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Abstract

The problem of detecting known objects in an image or in a video stream

is very important in computer vision. To achieve this task a machine must

have a model of the object encoded within it. How this model is created,

referenced and matched with a real world sample is what di�erentiate an

object detection strategy from another.

Fiducial markers like April Tag are widely used in industrial contexts for

their reliability and relative simplicity of implementation. Fiducials are, by

design, always identical in every aspect (even size) to the model the machine

has been given, only relative position and orientation to the camera change

from one instance of the problem to the other. Also there can be di�er-

ences in illumination and occasionally partial obstructions. Also, di�erently

from retrore�ective rigid-body markers, this kind of markers can't be con-

tinously detected if the target rotates on its vertical axis, unless there are

enough strategically placed cameras around the target. So we had to design

a composite marker such that even with a single camera a moving/rotating

robot target can be tracked seamlessly and precisely. In our implementation

multiple cameras detections are fused with a special Kalman Filter so that

detection from multiple cameras of the same object lower uncertainty on the

position.

On the other hand, more complex object detection relies on a model that

must be, somehow, more �exible. In fact, unless we are trying to detect

a quite homogeneous class of object (e.g. road signs), the system, to work

correctly, must take in account, manage, exploit, or simply ignore any small

discrepancy that can occur among real world objects that are part of the

same class, but are not visually identical (e.g.: cars, people), furthermore,

visual di�erence introduced by di�erent points of view must be accounted

for (perspective distortion).

In addition, if one wants to move a robot in a crowded evironment with

many people randomly moving in it without putting both parts in harm's

way, the system must know at every moment the absolute position of the

robot in the evironment and also of the humans standing in it.
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In this work we test the feasibility and the behaviour of a new type

of camera for the OpenPTrack network, a mobile camera mounted on a

people-following robot and dinamically registered in the camera network via

the marker.
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Introduction

The problem of detecting objects in an image or in a stream of images

is a well known problem in the �eld of computer vision and one of the most

studied. It consist of detecting a particular object in an environment taking

as input a representation of the enviroment with as much information as

possible (color information, depth information) and compare it with a model

of the class of objects we are looking for. This must have enough information

to be characteristic of the class, so to be su�ciently descriptive, but also

not too much so keep the detection system computationally feasible. In

literature there are many examples of people detection frameworks[4, 5], the

main approaches comprehend ground based tecniques, that assumes people

walking on a ground plane so any part of the image that is not �background�

can be segmented and check if contains a person1, or sliding window, in

which a window at di�erent sizes (in pixels) is slided among the whole image

area, and every window is checked.

Both tecniques have limits, ground based tecniques, altough generally

faster than s.w., can't detect people unless they are walking on the speci�ed

ground plane (e.g. people walking up stairs)[5]. On the other hand, sliding

window tecniques, are much more computationally expensive as they have

to compute con�dence for every generated window[4].

In literature there are examples of hybrid tecniques, that uses geomet-

ric constraints to limit the sliding windows generation to the only windows

that are compatible with some phisical properties of people walking on a

speci�ed ground plane[1] (i.e. min./max. height , people nor levitating nor

compenetrating the ground) .

1A value of �con�dence� is computed that is the probability that the particular window
contains a person
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Fiducial markers systems like April Tags, works in a two pass way, �rst

the image is scanned for zones that may contain the �gure of a marker in a

low level fashion. Then, these zones are compared to an exact mathemat-

ical model of the marker of which we desire to know the precise position,

after that, the exact pose is computed from the recti�cation of the quad-

rangle (homography). In literature we have many examples of tag detection

frameworks like ARuCo or ARToolKit, we choose AprilTags for the better

accuracy in environments with ununiform lighting and visual obstructions,

the library also o�er better performace in comparison with the ArUco library.

There are some examples in the web of composite �ducial marker de-

tection and tracking and also the ArToolKit library provides templates for

setting up a multimarker[12].

Once the position of all the agents involved is resolved with a certain

amount of con�dence our robot agent can be guided by a simple algorithm

to follow people according to its programming with the assurance of a precise

people tracking and self-locating.

With this work we have been able to track people and markers in an

heterogeneous network of sensors and computers. Our system can track

people in an environment made of machines with an arbitrary number and

di�erent types of cameras (i.e. RGB/RGB-D). The utilization of non depth-

sensitive cameras requires another algorithm to be used, that exploits the

parallel computation capability of nVidia Graphic Processing Unit instead

of the standard CPUs. It is possible to obtain a decent detection speed on

a cuda-Enabled device with a standard webcam.

We also experimented with an OpenPTrack detection node running on

a mobile robot platform programmed to follow people, the camera is di-

namically registered in the openPTrack camera network through the high

mounted composite marker, and people detections are referred to the world

frame like those from the �xed cameras.
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A Software

ROS, OpenCV, PCL

Robot Operating System (ROS) is a collection of software frameworks for

robot software development. It provides operating system-like functionality

on heterogeneous computer networks. It includes libraries, developing tools

and conventions to simplify robot code development. Through ROS we were

able to get images and point clouds from the sensors, manage the work on

di�erent nodes and compute the pose of an object with ready-to-use libraries.

Also, with its modular structure, multitasking can be achieved with little

e�ort. In particular we used the OpenCV, Point Cloud Library, and TF

modules.

OpenCV was created as library of functions and classes to represent and

manipulate images in an e�cient fashion. Since its release, many modules

have been developed and optimized, and new functionalities added. Like

for example modules for machine learning and gpu-enabled variants of the

most resource demanding algorithms. Many operations like transformations,

color conversion and a wide range of speci�c segmentation algorithms can be

e�ciently executed with speci�c API calls in a clean and consistent manner.

The Point Cloud Library is another library of the ROS suite. It can be

considered an extension of OpenCV. It is used to process RGB-D data, in

the form of point clouds, i.e. sets of points in a 3d coordinate system. It

contains algorithm for 3d points processing, analysis, and many geometric

transformations functions.
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groundHOG

groundHOG is a software, published as external library, which imple-

ments a people detection algorithm developed in Cuda (cudaHOG). This

library allows the developer to enable geometrical constraints that limit the

search area for people detection within the image frame. This considerably

speeds up the computation of the HOG con�dences as we rule out many

windows that we assume do not contain humans (e.g. People compenetrat-

ing the ground, walking mid-air, or that do not fall in the set up range of

heights reasonable for a human).

Besides the geometric optimization, the parallel computation of the con-

�dence for a single window gives notable speedup compared to other CPU

implementations of sliding window tecniques.

Figure 1: The groundHOG corridor. For any scaling factor, the cudaHOG algorithm

computes the con�dence value only in the windows that respects the imposed geometrical

constraints (i.e. Ground Plane Equation, min./max. height, etc.) through groundHOG's

software interface.
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TF and Eigen

Tf is a package that lets the user keep track of multiple coordinate frames

over time. A robotic system has typically many 3D coordinate frames that

change over time. For example, a world frame that is integral with the

ground, a base_link or chassis that is �xed with the robot body, and, if the

robot has an arm with a gripper or other kinds of tools, there can be a frame

called end_e�ector representing it. Tf keeps track of all these frames over

time and provides APIs to query the relative position of every frame with

any other in the tree, composing the transforms accordingly, and also within

a limited time interval back in the past. Eigen is a template library for linear

algebra that is used for geometrical operations on geometrical transforma-

tions and vectors.
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Cuda

Cuda (Compute Uni�ed Device Architecture) is nVidia parallel comput-

ing platform and Application Program Interface model that enables signi�-

cant improvements in computing performance exploiting modern GPUs com-

puting capabilities. It allows software developers to use a CUDA-enabled

graphics processing unit (GPU) for general purpose processing, an approach

known as GPGPU. The CUDA platform is a software layer that gives di-

rect access to the GPU's virtual instruction set and parallel computational

elements.

The CUDA platform is designed to work with programming languages

such as C and C++. This accessibility makes it easier for specialists in paral-

lel programming to utilize GPU resources, as opposed to previous API solu-

tions like Direct3D and OpenGL, which required advanced skills in graphics

programming.

With Cuda, the latest nVidia GPUs become an open platform like the

CPU. Di�erently from CPUs , GPUs have a parallel architecture with many

processors (Stream Multi-Processor) each composed of 32 Cuda Cores. The

number of cuda cores in a graphic card specify how many parallel instructions

can be executed concurrently. Also, the programmer must understand and

make good use of the memory hierarchy (from Shared Memory (on-chip, the

fastest but the smallest, accessible by all threads in a single block of threads)

to Global Memory (Video RAM, the slowest unless coalesced access, but

the largest). If an application is compatible with a parallel architecture, a

GPGPU implementation can give a substantial speedup.
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The Cuda library in addition to low level primitives for memory man-

agement and kernel launches, also provides higher level interfaces for some

common programming tasks like for example sorting operations, transforma-

tions, reductions and many other linear algebra algorithms (Thrust library).

OpenPTrack

OpenPTrack is an open-source project launched in 2013 to create a scal-

able, multi-camera solution for people tracking, to support education, arts

and cultural applications. It enables many people to be tracked over large

areas in real time. With the advent of commercially available consumer

depth sensors, and continued e�orts in computer vision research to improve

multi-modal image and point cloud processing, robust person tracking with

the stability and responsiveness necessary to drive interactive applications

is now possible at low cost. Based on the widely used, Robot Operating

System (ROS), OpenPTrack provides:

• User friendly camera network calibration

• Person detection from RGB, infrared and depth images

• E�cient multi-person tracking.

For this thesis the modules for detection, tracking and camera calibration

have been used. And we present the work that has been taken forward on

the detection and the calibration module.
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April Tags

Figure 2: April Tag, esempio

AprilTags is an open-source �ducial markers system used for various tasks

(i.e. augmented reality, robotics and camera systems intrinsic and estrinsic

calibration). Based on a lexicographic coding system, it is also robust to

lighting, detection angle, and partial occlusions of the tag. The provided

C++ library allows to compute position, orientation and ID of multiple tags

w.r.t. the calibrated camera that is framing the scene. The detector was

designed to run on standard VGA images (640 by 480 pixels). However, this

resolution is too low to work with tags that are too distant from the camera.

We optimized the code of the library to run faster using parallel computation

and optimized functions as we decided to work on FullHD images that are

much harder to compute.
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B Hardware

Development and testing machine

Most part of the development was done on a Dell XPS PC with an Intel

i7-2670QM, 8 GigaBytes of RAM and a GeForce 540M with 96 CUDA cores.

The i7 family's processors have a technology called �Turboboost�. The

processor base clock is 2.1 GHz, with turboboost enabled, the processor can

overclock up to 3.1GHz if only one core is running max load. As the number

of processesor running simultaneously goes up (loading average), the max

possible overclocking frequency will decrease. Down to the base clock when

the usage goes 100% for all eight cores.
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Structured Light Sensors: Kinect mod.1 and 2

Figure 3: Sensori a luce strutturata di prima generazione: Asus xTion, Microsoft Kinect,

Primesense Carmine

Figure 4: Kinect One Sensor

Calibrated stereo camera systems can compute the distance of a partic-

ular pixel in the frame of one of the cameras by resolving its correspondence

in the other image. The algorithm scans the row with the same vertical

coordinates in the other picture until it �nds a similar pixel; the horizontal

di�erence is called disparity. Disparity is inversely proportional to depth and

can be used to compute it.

However this method has issues: a block matching algorithm is required

to resolve the stereo correspondence, although this can be done e�ciently

with the latest hardware/software, it's still not good enough when working

with poorly textured scenes (white walls), and the precision at a certain

distance varies with the baseline.

On the other hand, a structured light scanner is a 3D scanning device

for measuring the tridimensional shape of an object using projected light

patterns and a camera system. This kind of sensors have rapidly gain the
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attention of the computer vision expert community because they are cheap,

reliable and (almost) ready to use devices for 3d perception.

Structured light sensors eliminate the correspondence problem by pro-

jecting structured light on the scene, a CCD camera then observes the de-

formations in the pattern caused by the shape of the objects and, by tri-

angulation, calculates the depth of a particular pixel. 9x9 pixels codeword

sub-patterns are used to resolve the correspondence between the whole pro-

jected pattern and the image points.

Unlike stereo camera pairs, they require a simpler calibration process

but they have less operative range, because the projector pattern can be

correctly detected only within a certain distance, and they don't work in

open sunlight.

Initially we used �rst generation devices such as Microsoft Kinect v.1,

Asus Xtion and Primesense Carmine, that provide 640x480 images at 30

frames per second, the main di�erence between these sensors is the di�erent

type of precision. While for example, the Kinect is quite balanced, the

Carmine sensor in comparison provides better accuracy for measurements

closer to the camera. Later, as we needed better resolution especially for the

rgb images, we switched to the successive generation of Microsoft's sensor,

the Kinect One. It provides FullHD 1920x1080 resolution images at 30 fps.

However, to generate depth images in real time it requires a recent graphic

card.
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1 De�nition of the problems

1.1 Multicamera Calibration

A multi camera network calibration process is meant to �nd the relative

position (rotation and translation), of every camera w.r.t. the others and to

a common reference frame usually placed on the ground called world. The

origin of this reference frame will represent the (0,0) in the bidimentional

grid where people is moving. This is usually done when working with stereo

pairs, and we wish to set them to know the 3d position of a point in the

�eld of view of the two sensors (stereo matching). The calibration process

needs a checkerboard of known physical properties such as square dimension

and disposition. Also, time synchronization between all the computers in

the network is required for maximum precision.

When two cameras see the checkerboard the transformation between the

two is estimated. Every sensor is then extrinsically calibrated with respect

to another sensor, composing a tree of transformations which describe the

whole network. Once all sensors have been added to the network and the

checkerboard is placed accordingly to the desired world frame position/ori-

entation, it's possible to save the calibration data.

Because the process is not error-free, OpenPTrack provides other tools

to re�ne the calibration, based on more precise solvers for the chessboard

corners alignment, or single person track matching between cameras that

minimizes the o�set between the tracks.

a) b)

Figure 5: a) Pairwise calibration b) World frame calibration
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1.2 Ground Plane Equation Extraction

In openPTrack's people detection module, the ground plane equation is

of pivotal importance. The assumption of people standing and moving on

a ground plane, allows the people detection routine to correctly segment

it and cluster the points belonging to humans. Substantially speeding up

computation.

Planar segmentation of Point Clouds is a known problem for which

a number of approches exists in literature. Many of these are based on

RANSAC (RANdom SAmple Consensus) model. Ransac is an iterative

method to estimate parameters of a mathematical model (in our case, the ge-

ometric equation of a plane) from a set of observed data (point cloud) that

contains outliers (all non ground plane points). These methods, correctly

segment planar components, but since they are designed for unorganized

Point Clouds, they are much slower than methods that exploits point cloud

organization. In fact, real time performance is achievable on some systems.

Organized Multiplane Segmentation is a method proposed in [1] to e�-

ciently segment organized point clouds. Exploiting organization, many time

consuming operations like nearest neighbour search become much faster. In

this strategy every point is sequentially processed and the plane-model �tting

is deferred tilL the end of the segmentation process. Segments are generated

through a two pass region growing labelling process. First, labels are as-

signed to the points with respect to the surface normal, then the labels are

joined with union �nd so that every region gets the lowest applicable label.

Once segmentation is done, plane-�tting is launched and for every planar

surface the best �tting plane equation is computed via RANSAC.
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Figure 6: Manual Segmentation, three unaligned ground point must be clicked to seg-

ment the ground

18



1.3 Visual Marker Detection

Robot self-localization, that is to determine its position in a known or un-

known environment, is a fundamental task for a mobile robot. Literature is

full of examples of autonomous localization achieved through sensors directly

mounted on the robotic unit (SLAM, Visual Odometry) that are currently

state of the art. Our idea is to delocate (self) localization from the robot

and use the computational power of the other machines in the network to

achieve this task in a distributed fashion. On the other hand, we also need to

keep the computational load for this particular task reasonably low as they

will likely to be occupied with others (People Detection / Tracking).

Figure 7: ArUco library

Visual �ducial markers are objects with known phisical dimensions that

are placed in the �eld of view of an imaging instrument to be used as refer-

ence for measurements. Retrore�ective markers are widely used in moving

picture industry to realize the so called �performance capture� on actors,

�ducial markers are gaining popularity among the augmented reality com-

munity for the good compromise between simplicity, precision and accuracy.

Visibility is a downsize of �ducials, in fact, the likelihood of a detection at

increasing distance depends, without taking in account illumination or par-

tial obstructions, on the perspective distortion due to relative orientation to

the camera. Instead of using a 3d retrore�ective marker, for which a special

setup of cameras with an infrared light projector and an infrared sensitive
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camera would be required, we designed a cube shaped marker with face sized

�ducial markers on every side, a sensor fusion algorithm can return the abso-

lute pose of the whole cubic marker given any face/marker that one or more

camera or is able to see.
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1.4 People Detection and Tracking for mobile robots

To detect and track people (or known objects) in video streams is a key

technology in many �elds of robotics like, road safety, video-surveillance,

human-machine interaction or image and video indexing on the web. It is

also one of the hardest problems in computer vision and a real scienti�c

challenge for realistic and complex scenes.

We inspect the people tracking problem from the perspective of an au-

tonomous robot acting in populated environments. Such a robot must be

able to dynamically perceive the world, distinguish people from other ob-

jects in the environment, predict their future positions and plan its motion

in a human-aware fashion, according to its tasks. The tracker proposed

by Munaro[5] utilizes a three-terms joint likelihoods to limit drifts and ID

switches, and an online learned appearance classi�er that robustly special-

izes on a track while using other detections as negative examples. The HOG

con�dence from the detector is used to robustly initialize new tracks when no

association with existing tracks is found. The tracker uses input detections

from one or more detection modules and solves the data association problem

as the maximization of a joint likelihood encoding the probability of motion

( in ground plane coordinates ) and color appearance, togheter with that of

being a person. An Unscented Kalman Filter is exploited to predict people

position and velocities along the two ground plane axes.
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1.4.1 People Detection: Sliding Window vs Ground Based

The main approaches to people detection examined in this work are sliding

window- and ground-based techniques.

The �rst method run as follows: the image to be searched for people

is divided in a number of windows of a certain initial scale so that every

windows covers a precise area of the frame, the process is repeated for a

certain number of larger scales of the windows. The horizontal/vertical o�-

set applied at a single scale to move the window and the number of scales

to be searched are the parameters that a�ect the time for detection. Some

implementations of this technique exploits some geometric properties of the

real world to reduce the number of windows to be generated, given the the

ground plane equation these algorithms are able to avoid searching in those

windows that are incompatible with the phisical/geometric constraints of the

real world (ideally, people not touching the ground or that are compenetrat-

ing it). The algorithm then assign to every window a �con�dence� that is a

metric of how much the particular window is likey to contain a human.

If some windows that are close one by another reach the threshold of con-

�ndence needed to be labeled as �containing a human�, than this detections

are fused in one by an algorithm of �non maxima suppression�. This returns

the window among the cluster that have the maximum con�dence.

Ground Based detection uses another approach: given a point cloud of

the scene and the ground plane equation, �rst the points of the ground plane

are segmented and removed together with walls so that we are left with a

set of cluster that may or may not be/contain people. Moreover, some of

the clusters produced by the same person may not be connected. Once

geometrically valid clusters are extracted, a HOG based detector is launched

on the area of image containing the 3d bounding box.

Ground based techniques are quite faster than sliding windows, as gen-

erally, applying or exploiting geometric constraints substantially speeds-up

detection, as big portions of the image are simply skipped by the detector

funtion. This can be a key feature in some applications but also a limitation

for others as we will see further in the dissertation.
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1.4.2 PCL::People::GroundBasedPeopleDetector

The Point Cloud Library provides a module for robust and real time

people detection from RGB-D images. This tecnique rely upon a method

of subclustering speci�cally designed to detect people in compact groups or

near the background.

The process is divided in four phases:

• Voxel grid �ltering: It consists of a smart subsampling of the point

cloud. At every frame, the space is subdivided in a certain number of

voxels ( volumetric picture element ) depending on the resolution set

up and all the points in every voxel are approximated to their centroid.

The default value of voxel size for this phase is 0.06 meters. This, in

addition to shrink the size of the point cloud to an order of magnitude,

also gives us a constant density point cloud ( not dependant on the

distance of sensor ).

• 3D hierarchical Euclidean Distance based Clustering: The algorithm

is based on the assumption that people are walking on a ground plane,

so points belonging to it can be removed. The segmentation of the

ground plane is done through a RANSAC based method that will be

discussed in detail further on the dissertation.

• People Detection: Once we obtained valid clusters and extended the

�theoretical bounding box� that contains the cluster to the ground, a

HOG based detector is run on the portion of picture correspondent to

the teoretical bounding box.

There is also an optional phase in which the point cloud is rotated so that

the ground plane is parallel with the optical axis of the camera, that will be

discussed later.
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Figure 8: Left: Before NMS. Right: After NMS
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1.4.3 CudaHOG

Figure 9: HOG+SVM detection pipeline

cudaHOG is a CUDA C implementation of the people detection pipeline

described in [4]. It uses cuda API's calls to parallelize the evaluation of the

support vector machine for a certain window. The sliding window algorithm

produces many series of windows, each series at a di�erent scale, SVM eval-

uation is performed on these portions of images called Regions Of Interest

(ROI). ROIs are generated �sliding� a �xed aspect ratio window along the

width and heigth of the picture and at di�erent scales. Additional windows

are generated so that a portion of these can lay out of the image (padding) so

that also objects partially out of frame can be detected. In this application,

the HOG con�dence is a function, de�ned between all the pairs of points

P1, P2, such that P1.x < P2.x and P1.y < P2.y. Con�dence is a metric

that states the probability that the window with P1 as upper left corner and

P2 as the lower-right corner contains a person. In some cases more than

a window may be generated on a single person, a non-maxima-suppression

algorithm is run so that these detections are clustered into the one with the

higher value of con�dence.

It's immediately clear that in this manner a very large number of samples

is generated, that is why although CPU implementations of this algorithm

are state-of-the-art for quality of detection and accuracy in many applica-

tions, they are not feasible for real-time or time sensitive applications in

general. Parallel implementation with Cuda gives a sensible speedup to the

algorithm. The cudaHOG library can be initialized with two parameters,

hog_start_scale and hog_scale_step. These tell the window generation al-

gorithm how many ROIs must be generated in this way: the start scale is

the �rst scale that is applied to the svm model ( with a 64x128 pixel window

a human can be detected if its �footprint� on the image is delimited almost

perfectly by the window. If the footprint is slightly smaller , then the chances
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to detect it are smaller, the same happens if it is slightly larger, but in this

case a bigger window at the successive iteration would detect it). The hog

scale step de�nes the increment to be applied at the scale factor at the next

iteration up to a default end value.

1.5 The Pioneer P3-AT people following module

The Pioneer robot has been programmed with an additional ROS module,

written in Python, that implements a simple people following routine. I.e.

to keep the �rst person detected at the center of the frame and keep the

robot within a certain distance from the person followed. The max moving

speed of the robot is 0.7 m/s. An URDF (Uni�ed Robot Description Format)

that describes the robot frames is included and an odometry software can

approximately compute the �nal position of the robot after a moving order

is issued. The odometry is modeled like a skid steered platform.

Figure 10: Robot frames for the pioneer robot visualized in rviz: From left to right a)

Tf as described in the URDF �le for the Pioneer robot, with the frame relative to the

original position (from wheel odometry). b) URDF Model with tf frames (without the

cubic marker and the Kinect One bar). c) New tf frames that connect the cubic marker

frame and the world frame (not in picture) with the chassis and the Kinect One bar.
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2 People Following in heterogeneous camera net-

work

2.1 Multicamera Setup

We present the results we obtained while testing the system in a controlled

environment. We set up the camera system as described above and recorded

three datasets from the three synchronized machines.2.

Figure 11: The IASLab setup, the camera in the foreground at the left is connected to

the master node while the kinect on the right is linked to the �client� node

2The ROS tool rosbag allows to register topic's messages during executionsaving them
in large .bag �les. Afterwards, these messages can be re-played in a way that is totally
transparent to the ROS environment. Because these messages have absolute timestamps,
if the computers are well synchronized, playing back multiple bags simultaneously, will
publish all messages from the di�erent bags in absolute temporal order with no distincion
of which bag �le the mesage is from.
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2.1.1 Camera Network

To test our implementation we set up camera network with two Kinect One

sensors, plugged to two notebooks via a Gigabit ethernet cable. In our setup

the �Master� node is an Lenovo Thinkpad (Intel i5, left side of the image)

and the secondary node called �Polluce� is a Lenovo Y50 (i7, out of frame

to the right). For these two cameras, in addition to an optimized camera

calibration algorithm, we also appllied the calibration re�nement routine,

and used openptrack built-in background segmentation app when no people

was in the scene to remove it and speedup detection.

The two nodes clocks, for tracking to run consistently, must be syn-

chronized up to a tolerance of 33ms, that for a 30fps video is equal to the

inter-frame period. We �rst tried synchronizing the machines to a public

time server (time.nist.gov of the National Institute of Standards and Tech-

nology, U.S.A.) but, as we set up a local network with the computers and

disconnected them from the internet, the sinchronization was lost over night.

Therefore, synchronization over the internet with a central server is possible,

although not reccomended. It's better to set one of the machines (i.e. the

master) as ntp server and have the other computers use it as a reference

for time. The procedure is thoroughly described in the OpenPTrack's user

guide.

2.1.2 Mobile Camera

OpenPTrack is able to refer detection from �xed cameras to a common coor-

dinate frame because the system knows the relative position of any camera

with another from calibration. A mobile camera must be treated di�erently,

as its position relative to the world frame changes over time. In this case the

robot was programmed with a people following routine to track and follow

the �rst person that got in the �eld of view of the kinect mounted below

the cube. To insert the camera in the tree of transformations relative to

the network we had to link it to the cubic marker. A direct link would be

possible, however, we decided to link �rst the marker with the pre-existing
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chassis frame of the robot and then link the latter with the newly mounted

Kinect One frame. In this manner, we also linked the rest of the robot's

frames described by the URDF model.

2.1.3 Tag Disposition

Our composite marker tracking system is designed to detect and report cor-

rectly, robustly and continously the position of the whole marker whichever

face/tag the camera (or cameras) sees. Therefore we estabilished the origin

of the cubic marker at the center of it, with the x-axis pointing toward the

frontal face, y-axis pointing at the left face and the z-axis pointing upward,

in a canonical robot-frame convention.

Figure 12: Centers intepolation and example of center broadcasting from the left face

The transform to apply to every face to get the center transform depends

on the cube face and can be set from the center_transform launche �le. If

more than one face is visible (by the same or by another camera in the

network) both center transforms are available, and the kalman �lter for the
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centers can fuse all the center detection into one. Altough apriltags detection

system is quite accurate with the marker position there can be a little jitter

on the orientation measurements. The kalman �ltering adresses this problem.

However, because the cube is made of cardboard and the tags are printed on

stardard paper glued to the cube sides, their positioning, although su�ciently

accurate all thing considered, is not perfect and the projected centers may

not fall all in the exact same place and with the exact same orientation.

The error is anyway not large enough to a�ect substantially the center

tracking. Worst case scenario, if one face is perfectly visible by one camera

and the other has a more discountinued detection, the center can �jump� from

the center projected by the better seen face to the Kalman-�lter-generated

virtual center. This can cause a little jitter in the center tracking. During

our tests this situation occurred very sporadically and never in such a degree

to a�ect the robot tracking.

2.1.4 Multicamera Calibration

A muti-camera network calibration is meant to �nd the relative position

(rotation and translation), of every camera w.r.t. the others and to a common

reference frame called �world�. This is usually done when working with stereo

pairs, and we wish to know the 3d position of a point in the �eld of view of the

two sensors (stereo matching). The calibration process needs a checkerboard

of known physical properties such as square dimension and disposition. Also,

time synchronization between all the computers in the network is required

for maximum precision.
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Figure 13: Example of Extrinsic calibration results, the point clouds from the two sensors

are correctly overlapping

When two cameras see the checkerboard the transformation between the

two is estimated. Every sensor is then extrinsically calibrated with respect

to another sensor, composing a tree of transformations which describe the

whole network. Once all sensors have been added to the network and the

checkerboard is placed accordingly to the desired world frame position/ori-

entation, it's possible to save the calibration data.

Because the process is not error-free, OpenPTrack provides other tools

to re�ne the calibration, based on more precise solvers for the chessboard

corners alignment, or single person track matching between cameras that

minimizes the o�set between the tracks.
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2.1.5 Cloud Rotation

At the beginning of the work we discovered a problem that under certain

conditions a�ected the quality of the detection. The detector was unable

to detect people when the camera was high-mounted and with an high tilt

angle. The detector has some parameters that determine the minimum and

maximum heigth of an admissible 3d bounding box. The perspective distor-

tion, introduced by camera tilt, inevitably alters the shape of the bounding

box returned by the euclidean clustering routine. As a consequence of such

bad proportions, the detected cluster height couldn't lay in the speci�ed in-

terval of validity and the BB was ruled out. It would have been possible

to adjust the range of validity to include also these extreme cases, but we

decided not to take this road to not a�ect the performance of the detector

in standard conditions.

Figure 14: Point Cloud Rotation, the rotated bounding box is lower than the minimun

height and is rejected
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The solution we applied was to rotate the point cloud before clustering

with the PCL built-in function transformpointCloud(cloud_in, cloud_out,

trasform), that applies an a�ne transform to the input point cloud. The ro-

tation matrix is obtained via dot product between the ground plane normal

and the camera XZ plane normal giving us the dihedral angle between the

intersecting planes. The cross product between the two planes gives the ro-

tation axis. The Eigen function, AngleAxis(dihedral_angle, rotation_axis)

returns the transform to be applied.

θ = arccos
Pg · Pc

|Pg| / |Pp|

The dihedral angle between the x0z camera plane Pc and the ground plane

Pg is computed with the formula above. And the �nal transform is obtained

with the built-in function of the Eigen library AngleAxisf(θ,A). Also, the

inverse transformation is computed and saved for later use. After detection

is done, all we need to do is apply the anti-transformation to the bounding

boxes characteristic points, so that we have detections in the un-rotated

point cloud reference system.
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2.1.6 Robot Tracking

Figure 15: The pioneer robot

Once the cube and the kinect2 are mounted on the robot, we proceeded to

measure the relative position of the two w.r.t. the chassis of the robot. Then,

we can broadcast these transformation with ROS. Finally, with all the co-

ordinate frames linked toghether, openPTrack can refer the mounted kinect

detections to the �world� coordiante frame like any other �xed-mounted cam-

era.
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2.2 Organized Multiplane Segmentation

2.2.1 Ground Plane Equation Extractor

In openPTrack's people detection module, the ground plane equation is of

pivotal importance. The assumption of people standing and moving on a

ground plane, allows the people detection module to segment and remove it

to aid clustering the points belonging to humans and speed up computation.

Planar segmentation of Point Clouds is a known problemt for which

a number of approches exists in literature. Many of these are based on

RANSAC (RANdom SAmple Consensus) model. Ransac an iterative method

to estimate parameters of a mathematical model (in our case, the geometric

equation of a plane) from a set of observed data (point cloud) that contains

outliers (all non ground plane points). These methods, correctly segment pla-

nar components, but since they are designed for unorganized Point Clouds,

they are much slower than methods that exploits point cloud organization.

In fact, real time performance is achievable on some systems.

Organized Multiplane Segmentation is a method proposed in [2] to ef-

�ciently segment organized point clouds3. Exploiting organization, many

time consuming operations like nearest neighbour search become much faster.

With this strategy every point is sequentially processed and the model-plane

�tting is deferred till the end of the segmentation process. Segments are gen-

erated through a two pass region growing labelling process. First, labels are

assigned to the points with respect to the surface normal, then the labels are

joined with union �nd so that every region gets the lowest applicable label.

Once segmentation is done, plane-�tting is launched and for every planar

surface the best �tting plane equation is computed via RANSAC. Returning

a list of planes equation in the Hesse normal form for plane equation.

3Organized Point Clouds that mimic the structure of a bidimentional matrix (image).
They are such that every 3D point has a single corresponding 2d point in the image
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2.2.2 Plane selection

With the technique described above, it was possible to realize a functional

ground plane detector with a simple selection of the plane based on geometric

properties of the segments (planes) found. We use the plane position and its

relative orientation.

There are four detection modes:

• Manual Mode: The user is asked to select 3 or more points (strictly

not aligned) from a PCL Viewer window and plane �tting is run on

the last three points selected.

• Semi-Automatic: The planar regions are segmented with OMPS and

the valid ground plane candidates are highlighted based on inclination

( that must be not vertical so that we can rule out walls). The user is

asked to select the one to use as ground plane.

• Automatic with user validation: The algorithm work as above

but the algorithm also choose the plane that has the lowest centroid

as the one most likely to be the ground plane. A window with the

choosen plane is shown highlighted and on close the people detector is

launched.

• Full-Auto: As above, but no window is shown and the people de-

tection algorithm is launched as soon as a valid plane is returned.

Plane ranking works as follows: the algorithm is launched and the list of

plane is returned, the ones with an inclination not compatible are ruled out.

We assume 0 camera roll. So the planes with a b greater than 0.7 (Plane

equation in Hesse normal form4) are ruled out. The remaining planes are

sorted according to the centroid y, selecting the one with the highest value

4

ax+ by + cz + d = 0
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i.e. the lowest ( camera model reference frame: y+ down, x+ right, z+

forward).

Figure 16: a) Connected Components Segmentation, red arrows show the direction

of planar surface normal, the �oor, the left wall and the separe' have been detected b)

Semi-Automatic mode, user click once on the colored plane he wish to set the ground

plane on c) Automatic selection with user validation: the application selected the plane

colored in red, the user can check the plane is segmented correctly.

37



2.3 April tags

A �ducial marker is an object of known dimensions, placed in the �eld of view

of an imaging system to be used as a reference for measures. Fiducials are an

excellent method for pose estimation because they are easy to segment within

an image and provide accuracy and speed, for this and other interesting perks

they are pretty popular among the augmented reality community. Most of

times, this type of marker has a binary ID encoded within it (lexicographic

coding) and many times error checking bits are also present. A limitation of

this system is the size of the dictionary of the possible strings representable

with the structure of the marker (limited symbols). Designers must cope

with the quandary between the size of the marker (in terms of bits per area)

and the minimum distance between a marker ID to the next in terms of

Hamming distance. AprilTags allows for use of markers of 16, 25, and 36 bits

with respectively, with 5, 9 or 11 bits as minimum hamming distance. It's

possible to generate other �families� of tags with custom size and distance,

for this work the 36h11 family was used. It is downloadable from AprilTag's

homepage. It's worth notice that we only tested the 36h11 family becauses

it was �reccomended� by the authors, the question is still open if tags with

less bits would be more recognizable from a distance compared to these.
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Compared with other �ducial marker systems, AprilTags has a faster

system for line segment computation, a tag encoding more robust and better

accuracy in case of occlusions, lens distortions and lighting variation.

2.3.1 Marker Localization Pipeline:

• Preprocessing - The grayscale image from the Image Listener is

normalized, that is, for each pixel, the integer value between [0-255] is

converted in the corresponding decimal (�oating point) between [0-1],

and a gaussian smoothing operator is applied to reduce noise

• Gradients Computation - Magnitude and orientation of the gradi-

ent for every pixel is calculated

• Clustering - Pixels with similar direction and module of gradient are

grouped in clusters, the clusters are cycled again to merge all segments

lying on the same rect.

• Segment fitting - Segments orientation is calculated so that the

dark side of the gradient is at the left.

• Quad Detection - Groups of segments forming a convex quadrangle

are formed

• Pose Estimation - Through homography the quadrangle' s pose in

respect to the camera is found.

• Tag Identification - The tag ID is decoded
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Figure 17: Tag Detection phases: a) Pixel gradients magnitude b) Gradients direction c)

Clustering of pixels laying on the same rect d) Line segments inferred from the rects. The

direction of the line segments is shown by short perpendicular notches at their midpoint.

Cuda SpeedUp Parallelizing some phases of the process with Cuda we

achieved a substantial speedup in the tag extraction, without a�ecting the

accuracy of the detection.

It was possible to parallelize the pre-processing phase (i.e. grayscale

[0-255] to �oat [0-1] convertion and gaussian blur), the gradients computation

and the edge cost computation.

In the �rst version of the software these two operation were been replaced

with the cuda-enabled functions of the opencv library with a speedup of

almost 10X compared to the original naive implementation of the speci�c

phase. But because these require a custom-compiled version of the Opencv

libraries their use has been appointed �optional�. Instead, in the �nal release,

we used the opencv standard versions with better performance to the naive

version but not as good as the cuda-enabled version.

Custom kernels would allow to achieve performances equal or better than

cuda-opencv's with the standard cuda library with no need to recompile the

OpenCV library.

Gradient's magnitude and direction computation has been parallelized

with an ex-novo kernel based on the original algorithm. Altough opencv pro-

vides these functionalities (Sobel Operator), the original formulation should

guarantee better numerical stability and results more similar to the original

CPU implementation.

Much e�ort has been put to parallelize the function that computes the

edge costs for the clustering, being the most computationally expensive task
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of the entire process, due to the nature of the task, it is di�cult to speed

up using memory coalesced accesses, but still we had better results than the

CPU version even with a naive parallelization. Using cuda shared memory

would save us a portion of the global memory slow accesses.

The union �nd algorithm is less expensive but still has a computational

weight comparable to that of the edge cost computation. This algorithm

has some critical sections and race conditions may occur but, altough non

trivial, some solution to parallel union �nd exists in literature and can be

applied to this problem.

Because AprilTags and OpenCV use di�erent formats and conventions for

raster manipulation, some work-around was necessary to handle memory oc-

cupancy and limit the conversion and upload (to/from video memory) over-

head. Image rasters, (the raw pixels values) can be encapsulated (�wrapped�)

with any number of di�erent �headers� providing interface to their library

respective algorithms with no need to create a whole other object in memory

that is indeed equivalent to the other.
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cudaOps class Every function has a standalone version that could be used

independently from the others. To optimize memory transfers, alternative

version with the su�x �Opt� has been written that save deallocating video

memory and allowing the next function to use those locations. Needless to

say, these must be used all or none.

• convert: The image pixels are converted from grayscale integers

[0-255] to decimal �oating point values [0-1]. We tried in order, the

opencv-cuda method �convertTo�, than C++ STL method �transform�,

and, lastly, the standard opencv �convertTo�, and kept this last one.

• gaussianSmooth: �rst we used the opencv-cuda version, than we

switch to the standard opencv version.

• compute_gradients: The per-pixel operations are the same, mov-

ing the operation on the gpu allowed us to gain a larger bandwidth

exploiting memory coalesced accesses5.

• extractEdges: computes the four costs of linking every pixel with

four of its neighbours (upper, right, upward-right, downward-right).

Future implementations could exploit on chip cache to load the work-

ing image �tile�6 on the ludicrously faster on-chip memory and reduce

global memory accesses.

Results Compared to the old cpu-only implementation our approach re-

sulted in a more reactive cube tracking and also we exempt the cpu from a

quite heavy portion of computing, making the other modules run substan-

tially more �uent.

5In cuda programming a coalesced memory access is such that threads with consecu-
tive Ids access simultaneously to consecutive memory locations (not all threads need to
partecipate) this practice is very important when porgramming with cuda and must be
always kept in mind.

6Cuda kernels launch threads in blocks of up to three dimensions, this is to provide
a further level of abstraction when designing parallel algorithms. It is reasonable, while
working with images in Cuda, to have this blocks in a rectangular/square form.
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#nodes running/ex. time GPU CPU SpeedUp

1 node 0.38 1.30 ~3.4X

2 nodes 0.50 1.60 ~3.2X

Table 1: Comparison of execution times between the old cpu-only version and the cuda-

enabled version on FullHD 1920x1080 pixels images. We found out an average speedup of

~3X that decrease sublinearly when running multiple nodes.
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2.3.2 Sensor Fusion and Kalman Filtering

Sensor Fusion is done combining noisy detections from di�erent sensors to

get an estimate of a phisical property we desire to measure (in our case the

marker's position) with less uncertainty than using one single sensor.

The Kalman �lter algorithm uses a system's dynamic model (laws of

motion), known control inputs to that system, and multiple sequential mea-

surements to infer the system varying quantities (state) better than the esti-

mate obtained by using any measurement alone would do. The Kalman �lter

averages a prediction of a system's state with a new measurement using a

weighted average. The purpose of the weights is that values with better (i.e.,

smaller) estimated uncertainty are "trusted" more while values with larger

uncertainty have less e�ect on the average value. The weights are calculated

from the covariance, a measure of the estimated uncertainty of the prediction

of the system's state.

As a consequence, varying the covariance value introduces a short blanket

problem, whit a low value the resulting average over time will be �smoother�

but also less �reactive� meaning that the delay between the actual changing

of the property to measure and e�ective measurement will increase. While

increasing covariance will decrease this delay, but also bring some of the

uncertainty of the measurement in the �nal value.

In our implementation, the covariance value for centers fusion is slightly

higher than the value for tags fusion, because most of the uncertainty in

detection has already been �ltered in the �rst stage, so we can use a more

reactive fusion when merging centers detection.
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Figure 18: Center Pose Fusion: the cameras' positions are registered to the world frame

so we can get the pose of the markers w.r.t. the absolute reference frame. In this example

the �rst kinect sees the tag[1], the second kinect sees the tag[4] and both sees the tag[5],

however, we have less uncertainty on the last one because we can achieve sensor fusion

with multiple sensors sampling the same tag. The projected centers are already in the

world frame, a second Kalman Filter fuses these in the whole marker's pose.

2.3.3 Composite Marker Detection, cubic marker

To make the robot traceable in a camera network, from every possible

point of view, we used the AprilTags in a particular cubic set up. We placed

5 di�erent markers on a cube of approx. 30cm3 , one for each of the 4

walls and one for the roof, so that the robot pose can be determined from

every camera all around and over the robot. The origin of the robot_frame

is the exact center of the cube, geometrically calculated from the center of

any face with an o�set of z that shift it inwards the cube. This generated
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frame is called projected center or virtual center. To have a more stable

tracking of the center of the cube, cube same-face detections among two or

more cameras are fused by a kalman �lter. So that in the scene we can have

an absolute position w.r.t. the world frame of reference for any face/tag. A

similar fusion is done for the projected centers of the cube. If more than one

face is visible by the cameras, than we have more than one projected center,

another kalman �lter tuned for this task will fuse all the detections of the

virtual centers into one that is the actual cube center.
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2.4 PCL::People vs GroundHOG

2.4.1 cudaHOG-Based detector

The standalone version of the RGB detector should theoretically have

a wider detection range than those based on a structured light sensor, as

the depth sensor accuracy and functionality depends on the distance and

it is reliable only under a certain threshold. The RGB image allows to

detect people even at long distances, the only limits are sensor resolution and

the sampling precision speci�ed for window generation. During the tests,

we discovered that cudaHOG can detect people further from the camera

than PCL::People, the only limit is the hog_start_scale. This paramenter

determines the minimum window size to be generated and evaluated by the

svm. However, we need the point cloud to have a 3d correspondence for the

2d bounding box returned by cudaHOG, as we exploit the organization of the

point cloud. This furtherly constraints the search radius if, for example, we

use kinect-like sensors instead of a stereo pair. However it is worth notice that

with this system we need less spatial resolution in the point cloud, because

instead of using it for evaluating the svm, our approach exploits the point

cloud and the depth information for a �validation� of already 2d-evaluated

bounding boxes.

Altough the hybrid detector has proven functional in detecting people,

we didn't use it in our tests with the robot because detecting/tracking/fol-

lowing people not in contact with the ground was not in the scope of this

experiment. Also because the ground based people detector process is much

more light-weight than the cudaHOG based detector and it's indeed a better

candidate to run in a multi-process context. Furthermore, we are already

using the Gpu for tag extraction.

To build a 3d bounding box compatible with openPTrack from cudaHOG

2d bounding box we had to apply a few simple geometric transformation.

We are working with a registered and organized point cloud so, there is a

one-to-one correspondence between the pixels of the RGB image and the

points of the point cloud. The cloud points are indexable with a width and

an height as those of the original 2d image. As a consequence we can get
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the corresponding 3d point in a point cloud from any point in a 2d image in

constant time. To generate the bounding box we proceed as follows.

First we compute the centroid of the window, as (p1.x+width/2, p1.y+

height/2) and we get the corresponding 3d point in the cloud in O(1). That

point will with all probability lie near the person centroid, to compensate

for the person thickness we add 10 cm to the Z coordinate of the point,

we call this point P0 ( Person Centroid). Than we compute the midpoint

of the upper edge of the 2d BB (p1.x + width/2, p1.y + 10 ) adding 10

pixels to the y so that we take the head centroid more accurately and get

the corresponding point in the cloud, we call this point P1 (Person Top).

The last point P2 ( Person Bottom ) is computed as 3D re�ection of P0 with

P1 with the formula:

P2 = 2 ∗ P0 − P1

In one of the �rst implementations of the algorithm the process was

inverted, the person top was computed as re�ection of the person bottom

with the person centroid. During testing, we saw that the bottom centroid

was not easily detected in some cases, so we decided to go the other way

around. In this manner, we managed to have the system to work even in

case of partial occlusions ( waist-down ).
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Figure 19: To integrate the new detector in openPTrack it was necessary to convert the

2D detection from cudaHOG to the format the HaarDispAda node takes in input (3D).

This to avoid braeking the cascade of detectors. The detection window (in green) is used

to �nd the coordinates int the 3d space. Person centroid is in light blue, head centroid is

the yellow dot, P2 is the magenta dot. The squares represent the searchAround() area.

searchAround function During testing we detected another problem.

We saw that sometimes, when trying to resolve the 2D->3D point corre-

spondence from image to pointcloud, these were not set to some value of X,

Y, Z, but to NaN.

NaN is a numeric data type value representing and unde�ned or unrep-

resentable value, mainly are pixels for which the kinect driver couldn't �nd

a feasible value for depth and consequently failed 3d reprojection.

We had to devise a strategy to search �around� any 3d point in the cloud

for other possible candidates, and select among these one suitable as head

or person centroid. Given a 2d point (x, y) of which we desire to get the

corresponding 3d point (X, Y, Z), searchAround() looks for all the valid (not
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NaN) points in an area around x,y and selects the median, instead of the

average, of Z, so that the outliers do not a�ect the �nal value.

Figure 20: The searchAround(x,y) function looks for a valid cloud point that is near the

2d point given as input, exploiting the registration of the point cloud with the analogue 2d

image so that we don't have to run a nearest neighbour search in the 3d space.

structure of the package: A package containing the main program, cu-

daHOG libraries and the svm model for pedestrian detection created with

SVMdense from the INRIA person dataset.

The point cloud and rgb image topic must be speci�ed, optionally hog_start_scale

and hog_scale_step can be speci�ed.
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Figure 21: Modi�che alla struttura dei nodi

performance analisys:

Detector performance (with/without HaarDispAda) Now we will

compare the performance of the two detectors in a simple use case, with

only one person to track.

Figure 22: Frames from testing scenario
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Figure 23: On the left we can see the tracks produced by placing the cudaHOG-based

hybrid detector upstream the HaarDispAda node, so that the tracker is fed with detection

�ltered by the latter. On the right we see the results of connecting the cudaHOG detector

directly to the tracker.

By a simple visual analisys we can notice that the tracks produced by

cudaHOG+HDA are more compact because HDA �ltered many of the de-

tection that cudaHOG let pass ( false negatives ), hence, we deduce that in

this con�guration it would be advisable to tune HDA minimum con�dence

to avoid this phenomenon.

On the other hand, de-activating the HDA node we noticed an higher oc-

currence of false positives, that returned longer tracks but more fragmented,

because the tracker re-association has failed.

Both are valid solutions, once the detector/tracker parameters are tuned

up for the task, the additional check performed by HDA, would �lter the

(few) false positives of thre cudaHOG module and return precise and reliable

detections.

Detector performance (vs PCL::People) Leaving out the pros of cu-

daHOG we already discussed, on a frame-per-second metric the hybrid de-

tector can't compete with PCL::People on the testing machine. Even with

little demanding values for the detector paramenters hog_start_scale and

hog_scale_step, to allow for a decent detection speed with a comparable

performance (quality of detection).

We scored a detection speed between 10-15 sec, altough these are quite

su�cient for the task and cover the computational capacity designed are very

far from the 60 fps of PCL::People.
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It's worth notice that this can be an unfair trial, since cudaHOG runs on

GPU and PCL::Peole runs on CPU, it would be interesting to confront the

two using a better performance video adapter.

Tracker performance PCL::People uses two a cascade of two detectors,

because the clustering phase generates many detection windows that are

passed to the HDA node to be �ltered and have reliable detections. Initially,

the cudaHOG node was put upstream HDA node with the latter sending

�ltered detections to the tracker, with fair results. The tracker has some

parameters that specify the condition for the creation of a new track ( e.g.

minimum number of consecutive detections, minimun con�dence, etc.). If

the detections are more sporadic, the initialization will be delayed, the track

will be made of less points, hence less accurate. Worst case scenario, track

re-association fails and a new track is created for the same person. So it's

important that detection is continous. Connecting the tracker to the cud-

aHOG detector gave us a noticeable increment in quality and continuity of

the tracks and a decrease in the number of false positives.
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2.5 Nodes structure

Figure 24: Nodes Structure: the cube tracking node continuosly update the current

position of the marker in the tf tree

Apart from bag playback, we should spend a few words on the optimal set

up that this kind of system should use. The ideal load distribution for any

single machines should divide e�ciently the workload between the master

and the clients but also keep network occupancy contained so that the total

bandwidth of the topics transmitted over the local are network (LAN) never

exceeds the maximum network bandwidth. Assuming Master as the most

powerful machine in the ROS network:

• As Client Node: A client node should run a People Detector and a Tag

Listener for any of the cameras attached

• As Master Node: As above, but also the tracking node and transform

listeners nodes (tags and center) should run here.

The idea behind this is to avoid transmitting large messages like FullHD

images and point clouds over the LAN, instead send only tf's and detection's

messages that require a much smaller channel capacity.
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3 Setup, Testing and Experimental Results

During our experiments we noticed that the tracks produced by the cam-

era robots were a�ected by the camera motion. The problem is particularly

evident in case of camera pan, that occurs when the robot rotates on his ver-

tical axis. The followed person appears to �move� inside the picture, while

in reality is just a visual e�ect due to the camera pan. However this e�ect

is reported to the tracker as a person motion, a�ecting the quality of the

tracks produced. In fact, as the marker-robot-camera system moves, the rel-

ative position of the camera w.r.t. world frame has still to be updated while

the detector is sending inconsistent detections. This is caused by the di�er-

ence in respose time between the people detector and the cube localization

routine. This e�ect worsen with increasing distance from the camera.

Figure 25: The timeline above shows the inconsistency problem relative to the robot

detector, the �Robot Motion� timeline represents the state of the robot, Moving/Still ( for

the sake of simplicity, we just considered the case of the robot rotating as it's the most

problematic). The second line represents the People Detector that runs on the robot, in

this case set to run at 30Hz. The last line represents the marker tracking routine, the

position returned will be inconsistent if the robot changes position during the update.

As we said, a detection is always referred to a particular reference frame.

Let's assume a consistent position at system start. While the robot is still

not moving everything works as it should. Then the robot starts moving, the

cube tracker grabs the frame of the robot in motion and starts processing the

frame to know the robot's position in this instant. Meanwhile, the people

detector keeps iterating, referring these detection to the old reference frame.
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When the robot stops and the tag processing returns the tag position from

a frame with the moving robot, this is inconsistent, because it's referred to a

previous video frame and instant with the robot still in motion. If, while the

robot is not moving, a frame is grabbed and the robots remains still until

the tag tracking routine returns its position, this will be consistent with the

actual position of its camera and the people detector will return consistent

detections.

Figure 26: In these sequence of pictures we can visualize how the tracks are a�ected

by the responsiveness of the localization. The delay in the camera registration makes

the people tracker interpret global motion as people motion while the system has an

inconsistent �x on the position.
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Figure 27: Left: case without using odometry. Right: case using odometry.

Detection Quality Once the robot has stopped and a consistent �x on
the camera position is returned the detections are correctly reported. The
resulting detections in the second case has less pronounced meanders. As we
can see in the red ellipse, when the tracks reconnect, the robot detections are
a little back confronted to the �xed cameras' due to wheel odometry drift.

Figure 28: Left: case without using odometry. Right: case using odometry.
(The initial part of the track has been added manually for completeness)

Tracking quality As we can see, in the �rst case, the delay between de-

tection and repositioning, causes the tracker to lose track of the person when

the robot rotation is pronounced and the person is far from the robot cam-

era ( the person's track is initially beige, then his track is re-initialized in

purple). On the other hand, using odometry, we have one single track for all
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the duration of the experiment (note: the other small tracks are noise due

to a lowering of initialization con�dence).

58



First work-arounds Diminishing the rate of the robot detections per sec-

ond gave sligthly better results, because less inconsistent detections are sent

to the tracker while a valid position is not available. However, this drastic

remedy largely a�ected the completeness of the tracks as less detections are

sent to the tracker, so we rule out this idea.

The optimizations that were made to the AprilTags C++ interface to

reduce tag pose extraction process execution time, gave the routine better

responsiveness. Some of the phases have been sped up using Cuda, pointer

arithmetic, C++ Standard Template Library methods, and OpenCV opti-

mized API, the last one in particular for image normalization and gaussian

smoothing. But still not fast enough to solve the problem. For the system

to be totally consistent tag detection for a single frame should always have

a smaller latency/execution time than people detector's.

Wheel Odometry Wheel odometry (the trajectory that is computed from

the phisical design and modelization of the robot drivetrain and the input ve-

locities given to the wheels) could be used to aid the mobile camera tracking.

Wheel odometry is considerably faster to compute than the visual marker

position, so its use would partially solve the inconsistency problem. How-

ever, the wheel odometry trajectory has the tendency to drift from the real

value as the robot moves along its path over time. Di�erently from tag de-

tection that has a zero mean error over time. Furthermore, the accuracy on

the measurement of a single rotation depends only on the extent of the rota-

tion. Hence, we could exploit wheel odometry information to adjust camera

position during rotation, altough translational drift should be taken in to

account.

We achieved that by creating a new node called odom_re�nement, that

works as follows:

1. At startup, the cube is detected and the pose is computed, we save the

transformation.

2. Then, we assume that the robot odometry origin on the ground, ver-

tically aligned with the cube center.
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3. Finally, we registrer the odometry origin with the world according to

the transform previously saved, keeping broadcasting it over the whole

experimet.

This approach has proven to give better results, as we have less disturbance

in the mobile camera people detections due to inconsistent detection. But

we traded a more precise tracking system for one that is more reactive but

less accurate over time. The ideal con�guration would allow us to exploit

both systems in a more dynamic and integrated manner. For example, if we

are not interested in the whole robot path, we can reset the odometry origin

at regular intervals and update its pose w.r.t. the world accordingly to the

robot position at the moment of the update (making sure the robot is not

moving in the process).

Or, otherwise, correct the odometry vector (from origin to robot base

link).

Figure 29: The node's structure when using wheel odometry: At startup the cube

listerner sends the robot/marker pose to the Odometry Re�nement node, this will link

the robot odometry origin to the world frame. From now on wheel odometry information

is part of the same camera network tree as the �xed cameras.
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4 Conclusions and future developments

In this thesis we used a omnidirectional visual marker to track a robot while

moving, and on the same time, we used this mobile platform to do people

detection. The calibration software correctly refer the �xed cameras in the

system to a common reference frame, allowing distributed detection and

tracking.

The april tag listener has gone under heavy code maintenance and tun-

ing to optimize at best the detection speed, further optimization is possible

would be possible using SIMD instructions and parallelization also in other

computationally expensive phases of the detection. Edges merging did ben-

e�t from this, altough the parallelization (expecially in cuda) of the Union

Find algorithm is not trivial. With a well designed parallel algorithm it

would be possible to reduce computing time for the U.F. phase from ~100ms

by a factor of 3 if the same trend of the other phases holds.

The two level sensor fusion routine manages to track accurately the cubic

marker, although the processing time required to compute a single frame

a�ects the quality of the tracks produced by the people detection algorithm.

Using wheel odometry instead of tag tracker gave better results, but still a

routine to compensate wheel odometry drift would be required.

The detection node has been enhanced to work in presence of elevated

sensor tilt without a�ecting the speed or quality of people detection as the

point cloud rotation run e�ciently in linear time.

The ground detector can extract the ground equation rapidly and ac-

curately so that is available to the ground based people detector. The four

modes of the ground estimation module, now standard in OpenPTrack, cover

most of the use cases that can occur. The automatic mode is the default, in

the distant case the selected plane is not the one desired, two manual selec-

tion modes are available, and the debug mode can show the selected plane

to the user to validate before launching the detector.

With the hybrid detector the 2d detections inferred from the rgb image

are transposed in the 3d coordiante frame using image to point cloud regis-

tration, and a probabilistic method handles bad correspondences. Also, now
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people not in direct contact with the ground can be detected and tracked,

altough not in real time.

In conclusion, the experimented methodology holds, because if the robot

is still and the �x on the position is consistent, the dinamic registration of the

marker can refer the new detection to the new position of the robot camera.

However, the only way to have the system run in real time, in such a way

that it is completely and always consistent, without using wheel odometry,

is to have the tag detection run faster than the people detection.
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4.0.1 Future developments

Marker Tracking To furtherly speedup detection we can use the assump-

tion that only one robot is always in the scene. Instead of scanning the whole

image for markers we can restrict the search area to those pixel that in a

previous frame contained the marker. The detector will track the area con-

taining the marker and ignore the outer pixels. A whole scan would be done

only if no tag has been detected at the previous iteration and/or at regular

intervals. This way we would generate less edges, and lighten the workload

for all the successive steps of detection.

Detector suppression Another possible solution would resemble what

happens in the human brain during eye movement. Saccadic Masking, also

known as (visual) saccadic suppression, is the phenomenon in visual percep-

tion where the brain selectively blocks visual processing during eye move-

ments in such a way that neither the motion of the eye (and subsequent

motion blur of the image) nor the gap in visual perception is noticeable to

the viewer. So, we could, for example, re-design the system this way: when

the wheel driver issue a rotation order (the most problematic case) a signal

is sent to the robot's people detector to pause detection. It will be restarted

only when the robot has already stopped AND the system has a consitent

�x on the marker position (i.e. the tag listener grab a frame and return the

position all while the robot is not moving).

Visual Odometry Visual Odometry in robotics is the process of incremen-

tally estimating the pose of a vehicle by examining the changes that motion

induces on the images of its onboard cameras. It has been used in various

robotic application, among other things also the Mars Exploration Rovers.

Brie�y, is a feature based method: �interesting� points are tracked between

two sequential images that frame the same scene, then the transformation

that brings those points from the �rst image to the second is estimated and

used to compute the robot new pose w.r.t. the �rst image. The solution
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is found by determining the transformation that minimizes the reprojection

error of the triangulated points in each image.

Figure 30: Visual Odometry 2D-2D, �ve points is the minimal case solution, using 3D

data (e.g. from the point cloud) just 3 points are needed

The basic case, i.e. 2d to 2d V.O. needs a minimum of 5 good points to

make a univocal solution. Using 3d data from kinects 3 non-collinear points

are su�cient.

Here is a possible work�ow, we exploit PCL's registration APIs:

1. Start marker and people detector

2. When the robot moves start visual odometry:

(a) Grab frame

(b) Segment (remove) people

(c) Register the cloud at frame n+1 with frame n and get transform

3. Use the computed transform on the old reference frame and update it.
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