavior. So we removed the depth
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constraint, keeping only an upper bound.
Besides filtering the point cloud with those thresholds, we used a VoxelGrid filter
to downsample the number of points. With this approach, all of the points in
a voxel would be replaced with their centroid. A custom approach of selecting
only a point every x points has also been tried, but we did not find a significant
improvement in the performance and the remaining point cloud did not represent
the surfaces in an accurate way, unlike the VoxelGrid filter. The result of these
two firsts phases of filtering can be seen in Figure 5.9.

(a) Original PointCloud (b) PointCloud filtered

Figure 5.9: Comparison between the point cloud before and after the Conditional
Removal and Voxel Grid filtering.

As we can see in the Figure 5.9, although a lot of points have been removed and
the scene keeps only the important objects, there is still a lot of noise. In order
to remove that, we relied on another filter, the Statistical Outlier Removal (SOR).
This filter uses only two parameters to remove outliers:

• MeanK is the number of nearest neighbors to use for mean distance esti-
mation. This can be set with the method pcl:: StatisticalOutlierRemoval
<PointT>:: setMeanK( int nr_k ).

• StddevMulThresh is the standard deviation multiplier for the distance
threshold calculation. This can be set with the method pcl:: StatisticalOut-
lierRemoval <PointT>:: setStddevMulThresh( double stddev_mult ).

Using these two parameters, a distance threshold can be calculated with this for-
mula: meanK + stddev_mult · stddev. Points with their average distance from
their neighbors below this threshold will be classified as inliers, otherwise they
will be outliers. In Figure 5.10 we can see the best results achieved after a session
of parameters tuning.
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(a) PointCloud after Conditional Removal and
Voxel Grid

(b) PointCloud filtered with SOR

Figure 5.10: Comparison between the point cloud after the firsts filters and after
Statistical Outlier Removal.

Although we obtained good results from filtering with SOR, small clusters of
spurious points were still present in the point cloud, like we can see in Figure
5.10(b) on the right of the image. Then we decided to substitute SOR with another
filter: Radius Outlier Removal (ROR).
This filter removes all of the points in the cloud that do not have at least some
number of neighbors within a certain range. With this algorithm we could define
threshold loosely enough to keep the significant objects in the cloud, but strictly
enough to remove the clusters of points. In fact, this algorithm allows to set these
two parameters to remove outliers:

• Radius Search is the sphere radius that will determine which points are
neighbors. This can be set through the method pcl:: RadiusOutlierRemoval
<PointT>:: setRadiusSearch( double radius ).

• Minimum Neighbors is the number of neighbors that need to be present
in the sphere centered at the considered point. This can be set through
the method pcl:: RadiusOutlierRemoval <PointT>:: setMinNeighborsIn-
Radius( int min_pts ).

Trying to find the best parameters for ROR, we understood that, in order to remove
the clusters of points, we needed to use strict parameters for the filter. We also
found out that Radius Outlier Removal left small clusters of noise, no matter the
parameters used. Acknowledging these two facts, in Figure 5.11 we can see the
result after filtering with ROR.
As we can see, we obtained a point cloud without big clusters of spurious points,
but flying pixels are still present in the image. It should also be noted that ROR
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(a) PointCloud after Conditional Removal and
Voxel Grid

(b) PointCloud filtered with ROR

Figure 5.11: Comparison between the point cloud after the firsts filters and after
Radius Outlier Removal.

filters a bit too much in the farthest part of the point cloud. We can see in Figure
5.11(b) that the pillar is almost completely removed by the filtering.
In order to get a useful filtered point cloud we then differentiated the way we filter
the cloud. Since we needed a cloud without any kind of noise near the robot to
have a safe navigation, but we could accept a not perfect filtering far from the
robot, we decided to split the point cloud in two, using depth as a threshold. The
filter that we used to achieve that is the PassThrough filter. With this tool we could
set the axis that we wanted to filter with the method pcl:: PassThrough <PointT>::
setFilterFieldName( const std::string & field_name ) and then the range of the
point cloud we wanted to keep with the method pcl:: PassThrough <PointT>::
setFilterLimits( const float & limit_min, const float & limit_max ). After having
extract the near cloud, we could reverse the limits set with the method setFilter-
LimitsNegative(const bool limit_negative), in this way we could use the filter to
extract also the far cloud.
The final filtering pipeline is then:

1. Conditional Removal

2. Voxel Grid

3. PassThrough

4. Radius Outlier Removal:

• Near Cloud: strong filtering.

• Far Cloud: no filtering.
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5. Statistical Outlier Removal:

• Near Cloud: filtering with a lower StdDevMultThresh.

• Far Cloud: filtering with an higher StdDevMultThresh.

The two clouds are finally merged together. In Figure 5.12(b) we can see that we
got a point cloud with all the relevant obstacles visible and without noise.

(a) Original PointCloud (b) Filtered PointCloud

Figure 5.12: Comparison between the point cloud before and after the filtering.

The node that filters the point cloud then transform it back into a ROS message, us-
ing the PCL method: pcl:: toROSMsg (pcl::PointCloud<T>, sensor_msgs /Point-
Cloud2), and publishes it to a topic. The topic publishes at an average rate of
8.8Hz and, considering that the Kinect v2 publishes on the input topic with a rate
of 10Hz, the filtering operation is quick enough for our purposes.
The next important step was to get the obstacles in a way that we could represent
them in an Occupancy Grid. In order to do that, the package pointcloud_ to_
laserscan has been used. Like the name says, this package requires a point cloud
as an input and returns a laser scan. The package uses nodelets, that are efficient
nodes, to do this work. Different parameters can be set, like the minimum and
maximum height (of the point cloud) to scan to create the laser scan, or the laser
scan parameters, angle_min, angle_max, angle_increment, scan_time, range_min
and range_max (for these parameters we used the Hokuyo’s ones). Another pa-
rameter that can be set is the concurrency level, that affects the number of point
clouds queued for processing and the number of threads used. Thanks to how the
package was done (nodelets), with the help of multithreading, this node publishes
the laser scans keeping the same rate as the input topic.
Initially we did not get the expected results. In RViz a line, if any, was displayed
in the vertical direction. We found out that the reason for this strange behavior
was attributable to a frame problem. In Figure 5.13 we can see that the frame
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used by the Kinect v2 and the frame used by the Hokuyo laser scan have not the
same reference system and then all the calculations are wrong.

Figure 5.13: The Kinect v2 frame and the base frame have not the same reference
system.

To overcome this problem, we used the tf2 package to acquire the transform be-
tween the kinect2_head_ir _optical_frame and the base_laser_link frames and, af-
ter the filtering, we applied the transform to the ROS message using a tf method.
The package then transforms the point cloud into a laser scan correctly, like we
can see in Figure 5.14.
Finally, we used the implemented Laser class to transform the laser scan into an
occupancy grid.
Then we tried to make the robot navigate using only the Kinect v2 sensor. The
results were good: the Kinect found obstacles that the laser could not find, like
chairs and tables, but the navigation was not as stable as it was with the laser.
In a small hallway, in which laser-based navigation was stable, navigation with
the Kinect was not, because of the limited field of view of the sensor. The robot
started to swing like when the strength parameter was not dimensioned correctly.
In order to overcome these problems we started working on merging data from
different sensors.
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Figure 5.14: The laser scan resulting from the filtered cloud.

Before that, we also tried our algorithm on the Microsoft Kinect sensor (first ver-
sion). We acquired the point cloud from the topic /camera/depth/points and we
kept the same filtering as the Kinect v2. As we can see in Figure 5.15, the first ver-
sion of the Kinect gives a point cloud with little, if any, noise, but it has a limited
field of view, in addiction to the other problems that we discussed in subsection
2.8. This is what makes the Kinect v2 more suitable to this application. However,
the Kinect could be used together with the Kinect v2 sensor, in order to cover the
blind spots that both have, also considering that the Kinect does not need to use
an USB 3.0 and its publishing rate is 30Hz (that become 29Hz once filtered).

5.4 Occupancy Grids merging

The next step in designing our system was to deal with the merging problem. With
the use of occupancy grids, the merging of the messages was straightforward.
Each message was distinguished from another using the frame_id as the key. If a
message with an already acquired frame_id was received, it would be discarded.
Other way, if a message with a new frame_id arrived, the obstacles in the new
map would be summed to the obstacle of the saved map by adding the value of
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(a) Original PointCloud (b) Filtered PointCloud

Figure 5.15: Comparison between the point cloud before and after the filtering for
the Kinect sensor.

each cell to the value of the corresponding cell of the saved map.
In the first implementation of the merging algorithm we used a binary occupancy
grid, where 0 indicated the absence of an obstacle and 100 its presence. In case
of the same obstacle being detected by two or more sensors, the value would not
change and would stay constant to 100 (certain probability).
When the number of new frame_ids acquired matched the number_of_sensors pa-
rameter, defined by the user in a yaml file, the merged map would be transformed
into a dynamic occupancy grid and then sent through a dyn_msgs/ DynamicOccu-
pancyGrid message to the topic (/merged_ occupancy_ grid) that would be used
by the navigation node and the draw map node.
A problem associated with this approach is that the faster sensor has to wait for
the slower one. Indeed the map of the faster sensor will be saved when the first
message arrives and then all the other messages from this sensor will be discarded
until the first message of the slower sensor will be available. This way the scene
could change and the merged map would not be consistent with reality, making
the navigation unstable. To overcome this problem we saved the new map in a
vector with its sensor frame_id associated and then we updated that map at the ar-
rival of every new message. When the vector size matched the number_of_sensor
parameter, the maps would be merged together and then sent, as before.
Another problem with this algorithm is that the number_of_sensors parameter
has to be set from a yaml file and it is static. This way, if a node crashes the
robot cannot continue to navigate through the environment, even though the other
sensors are active. In order to overcome this problem, a change in the system
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(a) Dynamic Occupancy Grid (b) Rviz

Figure 5.16: Merged map from different sensors. Comparison between this work
Dynamic Occupancy Grid and Rviz visualization

design has been made. Every sensor node has been subscribed to a topic: /con-
nected_sensors. The merging node, instead, has been made the publisher for that
topic. This way, through the ROS method getNumSubscribers, the number of
active sensor will be updated every time an occupancy grid is received and the
number_of_sensors variable can be discarded. The publisher also has to publish a
message in the topic to update the number of subscribers, so we made it publish an
std_msgs/Empty (empty to lower network load) and we made a void callback for
every sensor, to speed up the updating process. In Figure 5.17 we can see the map
visualized when the Hokuyo laser scan is active (Figure 5.17(a)), when the Kinect
v2 is active (Figure 5.17(b)) and when both of them are active (Figure 5.17(c)).
During the test phase of the system, another problem appeared: on the same ob-
jects, e.g. a wall, the two laser flows did not match (see Figure 5.18). This was
still true when the robot faced the wall in the other direction. In particular the
Kinect v2 scan was shifted to the left in both cases with respect to the Hokuyo
laser scan and it seemed shifted by a fixed distance, meaning that the transform
between the Kinect and the Laser frame was wrong. Since we could not know
beforehand how much the measurements were wrong, in order to change them in
the TurtleBot package, we created a node that could calculate the shift between
the two laser flows.
In the design of the algorithm we have taken into account that it could not be
possible for the robot to calculate the static shift between the two frames during
the navigation, because there could not be matching obstacles. Then we designed
this algorithm to be run offline.
The first thing to do was to take some training images of a known common object.
We created our dynamic map with one sensor at a time, from different angles, and
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(a) Map with only Hokuyo mapping (b) Map with only Kinect v2 mapping

(c) Merged Map

Figure 5.17: Comparison between the Hokuyo, the Kinect v2 and the merged
Occupancy Grids

we saved the images. In order to get significative images, we limited the Hokuyo
laser scan to the same field of view of the Kinect v2, in this way all the useless
obstacles will be avoided in the matching algorithm.

Then we loaded those images two by two (laser and Kinect shooting the same
scene) and we scanned the image to find those pixels that were not white. When
such a pixel was found, a correspondent point in a point cloud would be created.
We also had to pay attention to the frames, indeed the Z axis in OpenCV corre-
sponds to the Y axis in PCL. Once we created our two point clouds, we could use
the ICP algorithm to calculate the transformation between the two. We tuned the
algorithm parameters so that we could obtain a fitness score as low as possible,
meaning that the transformation found was the most accurate possible. We asso-
ciated a weight of 1 - fitness_score to each match, so that we could do a weighted
average over the ten matches. Matches with fitness_score > 1 have been excluded
from the calculation because the transformation found was not accurate enough.
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Once we obtained the transformations and their weights, we averaged them. Ev-
ery transformation was composed by two components, translation and rotation.
The average between translations was straightforward, but computing the average
between rotations was not an easy task since the rotation was saved as a quater-
nion.
Quaternions encode only orthogonal transformations, but the average of several
orthogonal transformations is not, in general, orthogonal, so it is not representable
by a quaternion. But if the transformation are near in the 3d space, like in this case,
averaging is possible [53]. Let

Q = [a1q1 a2q2 · · · anqn] (5.4.1)

be a 4xn matrix where ai is the weight of the i-th quaternion and qi is the i-
th quaternion to be averaged. The normalized eigenvector corresponding to the
largest eigenvalue of QQT is the weighted average. Since QQT is self-adjoint and
at least positive semidefinite, fast and robust methods to solve the eigenproblem
are available.
We used the Jacobi SVD (Singular Value Decomposition) algorithm from the
Eigen library. This algorithm calculates a factorization of a real or complex ma-
trix. The resulting factorization is in the form UΣV T where the column of U are
a set of orthonormal eigenvectors of Q ∗QT . In particular, the first column is the
eigenvector associated with the largest eigenvalue, so it is the weighted average
that we needed.
Once we had the two averages, we reconverted the transformation to the openCV

Figure 5.18: Laser and Kinect v2 laser scans do not merge correctly
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frame and we saved them in a configuration file. Then, when we acquired the
transform from Kinect v2 and Hokuyo, we applied it (if no transform was avail-
able, the identity transform would be applied). The results were good and as we
can see from Figure 5.19, the two laser flows now merge perfectly, making the
scene more understandable.

Figure 5.19: Laser and Kinect v2 laser scans merge correctly

The last thing we have done with the occupancy grids merging has been to trans-
form the occupancy grids from binary (the obstacle is in that cell or it is not) to
probabilistic grids (the obstacle is in that cell with probability p). To do that, we
created a yaml file in which the user can set the weight of the different sensors,
using this format:

• publisherX:

– id: "publisher"

– ranges: [r1, r2, · · · , rn]
– costs: [c1, c2, · · · , cn]

Where X must be a number in ascending order (the first sensor must be 0, then
1 and so on), "publisher" is the name of the frame_id of the sensor, ri is a range,
meaning every distance between ri−1 and ri (if i = 1, 0 is the lower bound), and
ci is the corresponding weight for the sensor in that range. Every obstacle with
distance > rn will have weight 0.
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Having defined the sensor in this way, when the merge node creates the merged
map, it calculates the distance of the obstacle and it uses a percentage of the total
weight of the active sensors at that distance to give a value for the cell.
This way we can give more weight to the sensors that we know to be more reliable
at certain distances, like the Hokuyo is in the firsts 0.50m, where the Kinect v2
can not detect anything.
During the test phase of the algorithm, the robot could move autonomously
through the environment without notable problems. The robot could avoid all
the visible obstacles, like chairs, tables and humans. It also navigated in a smooth
way, without dangerous oscillations or sudden changes of direction.
At this point we decided to change the linear velocity, that up to this point was
kept constant. We used Equation 5.4.2 to get a velocity that changed according to
the obstacles presence:

velocity = max_velocity · cos
∑

i

λi(φi − φh)e
(φi−φh)2

2σ2
i


= max_velocity · cos(φ̇h)

(5.4.2)

This way, when the new direction was almost the same as the current heading of
the robot, it could go at maximum speed, instead if it had to turn 90°, the linear
velocity was zero. We tested the system with different values for max_velocity
(e.g. values in a range of 0.08-0.12 m/s) and the system gave the best results with
max_velocity = 0.10 m/s, where the robot could avoid all the visible obstacles
keeping a fast velocity. The only problem that occurred is that it could not see
obstacles that were lower than the height of the Hokuyo, if they were near (other-
wise the Kinect v2 could have detected them). Obstacles in its blind spot, that is
the space not scanned between the laser scan and the lowest angle of the Kinect
v2 field of view, were invisible as well.

5.5 Navigation with Bumpers
Another contribution of this work is the introduction of the bumper sensors feed-
back in the algorithm loop. The bumpers, located at the front and/or back of the
robot, are meant to absorb the impact of a collision. The Kobuki base had three
bumper sensors placed on the front side of the robot, in particular at the left, at
the front and at the right (see Figure 5.20). The bumpers could be triggered by a
collision, or by a wheel drop sensor for fall detection.
There were two topics, published by the TurtleBot package that allowed us to get
bumpers information: /mobile_base/events/bumpers and /mobile_ base/ sensors/
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Figure 5.20: Bumpers on the Kobuki base.

bumper_ pointcloud. On the former were published kubuki_ msgs/ BumperEvents
messages, that had this specifications:

• uint8 bumper defined which bumper has changed its state (LEFT, CEN-
TER, RIGHT).

• uint8 state defined what happened to the bumper, its current state ( RE-
LEASED, PRESSED ).

On the latter, were published sensor_ msgs/ PointCloud2 messages that contained
a point cloud with a point representation of the direction in which the correspond-
ing bumper had been pressed, or no points if the bumper was released.
Both topics were published only when the event occurred and not continuously, so
the bumpers worked in a different way with respect to the other sensors. Firstly,
we decided which topic to use. We chose to use the /mobile_ base/ sensors/
bumper_ pointcloud topic because we wanted to separate the type of robot used
as much as possible from our implementation and the first topic used messages
typical of a Kobuki base.
Unlike the Kinect v2 topic, we only had to scan through the message to get the
information needed, without filtering. We created the corresponding occupancy
grid map and sent it to the merging node, as shown in Figure 2.2. We modified
the Merge_Map node so that we could use this sensor without having to block the
rest of the system. Indeed, if we used the node like it was designed, the robot
would go straight until it would hit an obstacle and only at this point the map
would be visualized, because it would wait for all the sensors to acquire their
data before publishing. So, to overcome the fact that the topic would be published



5.6. SEMI-AUTONOMOUS NAVIGATION 67

only at the time of the event, we made an exception to include the bumpers without
counting them as an active sensor. In this way we were able to keep our working
autonomous navigation, but we could also use this event sensor.
During the test phase, we noticed that the single point published by the bumpers in
the direction of the obstacle hit was not enough to make the robot turn to another
direction. This was due to the fact that we had all of the other sensors obstacles
in the map, so a single point could not have enough strength to make the robot
turn. Hence we modified the occupancy grid map so that the obstacle could have
more strength, adding 8 more points to the adjacent cells of the point created by
the bumper. This way the robot turned in the right way after hitting the obstacle,
that in our case was the underside of a chair. A problem that occurred with this
implementation was that, even though the new direction was correct, the robot
still tried to go ahead, taking the chair with it. To avoid this behavior, we used
the near_obstacle variable of the dyn_msgs/DynamicOccupancyGrid message so
the robot could stop moving straight and could only turn on the spot. In this way
the obstacles that were hit were overcome, and so the low obstacle problem was
solved.

5.6 Semi-Autonomous Navigation
Semi-autonomous navigation is a type of navigation where the robot can go
through the environment autonomously, using only its sensors. The user can
prompt it to move in a direction that it will follow. In order to achieve this re-
sult, we used the keyboard to guide the robot.
The node could not subscribe to a topic that could relay to the keyboard strokes,
so we made a listener for the user. The first thing to do was to get the keystrokes.
To do that, we overrode the behavior of the keyboard, so we could get the char-
acters from the terminal without visualizing them in output. A string message,
instead of an ASCII value, would be displayed after pressing a key. In its first
implementation, the Keyboard node could take in input only the arrow keys and
the q character which would shutdown the node.
The next step was to transform the acquired characters into an occupancy grid.
We created the map using the unknown value of an occupancy grid, -1, to define
an attractor (see subsection 3.1). This way we could use the designed algorithm
without doing other adjustments except adding a new condition to the Merge_Map
node. The new attractor, for left and right arrows, was not created on the side of
the robot but shifted ahead, so that it could be weighted more in the summation.
As with bumpers, we added attractors to the adjacent cells to obtain a stronger
attractor. We also introduced a publishing time for the messages, that is the period
of time during which the node must continuously publish the messages in order to
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make the robot turn correctly.

Figure 5.21: The dynamic map after pressing the left arrow, with the attractors in
green.

In Figure 5.21 we can see the resulting map, with the attractors colored in green.
We tested the algorithm and adjusted the publishing time so that the robot could
turn 90° when a key was pressed. One problem we had was that we had to press
the key twice to make the robot actually turn, because it seemed like the attractors
had no strength.
After getting a working system, we improved it by allowing the user to give com-
mands from another computer. To do that, we created a program that could send
keyboard strokes using UDP. We were not interested in using a connection based
protocol, instead we wanted the message to arrive as soon as possible. In case the
input was not received by the robot, the user could always resend it, so UDP was
the natural choice for this kind of transmission. The only required inputs were
the IP and port of the computer connected to the robot. For the receiving part,
every key received at the right port could be used as if the input was taken from
the keyboard. The only parameter to set was a connection type variable in a yaml
file, that could be LOCAL or REMOTE.
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We tried the algorithm giving the key strokes from another computer and it worked
as well as the local input case, without notable delays.

5.7 Deterministic Finite Automaton
With the introduction of the keyboard and the bumper sensors, we noticed that
we had to add exceptions to the way the Merge_Map node worked. This was
not what we wanted to do, because the idea was to add new sensors by making
them publish an occupancy_grid to the /occupancy_grids topic, without any other
modifications.
To overcome this problem, we thought of modifying the system in order to use
the keyboard and the bumpers as the events they are, and not as sensors. What
we wanted to achieve was to keep a system like the one already designed, where
the events could publish an occupancy grid on the right topic and the Merge_Map
node could use the event information to give a priority command to the robot.
The first thing we did was choosing a convention for the occupancy grids, so we
distinguished between frame_ids by renaming them respectively /sensor/name for
sensors and /event/name for events. Thus, the merging node could receive in the
same topic messages from both events and sensors and then it could put them
together to get the new map. Using this simple solution we had some problems as
the robot seemed stuck after a keyboard strokes, as when we added the exception
to the node. Then another keyboard strokes was needed to make the robot turn.
Besides, we did not achieved the priority command objective yet.
To fix this problem and achieve the desired behavior, a major modification to the
system was needed. The robot was modified to be interpretable as a Deterministic
Finite Automaton (DFA) [54], so we could give it commands more easily and
define different behaviors as needed.
These are the states that have been created for the robot:

• Ready: the system is ready to navigate and the user has some seconds to
stop the robot before it starts moving.

• Running: the robot is navigating through the environment.

• Paused: the system has been paused by the user. The robot stops moving,
but it keeps its sensors active. This state can be used when the robot reaches
a goal, but it is expected it will have to move again.

• Stopped: the system has been stopped by the user. The robot stops moving
and it shuts down its sensors. This state can be used when the robot reaches
a goal and remaining power is a concern.
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• Manual: the user has given a command to the robot. This can be used to
change the robot status or to make the robot turn another way.

• Collided: the robot has collided with something, so some countermeasures
are needed.

Figure 5.22: The system after the transformation into Deterministic Finite Au-
tomaton

The entire system with the state implementation is shown in Figure 5.22. The
/robot_status topic can be published only by an event or by the Controller node,
through a std_msgs/Int32 message (this way more statuses can be implemented in
future). In particular, the Keyboard node has been changed so that the user could
give more hints to the robot: r changes the state to ready; p changes the state to
pause; q changes the state to stopped. Before changing the status of the robot
into the correct one, the Keyboard node changes it to manual, so that the user, or
someone else that is checking the robot through the monitor, can be aware that the
state of the system has changed deliberately and not by some internal errors. If the
user prompted an arrow key to the robot the status changes to manual and, after
some seconds, during which the robot will turn, the node will change the robot
status to running.
The other event that can change the status of the robot in our system is a collision,
detected by the bumpers. So, before sending an occupancy grid to the topic, the
Bumpers node changes the status to collided and, after publishing the messages
for an adequate period of time, it changes it back to ready.
The Merge_Map node has been modified so that, when the status changes, all the
saved maps are dropped and the new occupancy grids that will be saved depends
on the frame_id. In particular, if the status is manual or collided, only messages
from events will be saved, while in any other case but stopped, messages from
sensors will be saved. This way, when an arrow key is pressed, only an attractor
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will be put in the resulting map, without all the other obstacles. This is not dan-
gerous for the robot, because the robot will rotate on the spot and no obstacles
should be present.
The last node that was modified with the state introduction, is the Controller node,
which takes the velocity and uses it to move the robot. This node has obtained a
crucial role in the system through this modification; it is responsible of interacting
with the robot in different ways, depending on the current state:

• Ready: the node will start a five seconds timer before changing the status
to running.

• Running/Manual: the node will publish the linear and angular velocity
proposed by the arriving messages.

• Paused: the node will keep the robot still.

• Stopped: the node will stop the robot and it will shut itself down.

• Collided: the node will make the robot reverse and turn with the appropriate
angular velocity.

This way we could achieve a different behavior depending on the state, that is
something that we could not do before with only the dynamic navigation. Another
problem we had was that not all the nodes received the message to update the
robot status while this was moving. This was due to the workload of the nodes
that continuously received messages from sensors, so a single message on another
topic could be lost.
In order to overcome this problem, we had to change the system. We created a
node whose only task was to keep the states of the robot updated. Then, changes
of the robot status were published to the topic change_robot_status. The new
node acquired the message and continuously published the updated state to the
robot_status topic. This way we could be sure that all the subscribed nodes would
receive at least one message with the current status of the robot.
In Figure 5.23 we can see a working implementation of the system. We tested it on
the real robot and all the messages, those sent using the keyboard and those sent
from the bumpers, were correctly received and the status was correctly updated
by all the nodes.
Thanks to the implementation of the Deterministic Finite Automaton, we could
improve the performance of the system and fix some undesired behaviors. The
first thing we did was to average the messages that arrived from the Navigation
node. This way, when a sudden change of direction occurred, the robot would turn
more gently and get a smoother navigation. The angular velocities were saved in a
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Figure 5.23: Deterministic Finite Automaton working system

double-ended queue, keeping a fixed size, so that when a new message was saved,
the oldest one was dropped. We tested this feature in order to tune the maximum
number of angular velocities to save. We noticed that as the number of the double-
ended queue grew bigger, the robot would turn in a smoother way, but it would
also be less reactive. We decided to set the maximum size to two, because the
reactiveness of the system was an important factor in a dynamic environment.
Another problem that occurred during the tests was that, if the robot was perfectly
perpendicular to a wall, the summation of the obstacles influences would be zero.
Then the robot would go straight till the near parameter (in the dyn_ msgs/ Dy-
namicOccupancyGrid message) would stop the robot. To overcome this problem,
we made the obstacles on the right have a little more strength than those on the
left. The strength increase did not unbalance the system, that kept the same be-
havior during the navigation, and when the robot was perfectly perpendicular to a
wall, it would slightly turn and it could avoid it safely. The resulting influence of
the obstacles can be seen in Figure 5.24.
Then we fixed a problem that occurred during the merging of the occupancy grids
of the Hokuyo and the Kinect v2. After a rotation larger than a certain threshold,
the Kinect v2 scan would be a little late with respect to the Hokuyo one, even if we
tried to filter the point cloud as quickly as possible. The resulting occupancy grid
would make the robot turn more than necessary, so we changed the system, so that,
after a rotation bigger than 30° (after parameters tuning), the robot status would
be set to paused for a second. This way the slower topics could synchronize with
the current view of the robot.
This solution was not general enough for the purpose of our application, so, once
again, we modified our system. The main problem was that the synchronization
of the messages was left to the processing speed and to the unitary queue of each
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Figure 5.24: The final dynamic map

sensor topic (so that ROS could drop older messages). In addition, the robot had
slow speed, so the maps could seem as if they were synchronized, but they were
not. This could be seen, as we said, when a rapid rotation occurred. In this case
the slower message (Kinect) were not synchronized to the faster one (Hokuyo)
and the merged map was not consistent.
The first thing we tried to do was to use the ROS package message_filter that
took in messages and output them at a later time, based on the conditions that filter
needs to meet. In particular, the time synchronizer filter outputs messages with the
same timestamp, if the exact time policy is used, or near in time timestamp, if the
approximate time policy is used. The one big problem with the use of this package
is that the messages must be published in different topics and this was against the
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design principle of our algorithm, where the occupancy_grid topic should have
been the same for all the connected sensors. So we could not use this package in
our application.
The next, and last, thing that we tried, was to use the odometry of the robot in
order to get consistent merged map. The idea behind this modification was to
save the position where the robot was when the map was acquired, alongside with
the corresponding occupancy grid. Then, when the Merge node would merge
all the occupancy grids, it would calculated the transformation between the robot
current position and the position where the occupancy grid was acquired. Then the
transformation would be applied to the old map and the resulting roto-translated
version could be merged with the other roto-translated occupancy grids.
In order to do that we modified the system so that each sensor/event could send a
dyn_msgs/OccupancyGridWithPose message, that had this definition:

• nav_msgs/OccupancyGrid grid is the occupancy grid that was published
before this modification.

• geometry_msgs/Pose pose is the current position and orientation of the
robot (with respect to the robot bring up position).

This way each sensor/event needed to have access to the odometry of the robot.
Instead of subscribing each node to the /odom topic, that could be resource de-
manding for those nodes that already had to do a lot of processing work, we cre-
ated another node, Get_Pose, that provided a ROS service: giving the current
odometry to the requesting node (see Figure 5.25). This node subscribed to the
/odom topic and its only duty was to keep the odometry updated.

Figure 5.25: The final system of this work
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A problem that occurred was that the map frame and the odometry frame were
not the same, so we had to transform the roto-translation between two different
positions into the right frame before we could use it on the acquired map. Once
we overcome this problem, the maps were correctly merged and there was no need
to stop the robot after a rotation anymore.
Another benefit of this improvement was that we could change once again the
behavior of the bumper node, so that, once the bumpers were pressed, the node
would continuously publish the obstacle with the position where it was detected.
Thus, after increasing the publication time, the bumped obstacle would stay in the
merged occupancy grid for an adequate time, so that the robot could dodge it more
safely.

5.8 The Telepresence Apparatus
The last module implemented in this work, is the telepresence module which en-
ables a video stream through laptops far from each other. We used GStreamer 1.0
to do that, because it was easy to use and to implement and in this way we did not
have to rely on third party software.
Initially we implemented the laptop web-cam video stream, because one goal of
our application was to show, from the robot side, the end-user video of the appli-
cation. We created the pipeline so that we could take the video from the web-cam
device as the source. Then we added a filter, to accept only images of a certain
format, a convertor, to transform the video into the right format to send it over the
network, an encoder, to transform the video into rtp packets, and finally we sent it
to the other laptop via a UDP connection.
From the client side, the UDP socket was the source for the pipeline. Then we
continued the pipeline by adding a filter to the arriving packets, to keep only those
that had the right format, a decoder and a converter, in order to visualize the im-
ages with the sink element. We also added the possibility of save the streamed
video, by redirecting the stream to another sink. At this point we tuned the param-
eters of the various elements of the two pipelines, so that we could get a video of
good quality without noticeable delay in local streaming (delay over the network
depends on the network quality and workload).
The next step was to stream video from the Kinect v2 to another laptop. The
client side did not need to be changed because it worked with every video stream,
so we needed to implement only the server side. Initially, we tried to get the
Kinect v2 video stream as we did with the web-cam, but this led to a problem:
if the Kinect v2 was used in this way, we could not use it in ROS, making the
robot navigation less safe. So we changed approach and we relied on ROS to get
the stream that we needed. We created a ROS node that was subscribed to the
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Figure 5.26: The designed GStreamer pipeline used in this work.

Kinect v2 topic /kinect2_head/rgb_highres/image and we put the arriving images
in a buffer that would be the source of our application. The resulting stream
was a little slow, because the streamed images had high resolution (1920x1080),
so we used images with a lower resolution (960x540), that were provided by the
topic /kinect2_head/rgb_lowres/image. The workload on the network was reduced
substantially and the stream was fast enough for the application sake, without
having lost too much quality (see Figure 5.27).

Figure 5.27: A scene captured from the Kinect v2 mounted on the top of the robot

The server audio and the client audio were designed in a similar way to the video
one. The source for the server was the microphone of the laptop. The sound was
then converted, encoded and sent via UDP, the sink of the server pipeline. The
source for the client was the UDP stream. The packets were then decoded and
amplified, before being played back. With speakers loud enough, or earphones,
the audio streaming could be sent between laptops without noticeable delay and
with quality high enough for the application purpose.
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5.9 Semi-Autonomous Navigation BCI Driven
The last step, after having designed a robot that could navigate in a semi- au-
tonomous way in the environment and after having built our telepresence appara-
tus, was the integration of the BCI framework.
In this work we used a SMR based BCI that adopts non-invasive EEG acquisition
method. The already existing code for SMR-BCI was firstly adapted to permit
the link with our system standards. We added to the system keyboard commands
to change the robot status, but allowing, at the same time, the possibility to send
direction via BCI. The BCI assignment was, in fact, to derive from the EEG activ-
ity the corresponding MI task and translate it in a specific direction command, in
this work left or right. Likewise we did for the semi-autonomous navigation, we
created an UDP socket in order to send the commands to the robot laptop. After
the set-up of the communication between the different frameworks and devices,
we started the experimental phase.

5.9.1 Experimental design
A male volunteer sat comfortably on a chair, which was positioned in front of a
monitor. The subject wore a EEG cap in order to facilitate the EEG electrodes
positioning and preventing their movement. A set of 16 active electrodes were
attached to the cap. To achieve adequate signal quality, the skin areas that were
contacted by the electrodes had to be carefully prepared with a conductive gel.
The EEG channels were placed over the sensorimotor cortex: Fz, FC3, FC1, FCz,
FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 according to the
international 10–20 system with reference on the right ear and ground on AFz
(see Figure 5.28). Each electrode was labeled with a letter to identify the lobe
and a number to identify hemisphere location. The recording was done using a
16-channel g.USBamp (g.tec medical engineering, Schiedelberg, Austria) system
at 512 Hz. The recording system was directly connected to the remote desktop
that could send commands to the laptop attached to the robot.

5.9.2 Experimental protocol
Before being able to use a SMR BCI, the user had to go through a number of
steps to learn to voluntarily modulate the EEG oscillatory waves by performing
MI tasks. Furthermore, the BCI system had to learn what the user-specific patterns
were and had to train a specific classifier based on these features.
During the experiment the user was positioned in front of a monitor. The BCI
application window is composed of two fundamental element running on black
background. A white "+" symbol, called fixation point, positioned at the center.
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Figure 5.28: Electrodes layout used for the implemented BCI interface.

On the higher part of the window, instead, there were some colored bars, each
corresponding to a specific MI task.
Each trial was composed of 4 parts. The first phase, of duration of 2 seconds,
called "Fixation", displayed only the "+" sign. The second phase, called "Cue", of
duration of about 1 second, suggested the user which motor task he had to accom-
plish, by transforming the fixation cross into a dyed circle of the same color of the
bar corresponding to the MI. Afterwards "Continuous Feedback" (CF) phase was
active until one of the bars was filled. The level of the bars represented the status
of the BCI system. The "Boom" happened when a bar was finally filled and the
corresponding command was sent.
The experiment was divided in three phases:

• Offline was the first phase of the experiment. The screen layout presented
three different colored bars. Each bar corresponded respectively to right
hand, both feet and left hand MI. The user was instructed to perform the
MI task from the cue comparison for all the duration of the CF, till the
bar was filled, and to relax afterwards. In this part, a positive feedback
was given to the user: the bar corresponding to the current task was filled
automatically. This kind of feedback was necessary first to data collection
for offline calibration and second to motivate the user in the task execution:
user rewarding was a important aspect in this type of applications where
algorithm performance are inevitably linked with user concentration. The
user had to go through three offline session for classifier training. Each
session was composed of 45 trials, 15 for each MI task. Then the EEG data
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was analyzed and a Gaussian classifier was trained for each pair of MI tasks
that the user had rehearsed.

• In the Online phase, the Gaussian classifier which showed the highest sepa-
rability (e.g., right hand versus left hand or right hand versus feet), was em-
ployed for feature classification [13]. The user in this experiment showed
left hand and both feet MI as the tasks with better performances. Equiva-
lently to the offline phase, the screen layout presented the "+" sign at the
center and only the two bars on the top, corresponding to the selected task
(see Figure 5.29). This time, during the CF the real feedback was displayed
and bars level depended on a decision making algorithm and user perfor-
mance. Three online sessions were recorded. Each session was composed
of 30 trials, 15 for each MI. Online data was then used to refine the offline
training classifier.

• Navigation was the last phase and the user should be by then in complete
control of the BCI system. The layout on the screen was the same as in the
online phase, but no cue appeared. During this phase, since the purpose of
this phase was the semi-autonomous navigation, the user had to voluntarily
deliver a command or he had to balance the tasks so that no command was
delivered. Each delivered command was then redirected to the navigation
laptop. In this phase it was required additional effort from the the volunteer,
because he had to split his attention between the BCI and the Kinect v2
feedback.

Figure 5.29: The BCI visual feedback during online and navigation phases
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5.9.3 Data Analysis
We will see now more in detail the steps between the signals acquisition and the
creation of the classifier.
The signals were initially bandpass filtered between 0.1 Hz and 100 Hz and a
notch filter was set at the power line frequency of 50 Hz. Each channel was then
spatially filtered with a Laplacian derivation before estimating its power spectral
density (PSD) in the band 4–48 Hz with 2 Hz resolution over the last second. The
PSD was computed every 62.5 ms (i.e., 16 times per second) using the Welch
method with five overlapped (25%) Hanning windows of 500 ms. Each PSD
matrix was then converted in a feature vector of 16 channels x 23 frequencies.
Canonical Vector Analysis (CVA) was finally applied by projecting all data on
a canonical space of dimension k-1, where k was the class cardinality, in order
to select the subset of the most discriminative features as input of the Gaussian
classifier embedded in the BCI.

5.9.4 Decision Making Algorithm
Every 16 times per seconds a new output probability was generated from the clas-
sifier. These probabilities were then fed to a decision making algorithm imple-
mented through a probability integration framework. The accumulation frame-
work worked through an exponential smoothing that integrated the new classifier
output probability with the old value according to the formula:

D(yt) = α ·D(yt−1) + (1− α) · p(yt|xt) (5.9.1)

where D(yt) was the aggregated probability distribution, D(yt−1) was the previ-
ous aggregated distribution and α the integration parameter. Thus, probabilities
were integrated until a class reached a certainty threshold about the user’s intent to
deliver a command in order, for instance, to change the robot’s direction. At that
moment the mental command was delivered and the probabilities were reset to a
uniform distribution. This decision making strategy allowed to obtain a smooth
and predictable feedback, thus helping user training by avoiding confusing and
frustrating fluctuations. Another benefit of this accumulation framework was that
the user could manifest the intention of not delivering any mental command by
continuously balance the mental tasks and never reaching the certainty threshold
of command delivery.



Chapter 6

Conclusions

In this work we implemented a semi-autonomous system, based on a potential-
field navigation, that will be used on a telepresence robot. This system has been
created as a Deterministic Finite Automata, which allows the system to merge
data from different sensors and events as well as giving the possibility to obtain
specific behaviours from the robot, depending on its status. Moreover, the DFA
ensures the scalability of the system. Indeed, new sensors can be added with no
modifications.
By testing the system on different robots, we tuned a set of parameters that could
also be used to make a robot navigate in tight environments (see Figure 6.1(c)).
During the tests the robot could navigate safely in the environment without colli-
sions with obstacles that were in its field of view. The introduction of single-shot
sensors as the bumpers in the algorithm control loop ensure the robot to avoid also
low obstacles by a trial-and-error approach. It is important that the robot can nav-
igate safely in the environment, so that the application end-user can only focus on
giving high level commands to the robot, such as to make it rotate at crossroads.
Even though the TurtleBot was used for most of the project, the algorithm has
also been tested with the Pioneer 3-AT, using the SICK LMS-100 laser scan as
the only sensor (see Figure 6.2). The only parameters that needed to be changed
were robot intrinsic parameter, as its diameter and the name of the topics were its
sensors published. The final results were a smooth and collision-free navigation,
as with the TurtleBot, therefore demonstrating the portability of the system.
The system was finally tested with the BCI framework, to prove that the system
could also be used by people with severe disabilities (even though the volunteer
was healthy), thus achieving the final objective of the project. The subject, after
some training sessions with the BCI, was able to make the robot turn using only
his will (see Figure 6.3). Through the user-machine interaction, we were able to
make the robot reach areas that it could not be able to reach by using only its
sensor and the autonomous navigation algorithm.
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(a) Robot field of view (b) Environment view from Kinect v2

(c) Robot in a tight environment

Figure 6.1: Three different views of the robot.

Figure 6.2: The IAS-Lab Pioneer 3-AT during the navigation.
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Figure 6.3: The BCI subject during the experiment, delivering a left command.

6.1 Future Works
Some possible avenues for improvement include:

• Implementation of other kind of sensor in the control loop, as the ultrasonic
sensors. This kind of sensors will enhance the robot perception to glass
walls.

• Extending the field of view of the robot, to provide better information to the
user about the robot position, by adding another Kinect v2.

• Improving the shared control system, so that the user could make the robot
turn less with a single command, or making the command dependent to the
robot surrounding, e.g. if the user deliver a left command, but the robot is
near a wall, it will turn at the next crossroad.

• Relieving the workload on the end-user by adding some attractors in the
environment.

• Adding a third command to the BCI framework, corresponding to a relax
state, where the user does not want to deliver any command.

• Adding a FOLLOWING state to the system, so we could exploit people de-
tection and tracking algorithms, as described in [55, 56], in order to relieve
even more the workload on the end-user.
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