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Abstract

The present manuscript treats the breakup of porous media due to the action
of fluid dynamic forces. The problem of the interaction between solid struc-
tures and fluid flows, named Fluid-Structure Interaction (FSI), is a problem
that interests a wide range of engineering applications and scientific fields, from
aerospace, civil and biomedical engineering to geotechnics and planetary sci-
ences. This phenomenon is often associated with hydraulic fracture due to
fluid-dynamic forces, which act on immersed solids. To reproduce the phe-
nomenon correctly fluid dynamics, solid mechanics and fracture mechanics have
to be simultaneously considered. The major difficulty of the classical theories
of solid mechanics is to predict and simulate the formation of cracks due to the
arising of singularities in the derivatives of partial differential equations where
discontinuities form.
The present manuscript intends to employ a novel numerical method to ad-
dress FSI with solid fracturing of a porous medium, where solid and fracture
mechanics are simulated with peridynamic, a well-established reformulation of
continuum theory which, replacing partial differential equations with integral
ones, intrinsically accounts for crack formation and branching. Instead, the dy-
namic of the fluid phase is reproduced by the three-dimensional incompressible
formulation of the Navier-Stokes equations by using Direct Numerical Simula-
tions (DNS). Then, the Immersed Boundary Method (IBM) is used to impose
wall boundary conditions on the fluid-solid interfaces.
The simulations are run by using a massively parallel solver, written in Fortran
90 extended with a Message-Passing Interface (MPI) standard, which has been
previously developed and validated. In the present manuscript, this new numer-
ical tool has been employed to simulate the deformation and fragmentation of a
linear-elastic porous medium. Three different simulations have been performed:
the first reproduces the deformation of solid without fracture, the second with
partial fracture and the third with total fracture. Then the comparisons be-
tween stress and strain distributions, before and after the fracturing process,
are reported and discussed for all the three cases listed above. Furthermore,
for these distributions, a failure criterion, which tries to predict when the frac-
ture occurs, is presented. In addition, for all cases, the trend over time of the
pressure drop, change in porosity and permeability are reported and discussed.
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Chapter 1

Introduction

With Fluid-Structure-interaction (FSI) term is considered a strongly non-linear
problem that involves the intricate coupling between the governing equations of
the fluid dynamics and solid mechanics where also the phenomenon of hydraulic
fracture is taken into account. In FSI, solid and fluid phase interact with each
other via the exchange of momentum through their interfaces which evolve in
time, such that the result is a strong coupling of the dynamic of the fluid with
that of the solids involved in the process.
FSI is a problem that interests a wide range of engineering applications and
scientific fields, from aerospace, civil and biomedical engineering to geotechnics
and planetary sciences. In the field of aerospace engineering for example, the
problem is important for the modeling of aircraft wings and turbine blades [10,
31]. A typical example consists of the aeroelastic flutter [24], a dynamic and
self-sustained instability of an elastic structure in a fluid flow, caused by positive
feedback between the body’s deflection and the forces exerted by the fluid flow.
This condition can arise for the aircraft wings during normal flight conditions
and the stress field in the wings may grow to such an extent that local damages,
or even global failure, occur. Another example is represented by the rupture of
ablative materials, which are usually porous, used for cooling the tanks of liquid
propulsion space launch vehicles. It is clear how this problem is encountered in
several critical areas and it must be accurately predicted during the designed
process.
To achieve a full comprehension of the physics of FSI problems with flow-induced
fracturing, fluid dynamics, solid mechanics and fracture mechanics must be
taken into account at the same time. Since the aim of the present work is to re-
produce the deformation and breakup of a porous medium due to fluid-dynamic
forces, in the first chapter of the thesis a brief description of the physical prop-
erties of porous media are presented. Then the limits of local continuum theory
are highlighted, since they are not reliable in the prediction of crack initiation
and propagation in solid medium, due to the arising of singularities of deriva-
tives in partial differential equations of solid mechanics. The most popular
numerical techniques used to tackle numerically the problem are also presented
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and it is shown how most of them lack of generality and are limited to very
restricted cases, since they are also characterized by a poor description of the
local fluid dynamics. This part is used as a preamble for the description of the
novel numerical method, used in this thesis, where solid and fracture mechanics
are addressed by employing peridynamics [7], a well-established reformulation of
continuum theory that intrinsically accounts for crack initiation and branching,
whereas the physics and dynamics of fluid phase is fully resolved by employing
the three-dimensional Direct Numerical Simulation (DNS) of the incompressible
Navier-Stokes equations. The multi-direct forcing Immersed Boundary Method
(IBM) [14, 2] is used to prescribe wall boundary conditions on the fluid-solid
interfaces, whereas normal probe method [20] is employed to compute the stress
on the wet surfaces of the immersed solids.
In peridynamic theory the arising of singularities is avoided since the expres-
sion of governing laws of solid mechanics with partial differential equations is
replaced by employing integral equations which allow to solve discontinuities
avoiding the onset of singularities. This approach permits to describe crack
formation and branching without using any empiric or macroscopic model. The
work presented in this thesis is based on the so-called bond-based peridynamic
model [7, 21, 17], which uses constitutive relations for Prototype Micro-elastic
Brittle Material. The IBM [22, 12, 2, 14] is used to couple fluid and solid dy-
namics. The basic idea of the method is to prescribe no-slip and no-penetration
boundary conditions on fluid-solid interfaces by applying to the discrete govern-
ing equations of the fluid flow, which is discretized using a fixed and structured
computational grid that does not conform to the solid-fluid interfaces, a proper
force distribution that set to zero the local relative velocity between the two
phases in the vicinity of their interface, so that the effect of the boundaries is
reproduced.
The source code is written in Fortran 90 extended with the Message-Passing In-
terface (MPI), a standardized and portable message-passing standard designed
to function on parallel computing architectures. The code is composed of three
different modules: a fluid solver, a peridynamic solver and a third module that
manages the synchronization and the coupling of the Navier-Stokes and peridy-
namic equations via the IBM. The descriptions of their numerical implementa-
tions are reported. Finally the numerical tool has been employed for the simula-
tion of a viscous three-dimensional incompressible channel-flow, with Poiseuille
flow as inlet condition, that invests a solid porous medium located inside the
channel. Three different simulations have been performed, which differ for the
value of the critical fracture energy release rate of the material: the first re-
produces the deformation of the solid without fracture, the second with partial
fracture and the third with total fracture. For all cases listed above have been
performed analyses of stress and strain distributions, before and after the frac-
turing process, trying to find a failure criterion which allows to predict when,
basing on these distributions, the crack formation starts. Furthermore the pres-
sure drop, the changing in porosity and permeability of the porous medium over
time have been investigated and discussed.
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Chapter 2

Overview of the subject

The interaction of a deformable body submerged in a fluid flow is encountered
in a wide variety of engineering applications and scientific fields. These may
include the response of an aerodynamic surface invested by a fluid flow or the
vibrations of the blades inside a compressor or a turbine, rather than an ablative
material that breaks down due to the effect of a fluid-dynamic forces induced
by a fluid flow. All these different cases are included in the fluid-structure
interaction (FSI) problem that so involves separate disciplines. For this reason
is necessary to address the problem with a general point of view as well as
possible. Typically, simulations where fluid-structure interaction is involved,
the solid material usually presents a linear elastic behaviour (Hooke’s law) and,
for large deformations, a more complex non-linear behaviour of the material
can be taken into account. Instead, the fluid is usually considered as a laminar
flow with low Reynolds number and constant fluid density (incompressible flow
hypothesis).
Since the target of the thesis is to solve numerically the deformation and the
rupture of a solid porous medium immersed in a fluid flow, to get a clearer
idea of the subject matter, a general discussion of the physical properties of the
porous media is reported below.

2.1 Porous medium

A porous medium is a solid material which features pores in its volume. The
skeleton portion of the material is often called ”matrix” or ”frame” , whereas
the pores form a void space through which a fluid or gas can flow. This void
space is identified as empty in the overall dimensions of the body and is deter-
mined and continuous if every pore structure is interconnected, or isolated if
volume of the material appears to be confined from the outer environment [23].
Being filled with fluid, porous media are typical FSI problems and critical com-
ponents for a broad range of disciplines and studies for a geological processes,
(e.g. erosion, seawater filtration and underground hydrology, including water
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contamination [36, 44]), as well as the numerical modeling of the degradation
porous filters and inserts employed in many industrial applications, for exam-
ples electrodes for fuel cells and flow batteries.
For a better understanding of the characteristics of a porous medium a summary
description of its main aspects is presented below.

2.1.1 Physical properties

Porous media are usually characterized by a random distribution of pores with
different size and shape resulting in a void space of the medium extremely
chaotic. In this way, the paths that the solid medium provides to the fluid
when it is immersed in the latter are not straight but full of turns and crosses
with other passages, so the fluid which flows through these passages is forced to
travel way longer than its actual effective displacement considered as the length
of the porous medium dimension along the macroscopic flow direction. For these
reasons, to simplify the characterization of porous media, these kinds of solids
are handled without completely taking into account their complex internal mor-
phology [25]. Hence, the main parameters characterizing each porous medium,
and eventually the conservation laws of the fluid flow inside its cavities, are
averaged over a scale long enough to consider the segment homogeneous.
The most important parameter is porosity (ϕ) or void fraction. It’s an intrinsic
property of every porous medium and it is defined as the ratio between the
volume of the pores and the total volume occupied by the medium [30]:

ϕ =
Vp
Vm

, (2.1)

where Vp is the volume of the void space, which is computed as the sum of the
volumes of all the cavities presented inside the medium, whereas Vm is the total
volume of the medium. In this case the void volume takes into account all the
void space generated by interconnected pores; however, if the case of a porous
medium immersed in a fluid flow is considered, most of the times not all the
pore network is accessible for the fluid phase and so it is necessary to define
the effective porosity, which considers only the void space that contributes to
the fluid flow inside the solid. Porosity ϕ is a dimensionless parameter, which
is included in 0 < ϕ < 1, where 0 means a solid medium without cavities and
1 indicates that there is not present a solid, so it refers to the condition of
undisturbed flow. The higher is the volume filled by solid matrix, hence the
lower is the porosity value, the flow struggles to pass through. In fact in this
case, the flow will slow down and dissipates more of its energy, since a large
contact surface is offered, increasing the overall drag and pressure drop.
Furthermore, different types of porosity exist: convex porosity and non-convex
porosity. The first one is obtained by the formation of cavities inside the solid
frame, forming sponge-like structures. These cavities usually have regular shape
(for example spherical) and solid media which present this type of porosity
usually have a less value of void space volume. The second one is typical of
material assembled by progressive stacking of grains and particles of various
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form and size, such as sand or concrete. The figure below displays a comparison
between portions of porous media with convex porosity and non-convex porosity,
respectively.

Figure 2.1: Representation of a portion of a solid with convex porosity (left
side) and a portion of a solid with non-convex porosity (right side). Figure
taken from [51].

As it is possible to see in the figure just presented, for the case of non-
convex porosity cavities have not regular shape. For this reason, when dealing
with non-convex porosity, is helpful to include an additional parameter, which
defines the irregularity of granular particle: sphericity. The sphericity, ψ, of a
particle is expressed as the ratio of the surface area of a sphere, with the same
volume of the given particle, to the surface area of the particle [36]:

ψ =
As

Ap
=
π1/3(6Vp)

2/3

Ap
, (2.2)

where Vp and Ap are the volume and the surface of the considered particle,
respectively; whereas As is the surface area of the sphere with the same volume
of the given particle. Sphericity influences the value of porosity. It was proven
by Kerimov et al. [36] that the lower is the average sphericity of the grains in
a non-convex material, the lower is porosity.
Another important parameter for the description of the physical properties of
a generic porous medium is the permeability (k) which is a measurement of
the resistance encountered by the fluid when it crosses the porous medium. In
the present work it is computed from petrophysical formulation of Darcy’s law
which is expressed as:

Q =
kS

L

∆p

µ
, (2.3)
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where Q is the flow rate of the fluid, S is the section through the fluid flows, k is
the permeability, µ is the dynamic viscosity of the fluid and ∆p is the pressure
difference between two sections separated by a distance L along the channel.
Therefore the permeability is defined as:

k =
QL

S

µ

∆p
. (2.4)

It’s clear from equation (2.4) that high values of permeability are related to a
less resistance encountered by the fluid when it crosses the porous medium since
k ∝ 1/∆p.
Similarity to porosity, it was proven how irregularities in the grains’ shape con-
tribute to lower value of k, increasing the overall pressure drop.
In addition, always referring to the case of a porous medium immersed in a
fluid, when the fluid flows through the cavities of the medium, the solid phase
deflects the fluid extending its route inside the medium. To correct the ef-
fective flow path, and so to further predict the permeability of porous media,
especially one presenting convex cavities, a new parameter, called tortuosity, is
employed. Referred to this, there are different types of tortuosity depending on
the phenomenon described. Since our field of interest involves fluid-structure
interaction and crack propagation due to the fluid pressure, only the hydraulic
definition of tortuosity is described.
Hydraulic tortuosity (τh) was introduced by Carman (1937) and is defined as
the ratio of the effective hydraulic flow path Lh to the straight line distance in
the direction of movement L [44]:

τh =
Lh

L
, (2.5)

hence, from its definition, it can be interpreted as a parameter which describes
the average stretching of the flow path in a porous material respect to a non-
disrupted flow. The length Lh is usually measured from the streamlines in a
condition of a steady-state where the flow behaviour is unchanging with time.
Still, identifying a streamline inside a porous frame is a very difficult process,
so during the years some computation methods have been proposed to solve the
problem. For instance, Zhang and Knackstedt (1995), for approximating the
travel of a fluid particle inside a porous medium, evaluated a weight-average of
all stream-lines traversing the medium, using as weight the corresponding time
requested for a single flow particle to move along its entire flow path:

τh =
1

L

(

∑

i wili
∑

i wi

)

=
1

L

(

∑

i lit
−1
i

∑

i t
−1
i

)

, (2.6)

where li, wi, and ti are respectively the single streamline length, the related
weight and the travel time for a particle. The equation 2.6, as it was later proven
by Matyka and Koza (2012), for the case of laminar flow with low Reynolds
number, can be written using the instantaneous particle velocity vi obtaining:

τh =

∫

B
vdV

∫

B
vxdV

=
v̄

v̄x
, (2.7)
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where B is the porous domain saturated by the fluid, v the particle velocity and
vx the particle velocity along the macroscopic flow direction. This equation is
applicable under the assumption of incompressible flow.

All these parameters discussed above have been employed in mathematical mod-
els (e.g. Darcy’s law, Kozeny-Carman equation, poroelasticity theory proposed
by Biot, capillary model) which have been used over the years for trying to
describe the behaviour of the fluid that flows through the cavities of a porous
medium and consequently the interaction between the fluid phase and the solid
one. On the other hand, in the present work the incompressible Navier-Stokes
equations are numerically solved by employing a three dimensional Direct Nu-
merical Simulation (DNS) technique which, thanks to a very dense numerical
grid, allows to solve completely the dynamic of the fluid, also for the one inside
the interstitial regions of the medium. Furthermore, by employing the multi-
direct forcing Immersed Boundary Method (IBM) for prescribing no-slip and
no-penetration boundary conditions and normal-probe method for evaluating
fluid-dynamic forces acting on the solid surfaces, the need of other mathemat-
ical models, for reproducing the dynamic of the fluid inside the cavities of the
medium and the interaction between the fluid phase and solid one, is removed.
For these reasons, once the porous medium is discretized, the employment of the
parameters discussed above is useless for reproducing the fluid dynamic through
the porous medium, but it will be investigated how their values change after
the breakup of the medium.
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Chapter 3

Methodology

In this chapter are firstly discussed the limits of the most popular numerical
methods used in the numerical modeling of solid and fracture mechanics. This
part is a preamble of the main part of the chapter that reports the potential
of peridynamics as the most suitable technique to numerically address a wide
range of simulations of generic three-dimensional FSI problems with arbitrarily
complex geometries, including rupture and crack propagation analysis. Fur-
thermore, the descriptions of Direct Numerical Simulation (DNS) technique for
reproducing the dynamic of fluid phase and the Immersed Boundary Method
(IBM) to prescribe the wall boundary conditions on fluid-solid interfaces are
presented.

3.1 Local and non-local theories

The fundamental theories which have been developed in the last years to de-
scribe the mechanics of solid media with complex mechanical behavior can be
firstly classified in two main categories: local and non-local theories.
The basic assumption of local theories is that a solid medium can be treated
as a continuum at any arbitrary small length-scales. The consequence of this
assumption is that any material point, which composes solid medium, can be
considered independent and it can interact, through zero-distance contact forces,
only with points located in its immediate proximity [26].
In this frame the mathematical description of solid medium relies on partial
different equation, but the internal structure of real material presents specific
features (i.e. porosity, grains, crystalline structures) that cannot be correctly
described by considering solid medium as a continuum. Furthermore, if the
presence of discontinuities is taken into account, the local theories doesn’t work
well since the discontinuities lead to the emergence of singularities on partial
differential equations.
On the contrary, the basic assumption of non-local theories relies on the hypoth-
esis that the infinitesimal material volumes can mutually interact across a finite
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distance, that represents the characteristic length-scale of the material and it
can be related to some meaningful physical lengths, such as porosity, grain sizes
or size of micro-cracks [21].
In this frame the state of a point can be influenced by the points located within
a finite region centered around the considered one. Thanks to this approach it
is possible to capture the effects of microstructure of a material, but although
non-local theories introduce additional details to represent solid materials, they
still suffer from the problem of singularities that arises when discontinuities (i.e.
micro-cracks) are presents.
In the frame of non-local theories, peridynamics is a recent numerical refor-
mulation of solid mechanics that attempts to completely solve the issue of sin-
gularities of derivatives in partial differential equations due to the presence of
the discontinuities, by replacing them with integral equations, such that the
derivatives are completely removed from the formulation avoiding the arising of
singularities [7] [17].
In peridynamics each point can interact with the others through short-range
forces that act over a finite threshold distance, named horizon. The governing
laws of peridynamics consists of a integral balance of linear momentum, com-
puted over the short-range distance (the horizon) and accounting for the mutual
internal forces exchanged between material points.
As a result of this innovative formulation, crack initiation is described only by
the deactivation of pair interactions where the crack occurs. Then the deac-
tivated internal forces are removed from the momentum balance. Thanks to
this approach damage is intrinsically taken into account in peridynamic theory,
such that fractures occur as a natural outgrowth of the equation of motion and
constitutive models [13].

3.1.1 Limits of most popular numerical methods for dis-
continuous solid media.

In the last years different numerical models have been developed to solve solid
mechanics in presence of discontinuities. The most popular are Enriched (or Ex-
tended) Finite Element Method (XFEM ) [5] and the Distinct Element Method
(DEM) [1].
XFEM was initially developed to solve problems of classical Finite Element
Method which require a priori-knowledge of the shape of the discontinuous fea-
tures, such as cracks, void or inhomogeneities, for re-meshing at every time step
in order to have the mesh conforms to them.
The basic idea behind XFEM relies on adding to the standard polynomial shape
functions some appropriate discontinuous basis functions for nodes that belong
to those elements that are intersected by some localized discontinuous features,
such as a crack [8]. By using this method it isn’t needed a priori-knowledge
of the shapes of the features involved and the need for re-meshing to track the
path of discontinuities is removed.
XFEM is quite accurate in the modelling of discontinuous features but it isn’t
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able to intrinsically take into account the presence of discontinuities, as peridy-
namics, but it requires the use of semi-empirical or simplified models and, for
this reason, its resolution is not great.
DEM is another popular method employed to address numerical simulation of
solid media in presence of discontinuities [1]. The idea is to split the solid in a
set of finite size of polyhedral or spherical solid blocks for which is considered
complex mechanical behaviors, such as the possibility of warping, to couple the
method with FEM [19] [33].
This approach uses contact-force models in solid-solid contact regions [15] and
its coupling with Navier-Stokes model is a frequent technique to address the
simulation of multiphase flows involving discontinuous solid aggregates [37] [27].
However, a priori-knowledge of the block shapes is still necessary and the for-
mation of cracks and discontinuities are possible only between distinct elements,
not only through a single block, via the use of cohesive force models.
The limitations which have been listed above make the applications of XFEM
and DEM difficult for general cases where it is necessary to simulate the me-
chanical behaviour of discontinuous solid media.

3.2 FSI problem: Arbitrary Lagrangian-Eulerian
formulation vs. Immersed Boundary Method

During the last years different approaches have been developed to represent
numerically the solid-fluid interactions. The most popular techniques are Ar-
bitrary Lagrangian-Eulerian (ALE) [3] method and the Immersed Boundary
Method (IBM) [2].
The basic idea of ALE method is to discretize the domain by using unstructured
computational meshes that conform to the fluid-solid interfaces at every time
step. The solution of governing equations of the fluid phase, which are temporal
integrated by using explicit or implicit time-marching schemes, is updated over
a discrete time step. Then, after surface forces exerted by the fluid phase on
the solid are been calculated, the position of the nodes located on the surfaces
of the immersed solids are updated and new mesh is created consequentially
[3]. Therefore, no-slip and no-penetration boundary conditions are prescribed
by directly imposing specific values of velocity and its derivatives on the mesh
nodes located on the surfaces of the immersed solids.
Although this approach permits an accurate treatment of the interfaces, the
needs to re-mesh and to compute the convective fluxes at every time step make
the computational cost of this kind of simulation quite large.
Instead, with IBM approach, the need to re-mesh is completely removed [2].
This method in fact uses a fixed Eulerian-grid which is not conform with fluid-
solid interfaces and it is time-independent. The only requirement is that it can
provide an adequate local resolution to numerically solve the smallest turbulent-
scale [12].
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Wall boundary conditions are indirectly prescribed to the flow in correspondence
of the solid surfaces by forcing functions which are added in the conservation
of linear momentum equation of the fluid phase to reproduce the effect of the
boundaries.
Specifically, in this manuscript, IBM is implemented with a discrete forcing
approach, namely the forcing function, which accounts for the presence of the
boundary, is introduced at the discrete level, thus after the discretization pro-
cess of the governing equations [14].
In Discrete Forcing IBM frame the governing equations of the fluid phase are
solved on a uniform Cartesian grid, refereed to as Eulerian grid, instead the
solid surface is represented as a set of Lagrangian points which are equally
distributed over the fluid-solid interface. The idea to impose no-slip and no-
penetration boundary conditions by making sure that the velocity of the fluid
phase in correspondence of the fluid-solid interfaces is equal to the velocity of
the Lagrangian points distributed on solid surfaces. This is equivalent to im-
pose that the relative velocity between fluid and solid phases is equal to zero in
correspondence of their interfaces. These impositions are fulfilled by the forcing
function term which is based on interpolation and spreading operations with
a smooth transfer of the quantities between the Eulerian and the Lagrangian
configurations by means of a regularized discrete delta function [6] [2].
To improve numerical accuracy and stability of the method it is used to employ
schemes based on iterative procedure and different interpolation procedures are
possible. This class of methods, called multi direct forcing IBM [22], has in
the computation of the back-reaction exerted by the fluid on the solid its main
issue. In the present manuscript is used a multi direct forcing IBM to impose
boundary conditions on the fluid-solid interfaces coupled with a normal probe
approach to compute hydrodynamic forced on deformable solid surfaces. [32]
[39].

3.3 Peridynamics

Peridynamics is a recent continuum theory which is based on non-local approach
and it is formulated with integral equations so that it is particularly suitable
for studying crack initiation and branching. In fact, as it was explained above,
the most popular methods use to numerically solve solid mechanics are based
on partial differential equations which require a specific techniques when the
presence of discontinuities is taken into account, and many of these require
a priori-knowledge of the shape of the peculiar features involved, for example
inhomogeneity or direction of crack propagation.
On the contrary peridynamics, thank to its integral formulation, can overcome
the limits of these numerical methods and it doesn’t need a priori-knowledge
of the direction of crack propagation. The basic idea of this innovative theory
is that a solid body is composed by a finite number of material points and
everyone interacts only with the points located within a short range distance,
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named horizon.

3.3.1 Definition and basic terminology

Let’s considered a closed and bounded solid body, named B , in its reference
configuration. Then it is discretized in a finite number of cubic material parti-
cles, each having a fixed volume and mass according to Silling and Lehoucq [18].
Each of these is identified by a material point, which has zero mass, localized
in the center of the material particle.
The Lagrangian coordinate of an arbitrary material point of the body in its
reference configuration, which is at time t = 0, is referred to as X0 ∈ B and, in
general, the notation X0 is used to indicate a generic material point. Instead,
the coordinate of the point X0 in a deformed configuration of the body, at time
t ≥ 0, is expressed by the Lagrangian variable X(X0, t). Now that the reference
frame is known, the fundamental units of peridynamics are presented.
Let’s considered a material point, X0, it is called neighborhood of X0 the set
of material points included in the spherical region of space centered in X0,

HX0
= {X′

0 ∈ B ∧X′

0 ̸= X0, ∥X′

0 −X0∥ < δ}, (3.1)

where δ is the horizon that, as previously reported, is the finite maximum
distance along which two material points can interact.
Then the family of X0 is defined as [21, 7]:

H = {ξ ∈ (ℜ3 \ 0), (ξ +X0) ∈ (HX0
∩B)} (3.2)

where a vector ξ ∈ H is called a bond connected to X0, so a family of material
point, for example X0, is the set of bonds that connect the reference material
point with those that are included in its neighborhood.
Then, by definition, a bond ξ can be expressed as:

ξ = X′

0 −X0, ∀X0 ∈ B, X′

0 ∈ HX0
, (3.3)

whereas, the definition of a bond in a deformed configuration of the body is:

ζ = X′(X′

0
, t)−X(X0, t), ∀X0 ∈ B, X′

0 ∈ HX0
, t ≥ 0, (3.4)

with,
η = ζ − ξ, (3.5)

the bond displacement vector.

3.3.2 The governing equations

The fundamental governing equation of peridynamics relies essentially on a La-
grangian formulation of the conservation of linear momentum in continuum
media. As previously reported, the Lagrangian coordinate of an arbitrary ma-
terial point of the body in its reference configuration, named B, is indicated as
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X0, whereas the Lagrangian variable X(X0, t) denotes the coordinate of the
point X0 in a deformed configuration of the body, at time t ≥ 0.
In this frame, the velocity of a generic material particle within the solid is
described by the Lagrangian variable:

V (X0, t) =
d

dt
X(X0, t). (3.6)

Named P ∈ B an arbitrary subregion of the body, the Newton’s second law
applied to it is:

d

dt

∫

P

ρ(X0)V (X0, t) dV =

∫

P

[L(X0, t) + F (X0, t)] dV, (3.7)

where ρ(X0) is the density of the body and, since it can change within the solid,
it is indicated as a function of the coordinate X0. Then the notation F (X0, t)
indicates an external body force per unit volume and L(X0, t) the force per
unit volume acting at time t on X0 due to the interactions of the latter with
other material points [7, 21]. By localization of equation (3.7), the Lagrangian
equation governing the motion of any material point X0 is:

ρ(X0)
d

dt
V (X0, t) = L(X0, t) + F (X0, t), ∀X0 ∈ B, t ≥ 0. (3.8)

L(X0, t) is an internal force density and therefore, for the action-reaction’s law,
is self-equilibrating. So, if the Newton’s second law is applied to the whole solid
body B the Lagrangian equation governing the motion of the body becomes:

d

dt

∫

B

ρ(X0)V (X0, t) dV =

∫

B

F (X0, t) dV. (3.9)

and it means that
∫

B

L(X0, t) dV = 0, (3.10)

To avoid the problem of the onset of singularities due to the presence of discon-
tinuities, in peridynamics frame, any internal force density acting on a material
point is expressed by an integral relation, provided below in equation (3.12)
computed over finite region of space radius, δ. Indeed, for any given force field
L(X0, t), it always exists a vector-valued function, f(X′

0,X0, t), that is anti-
symmetric,

f(X′

0,X0, t) = −f(X0,X
′

0, t), ∀X′

0,X0 ∈ B, t ≥ 0, (3.11)

and such that L(X0, t) can be expressed as:

L(X0, t) =

∫

HX0

f(X′

0,X0, t) dV
′, ∀X0 ∈ B, t ≥ 0. (3.12)

where dV ′ is the differential volume evaluated at the position X′

0 which is a
material point included in the neighborhood of X0. The function f(X′

0,X0, t)
is called pairwise force density and it can be interpreted as the force per unit
volume square acted by the point X′

0 on X0 as is sketched in figure 3.1.
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Figure 3.1: Two-dimensional sketch of the horizon of Xi and representation
of force f acting between Xi and Xj . The material points included in the
neighborhood are highlighted in dark blue. Figure taken from [34].

The pairwise force density can be expressed in the following way:

f(X′

0,X0, t) = t(X′

0,X0, t)− t(X′

0,X0, t), ∀X′

0,X0 ∈ B, t ≥ 0.
(3.13)

where t(X′

0,X0, t) is called bond force density and represents the basic quantity
produced by a constitutive model in peridynamics theory [17]. For a better
comprehension, in the figure below is represented the sketch of the pairwise
force density and related bond force density for an arbitrary couple of material
points of a peridynamic solid.

Figure 3.2: Representation of the couple of pairwise force density that the point
X0 and X′

0 exercise each other which are obtained by the contribution of the
bond force density t(X′

0,X0, t) and t(X′

0,X0, t).
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Finally, by considering the internal force acting on arbitrary point material as
sum of all the pairwise force density that act on the reference material point, as
it is provided in equation (3.12) and by considering the definition of Lagrangian
velocity provided in equation (3.6), and the conservation of linear momentum
of a single material point (3.8), the governing equations of peridynamics read:

d

dt
X(X0, t) = V (X0, t), (3.14)

ρ(X0)
d2

dt2
X(X0, t) = L(X0, t) + F (X0, t), (3.15)

L(X0, t) =

∫

HX0

[t(X′

0,X0, t)− t(X′

0,X0, t)] dV (3.16)

which are valid ∀X0 ∈ B, t ≥ 0. To solve them it is necessary to provide
a constitutive relation to compute the bond force density as a function of the
macroscopic mechanical properties of the material and deformation state of the
body.
Different constitutive relations can be derived for a peridynamic material and
based on the constitutive model employed, it is possible to distinguish between
three different peridynamic models: bond-base peridynamics, ordinary state-
based peridynamics, non-ordinary state-based peridynamics [17]. In the former,
which relies in the first peridynamic formulation developed by Silling [7], the
constitutive model results in pairs of bonde force density vectors, t(X′

0,X0, t)
and t(X0,X

′

0, t), that are parallel to the relative position vectors in the de-
formed configuration of the body, ζ, and equal in magnitude. Whereas, In the
ordinary state-based model, the bond force density vectors are still parallel to
ζ, but they can have different magnitude. Finally, in non-ordinary state-based
peridynamics, the bond force density vectors can be non-parallel to the related
relative position vectors and different in magnitude.

Figure 3.3: Differences of bond force density vectors definition between bond-
based peridynamics, ordinary state-based peridynamics, non-ordinary state-
based peridynamics
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This manuscript focuses only on bond-based peridynamics, which can be seen
as a special case of ordinary state-based peridynamics, because it is enough to
reproduce the mechanical properties of the material of the porous solid medium
that will be simulated. This model is the simplest of the peridynamic models
and it can be entirely assessed without employing the formalism of peridynamic
states (for additional information of peridynamic states and related algebra, the
reader refers to the references [7, 17, 21]). It is important to remark that the real
potential of peridynamics theory consists in the introductions of a non-locality
by using of an integral relation to impose the internal force balance, avoids the
onset of singularities that arise in local theories from the evaluation of partial
derivatives in the presence of discontinuities, such as inhomogeneity and cracks,
in the material.

3.3.3 Bond-based peridynamics

As previously reported, bond-based peridynamics relies on a special case of peri-
dynamics although it can be entirely assessed without employing the formalism
of peridynamic states. The basic assumption of bond-based theory is that each
bond has its own constitutive relation, which is independent from the others.
Since, as previously reported in last part of the section 3.3.2, the constitutive
model of bond-based results in pairs of bond force density vectors that are paral-
lel to the relative position vectors in the deformed configuration of the body, ζ,
and equal in magnitude, the constitutive relation for bond force density vectors
are derived:

t(X′

0,X0, t) =
1

2
f(X′

0,X0, t), (3.17)

t(X0,X
′

0, t) =
1

2
f(X0,X

′

0, t) = −1

2
f(X′

0,X0, t). (3.18)

As specified above, since each bond has its own constitutive relation, which is
independent from the others, the value of pairwise force density f(X′

0,X0, t),
depends exclusively on the single bond, ξ, connecting the material point X0

to X′

0. This kind of material model, described by bond-based peridynamics, is
referred to as Prototype Microelastic Brittle (PMB) which its properties are:

1. the bond stretch s(ξ,η) defined as:

s(ξ,η) =
∥ξ + η∥ − ∥ξ∥

∥ξ∥ (3.19)

is calculated as the ratio of the pairwise force density f and the bond
stiffness c0, called bond micro-modulus ;

2. the rupture of a bond occurs when the stretch of a bond overcomes a
threshold value, s0, called the limit bond stretch. The breakage of a bond is
permanent and irreversible, therefore a bond is defined as time-dependent;
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3. bond cannot break under compression.

Under these assumption, the pairwise force density can be expressed [7, 52]:

f(X′

0,X0, t) = f(ξ,η) = c0s(ξ,η)
ξ + η

∥ξ + η∥λ(ξ, t) (3.20)

where λ(ξ, t) is a history-dependent scalar-valued function that accounts crack
formation and it will be discussed in the next section. The figure below repre-
sents the stretch of a bond in deformed configuration of the solid body due to
the relative displacements between material points which are less distant of the
limit cut-off distance δ in the reference configuration of the body.

Figure 3.4: Deformation of a bond in bond-based peridynamics. To the left is
represented the reference configuration of the body, referred as Ω, whereas to the
right is depicted its deformed configuration. u and u′ indicate respectively the
displacement vectors of the Lagrangian variables X and X′, whereas ξ indicates
the undeformed bond and η the bond displacement vector. Figure taken from
[38].

The bond micro-modulus c0 can be put in relation with the macroscopic me-
chanical properties of the materials. The constitutive relation for c0 depends on
the geometry and loading conditions of the specific problem. In particular, the
bond micro-modulus is a function of Young’s modulus, E, and the peridynamic
horizon δ:
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c0 =











































9E

πtδ3
, in 2D plane stress,

48E

5πtδ3
, in 2D plane strain,

12E

πδ4
, in 3D

(3.21)

where t refers to the depth of the body along the out-of plane direction for
the two dimensional cases. The Poisson’s ratio νs is not included in equation
(3.21) and, from derivation of equation 3.21, it can be proven that Poisson’s
ratio is fixed to the value of 1/4 for the three-dimensional and plain strain
cases and to 1/3 for the plane stress case. The fact that Poisson’s ratio is
forced to have constant value for specific geometry and loading condition of
the problem represents the main limitation of bond-based peridynamics. In the
present manuscript, for semplicity, the bond micro-modulus is assumed to be
uniform and constant.

3.3.4 Bond damage and fracture

As explained before, the definition of the internal force acting on an arbitrary
material point as an integral balance computed over a finite region of space
radius, δ, as described by the relation provided in equation (3.12) permits to in-
trinsically take into account of the damage at the bond level, such that fractures
occur as a natural outgrowth of the equation of motion and constitutive models.
The basic assumption of peridynamics is that when the stretch s, defined ac-
cording to the equation (3.19), overcomes a threshold value s0, called the limit
bond stretch, the pairwise force density vectors between the involved material
points are deactivated and their contribution to the internal force balance is
permanently neglected. The deactivation of a pairwise interaction represents a
rupture of the related bond and therefore the formation of a crack [13].
The figure below reports a schematic representation of a crack in peridynamic
frame.
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Figure 3.5: Schematic representation of a crack in peridynamic frame. The
broken bonds are highlighted by the cross symbols and they don’t contribute to
the overall internal force balance on the central material point. The direction
of crack propagation is represented by the black arrow.

To take into account the deactivation of the pairwise force density vectors
when the bond stretch overcomes the limit bond stretch, and so the crack for-
mation, there is the history-dependent scalar-valued function cointained in the
pairwise force density expression in equation (3.20), that is defined in the fol-
lowing way:

λ(ξ, t) = λ(s) =











1, s ≤ s0 ∀t ≥ 0,

0, otherwise.

(3.22)

This parameter permits to neglect immediately the pairwise force density of the
broken bonds from the internal force balance.
As the bond micro-modulus also the limit bond stretch s0 can be expressed as a
function of mechanical properties of the material through constitutive relations
that depend on geometry and loading conditions of the specific problem. In
particular the limit bond stretch can be expressed as a function of the critical
fracture energy release rate of the material, G0, the Young’s modulus, E, and
the peridynamic horizon, δ. It is worth remarking that the critical fracture
energy release rate G0 is expressed as the decrease in total potential energy
per increase in fracture surface area, and is thus expressed in terms of energy
per unit area. In the following a derivation of an expression for the limit bond
stretch is provided for three-dimensional case in the frame of bond-based theory,
considering a brittle micro-elastic material defined in section 3.3.3, by equaling
the critical fracture energy release rate defined in the frame of classical fracture
mechanics theory, with the work required to break all the bonds per unit fracture
area computed in the peridynamic frame.
Let’s consider a fracture in a brittle micro-elastic material and two arbitrary
material points, X0 and X′

0, located at the opposite sides of the fracture

25



surface. The figure below shows a schematic representation of the considered
situation:

Figure 3.6: Representation of two arbitrary material points, X0 and X′

0, lo-
cated at the opposite sides of the fracture surface. The local z-axis measures
the distance of the point X0 from the surface of the fracture. It is considered a
spherical coordinate system centered at X0. Figure taken from [21].

The work required to break a single bond ξ, connecting X0 to X′

0, is:

w0(ξ) =

∫ s0

0

c0sr ds =
1

2
c0s

2
0r, (3.23)

where r = ∥ξ∥. Considering all the material points X0 along the z-axes, such
that the z coordinates of these points are included in the interval 0 < z < δ,
the work per unit fracture are W0 required to break all the bonds connecting
X0 to the points X′

0 in the spherical cap to the opposite part of the fracture
surface, can be computed as:

W0 =

∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1(z/r)

0

(

1

2
c0s

2
0r

)

r2 sin(Φ) dΦ dr dθ dz. (3.24)

By evaluating the integral above, the energy per unit fracture area for complete
separation of the two halves of the considered body is:

W0 =
πc0s

2
0δ

5

10
= G0 (3.25)

Finally, solving equation for s0 and considering equation (3.21), which expresses
c0 as a function of E and δ, for the three-dimensional case, leads to:

s0 =

√

5G0

6Eδ
(3.26)
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and, if a similar strategy is adopted for two-dimensional cases, considering plane
stress and plane strain loading condition, the following expression are obtained:

s0 =



















































√

4πG0

9Eδ
, in 2D plane stress,

√

5πG0

12Eδ
, in 2D plane strain,

√

5G0

6Eδ
, in 3D.

(3.27)

when a bond breaks a formation of a micro-crack occurs and it propagates
locally in the direction normal to the broken bonds. As previously reported,
since a bond breakage involves the removal of pairwise force density, related to
the broken bond, from the internal force density balance, it leads a material
weakening near crack tips that acts as a softer response of the material.
The advantage to introduce failure at bond level is that damage can be clearly
identified at any arbitrary material point in the body and it can be quantified
by the damage level computed as:

Φ(X0, t) = 1−

∫

HX0

λ(ξ, t) dV ′

∫

HX0

dV ′

(3.28)

The damage level is a scalar-valued function ranging from 0 to 1, with 0 corre-
sponding to undamaged material and 1 corresponding to the disconnection of
the reference material point from all the points which were originally part of its
neighborhood.

3.3.5 Numerical discretization of peridynamics

In a peridynamic frame a solid body is defined as a set of finite-size material
particles that mutually interact via the short-range force densities as specified
above. Therefore, to numerically solve the governing laws of bond-based peridy-
namics it is necessary to adopt a discretization strategy which can represent a
peridynamic solid body as well as possible. In the present thesis a ”mesh-free”
method, proposed by Silling [13], is used and so the solid domain is discretized
with a uniform Lagrangian grid in a set of Np finite-size, cubic and equally-
spaced material particles, with fixed volume and fixed mass, each identified by
a computational node located on their geometrical centroid.
With ∆s is indicated the spacing between nodes in the reference configuration
of the body and it is equal to the particle edge size. The ratio between the
horizon δ and particle size is denoted as m = δ/∆s which is usually equal to 2
o 3. An arbitrary material particle, in the reference configuration of the body,
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is identified by the Lagrangian variable X0,h with 1 ≤ h ≤ Np, which refers
to the coordinate of its geometrical centroid, whereas the Lagrangian variables
Xh(X0,h, t) and V h(X0,h, t) are used to indicate the position and velocity of
the particle evaluated at time t ≥ 0. These Lagrangian variables, as for the
continuum case, are used to refer to both the particle centroid (and so to the
corresponding node) as well as the discrete material particle itself.
The bond vector ξh,l in the reference configuration (t = 0), its image ζh,l in a
deformed configuration at t ≥ 0 and the corresponding displacement vector ηh,l

in the discrete case are respectively:

ξh,l = X0,l −X0,h, (3.29)

ζh,l = X l −Xh, (3.30)

ηh,l = (X l −Xh)− (X0,l −X0,h). (3.31)

As previously reported by equation (3.1), the neighborhood of an arbitrary mate-
rial pointX0 is the set of material points enclosed into the space region of radius
δ centered at X0. In the discrete frame of peridynamics, as it is possible to see
in the figure 3.7, when a space region of radius δ centered at an arbitrary node
X0,h (which corresponds to the geometrical centroid of the associated discrete
particle, as previously reported) is taken into consideration, there are some dis-
crete particles belonging to its neighborhood which may present an intersection
with the neighborhood boundary.

Figure 3.7: Schematic of the discretization of a peridynamic solid in the two-
dimensional case and representation of the neighborhood boundaries of an ar-
bitrary computational node highlighted in red. With ∆x is indicated the grid
spacing, δ is the horizon that in represented case is set as δ = 4∆x. The nodes
associated with the discrete particles which are completely included in the repre-
sented neighborhood are highlighted in light green, whereas the nodes associated
with discrete particles which are partially enclosed in the space region covered
by the considered neighborhood are highlighted in light blue.
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To be sure that all the nodes that identify the discrete particles intersected
by the neighborhood boundary of an arbitrary node X0,h are included in its
neighborhood, the definition of the neighborhood for the continuum case, pro-
vided by equation (3.1), is modified to be practicable in discrete case, as in the
following:

HX0,h
=

{

X0,l ∈ B, ∥X0,l −X0,h∥ < δ +
1

2
∆s

}

. (3.32)

The figure below reports a sketch of the neighborhood of a discrete material
particle defined according to the equation (3.32):

Figure 3.8: The neighborhood of a discrete material particle, X0,h defined ac-
cording to equation (3.32). The region highlighted in green corresponds to the
portion of the cubic particle X0,l enclosed into sphere of radius δ centered at
X0,h. The remaining portion of the material particle is highlighted in yellow.
Figure taken from [48].

As it was reported in section 3.3.2, the calculation of the internal force act-
ing on arbitrary material point, provided by equation (3.12), is expressed as
the integral of pairwise force density computed over the solid volume enclosed
by the space region of the neighborhood of the considered material point. This
is a fundamental quantity which is present in the linear momentum balance
equation of the generic material point and it is necessary for the updating of
the Lagrangian position and velocity of the considered material point. So, for
reaching a reasonable accuracy of peridynamic numerical model, it is necessary
to approximate the solid volume enclosed by neighborhood boundaries as well
as possible. This can be done by employing the volume reduction factor, re-
ferred as Γh,l, which permits to take into account, for the discretize particles
intersected by a neighborhood boundary, only their volume fraction that are
enclosed in the space region covered by the neighborhood. In the following is
reported its formulation for two-dimensional cases, by using a linear variation
between a factor 1/2 and 1 depending on the neighborhood member’s location
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with respect to the horizon [26, 13], δ:

Γh,l =























δ − ∥ξh,l∥
∆s

+
1

2
,

(

δ − ∆s

2

)

≤ ∥ξh,l∥ ≤ δ,

1, 0 ≤ ∥ξh,l∥ ≤
(

δ − ∆s

2

) (3.33)

This parameter Γh,l is defined as the ratio between the fraction of the volume of
X0,l comprised within a distance δ from X0,h and the overall volume of X0,l,
that in the present case is ∆Vl = ∆s3. It is worth nothing that Γh,l is computed
in the reference configuration of the body and it does not depend on time.
For three-dimensional cases, instead, an analytical expression for volume reduc-
tion factor does not exist and so Γh,l must be computed numerically. The most
common approach consists of partitioning the cubic particle X0,l into a set of
N3 cubic sub-region of size ∆s/N and the volume reduction factor is computed
as Γh,l = Ni/N

3 where Ni is the number of cubes for which r ≤ δ, where r is
the distance of the cubic sub-region centroids from X0,h and they can be easily
computed. The figure below reports a sketch of the partitioning of a discrete
particle for two-dimensional cases:

Figure 3.9: Two-dimensional schematic representation of the algorithm for the
computation of volume reduction factor, Γh,l. The regions highlighted in green
correspond to the portion of the cubic particle X0,l enclosed into sphere of
radius δ centered at X0,h. The remaining portion of the material particle is
highlighted in yellow. Figure taken from [48].

The others fundamental peridynamic quantities expressed in discreet form
are reported in the following:
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• history-dependent scalar-valued function in discrete case:

λh,l =











1, sh,l ≤ s0 ∀t ≥ 0,

0, otherwise.

(3.34)

where s0 is the limit bond stretch defined in equation (3.27);

• the bond stretch in discrete case:

sh,l =
∥ξh,l + ηh,l∥ − ∥ξh,l∥

∥ξh,l∥
(3.35)

3.3.6 Discrete bond-based peridynamics

For bond-based peridynamics, as well as for the continuum case, the discrete
pairwise force density fh,l is expressed as a function of the bond stretch and the
macroscopic mechanical properties of the material, as it is reported by equation
(3.20):

fh,l = c0 λh,l sh,l
ξh,l + ηh,l

∥ξh,l + ηh,l∥
(3.36)

where sh,l is the bond stretch defined by equation (3.35), whereas ξh,l and
ηh,l are provided by equation (3.30) and(3.31), respectively. The bond micro-
modulus c0 is assumed to be constant and is defined in equation (3.21).
Therefore, the discrete equation of bond-based peridynamics, obtained by con-
sidering the corresponding equations from continuum case (3.14, 3.15, 3.16), are:

d

dt
Xh = V h, (3.37)

ρs
d2

dt2
Xh = Lh + F h +Ch +Dh (3.38)

Lh =

Nh
∑

l=1

fh,l Γh,l ∆Vl (3.39)

where Nh is the finite number of particles which are part of the neighbor-
hood of X0,h, ρs is solid density that is assumed to be constant in the present
manuscript. The external force per unit volume acting on X0,h is split into two
different terms: the generic external fluid dynamic force field per unit volume,
F h, and the force per unit volume arising from the contact of X0,h with other
material particles, which are not part of its neighborhood but are from other
solid body or from another part of the same solid domain, Ch. These types of
forces, named solid-solid contact forces, are represented by pairwise short-range
forces acting between couples of material particles which are located within a
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cut-off distance, rc. The expression that provides the short-range force acting
on arbitrary discrete particle X0,h, due to the contact with another particle
X0,l, which is not part to the neighborhood of X0,h, is:

Ch,l = max

{

kc

[(

rc
∥ξh,l∥

)nc

− 1

]

, 0

}

X l −Xh

∥X l −Xh∥
, (3.40)

where nc and kc are indicated as the short-range force exponent and the short-
range force constant, respectively. Different choices of the values of nc, rc, kc
are possible and in the present thesis the values suggested by Macek and Silling
[50] are employed, which are nc = 1, kc = 15c0 and rc = ∆s. For reducing
the computational cost of the simulation a nearest-neighborhood search (NNS)
algorithm is used, which detects the pairs of particles located within the cut-off
distance rc, only for the particles located on the interfaces, without considering
particles of the same neighborhood.
The term Dh, instead, is an additional term which is not present in continuum
case and is a function of the relative velocity between each pair of discrete
particles:

Dh = −kd
Nh
∑

l=1

[

(

V l − V h

)

·
ξh,l + ηh,l

∥ξh,l + ηh,l∥

]

Γh,l∆Vl , (3.41)

width kd the internal dumping coefficient in [N s/m7]. This additional term is a
self-equilibrating damping force which acts as a stabilizing numerical factor by
suppressing the high-frequency modes of the sub-horizon motion of the discrete
particles, which are related to acoustics and wave propagation that represents
a disturbing phenomenon that afflicts the numerical stability of the method.
Further explaining of the computation of this damping force is provided in the
references [53, 28].
It can be demonstrated that the two fundamental conditions so that the dis-
crete peridynamic model converge to the classical elasticity solution are delta-
convergence (δ → 0) and m-convergence (m→ 0) [18].

3.3.7 Definition of the algorithm for interface detection
and tracking

As it was reported before, a discretized peridyanamic solid is represented as
a set of finite-size, cubic and equally-spaced material particles, each identified
by a computational node located on its geometrical centroid. For reproducing
the deformation and motion of the solid body is extremely important to detect
the material particles located on the solid surfaces where the external forces,
divided in fluid-dynamic and solid-solid contact forces, act.
For defining and tracking the interfaces that separate a solid object from the
sorrounding space, it is used an algorithm, developed by Dalla Barba, which
employs a set of Lagrangian markers, that form a specific subset of material

32



particles, distributed on the solid surfaces that move solidly with the latter.
Thanks to this algorithm the interfaces are automatically tracked by evolving
the Lagrangian governing equations of peridynamics (3.37)-(3.38)-(3.39) and it
is simple to detect new interfaces by extending the material particles used as
interface markers. The basic idea of the interface detection and tracking crite-
ria consists of assuming that a material particle is located on interface if exist
a region of space with a certain dimension where particles that interact with
considered one are not present. In practice for each discrete particle, X0,h,
is defined a circular region of space, divided in Ns = 8 sectors with azimutal
extensions ∆σ = 2π/8, with radius Rc = δ, centered on the actual position of
the particle centroid, Xh.
Since the region of space considered is a sphere of radius δ centered at X0,h, all
the discrete particles enclosed in the region considered, are part of the neigh-
borhood of X0,h and each one is associated to one and only one of the sectors
previously defined.
For each sector, i, it is defined a mean relative distance, ravg,i, for which the
bond ξh,l that connects the central node X0,h with the others enclosed in con-
sidered sphere region X0,l, has been deactivated (λh,l = 0) and it is computed
as:

r̄h,i =

∑Ni

l=1 ∥X l −Xh∥(1− λh,l)
∑Ni

l=1(1− λh,l)
(3.42)

with Xh and X l the Lagrangian coordinates of the particle centroids in de-
formed configuration at time t ≥ 0, Ni the number of discrete particles which
are part of the considered sector. The node X0,h is considered as part of the
interface if there are not discrete particles belong to at least Nv = 2 of its arbi-
trary consecutive sectors and, for these, all the bond ξh,l must be broken and
their main relative distance r̄h,i must be greater than a prescribed threshold
value r̄thr, which in present work is equal to δ. Therefore, a new interface is
detected only if the distance between solid parts is greater than the horizon,
so δ represents both the characteristic length-scale of the material and the size
of the smallest detectable interface. The figure below represents the identifica-
tion of a material particle for two-dimensional case by using the algorithm just
presented:
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Figure 3.10: Two-dimensional schematic representation of the interface detec-
tion algorithm with Ns = 8, Nv = 2 and ravg,t = 2∆s. (a) Representation of
a material particle located into the solid interior. (b) Material particle located
on the interface according to the prescribed criterion. Figure taken from [40].

3.3.8 Correction of peridynamic surface effect: volume-
method

In a bond-based peridynamic model, the basic parameter that defines the value
of pairwise force density, which represents the strenght of the interaction be-
tween two arbitrary material particles, is the bond micro-modulus c0, but its
expression, given by equation (3.21) is derived by assuming that each material
point is located into the bulk of a solid and so it has a complete spherical neigh-
borhood.
Nonetheless, as it is specified in the section 3.3.7, a material point located on the
interface of the solid body doesn’t have full spherical neighborhood. The missing
family does not contribute to the overall deformation energy of the body and
so, when this is loaded and stretched, the deformation energy density near the
solid boundaries is lower than the bulk. The main consequence related to this
phenomenon is a softening of the material response near the free surfaces as
the local elastic modulus decreases. This effect is known as peridynamic surface
effect or boundary effect.
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Figure 3.11: At the top of the figure is sketched a two-dimensional rectangular
solid domain, B, where the neighborhoods of three different material points,
Xh,Xb and Xc are represented. As it is possible to see Xh is an internal point
because has a full spherical neighborhood, whereas Xc is a interface material
point with a few material particles enclosed in its neighborhood, finally Xb is
an internal point but it is close to the solid boundary and so has a truncated
neighborhood. The bottom part show that material particles with truncated
neighborhood have fewer bonds included in their families than the particles with
full spherical neighborhood, and so they have different peridynamic parameters
from the nominal case, in particular they have a lower value of the bond micro-
modulus c0. Figure taken from [42]

For mitigating the surface effect [49], in the present manuscript, the volume
method is employed and its description in a discrete form is provided in the
following.
The basic idea is that of counteracting the softening of the material near the
solid boundaries, due to the incomplete families, by employing a multiplication
factor αh,l in the evaluation of pairwise force density acting between each pair
of discrete particles.
Let’s consider a generic material particle, X0,h, this multiplication factor stiffens
each bond ξh,l of the latter and it is computed as:

αh,l =
2V0

Vh,l + VH,h
(3.43)

where V0 = 4
3πδ

3 is a volume of full spherical neighborhood, whereas VH,h and
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VH,l are the actual volume of the neighborhood of X0,h and X0,l respectively
which are computed as:

VH,l =

Nh
∑

i=1

Γh,l∆Vl (3.44)

and the expression of Vh,l is obtained by changing the subscripts h with l.
The result is the increasing of the micro-modulus of the bond around material
points near surfaces, so that, under homogeneous deformation, each point has
the same strain energy density as that of inner points.

3.3.9 Computation of tangent, normal and bi-normal in-
terface vectors

In section 3.3.7, it is described the algorithm that is used in the present manuscript
for detection and tracking the solid boundaries. Once interface has been de-
tected, it is possible to compute an estimation of the tangent, normal and
bi-normal vectors. Their knowledge is important for the computation of fluid-
dynamic forces on the solid-fluid interface as it will be reported in the section
3.5.3. The unity normal vector, n̂h, evaluated at Lagrangian position Xh, can
be easily computed considering the volume average of the relative positions,
X l−Xh, of the centroids of the material particles, X0,l, included in the neigh-
borhood of X0,h, for which the bond ξh,l are active, as it is represented by the
following expression:

nh = −
∑Nh

h=1(X l −Xh)λh,lΓh,l∆Vl
∑Nh

h=1 λh,lΓh,l∆Vl
(3.45)

n̂h =
nh

∥nh∥
. (3.46)

Once the normal vector is know, the unity tangent vector is calculated accord-
ingly from the relation n̂h · t̂h = 0. Finally, the bi-normal unity vector is
obtained as b̂h = t̂h × n̂h. As the peridynamic discretization approaches, the
computed approximation of the normal, tangent, bi-normal vectors converge to
their exact counterparts as them-convergence and δ-convergence conditions [18].
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Figure 3.12: Representation of the schematic procedure employed to compute
the unity normal vector to the solid boundaries at Lagrangian position Xh.
Figure taken from [43]

3.3.10 Temporal integration

For the temporal integration of the discrete governing equations of peridynam-
ics full explicit low-storage third order Runge-Kutta time marching scheme is
employed. It is summarized in the following:

do for r = 1,3 ;
do for h = Np;

Xr
h = Xr−1

h +∆ts

(

αrV
r−1
h + βrV

r−2
h − γrV

r−3
h

)

, (3.47)

V r
h = V r−1

h +
∆ts
ρs

(

αrPRHSr−1
h + βrPRHSr−2

h − γrPRHSr−3
h

)

, (3.48)

end do,
end do.

where r is the Runge-Kutta integration step, with r = 0 corresponds to the
time level tn, whereas r = 3 to tn+1. ∆ts is the peridynamic solver time-step
tn+1 − tn; αr, βr, γr are the Runge-Kutta coefficients which are reported in the
table below:
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Runge-Kutta coeffiecients
r-step r = 1 r = 2 r = 3
αr 8/15 5/12 3/4
βr 0 -17/60 -5/12
γr 8/15 2/15 1/3

PRHS is the right-hand side of the equation (3.38) which at step r is
evaluated as:

PRHSr
h =

Nh
∑

l=1

(

trh,l − trl,h
)

Γh,l∆Vl + F r
h + Cr

h + Dr
h , (3.49)

where the difference trh,l−trl,h = fr
h,l is computed using the constitutive relation

for bond-based peridynamics provided in equation (3.36).
As previously reported, the Runge-Kutta time marching scheme is an explicit
method and so it propagates the solutions from the instant tn to instant tn+1,
without any equilibrium being verified. This type of methods allow to increase
the computational velocity but they need that the time-step employed is lower
than a threshold value, so that the stability of the method is maintained. The
maximum possible time-step, named CFLmax (from Courant-Friedrichs-Lewy
conditions) is provided below:

∆tmax =

(

∥ξ∥min

)

(

ck
)

max

(3.50)

where
(

∥ξ∥min

)

is the minimum bond length, that in the present case is equal to

∆s,
(

ck
)

max
is the maximum speed at which information propagates in the ma-

terial and it corresponds to the sound speed in the material which is computed
as:

(

ck
)

max
=

√

E

ρ
(3.51)

To increase the certainty that the solution is stable and similar to the reality as
much as possible, it is suggested to use a time-step ∆t = 0.5∆tmax.

3.3.11 Boundary condition of solid domain

In general boundary conditions are not necessary for the solution of the integro-
differential equations of peridynamics. However, boundary conditions can be
imposed by prescribing specific values to the displacement and velocity, at each
time level of a temporal integration scheme, on a ghost layer of material particles
distributed along the boundary of a discrete peridynamic solid body. To be sure
that the imposed conditions are sufficiently reflected on the actual material
region the extent of the ghost layer is set to the horizon δ.

38



Figure 3.13: Schematics of the ghost-layer of material particles employed to
impose boundary conditions on the boundaries of the solid domain. Figure
taken from [40]

3.4 The fluid phase: Navier-Stokes equations

Fluid motion is described by a set of differential equations that are called Navier-
Stokes equations. These relations mathematically express the conservation of
mass and momentum for a viscous fluid that evolves in time and space; usually,
they can be completed by an equation of state (energy balance equation) which
links pressure, temperature and density together. They are expressed as:

∂ρ

∂t
= −∂ρuj

∂xj
(3.52)

∂ρui
∂t

= − ∂

∂xj

(

ρuiuj + pδij
)

+
∂σij
∂xj

(3.53)

∂ρE

∂t
= − ∂

∂xj

(

(ρE + p)uj
)

+
∂

∂xj

(

λ
∂T

∂xj

)

+
∂(σijuij)

∂xj
(3.54)

where ρ indicates the fluid density, p the hydrodynamic pressure, T the temper-
ature, u3i=1 the three velocity components, E = e + ek the total energy, e the
internal energy and ek = 1/2ukuk the kinetic energy. µ is the dynamic viscosity
of the fluid, λ the diffusivity and finally σij the viscous stress tensor computed
as:

σij = µ

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂us
∂xs

)

(3.55)

The set of (3.52, 3.53, 3.54) consist of 5 equations in total and 7 variables;
for this reason, they must be coupled with a constitutive model for both the
fluid (ρ = ρ(p, T )) and the internal energy (e = e(p, T )). The equations just
presented are valid for compressible fluids, but in the present work the fluis is
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considered as incompressible. For this type of fluid ρ, µ and λ can be considered
constant and the Navier-Stokes equations are simplified in the following way:

∂uj
∂xj

= 0 (3.56)

∂ui
∂t

= −uj
∂ui
∂xj

− ∂pδij
∂xj

+
µ

ρ

∂2ui
∂xixj

(3.57)

∂T

∂t
+ ui

∂T

∂xj
= λ

∂2T

∂xixj
(3.58)

As it is possible to see from the equations (3.56, 3.57, 3.58) the mass e momen-
tum equations for a incompressible fluid form a self-consistent system which
does not require the energy balance equation to be solved. These last equations
are usually presented in their non-dimensional form which are obtained from
Buckingham theorem by implementing the Reynolds number :

∂u′j
∂x′j

= 0 (3.59)

∂u′j
∂t

= −u′j
∂u′i
∂x′j

− ∂p′δij
∂x′j

+
1

Re

∂2u′i
∂x′ix

′

j

(3.60)

where the superscript (‘) indicates non-dimensional quantities. From equation
(3.60) it can be easily seen that the convective-transport term is non-linear;
for this reason, any convective flow is characterized by the non-linearity effect
contained in the momentum equation.

As it was reported at the beginning, in the present thesis a novel numeri-
cal method is employed to address three-dimensional FSI problems with flow-
induced fracturing of solids, where the physics of fluid flows is fully resolved.
The incompressible formulation of the Navier-Stokes equations is used to re-
produce the dynamics of the fluid phase in the frame of the three-dimensional
Direct Numerical Simulation (DNS) of the incompressible Navier-Stokes equa-
tions. The latter relies on a well-established numerical framework that allows
for accurate and high-resolution simulations, where all the spatial and temporal
scales of the flow are directly resolved from first principles on a computational
grid, e.g. without the need of a turbulence model.

3.4.1 Direct numerical simulation (DNS)

The most intuitive approach for solving Navier-Stokes equations consists of dis-
cretizing the fluid domain and directly solve equations (??) without introducing
any turbulence approximation to simplify the computing process. This tech-
nique is called Direct Numerical Simulation (DNS), as fluid equations are solved
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directly [9], unlike the turbulence-models based techniques, and the results ob-
tained represent an accurate and detailed reproduction of the flow under exam-
ination such that the simulation has the same value of a practical experiment.
It is, for this reason, the most fundamental and precise simulation strategy, but
since the considered equations enclose all the physics of the turbulent flows, it
requires a truly dense computational grid both from spatial and temporal point
of views, therefore the computational cost is very high.
Considering a generic turbulent flow, the introduction of kinetic energy takes
place on space-scale comparable to the dimension of the body that generates
the turbulence, than the transfer of this kinetic energy occurs from the large-
dimension eddies to the smallest eddies where the energy is dissipated into heat.
The dimension of dissipative scale, usually identified as the Kolmogorov’s scale,
represents the fundamental dimension of eddy formation and so the cell spacing
of the mesh employed must be comparable to this dimension to correctly resolve
the fluid motion and represent turbulence structures [46].
From Kolmogorov’s theory (1941), we can evaluate the kinetic energy dissipa-
tion rate ϵ as:

ϵ ∝ U3

L
(3.61)

where U is the velocity scale of the flow and L is the scale length for larger
turbulent structures. From ϵ we can denote Kolmogorov’s scale η as:

η ∝ ν3

ϵ
1

4

(3.62)

with ν the kinematic viscosity of the fluid.
The number of points for each direction is so Nxi

= Lxi
/∆xi ∝ L/η with

i = 1, 2, 3. An estimate of the total number of nodes to properly solve the fluid
domain, remembering that the Reynolds number is Re = UL/ν is:

N ∝ N3
xi

∝ L

η
=

L
(

ν3/ϵ
)

1

4

∝
(

L4U3

Lν3

)
1

4

= Re
9

4 (3.63)

From this relation it is clear that the number of grid nodes necessary for correctly
simulating a fluid flow dynamic grows fast with the Reynolds number.
Additionally, if we introduce also the Kolmogorov’s velocity scale as uη ∝ (νϵ)1/4

and the corresponding time scale τη ∝ η/uη ∝ (ν/ϵ)1/2 the total computational
time for a generic fluid domain is obtained:

Ttot ∝ N · U
L

∝ Re11/4 ≈ Re3 (3.64)

that remarks the negative effect of high Reynolds number on computational
cost of Direct Numerical Simulation. For this reason, as in the present case, the
DNS technique is used for low Reynolds numbers.
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Figure 3.14: Vortical structure reproduced by DNS technique of a fluid chan-
nel flow with Reτ = 600 (vortical structures are colored with values of local
streamwise velocity, reddish indicates high values, greenish indicates low val-
ues). Figure taken from [29]

3.4.2 Pressure-correction method

As it is possible to see from the incompressible formulation of the Navier-Stokes
equations (??, the hydrodynamic pressure is a function of the space and time
without an explicit link with the others terms that appear in the equations.
Anyway, if for the compressible case the expression for the pressure is given
from state equation (p/ρ = RT , for example) for incompressible case there
is no explicit link between pressure and the other variables appearing in the
equations. In other words, it is not trivial to express the pressure as a function of
the velocity components and vice-versa. To make the link between pressure and
velocity evident a manipulation of the incompressible Navier-Stokes momentum
balance equation is necessary [47] from which the Poisson equation is obtained:

∂2p

∂xixj
= − ∂

∂xi

(

∂uiuj
∂xj

)

(3.65)

This equation expresses the equality between the laplacian of the pressure field
to the divergence of the non-linear component of the convective term. Therefore
the pressure is the real constraint that the mass equation exerts on the equations
to ensure that at any time step the velocity field is solenoidal. Based on these
considerations, the pressure-correction method is employed to solve the Navier-
Stokes equations. A summary description is reported below.
As long as the pressure field influences instantaneously the velocity field due
to the enforcement of mass conservation throughout the fluid domain, it is
necessary for them to be solved together. This is impossible from a numerical
point of view, as this coupling effect causes the algorithm to be implicit. Pressure
correction method provides a solution to this issue, dividing the integrational
step into two sub-steps following a predictor-corrector approach. The first sub-
step assumes a first-attempt non-zero divergence velocity field u∗ on the basis
of the current velocity and pressure field; a predicted pressure field is then
computed via the Poisson’s equation (3.65). The second sub-step then proceeds
to correct the velocity field via the predicted pressure field p̂; the pressure p is
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also updated consequently [4]. The method employed is summarized with the
following steps:

1. Starting from the velocity and pressure field un and pn, the predicted
velocity field is computed as:

u∗ = un +∆t(Cn +Dn −∇pn) (3.66)

where Cn and Dn are the convective and diffusive term in the integrated
equation.

2. Pressure field is then predicted in the following way:

∇2p̂ =
∇u∗
∆t

(3.67)

3. finally, the velocity and pressure field is corrected un+1 and pn+1 with:

un+1 = u∗ +∆t · ∇p̂; (3.68)

pn+1 = pn + p̂. (3.69)

3.4.3 Spatial discretization and temporal integration

The computational domain for the fluid phase is a rectangular box region of
dimensions Lx × Ly × Lz along the x, y and z directions, respectively. For
its discretization a fixed and structured computational Eulerian grid is used,
with Nx ×Ny ×Nz nodes along the same directions. Additionally, it is built as
uniform and equally spaced along the three directions, with ∆f = ∆x = ∆y =
∆z the grid size, that makes easier the prescription of boundary conditions
from the Immersed Boundary Method (IBM) which is discussed in section 3.5.1.
To prevent issues like odd-even decoupling between pressure and velocity the
grid follows a staggered layout where the scalar quantities (i.e. pressure) being
evaluated at the center of the grid cells, while vectorial ones on the cell faces (i.e.
velocity) [16]. For the discretization of the Navier-Stokes equations (3.59)-(3.60)
on the computational grid, second-order accurate finite difference schemes are
employed and, to advance the solution in time, as the peridynamic temporal
integration, a fully explicit Runge-Kutta time marching scheme is adopted [35].
To impose the boundary conditions on limit boundaries of the rectangular box
domain, a layer of ghost nodes for both cell-centered and face-centered quantities
is defined. The figure below represents the computational domain and a two-
dimensional case reproduction of the Cartesian grid adopted.
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Figure 3.15: Left panel: sketch of the computational domain of the fluid phase.
Right panel: two-dimensional representation of the staggered Cartesian grid
with scalar quantities evaluated at the center of the grid cells, while vectorial
ones on the cell faces. In light gray is represented the ghost layer adopted to
impose boundary conditions on limit boundaries domain. Figure taken from
[41]

The time marching scheme, employed to advance the solution in time, is
summarized in the following:

do for r = 1, 3,

u∗ = ur−1 +
∆t

ρf

(

αrRHSf
r−1 + βrRHSf

r−2 − γr∇pr−3/2
)

, (3.70)

∇2p̂ =
ρf
γr∆t

∇ · u∗ , (3.71)

ur = u∗ − γr∆t

ρf
∇p̂ , (3.72)

pr−1/2 = pr−3/2 + p̂ , (3.73)

end do,

where the ∆t is the time step, u∗ is a non-solenoidal approximation of the
velocity field, in according to the pressure-correction method summarized in
section 3.4.2, denoted first prediction velocity, whereas the coefficients αr, βr
and γr are the Runge-Kutta coefficients; the superscript r refers to the sub-
steps of the time marching scheme, with r = 0 that corresponds to tn and r = 3
to tn+1. Finally, the right-hand side term, RHSf , evaluated at the sub-step r
is computed as:

RHSf
r = −ρf∇ ·

(

urur
)

+ µf∇2ur. (3.74)
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3.5 Immersed Boundary Method IBM

The Immersed boundary Method (IBM) is a popular technique which allows to
simulate bi-phase fluids or, in general, the fluid motion around elements with
complex-geometry. The method was originally proposed by Peskin (1972) to
describe anatomical phenomena regarding cardiac mechanics related to blood
flow. It was then developed and employed to solve the rising complexity of
most industrial applications related to the presence of deformable solid bodies
with complex geometry immersed in a fluid flow. In fact, as it is know from
fluid-dynamic, when a solid object is immersed in a fluid domain, no-slip and
no-penetration boundary conditions have to be prescribed on the solid-fluid
interface and this, from a numerical point of view, it is not straightforward.
Originally, in situations were FSI problems were involved the so-called Arbitrary
Lagrangian-Eulerian (ALE) [3] method was employed. This method directly
imposes specific values for scalar and vector quantities on the grid nodes located
on solid-fluid interface, by using a body fitted grid that is continually updated
at every time step such that it conforms to the shape of the solid-surfaces at
each discrete time level. However, the needs to re-grid and compute all the
fluid-dynamic fields at every time step, especially in the case of DNS analysis,
make the computational cost of this kind of simulations quite large such as to
make ALE method impracticable for the most complex cases.
On the other hand, IBM [2, 11, 12] does not require the computational grid
for the fluid phase to conform to the shape of the immersed solids, so it is
used a non-body conformal Eulerian mesh which covers all the fluid domain,
without considering the surface of the solid body. In this case, it still exists
a Lagrangian surface grid, as some nodes are positioned on the interface of
the body, so the solid boundaries cut through the grid elements, preventing
traditional incorporation of the boundary conditions.
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Figure 3.16: Generic solid body immersed in a fluid flow (a). The body is
defined by its occupied volume Ωs and surface Γb. Its characteristic length is L
and δ is the thickness of the boundary layer. (b) Schematic of body immersed in
a non-body conformal Eulerian grid employed in the framework of IBM where
Ωs denotes solid-domain, whereas Ωf the fluid-domain . Figure taken from [12].

Due to this non-conformal nature of the mesh, no-slip and no-penetration
wall conditions on the fluid-solid interfaces are prescribed in a indirect manner
by forcing the flow to move with the same local-velocity of the solid (zero relative
velocity) in its immediate proximity. This is possible by applying an additional
force per unit mass q to the right-hand side of the momentum equation of the
fluid phase, obtaining the expression below:

ρf

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µf∇2u+ ρfq (3.75)

It is worth remarking that the use of non-conformal and stationary structural
meshes features an important downside that is the impossibility to control the
grid resolution in the proximity of the body and hence, so that the DNS analysis
can be performed, the grid employed must be very dense throughout all the fluid
domain. Nevertheless, the computational cost is not too high, since the need of
re-mesh at each discrete time level is removed and the fluid equations are not
solved for the nodes inside the solid body.
In the present case, the Immersed Boundary Method (IBM) [22] is employed
to impose no-slip and no-penetration boundary conditions on the solid-fluid
interfaces, that are summarized in zero-relative velocity condition. Hence the
time marching scheme described above is modified by adding the contribution of
the force q to the prediction velocity. This additional term is computed, through
interpolation and spreading operations based on regularized Dirac delta function
δ∆, between fluid nodes of Cartesian-Eulerian grid and peridynamic nodes of
Lagrangian interface grid, according to an iterative scheme, named multidirect
forcing. Then it is added at first prediction velocity, computed by equation
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(3.66), obtaining the second prediction velocity û which is used in the Poisson
equation to calculate p̂. The Dirac delta function andmultidirect forcing method
are discussed in the next sections.

3.5.1 Regularized Dirac Delta Function

A quantity which is expressed in the Eulerian reference system can be expressed
in the Lagrangian one through an interpolation operation, whereas the inverse
procedure is given by a spreading operation. In the present case; since there is
the necessity to interpolate the fluid velocity in the Lagrangian interface grid
for the computation of the forcing term used to impose boundary condition, and
then it must be spreaded to the Eulerian grid so it can be added in momentum
equation of the fluid; these interpolation and spreading operations are based on
a regularized Dirac delta function δ∆, defining according to Roma et al. [6]:

δ∆(x− x0) = δ′∆(x− x0)δ
′

∆(y − y0)δ
′

∆(z − z0), (3.76)

δ′∆(s− s0) =
1

∆f
Φ

(

s− s0
∆f

)

, (3.77)

Φ(t) =







































1

3

(

1 +
√

1− 3t2
)

, t ≤ 0.5,

1

6

(

5− 3|t| −
√

1− 3(1− |t|)2
)

, 0.5 < |t| < 1.5,

0, |t| > 1.5

(3.78)

Figure 3.17: (a) Spreading of forcing term, indicated as Fl from Lagrangian
boundary point Xl to surrounding Eulerian fluid nodes (shaded region signifies
the extent of the force distribution). (b) Interpolation/distribution functions
employed in various studies. Figure taken from [12].

The function Φ is defined like this because it has to fulfil some properties.
In particular:
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1. Φ(t) is a continuous function for all the real numbers t;

2. Φ(t) = 0 for |t| > 1.5;

3.
∑

i

ϕ(t− i) = 1 ∀t;

4.
∑

i

(t− i)ϕ(t− i) = 1 ∀t;

5.
∑

i

{ϕ(t− i)}2 =
1

2
∀t

with −∞ < t < +∞.
Through the property (1) it is guaranteed that there are not discontinuities
in interpolation and spreading operations; the property (2) guarantees that
the influenced region of the function δ∆ is limited (in this case is set to three
Eulerian cells); the properties (3) and (4) guarantee together the conservation
of angular momentum; the property (5) arises from the consideration that the
forces acting on a interface material point affect the motion of that point and
so, the property impose that the influence is always the same, independently
from the point position relative to the mesh.
However, the use of a discrete kernel for interpolation and spreading operations
involves the replacement of the sharp solid-fluid interfaces in the continuum
case by a thin porous shell of ”solidified fluid” in their discrete representation.
The latter is centered on the nominal fluid-solid interfaces and has a spatial
extension of the order of the support of the specific kernel employed, which in
the present case is equal to 3∆f . Consequently the dimensions of the immersed
solid objects result bigger because they are projected outwards of a length of
3∆f/2 relatively to their nominal dimension. This effect influences the overall-
fluid dynamic forces acting on the immersed bodies and so it must be mitigate.
To resolve this problem, as it is suggested by Breugem [22], it is employed a
retraction distance dr = 0.5∆f that involves an inward retraction of the solid
surfaces so the estimation of the overall fluid-forces acting on the immersed
body are more accurate.
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Figure 3.18: Sketch of the actual solid-fluid interface and spurious porous shell
of ”solidified” fluid in the proximity of the interface due to the use of discrete
kernel for interpolation and spreading operations from regularized Dirac delta
function. Figure taken from [22].

3.5.2 Multidirect Forcing method

Since the target of Immersed boundary method (IBM) is to impose no-slip and
no-penetration wall conditions on solid-fluid interfaces, the idea is to impose an
additional forcing term q to the discrete momentum equation of the fluid so
that velocity of the fluid in correspondence to the solid boundaries, obtained by
interpolation procedures, is equal, within a certain tolerance, to the Lagrangian
velocity of material particles located on the interface. Hence, the use of a reg-
ularized Dirac delta function for spreading operations involves the distribution
of the forcing term around the interface of the solid body. In figure below the
circles represent the action radius of the delta function for the two Lagrangian
interface points denoted by triangles.

49



Figure 3.19: Illustration of the diffuse distribution of the IBM force around
the interface of a particle. Lagrangian grid points are indicated with dots;
the arrows indicate the force distribution over the Eulerian nodes. The circles
identify the Dirac delta’s range applied to the Lagrangian points designated
by triangles. With dotted line is represented the overlapping zone where more
Eulerian points force, at the same time, different Lagrangian points. Figure
taken from [22].

Note that the circles overlap in some zones, indicating that Eulerian points
in the overlapping zone force both Lagrangian points at the same time. Con-
sequently, the fluid-velocity that has to be imposed in correspondence of the
considered Lagrangian point may not be well imposed by the additional forc-
ing term. To make the calculation of the forcing term as accurate as possible,
an iterative procedure, named multidirect forcing [22] is employed. Therefore,
considering the configuration of a solid object immersed in the computational
domain evaluated at a generic time level tn, the force q and so the second predic-
tion velocity û are computed after the solution of equation (3.70) and before the
solution of equation (3.71) according to the multidirect forcing scheme which is
reported below:
do for s = 1, Ns,
do for h = 1, Np,

Û
s−1

h =

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

ûs−1
i,j,kδ∆

(

xi,j,k −Xn
h

)

∆3
f , (3.79)

Q
r−1/2,s
h = Q

r−1/2,s−1
h +

V n
h − Û

s−1

h

∆t
, (3.80)

end do,
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do for [i, j, k] = [1, 1, 1], [Nx, Ny, Nz],

q
r−1/2,s
i,j,k =

Np
∑

h=1

Q
q−1/2,s
h δ∆

(

xi,j,k −Xn
h

)

∆Vh, (3.81)

ûs
i,j,k = u∗

i,j,k +∆tq
r−1/2,s
i,j,k , (3.82)

end do,
end do.

where s is the index of iterative scheme, with initial value of û is û0 = u∗;
Û

s

h is the Lagrangian variable obtained by the interpolation of the second pre-
diction velocity of the fluid, ûs, at each Lagrangian coordinate Xn

h located on

solid-fluid interface and evaluated at time level tn; Q
r−1/2,s
h is the Lagrangian

force computed at position Xn
h, obtained from the ratio of the relative velocity

V n
h − Û

s−1

h with the time step of the fluid time marching scheme, where V n
h is

the Lagrangian velocity at time level tn of the material particles located on the
interface. The Eulerian expression of the forcing term qr−1/2,s is obtained by

the spreading on the Eulerian grid of the Lagrangian quantity Q
r−1/2,s
h and fi-

nally the second prediction velocity is re-computed on each node of the Eulerian
grid by updating the prediction velocity, u∗. Ns is the total number of force
iteration, that it was demonstrated by Breugem et al. [22] that the maximum
number of iterations can be arbitrarily chosen, but a low value is recommended
to keep the calculation time down. Specifically, it has been proven that setting
Ns = 2 it is possible to obtain good results, namely a second order of accu-
racy about the velocity of the fluid in proximity of the solid boundaries, with a
reasonable computational cost of the procedure [22].

3.5.3 Computation of hydrodynamic forces: normal probe
method

In the frame of immersed deformable solid bodies in a fluid-domain it is neces-
sary to compute the stress distribution on the solid surfaces, due to the inter-
action with the fluid-phase, for predicting the dynamics of deformable solids.
In the present manuscript, this is realized by using the so-called normal probe
method, where the back-reaction of the fluid on the solid is estimated via the
evaluation of the hydrodynamic pressure and viscous stresses in the proximity of
the fluid-solid interfaces, considering a linear variation for the pressure gradient
and velocity field in the normal direction [32]. This hypothesis is satisfied if the
grid spacing is small enough to fully resolve the inner boundary layer of the in-
terfaces, that is already a requirement of direct numerical simulations addressed
in the present work. To simplify the problem, it has been considered the case of
laminar boundary layer, which covers a wide range of applications. In such that
case the flow can be approximated by the boundary layer equations in a local
orthogonal curvilinear coordinate system (ξ− η− ζ) according to the directions
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defined by interface unity vectors tangent, normal and bi-normal, respectively
(section 3.3.7 and 3.3.9). To better understand the hydrodynamic stress model
employed according to this last assumption the reader refers to [32]. Once the
local orthogonal frame of reference is defined for each interfacial Lagrangian
position, Xh, a probe of length ∆l = 2∆f is sent along the normal vector [39]
with e and m denote the probe tip and root, respectively. As it is shown for
the two-dimensional case in the figure below, a 2 × 2 × 2 stencil with spacing
∆f centered on e is defined.

Figure 3.20: Two-dimensional scheme of the local curvilinear coordinate system
and the stencil employed for the computation of the pressure and velocity gra-
dient at the probe tip, e.

The use of the stencil permits to better approximate the value of the pressure
and velocity field at the probe tip e and consequence on the probe root m and
then in the solid-fluid interface. The pressure and velocity are computed on each
point of the stencil via the regularized Dirac delta function defined by equation
(3.78):

p|ea,b
=

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

pi,j,kδ∆
(

xi,j,k −Xea,b

)

∆3
f , (3.83)

u|ea,b
=

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

ui,j,kδ∆
(

xi,j,k −Xea,b

)

∆3
f , (3.84)

where ea,b is a generic point of the stencil. Then, the pressure and velocity gra-
dient calculation ∇p|eand∇u|e is performed by central finite difference schemes
using the point of the considered stencil. At this step, considering the linear
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variation of the pressure gradient in the normal direction, the pressure is com-
puted at the probe root m according to Wang et al. [39]:

p|m = p|e +
1

2

[

∂p

∂η

∣

∣

∣

∣

∣

m

+
∂p

∂η

∣

∣

∣

∣

∣

e

]

∆l , (3.85)

p|e =
Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

pi,j,kδ∆
(

xi,j,k −Xea,b

)

∆3
f , (3.86)

∂p

∂η

∣

∣

∣

∣

∣

m

≈ Du

Dt

∣

∣

∣

∣

∣

m

· n̂h ≃ dUh

dt
· n̂h (3.87)

∂p

∂η

∣

∣

∣

∣

∣

e

= ∇p|e · n̂h . (3.88)

whereas, always from the laminar boundary layer assumption which allows to
consider a linear variation of velocity field along the normal direction near the
solid-fluid interface, the viscous shear stress is evaluated at the probe root, m,
based on the velocity gradients computed at the probe tip, e:

∂uξ
∂η

∣

∣

∣

∣

m

= ∇u|e · t̂ · n̂ , (3.89)

∂uη
∂η

∣

∣

∣

∣

m

= ∇u|e · n̂ · n̂ , (3.90)

∂uζ
∂η

∣

∣

∣

∣

m

= ∇u|e · b̂ · n̂ , (3.91)

which are employed to compute the shear and normal stresses at m:

τξ = µ
∂uξ
∂η

∣

∣

∣

∣

m

, (3.92)

τη = µ
∂uη
∂η

∣

∣

∣

∣

m

− p|m , (3.93)

τζ = µ
∂uζ
∂η

∣

∣

∣

∣

m

. (3.94)

Then, with an appropriate coordinate transformation, the stress components
are expressed in the global frame of reference (x-y-z ):





τx
τy
τz



 =





t̂x n̂x b̂x
t̂y n̂y b̂y
t̂z n̂z b̂z









τξ
τη
τζ



 . (3.95)
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Once the stress distribution on solid-fluid interface are known, it is finally pos-
sible to compute the force per unit volume acting on each interface material
particle Xh as:

F h = −τh
Ah

∆3
s

, (3.96)

with Ah the face area of the discrete interfacial material particles Xh and it
is computed at the beginning of the simulation as the ratio of the immersed
solid surfaces to the total number of the interfacial material particles. When
a formation of crack occurs, new interfacial material particles are generated

and for these the area Ah is set to Ah = ∆
2/3
s , with ∆s the grid spacing.

As it was reported in section 3.3.7 the interface detection algorithm considers
the generation of new interface only if the gap between solid surfaces is larger
than the horizon δ, by setting r̄thr = δ, so if the gap is closer than δ, to
avoid overloading the code, the hydrodynamic forces are not computed and the
particles are considered as interior one.
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Chapter 4

Numerical Implementation

In this chapter it is presented the implementation of the methodologies discussed
in the previous chapter. The whole code is written in Fortran 90, compiled in
double precision, and it is composed of three different modules: a fluid solver, a
peridynamic solver and a module that manages the synchronization and coupling
of the equations and the momentum exchange across the interface. The fluid
solver has been developed on the open source solver CaNS by Costa [45], whereas
the peridynamic solver and coupling module have been implemented by Prof.
Dalla Barba. All the solvers have been validated by Prof. Dalla Barba. All
the code is compiled in parallel through the portable Message Passing Interface
(MPI) library.

4.1 Fluid Solver

The temporal integration is provided from a fully-explicit third-order Runge
Kutta time-marching scheme, which advances the Navier-Stokes equations from
the discrete time level tn to tn+1 with ∆tf the size of time step, where as the spa-
tial integration is provided by a second-order accurate finite difference scheme,
as described in section 3.4.3.
Arbitrary periodic, Neumann or Dirichlet boundary conditions can be applied to
the external boundary of the computational domain by means of a ghost nodes,
as reported in section 3.4.3. In this way, for the staggered grid that is used in the
problem, the Dirichlet boundary conditions are easily applied as in the following:

for the velocity:

ux(i,j,k) =
ux(i+1/2,j,k) + ux(i−1/2,j,k)

2
= 0 =⇒ ux(i+1/2,j,k) = −ux(i−1/2,j,k) ,

(4.1)
for the pressure:

p(i,j,k) = 0 imposed that on the interested nodes, (4.2)
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whereas Neumann boundary conditions:

for the velocity:

∂ux
∂x

=
ux(i+1/2,j,k) − ux(i−1/2,j,k)

∆x
= 0 =⇒ ux(i+1/2,j,k) = ux(i−1/2,j,k) , (4.3)

for the pressure:

∂p

∂x
=
p(i,j,k) − p(i−1,j,k)

∆x
= 0 =⇒ p(i,j,k) = p(i−1,j,k) . (4.4)

The initial conditions are imposed on the velocity field by putting directly the
velocity values to the interested nodes, for example u(i,j,k) = c.
No-slip and no-penetration boundary conditions on the immersed fluid-solid
interfaces are been imposed by the direct-forcing immersed boundary scheme,
described in section 3.5.2, that is called directly inside the Navier-Stokes solver.
Then the forces per unit volume acting on the immersed solids are computed
according to the equations (3.96). The figure 4.1 reports the flowchart of the
principal steps of the fluid solver, whereas the figure 4.2 reports the implemen-
tation of the multi-direct forcing boundary method (IBM) into the fluid solver:
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Figure 4.1: flowchart of the fluid solver
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Figure 4.2: flowchart of the IBM module

4.2 Peridynamic solver

The solid bodies are discretized in their reference configurations (t = 0) in a set of
cubic material particles with side equal to the Eulerian grid spacing, ∆s = ∆f .
The temporal integration, like for the Navier-Stokes solver, is provided from a
fully-explicit third-order Runge Kutta time marching scheme which advances
the governing equations of peridynamics from time level tn to tn+1, with ∆tf
the time step. All the discrete peridynamic quantities are computed as specified
above. The flowchart of the peridynamic solver is reported in figure 4.3:
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Figure 4.3: flowchart of peridynamic solver

4.3 Coupling of fluid solver and peridynamic solver

The code performs separately the two blocks relating to peridynamics and
Navier-Stokes equations. These blocks are fully independent and exchange
which each other the info of the applied loads on fluid-solid interfaces and the
instant positions of the Lagrangian points of the solid bodies. The figure 4.4
reports the flowchart of the entire code. Thanks to this diagram it is possible
to better understand how the two blocks dialogue with each other.
The scheme shows how the fluid-dynamic forces computed by fluid solver, which
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are function of the fluid velocity field and of the instant position and velocity
of the Lagrangian points, are given as input for the peridynamic solver. At the
same way, it is highlighted how the Lagrangian point positions are computed
just before solving the fluid-dynamic module. It is worth remarking that the
maximum stable time step for the fluid is of the order of ∆tf ∝ ∆f/Uf , whereas
that of the solid is ∆ts ∝ ∆s/Us, with Uf the bulk velocity of the fluid and

Us =
√

E/ρs the characteristic velocity-scale of the solid. In general, being
∆f = ∆s and Us >> Uf , the stability condition for the explicit peridynamic
time-marching scheme is more severe than that for the stability of the fluid one,
so the time step used by peridynamic solver is ∆ts = R∆tf with R a real num-
ber, R ≤ 1. The factor R = ∆ts/∆tf ∝ Uf/Us is used to ensure the numerical
stability. Being the characteristic time scale of the solid much lower than that of
the fluid, the number of iterations required by the peridynamic time-marching
scheme to achieve synchronization with the fluid one can be quite large, and
increase with the decrease of R. Furthermore, the fully explicit coupling effects
the temporal accuracy as well as the numerical stability of the scheme. In par-
ticular, it poses a lower limit for the solid-fluid density ratio, ρs/ρf > 1 , due
to an added-mass effect, such that stability issues do not arise.
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Figure 4.4: flowchart of the entire code.

Clarified how the code works, it is reported in the following a detailed rep-
resentation of its the main steps:
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do for n = 1, Nt

tn+1 = tn +∆tf

do for r = 1, 3

u∗ = ur−1 +
∆tf
ρf

(

αrFRHSr−1
f + βrFRHSr−2

f − γr∇pr−3/2
)

û
0 = u∗

do for s = 1, Ns

do for h = 1, Np

Û
s−1

h =

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

ûs−1
i,j,kδ∆

(

xi,j,k −Xn
h

)

∆3
f

Q
r−1/2,s
h = Q

r−1/2,s−1
h +

V n
h − Û

s−1

h

∆t

end do

do for [i, j, k] = [1, 1, 1], [Nx, Ny, Nz],

q
r−1/2,s
i,j,k =

Np
∑

h=1

Q
q−1/2,s
h δ∆

(

xi,j,k −Xn
h

)

∆Vh

ûs
i,j,k = u∗

i,j,k +∆tq
r−1/2,s
i,j,k

end do

end do

∇2p̂ =
ρf

γr∆tf
∇ · ûNs

Solving for p̂

ur = û
Ns − γr∆tf

ρf
∇p̂

pr−1/2 = pr−3/2 + p̂

end do

Computing fluid forces on solid: F n
h

Updating solid positions and velocities via algorithm by peridynamic
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solver. The cycle proceeds until synchronization is achieved, ts = tn+1:

do while ts ≤ tn+1

ts = ts +∆ts

do for r = 1, 3

do for h = 1, Np

Xr
h = Xr−1

h +∆ts
(

αrV
r−1
h + βrV

r−2
h − γrV

r−3
h

)

V r
h = V r−1

h +
∆ts
ρs

(

αrPRHSr−1
h + βrPRHSr−2

h − γrPRHSr−3
h

)

Checking status of bonds

end do

end do

end do

Updating fluid-solid interface to time level tn+1
f as described in sec-

tion 3.3.7

end do

4.4 Organization of the code parallel architec-
ture

As previously reported, the fluid domain has been discretized by a uniform and
equally spaced Eulerian grid with nodes fixed in space, whereas the solid one has
been discretized in a finite number of cubic material particles, each identified by
the peridynamic node corresponding to their centroid, which its spatial position
is reported in a Lagrangian frame and changes in time. For this reason, the
definition of the parallel architecture of the code is not straightforward, because
it is necessary to use different strategies for the Eulerian phase and Lagrangian
one to have a uniform distribution of the computational operations as much as
possible among the different MPI processes. Hence, it has been decided to adopt
a space-based decomposition strategy for the Eulerian grid and an index-based
decomposition for the Lagrangian one.
Specifically, the Eulerian domain is divided intoNMPi,x×NMPI,y computational
subdomains along x and y directions respectively and all the computation re-
lated to the space region covered by each subdomain are performed by a single
MPI task, which stores all the related data in its own private memory area.
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The so-called halo cells [35] is used in each subdomain to store a copy of the data
pertaining to the boundary of the adjacent ones, since the use of the second-
order, finite difference schemes for the spatial discretization requires the mutual
communication of the variable stored in the cell-center and face-center of the
grid-cells located on the boundaries of each computational subdomain. The fig-
ure below reports the partitioning of the Eulerian domain:

Figure 4.5: Partitioning of the Eulerian domain into NMPI,x × NMPI,y com-
putational subdomains along the x and y directions, respectively, by using a
two-dimensional, pencil like decomposition. Different colours represent differ-
ent subdomains pertaining to different MPI processes.

On the other hand, the partitioning of the solid phase is obtained by the enu-
meration from 1 to Np of the discrete solid particles, such that each is identified
by an univocal integer ID. The discrete particles are then subdivided, based on
their ID, into computational groups containing the same number of elements
and each of these is assigned to a unique MPI process. Also in this case, in
the memory area of each group is stored the Lagrangian positions and veloci-
ties of the particles located in its neighborhood but stored in a different group.
The figure below reports a index-based decomposition for a generic peridynamic
solid:
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Figure 4.6: Example of the partitioning of the discrete particles into groups,
identified by different colours, each associated with a different MPI processes.
To minimize the amount of data communication, particles close in space are
identified by close integer IDs.

It is worth remarking that the number of current MPI processes used for
the space-based domain decomposition is equal to the number of these used for
the index-based during a simulation. Since a significant amount of communi-
cations between different MPI processes of Eulerian phase and Lagrangian one
are involved for interpolation and spreading operations to prescribe no-slip and
no-penetration boundary conditions on the fluid-solid interfaces (as reported
in the description of multi-direct forcing IBM method in section 3.5.2) and for
calculating the fluid-dynamic forces acting on the solid boundaries (according
to the equation 3.96), it is necessary to adopt an appropriate index-based de-
composition strategy to minimize the number of required data communications.
It has been proved that by numbering with close IDs particles which are closed
in space allows a trade-off between a uniform distribution of the computational
cost on concurrent processes and the number of data communications between
them. Therefore, in the present work, the partitioning of the Lagrangian nodes
is organized so that particles close in space are identified by close integer IDs so
every solid subdomain, for prescribing boundary conditions and for computing
fluid-dynamic forces, is forced to communicate with a less number of Eulerian
computational subdomain and consequently the number of communications is
reduced. It is worth remarking that these communications are restricted to the
interface particles, only.
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Chapter 5

Problem configuration

This document presents the simulation of the interaction between a porous
medium that is invested by a incompressible fluid. This represents a typical
fluid-structure interaction problem and is of interest for several research areas
that involve porous materials and complex geometries. For example, in the field
of aerospace engineering, there are several ablative materials, which have porous
nature, that are use as external coverings for space vectors and satellites, which
disintegrate under the action of fluid dynamic forces, contribute to maintain
the structural element temperatures under prescribed threshold values during
critical situations, for example during re-entry into the atmosphere.

In the present work a three-dimensional DNS of a laminar channel flow with im-
mersed solid porous medium of a linear-elastic and brittle material is presented.
The aim of the study is to reproduce the interaction between fluid phase and
solid one where initiation of cracks, crack-branching and fractures are repro-
duced. The simulations involves both the solid and fluid solvers, as well as the
multi-direct forcing algorithm and the normal probe method used to compute
fluid-dynamic forces acting on the interfaces. Three different simulations which
differs for the critical fracture energy release rate are presented. The target is to
simulate three different cases: the first reproduces the deformation of the solid
without fracture, the second with partial fracture and the third with total frac-
ture. Then, in the next chapter, a comparison between the cases listed above is
reported.

5.1 Configuration of computational domain

The Eulerian computational domain for the channel flow is a rectangular box
extending for Lx×Ly×Lz = L×h×h in the stream-wise, wall-normal, span-wise
direction, respectively, with L = 2 ·Lref and h = 1 ·Lref , where Lref = 0.1 m is
the reference length-scale. The discretization of the Eulerian domain consists of
a Cartesian and uniform grid of Nx ×Ny ×Nz = 128× 64× 64 nodes along the
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same directions. It results in a grid size ∆f = 1.5635 ·10−3 m. The solid porous
medium is represented using a total of 54662 material particles. The ratio of the
peridynamic horizon and the particle spacing ism = δ/∆s = 3, with δ = 4.6875·
10−3 m and ∆s = ∆f the grid-spacing of Lagrangian frame. The peridynamic
model adopted for the computation is the three-dimensional bond-based model.
The porous medium is fixed to the lower wall of the channel. The constraint
is applied to a ghost layer of solid material by disabling the dispacement along
the three directions on three layer of material particles extending outside the
Eulerian computational domain along the negative y direction. The thickness of
ghost-layer is ∆g = δ. The solid medium has the following dimensions 0.375L×
h × h along the flow, span-wise, wall-normal directions respectively, with the
axial position (i.e. flow direction x) of its bottom, leading corner set to 0.125 ·L
from the inlet. The mechanical properties of the porous medium are set to
E = 108 Pa νs = 1/4, ρs = 3000kg/m3 with E the Young’s modulus, νs the
Poisson ratio, ρs the solid density. The value of the critical fracture energy
release rate of the material G0 is set to 0.05 J/m2 in the first simulation, 0.03
J/m2 in the second and 0.02 J/m2 in the third. The bulk Reynolds number of
the fluid is Reb = Ubh/νf = 10.0, with Ub = 0.1 m/s the bulk, axial velocity of
the flow and νf = 1 · 10−3 m2/s is the kinematic viscosity of the fluid. No-slip
and no-penetration boundary conditions are prescribed to the upper and lower
sides of computational domain. A fully developed Poisseuille inflow is prescribed
at the inlet, whereas a convective outflow condition is imposed at the outlet.
Gravitational acceleration and buoyancy have been neglected. The figures below
report the initial configuration of the porous medium and the configuration of
the computational domain just described.

Figure 5.1: Representation of the initial configuration of the porous medium.
The red axis corresponds to x axis, the yellow one to y and the green one to z.

As it is possible to see from the figure just presented, the simulation repro-
duces a solid medium with convex porosity whith pores of regular shapes and
cavity dimensions that are quite larger than the grid-spacing, hence, since the
DNS of the fluid is performed, it isn’t necessary to use any mathematical model
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to reproduce the dynamic of the flow inside these cavities.

Figure 5.2: 3D render of the adopted computational domain with the final
geometrical configuration. The fluid computational domain is indicated by the
outer black outline. The red axis corresponds to x axis, the yellow one to y and
the green one to z.

Each simulation has been performed in the following way:

1. For the first part of the simulation the fluid velocity is initialized as (0.1
m,0,0) and the fluid solver is run, keeping the solid solver disabled until
a steady condition is established for the fluid flow. This part is ran for
5000 iterations employing as time step ∆tf = 3.3569 · 10−4 s and so is
performed for a time t ∈ [0; 1.6798] s. Due to the low Reynolds number
that has been imposed the result of the initialization phase is a laminar
fluid flow inside the domain.

2. In the second part, the solid solver is enabled, but the bond breakup
is disabled and the coupled simulation is ran for other additional 5000
iterations and damping force is used until a statistically-stationary equi-
librium configuration is achieved with the fluid stresses. The stability
condition for the explicit peridynamic time-marching scheme is more se-
vere than that for the stability of the fluid one, so a constant time step
∆ts = 3.3569 · 10−5 s is used. Hence this second part is performed for a
time t ∈ [1.6785 ; 1.8463] s.

3. Finally the bond breakup is enabled and the simulation is ran for another
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5000 iterations with the same time step of the second part, so for a time
t ∈ [1.8463 ; 2.0142] s.

The present numerical study focuses on the effect of fluid stresses on the
porous medium with linear-elastic and brittle material, in particular it aims to
represent the initiation of cracks, crack-branching and fractures which occur
when the bond stretches overtake the limit bond stretch s0 of the material.
For each simulation the probability density function (PDF) of the strains and
stresses will be presented and then they will be compared and commented.
The probability density function describes the probability density of a random
variable at each point of the sample space. Hence, the probability of a random
variable X, which has a probability density ρx(X), that is included in a subset
A of its sample space is given by:

P (X ∈ A) =

∫

A

ρx(X) dx . (5.1)

In addition it will be investigated the pressure drop of the fluid through the
medium, the change in porosity and permeability over time for each case simu-
lated.
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Chapter 6

Results

This chapter presents the results obtained from the performed simulations and,
in particular, it will be discussed the effectiveness of the model in describing the
evolution of a porous material subjected to hydraulic fracturing. A total of three
DNS simulations have been conducted, with the intents of studying the effect
of solid fracturing and crack propagation by varying the critical fracture energy
release rate of the material G0 and to find a failure criterion, which allows to
predict when the fracture occurs, basing on strain and stress distributions into
the porous medium and their related threshold values. The physical parameters,
expressed in non-dimensional units, employed in each simulation are:

• bulk Reynolds number Reb = Ubh/νf = 10;

• solid to fluid density ratio ρs/ρf = 3;

• the non-dimensional Young’s modulus E/(ρfU
2
b ) = 107;

• the Poisson’s ratio of the solid material, νs = 0.25

Whereas the values of critical fracture energy release rate G0 employed for
each simulation are:

[J/m2] S1 S2 S3
G0 0.05 0.03 0.02

Table 6.1: Value of critical fracture energy release rate G0, where S1, S2, S3
identify the first, second, third simulations respectively.

It is worth remarking that, as previously reported in section 3.3.4, the ba-
sic assumption of peridynamic theory is that cracks form, due to the rupture
of bonds, that occurs when the stretch (equation 3.27) of a bond overcome a
threshold value, called limit bond stretch s0, that, for the 3D-cases, is defined
as:

s0 =

√

5G0

6Eδ
, (6.1)
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Still, bonds can break only under pure traction condition, in according with
the Prototype Microelastic Brittle (PMB) material described by the employed
bond-based peridynamic model.
As it is possible to see by equation 6.1, the value of the limit bond stretch s0 is
proportional to

√
G0, which means that to lower G0 values correspond lower s0

values. Furthermore, material with a low value of s0 are weaker and they tend
to break sooner than materials which have a higher value of s0. Therefore it is
clear how changing the value of G0 it is possible to make the material more or
less brittle and consequently impose different deformation and stress distribu-
tions to it, as it was done in the present work.

Now a description of the three parts in which the simulations is divided are
provided below. It is worth remarking that the first two parts (flow initializa-
tion and solid initialization) are the same for every simulation, as the value of
G0 influences only the last part where bond breakup is enabled.

6.1 Fluid-initialization

The fluid phase is evolved through the porous medium for 5000 iterations, by
using a time step ∆tf = 3.3569 · 10−4 s and so for a time t ∈ [0; 1.6798] s. In
this phase the peridynamic solver is disabled and so the the solid medium is
interpreted as a rigid body that represents an obstacle for the fluid flow. Since
the Reynolds number of the simulation is very low and a Poisseuille inflow is
prescribed at the inlet, from a macroscopic point of view, the fluid flow inside the
channel is laminar. However, due to the presence of the rigid solid medium, some
isolated eddies are generated inside the channel. The figure below represents
the contours of velocity at the end of the fluid-initialization phase.

71



Figure 6.1: Contours of velocity at the end of the fluid-initialization part at
t = 1.6798 s. The red axis correspond to x axis, the yellow one to y and the
green one to z. The x − y − z directions refer to flow, wall-normal, span-wise
directions, respectively.

It is also interesting to observe the hydrodynamic pressure distribution along
the stream-wise direction at the end of this first initialization part. In fact, as it
easy to understand, the presence of the porous medium inside the channel, that
is modeled as a non-deformable rigid body since in this part the peridynamic
solver is disabled, represents an obstacle to the movement of the fluid along the
x direction. In particular the pressure value is the highest in front of the porous
medium due to the effect of its frontal section, then the local pressure gradually
decreases since part of the fluid travels through the internal porous cavities
and finally, when the fluid crosses completely the porous medium, it can move
undisturbed and so the pressure assumes its lowest value. The figures below
represent the hydrodynamic pressure distribution at the end of the initialization
phase where the fluid has reached a steady-state.
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Figure 6.2: Contours of hydrodynamic pressure distribution at the end of the
fluid-initialization part.

Figure 6.3: Distribution of the non-dimensional hydrodynamic pressure along
the stream-wise direction at the end of the fluid-initialization part. P0 is the
reference value of pressure defined as p0 = ρfU

2
b .

6.2 Solid-initialization

At the same way it has be done for the fluid, before to turning on the bond
breakup, the solid solver is enabled and the coupled simulation is ran for addi-
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tional 5000 iterations but, since the stability condition for the explicit peridy-
namic time-marching scheme is more severe than that for the stability of the
fluid one, the time step employed is reduced to ∆ts = 3.3569 · 10−5 s and so
this part involves the time t ∈ [1.6785 ; 1.8463] s. In this part the peridynamic
particles that compose the porous medium are forced to remain connected pre-
venting that the possible immediate release of some solid particles could cause
numerical errors capable of leading into a computational divergence. For this
reason, to be sure that this effect cannot be realize, an additional dumping term
related to the absolute particle velocities, is implemented.

The figure below represents the surface contours of the displacement field, asso-
ciated to the peridynamic particles, for the front and back region of the porous
material at the end of this part, namely at time t = 1.8463 s.

Figure 6.4: Surface contours of the non-dimensional displacement field in the
front (left image) and back region (right image) of porous medium at time
t = 1.8463 s.

As it is possible to see in the figure above, the part of the porous medium
that is subjected to greater deformation is the central one, whereas the part
near the walls appears stiffer. This is a consequence of the imposed Poiseuille
inflow condition, in which the fluid velocity field has a parabolic profile with
a maximum value in the axis of symmetry of the channel, and it is zero in
proximity of the walls. For this reason the action of the fluid is more severe for
the core regions of the medium and less for the regions near the wall. In addition,
it is clear from figure 6.4 that the largest displacements manifest in the back
side of the solid and this result might seem in contrast with the hydrodynamic
pressure distribution of the fluid (figure 6.3). This is due to the fact that the
material particles located in the back region of the porous medium are less
forced to maintain their positions because they don’t suffer the bond forces of
particles located behind them. It is therefore intuitive to think that the fracture
process starts in the back side of the medium and propagates towards the core
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region, whereas the part near the wall remains intact or it is the last to break.

6.3 Bond breakup enable

Once that the fluid and solid are initialized, the bond breakup is activated and
the simulation continues to run for the interval t ∈ [1.8463 ; 2.0141] s for further
5000 iterations with the same time step of the former part. Therefore the sim-
ulations are performed for a total of 15000 iterations. Let start observing the
contour surfaces associated to the damage factor and the final geometrical con-
figuration of the porous medium for each cases considered, which are reported
by the figure below.
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Figure 6.5: Representation of porous medium configurations and damage level
associated for every peridynamic particles at the end of the fracturing process
for each case considered. At the top is represented the case with the highest
value of G0, in the middle the one with the intermediate value of G0 and at the
bottom the one with the lowest value of G0.

By observing the figure above it’s evident that the three cases that we wanted
to represent, which are the case with the medium intact, the case with the
medium partially broken and the last with crushed solid, have been correctly
reproduced. In particular, by observing the last frame of each simulation, it is
possible to understand how the crack propagates inside the porous medium. In
fact, referring to the cases with the lowest and the intermediate values of G0, as
expected from the displacement field distribution in figure 6.4, it is clear that
the fracturing process starts from the back of the medium and then continues to
propagate on posterior surface. Then, as it is possible to see in the case with the
highest value of G0, the breakage interests the innermost parts of the medium,
whereas the parts near the walls remain intact, as expected.

6.4 Comparison of the cases

Once the way in which the simulations are performed has been explained, the
comparison of the results obtained for each simulation can be reported and
discussed. In particular the results about pressure drop through the medium,
changing in permeability and porosity of the porous medium, stress and strain
distribution are reported. These quantities have been computed separately at
the end of each simulation, evaluating the fluid and solid data with a specific
post-processing algorithm.
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6.4.1 Comparison of pressure drops

In this section the change of the pressure difference between the front face and
the back one of the porous medium is reported and discussed. As previously
shown in figure (6.3) the initial difference of the non-dimensional pressure be-
tween the two faces ∆p/p0 = 190. This value is computed at the end of fluid-
initialization part and remains approximately constant until the bond breakup
is enabled. Then the fracture process changes the pressure distribution of the
fluid and so the pressure difference through the porous medium.
The figure below reports the trend of the pressure differences for each case over
time, considered as t/t0 where t is the time measured from the activation of
bond breakup and t0 is the reference time scale computed as t0 = Lref/Ub:

Figure 6.6: Representation of the pressure drop over time for the three different
cases. In dark blue is represented the case without fracture, in green the case
of partial fracture and in red the case with total fracture.

Observing the figure it is possible to notice that the pressure difference of the
fluid between the front face and the back one changes little over time for the case
without fracture (dark blue), because the porous medium remains almost intact
and therefore its geometrical configuration remains similar to that before the
rupture is activated. Instead, for the case with partial and total fracture, which
are represented in green and red respectively, there is a significant pressure drop
through the medium. This result is related to the fact that, as a consequence of
the breakage and the detachment of solid fragments from the medium, the total
frontal area of the solid, that hinders the fluid flow, decreases and therefore the
fluid can flow easily through the medium. This brings to a reduction of the
fluid pressure, specifically for the region before the porous medium that, as it
is shown in figure 6.2, is the one with the highest value of pressure.
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6.4.2 Comparison of the change in porosity and perme-
ability of the porous medium over time

The interaction with the fluid phase and the consequent breakup of the porous
medium cause a change of its physical properties. In particular in this section
the changes of the porosity and permeability over time are presented for all the
three cases simulated.
Let’s start observing the trend of the porosity for each case over time, considered
as t/t0 where t is the time measured from the activation of bond breakup and
t0 is the reference time scale computed as t0 = Lref/Ub:

Figure 6.7: Representation of the trend of porosity over time for the three
different cases. In dark blue is represented the case without fracture, in green
the case of partial fracture and in red the case with total fracture.

As expected, when porous medium breaks and fragments leave the solid
domain, the volume of the void space increases and consequently the porosity,
since it is defined as the ratio between the volume of the void space and the total
volume of the medium (equation 2.1). In fact, as it is possible to see from the
figure above, for the case with partial fracture and total fracture of the medium,
which are represented in green and red respectively, the porosity increases as the
porous medium breaks down. In particular for the case of partial fracture we
can observe that there are two different cases where one or more solid fragments
detach from the main structure, since the porosity increases for the intervals
t/t0 = [0.01 - 0.04] and t/t0 = [0.07 - 0.08], whereas it remains constant for
t/t0 = [0.04 - 0.06]. Instead, for the case of total fracture, the fracturing process
continues without stopping until a steady state is reached.
On the contrary, for the case where hydraulic fracture phenomenon doesn’t oc-
cur, which is represented in dark blue in the figure above, the porosity doesn’t
change since the porous medium deforms very little and remains almost intact.

Regarding the permeability, it was reported in section 2.1.1 that is a mea-
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surement of the resistance encountered by the fluid when it crosses the porous
medium and in the present work it is computed from Darcy’s law (equation 2.3),
so is expressed in the following way:

k =
QL

S

µ

∆p
, (6.2)

where Q is the flow rate of the fluid, S is the section through the fluid flows, k is
the permeability, µ is the dynamic viscosity of the fluid and ∆p is the pressure
difference between the front and back face of the medium. The main parameter
which influences the value of permeability is the pressure difference ∆p, since µ,
L, S remain constant and Q is imposed. In the figure below, as the same way
it has been done for porosity, the trend of permeability per unit area over time
is reported:

Figure 6.8: Representation of the trend of permeability over time for the three
different cases. In dark blue is represented the case without fracture, in green
the case of partial fracture and in red the case with total fracture.

From figure above it’s possible to see that, for the case where the medium
remains almost intact (dark blue), the permeability remains almost constant.
This is due to the fact that the pressure drop for this case is very little (as
previously reported in the former section) and therefore the permeability doesn’t
change.
Whereas, for both the case of partial and total fracture, the permeability changes
significantly over time. This is due to the decrease of pressure difference through
porous medium over time, in fact the graphs reported, for each case, follow the
trend of the related pressure drop graphs reported in former section, but in the
opposite way since k ∝ 1/∆p.
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6.4.3 Comparison of strain and stress distribution

Starting from notion of force per unit area in [7], the stress tensor is computed
for each material particle and the strain tensor is also computed. Then they
are rewritten in a principal reference system, and therefore diagonalized and, to
associate at each coordinate only one value which identifies the local strain and
stress, it was decided to take into consideration only the maximum value of the
components for each diagonalized tensor.
Regarding to the choice of the threshold values, that identify when the fracture
occurs, they are the limit bond stretch s0 for the strain and the limit stress
σ0 = E · s0 for the stress. Referring to equation (6.1) the value of s0 for each
case are:

• s0 = 2.9814 · 10−4 for the case with G0 = 0.05 [J/m2];

• s0 = 2.3094 · 10−4 for the case with G0 = 0.03 [J/m2];

• s0 = 1.8856 · 10−4 for the case with G0 = 0.02 [J/m2].

whereas, the value of σ0 for each case are:

• σ0 = 2981.4240 Pa for the case with G0 = 0.05 [J/m2];

• σ0 = 2309.4011 Pa for the case with G0 = 0.03 [J/m2];

• σ0 = 1885.6181 Pa for the case with G0 = 0.02 [J/m2].

Let’s start evaluating the PDF of the strain represented by the figure below:
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Figure 6.9: Probability density function (PDF) of the strains inside the medium.
The case with the lowest value of G0 is highlighted in dark blue, the one with
the intermediate value in green and the case with the lowest value in red. All
these graphs refer to the last iteration of each simulation. The black graphic,
instead, represents the strain distribution at the end of solid-initialization phase,
hence before that the bond breakup is enabled. The straight lines represent the
threshold value for each case.

By observing the figure, in particular the strain distribution before the bond
breakup is enabled (black graphics) and the threshold value for each case, it
seems that the probability of breakage is about the same for each case simu-
lated. This result is in contrast with what we have observed before, since it has
been demonstrated that changing the value of G0 the material is less or more
brittle and therefore the probability of breakage must change accordingly.

This trend is also observed in stress distribution (figure 6.10) and it indicates
that the criterion used to define the strain and stress distributions into the
medium (maximum principal stress and strain) doesn’t agree with the failure
criterion employed to predict the breakage of the material (limit bond stretch s0
for strain and limit stress σ0 = E · s0 for stress).
The PDF of the stresses inside the medium is reported below:
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Figure 6.10: Probability density function (PDF) of the stresses inside the
medium. The case with the lowest value ofG0 is highlighted in dark blue, the one
with the intermediate value in green and the case with the lowest value in red.
All these graphs refer to the last iteration of each simulation. The black graphic,
instead, represents the strain distribution at the end of solid-initialization phase,
hence before that the bond breakup is enabled. The straight lines represent the
threshold value for each case.

As mentioned above, observing the stress distribution before the activation
of bond breakup (black graphics) it seems that the medium remains intact for
almost all cases considered, that is in contrast with the final configuration of
the medium obtained for each simulation, and this error is due to the use of a
incorrect failure criterion.
Furthermore, as it is possible to see in figures (6.9) and (6.10), referring to the
case of partial fracture and completely fracture of the medium, which are high-
lighted in green and red respectively, both their strain and stress distributions
are greater for the lower values and minor for higher value respect to the case
where the solid remains intact, highlighted in dark blue. This trend is related to
the fact that, when solid fragments detach from the main structure, as it hap-
pens for the considered cases, the fluid flows more easily through the medium
and so the loads induced to the solid are lower.
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Chapter 7

Conclusion

The aim of the present work is to solve numerically the interaction between lam-
inar channel flow, with low Reynolds number, and a immersed porous medium.
In particular, the main target is to reproduce the initiation of cracks, crack-
branching and fracture of the solid body. This is a typical aspect of the fluid-
structure-interaction (FSI) problem and is of interest for several science and
engineering applications. For example, in the field of aerospace engineering, for
protecting the space vehicle during atmospheric reentry operations, the external
covering is composed by ablative materials that disintegrate under the action of
fluid dynamic forces.
The numerical technique described in the present manuscript is capable to ad-
dress FSI problems between incompressible flows and linear-elastic solids with
brittle mechanical properties, where fracture mechanics is taken into consider-
ation.
The dynamic of the fluid is solved by the incompressible formulation of the
Navier-Stokes equations in the framework of the Direct Numerical Simulations
(DNS), whereas the solid mechanics and fracture mechanics are solved by em-
ploying peridynamics, a well-established reformulation of continuum theory that
intrinsically accounts for crack initiation and branching. The fluid and solid
dynamics are then coupled by the immersed Boundary Method (IBM), which
prescribes no-slip and no-penetration boundary conditions on the fluid-solid
interfaces, that is detected by a specific algorithm. Then, the surface forces
exerted by the fluid on the immersed solids are computed by using the normal-
probe method, which allows to compute the stress distribution on wet surface,
necessary for predicting the dynamics of deformable solids.
The source code is written in Fortran 90 extended with the Message-Passing In-
terface (MPI), a standardized and portable message-passing standard designed
to function on parallel architectures. The code is composed of three different
modules: a fluid solver, a peridynamic solver and the third module that man-
ages the synchronization of the coupling of the Navier-Stokes and peridynamic
equations via the IBM.
A total of three different simulations have been performed, which differ for the
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value of the critical fracture energy release rate of the material: the first re-
produces the deformation of the solid without fracture, the second with partial
fracture and the third with total fracture.
For all the cases have been performed analyses of stress and strain distributions,
before and after fracturing process is occurred, the trend over time of fluid pres-
sure drop through the solid, the change in porosity and permeability of the
porous medium. Regarding the stress and strain distributions, for predicting
when crack formation occurs, a failure criterion (maximum principal stress and
strain) has been employed. However, it has been observed that, applying this
criterion for both stresses and strains, it isn’t possible to predict exactly the
breakage of the porous medium. Anyway, others criteria can be implemented
to represent stress and strain distributions (for example Von Mises criterion) or
for prediction of the crack formation (for example the Griffith energy balance).
Regarding the DNS of the breakup of porous medium in a laminar channel
flow several improvements are possible in the near future developments of the
method. For example, a lubrication model can be added to the solid-solid con-
tact model to account for the effect of thin layer of fluid in interstitial regions
created by cracks that are not resolved on computational grid. In fact, in the
actual implementation of the model only the thin interstitial regions larger than
the size of three Eulerian grid cells are detected. Another improvement concerns
the addiction of turbulence model (e.g Smagorinsky) in the frame of Large Eddy
Simulations (LES), for reproducing the test case in frame where Reynolds num-
ber is higher, therefore where the usage of Direct Numerical Simulations (DNS)
is not technically feasible, due to the high computational costs and the large
time of simulation.
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