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Abstract

According to observations, most matter density of our Universe is dark. Efforts
have been done to explain this excess, ranging from alternative theories of gravity, to
the introduction of new particles and many other exotic suggestions. Nowadays most
of the scientific community agrees on the fact that dark matter is at least partially
made of a new particle species, underlying the presence of new physics beyond the
Standard Model. In this work we present a possible solution to the dark matter dilemma,
showing how gravitino can be a good particle candidate solving the problem. Exploiting
the properties of this particular particle, we show under what assumptions freeze-in
mechanism could be the appropriate mechanism for gravitino relic density achievement.
We focus on the consequences of a non-instantaneous reheating process on the gravitino
relic density production, recovering and extending already existing works, showing under
what assumptions this process is still able to solve the dark matter problem.
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Introduction

Recent observations suggest that most matter density of the Universe is non-ordinary, i.e. it is
not ascribable to SM particle content. Possible candidates have been proposed to explain this
excess of matter density, along with mechanisms that could generate a sufficient relic density of
a particular particle species, which although very interesting and promising, did not find any
experimental confirmation by far.
In this thesis we explore a possible origin of the excess in matter density as a consequence
of the realization of supersymmetry in nature, implying the existence of new particles, with
particular interest for the gravitino. We review an alternative infrared dominated mechanism
of dark matter production, freeze-in, and we show how frozen-in gravitino could in principle
account for dark matter relic density.
In chapter 1 we review the experimental observations that since the ’30s led to the conclusion
that most matter content of the universe must be dark, starting from Zwicky observation
of nebulae velocity dispersion, arriving to latest cosmological Planck observations. We list
expected properties of dark matter particles, based on observations and general principles.
In conclusion we review the long-studied freeze-out mechanism for dark matter relic density
production.
In chapter 2 we briefly review the basic concepts of supersymmetry, which we’ll not take
for granted throughout this work. We review the simple case of global supersymmetry, with
particular interest to possible ways to break the symmetry so to match observations. We
move to local supersymmetry, introducing the gravitational supermultiplets that includes the
gravitino, and we show how through the super-Higgs mechanism the gravitino acquires mass
and two additional helicity modes by ’eating’ the goldstino.
In chapter 3 we explore the cosmological implication of the existence of the gravitino, focusing
on the case in which it is the LSP, the interesting case for this thesis. We show possible ways of
producing gravitinos in the early universe, extending the results to the case of non-instantaneous
reheating process. We then explain the main two possible problems arising when gravitino LSP
is included in particle spectrum of the theory, namely gravitino overproduction problem and the
spoilage of BBN results.
In chapter 4 we present the alternative mechanism of dark matter relic density production,
freeze-in, showing its general features, focusing only on the case of bath particles decay-produced
dark matter, which we’ll apply to the gravitino case. In particular, we show the final yield
dependence on the parameter of the theory, and set the parameter space region in which freeze-
in is active and dominating on other mechanisms. We show the constraints to have an infrared
final yield, and we generalize the mechanism to the case of non-instantaneous reheating process.
In chapter 5, we apply the framework we have developed in the previous chapters to show how
the freeze-in mechanism, involving sparticles decay to gravitino, could produce the sought-for
dark matter relic density. In particular we show the dependence of the final yield on the mass
spectra, and we focus on the interesting case of split spectra. We include the possibility of
non-instantaneous reheating process, showing how the final result changes depending on the
mass spectra of the theory.
In the last chapter we show the main result of this work, namely that gravitino freeze-in can
in principle take place in most parameter space regions in the case of extremely split spectra,
becoming the main way of gravitino production, independently on the reheating temperature.
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Chapter 1

How We Know Dark Matter is There

Observation of the Universe is not a recent development of human knowledge. The
first rudimental cosmological models are found in ancient Greek and Indian knowledge,
depicting the universe as static and geocentric. According to Hindu purainc view, the
universe experiences the ciclicity of time, being created, destroyed and re-created during
a Brahma’s day, lasting 4.32 billion years, which is incredibly comparable to cosmo-
logical time. These models though presented some inconsistencies, such as the pres-
ence of comets, which clearly couldn’t fit the static picture. Such evidences against an
Aristotelian model were attributed to atmospheric phenomena until 1577, when Tycho
Brahe’s observation of absence of parallax in comet events, put an end to geocentric
static models, and opened the path to heliocentric modern models.
Crucial observations to dismantle Aristotelian model came with Galileo who, among
other brilliant discoveries, observed a huge amount of stars like the Sun and four Jupiter
satellites, that would have remained unobservable without the development of the tele-
scope.

With the advent of Newtonian dynamics and law of gravitation, two powerful means
were added to the observational ability of astronomers.

In 1844, F. Bessel argued the existence of unseen objects just by using the powerful
tools of Newtonian gravity, in order to explain anomalies in the motion of Sirius and
Procyon stars: for the first time the existence of astronomical objects was inferred by
the application of laws of nature.
This was not the only occasion in which the presence of astronomical objects was pre-
dicted before their observation: others famous examples are the discovery of Uranus and
the observation of the precession of Mercury’s perihelion; nevertheless in the latter case
the discrepancy was not due to the presence of a perturbing new object, but to our lack of
comprehension of gravity, as the solution came with Einstein’s general theory of relativity.

Nowadays astronomers and cosmologists have available much more sophisticated meas of
observation and the powerful general theory of relativity, therefore deeper regions of the
Universe are accessible to observations, and many phenomena they observe can find an
explanation. Nevertheless there are still some mysteries that haunt the Universe to be
solved. Among them, one is particularly intriguing and fascinating: that of dark matter.

First clues of the presence of non-luminous and hence unseen matter in galaxies, came
with Lord Kelvin in his ’Baltimore lectures on molecular dynamics and the wave theory
of light’ [1]. In one of these lectures, Lord Kelvin tried to estimate the Milky Way mass
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based on velocity dispersion of stars, and he concluded:

’It is nevertheless probable that there may be as many as 1000 millions of stars within
the distance r = 3.09 · 1016km but many of them may be extinct and dark,and

nine-tenths of them though not all dark may be not bright enough to be seen by us at
their actual distance.’

In a later work, Poincaré addressed the missing matter as dark matter, although he dis-
agreed with Lord Kelvin’s conclusions.

In the last century, astronomical observations got better and better due to the de-
velopment of new and already existing means of observation, and due to our better
comprehension of the laws that govern our universe.
In this chapter we retrace the steps that led to the conclusion that most matter in the
universe remains yet unknown.
Hints of the existence of unknown dark matter come from observations at all scales, from
galactic scales up to clusters and cosmological scale.

1.1 Early observations
It’s in 1933 that we have a first indirect evidence of missing matter, in Zwicky famous
article [2]. The author analyzed the velocity dispersion of nebulae in the Coma cluster,
showing that eight of them exhibit discrepancies with theoretical predictions based on
luminous matter alone.

The average recession velocity of the Coma cluster was measured in the context of
distance-redshift correlation study, and resulted to be 7500km/s.
On the other hand, by measuring the redshift of spectral lines of nebulae (namely the
average of at least three, typically H- and K- lines and G-band), since the absorption
line are affected by the same amount of redshift independently of their wavelength, one
is able to determine the redshift and recession velocity of single nebulae.
In this way Zwicky reports the recession velocities of eight single nebulae in the Coma
cluster showing that they range from 5100km/s up to 8100km/s (although it was not
clear if one of them is part of the cluster or just projected onto it, in which case the
lower velocity is 6000km/s, the final result not substantially changing) and he finally
evaluated the nebulae velocity dispersion with respect to the average cluster velocity,
showing that it it O(103km/s)

In order to explain such a large deviation from the average, Zwicky borrowed the virial
theorem that was largely used in thermodynamics, and applied it to the Coma cluster
system to come to his conclusions.
The theorem relates the time average of the kinetic and potential energy of a system of
N particles, in a mechanically stationary configuration; in its general form it states

2〈K〉t = −
N∑
k=1

〈~Fk · ~rk〉t, (1.1)

where the sum spans over the particles that build the system, ~Fk being the force applied
to particle k which is at position ~rk.
In the case of a gravitational potential, eq. (1.1) reduces to

εk = −1

2
εp (1.2)
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where εk and εp are the kinetic and gravitational mean energy respectively per unit mass;
moreover thanks to Birkhoff ergodic theorem, time averages can be substituted with en-
semble averages, avoiding the need to wait for a long time.

With a cluster estimated radius of R ∼ 1024cm and 800 single nebulae in the clus-
ter, each of mass M ∼ 109M� (as suggested by Hubble), Zwicky estimated the cluster
mass as

Mcl ∼ 1.6 · 1045g (1.3)

corresponding to a gravitational potential energy

εp = −3

5
GN

Mcl

R
∼ −6.4 · 1013 cm

2

s2
. (1.4)

Using the virial theorem, one gets the averaged squared velocity

εk =
1

2
〈v2〉 = −εp

2
⇒
√
〈v2〉 ∼ 80km/s. (1.5)

In order to account for discrepancies of O(103km/s), Zwicky argued that the Coma
cluster average density should be ∼ 400 times larger that the observed value so that

’If this should be verified, it would lead to the surprising result that dark matter exists
in much greater density than luminous matter.’

Zwicky points out that even if the system is not stationary, but the potential energy is
completely stored as kinetic energy, the result differs only by a factor 2, and the need
for a larger matter density persists.

At the time, Zwicky used the Hubble constant value of H0 ∼ 558 km/s/Mpc, which
we now know to be far from the measured value H0 = 67.66 ± 0.42 km/s/Mpc [14],
hence Zwicky result overestimates the mass-to-light ratio by a factor ∼ 8.3.

This result has been controversial; the author himself argued that in order to rightly
extrapolate a Galaxy mass from the visible matter content, one has to know the micro-
scopic objects, cold stars and gases presence in the Galaxy.

Moreover it was not clear if the virial theorem holds in the Coma cluster case, as the
observed nebulae could be not permanent part of the cluster, but just passing-by objects,
far from mechanical stationary equilibrium.
However if this was the case, one would expect the cluster to disassemble, resulting in
hundreds of nebulae flying apart with large proper speeds. As a consequence one would
expect to see such phenomena in the Universe, while velocities of single nebulae do not
exceed 200km/s.

Zwicky also considers the effect due to gravitational redshift

λ∞
λe

=

√
g00(r∞)

g00(re)

which in the weak field limit reduces to

∆λ

λ
∼ −εp

c2
∼ 3.5 · 10−8 (1.6)

6



which corresponds via ∆λ
λ

= v/c to an apparent relative velocity v ∼ O(10m/s) that
cannot explain the observed velocity dispersion, and would suggest the presence of a
larger amount of dark matter than predicted by virial theorem argument.

The questions about the presence of dark matter in galaxies remained controversial for
many years, as for other indirect evidences of its presence we have to wait until the early
’70.

1.2 Galaxy rotation curve
In the early ’70 the extrapolation of Galaxies masses from luminous matter presence
was not a substantial problem anymore, since astronomers could observe the 21 cm line
of hydrogen in far galaxies; the mass distribution of galaxies was hence deducible from
hydrogen presence. Also the determination of velocities could be inferred from redshift
in Hα emission lines.
In the ’70, two independent works, Freeman [3] and Rubin and Ford [4], studied the ro-
tation curves, i.e. the orbital velocity of gas and stars as a function of the distance from
galactic center, showing that dark matter is needed to stabilize the motion of galaxies
(and not only for clusters, as already observed by Zwicky). Moreover thanks to improved
spectroscopic measurements it was possible to resolve single stars in far galaxies.

According to keplerian motion and based on the visible matter presence in the galaxy,
velocities of stars as a function of their distance from the center should be well approxi-
mated by the dynamical equilibrium equation:

GM(r) = v2(r)r

whereM(r) is the mass encompassed by a sphere of radius r, namelym(r) = 4π
∫
ρ(r)r2dr.

This in turn means that velocities should follow the law

v(r) ∼
√
GM(r)

r
∼

{√
Gr r . R√
G
r

r > R
(1.7)

where R denotes the galaxy bulk radius and we assumed a homogeneous matter density
inside the bulk . This is a naive approximation of a real galaxy: in fact for instance, the
shape of the visible matter distribution is far from being spherical, and a more complex
behaviour is expected at small radii. Nevertheless this approximation is useful at large
radii, when all the mass is encompassed by a sphere of radius r, as it gives an etimate of
the total mass of the galaxy, which is what we’ll be interested about.

In Freeman’s article [3] observing M35 (Triangulum Galaxy) and NGC300 galaxies by
means of photometry, the author reports that the peak in velocity is found to be at larger
radii than expected assuming that luminous matter accounts for all matter density of
the galaxy, without further questioning about the reason of the phenomena.

In their famous article, Rubin and Ford reported the rotation curves of Andromeda
galaxy, up to 120 arcminutes (24 kpc) far from the galaxy center (larger radii than that
of Freeman’s work), aiming to measure the galactic mass.
Surprisingly, they got results in contrast with prediction of eq. (1.7), as shown by figure
1.1: rotation velocities are observed to rapidly increase up to their maximum value at
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Figure 1.1: Rotation curve for M31 galaxy. The behaviour of the curve shows rapidly
increasing velocities for r . 400pc, a minimum at r ∼ 2kpc, and almost constant ve-
locities up to the farthest observed distance of 24kpc from galaxy center. In order for
rotation velocities to stay almost constant outside the galaxy bulk, additional matter is
needed, whose density should increase approximately linearly with the distance. Empty
dots represent measurements of NII line used for the bulk region, while full dots are OB
stars measurements outside the bulk. The dashed and solid lines about the minimum
show the range of acceptable results, since between distances 1kpc . r . 3.6kpc there
was only one measurement (NII line). Image taken from [4].

400pc from the center, they show a minimum at a distance of 2kpc and they remain
constant well outside the galaxy bulk up to the farthest observed distance of 24kpc.
In turn this suggests that beyond a rapidly rotating nucleus, there’s a less dense region
up to 2kp where velocities fall, followed by a farther region where total mass seems to
increase linearly with distance from the center up to 14kpc and slower up to the observed
distance of 24kpc.
In fact according to eq. (1.7) in order to have a constant rotation velocity outside the
bulk, the presence of matter is needed:

v(r) = const⇔M(r) ∼ r,

which correspond to a matter density ρ(r > r0) ∝ r−2 where r0 ∼ 4kpc in the case of
M31.
In a 1972 work [5], Rogstad and Shostak carried out a similar analysis on five galaxies,
observing a flat rotation curve up to the largest observed radius. They used the 21 cm
emission line to extrapolate the mass of the galaxies, and concluded that at the Holmberg
radius, the surface mass-to-luminosity ratio should be as high as ∼ 20. The outcome
of the analysis is reported in fig. 1.2. This is credited to be the first uncontroversial
indirect proof of dark matter presence in galaxies.

In general, until mid ’70, the two observed anomalies, galaxy rotation curves and ve-
locity dispersion in clusters of galaxies, were treated as separated problems, and no
common solution (if one was needed, in fact some models could be arranged to repro-
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duce the observed results without need for additional mass) was searched. This until the
beginning of cosmology as an independent field of study.

Figure 1.2: The left figure shows the results as reported in [5]. The left panel shows
hydrogen presence based in the observation of the 21 cm emission line, R80 is the distance
within which we find 80% of hydrogen (roughly corresponding to Holmberg radius).
On the right panel, the rotation curves. The right image shows the rotation curve for
Andromeda galaxy, combining results by various works. Purple crossed points are results
from Babcock [7], black filled (empty) circles are results by Rubin and Ford [4] for outer
(inner) region, red stars are from Roberts and Whitehurst [6] and green circles from
Carignan et al. [8]. It’s clear that for all the measurements velocities do not fall as
they’re expected to without assuming the presence of dark matter.

1.3 X-rays hints on cluster scales
Zwicky results about galaxy clusters was corroborated by new evidences, allowed by
means of X-rays emission observation.
It is possible to trace the presence of hot gases inside a cluster by observing the emission
of X-rays, and in this way to estimate the cluster matter content.
This result can then be checked with the model-predicted temperature.

In a spherically symmetric system at hydrostatic equilibrium, gravitational force is ex-
actly balanced by pressure, and the equilibrium equation reads

1

ρ

dP

dr
= −GNm(r)

r2
(1.8)

where ρ is the gas density, P the gas pressure and m(r) is the mass encompassed by a
sphere of radius r.
If we consider the intracluster gas to be ideal, the equilibrium equation 1.8, con be
rewritten as an equation for temperature

dlogρ

dlogr
+
dlogT

dlogr
= − r

T

(
µmp

kB

)
a(r), (1.9)
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wheremp is the proton mass, µ ∼ 0.6 the average molecular weight, a(r) the gravitational
acceleration at radius r and kB Boltzmann constant. Well outside the galaxy core, the
temperature is constant, and the density profile is observed to fall as r−2∼−1.5. Therefore,
for large radii, using the observed density profile, eq. 1.9 can be solved for temperature

kBT ≈
2.69

1.5 ∼ 2
keV

(
mr

1014M�

)(
Mpc

r

)
. (1.10)

The above equation tells us which temperature is needed to balance gravitational at-
traction of mass mr at radius r, or conversely, how much mass is needed to balance the
pressure of an ideal gas at temperature T , at large radii.
If one tries now to use baryonic mass only to balance the pressure of the gas using eq.
1.10, one finds a great discrepancy with the observed value of T ∼ 10keV . This means
that the baryonic matter alone is not able to bare the pressure of the gas, and hence
could not maintain hydrostatic equilibrium.
This suggests that a relevant amount of matter, other than baryonic, should be present
in clusters in order to grant equilibrium.

1.4 The birth of modern cosmology
In the decade 1965-1975, publications concerning cosmology increased very rapidly, grow-
ing of a factor 10 in about 10 years.
New possible observations and theoretical models formulation made it a field of interest
itself. The most active and researched subjects aimed to understand if the universe is
closed, flat or open and to know the time scale of the Universe. Answering to these
questions was a matter of measurement of cosmological parameters, in particular Hubble
parameter (which gives the time scale of the Universe) and the matter density of the
universe (which in case of vanishing cosmological constant tells a closed universe from
an open or flat one).
Although at the beginning of the searches there was a ’philosophical’ preference for a
closed universe, the reasoning remain interesting and valid (the universe is now observed
to be very close to flatness).
In order for the universe to be closed, matter density should exceed the critical density
ρc,0 ∼ 10−29g/cm3, and the willing to observe a closed universe draw the attention of
observations to the luminous matter density of the universe.
Several upper bounds to this density were found, and typically luminous matter was
found to not exceed ρl . 10−31g/cm3 which is far below the critical density (see for
instance [10]).

Suddenly cosmological observations and ’philosophical’ motivations (we now know that
the matter density has to be very close to the critical density, but this leaves the follow-
ing unchanged) required additional matter, as did astronomical observations of rotation
curves and velocity dispersion in clusters of galaxies.
The joint result of the study of the two apparently independent aspects, led to the con-
clusion that mass of local giant spiral galaxies grows linearly with radial distance, up to
about 300 kpc from the galaxy center, as if they were surrounded by a ’giant halo with
a very high mass-to-light ratio’.
With this assumption, galaxies could account for one fifth of the critical density, which is
closer (at least closer than 4 orders of magnitude) to the hypothesis of a closed universe.
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1.5 Role of dark matter in structure formation
The observations of the early ’70, suggesting the presence of halos of faint matter around
galaxies somehow brought together all the previous astronomical observations.
Almost in the meanwhile, another discrepancy was found in the study of large-scale
structure formation, and surprisingly the presence of this halos could also play a role in
this independently discovered problem.

Until the mid of last century, our galaxy seemed to be the entire Universe. With the ad-
vancing of technological means, observation of further regions of the universe was made
possible, and it soon became clear that our universe was much lager than our now rel-
atively small galaxy, and moreover it became clear that the Universe was in evolution.
The key observation to come to this conclusion was the discovery of Quasars in 1963,
which are moving away at relativistic velocities (about 16% of the speed of light). This
was a clear evidence that the Universe is not in steady state, and opened the possibility
to a dynamical evolution of the structures that build up the Universe at different scales.
Among the questions regarding an evolving and dynamical Universe, astronomers and
cosmologists also began wondering how the structures we observe today were formed in
the beginning.

The largely accepted theory explaining this phenomenon regards the very early stages
of the life of our Universe, namely inflation.
The need for an inflationary phase at the very early stage of the universe life span, comes
from a different and independent set of problems to be solved, and the widely diffused
idea came with ’à la Guth’ inflation [11]. Inflation is a period in which the universe
experienced an exponential growth (order of 60 e-folds), due to the fact that the energy
density was dominated by the potential of a scalar inflaton field. This period of exponen-
tial growth sets the initial conditions for the thermal evolution of the universe, granting
homogeneity, isotropy and flatness. Moreover, the scalar field responsible for inflation is
expected to behave like any other quantum field, this means that it will cause vacuum
fluctuation: these are the perturbations in the density field of our universe that, after
expansion and amplification due to inflation, gave birth (or better, are supposed to have
given birth) to the nowadays large-scale and small-scale structures we observe.

The study of how the perturbations evolve in time makes large use of fluid-dynamics
equations and theory of gravitation, namely one has to solve continuity, Euler and Pois-
son coupled equations for matter density, matter velocity and gravitational potential.
We’ll not show here the detailed calculations for a reason of conciseness, although they
can be found in almost any cosmology textbook (we are following here [13]), we only
recall that we assume that the primordial fluctuations are a isotropic, homogeneous ran-
dom gaussian field with zero mean, and that we assume (and this is a posteriori verified)
that the large structure scales are small compared to the curvature of the universe, which
allows us to use Newtonian gravitational dynamics.
Equations for the matter density are equivalent to equations for the density perturbation
field

δ(t, ~x) =
ρ(t, ~x)− ρ̄(t)

ρ̄(t)
, (1.11)
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where ρ̄(t) is the matter average density at time t. Skipping all the calculations here, we
end up with Jeans equation for the Fourier transform of the perturbation eq. (1.11)

¨̂
δ + 2H

˙̂
δ = δ̂

[
1

2M2
Pl

ρ̄−
(
csa0k

a(t)

)2
]
, (1.12)

where k is the wave number and cs is the adiabatic speed of sound. The RHS of eq.
(1.12) shows the two opposite effects of the gravitational potential (first term), that
tends to make clusters collapse, and pressure (second term), that tends to wash away
dishomogeneities, while the LHS shows us that gravity has to deal with universe expan-
sion, which is an important effect when talking about large-scale structures.
At the jeans wavelength the two effects exactly balance, and perturbations at this scale
will not tend to collapse, nor to be dissolved by pressure

λJ =
2π

kJ
= 2π

a0

a
cs

√
2M2

Pl

ρ̄
. (1.13)

We can now wonder what the solutions to eq. (1.12) are, on scales much smaller or much
larger than Jeans wavelength, for relativistic and non relativistic matter.
Solutions to eq (1.12) are{

δ̂ ∝ t2/3 ∼ a
a0
δ̂0 large structures

δ̂ ∝ e±iωt small structures
(1.14)

for non-relativistic matter and{
δ̂ ∝ t ∼ ( a

a0
)2δ̂0 large structures

δ̂ ∝ A+B logt small structures
(1.15)

for relativistic matter.
As expected, in the case of relativistic matter the growing of perturbations well below
Jeans wavelength is slower than in the non-relativistic case, due to relativistic pressure
effects. Hence perturbations well inside the horizon before radiation-matter equality,
remained frozen and could not grow due to the counteracting effect of relativistic pressure.
When at z ∼ 3600 matter and radiation came to equivalence, these perturbation were
able to grow under the action of gravity and under the weakening of counteraction of
relativistic pressure. From the first of eq. 1.14 we learn that perturbations at decoupling
time (zdec ∼ 1100) δ̂dec ∼ 10−5 (this comes from CMB observations, better justified in
sec. 1.4) grow with the scale factor, yielding a nowadays density perturbation

δ̂0 ∼ zdecδ̂dec ∼ 1%,

which is in strong disagreement with N-bodies simulations (see [12] for instance), which
suggest values of δ0 close to 1. This is a strong evidence that in formation of large-scale
structures, the density perturbation due to baryons alone is far from enough to be able
to account for the observed distribution of matter on large scales.

Again the same problem shows up: the reproduction of large-scale structures as observed
today requires the presence of additional matter in the universe, enhancing gravitational
wells that could allow the formation of structures up to superclusters and filaments.
According to observations, the first objects to form in the history of Universe, were
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small-scale structures such as galaxies and clusters of galaxies, and with the passing of
time larger structures such as superclusters were formed.

This leads us to another problem, namely if dark matter particles are relativistic or
not at the time of decoupling, corresponding respectively to hot and cold dark matter.
Jeans equation (1.12) has to be corrected in order to include the different effects of this
two kinds of dark matter, namely one has to introduce an effective speed of sound in eq.
(1.12).

Without entering the detail of calculations, what happens qualitatively is the follow-
ing: hot dark matter is relativistic when it decouples, which means that it will be free to
steam in the Universe at relativistic speeds after decoupling, while cold dark matter will
steam at non-relativistic speeds. In turn, this means that hot dark matter will partially
wash away small-scale dishomogeneities, resulting in an overabundance of large-scale
structures which form first, to later fragment in smaller structures; conversely cold dark
matter will not be energetic enough to escape gravitational wells on small scales, corre-
sponding to the formation of small structures first, and only subsequently of large-scale
structures (although non-vanishing velocity dispersion prevents the formations of arbi-
trary small structures).

Observations suggest a bottom-up formation of structures (namely small first, large
then), suggesting that dark matter is cold and collisionless, nevertheless N-bodies sim-
ulations with cold collisionless dark matter reveal the presence of small structures in
much larger abundance than observed in the form of sub-dwarf galaxies. This suggest
an intermediate nature of dark matter and allows the presence of warm dark matter,
that could wash away this overabundance of non observed small-scale structures, while
maintaining a bottom-up pattern for structures formation.

The observed distribution of structures in the universe is contained in the observed two-
points correlation function of density fluctuations, or equivalently in its Fourier transform
power spectrum

〈δ̂(~k)∗δ̂(~k′)〉 = (2π)3δ(~k − ~k′)P(k), (1.16)

where P(k) is the matter power spectrum, and we used the properties of the density
perturbation field. The experimental measured matter power spectrum (CMB and galaxy
surveys for large scales, Lyman-α forest for smaller scales) is reported in fig. 1.3, and is
expected to be of the form

P(k) = kn , n = 0.9665± 0.0038 ([14], 68%C.L.), (1.17)

The deviation from this spectrum is due to the Meszaros effect, namely the power spec-
trum has to be corrected by a factor (aenter/aeq)

2, where aenter is the scale factor at
the time of the entrance of scale k in the horizon and aeq is the scale factor at matter-
radiation equivalence. Adding this correction factor gives a good theoretical agreement
with fig. 1.3.

1.6 Planck observation and cosmological parameters
In the past twenty years, observational cosmology and astronomy went steps further, al-
lowing the observation of different phenomena, and among other important discoveries,
finding other indirect proofs of dark matter existence and constraining its abundance in
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Figure 1.3: Matter power spectrum as reported in [13]. The peak at λ ∼ 120Mpc corre-
sponds to the transition between matter-dominated and radiation-dominated era and is
due to Meszaros effect. At this scale the scaling of the power spectrum changes from ∼ k
to ∼ k−3 due to suppressed growing of small-scales perturbations, which is postponed
to matter-dominated era. Large-scale perturbations (compared to horizon distance at
equivalence) never stopped growing as they grew with the scale factor out of the horizon
before radiation-matter equivalence, resulting in an enhanced power spectrum.

the Universe.

The latest results and constraints on cosmological parameters came with ESA’s Planck
CMB anisotropies observations.
During the early stages of its evolution, the universe was opaque, since photons were in-
teracting with free electrons via Thompson scattering. As temperature dropped, protons
were able to capture electrons to form neutral hydrogen during so-called recombination;
this happened at a redshift z ∼ 1100. At this point photons were not able to scatter
against electrons anymore, and they started streaming freely around the Universe, form-
ing CMB. The now free photons keep the footprints of previous inhomogeneity, which
we can now measure as anisotropy in CMB temperature on different scales.
These anisotropies are mainly driven by two effects

− BAO : Baryon acoustic oscillations are the sound waves due to the evolution of
density perturbations on small scales (see eq. 1.14). When photons decoupled
they kept track of them as peaks in the power spectrum.

− Sachs-Wolfe effect: this effect is responsible for photons redshift during their travel
to Earth due to general relativistic effects. Non integrated Sachs-Wolfe effect takes
place immediately at the surface of last scattering, while the integrated effect keeps
into account photons travel to Earth; it is particularly important during dark-
energy dominated era.
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The mean CMB temperature is observed to be T̄ = 2.725K, with anisotropy O(10−5)
due to the effects listed above, which are parametrized as

T (~p) = T̄ (1 + Θ(~p)), (1.18)

where ~p defines the direction of observation, and the fluctuations Θ(~p) can be expanded
in spherical harmonic functions

Θ(~p) =
∞∑
l=0

l∑
m=−l

a(l,m)Ylm(~p). (1.19)

Assuming absence of non-gaussianity in the primordial perturbation density field, we can
use the empirical power spectrum

Ĉl =
1

2l + 1

∑
m

|a(l,m)|2 (1.20)

as an estimator of the CMB angular power spectrum, reported in the famous fig. 1.4.
The position of the first peak in the power spectrum is directly correlated to the angle
under which we see the horizon distance at the time of recombination, which is a hint
about the spatial geometry of the universe (once we know the distance from recombina-
tion and the horizon distance at z ∼ 1100).
Moreover, odd peaks correspond to maximal compression during an oscillation, while
even peaks correspond to maximal expansion.
Nevertheless, only baryons are affected by relativistic pressure, while cold dark matter is
not as it interacts only gravitationally. Hence, from the ratio of first-second peaks and
first-third peaks, we can deduce the baryon and cold dark matter density of the universe.
Further peaks follow the exponential damping of the power spectrum and are less useful
for this purpose.

Thanks to Planck results [14], we now have the following density parameters for cold
dark matter and baryonic matter

Ωdmh
2 = 0.11933± 0.00091, Ωbh

2 = 0.02242± 0.00014, (1.21)

at 68% C.L..

1.7 Constraints on dark matter particles properties
Once we agree on the fact that about five sixths of the matter density of the Universe
is not ascribable to ordinary matter, the next natural question is: what is the rest of
matter density made of?

Some argued that similarly to the case of precession of Mercury’s perihelion, the ob-
served discrepancy is due to our lack of comprehension of gravity. If Newtonian gravity
does not act as we know it on cosmological scales, than it can be modified in order to
explain the observed phenomena. Such theories named MOND, modified Newtonian dy-
namics are strongly discredited by nowadays observations (for instance by bullet cluster
collision).

Other possible candidates for dark matter are massive astrophysical compact halo ob-
jects, machos, which are basically ordinary braryonic objects which emit little or no
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Figure 1.4: CMB angular power spectrum as measured in [14]. on y-axis we have l(l +
1)/2πC̄l, for a given multipole l. The position of the first peak gives information about the
curvature of the universe, while the ratio of the heights of the second and first peaks gives
information abount the baryonic content of the Universe. The dark matter abundance
can be inferred from the ratio of the third and first peaks height. Numerical results are
in eq. (1.21). The lower panel shows residuals with respect to the ΛCDM theoretical
model.

light, such as black holes, brown dwarfs and neutron stars, that could be responsible for
the apparent presence of dark matter halos. Machos could be detected via gravitational
microlensing effects, though the trial in detection in the Magellanic clouds have excluded
a vast range of macho masses (0.6 · 10−7 .Mmacho/M� . 15[15]).
Moreover from Big Bang nucleosynthesis model, we get a constraint on the total baryonic
density in the Universe [33]

0.019 ≤ Ωbh
2 ≤ 0.025 (95%C.L.), (1.22)

which is in agreement with Planck result eq. (1.21), and basically excludes macho nature
of dark matter.

The largely accepted hypothesis is that of particle nature of dark matter, namely dark
matter is made of particles (typically other than standard model particles) which interact
very weakly with standard model particles, and surely carry no electric charge.

If we want to stay within the standard model framework, neutrinos could be the only
reasonable candidate for dark matter, since they share only weak and gravitational inter-
actions with the other SM particles, and they decoupled at T ∼ 1MeV .One of the latest
upper bound on left-handed SM neutrino masses is given in [16] and reads mν < 1.1eV
(90% C.L.).
By entropy conservation at neutrino decoupling time, we know that the temperature of
a cosmic neutrino background has a temperature

T0ν =

(
g∗after
g∗before

)1/3

T0γ =

(
4

11

)1/3

T0γ ∼ 1.95K,

where g∗before and g∗after are the effective relativistic degrees of freedom of the bath before
and after decoupling.
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In turn, the total abundance of neutrinos is

Ωνh
2 ∼

∑
imνi

91.5eV
,

which makes left-handed neutrino incapable of accounting for all dark matter density.
Moreover, even if a fourth neutrino species existed (which is however very unlikely) mas-
sive enough to account for all DM relic density, since neutrinos are still relativistic at
decoupling (T ∼ 1Mev), they would be candidate for hot dark matter, in contrast with
observed bottom-up structure formation.

It is clear that we need to extend our theory in order to include new particles that
could account for dark matter, and many exotic candidates were considered as compo-
nent of particle dark matter.
However all the considered possible candidates need to share some common properties to
be coherent with observations, namely with unobserved results in laboratories and with
observed astronomical properties.
Here we list those properties

− dark and long lived : first of all dark matter should be indeed dark, hence neutral
under Uem(1). Moreover, even if it is not necessary that dark matter is absolutely
stable, it is compulsory that its lifetime is longer than the age of the universe
τU ∼ 4 · 1017s, in order for it to survive until now. More severe bound could follow
from astronomical observations: for instance, search for gamma-ray emission the
Perseus cluster [23] bounds the lifetime of DM (decaying in SM pairs) in mass
range 200GeV . mDM . 200TeV to τDM & 1026s. Assuming only that DM would
decay in relativistic particles, a lower bound is obtained [24] , based on cosmological
observations, τDM & 6 · 1018s.

− cold: the adjective cold refers to the fact that dark matter should be non-relativistic
when it decouples. This follows from astronomical observations: if dark matter is
relativistic at decoupling (hot dark matter), then it easily escapes gravitational
wells on small scales, creating dishomogeneities seeds on large scales only. In turn
this means that ordinary matter sees gravitational wells on large scales only, hence
large structures are formed first, that later fragment into smaller scale structures
such as cluster and galaxies. On the contrary observation suggest that small scale
structures merged to form larger scale structures, indicating that dark matter could
not easily escape gravitational wells formed on the scale of galaxies, hence its ve-
locity should have been small compared to their mass, favouring cold dark matter.
Actually some problems emerge within cold dark matter framework (e.g. missing
satellite problem: numerical simulations with cold dark matter predict the pres-
ence of dwarf galaxies in much larger numbers than observed [17]), and to solve
those incompatibilities an intermediate warm situation has been considered, so
that gravitational wells on dwarf galaxies scales can be easily washed away, reduc-
ing the power spectrum in that scale range and finding a better agreement with
simulations. The lower bound on thermal produced warm dark matter mass is
mwarm & 6.3keV [18].

− not too fuzzy: in order to solve the problem of cusps in low mass galactic cores,
various solutions have been proposed, among which we find extremely light scalar
cold dark matter, with mass of order 10−22eV . However, bosonic dark matter with
lower masses is unreliable, since its De Broglie wavelength would be larger that the
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kpc scale (relevant scale for galaxies), hence mdm & 10−22eV is an absolute bound
on scalar dark matter mass. However, if dark matter is fermionic, this turns in
the more severe constraint [19] mf,dm & 25eV . On the other hand, if point-like
dark matter is too heavy, it could easily destroy galaxy and cluster structures. By
studying the matter power spectrum [25] shows how dark matter mass in form of
primordial black holes should be mDM . 103M�. In general, we see that the range
of possible dark matter mass is extremely wide.

− Self-interacting: although in standard ΛCDM paradigm, dark matter is consid-
ered to bu collisionless, many discrepancies between theory and simulations arise,
and it is not clear whether DM should be collisionless or non-collisionless. For
instance, Tully-Fisher relation relates the intrinsic luminosity of a galaxy to max-
imum rotation velocity. Models [27] require much less dark matter halo density
than observed in simulation. The introduction of dark matter self-interactions
([21], [20]) produces better matches with simulations, and allows to avoid prob-
lems such as the discrepancy with the Tully-Fisher relation without introducing
exotic explanations. For self-interacting cross section per unit mass in the range
0.45cm2/g . σ/m . 450cm2/g, the problems of over-dense galaxy and cluster
cores and overabundance of DM halos predicted by CDM models can be avoided
[22]. On the other hand we have upper bound on self-interaction cross section from
cluster collision: bullet cluster collision suggest a constraint σ/m . 2cm2/g [26].

1.8 Freeze-out mechanism: a possible origin for DM
relic density

Studies have been made to explain the mechanisms through which it is possible to have
a considerable relic density of a particle species, that in this case will be dark matter.
The most credited and studied mechanism has been for long time freeze-out mechanism,
which we’ll briefly review in this section.

In freeze-out framework what happens is the following: consider a particle species X,
which is in thermal equilibrium in the early universe. Its number density will hence be
the equilibrium one: niX = nX,eq ∝ T 3 at early stages.
As time goes by, temperature drops, and particle species X is maintained in thermal
equilibrium with the bath, and when T ≈ mX , processes involving X particle produc-
tion are Boltzmann suppressed, hence nx undergoes a sharp fall, due to annihilation and
eventually scattering processes, while the inverse processes are exponentially disfavoured.
If this could go on indefinitely, nX would quickly become negligible, and the relic abun-
dance of particle X would vanish.
Nevertheless, something can happen before nX completely vanish: if the interaction rate
Γ, relative to the residual X number-changing interactions (typically pair annihilation),
becomes smaller than the Universe expansion rate H, particle X undergoes decoupling,
as interactions are no longer able to reduce X number density.
Through this mechanism, the comoving number density of particle species X can remain
constant at late stages, and eventually until now.

If this happens when T is not much smaller than mX (in a sense that has to be discussed
by further quantitative analysis), the non vanishing comoving number density of particle
specie X remains fixed and can eventually account for dark matter relic density; X is
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Figure 1.5: Evolution in time of comoving number density of a particle species that
undergoes freeze-out. The dashed line tracks the equilibrium number density while the
solid (red, green, yellow) lines are freeze-out yield for increasing cross section. We see
that the freeze-out temperature is typically O(10−1mX)

said to be frozen-out.

A schematic representation of the behaviour of X comoving number density is sketched
in fig. 1.5.
For the sake of simplicity we’ll show a quantitative result in the case in which only one
interaction is switched-on for particle X, namely pair self annihilation and its inverse.
More complex examples can be found in any cosmology textbook.
In this simple case Boltzmann equation reduces to the form

ṅX + 3HnX = −〈σannvrel〉[n2
X − n2

X,eq], (1.23)

where n2
X accounts for X self annihilation, while n2

x,eq for x pair production.
Assuming that σann is temperature independent, which allows us to get an analytical
result, the freeze-out condition is

Γann = 〈σannvrel〉nX = 1.66g1/2
∗

T 2

MPL

= H. (1.24)

Under these assumptions, the freeze-out number density, i.e. the relic number density
after decoupling, is

Y ' 10−8

(mX/Gev)(〈σannv〉/10−27cm3s−1)
,

corresponding to

ΩXh
2 '

(
3 · 10−27cm3s−1

〈σannv〉

)
. (1.25)

For a weak-scale particle, with α ' 10−2, the annihilation cross section is 〈σannv〉 '
α2

(100Gev)2
' 10−25cm3s−1.
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This is a marvellous prediction: if a new particle exists which has only gravitational
and weak interactions, it could easily account for dark matter density when it freezes-
out.
The exiting aspect of this prediction is that the same weak-scale interaction could make
the unknown particle observable at accelerators.
The sought-for particle is called Weakily Interacting Massive Particle, or WIMP, due to
its interaction properties.
From the above analysis we can underline the main features of the freeze-out mechanism:

− The larger the interaction strenght, the lower the final yield, since decoupling is
achieved later in time.

− Freeze-out yield is IR dominated, since it depends mainly on decopling temperature
which is tipically Tdec = O(10−1mX). The final Yield is therefore independent of
unknowk UV quantities such as reheating temperature TRH .

Finally the decoupling moment, xfo, is obtained solving eq. 1.24, eventually dropping
the assumption of σann independence on temperature.

We presented freeze-out mechanism because it has been longly the most credited mech-
anism for production of a relic density, however this is not the only available possibility,
and we’ll leave this framework in the following, introducing a different way to get a
constant relic number density for a particle species.
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Chapter 2

Supersymmetry and its Motivations

The standard model is one of the best verified theory of modern physics. It offers strik-
ingly precise predictions, and it is nowadays a universally accepted theory of nature.
Nevertheless we are aware of its limits, as it clearly has to be completed at high energies
and it cannot account for gravity. Moreover there are some phenomenological and theo-
retical problems within the theory of the standard model.

For instance, the observed neutrino oscillation implies non vanishing neutrino masses,
which do not fit in the theory, though a simple way to include them could be to extend
the theory, encompassing right-handed neutrino, via a seesaw mechanism.
Also, within SM there’s no way to produce a sufficient baryon-antibaryon asymmetry,
nor there’s an explanation for the nature of dark matter and dark energy.
Some of these problems could be elegantly solved if one includes a new symmetry in the
theory, which is called supersymmetry.
In this chapter we’ll explore one of the motivations that led to think that supersymmetry
could be a symmetry of nature, namely the solution to the hierarchy problem, and we’ll
later explore supersymmetry in much more detail, providing an explanation of the sym-
metry breaking process. Lastly we’ll promote this new symmetry to a local symmetry
and explore its implication, one over all, the existence of the gravitino.

2.1 The hierarchy problem
Standard model is a gauge theory encompassing three of the four fundamental forces
under the gauge group GSM = SUC(3) × SUL(2) × UY (1). The symmetry group does
not allow mass terms in the lagrangian, for they would explicitly break the symmetry;
to overcome this problem a new scalar boson, the Higgs, was added to the theory and
particles can now acquire mass via interaction with the Higgs boson. This happens
through the spontaneous breaking of the electroweak symmetry, caused by the Higgs
acquiring a non-vanishing vacuum expectation value (v = (

√
2GF )−1/2 ∼ 246GeV ), and

breaking the symmetry to

SUC(3)× SUL(2)× UY (1)→ SUC(3)× Uem(1).

This happened in the early universe when the energy dropped below the electroweak
energy scale, which is Λew = O(102GeV ), and the Higgs boson was observed at LHC in
2012, reporting a mass of MHiggs = 124.97± 0.28GeV [34], fixing the last free parameter
of the SM.

Now this theory works brilliantly, but still there’s a natural question to ask: why is
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the weak scale 1017 times smaller than the Planck scale Mpl ∼ 1.22 · 1019 GeV?
Let’s see how this can affect SM phenomenology. We know that the SM is UV incom-
plete, as we expect new physics to arise at energy scales which are typically not far below
Planck scale, hence many orders of magnitude larger than Λew.
This energy scale at which new physics comes out can be used as an UV cutoff to regu-
larize our divergent integrals.

If we use this procedure here comes the discrepancy: quantum correction to the Higgs
mass should be of the same order as the scale at which new physics arises. This can be
seen in the following way: Higgs mass at tree level is proportional to v and to a coupling
parameter which is fixed once one experimentally measures Higgs mass, nevertheless all
massive particles contribute to correct Higgs mass at quantum level. If the Higgs couples
to a fermion with an interaction term of the type

Lint = −λfhf̄f,

corresponding to a loop diagram as in fig. 2.1, then the Higgs mass gets a one-loop
correction which grows quadratically with the UV cutoff ΛUV :

∆M2
h,loop = −|λf |

2

8π2
Λ2
UV +O

(
m2
f ln(ΛUV /mf )

)
. (2.1)

Since Higgs boson couples to all massive fermions of the standard model, all leptons
and quarks contribute to correct the Higgs mass, and if the scale at which new physics
arises ΛUV is not far below the Planck mass, then we get a discrepancy of many orders
of magnitude on Higgs mass and on all the rest of the standard model masses, since they
depend on Higgs VEV.

Within the framework of the standard model, the Higgs bare mass receives one-loop
contribution (considering only top quark for fermions)

∆M2
h,SM =

3

4π2
Λ2
UV

(
−λ2

top +
g2

4
+

g2

4cos2θW
+ λ

)
, (2.2)

where λtop is the top quark Yukawa coupling, λ is the Higgs quartic self-coupling and g
is SUL(2) coupling constant.
This is actually not a problem within SM itself, as one can adjust the bare mass to
exactly reproduce the observed mass.
Moreover one could use a dimensional regularization of the integrals, so that the Λ2

UV

part of the correction disappears, while one cannot remove the correction proportional
to m2

f in eq. (2.1).

The problem lies rather in the sensitivity of the Higgs mass to new physics, and it
appears as one tries to extend the standard model.
For instance, if the existence of Majorana right-handed neutrinos is the solution to the
neutrino mass problem via seesaw mechanism, then the Higgs receives a contribution to
its mass which is O(MR), whereMR is the right-handed neutrinos Majorana mass, which
is typically required to be many orders of magnitude larger than Λew.
This means that as we include new particles the problem will show, both in the case in
which new particles acquire mass via SSB in the electroweak sector, and in the case in
which tree level masses are allowed by symmetry for these particles but they share some
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gauge interactions with the Higgs (see diagrams in fig. 2.1).

Therefore a possible solution could be to assume that all new particles do not couple to
the Higgs, not even extremely weakly, which seems an unnatural possibility. Only a strik-
ing cancellation of the contribution terms to Higgs mass would save us from this problem.

We now come to the possible solution that supersymmetry offers to this problem, namely
the sought-for exact cancellation.
Let’s now suppose that the Higgs couples to a massive scalar via the interaction term
Ls = −λS|h|2|s|2. Higgs mass will get a contribution also from this interaction (see fig.
2.1)

∆M2
h,loop =

λs
16π2

(Λ2
UV − 2m2

sln
ΛUV

ms

+ · · · ). (2.3)

Looking at eq. (2.1) and (2.3), we see that the contribution from fermions and scalars
exactly cancel if for each fermion there exist two complex scalars that couple to the Higgs
with strength λs = |λf |2; this means exactly that the realization of supersymmetry would
make all the undesired contribution to Higgs mass exactly cancel (it can be shown that
this happens to all orders, not only at one loop) solving the naturalness problem.

In the frame of supersymmetry, we can evaluate corrections to Higgs mass that keeps
into account the cancellation. The final result makes use of definitions which will be
introduced later along this chapter, and requires a quite involved calculation we’ll not
present here for reasons of conciseness, nevertheless we’ll report the final result.
In the limit in which the mass of the superpartner of the top quark is much greater than
the top quark mass, the largest correction to Higgs mass reads at one-loop order

∆M2
H =

3

4π
cos2αy2

topm
2
top

(
ln(mt̃1mt̃2/m

2
top) + ∆threshold(mt̃1 ,mt̃2 ,mtop, θt̃)

)
(2.4)

where mtop is the usual SM top-quark mass and mt̃1,2 are the masses of the top-like scalar
particles mass eigenstates.
What is important is that the final Higgs mass depends only on the mass spectrum of
the theory and two angles, while the UV dependence disappeared as wanted.
The first term on the RHS of eq. (2.4) comes from the three diagrams shown in fig. (2.2),
while the second term comes from corrections to the running quartic Higgs coupling,
considering again only contributions from top-like particles.
It’s not difficult to accommodate the mass spectrum so that the result is in agreement
with measured value for the Higgs mass. For instance, if superpartner masses do not
exceed 1 TeV, one can obtain the upper limit

MH ≤ 135GeV.

2.2 A new symmetry
Until the introduction of supersymmetry as a possible symmetry of the theory, the most
severe bounds on the possible symmetry group of the lagrangian lied in Coleman-Mandula
theorem.

The theorem states that in a theory in which (i) the S matrix is based on a local relativis-
tic field theory, (ii) there is only a finite number of different particles in a one-particle
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Figure 2.1: Loop contributions to Higgs mass. The first two diagrams represent con-
tributions from fermions and scalar that directly couple to the Higgs, while the third
diagram shows a contribution from heavy fermions that couples via gauge interactions
to the Higgs.

H f̃H
f

H
f̃

Figure 2.2: Loop contributions to Higgs mass, when we assume the existence of super-
partners. The two diagrams involving the scalar f̃ exactly balance the UV sensitive part
of the correction due to the fermionic f contribution.

states at a given mass and (iii) there is an energy gap between the vacuum state and
one-particle states, then the most general Lie-algebra of symmetries of the S matrix is
generated by Pµ, Mµν , and Ba, where Ba are Lorentz scalars and belong a to a compact
Lie group G. The algebra is hence defined by the following commutation relations:

[Pµ, Pν ] =0,

[Mµν ,Mλρ] =− iηνλMµρ + iηµλMνρ + iηνρMµλ − iηµρMνλ,

[Mµν , Pρ] =− iηνρPµ + iηνρPµ,[
Ba, Bb

]
=ifabc B

c,

[Ba, Pν ] =0,

[Ba,Mµν ] =0.

(2.5)

that is , the most general group of symmetry of the S matrix is SO(1, 3)⊗ G.

The idea of supersymmetry appears in the early ’70, first in the context of string theory.
The basic idea is that for each particle we observe, there are N companion particles
whose spin differs by 1

2
from the original particle, where N is the number of supersym-

metries in our theory. In our case we’ll focus on the N = 1 case, i.e. for each fermion
there exists a boson and vice versa.
To achieve this result it’s compulsory to extend the algebra (2.5) to include a fermionic
generator, to realize the desired transformation:

Q|F 〉 ∼ |B〉; Q|B〉 ∼ |F 〉, (2.6)

where Q is the fermionic generator and |F 〉, |B〉 are a fermionic and bosonic state re-
spectively.
In general, Coleman-Mandula theorem seems to forbid such a symmetry, nevertheless it
is possible to extend the theorem to include the possibility of using anticommutators.
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This more general no-go theorem that includes anticommutation relations is referred
to as Haag-Łopuszański-Sohnius theorem, and it states that the general Lie-algebra of
symmetry of S includes the following relations (in the case of N = 1 supersymmetries,
useful for this thesis):

{Pµ, Qα} =0,

[Mµν , Qα] =− (Σµν)
β
αQα,

[Ba, Qα] =(Ba)ijQα,{
Qα, Q̄β

}
=2γµαβPµ,

(2.7)

where Σµν are the generators of the Lorentz group in spinorial space.
The last of the relations in 2.7 tells us that supersymmetry is not an internal symmetry,
rather it is a spacetime symmetry. This makes the resulting algebra a Z2 graded algebra,
where scalar generators Ba are Z2 even while fermionic generator Qα is Z2 odd.

As of today, we have not observed the SM supersymmetric companion particles that,
were supersymmetry unbroken, would have exactly the same masses of the SM particles.
Therefore if we want supersymmetry to be a symmetry of nature, we need to also accept
that it is broken, and eventually include a mechanism providing the desired symmetry
breaking.
The motivations that led to accept the idea in the framework of string theory lie out of
the aim of this thesis, nevertheless some interesting phenomenological aspect arise after
we accept its existence, and we can give some a posteriori reasons to believe that SuSy
is a symmetry of nature.
One of the marvellous consequence of supersymmetry, is the solution of the hierarchy
problem of the standard model.

2.3 Global supersymmetry
As anticipated in section 2.2, the basic idea of supersymmetry is to add to gauge invari-
ance another kind of internal symmetry, which relates fermionic fields to bosonic fields.
What we’re looking for is a transformation that turns a bosonic state into a fermionic
one and vice versa, calling Q and Q† the generators of the symmetry,

Q|F 〉 ∼ |B〉; Q|B〉 ∼ |F 〉. (2.8)

The generators of the transformation need to carry a fermionic index in order to accom-
plish this task, and they satisfy the supersymmetry algebra

{Qα, Q
†
α̇} = −2σµαα̇Pµ; {Qα, Qβ} = 0 = {Q†α̇, Q

†
β̇
}. (2.9)

Fields related via such a symmetry belong to the same supermultiplet ; that is, a super-
multiplet is a collection of fields whose variation under a supersymmetry transformation
is proportional to the others.

In building a supersymmetric lagrangian, keeping in mind that we also want to include
our old gauge interactions, it turns out that two kind of supermultiplets are needed.
The first one includes a Weyl fermion and two complex scalar fields, one of which is
non-propagating. This kind of supermultiplet is called chiral, namely
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Φchiral = (φ, ψ, F ).

Clearly vector bosons do not fit in chiral supermultiplets, hence we need the so called
gauge supermultiplets, including a vector boson, a Weyl fermion and a non-propagating
real scalar, namely

Φgauge = (Aµ, λ,D).

The two non-propagating scalars, F and D, are needed to close the supersymmetry alge-
bra off-shell, and they also complete the bosonic off-shell degrees of freedom, which we
would like to be always equal to fermionic ones.

Fields in the same supermultiplet share the same gauge interactions and the same mass,
unless Supersymmetry is broken.
The presence of vector bosons introduces covariant derivatives in the lagrangian, which
are responsible for gauge interactions.

Nevertheless, fields belonging to chiral supermultiplets can interact between themselves.
These interactions are specified by a single holomorphic complex function of the scalar
fields φi, (i runs over gauge and flavour degrees of freedom), called the superpotential.
By imposing renormalizability and supersymmetric invariance this function reads:

W (φ) =
1

2
M ijφiφj +

1

6
yijkφiφjφk + Liφ

i, (2.10)

where M ij and yijk are totally symmetric under indices exchange.
By defining

Wi =
δW

δφi
; Wij =

δ2W

δφiδφj
, (2.11)

our global supersymmetric lagrangian reads:

L =−∇µφi∇µφi + iψ†iσ̄µ∇µψi −
1

2
(W ijψiψj +W ∗

ijψ
†iψ†j)−W iW∗i

− 1

4
F a
µνF

µν
a + iλ†aσ̄µ∇µλa +

1

2
DaD

a

−
√

2g(φ ∗ T aψ)λa −
√

2gλ†a(ψ
†T aφ) + g(φ∗T aφ)Da,

(2.12)

where covariant derivatives are defined as in usual gauge theories, a runs over the adjoint
representation of the gauge group and T a are the representations of the gauge group under
which chiral supermultiplets transform.
The above lagrangian is left invariant up to total derivatives under the supersymmetry
transformations:

δφi = εψi, δAaµ = − 1√
2

(ε†σ̄µλ
a + h.c.),

δψiα = −i(σµε†)α∇µφi + εαFi, δλaα =
i

2
√

2
(σµσ̄νε)αF

a
µν +

1√
2
εαD

a,

δFi = −iε†σ̄µ∇µψi +
√

2g(T aφ)iε
†λ†a; δDa =

i√
2

(−ε†σ̄µ∇µλ
a + h.c.).

In order for lagrangian 2.12 to be supersymmetric, one must also require

W i(T aφ)i = 0.
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Names spin 0 spin 1/2 SUC(3), SUL(2), UY (1)

squarks, quarks (ũL d̃L) (uL dL) (3, 2, 1
6 )

ũ∗R u†R (3̄, 1, − 2
3 )

d̃∗R d†R (3̄, 1, 1
3 )

Sleptons, leptons (ν̃ ẽL) (ν eL) (1,2, − 1
2 )

ẽ∗R e†R (1, 1, 1)
Higgs, Higgsinos (H+

u H0
u) (H̃+

u H̃0
u) (1, 2, 1

2 )
(H0

d H−d ) (H̃0
d H̃−d ) (1, 2, − 1

2 )

Table 2.1: Chiral supermultiplets and their transformation properties under SM gauge
group

The non-propagating fields can be expressed algebraically in terms of the scalar fields of
the theory using their equations of motion:

Fi = −W ∗
i ; Da = −g (φ∗T aφ) .

Using the above expressions one can write the scalar potential of the theory as follows:

V (φ, φ∗) = F ∗i F
i +

1

2

∑
a

DaDa = W ∗
i W

i +
1

2

∑
a

g2
a (φ∗T aφ)2 . (2.13)

The supersymmetric lagrangian 2.12 introduces new interactions.
Lchiral adds a scalar-fermion vertex, a quartic interaction for scalars, mass terms for both
scalars and fermions and cubic scalar vertex. Lgaugerestores old gauge interactions and
adds gauge boson-gaugino-gaugino and fermion-gaugino-scalar interactions.

Following Noether procedure, one can find the conserved current relative to global su-
persymmetric invariance, named supercurrent. The exact expression for the supercurrent
reads:

Jµα = (σν σ̄µψi)α∇νφ
∗i + i(σµψ†i)αW

∗
i −

1

2
√

2
(σν σ̄ρσµλ†a)αF

a
νρ +

i√
2
gaφ

∗T aφ(σµλ†a)α

(2.14)

2.4 The minimal supersymmetric standard model
The MSSM is the theory obtained by ’supersymmetrizing’ the standard model.
Particle content of the MSSM will include the well-known SM particles plus their super-
partners, hence one scalar for each fermion and vice versa. Moreover an additional Higgs
chiral doublet is required. This follows from the requirement of the superpotential being
holomorphic in the scalar fields, and by gauge anomaly cancellation.
Particle content of MSSM is shown in table 2.1 and table 2.2.

The superpotential reads in this case:

WMSSM = ūYuQHu − d̄YdQHd − ēYeLHd + µHuHd, (2.15)

where Y are 3x3 matrices, whose indices run over gauge and flavour degrees of freedom.
Only scalars appear in 2.15, while we used the ambiguous multiplet notation for simplic-
ity only.
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Names spin 1/2 spin 1 SUC(3), SUL(2), UY (1)
Gluino, gluon g̃ g (8, 1, 0)

Winos, W bosons (W̃± W̃ 0) (W± W 0) (1, 3, 0)
Bino, B boson B̃0 B0 (1, 1, 0)

Table 2.2: Gauge supermultiplets and their transformation properties under SM gauge
group

The potential in eq (2.15) introduces a new problem in the theory. In fact, the pa-
rameter µ provides both Higgsino masses and scalar Higgs potential:

−LHu,Hd = µ(H̃+
u H̃

−
d − H̃

0
uH̃

0
d) + h.c.+ |µ|2(|H+

u |2 + |H0
u|2 + |H−d |

2 + |H0
d |2).

The scalar part of the lagrangian is positive definite and has a minimum for |H0
u|2 =

0 = |H0
d |2, which prevents electroweak symmetry to be broken. In order to provide a

mechanism for electroweak SSB it is necessary therefore to add new terms to the Higgs
scalar potential, in order to shift the minimum of the potential along the neutral scalar
Higgs directions.
This is actually possible by means of soft breaking terms, which we’ll shortly present;
it is sufficient to know that scalar masses terms, hence mH,soft too, are allowed (and
somehow desirable) as supersymmetry breaking terms.
On the other hand, the minimum of the potential should be around the observed Higgs
VEV, hence in absence of striking cancellations it should hold µ ∼ O(102 − 103GeV ).
Again this insinuates a naturalness problem: why should be µ many oders of magnitude
smaller than Planck scale, and why should it be of the same order as the soft mass terms?
This is the so called the µ-problem. The most studied strategy to solve this problem is
to suppose that µ terms are absent in the supersymmetric phase, while being driven by
some supersymmetry breaking field’s VEV, see e.g. [40, 39].
In this way, it is natural that µ be the same order of magnitude of soft masses, the
problem is therefore moved to understand why soft masses are way smaller than Planck
mass.

2.5 Supersymmetry breaking
If supersymmetry is realized in nature, then it clearly must be broken. In fact, if that
wasn’t true, we would have discovered superpartners of SM particles long ago at collid-
ers, since they would share the same messes and interactions of SM particles.
One of the effects of supersymmetry breaking is in fact the splitting of masses of par-
ticles in the same supermultiplet, eventually pushing those of superpartners above the
experimentally accessible scale.
There are two ways in which supersymmetry can be broken:

Explicitly : the lagrangian of the theory contains terms that explicitly break the sym-
metry. In this case those terms arise as effective operators of a UV supersymmetric
theory, hence the mass dimension of those operators is positive (’soft ’ breaking
terms). In this case, when we add soft terms to the lagrangian, no ultraviolet
divergences to scalar masses are added.

Spontaneously : SuSy is broken when one or more of the scalar auxiliary fields acquire
a non vanishing VEV.
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In the case of soft supersymmetry breaking, we expect the symmetry to be actually
spontaneously broken in some sector of the theory (other than the MSSM) and to be
then communicated to the MSSM sector via some interaction, as we’ll better explain
later. In this case We will briefly analyze the two cases in more detail.
The latter case happens when one of the Fi or Da fields acquires a VEV.
In fact, the condition for the vacuum state not to be superymmetric invariant (broken
SuSy), via eq. 2.9, translates into H|0〉 6= 0. Neglecting spacetime dependence and
fermionic condensates, this means 〈0|V (φ, φ∗)|0〉 6= 0, and looking at eq. 2.13, one gets
the above condition for SuSy breaking.
Depending on which field(s) (D or F) is responsible for supersymmetric breaking we get
different requirements and implications.

− Feyet-Iliopoulus mechanism (D-breaking term):
It is possible when a U(1) factor appears in the gauge group. Such a gauge sym-
metry allows a LD = −kD term, which is also supersymmetric invariant.
Such a term forces the D field to acquire a VEV and causes mass splitting inside
supermultiplets.
Unfortunately the UY (1) factor of the SM gauge group cannot be the sought-for
factor, and D-breaking terms cannot provide reasonable masses to MSSM particles.

− O’Reifeartaigh mechanism (F-breaking terms):
these models require at least one gauge singlet among the supermultiplets, allowing
a linear term in the relative superfield. Again this linear term forces the auxiliary
field to acquire a VEV.
F-breaking terms are more promising then D-terms, but unfortunately there’s no
gauge singlet in the MSSM.

Regarding explicit (soft) breaking terms, the general form of the lagrangian that can
play that role is:

Lsoft = −
(

1

2
Maλaλ

a +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ h.c.− (m2)ijφ

∗jφi. (2.16)

Expression 2.16 shows that the general soft breaking terms are gaugino masses, scalar
masses and scalar quadratic and cubic interaction terms.
Those terms clearly break supersymmetry since they involve gauginos and scalar fields
but not their superpartners.

In all cases there’s no MSSM candidate to be responsible for SuSy breaking, hence
this process must happen in some ’hidden sector ’ and then be communicated to MSSM
via some interaction.
The simplest model of ’hidden sector’ was proposed by Polonyi in [42], and includes a
single chiral supermultiplet.
Once breaking is achieved in the hidden sector, it can be communicated both via gauge
interactions or via gravitational interaction.

• Planck-scale mediated SuSy breaking:
Occurs when gravitational interactions link the two sectors.
In this case the energy scale (msoft) that enters the soft lagrangian is of order:

msoft ≈
〈F 〉
MPl

.

Requiring msoft ≈ 1Tev one gets
√
〈F 〉 ∼ 1011Gev.
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• Gauge-mediated SuSy breaking:
Occurs when gauge interactions link the two sectors.
In this case the ’communication’ requires at least one loop diagrams and

msoft ≈
αa
4π

〈Fa〉
MMess

.

and the typical mass scale of the interaction mediator MMess is involved.
Requiring msoft ≈ 1Tev and supposing 〈Fa〉 ∼MMess, one gets√

〈F 〉 ≥ 104Gev

As for any case of global broken symmetry, the breaking of supersymmetry implies
the presence of a massless Weyl fermion, which in this case is the superpartner of the
auxiliary field that acquires a VEV.
This presence of such a fermion can be shown explicitly: the fermion mass matrix derived
from eq. 2.12 annihilates the vector

G̃ =
〈Da〉√

2
λa + 〈Fi〉ψi. (2.17)

Hence 2.17 is a massless eigenstate of the fermion mass matrix. The goldstino is therefore
a linear combination of the other fermion fields of the theory, with coefficients propor-
tional to the VEV of the correspondent auxiliary fields.
The goldstino G̃ interacts with the other supermultiplets, the relative lagrangian reading:

LG̃ = iG̃†σ̄µ∂µG̃−
1

〈F 〉

(
G̃∂µj

µ + h.c.
)

(2.18)

where F is the auxiliary filed for the goldstino and jµ only involves other supermultiplets
(so that ∂µjµ 6= 0).
From expression 2.18 one identifies the interesting goldstino-scalar-chiral fermion and
goldstino-gaugino-gauge boson interactions.

The interaction term of lagrangian 2.18 seems to diverge as SuSy is restored (or equiv-
alently when 〈F 〉 → 0). However, the ∂µjµ term contains two derivatives of the other
fields, that turn out to be proportional to the on-shell mass splitting inside a super-
multiplet, which vanishes as SuSy is restored, granting a non pathological behaviour of
interaction terms.

2.6 R-parity
In principle WMSSM could include B and L violating terms. The most general super-
symmetric gauge invariant renormalizable terms that violate B and L by one unit are

W∆L=1,∆B=1 =
1

2
λijkLiLj ēk +

1

2
λ′ijkLiQj d̄k + µ′Hu +

1

2
λ′′ijkūiūj d̄k (2.19)

while it is well known that such terms should be highly suppressed or absent at tree
level. In fact the last term in equation (2.19) would imply a short proton lifetime, which
is the most severe bound on B-violating terms.
In order to preserve already known results about B and L conservation, one could simply
postulate conservation in the MSSM or introduce a new symmetry that forbids such
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terms.
The simplest symmetry that can be introduced to this end is called matter parity, whose
quantum number that has to be multiplicatively conserved at each vertex is

PM = (−1)3(B−L). (2.20)

Chiral supermultiplets have PM = −1, except for the Higgs supermultiplets that carry
PM = +1. Gauge supermultiplets have PM = +1 since they carry no baryionic or
leptonic number.
Matter parity conservation is equivalent to multiplicative conservation of R−symmetry,
whose quantum number is defined as follows

PR = (−1)3(B−L)+2s, (2.21)

where s is the particle spin. It is easy to show that if angular momentum is conserved,
the conservation of (2.21) and (2.20) is equivalent.
All standard model particles have PR = +1, while their superpartners have PR = −1.
R-parity is then a Z2 symmetry between SM particles and superpartners.
Among the implications deriving from the conservation of R-parity, one is of particular
interest for this thesis:

The lightest supersymmetric particle (LSP) is completely stable.

2.7 Supersymmetric dark matter
Among the features of supersymmetric models there is an appealing one that provides a
natural candidate for dark matter particle. In fact, as we studied in detail throughout
the chapter, it is natural to introduce a new Z2 symmetry, R-Parity, in order to forbid
tree-level violation of baryonic and leptonic numbers.

If this symmetry is to be exactly conserved the lightest Z2-odd particles cannot pos-
sibly decay into other states, and is hence completely stable; moreover, other Z2-odd
particles will eventually decay in the lightest one.
If we arrange the mass spectrum so that this special particle is also neutral under SM
gauge group, then we get a perfect candidate for dark matter. We’ll briefly explore pos-
sible particles of the MSSM that could be candidates for dark matter.

Sneutrinos are the superpartners of SM neutrinos, and hence share only gravitational
and weak interactions with SM particles. Sneutrino LSP is typically underabundant in
the MSSM framework, although it could reproduce the wanted relic density for a small
mass range [28] [29].However direct detection of DM experiments, i.e. via elastic scat-
tering over detector nuclei, set the most severe constraint on sneutrino DM, typically
ruling out mass ranges which are of cosmological interest. Sneutrinos could be good
dark matter candidates in extended supersymmetric models such as the BLMMS [30].

Neutralinos are four fermions that compose the MSSM particle spectrum, as they are
a linear superposition of the neutral heavy gauginos W̃ 0 and B̃0 and the two neutral
Higgsinos. Neutralino masses are obtained diagonalizing the mass matrix of the four
sfermions, namely

Mχ̃ =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvd/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvd/

√
2 −µ 0

 (2.22)
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where M1 and M2 are soft gaugino masses, µ is due to the superpotential (2.15) and
vd, vu are the VEVs of the down-like and up-like Higgsinos respectively. Neutralinos have
been largely studied as possible dark matter particles, and direct detection experiments
aim to reduce the available mass range. As of today they’re still possible DM candidates.

As a foretaste of what we’ll explain in detail in the rest of this chapter, in the frame-
work of local supersymmetry, gravitino joins the possible LSP candidates, hence it could
constitute dark matter. In unbroken local supersymmetry, gravitino shares only gravi-
tational (therefore extremely weak) interactions with SM particles, and is neutral under
the SM symmetry group. Were supersymmetry unbroken, gravitino would be massless,
nevertheless as we will show in the following, gravitino can acquire mass via the super-
Higgs mechanism when local supersymmetry is broken. In turn gravitino also inherits
goldstino interactions that can dramatically boost gravitino production in the early uni-
verse. Moreover in the case of gauge-mediated supersymmetry breaking, gravitino can
easily be the LSP as it’s clear from section 2.9.

2.8 Local supersymmetry
Once we have our global supersymmetric model, we can move a step forward and let the
parameter of the SuSy transformation have non vanishing spacetime derivatives.
If ξα is the transformation generator,

∂µξα 6= 0. (2.23)

This promotes our symmetry to a local one.

Lagrangian 2.12 is invariant (up to total derivatives) under global SuSy, but introducing
condition 2.23 will require new terms in order to preserve invariance.
First of all, as in any case of local symmetry, we would like to have a field that mediates
local symmetry. In this case, such a field will be a 3/2-spin field carrying both vector
and spinorial indices.
We’ll refer to it as ψµα, often omitting the spinorial index.

The presence of this field partially restores invariance, and belongs to a supermulti-
plet as all fields (the other field completing invariance restoration).
Surprisingly, the superpartner of ψµ is the metric field gµν , and for this reason ψµ is
called gravitino.
For a quick review of spin-3/2 particles see Appendix A.
The implementation of the gravity supermultiplet grants invariance, and the theory ob-
tained is often referred to as SUperGRAvity.

A minimal SuGra lagrangian can be found for instance in [37], and we’ll not report
here it fully for reasons of conciseness.
SUGRA lagrangian depends on two arbitrary functions:

◦ fab(Φ), an arbitrary function of the scalar fields, which affects the scalar kinetic
terms. The minimal choice fab = δab restores the canonical kinetic terms.

◦ The second function is defined as follows:

G(φ, φ∗) = K(φ, φ∗) + ln|W |2, (2.24)
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where W is the superpotential (see eq. 2.10) and K is Kähler function, a real
function of the scalar fields.

Kähler function induces a metric on the scalar fields space, namely

gij∗ =
∂2K

∂φi∂φ∗j
. (2.25)

The minimal choice Kmin = φiφ∗i translates into gij∗ = δij and restores canonical kinetic
terms for spinor fields.
The interesting part of the lagrangian for this thesis is the section that includes interac-
tion operators involving the gravitino:

LΨJ

e
= − 1

2M
gij∗∇νφ

∗jχiσµσ̄νψµ −
i

2M
ψµσ

νρσµλ̄aF
a
νρ + h.c. (2.26)

where e =
√
−g and M is the reduced Planck massM = MPL√

8π
In the simple case in which

K(φ, φ∗) = φiφ∗i, covariant derivative takes the usual form

∇µφ
i = ∂µφ

i + igAaµT
a
ijφ

j. (2.27)

2.9 Spontaneous breaking of local SuSy
As for the case of global supersymmetry, we would like SuGra to be a broken symmetry.
Again, after spontaneous breaking of the symmetry, a massless goldstino appears, as
previously discussed.
In this case, in analogy to what happens in electroweak SSB, the goldstino gets ’eaten’
by the gravitino.
This can be shown writing the quadratic part of the SuGra lagrangian, without derivative
couplings, and rearranging it in such a way that massless gravitino ψµ mixes with a
combination of the other fermions:

η = − i√
2
Giχ

i +
1

2
e−

G
2 gDaλa, (2.28)

which is indeed the goldstino.
Subsequent to this process, gravitino acquires two helicity modes, reaching a total of 4.
Moreover, gravitino mass term appears.
Gravitino mass m3/2 reads

m3/2 = |e
K
2 W |. (2.29)

Gravitino in broken local suspersymmetry has 4 helicity states, has inherited gravitino
interactions and has a non-vanishing mass.

In the case of F-breaking term (as in the minimal Polonyi model [42]), m3/2 ∝ 〈F 〉
M

.
This relation is crucial and changes gravitino physics, depending on which interaction
mediates symmetry breaking:

• Planck-mediated: Gravitino mass is O(Tev) and its interactions are mainly grav-
itational. Its role is mostly confined to cosmological effects (e.g. it could easily
overclose the Universe).

• Gauge-mediated: In this case, ifMMESS �MPL (see Sec. 2.2), gravitino mass can
be as low as O(10−15Gev) and ψµ is almost certainly the LSP. The inherited non-
gravitational goldstino interactions are dominant over the original gravitational
ones, and they can play a relevant role in collider physics.
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2.10 Gravitino interactions
The relevant gravitino interaction terms are those of lagrangian 2.26.
The dominant decay processes are ψµ → λ + Aµ and ψµ → φi + χ̄i, if kinematically
allowed.
Decay rates for the two processes can be directly evaluated using lagrangian 2.26 and
read:

Γ(ψµ → λ+ Aµ) =
1

32π

m3
3/2

M2

(
1−

(
mλ

m3/2

)2
)3(

1 +
1

3

(
mλ

m3/2

)2
)
, (2.30)

Γ(ψµ → φi + χ̄i) =
1

384π

m3
3/2

M2

(
1−

(
mφ

m3/2

)2
)4

. (2.31)

where we have assumed zero mass for Aµ and for χi.

As pointed out in Sec 2.9, gravitino can be extremely light.
In this case, it is useful to write an effective lagrangian, which is valid for the condition√
s � m3/2. If this holds, the helicity ±1

2
modes of the gravitino, which were inherited

by the goldstino, can be written as

ψµ ∼
i

m3/2

√
2

3
∂µψ, (2.32)

where ψ is here the spin-1/2 goldstino field.
Substituting relation 2.32 in lagrangian 2.26 one gets an effective lagrangian for light
gravitino (equivalently goldstino) interactions (which is of the form of eq. 2.18).

One could expect these effective operators to produce divergences in the UV. In fact,
these interaction terms are inherited from the goldstino, which exist only if SuSy is
broken, hence the relative terms are proportional to the symmetry breaking order pa-
rameter. The order parameter vanishes in the symmetric phase, i.e. at high energies
where pathological behaviours are expected to arise. This solves UV problems, and al-
lows us to replace derivatives acting on all the other fields with their respective on-shell
masses.

This leaves us with an effective lagrangian for the helicity ±1
2
modes

Leff = −
i(m2

φ −m2
χ)

√
3m3/2M

ψχφ∗ − imλ

8
√

6m3/2M
ψ(σ̄µσν − σ̄νσµ)λaF a

µν + h.c. (2.33)

the feyman diagrams of these interactions are reported in fig. 2.3.
Notice that the gravitino couples to chiral supermultiplets via a marginal operator, while
it couples via a non-renormalizable (dimension 5) operator to gauge supermultiplets.
From this lagrangian one can obtain the production rate of goldstinos from a gaugino or
scalar particle decay, namely

Γ(λ→ ψ + Aµ) =
1

48π

m5
λ

m2
3/2M

2

(
1−

(
m3/2

mλ

)2
)3

(2.34)

and
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Γ(φ→ ψ + χ) =
1

48π

m5
φ

m2
3/2M

2

(
1−

(
m3/2

mφ

)2
)2

(2.35)

ψ χi

φ∗i

ψχ†i
φi

ψ λa

Aaµ

ψ

λa

Abµ

Acν

Figure 2.3: The four Feynman diagram arising from interaction terms in lagrangian 2.33.
The first two correspond to the marginal chiral operator, while the last two to irrelevant
gauge operator.
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Chapter 3

Stable gravitino cosmology

As we assume that supersymmetry is a broken symmetry of nature, we need to take into
account the effects of the existence of R-odd particles, and among them of the gravitino
LSP. The presence of these new particles can largely affect cosmology.

In this chapter we’ll first present the gravitino production results as obtained in [46, 49],
then we’ll add the corrections to these results due to top quark, as shown in [49]. More-
over, we follow the work of [50], dropping the approximation of instantaneous inflaton
decay, while keeping the well justified approximation of instantaneous thermalization of
decay products.

After getting the right gravitino production rate in the early universe, we review the con-
sequences of gravitino presence in the universe evolution, mainly focusing on unwanted
effects [52, 53, 54, 55, 56, 57], showing how the two cosmological gravitino problems can
be avoided, as shown in [44] and [37].

3.1 Gravitino production in the early universe
In this section we’ll be interested in deriving the amount of gravitinos produced in the
early universe, namely the evolution of gravitino comoving number density in time.
We know that such a quantity evolves according to the relative Boltzmann equation: in
the gravitino case, the ways of production of gravitinos in the early universe are thermal
scattering and decay of bath particles.
This in turn gives the following Boltzmann equation for the LSP gravitino comoving
number density:

dY3/2

dT
= − 1

HT

(
nrad〈σtotvrel〉+

∑
i

mi

〈Ei〉
ΓiYi

)
, (3.1)

where the first term on the RHS stands for scattering production and the second for
decay production.
While we know everything about decay production, as Γi was obtained in the previous
chapter, we miss some information about the scattering term. In particular, we do not
know what 〈σtotvrel〉 is, and its dependence on temperature, hence in the following we’ll
firstly focus on deriving an explicit expression for that term, while in the following sec-
tions we’ll focus on cosmological aspects.

The main contribution to gravitino production by scattering comes from QCD processes,
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as QCD coupling constant is sensibly larger than the others as the reheating temperature
is below GUT scale.
For this reason in the original work [45], the authors focus only on QCD contribution,
and later generalize the result to include the other gauge interactions.

Before analyzing in detail the gravitino scattering cross section, we notice that thanks to
a general result of thermal field theory, we can derive the total production cross section
via evaluating the imaginary part of the gravitino self-energy.
The self-energy is proportional to

Σ3/2(P ) ∝ 1

M2
P

(
1 +

m2
i

3m2
3/2

)
. (3.2)

where mi are gaugino masses.
This factor immediately shows something interesting: the production rate is split into
two contributions, one due to ±3

2
modes and one to the ±1

2
goldstino modes.

The former are M2
Pl suppressed as they should be, while the latter are suppressed by

SuSy breaking scale.
This can be shown using the fact that gaugino masses are the explicitly symmetry break-
ing parameters as shown in section (2.5), hence

1

M2
P

m2
i

m2
3/2

∼ 1

M2
P

m2
soft

(Λ2
SuSy/MP )2

∼ 1

Λ2
SuSy

m2
soft

Λ2
SuSy

, (3.3)

where ΛSuSy =
√
F is the scale of SuSy breaking in the hidden sector.

In the symmetric case goldstino contributions vanish, but in the non-symmetric phase,
if m2

3/2 � m2
i they become largely dominant.

As a last observation, a contribution to gravitino final abundance could come from non-
thermal processes during inflaton decay. The relative contribution is typically model-
dependent, but it can be shown to be negligible in most cases, as we’ll later show.

As a first step we’ll try to sum up what is the production rate of a single gravitino
due to scattering processes.

For a very light gravitino, interactions are those of lagrangian (2.33) whose resulting
vertices are in fig. 2.3. We see that gravitino couples via a non renormalizable oper-
ator to gauge supermultiplets and via a renormalizable operator to chiral supermulti-
plets. When dealing with decay processes, chiral and gauge supermultiplets couple to
the gravitino giving comparable widths; on the other hand, when dealing with 2 → 2
scattering processes, we get an asymmetric situation, namely since scattering processes
will dominate at high energies, processes relative to non-renormalizable operators will
be enhanced, with a final yield that exceeds the yield via renormalizable interactions
by a factor T . For this reason we will only consider gauge supermultiplets scattering
processes. Moreover, processes involving 2 gravitinos in the final state will be Λ4

SuSy

suppressed with respect to the scattering rate involving only one gravitino, where ΛSuSy

is the energy scale of SuSy breaking. Hence in the following we will only consider single
gravitino gauge scattering, while including chiral supermultiplets when we’ll later discuss
decay processes.

In considering contribution to gravitino production due to 2 → 2 scattering processes,
we first focus on the QCD contribution, as the coupling constant g3 is sensibly larger
than the others. Nevertheless, electroweak interaction processes can account for 20% to
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process |M|2/ g2

M2
P

(1 +
m2

g̃

3m2
3/2

) |A|2sub

ga + gb → g̃c + G̃ 4(s + 2t + 2 t2

s )|fabc|2 −2s|fabc|2

ga + g̃b → gc + G̃ −4(t + 2s + 2 s2

t )|fabc|2 2t|fabc|2

q̃i + ga → qj + G̃ 2s|T a
ij |2 0

ga + qi → q̃j + G̃ −2t|T a
ij |2 0

¯̃qi + qj → ga + G̃ −2t|T a
ij |2 0

g̃a + g̃b → g̃c + G̃ −8 (s2+st+t2)2

st(s+t) |f
abc|2 0

qi + g̃a → qj + G̃ −4(s + s2

t )|T a
ij |2 0

q̃i + g̃a → q̃j + G̃ −2(t + 2s + 2 s2

t )|T a
ij |2 -t|Ta

ij |2

qi + q̄j → g̃a + G̃ −4(t + t2

s )|T a
ij |2 0

q̃i + ¯̃qj → g̃a + G̃ 2(s + 2t + 2 t2

s )|T a
ij |2 s|T a

ij |2

Table 3.1: The ten processes contributing to single gravitino production. fabc and T aij
are the SUC(3) color matrices, s and t the usual Mandelstam variables.The third column
shows the subtracted matrix element squared divided by the self-energy prefactor.

40% of the total production rate, therefore we’ll later generalize the result to all gauge
interactions.

Ten tree level processes take part in gravitino scattering production in QCD, as listed
in tab. (3.1), four of which are logarithmically divergent as a consequence of massless
gluon exchange in t-channel.
These divergences can be avoided moving to finite-temperature theory, where gluons
acquire a thermal mass

m2
g =

g2(T )T 2

6
(N + nf ), (3.4)

where N is the number of colors and nf is the number of color triplets chiral and anti-
chiral supermultiplets; in the MSSM N = 3 and nf=6. The acquired thermal mass
provides an IR cutoff, that prevents divergence of the full result.

In general, processes listed in tab (3.1) receive a contribution via s,t,u channels, and
eventually a contribution via quartic supergravity interactions.
Now, part of these contributions can be obtained using a general result of thermal field
theory, i.e. the production rate is proportional to the imaginary part of self-energy via

C3/2 = −2

∫
dΠfF (E)ImΣ =

∫
dΠΣ<(P ), (3.5)

where Σ< is the non time-ordered gravitino propagator, summed over polarizations,
namely

Σ<(P ) =
1

4M2
P

Tr[Πµν(P )〈Sν(P )S̄µ(−P )〉T ], (3.6)

where Sµ is the supercurrent to which the gravitino couples to.

The diagram that contributes to gravitino production via QCD interaction is reported
in fig. (3.1).
This diagram includes an infinite set of multi-loop diagrams, and resummed propagators
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that take into account thermal effects: it is important to notice that not only it takes
into account 2→ 2 scatterings with divergences regularized by thermal effects, but also
decays of the type gluon→ gluino+ gravitino, which are eventually allowed by thermal
masses, and become important in some temperature range, as mg roughly grows as g ·T .

Hence, one gets a total production which is the sum of diagram (3.1), plus the con-
tribution from processes in tab. (3.1) that are not already included in diagram (3.1).
The residual square matrix elements after subtracting those considered in diagram (3.1)
are reported in the third column of tab. (3.1).

We’re now left to evaluate gravitino self-energy, or equivalently, non time-ordered grav-
itino propagator.

Now, as already pointed out in chap. 2, in the case of effectively massless gravitino,
after spontaneous breaking of supersymmetry, gravitino can be split in two massless
fields, the massless gravitino coupled to the supercurrent Sµ, and a massless goldstino
that couples to the divergence of the supercurrent (see eq. (2.18)).
Divergence of the supercurrent to which the goldstino couples to reads:

∂µS
µ = −

3∑
i=1

mi

4
Oi, Oi = iF a,i

µν (σ̄µσν − σ̄νσµ)λa, (3.7)

where Fµν denotes here the linearized part of the field strength and mi gaugino masses.
Using this facts and recalling eq. (3.6), one gets

Π<(P ) =
1

4M2
P

(
Tr〈S̄µΠ3/2

µν S
ν〉T −

2

3m2
3/2

Tr〈∂µS̄µ /P∂νSν〉T

)
. (3.8)

Inserting the massless gravitino polarization tensor given in appendix A, using the
gamma identity σµσ̄νσµ = −2σν and the fact that /S = 0 for vector-gaugino contri-
butions, one gets

Π<(P ) =
3∑
i=1

1

32M2
P

(
1 +

m2
i

3m2
3/2

)
Tr〈Ōi /POi〉T . (3.9)

Finally, integrating eq. (3.9), using the resummed propagator in the trace, and summing
the subtracted elements of tab. (3.1) one gets the final result

C3/2(T ) =
3∑

i=1

3ζ(3)T 6

16π3M2
P

(
1 +

m2
i

3m2
3/2

)
cig

2
i ln

(
ki

gi

)
(3.10)

g

λ

ψ ψ

Figure 3.1: Gluon-gluino contribution to gravitino self-energy. The blob denotes a re-
summed propagator
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Gauge group ci ki
UY (1) 9.90 1.469
SUL(2) 20.77 2.071
SUC(3) 43.34 3.041

Table 3.2: Values of the parameters ki and ci including 2 → 2 scattering and decay
processes, as reported in [46].

where ki and ci are constants, reported in tab. (3.2), and gi coupling constants.
In eq. (3.10), temperature T provides the energy scale at which gauge couplings and
gluino masses have to be evaluated.
Assuming α = 1/24 and mi = m1/2 at GUT scale MGUT = 2 · 1016 GeV, running of
coupling constants and gaugino masses at one loop order are given by:

g2
i (T ) =

g2
i (MGUT )

1− bi
8π2 g2

i (MGUT )ln(T/MGUT )

mi(T ) =

(
gi(T )

gi(MGUT )

)2

m1/2,

(3.11)

where b1 = 11, b2 = 1, b3 = −3.

Authors of [49] also pointed out that a non negligible contribution comes from the top-
quark Yukawa coupling.
Looking at the superpotential of MSSM in eq. (2.15) we see that there is a contribution
via Higgs production.

The up-like Yukawa parameters in eq. (2.15) read, in the high top mass limit:

Yu ∼

0 0 0
0 0 0
0 0 yt


giving a top Yukawa coupling ytt̄THu.

Moreover, a contribution comes from soft breaking terms in eq. (2.16), of the type
1
6
aijkφiφjφk.

There are four diagrams that give a non vanishing contribution to gravitino produc-
tion, as shown in fig. 3.2. The top-quark contribution is:

〈σvrel〉top = 1.29
y2
t

M2
P

(
1 +

A2
t

3m2
3/2

)
(3.12)

where At is the soft breaking term.

To conclude, the total gravitino production rate including 2 → 2 scattering processes,
thermal decays of vector bosons, and top soft and Yukawa contribution is:

〈σtotvrel〉 = 〈σtotvrel〉gauge + 〈σtotvrel〉top (3.13)
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t̃∗

t̃

H0
u

ψ

H̃0
u

H̃0
u

t
ψ

t̃

t̃∗

t†

t̃

t̃∗

t̃

t̃∗ H̃0
u

G̃

Figure 3.2: The four contribution to gravitino production due to top quark. The first
diagram on the left is due to soft breaking term and produces ±1

2
modes, while the others

are due to Yukawa coupling and produce ±3
2
modes.

where the first term of RHS is given by eq. (3.10) divided by n2
rad(T ), with coefficients

in tab. (3.2), while the second is given by eq. (3.12). In the following we’ll use yt = 0.7
and negligible A2

t .

Now that we have all the terms inside the brackets of equation 3.1, we’ll make some
cosmological considerations to sharpen the accuracy of Boltzmann equation.

3.2 Gravitino production with non-instantaneous re-
heating

Once we have the thermal average of the total cross section in eq. (3.13), one is tempted
to naively solve the Boltzmann equation:

dY3/2

dT
= − 1

HT
nrad〈σtotvrel〉 (3.14)

and integrate it between TRH and T0 to get the relic gravitino abundance.
Such an integration, assuming negligible gS dependence on temperature and initial grav-
itino abundance, would lead to the following result

Y3/2(T ) =
gS(T )

gS(TRH)
·

√
90

g∗(TRH)
· ζ(3)

π3
TRH〈σtotvrel〉. (3.15)

The above integration has made two implicit assumptions: firstly that the inflaton decay
products instantaneously thermalize, and secondly that the reheating process is instan-
taneous and that at the moment of reheating, the Universe is reheated to a temperature

TRH =

(
40

g∗(TRH)π2

)1/4

·
(

ΓφMP

c

)1/2

. (3.16)

where the O(1) constant c depends on the definition of reheating moment.
While the assumption of instantaneous thermalization can be kept as justified by [46],
the finite duration of the reheating process substantially changes the final result, hence
it cannot be neglected.

We now want to drop the hypothesis of instantaneous reheating, letting it be a con-
tinuous process.
In fact, right after inflation, the decay of inflaton is not an instantaneous process, rather
it must be studied through Boltzmann equation.
For the sake of simplicity, we’ll consider only the inflaton field and the radiation that it
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Figure 3.3: Energy densities for radiation and inflaton for a finite duration reheating
phase. The initial condition were chosen so that the initial radiation density is negligible,
while the inflaton energy density was set to ρφ = 0.175M2

Plm
2
φ with mφ = 10−7MPl.

decays into, which gradually forms the thermal plasma.
The evolution in time of the inflaton energy density can be inferred from its classical
equation of motion

φ̈+ (3H + Γφ)φ̇+ V ′(φ) = 0. (3.17)

After a slow-roll inflationary phase, the inflaton start oscillating around its minimum,
producing inflaton particles that will later decay. During this phase, that ends when the
reheating temperature is reached and the radiation-dominated phase begins, we’re safely
allowed to take the average of eq. 3.17 over a complete oscillation

ρ̇φ + 3Hρφ = −Γφρφ (3.18)

which gives us the first Boltzmann equation for the inflaton energy density.
The radiation content of the Universe originates by inflaton decay, and we’ll assume its
initial value (i.e. right after inflation ends) to be negligibly small, due to inflation.
The Boltzmann equation for the radiation energy density reads

ρ̇r + 4Hρr = Γφρφ, (3.19)

where now we have a production factor on the RHS due to inflaton decay, and the usual
dilution factor on the LHS.
The Hubble constant is simply given by Friedmann equation

H(ρφ, ρr) =

√
8π

3

1

MPl

√
ρφ + ρr. (3.20)

In fig. 3.3 we report the behaviour of the energy densities for a continuous reheating
process, using the natural unit for time which is ν = Γφ · t.
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Moreover, the maximum temperature reached during reheating is model-dependent,
and we chose here a Starobinsky-like potential, following the work done in [50]:

V (φ) =
3

4
m2
φ

(
1− e−

√
2
3
φ
)2

, (3.21)

During this process, temperatures much higher than TRH can be reached, enhancing
gravitino production. At the same time, gravitino produced during inflaton decay due
to this temperature jump will be partially washed away, due to the residual entropy
production until the end of the reheating phase.

To understand which of the two effects dominates, we have to solve the coupled Boltz-
mann and Friedmann equations:

ρ̇φ + 3Hρφ + Γφρφ = 0

ρ̇γ + 4Hργ − Γφρφ = 0

ṅ3/2 + 3Hn3/2 = −〈σtotvrel〉(n2
3/2 − n2

3/2,eq)

ρφ + ργ =
3

8π
M2

PlH
2

(3.22)

where we have neglected gravitino contribution to the total energy density.
The reheating phase energy density is dominated by the inflaton, which is oscillating
around its potential’s minimum, hence for all the duration of reheating we can set
w =

Pφ
ρφ

= 0.

Integrating eq.s (3.22), one gets an expression for the scale factor

a(t)

a(tend)
=
(

1 +
v

A

)2/3

, (3.23)

where v = Γφ · (t− tend) and A =
Γφ
mφ

(
3
4
ρ(tend)

m2
φM

2

)−1/2

.

Choosing the potential in eq. 3.21 one gets

ρ(tend)

m2
φM

2
P

= 0.175, ργ ' ρ(tend)
( v
A

+ 1
)−8/3

∫ v

0

(
t

A
+ 1

)2/3

e−tdt.

Upon integration one finds the time-temperature relation,which is valid in the limit
A� v � 1,

T '
(

24

π2g(T )

)1/4√
ΓφMPv

−1/4. (3.24)

The behaviour of temperature as a function of time, as v � 1 is shown in fig. 3.4.
Temperature in finite-duration reheating reaches the value

Tmax = 0.52

(
g(TRH)mφ

g(Tmax)Γφ

)1/4

TRH (3.25)

that can be orders of magnitude higher than TRH . The substantial change in the final
gravitino yield is driven by relation (3.24).Upon integration of Boltzmann equation for
the gravitino yield, using relation (3.24) we get

Y inst
3/2

Y3/2(T )
∼ 1.1 (3.26)

that is, the instantaneous reheating approximation overestimates the gravitino final yield
by a factor ∼ 1.1.
Detailed calculation can be found in appendix B.
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Figure 3.4: Temperature evolution during reheating phase. The dashed line is the reheat-
ing temperature defined in eq. (3.16), with the choice c = 1. This graphic is obtained
by setting Γφ = 10−12MP = 10−7m, with a Starobinsky potential.

3.3 Non-thermal production of gravitinos
What we studied above involves only thermal production of gravitino, i.e. via processes
that involve thermalized particles.
Nevertheless a non negligible contribution could come from non-thermal processes, as
direct inflaton decay or scattering of hard decay products which have not already ther-
malized.
In the following we’ll briefly review this two cases; results are inflation model-dependent,
but are typically negligible.

Gravitinos could be produced via scattering of inflaton decay product with momenta
p ∼ mφ. If we suppose for instance that inflation mainly decays to gauge bosons via
φ→ gg, a subsequent scattering (first line of tab 3.1) could produce a gravitino.
Upon integration of Boltzmann equation considering the first process in tab 3.1, focusing
only on the SUC(3) contribution, we get the following ratio of collision terms

Cnon−th
Cth

∼ 160

ln(k3/g3)

(
Γφ
mφ

)1/2
MP

mφ

. (3.27)

This result would turn in an enhanced production via non-thermal processes if Γφ &
10−14mφ.Nevertheless this holds while the decays product are not thermalized, but since
thermalization is rapidly achieved, the products of decays would be rapidly washed away
by residual entropy production.

The contribution by inflaton decay depend on the branching ratio of decays to grav-
itinos, B3/2.Assuming rapid thermalization, the relative contribution is

Y decay
3/2

Y thermal
3/2

∼ 1.6 · 103B3/2
MP

mφ

.

Branching ratio to gravitinos is again model dependent, but is typically negligibly small,
resulting in a vanishing contribution to gravitino final abundance.
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3.4 Cosmological gravitino problems
The presence of stable or unstable gravitino during the Universe evolution could easily
turn out in unwanted effects [52, 53, 54, 55, 56, 57], that could spoil already tested
results, and hence that necessarily have to be avoided. The possible unwanted effects of
LSP-gravitino presence are referred to as cosmological gravitino problems, and are mainly
the following two:

− Sparticles decays can spoil BBN widely accepted results.

− Gravitino can be overproduced hence not matching the expected relic density.

In the following we’ll analyze these two effects, and explain how they can be avoided.

3.4.1 Gravitino overproduction problem

One of the two cosmological gravitino problems is that gravitino presence could easily
be overproduced, achieving a relic density that exceeds that expected for dark matter,
in strong contrast with observations.
Authors of [43] showed that there is a limit to gravitino mass, under which gravitino
cannot be overproduced.
In their article they showed that the gravitino number density is today

n0,3/2 =
3

4

g3/2

22

43

g(Tdec)
n0,γ

Figure 3.5: Constraint on reheating temperature and gravitino mass due to overproduc-
tion problem. The solid line is the contour of Ω3/2h

2 = 0.11. The graph was obtained
by using universal scalar masses ms = 4 Tev and unified gaugino masses at Gut scale at
m1/2 = 1Tev.
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where g(Tdec) is the number of effective degrees of freedom at gravitino decoupling (when
thermalized), which we’ll assume to be g(Tdec) ∼ O(102).
The critical density constraint assuming negligible photon contribution is therefore:

m3/2n0,3/2 + nν
∑

mν . ρc

and assuming also negligible neutrino contribution one gets the constraint on gravitino
mass

m3/2 . 1KeV (3.28)

If gravitino mass is above this bound, one can still avoid the closure problem imposing
a limit on TRH .
This was shown at first in [44], using Boltzmann equation

dY3/2

dT
= − 1

HT

(
nrad〈σ1/2vrel〉+

∑
i

mi

〈Ei〉
ΓiYi

)
, (3.29)

where the first term on the RHS takes into account the scattering production in the sense
explained in sec. (3.1) , while the second term stands for production via scalars decay.
The cross section σ1/2 takes into account processes involving the ±1/2 helicity modes
only, since they are largely dominant in the light gravitino approximation, as explicitly
shown in 3.2.

Solution to eq. (3.29) is

Y3/2(T ) =
g∗s(T )

g∗s(TRH)

(
ȲScatt + ȲDec

)
, (3.30)

where

ȲScatt =
nrad(TRH)〈σvrel〉

H(TRH)
, ȲDec =

∫ TRH

T

dT

T

∑
i

miΓi
〈Ei〉H

Yi, (3.31)

and the prefactor takes into account dilution due to the universe expansion.

The scattering yield grows linearly with TRH , and as seen in sec 3.1 the main contri-
bution comes from gauginos.

The decay yield is instead

ȲDec ∝
∫ TRH

T0

dT

T 3

∑
i

Yi
mi

〈Ei〉
,

for temperatures much higher than sparticle masses, the Lorentz factor is proportional
to T , while Yi is approximately constant, so that the final result is independent of TRH as
long as it is larger than sparticle masses. For smaller temperatures, Yi becomes rapidly
small, being Boltzmann suppressed. The integral rapidly converges to O(m−2

i ), for
TRH � mi, while Γi ∼ m5

i

6m2
3/2

M2
Pl

so that the final yield is proportional to m3
i /(MPlm

2
3/2).

For the scattering cross section we used eq. (3.10) keeping into account the correc-
tion in eq. (3.26). Annihilation processes where neglected in eq.(3.29), but they are

46



non-negligible if ȲScatt + ȲDec ∼ O(1). Authors of [44] used the following trick to take
into account annihilation processes: if ȲScatt + ȲDec > 3/2, they considered thermalized
gravitino and ȲScatt + ȲDec = 3/2.

The result of the analysis is shown in fig. 3.5; three main regions can be identified
in the graph:

− m3/2 . 1 KeV: there’s no bound on TRH , since gravitino cannot possibly be over-
produced.

− 10−6 GeV . m3/2 . m∗ : sparticles decays are important, and gravitinos are
overproduced unless TRH is roughly below scalar masses.

− m3/2 & m∗ : scattering processes are dominant and as can be seen from eq.(3.31),
the yield is proportional to TRH .

The value m∗ depends sensibly on gauginos and scalar masses ratio, in particular it
roughly depends on m3

s

m2
1/2

.

3.4.2 BBN constraint

Constraints from BBN in the case of LSP gravitino involve mainly NLSP decay, since
it can only decay into a gravitino LSP and is hence the longest-lived unstable R-odd
particle.
The problem of NLSP decay is that it could easily spoil BBN predictions by photo-
dissociation of light elements. This affects the gravitino mass, providing an upper bound.

The consequences of NLSP decay depend on which particle is the NLSP. We’ll here
briefly consider the three most likely cases: sneutrino, neutralino and stau.

In the case of a sneutrino NLSP, decays cannot produce sufficient photons to consid-
erably affect BBN, hence no upper bound on m3/2 is required.

In the case of a neutralino or a stau NLSP, the relic density has been evaluated in
[51] and [58], and it is shown to exceed

mNLSPYNLSP ≥ 5.0 · 10−11GeV. (3.32)

Taking this value, an overproduction of 3He+D occurs unless τNLSP . 2.6 · 106s.
Using decay rate, eq. (2.34), one gets 1

48π

m5
NLSP

m2
3/2M

2
P

(
1−

(
m3/2

mNLSP

)2
)3
−1

. 2.6 · 106s,

which for fixed NLSP mass gives a constraint on m3/2.

For mNLSP ≤ 1 TeV, some numerical results are m3/2 . 1.17 GeV (6.6 GeV, 245.6
GeV, 715.8 GeV ) for mNLSP = 50 Gev (100 GeV, 500 Gev, 1 TeV).
For mNLSP > 1 TeV the limit becomes more severe, and only a tiny window for m3/2 is
available.
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Chapter 4

Freeze-in mechanism for dark matter
production

As the nature of dark matter remains yet unknown, it is also not clear what cosmological
mechanism led to a constant comoving number density for one (or more) particle species.

Historically, the most credited and studied mechanism that grants a final relic density
which is comparable to that observed for dark matter, is freeze-out mechanism, which
offers the useful feature to be UV independent. The study of this dark matter genesis
mechanism led to the so-called wimp miracle: a weak-scale mass particle, which interacts
weakly with the visible sector, could account for most DM relic abundance.

Nevertheless freeze-out is not the only available mechanism for DM relic abundance
genesis: authors of [59] showed that a novel mechanism they called freeze-in, can be a
viable way to produce a reasonable relic abundance of fimp particles.

Moreover if one extends the dark sector to more than one particle species, a larger va-
riety of mechanisms arises, including the interesting dark-freeze-out and re-annihilation,
which although extremely intriguing, lie outside the aim of this thesis.

In the following we’ll review the freeze-in mechanism and its features, specifically in
the case in which dark matter is produced via the decay of bath particles, which will be
very useful for the rest of this work.

4.1 Freeze-in mechanism
Freeze-out was considered the main way of IR-dominated production of dark matter,
nevertheless this is not the only way to generate a final abundance that could account
for dark matter density.
A new suggestion came in [59], with the proposal of freeze-in mechanism.
This alternative way is somehow opposite to freeze-out, though they share some crucial
aspects.

The idea is to have a particle species χ, which interacts so weakly with the bath, that
it never achieves thermal equilibrium; together with the assumption that χ primordial
density be negligible, for instance due to inflation effects.
Although the interactions are very small, some χ particle can be produced from the
thermal plasma, the main production being achieved when temperature drops below the
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largest mass, M , involved in an interaction vertex with χ. Due to its extremely small
coupling and to relatively small abundance, χ annihilation processes are not active, and
the comoving number density after production remains constant.

In order to have a first qualitative idea of what freeze-in main features are, let’s suppose
particle χ interacts with the thermal plasma with dimensionless interaction strength λ,
and let T � mχ so that particle χ is relativistic. Assuming that the Universe is radiation
dominated

H2(T ) =
8π

3

ρ

M2
Pl

∼ T 4

M2
Pl

,

while the interaction rate of χ particle reads

Γ ∼ n(T )〈σv〉 (4.1)

where brackets denote an appropriate thermal average. In the case of a massless gauge
boson mediated interaction, eq. (4.1) becomes

Γ ∼ T 3 λ
2

T 2
= Tλ2. (4.2)

To have an idea of what the yield due to freeze-in is, we can simply multiply the inter-
action rate Γ by the Hubble time τH ∼ H−1 getting

Y (T ) = Γ(T )H−1(T ) ∼ λ2MPl

T
. (4.3)

We immediately notice that the yield increases with increasing coupling strength; more-
over, the yield is temperature-suppressed, hence lower temperatures are favoured. In
fact, let m be the largest mass of a particle involved in the χ interaction: for tempera-
tures well abovem, the yield is suppressed due to the Hubble rate, while for temperatures
below m, it is suppressed due to the fact that the interaction involves a non-relativistic
particle whose number density is Boltzmann-suppressed. Therefore, the largest yield will
be achieved when T ∼ m, and from eq. (4.3),

YFI ∼ λ2MPl

m
. (4.4)

This means that the final freeze-in yield is typically IR-dominated, hence independent
of unknown UV quantities that remain experimentally inaccessible. As in the freeze-out
case, the relic abundance of a frozen-in particle depends solely on equilibrium quantities
and masses involved in the relevant interactions.

For comparison, the freeze-out yield in the case in which DM mass m′ is the only mass
scale involved in 〈σv〉, reads

YFO ∼
1

λ′2
m′

M2
Pl

,

and the wimp miracle occurs when a particle of mass m ∼ v (where v is the electroweak
scale) interacts with λ′ ∼ 1, giving

YFO ∼
v

MPl

. (4.5)

If we suppose that particle χ that undergoes freeze-in has a mass at electroweak scale
m ∼ v, in order to have the same final yield (4.5), the interaction strengthe must be way
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Figure 4.1: Evolution in time of comoving number density of a fimp particle that un-
dergoes freeze-in, for increasing coupling strength, as a function of the ratio between the
largest relevant mass to which the fimp couples to and temperature. We see that the
comoving number density remains constant for temperatures lower than (5÷ 10)m.

smaller than the freeze-out case, namely λ ∼ v
MPl

(compare eq. 4.4).

Due to the smallness of the required coupling leading to freeze-in, the species that un-
dergoes such a mechanism is referred to as feebly interacting massive particle, or simply
fimp. A sketch of the behaviour of DM yield due to freeze-in is shown in fig. (4.1).
To better understand this new mechanism and to better understand the parametric
dependence of the final yield, we’ll show some quantitative examples in the following.

4.2 Fimp and losp: different masses, different scenar-
ios

Fimp is an alternative particle (or group of particles), other than WIMP, that could be
responsible for DM genesis and relic abundance, nevertheless fimp is not necessarily DM
itself.

In general we suppose that DM is made stable by a conserved Z2 discrete symmetry;
being the lightest Z2-odd particle grants stability.

In this case, two kind of particles are of particular interest for our purposes, and could be
a good DM candidate: fimp itself and the lightest Z2-odd particle in thermal equilibrium
with the bath, referred to as losp, ’lightest observable sector particle’.

Depending on which between fimp and losp is lighter and on which between freeze-
in and freeze-out is the main mode of DM production, we get a different phenomenology
(see fig. 4.2):

− Freeze-in production of dark matter:
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– fimp is lighter than losp and is itself dark matter (case I of fig 4.2). losp
undergoes normal freeze-out, and decays to the fimp, contributing with a tiny
amount to DM relic density

– losp is lighter than fimp, and it is dark matter (case II of fig 4.2). The main
production comes from freeze-in of fimp, which later on decays to losp. A tiny
amount of losp DM is generated by freeze-out

− Freeze-out production of dark matter:

– Super-WIMP scenario (case III of fig 4.2): fimp is lighter than losp. In this
case the main contribution comes from losp freeze-out and subsequent decay
to fimp. This is called Super-WIMP mechanism because of its analogy with
the WIMP DM case.

– WIMP scenario (case IV of fig 4.2): losp is lighter than fimp, and the main
contribution comes from direct losp freeze out. A subdominant contribution
comes from fimp which freezes-in and decays to losp. If this contribution is
negligible, the old freeze-out result is recovered.

This four cases are schematically depicted in fig. 4.2.
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Figure 4.2: We show fimp and losp comoving number densities as a function of mlosp/T
in the four different cases of DM production: the blue line depicts losp abundance, while
the green line fimp abundance. The main way of production is freeze-in for figures (I)
and (II) and freeze-out figures (III) and (IV).
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4.3 A simple example: decays of bath particles
In order to point out what are the main features of freeze-in mechanism, we present here
a simple direct calculation, namely we show the final yield of particle χ which never
achieves thermal equilibrium, but is produced by decays of bath particles.
Although this is not the general case, which could involve for instance 2→ 2 scattering
processes, freeze-in via decay is the process that we’ll need in the following, so we’ll limit
our considerations to this case.
Let ψ1 be a particle species which is in thermal equilibrium with the bath in the early
universe, an let it interact with particle χ via an interaction term of the type

Lint = λψ1ψ2χ. (4.6)

We assume a mass spectrum of the type mψ1 > mχ +mψ2 ; so that the ψ1 → ψ2χ is the
main freeze-in mode of production of particle χ.
In order to obtain the final yield we need to solve Boltzmann equation

sẎχ =

∫
dΠχdΠψ1dΠψ2(2π)4δ4(pχ + pψ2 − pψ1)

·
(
|M|2ψ1→ψ2+χfψ1(1± fχ)(1± fψ2)− |M|2ψ2+χ→ψ1

fψ2fχ(1± fψ1)
) (4.7)

where s is the entropy density and dΠ = d3p
2E(2π)3

.

We now make the assumption that the initial χ abundance is negligible, allowing us
to set fχ = 0. Moreover we neglect Pauli-blocking and Bose-enhancement effects corre-
sponding to 1± fψ2 ∼ 1 and assume an equilibrium distribution for ψ1.

Under these assumptions and using the definition of the decay width Γψ1 , Boltzmann
equation becomes

sẎ =

∫
d3p

(2π)3

fψ1Γψ1

γψ1

, (4.8)

where γψ1 = Eψ1/mψ1 is the Lorentz time dilation factor.
Passing to an integral over energy, eq. (4.8) can be written

sẎ =gψ1

mψ1Γψ1

2π2

∫ ∞
Mb1

(E2
ψ1
−m2

ψ1
)1/2e−Eψ1/TdEψ1

=
gψ1m

2
ψ1

Γψ1

2π2
TK1

(mψ1

T

)
,

(4.9)

where K1(x) is the first modified Bessel function of the second kind. Upon using the
variable x =

mψ1
T

and integrating between xmin = 0 and xmax =∞ gives the final result

Yχ = 4.71 · 45

4π41.66

Γψ1MPlgψ1

m2
ψ1
gS
√
gρ

(4.10)

Corresponding to final abundance

Ωχh
2 =

1.09 · 1027gψ1

gS
√
gρ

mχΓψ1

m2
ψ1

. (4.11)

This is a very simple calculation, but it’s crucial for our purposes. Moreover from this
example and eq. (4.10) we explicitly see a fundamental feature of freeze in: the final yield
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is proportional to interaction cross section, the opposite situation respect to freeze-out
case.
This somehow bounds the interaction strength: in fact λ must be sufficiently small so
that χ never achieves thermal equilibrium, in order for freeze-in to be the main mode
of production (this is a necessary but not sufficient condition, as we’ll later show); but
still λ must be sufficiently high in order for χ to account for at least part of the DM
abundance.
Using eq. (4.11), and assuming for definiteness Γψ1 ∼ λ2mψ1/8π and gS ∼ gρ, demanding
Ωχh

2 ' 0.11, we get

λ = 1.6 · 10−12

(
mψ1

mχ

)1/2(
g∗(mψ1)

102

)3/4

. (4.12)

From eq. (4.12) we learn that a good candidate for DM, which is produced mainly via
freeze-in, needs to have a relatively tiny interaction strength, for this reason we refer to
such a species as fimp.

For completeness we also show the result in the case in which the particle species that
undergoes freeze-in, fimp, is not dark matter itself,but it rather decays to dark matter
after freeze-in.
In this case the crucial interaction is again of the type in eq. (4.6), with the only differ-
ence in mass spectrum which in this case is set to mχ > mψ1 +mψ2 .
In this case, χ is produced by the inverse decay ψ1 + ψ2 → χ, with a final yield which
not surprisingly is of the form of eq. (4.10):

Yχ = 4.71 · 45

4π41.66

ΓχMPlgψ1

m2
χg

S
√
gρ

(4.13)

Assuming now that χ decays after ψ1 freeze-out, the final DM abundance is

Ωψ1h
2 =

1.09 · 1027

gS
√
gρ

mψ1Γχ
m2
χ

. (4.14)

4.4 Freeze-in phase diagrams
Now that we have some numerical results, we can further analyze for what values of the
coupling constant λ the freeze-in mechanism is responsible for DM abundance, depending
on the parameters of the model.
Again, for future purposes, we’ll study the case in which the fimp is produced via bath
particles decays, namely with an interaction term

Lint = λψ1ψ2χ

with masses mψ1 > mχ � mψ2 .

In a first moment, we’ll consider the case in which mψ1 and mχ are of the same or-
der of magnitude; we’ll later drop this assumption, and let mχ vary for a given mψ1 .
This will allow us to understand which range of the coupling constant λ is compatible
with the observed dark matter abundance.
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Particle χ freezes-in via the allowed decay ψ1 → ψ2+χ with final yield given by eq.(4.10).
The final yield in this case is roughly

Yfi,0 ∼ 10−4λ2

(
Mpl

Mχ

)
, (4.15)

where we’ve ignored the difference between gρ and gS, and we set both to g∗ = 100.
Eq. (4.15) shows that the final freeze-in yield is O(1) in the coupling range λ2 &

104 mχ
Mpl

.

This is an important turning point: for this range of coupling constant, χ will reach
a full thermal abundance, erasing all information about earlier stages, while for smaller
couplings χ never achieves the equilibrium density.

In the λ2 > 104 mχ
Mpl

regime, the final abundance of χ will be hence determined by freeze-
out after thermal number density has been reached via freeze-in; decoupling is achieved
when the annihilation process χχ→ ψ2ψ2 becomes no longer effective.
Now we have two possibilities:

− λ2 >
√

104 mχ
mpl

: conventional freeze-out will take place, with final abundance given

by eq. (1.25) (region I in fig. 4.3),

− λ2 <
√

104 mχ
mpl

: freeze-out will take place before χ becomes non-relativistic, hence

the final yield is a thermal one (region II in fig . 4.3);

On the other hand for λ2 < 104 · mχ
Mpl

, thermal density is not achieved, and we again have
two possibilities:

− λ2 >
(

104 mχ
Mpl

)2

: freeze-in is still able to account for most χ production, corre-
sponding to graph (i) of fig 4.2 and to region III in fig 4.3,

− λ2 <
(

104 mχ
Mpl

)2

: the most contribution comes from ψ1 freeze-out and subsequent
decay to χ, corresponding to the graph (iii) of fig 4.2 and to region IV in fig. 4.3.

The contour for Ωh2 = 0.11 in the four regions are shown in panel (i) of fig. 4.3
By further analysis, it can be shown that the behaviour reported in the left panel of

fig. 4.3 seems to be somehow valid in the general case. For renormalizable interactions,
independently of particles nature (scalar, fermion or bosons), in the presence of a Z2

symmetry that makes DM stable, when mχ and mψ1 are of the same order of magnitude,
the results of fig. 4.3 hold.

As anticipated, we’ll now drop the assumption that mψ1 and mχ are of the same or-
der of magnitude. For a fixed mψ1 , we’ll let mχ vary. Limit between freeze-out and
freeze-in regions (I-II and III-IV) is now a bound on λ alone.
If for instance we set mψ = 1TeV, the result is shown in panel (ii) of fig. 4.3.

If we now keep mχ fixed and analyze the final abundance as a function of λ (see fig.
4.4, we see that for a large range of λ values there will be an overproduction of DM. In
the case of fig. 4.4 where we fixedmχ = 1TeV, the two regions which are still available are
λ . 10−12, corresponding to region IV where DM is produced by LOSP freeze-out and
subsequent decay, and λ & 1, corresponding to region I, where conventional freeze-out is
responsible for DM relic abundance.
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(i)

(ii)

Figure 4.3: The two panels show contours for Ωh2 = 0.11 for different values of λ and
mχ. Panel (i) has mχ ∼ mψ1 , while for panel (ii) we fixed mψ1 = 1TeV and let mχ vary.
Regions I-IV correspond to those in the above analysis.

55



Figure 4.4: In this figure we show the final abundance for a fixed mχ = 1TeV , as a
function of the coupling strength. We immediately see that for most λ range we have an
overproduction of χ particles. For mχ at TeV scale, the regions λ . 10−12 and λ > 1 are
compatible with the observed dark matter relic abundance.

4.5 Freeze-in via scattering and UV sensitivity
In the previous section we analyzed freeze-in production via bath particles decay, get-
ting the final yield of eq. (4.10). This result offers us the possibility of quantitative
further analysis, and it shows moreover one interesting aspect that the two mechanisms
of freeze-out and freeze-in share, namely that the final yield is IR dominated.
We will linger for a moment on this aspect, to give a clarification. The case we analyzed
in sec. 4.3, made use of the interaction lagrangian (4.6), which in a general theory could
correspond to a renormalizable or non-renormalizable operator. In the case of decay
processes, the final yield is of the type (4.11), regardless of the dimension of the relative
operator, resulting in a final yield that is proportional to the mass of decaying particle,
hence IR dominated.

On the other hand, when dealing with scattering freeze-in production, which we did
not quantitatively analyze in this thesis, the situation is quite different.
In fact, for a renormalizable operator, the scattering freeze-in yield remains IR domi-
nated, for definiteness we report the result as obtained in [59]

Yχ =
135MPlλ

2

512π6gS
√
gρ1.66mχ

, (4.16)

where λ is the dimensionless coupling strength and mχ is the fimp mass. It is clear that
this result is UV-independent.

On the contrary, let us suppose we have a non-renormalizable operator, namely

Lint ∼ Λd−nOn (4.17)

where d=4, and [On] = [M ]n, [Λ] = [M ].
In this case, assuming that the temperature is much higher than the masses of the
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particles involved in the interaction, the tree level squared matrix element, relative to
2→ 2 scattering processes, is proportional to

|M|2 ∝ Λ2(d−n)T (n−d), (4.18)

where s is the center of mass energy of the reaction.
In this way one can show that in the limit in which the temperature is much higher than
masses, the final yield is

(−HT )SY ′ ∼ T 4−2(d−n)Λ2(d−n) (4.19)

where the ′ denotes temperature derivative. SinceHTS ∝ T 6 the result is UV-independent
as long as n < 4.5 hence for renormalizable or super-renormalizable operators.

4.6 Freeze-in during reheating
Across all the discussion above we made the implicit assumption that throughout all
the Universe evolution, the expansion is adiabatic; this basically means that we used
H = −Ṫ /T in solving Boltzmann equation, implicitly assuming a relation between the
energy content of the universe and temperature.

In the following we’ll be interested in studying freeze-in production of dark matter,
so that part (or the whole) of the present day dark matter is produced by such a mech-
anism; in this framework, in order to survive until the present day, dark matter has to
go throughout all the Universe history, which does not necessarily mean only adiabatic
expansion.
As we already pointed out in the previous chapter, we can safely assert that once the re-
heating temperature as defined in eq. 3.16 is reached, the universe expands adiabatically,
going through an early radiation-domination epoch that turns in matter-domination and
to dark-energy domination at late times. Nevertheless, what happens before the end of
reheating (i.e. before the moment at which temperature drops to TRH) depends on the
cosmological model.

In sec. 3.2 we already mentioned the theoretical setup to study the evolution of rel-
evant quantities during reheating, but we’ll briefly recall it here.
In the following we’ll follow the most credited cosmological model, according to which the
Universe experienced an inflationary phase, led by the slow-roll of a scalar field, inflaton,
that ends as the field reaches its minimum and begins oscillating around it. The result of
these oscillation is inflaton particle production, that rapidly decay to produce radiation.
This phase ends when the reheating temperature is reached; later on inflaton rapidly
decays until its abundance is negligibly small, and the standard radiation-dominated
epoch begins.
Within this framework, in order to get the right freeze-in final abundance, we need to
solve the coupled Boltzmann equations for the inflaton and radiation energy densities,
plus the fimp abundance.

In this case one has to solve Boltzmann equations for a general case in which non adia-
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batic expansion is allowed

ρ̇φ + 3H(ρφ, ρr)ρφ = −Γφρφ, (4.20)
ρ̇r + 4H(ρφ, ρr)ρr = Γφρφ, (4.21)

H(ρφ, ρr) =

√
8π

3
(ρφ + ρr)

1

MPl

, (4.22)

where ρφ and ρr are the inflaton and radiation energy density respectively.
Along with those equations we have to add the evolution equation for the fimp number
density

ṅfimp + 3Hnfimp = Γψ
gψ
2π2

m2
ψT (ρr)K1(

mψ

T (ρr)
); (4.23)

we called ψ the particles that decay to fimp; in the following for the sake of simplicity
we’ll set gψ = 2 and use Γψ =

λ2mψ
8π

.
In eq. (4.23) we underlined that the bath temperature T is implicitly defined by the
radiation energy density via

T (ρr) =
30

π2g∗

1/4

ρ1/4
r . (4.24)

As a time variable we use ν = Γφ · t, and define the reheating temperature

ΓφMPl = T 2
RH

(
8π3g∗

90

)1/2

, (4.25)

so that setting the reheating temperature is equivalent to setting Γφ; moreover we use
the average value g∗ ∼ 150, and assume that this is constant in temperature.
We specify that as initial conditions (i.e. right after the end of inflation) we set both fimp
and radiation densities to be zero, and an inflaton density obtained using a Starobinsky-
like potential ρφ(0) = 0.175m2

φM
2
Pl with mφ = 10−7MPl.

To see how evolution during reheating affects freeze-in, we can write again Boltzmann
equation 4.23 as

Y ′fimp + 3

(
H

Γφ
+
T ′

T

)
Yfimp = αT−2K1(mψ/T ), (4.26)

where α is a numerical factor and we’re using the time variable ν = Γφt.
Borrowing a trick that can be found in [46], we can formally integrate 4.26 to

Yfimp(ν) = α

∫ ν

0

T (u)−2K1(mψ/T (u))exp

[
−3

∫ ν

u

dz

(
H

Γφ
+
T ′

T

)]
du, (4.27)

where the exponential factor provides dilution due to entropy production, and it is unity
for the radiation-dominated phase.
We now split the contribution to the integral, evaluating the contribution from the initial
(end of inflation) moment to infinity, subtracting the contribution from u� 1 to infinity,
and we get

Yfimp(ν) =α

∫ ∞
0

T (u)−2K1(mψ/T (u))exp

[
−3

∫ ν

u

dz

(
H

Γφ
+
T ′

T

)]
du−

−α
∫ ∞
ν�1

T (u)−2K1(mψ/T (u))du.

(4.28)
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For reheating temperatures much higher than mψ we recover the old freeze-in yield
(compare eq. 4.10, see below) while for reheating temperatures smaller than mψ the
term on the second line of eq. 4.28 can be neglected, since at late times, ν � 1,
temperature is well below the reheating temperature, hence the presence of K1(mψ/T )
strongly suppresses the integral.
On the other hand, the integral on the first line, receives its greatest contribution when
T (u) ∼ O(mψ), which happens to be earlier in time than the end of reheating, hence
fimp number density undergoes a non negligible dilution due to the exponential factor.
Only a numerical evaluation can tell us which of the two effects wins.
We are now ready to quantitatively study the behaviour of freeze-in during a generic
evolution of the background frame.
In any case, freeze-in by decay gives its dominant contribution at temperature O(1 ÷
10−1mψ) hence two case have to be distinguished:

- TRH & mψ: in this case the dominant freeze-in production is achieved well below
the reheating temperature, hence in the radiation-dominated epoch. We expect no
substantial changes with respect to the previously obtained results

- TRH < mψ: in this case the dominant freeze-in production could take place dur-
ing the non-adiabatic phase, and the final yield could be partially washed-out by
entropy production, making it necessary to numerically study the result.

We begin with the second case: the fimp yield, which gets its major contribution during
the reheating process, is reduced by the residual entropy production, and the final yield
is orders of magnitude lower than the ’instantaneous reheating’ case. In fig 4.5 we show
the final yield for various coupling strengths, and for fixed masses and reheating tem-
perature. Increasing the interaction strength corresponds to an increased final yield, as
is to be expected.

On the other hand, if we raise the reheating temperature so that it is higher than mψ

(or equivalently we lower mψ) the result is quite different: now the final yield, see fig.
4.6, is the very same as the fully adiabatic case (see the lower panel of fig. 4.6 for a
comparison), even if we see that there is a greater dilution prior to the end of reheating,
as is to be expected since H(ρφ, ρr) > Hadiabatic.

Our conclusion is the following: when we’ll deal with freeze-in, we have to keep in mind
that if the reheating temperature is lower than the mass scale of the decaying particle(s),
we need a numerical approach to the problem, since the final result can be many orders
of magnitude lower than expected. On the contrary, for a reheating temperature higher
than masses of decaying species we’re safely allowed to use the results of sec. 4.3.

In this chapter we have presented the freeze-in mechanism as an alternative way to
produce dark matter, while keeping the feature of IR production, which grants no de-
pendence on unknown primordial parameters. We have focused on the case in which
dark matter is produced via decays of bath particles, since this is the mechanism we’ll
exploit in the following. Moreover we have seen that for a given mass spectrum, only a
tiny range of the parameter space is consistent with freeze-in production, while the rest
is still dominated by freeze-out-like mechanisms. In the next chapter we’ll apply this
new mechanism to a specific model, to show how it can be consistent with observations.
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Figure 4.5: In the upper figure we show the evolution of fimp comoving number den-
sity for TRH = 10TeV and mψ = 102TeV, for increasing coupling strengths λ =
(10−13, 10−12, 10−11) for the (yellow,blue,green) lines respectively. In the lower figure
we show the final freeze-in yield for the ’standard’ case (i.e. for adiabatic expansion) and
for the general case for λ = 10−12, mψ = 103GeV and TRH = 104GeV. The final yield is
the same; we only spot a tiny difference for Γφt < 1 due to the different dilution factors.
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Figure 4.6: The upper panel shows what happens if we keep a fixed reheating temperature
TRH = 104GeV and a fixed interaction strength λ = 10−12, but we vary the decaying
particle mass, here mψ = 102TeV for the dotted line and mψ = 1TeV for the solid line.
In the lower panel instead we keep a fixed mass at mψ = 102TeV and let the reheating
temperature vary, in particular TRH = 1Tev for the dashed red line, and TRH = 103TeV
for the solid line. The gray dashed line is the freeze-in final yield as obtained from eq.
4.10, with the only caveat that there’s a difference of a factor ∼ 0.278 since we’re here
using Y = n/nrad while in eq. 4.10 we had Y = n/S.
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Chapter 5

Gravitino freeze-in

We are now ready to use the theoretical framework we have developed in the previous
chapters and mix the acquired knowledge to present the main topic of this work.
From chapter 2 we learned that under certain conditions, the lightest supersymmetric
particle (LSP) is completely stable, which makes that particle a potential candidate
for dark matter. Moreover we showed that in the case of gauge-mediated spontaneous
breaking of local supersymmetry, the gravitino is easily much lighter than the other su-
perparticles, and is probably the LSP.
Going on, in chapter 3 we listed well known result about thermal production of grav-
itinos, in particular we derived the scattering cross section for 2 → 2 scattering single
gravitino production, driven by a non-renormalizable operator and involving gauginos.
Although the presence of a stable gravitino severely bounds reheating temperature, in
contrast with thermal processes such as high scale leptogenesis, it was shown that such
processes can be achieved at much lower reheating temperature [64, 65, 66] or when we
account for finite duration of the reheating process [68, 67].

In chapter 4 we left for a moment the discussion about supersymmetric particles, and in
particular about gravitino, to present an alternative mode of dark matter production in
the early universe, freeze-in, which could replace the well-known freeze-out paradigm. We
showed that freeze-in production of dark matter severely bounds the coupling strength
of dark matter sector to the visible sector, and if some conditions are verified, the relic
abundance of dark matter is IR dominated.

We are ready to finally sum up all these concepts to present the main idea of [63]:
if the gravitino is the LSP, it is a natural candidate for freeze-in produced dark matter.

5.1 Gravitino production: a further analysis
In section 3.4 we already pointed out that the presence of a light stable gravitino can af-
fect cosmology. In particular fig. 3.5 shows that gravitino could easily be overproduced,
resulting in an overclosed Universe.
In order to avoid this problem, one needs to set an upper bound on the reheating tem-
perature that seems often in contrast with the commonly accepted fact that TRH should
be as high as 109GeV in order to allow processes such as thermal leptogenesis.
Looking at fig. 3.5, or equivalently fig 5.1, we see that high reheating temperatures are
allowed for relatively heavy gravitino, m3/2 ∼ O(GeV ), while for a lighter gravitino TRH
is severely constrained. Nevertheless what is interesting is that there is an intermediate
region, where we lose UV dependence, and TRH is free to vary by many orders of mag-
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nitude. This particular region corresponds to gravitino freeze-in.

In order to understand what happens, we borrow the clear and straightforward nota-
tion of [69]: as clear from eq. 3.31, gravitino final yield receives two contributions, one
from gaugino scattering and one from sparticles decay. While the former involves only
gauginos and is UV dominated, the latter involves all superpartners (every Z2-odd par-
ticle must eventually decay into an LSP) and it is this difference that mainly drives
gravitino freeze-in.
In particular, gravitino production from sparticles decay, as long as TRH is higher than
sparticle masses, has the following form:

m3/2Y
dec

3/2 =
405

4π4

√
5

16π

MPl

g
3/2
∗

∑
i

Γi
m2
i

, (5.1)

where the sum runs over all superpartners and includes multiplicity factors; this is ob-
tained by simply integrating Boltzmann equation for decay production, we underline
again, in the case in which TRH is higher than sparticle masses.
This is indeed a freeze-in-like production of gravitinos, as one can clearly see comparing
with the general freeze-in case equation 4.10; this is no surprise, since the gravitino yield
equation 5.1 comes from decays of sparticles.

There is one only caveat: as we deeply analyzed in chapter 4, freeze-in mechanism
requires specific values for the interaction strength of fimp to other relevant species. In
the gravitino case, the interaction strength is contained in Γi and (compare eq. 2.35 or
lagrangian 2.33) it is proportional to the inverse square mass of the gravitino, and for a
fixed spectrum is independent of other quantities. This means that we can arrange the
mass spectrum in order to fulfill freeze-in requirements.

For a fixed mass spectrum (except for gravitino mass) this happens for a unique value
of the gravitino mass: combining eq. 2.35 for decay width into a gravitino, and equation
4.11 requiring that gravitino freeze-in accounts for all dark matter abundance, we get a
value for the gravitino mass

m3/2

GeV
= 1.12 · 10−3

( mi

TeV

)3 (gbath
102

)( 102

g∗(mi)

)3/2

. (5.2)

where gbath is the multiplicity factor for all decaying sparticles and mi are sparticle
masses. This behaviour is confirmed by contour lines in fig 5.1, as we’ll later better
explain.

The relative contributions to the final abundance are those of eq. 3.31 and 5.1, and
as long as TRH is higher than sparticle masses, the decay production has indeed the form
of 4.10; in total one gets

Y tot
3/2m3/2 ∼ CUV

TRHm
2
1/2

m3/2

+ CFI
nFI+

nFI
m3

+

m3/2

(5.3)

where CUV ∼ 2.4 · 10−4, CFI ∼ 3.8 · 10−4 and we explicitly include multiplicity factors:
nFI = 36+12+9+4 = 61, while nFI+ is the number of the heaviest superparticles, whose
mass is m+.
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We notice the following: while the first contribution (scattering) involves gaugino mass
scale and TRH , the second contribution (decay) is largely dominated by the heaviest su-
perpartners, which are in number n+. This implies that we have to distinguish two cases,
namely the case of a split spectrum in the supersymmetric sector, with scalar masses
greater than gaugino masses, and the case of a degenerate spectrum (or reversed, with
gaugino heavier than scalars).

The two different cases translate in the fact that in the former two mass scales enter
equation 5.3, while in the latter only one.

In the following we’ll consider the first case only, namely a split spectrum with scalars
heavier than gauginos; this will be later better justified, as done also in appendix C.
In this case, from eq. 5.3 we see that scattering contribution will be largely dominant
for high TRH , and the two contributions will become comparable at

T ∗RH =
CFI
CUV

nFIφ
nFI

m3
φ

m2
1/2

, (5.4)

and this remains true at least until eq. 5.1 holds, namely until TRH drops tomφ, at which
point the integration of Boltzmann equation does not give the freeze-in contribution
anymore, which is significant only if T ∗RH > mφ, which is indeed the case for a split
spectrum like the one we’re considering.

5.2 Dark matter relic density from gravitino freeze-in
We are now ready to show the final result, including all different contributions to gravitino
production.
Again, we depict the contour lines for Ω3/2h

2 ∼ 0.11, hence in the case in which gravitino
production accounts for all dark matter abundance.
The result is reported in fig. 5.1: the general behaviour of the curves resemble that of
previous fig. 3.5, although we added some changes, as better explained the following.
We can still recognise the three main behaviours:

TRH ∝ m3/2 m3/2 > m∗

mφ . TRH . T ∗RH m3/2 ∼ m∗

TRH . mφ m3/2 < m∗,

the first corresponding to scattering production and the last to decay production.
In the last case (m3/2 < m∗) temperature must be less than scalar masses, so that
gravitino abundance comes from the Boltzmann-suppressed tail of the scalar number
densities, and it’s therefore easily limited not to overclose the Universe.

What happens in the middle is exactly freeze-in production: to convince ourselves we
can compare values of m∗ to find out that they’re exactly the ones required for freeze-in
production of gravitinos, as observed in eq. 5.2, and they depend as predicted on m3

φ.
Moreover the vertical incline of the contours in those regions underlines UV indepen-
dence, and this is indeed the case of decay freeze-in: the final gravitino yield is IR
dominated and therefore does not depend on TRH , which can freely range in between the
values defined in equations 5.2.
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If we raise the temperature up to T ∗RH we end up in the scattering region, finding the
sloped interval of the curves; on the contrary, lowering the temperature down to mφ

largely affects the equilibrium distributions of scalar particles, that do depend strongly
on temperature. If we step down T ∗RH , gravitino abundance will derive from Boltzmann-
suppressed tail of the equilibrium distributions of scalars, hence higher coupling strengths
are needed to grant a full dark matter final abundance: we’re leaving the freeze-in region.

In figure 5.1 we also reported as dotted lines the lines corresponding to TRH = mφ

and TRH = T ∗RH , for the right values of the gravitino mass, to show that the freeze-in
region, although being relatively small, can be considerably large for some mass spectra,
such as those that have scalar masses up to tens of TeV.

Figure 5.1: The graphic shows again the limit on reheating temperature for different
universal scalar masses ( 4 TeV, 8 Tev, 10 TeV and 20 TeV) assuming gaugino mass
unification at m1/2 =2 TeV at GUT scale. The red dashed lines delimit the region of
parameters where gravitino freeze-in accounts for all dark matter abundance. As we can
see, for increasing gravitino mass the available region increases, and it reaches half of the
total logarithmic reheating temperature range for scalar masses of O(10 TeV).

Graphs 3.5 and 5.1 represent contours for Ωdmh
2 = 0.11 for different spectra of the

supersymmetric sector. The total final abundance of the gravitino LSP is obtained by
summing a contribution due to decays and a contribution due to scattering, which are
the result of integration of Boltzmann equation

Y ′3/2 = −nrad(T )〈σvrel〉
HT

−
∑
i

mi

〈Ei〉
ΓiYi
HT

, (5.5)

between TRH and T � TRH , and Γi is the decay width of the i -th superpartner into a
gravitino, mi/〈Ei〉 is the Lorentz factor and the scattering cross section is given in eq.
(3.10).
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The sum on the RHS of eq. (5.5) spans over all superpartners and includes a multiplicity
factor for each one of them. After integration, in order to get the final abundance we
multiply by the right factor, getting the final result

Ωdm(T0)
!

=m3/2Y3/2(T0)nrad(T0)/ρc(T0)

=
nrad(T0)

ρc(T0)
m3/2

gS(T0)

gS(TRH)

(
nrad(TRH)

H(TRH)
〈σvrel〉+

∫ TRH

T0

dT

T

∑
i

mi

〈Ei〉
ΓiYi
H(T )

)
,

(5.6)

and we used gS(TRH) = 915/4, gS(T0) = 43/11 and ρc(T0) ∼ 8.1 · 10−47h2 GeV4.

The second term on the RHS is the sparticle decay contribution, and it grows as m3
i ,

moreover the integral is sensitive only to temperatures near the sparticle mass scales,
due to the high temperature suppression 1/(T 3γlorentz) and to the low temperatures ex-
ponential suppression due to Yi

The first term in the brackets on RHS is the scattering contribution: as noted in sec.
3.2 and explicitly shown in appendix B following [50], the result assuming instantaneous
reheating at TRH overestimates the final yield by a factor ∼ 1.1 with respect to the non-
instantaneous reheating case, hence we scaled the final result by the appropriate factor.

Moreover, the scattering thermal averaged cross section as obtained in eq. (3.10) makes
the assumption that temperature is much higher than all masses. In this case it corre-
spond to assuming that the range in TRH in which scattering dominates is higher than
gluino masses. To show that this is indeed the case, we recall that freeze-in, in the case
in which m3

φ � m3
g̃, is active from scalar masses, up to T ∗RH as defined in eq. (5.4), which

is the temperature at which decay and scattering contributions become comparable (for
lower TRH decays will dominate). Hence we are left to show that T ∗RH � mg̃. This is in-
deed the case, since looking at equation (5.4), the lower temperature at which scattering
enters the equations scales as

T ∗RH ∝
∑

φm
3
φ∑

g̃m
2
g̃

(5.7)

and this is clearly much higher than gluino mass in the m3
φ � m3

g̃ regime (note that this
is also enhanced by multiplicity factors); therefore we’re safely allowed to draw fig. 3.5
and 5.1. A more detailed analysis can be found in appendix C.

5.3 Effects of reheating process on gravitino decay pro-
duction

As already explained in sec. 3.2, reheating temperature is not the maximum tempera-
ture achieved after the end of inflation, it is rather the temperature at which radiation-
domination begins.

Before this instant, inflaton was decaying and the Universe was expanding non adia-
batically; here we consider the consequences of non-instantaneous reheating on gravitino
decay production, focusing first on the freeze-in region and later on the (non-freeze-in)
decay region (at far left in fig. 5.1).
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Boltzmann equation for gravitino freeze-in is indeed (confront eq. 4.9)

ṅ3/2 + 3Hn3/2 =
∑
i

m2
iΓi

2π2
TK1(

mi

T
), (5.8)

where K1 is the first modified Bessel function of the second kind, and the sum ranges
over all superpartners and includes multiplicity factors.
The study of this equation during a radiation-dominated epoch, results in a final freeze-
in abundance such as that in eq. 4.11, and represented in fig. 5.1. From chapter 4, we
already know that the dominant contribution to freeze-in is achieved at temperatures
O(1÷ 10−1mi), where mi is in the case of fig. 5.1 the mass of scalar particles.

The effect of non-adiabatic expansion could play a relevant role in gravitino freeze-in, if
the reheating temperature TRH was lower than scalar masses since freeze-in could take
place during inflaton decay, and the final abundance could be washed away due to en-
tropy production. This was explained in much greater detail in sec. 4.6, for the general
freeze-in case.
Nevertheless in the case of gravitino freeze-in, we have a clear limit on range of TRH as
explained in sec 5.1, in particular TRH & mφ (see fig. 5.1), therefore the temperature at
which the freeze-in process produces most final gravitino abundance will always be below
the reheating temperature, allowing us to consider only the adiabatic case. In fact, from
numerical simulations such that in fig. 4.6, we showed that the final freeze-in yield is
not affected by a non-adiabatic expansion phase whenever the reheating temperature is
higher than the decaying particle mass.

On the other hand, the limit on TRH in the range 1KeV . m3/2 . mFI
3/2, where m

FI
3/2 is

the value of the gravitino mass for which freeze-in is active, is precisely TRH < mφ, so that
decay-produced final abundance of gravitino derives from the exponential-suppressed tail
of sparticles equilibrium distributions, in order for the Universe not to be overclosed.

In this case, the fact that temperatures higher than TRH can be reached during an
early phase could partially change this result, since if the entropy-dilution effect does
not win over production via decays, the final gravitino abundance could exceed the one
predicted by instantaneous reheating.

To get an idea of what happens, we need to solve the Boltzmann equations for the grav-
itino comoving number density in the two cases of instantaneous and non-instantaneous
reheating.

The decay production, in the case of instantaneous reheating, comes from the Boltz-
mann suppressed tail of decaying sparticles equilibrium number density, and does not
get affected by entropy production.
This means that for a fixed gravitino mass, raising the reheating temperature dramat-
ically raise the final abundance due to the exponential dependence of the equilibrium
number density on temperature. This is clear in fig. 5.1: while the gravitino mass ranges
for many orders of magnitudes, increasing the interaction strength proportionally, the
change in TRH to balance this effect is way smaller, as diminishing TRH of less than an
order of magnitude is sufficient to keep the final abundance constant.

On the contrary, in the case of non-instantaneous reheating, increasing the reheating
temperature means increasing the maximum reachable temperature, which could dra-
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matically boost production via decays. Nevertheless the increased production has to
compete with entropy dilution, hence it is not clear which of the two final yields will be
the greatest.

In order to understand whether the instantaneous reheating approximation is over or
under-estimating the final abundance, we solved Boltzmann equations for a given mass
spectrum

ρ′φ + 3
H(ρφ, ρr)

Γφ
ρφ = −ρφ, (5.9)

ρ′r + 4
H(ρφ, ρr)

Γφ
ρr = ρφ (5.10)
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where the prime denotes derivative with respect to rescaled time ν = Γφt, we use the
constant value g∗ ∼ 150 and the sum includes multiplicity factors.

We’re interested mainly in the asymptotic value of the gravitino comoving number density
for late times; since the difference occurs for the non-freeze-in region (low gravitino mass),
we’re only interested in the case TRH < mi, since we already know that if TRH & mi the
results is unchanged.
For this reason, most of decay production will be achieved during reheating, and we can
simply confront the gravitino number density for ν � 1 with the instantaneous reheating
case.

We report the result in fig. 5.2: what happens is that for reheating temperatures close
enough (one order of magnitude) to the decaying particle mass, the results of instanta-
neous reheating overestimates the final result by a varying factor (which is ∼ 1.68 at
most), while for lower reheating temperatures the instantaneous reheating yield greatly
underestimates the final abundance.

This means that for reheating temperatures lower than the decaying particle mass by
a factor ∼ 20, the possibility to reach higher temperatures allowed by the continuous
reheating process, wins over the dilution effect.
In turn, the limit on reheating temperature in fig. 5.1 changes: as long as TRH is close
to scalar masses, the final abundance with continuous reheating is lower, hence higher
reheating temperature are allowed (by a factor ∼ 1.68) for a fixed final abundance.
On the contrary, as TRH falls due to the raising of the coupling strength, the final yield for
continuous reheating is actually higher, hence lower reheating temperatures are needed,
for a fixed final abundance.

5.4 Evidences of frozen-in gravitino
When talking about freeze-in, we deal with extremely tiny interaction strength, which
make detection of fimp particles very difficult [70, 71, 72].
Nevertheless, tiny interaction strength translates into relatively long lifetimes. In the
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Figure 5.2: We show the gravitino final abundance for a fixed mass spectrum, mφ = 10
TeV and m3/2 = 10−2GeV, for varying reheating temperatures in the case of instanta-
neous and non-instantaneous reheating. We see that as TRH approaches mφ the two
results tend to converge, while we get two different behaviours for lower reheating tem-
peratures.

case of gravitino freeze-in, using the language of chapter 4, the losp is the lightest super-
symmetric particle which is in thermal equilibrium with the bath, i.e. the NLSP (which
we’ll assume to be in thermal equilibrium).
Therefore, eq. (4.11) can be rearranged to obtain an expression for the NLSP lifetime.

In the case of gravitino, assuming that all the final relic density is entirely achieved
by freeze-in, we get from eq. (4.11)
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where index i runs over all superparticles and the sum implicitly includes the degrees of
freedom of particle i.
Using now eq. (2.34) and (2.35), we normalize all the decay widths to the NLSP decay
width

Γi = ΓNLSP
m5
i

m5
NLSP

, (5.14)

in this way we can rearrange eq. (5.13) in the following way

m3/2Y3/2 ∼
0.13

g
3/2
∗

√
mNLSP

τNLSP

∑
i

(
m3
i

m3
NLSP

)
. (5.15)

Assuming that the gravitino LSP dark matter accounts for the observed relic density,
namely m3/2Y3/2s0/ρc = 0.11, and that the largest contributions to RHS of eq. (5.13)
come from squarks and gluinos, we can constrain mass spectrum
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(5.16)

which for varying τNLSP correspond to curves of fig. 5.3. This means that in the case
of frozen-in gravitino, we have a relation between the mass spectrum and the NLSP
lifetime, therefore if we were able to measure both, that could produce a strong evidence
eventually supporting gravitino dark matter.
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Figure 5.3: Gluino and squarks masses constraint for different NLSP lifetimes. The
result was obtained for mNLSP =2 TeV, assuming that all dark matter relic density is
generated by gravitino freeze-in, and assuming that the largest contributions to the sum
in eq. (5.15) are due to squarks and gluinos. For masses of O(10TeV ) lifetime of NLSP
is O(10−3s). For increasing NLSP mass, lager gluinos and squarks masses are allowed.
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Chapter 6

Gravitino freeze-in with extremely split
spectra

In last chapter we explored in detail the possibility of having dark matter relic density
generated by gravitino freeze-in via sparticles decay, in particular we focused on the split
mass spectrum case, with universal scalar masses larger than gaugino masses.

In this last chapter we’re ready to show the main result of this thesis, namely grav-
itino freeze-in enhancement in the case in which the mass spectrum is extremely split,
with scalars orders of magnitude heavier than gauginos. Such spectra have been studied
in detail and it was shown they can be realizable [73, 74, 75].

As we’ll see, in this case, freeze-in production of gravitino spans many orders of magni-
tude in reheating temperature range, making freeze-in the main mode of production of
gravitinos.

6.1 The case of split spectra
All along this work, we underlined that the final gravitino yield receives mainly three
contributions, which dominate for different gravitino masses.
For large masses the main mode of production is via gaugino scattering, and the final
yield is proportional to the reheating temperature, while for low gravitino masses decays
dominate the production, and the reheating temperature is bound to stay below sparticle
masses. In between these two regions we have the freeze-in area.

For gravitino mass at the TeV scale (namely at gaugino mass scales, in our case mainly
(1÷10)TeV scale) the production of ±3/2 purely gravitino modes begins to be important,
and sums to the ±1/2 goldstino modes, making the reheating temperature quickly fall.
This can be seen for instance in figure 5.1 for gravitino mass at TeV scale: in this case
the turnover gravitino mass stays constant since it depends solely on gaugino masses,
which we kept fixed.

On the other hand, for low gravitino mass, decay production dominates, and we see
that TRH is bound to be below sparticle masses. Nevertheless, we also notice a little
jump in temperature dependence, corresponding to various gravitino gravitino masses,
but typically around 10−5GeV.

This effect is due to the gaugino decay contribution: even if we consider a split spectrum
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in which scalars are much heavier than gauginos, for some regions of the parameter space
gaugino contribution to decay production can reach the same order of magnitude of the
scalar contribution, and since the two sum together the reheating temperature needs to
be lowered in order to keep a fixed final gravitino yield.

This can be seen in the following way: as we explained in great detail in chapter 5,
scattering production is active down to temperature

T ∗RH ∝
∑

φm
3
φ∑

im
2
i

. (6.1)

which in our case is higher than universal scalar masses.
At this temperature, since the decay yield reads
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dxx3K1(x), (6.2)

where the sum runs over all superpartners and includes multiplicity factors, scalar su-
perpartners will provide the majority of the gravitino abundance, both enhanced by a
factor m3

φ and granted by the fact that T ∗RH > mφ.

From T ∗RH down, decay production will dominate over scattering production, and the
ratio between the gaugino and scalar contributions reads

R ∼
m3

1/2g1/2

∫∞
m1/2/TRH

dxx3K1(x)

m3
φgφ
∫∞
mφ/TRH

dxx3K1(x)
, (6.3)

where n1/2 = 8 + 4 is the number of gauginos and nφ = 36 + 12 is the number of scalar
sparticles.
The ratio 6.3 varies with varying mass spectra and with temperature, except for a de-
generate spectrum, in which case it is fixed at R ∼ 0.23 and gauginos contribute pro-
portionally to the final yield.
For the case of a split spectrum, the behaviour of the ratio R is not trivial. Although
there is a mass cube factor that enhances the final result, and in our case would favour
scalar decays, the non-trivial dependence of the integral on temperature makes thing a
little more involved.

Since gravitino freeze-in via scalar decays is active from temperatures as high as T ∗RH
down to temperatures TRH ∼ mφ, as long as the freeze-in region ends, the integral in the
denominator of 6.3 begins to sharply fall due to the exponential Boltzmann suppression
of the number density of scalar particles contained in the Bessel function K1 (see also
appendix D).
In the meanwhile gaugino are still relativistic, and their contribution to decay production
is not affected by the exponential suppression, but only by a Lorentz factor: the integral
relative to gaugino contribution is still constant.

As we lower gravitino mass, hence raising the coupling strength and in turn having
a greater production (see eq. 6.2), we need to lower the reheating temperature to keep
the gravitino yield fixed, thus diminish the value of the integral in eq. 6.3. As we proceed
till the limit m3/2 ∼ 10−6GeV, if the scalar masses are sufficiently higher than gaugino
masses, the integral in the denominator of 6.3 can become so small that the m3

φ en-
hancement is no more sufficient to compete with gaugino contribution, which although
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Figure 6.1: We show the behaviour of the ratio R as defined in 6.3 for different scalar
masses as a function of the reheating temperature. We fixed m1/2 = 2 TeV, the dashed
line is R = 1.

proportional to m3
1/2 only, can count on a considerable contribution from the integral in

the nominator of 6.3.

We’ll call T̄RH the reheating temperature for which R(T < T̄RH) > 1. It is impor-
tant to notice that it is not obvious that T̄RH exist for all mass spectra: in particular, as
noted above, for a degenerate mass spectrum it does not exists at all, and in general we
expect it to exist only if mφ � m1/2.
This happens because when lowering gravitino mass, T̄RH is not necessarily reached
before m3/2 ∼ 10−6 GeV, hence R could be always smaller than 1 in the range we’re
interested in.

To understand how T̄RH changes with the mass spectrum we need to numerically in-
tegrate eq. 6.3. We show the result in fig. 6.1, reporting the value of R for different
spectra as a function of the reheating temperature.

As we expected, for growing mφ at fixed m1/2, T̄RH increases, eventually entering the
interesting region of graph 5.1. In fact, the condition to have a freeze-in region due to
gaugino decays, is T̄RH > m1/2, and for this reason we need an extremely split spectrum
to get a contribution from gaugino decays.

6.2 Gravitino freeze-in enhancement
So why if this effect is realizable it doesn’t take place in normal gravitino freeze-in?
The answer is that freeze-in is not so easy to occur, as we saw for instance in fig. 5.1.
Although it is present, it only ranges over a small TRH region unless scalar masses are
very large; moreover freeze-in requires a specific value of gravitino mass for a given mass
spectrum, as we learn from eq. 5.2.
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For this reason, when we deal with normal freeze-in, it is very unlikely to observe another
freeze-in region.

In order for gaugino decay production to achieve a freeze-in phase, what has to hap-
pen is that the mass m̄3/2 at which R & 1 must be at the same time the gravitino mass
required for gaugino decay freeze-in, that we already know from equation 5.2 to be

m̄3/2

GeV
∼ 1.12 · 10−3

(m1/2

TeV

)3 (g1/2

102

)( 102

g∗(mi)

)3/2

. (6.4)

In principle, while we can always arrange the mass spectrum so that the reheating tem-
perature T̄RH is reached, as we showed before, it is not obvious whether we can make
this occur exactly at m̄3/2 defined by equation 6.4.

On the other hand for increasing scalar masses and for a fixed value of gaugino masses,
T̄3/2 increases, and since in the decay region TRH is a monotonous growing function of
m3/2, m̄3/2 increases as well.
For this reason, we expect that as R & 1 is achieved, we can again increase scalar masses
to get condition 6.4 satisfied, while R & 1 is automatically satisfied, because we’re not
lowering scalar masses.
This is indeed confirmed by numerical evaluation, which we postpone to the next section.

We’re ready to show the final result for a very split spectrum, in which scalar masses are
orders of magnitude larger than gaugino masses.

We show results for fixed gaugino masses and varying scalar masses in fig. 6.2.

As we expected, if the ratio mφ/m1/2 is not large enough, we recover the old single
freeze-in results that we had in fig. 5.1. On the other hand, for increasing scalar masses,
a shy freeze-in pattern starts to emerge, and when mφ is about two orders of magnitude
larger than m1/2 we get a satisfying full freeze-in region, which ranges in reheating tem-
peratures from T̄RH down to m1/2, analogously to the primary freeze-in region with the
due substitutions T̄RH → T ∗RH , m1/2 → mφ.

Moreover we observe that the gravitino mass scale at which the smaller freeze-in re-
gion appears is precisely the one predicted by via eq. 6.4.

The reheating temperature range of the smaller freeze-in region is not as wide as the
scalar decay region, and this is because T̄RH is typically not much higher than m1/2.
Moreover we have the condition T̄RH < mφ, since we must be out of the scalar freeze-in
region.
Also, as we learn from fig. 6.1, TRH increases weakly with increasing mφ.

For these reasons, the smaller freeze-in region is not so interesting on its own, rather
it has a role when we look the whole picture.
In fact, as we see from fig. 6.2, when scalar masses are large enough, freeze-in is the main
mode of production of gravitinos, and the two freeze-in regions helps to extend freeze-in
to almost all reheating temperatures above the TeV scale.

This happens for the following reason: the primary freeze-in region ranges from T ∗RH
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Figure 6.2: We show here the contours for Ω3/2h
2 = 0.11 for fixed gaugino unified

masses at 1 TeV, and for increasing scalar masses. We set mφ = (10, 60, 80)TeV for the
(yellow,green,red) lines respectively. We see that as scalar masses approach the 102TeV
scale, a smaller freeze-in region begins to appear, while for mφ ∼ 10 TeV it disappears
completely. Unfortunately we cannot raise scalar masses too much, if we want the largest
freeze-in region to appear for gravitino masses below the TeV scale. Nevertheless we see
that for mφ ∼ 80 TeV freeze-in is by far the main way of gravitino production.

down to mφ, and we recall

T ∗RH ∝
∑

φm
3
φ∑

im
2
i ,

(6.5)

where the sum at the denominator ranges over gauginos and includes multiplicity factors.
Therefore, having a larger mφ not only raises T̄RH , favouring the smaller freeze-in region,
but it also favours the scalar freeze-in region, pushing scattering production to higher
gravitino masses (eventually to the TeV scale).

Therefore, if such a split spectrum is realized, freeze-in is the relevant way of grav-
itino production from T ∗RH to TRH ∼ mφ and from T̄RH to TRH ∼ m1/2. For gaugino
masses at the TeV scale, we typically have T̄RH = O(10−1mφ), so that if we exclude that
narrow region between m1/2 and T̄RH , and reheating temperatures below the TeV scale,
freeze-in is the only other way of gravitino production.

In conclusion, we have seen that in the case of split spectra, a freeze-in region eventually
appears, which is generated by the heaviest superparticles decay to a single gravitino.
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The freeze-in region typically spans many orders of magnitude in reheating temperature
range for very split spectra, getting to cover almost half of available reheating tem-
peratures between TeV scale to 1010 GeV. This is however enhanced in the case of an
extremely split mass spectrum as we have shown in detail throughout this chapter, as
freeze-in could in principle become the main way of gravitino production, leaving space
to scattering and usual decay only in a very narrow region of reheating temperatures.
This means that in these cases, freeze-in is most likely the way in which gravitino relic
density was produced, offering a completely UV-independent solution to the dark matter
problem.
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Conclusions

Supersymmetry could solve many of the problems of modern physics if realized in na-
ture, moreover it significantly enlarges the particle content of the theory. Throughout
this work we have shown the basis of this framework, showing in particular how the
gravity supermultiplets arises and how the gravitino acquires mass after the breaking of
local supersymmetry. We explored the various possibilities of achieving supersymmetry
breaking, pointing out in which cases the gravitino is easily the lightest supersymmetric
particle. In this case, we obtained the thermal production rate in the early Universe,
showing how two different kind of interactions, decay and scattering, take part to the
process. Of these two, the decay of bath particles could also play a relevant role in the
achievement of the gravitino relic abundance via the freeze-in mechanism.
We studied in detail this alternative process generalizing the results to the case of non-
instantaneous reheating process, numerically solving the complete Boltzmann equations,
showing how this affects the final gravitino yield. Beyond reviewing the results about
scattering production, we concluded that reheating process effects can affect decay pro-
duction depending on the mass spectrum of the theory, while leaving unvaried freeze-in
production. This result suggests that the final yield achieved via freeze-in depends only
on the mass spectrum of the theory, granting the general validity of the results obtained
in the instantaneous reheating approximation.

We have shown that for a split spectrum, freeze-in is by far the most active way of
gravitino relic density production, ranging in reheating temperatures from TeV scale to
109 GeV. This suggests that in most cases, if supersymmetry is realized in nature and
the gravitino is the LSP, which we showed to be easily obtained, freeze-in is very likely
to be the mechanism of relic abundance achievement.
The framework of frozen-in gravitino also provides a relation between superparticle
masses and NLSP lifetime, which if experimentally measured could provide an evidence
supporting the theory.

In conclusion, we have shown how the framework of gravitino freeze-in provides a pow-
erful alternative to the solution of the missing matter problem, and that the final result
depends mainly on the mass spectra of the theory. The conclusions of this work are
based on the assumption that supersymmetry is a local symmetry of nature and that
the breaking symmetry is gauge-mediated, which is the main constraint of validity of the
final results. Unfortunately by far collider experiments did not show any evidence of the
presence of sparticles, typically confining their masses above the TeV scale.

Future experiments, exploring farther regions in parameter space, could eventually find
the sought-for and long-waited evidence and the search for displaced vertices could also
give information about the NLSP lifetime, since this special particle is likely to de-
cay within the accelerator detector at LHC. This could in turn provide a strong evidence
favouring or disfavouring gravitino freeze-in as a solution for the missing matter problem.
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Appendix A

Gravitino wave function and
polarization tensor

We briefly report results about spin-3/2 particles, which are crucial to perform calculation
of diagrams including gravitinos.
The gravitino is a spin-3/2 fermion, hence it obeys Rarita-Schwinger equation, with
lagrangian density:

LRS = −1

2
εµνρ σψ†µσν∂ρψσ −

1

4
m3/2ψν(σ̄µσν − σ̄νσµ)ψν + h.c. (A.1)

The equation of motion for the free gravitino obtained from lagrangian (A.1) read:

σ̄µψµ =0,

∂µψµ =0,

(iσ̄ν∂ν −m3/2)ψµ =0.

(A.2)

Solution to the above equations can be built using the wave function uL for the spin-1/2
field and the polarization vector εµ for the spin-1 field.
In momentum space, where ψµ ∼ e−ipxψ̃µ, the solution reads

ψ̃µ(p, λ) =
∑
s,m

〈(
1

2
,
s

2

)
(1,m)

∣∣∣∣ (3

2
, λ

)〉
uL(p, s)εµ(p,m), (A.3)

where uL(p, s) =
√
p0 +mχ(s), χ+ = (1, 0)t and χ− = (0, 1)t,is an eigenstate of the

helicity operator
niσiu(p, s) = su(p, s)

where ni = pi/|~p|, and satisfies Dirac equation

(σ̄µpµ −m3/2)u(p, s) = 0.

The coefficients in eq. (A.3) are listed in tab A.1.
The helicity sum for the gravitino in momentum space reads

Πµν(P ) = −(σ̄ρpρ +m3/2) · (πµν −
1

3
πµηπνλσ̄

ησλ), (A.4)

where πµν = gµν − pµpν
m2

3/2

.

Since in the text we’re interested in gravitino production at energies much larger than
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m=-1 m=0 m=+1

s=-1 1
√

2
3

√
1
3

s=+1
√

1
3

√
2
3

1

Table A.1: Clebsch-Gordan coefficients for λ = s
2

+m. The other coefficients vanish.

gravitino mass, we take this limit in equation A.4, and assuming that the supercurrent
to which the gravitino couples is conserved one gets

Πµν ' −σ̄ρpρgµν +
2

3
σ̄ρp

ρ pµpν
m2

3/2

, (A.5)

where the first term on the RHS is the sum over the ±3/2 helicity modes, and the second
is the sum over ±1/2 helicity modes.

Decay width into light gravitino

In the case of a light gravitino, interaction lagrangian in well approximated by lagrangian
(2.33). From the interaction terms involving gauge and chiral supermultiplets we can
derive decay widths, neglecting masses of the R-even particles.
For the following calculation only we’ll go back to 4x4 γ matrices notation, since for the
trace evaluation we used the FeynCalc package for Mathematica software, which directly
implements such objects.
In the case of a chiral supermultiplet, the matrix element reads

M =
−im2

φ

2
√

3m3/2M
φχ̄(1− γ5)ψ (A.6)

hence, mediating over iniital helicity states and summing over final

∑
s,l,l′,s′

|M |2 =
m4
φ

12m2
3/2M

2

∑
l,s,l′,s′

Tr
(
χ̄l(1− γ5)ψlψ̄l′(1 + γ5)χs′

)
=

m4
φ

6m2
3/2M

2
Tr
(
/k(1− γ5)(/p+m3/2)

) (A.7)

which in the rest frame of the decaying particle(
mφ

0

)
→

(
k
~k

)
+

(
E3/2

~p = −~k

)
(A.8)

becomes

|M̄|2 =
2

3

m4
φ

m2
3/2M

2
(k · p). (A.9)

Now using the definition of decay width Γ = |M̄|2
8π

k
m2
phi

and the fact that k · p = −1
2
(m2

φ−
m2

3/2) we get the final result

Γ(φ→ ψ + χ) =
1

48π

m5
φ

m2
3/2M

2

(
1−

(
m3/2

mφ

)2
)2

. (A.10)
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In the case of the gauge term, the calculation is a little bit more involved. the matrix
element squared, when averaged on initial states and summed over final states reads

|M̄|2 =
−m2

λ

48m2
3/2M

2
kβkρTr

(
(/p+m3/2)[γρ, γσ]gσα(/q +mλ)[γ

α, γβ]
)

(A.11)

where p and q are gravitino and gaugino momenta, while k is the massless gauge boson
momentum.
For the evaluation of the Dirac trace we made use of the FeynCalc package for Mathe-
matica software.
The evaluation of the trace gives

Tr
(
(/p+m3/2)[γρ, γσ]gσα(/q +mλ)[γ

α, γβ]
)

= 16
(
(3m3/2mλ + p · q)gβρ − 2pβqρ − 2pρqβ

)
,

(A.12)
and when contracted with the k outgoing momenta leaves(see eq. A.11)

|M̄|2 =
4

3

m2
λ

m2
3/2M

2
[(p · k)(q · k)]. (A.13)

The two scalar products contribute each one with a factor ±m2
λ

2
(1−

m2
3/2

m2
λ

), and using the
definition of decay width we conclude

Γ(λ→ ψ + Aµ) =
1

48π

m5
λ

m2
3/2M

2

(
1−

(
m3/2

mλ

)2
)3

. (A.14)
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Appendix B

Solution of the Boltzmann equation
during reheating

In this appendix we want to justify result in eq. (3.26);to this end we’ll follow the results
of [50].
We will first solve the Boltzmann equation for the gravitino number density assuming
adiabatic expansion, negligible dependence of effective degrees of freedom on temperature
and instantaneous reheating at

TRH =

(
40

g(TRH)π2

)1/4(
ΓφMP

c

)
, (B.1)

where the constant c depends on the inflation model.
The solution to Boltzmann equation is

Y3/2 =
nrad(TRH)〈σtotvrel〉

H(TRH)
· g(T0)

g(TRH)
, (B.2)

which upon using eq. (B.1) and cross section in eq. (3.10) becomes

Y3/2 '
0.00398√

c

(
Γφ
MP

)1/2
(

1 + 0.588
m2

1/2

m2
3/2

)
. (B.3)

We shall now drop the instantaneous reheating hypothesis an re-derive the final gravitino
yield.

The Boltzmann equation for the gravitino production, dropping the hypothesis of adia-
batic expansion, which is not valid during reheating, is

Ẏ3/2 + 3

(
H +

Ṫ

T

)
Y3/2 = 〈σtotvrel〉nrad. (B.4)

Using the new time variable
v = Γφ(t− tend) (B.5)

and the definitions

Ĥ =
H

Γφ
, T̂ =

T

(ΓφMP )1/2
, n̂rad =

nrad
(ΓφMP )3/2

, Σ̂ = 〈σtotvrel〉M2
P ,

equation (B.4) becomes

Y ′3/2 + 3

(
Ĥ +

T̂ ′

T̂

)
Y3/2 =

(
Γφ
MP

)1/2

Σ̂n̂rad. (B.6)
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The exact solution for the energy density during the reheating phase is

ρ(v) = ρend

(
1 + (1 + w̄)(

v

A
)
)−2

(B.7)

where

A =
Γφ
m

(
3

4

ρend
m2M2

P

)−1/2

.

The constant A is O(Γφ/m) for most models of inflation, and Γφ is many order of
magnitude smaller than m. It is hence safe to consider the v»A case, which eventually
excludes times extremely close to the end of inflation.
During inflation, the parameter w = P

ρ
of the fluid varies, and in eq. (B.7) it was

substituted with its average value w̄(trh) at the moment of reheating end, which is
defined as the moment at which the ratio between the inflaton energy density to the
total falls below some δ � 1 (for δ = 2 · 10−3, w̄ = 0.273).
Using an iterative method, one can better define the average parameter w̄ as

w̄(v) =
1

3v

∫ v

0

γ(5
3
, u)

γ(5
3
) + u2/3e−u

du, (B.8)

where γ is the lower incomplete gamma function.
In the v � A limit

ρ(v) ∼ 4

3

(
MPΓφ

(1 + w̄)v

)2

≡ (ΓφMP )2ρ̂(v). (B.9)

From definition in eq. (B.9) we link the adimensional temperature and radiation energy
density

T̂ 3 =

(
30ρ̂γ
π2g

)3/4

and eq. (B.6) becomes

Y ′3/2 + 3

[(
ρ̂φ + ρ̂γ

3

)1/2

+
ρ̂′γ

4ρ̂γ

]
Y3/2 = T̂ 3

(
Γφ
M2

P

)1/2

Σ̂
π2

ζ(3)

which ignoring temperature dependence of the cross section integrates to

Y3/2(v) =

∫ v

o

T̂ 3(u)exp

[
−3

∫ v

u

[(
ρ̂φ(z) + ρ̂γ(z)

3

)1/2

+
ρ̂′γ(z)

4ρ̂γ(z)

]
dz

]
du ·

(
Γφ
MP

)1/2
Σ̂π2

ζ(3)
.

The integral in dz keeps into account the entropy production during the reheating phase,
and can partially wash away the final result; the exponential inside the integral indeed
vanishes during radiation dominated era, signaling adiabatic expansion from there on.
The integrand gives the contribution from time 0 to time u to gravitino yield at time v,
which has to be rescaled considering entropy production between time u and v.
For times v � 1 we can split the integral exploiting the fact that in radiation dominated
era, the exponential is 1, since no dilution is occurring. We split the integral in u into
one between 0 and∞, and then we subtract the contribution with no exponential factor
between v and ∞. The result is∫ v

o

T̂ 3(u)exp

[
−3

∫ v

u

[(
ρ̂φ(z) + ρ̂γ(z)

3

)1/2

+
ρ̂′γ(z)

4ρ̂γ(z)

]
dz

]
du

=

∫ ∞
o

T̂ 3(u)exp

[
−3

∫ ∞
u

[(
ρ̂φ(z) + ρ̂γ(z)

3

)1/2

+
ρ̂′γ(z)

4ρ̂γ(z)

]
dz

]
du− 2

(
90

4π2g

)3/4

v−1/2.

(B.10)
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Using this trick and eq. (B.8) in eq. (B.7), the yield is

Y3/2(T ) ' (0.233− 0.221v−1/2)g(TRH)−3/4

(
Γφ
MP

)1/2

2.04 · Σ̂. (B.11)

For late times the result simplyfies to

Y3/2 ' 0.00363

(
1 + 0.558

m2
1/2

m2
3/2

)(
Γφ
MP

)1/2

. (B.12)

Finally, confronting eq. (B.3) with eq. (B.12), we get that for c = 1 the result for
instantaneous reheating exceeds the one here calculated of about 1.1, while the two
results are equivalent for c ∼ 1.2.
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Appendix C

Validity range of gaugino scattering
cross section

All along chapter 5 we implicitly assumed that eq. 3.10 for gaugino scattering cross
section holds. Actually, the expression we used was borrowed form [49], where authors
assume that the energy of the reactions is much larger than masses involved; hence if we
fail this hypothesis we’re in principle not allowed to use the result in eq. 3.10.

Here we’ll briefly show that for our purposes the assumption under which eq. 3.10
holds are verified, studying here only the gluino scattering case, while the generalization
to all gauginos is straightforward.
In fact, in the case of gravitino freeze-in, the energy scale at which scattering processes
take place is comparable to TRH , and such processes remain the dominant way of grav-
itino production until decay contribution becomes important.

To show this we borrow the clear and straightforward notation of [69]: the curves of
fig. 5.1 are the contours for Y tot

3/2m3/2 = c where c ∝ Ωdmh
2 and Y tot

3/2 receives three
different contributions so that

Y tot
3/2m3/2 ∼ CUV

TRHM
2
3

m3/2

+ CFI
nFI+

nFI
m3

+

m3/2

+ YFOm3/2, (C.1)

where YFO is the NLSP freeze-out and decay contribution which we can now safely ne-
glect, CUV ∼ 2.4 · 10−4, CFI ∼ 3.8 · 10−4; the decay contribution is largely dominated
by the heaviest superpartner(s), hence here we explicitly include multiplicity factors:
nFI = 36 + 12 + 9 + 4 = 61, while nFI+ is the number of the heaviest superparticles.

We need to distinguish here two different cases, namely the case in which scalars are
heavier than gaugino and the opposite. From eq. C.1 it is clear that the two contribu-
tions (decay and scattering) become comparable at

T ∗RH ∼ αM3
+/M

2
3 (C.2)

with α ∼ 1.6
nFI+

nFI
.

In order for the use of expression 3.10 to be justified, we need T ∗RH � M3, so that the
energy scales at which scattering processes take place is much greater than masses play-
ing a role in the processes, while for lower temperatures and energies freeze-in takes over.

In fact, if T ∗RH . M3, scattering processes remain active and relevant down to tem-
peratures below or comparable to gluino masses, and we can no longer use an expression
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Figure C.1: In this figure we show the contours for a fixed T ∗RH as a function of the scalar
and gluino masses, mφ and M3 respectively. The dashed line depicts the critical limit
T ∗RH = M3, hence the region below the dashed line is excluded. The solid lines represent
contours for fixed T ∗RH , and show that it is easy to set masses so that T ∗RH � M3. In
particular, for the case of gravitino freeze-in, T ∗RH ranges from 102TeV up to 106TeV, and
the problem can be safely avoided.

for the cross section that is based on the assumption that the particles that scatter are
effectively massless.

Luckily, in our case, for a large range of mass spectra, as long as we have a split spectrum
with scalar masses greater than gluino mass, the problem is avoided, as T ∗RH is much
greater than gluino masses.
Numerical results are reported in fig. C.1, where we show the region in parameter space
where we are not able to use cross section as reported in 3.10, which we exclude from
our analysis; moreover we learn that for masses choices such as those of chapter 5 we are
allowed to use eq. 3.10.

On the contrary, if gluino is the heaviest particle, T ∗RH is automatically lower (or at
most equal) to gluino mass.
In this case nFI+ = 8, and from eq. C.2 we get T ∗RH ∼ 0.2M3.
Moreover in this case freeze-in is not a relevant way of production of gravitino, since
scattering production immediately leaves the place to decay production without the
intermediate step of freeze-in due to the fact that the mass scale that enter freeze-in
production and scattering production is now the same; hence we exclude that region of
parameter space from this work.
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Appendix D

Modified Bessel functions and decay
production of fimp particles

Throughout chapters 4 and 5 we made large use of the modified Bessel functions of the
second kind K1 and K2 when dealing with decay production of particles.
It’s easy to lose the physical meaning of evaluated quantities when we make use of def-
initions of such mathematical objects, and being decay production of particles one of
the main subjects of this work, we want to spend a page in explaining better what’s the
function of those objects, recovering for a moment the physical interpretation.

By definition, the equilibrium number density of a particle species X is

nX =
gX
8π3

∫
d3pfX , (D.1)

where gX are the internal degrees of freedom of particle X and fX is the equilibrium
phase space distribution

fX =
1

eE/T ± 1
, (D.2)

where the minus (plus) holds for Bose-Einstein (Fermi-Dirac) distribution. Approxi-
mating the phase space distribution with a Boltzmann distribution, fX ∼ e−E/T , and
changing the variable of integration to energy, we get

nX =
gX
2π2

∫
dEE

√
E2 −m2

Xe
−E/T , (D.3)

which by definition of modified Bessel function of the second kind

m2
XTK2(mX/T ) =

∫ ∞
mX

dEE
√
E2 −m2

Xe
−E/T , (D.4)

gives
nX =

gX
2π2

m2
XTK2(mx/T ). (D.5)

Most of the time we’ll be interested in solving Boltzmann equation for decay production
of fimp particles (confront equations 4.7 and 4.8). In this case we have the product of
the equilibrium phase space density fX times the decay width of particle X into a fimp
particle, ΓX , which carries a Lorentz factor γX to account for time dilation.
In this case, considering the rest decay width a constant, the integral we need to perform
to solve Boltzmann equation is of the form

∼ gX

∫
d3p

8π3

fX
γX

, (D.6)
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Figure D.1: We show the result of integration y(x) =
∫∞
x
dzz3K1(z) for varying x. In

the case of freeze-in, the final yiled is proportional to y(x) and it is strongly temperature
dependent. In fact, in our case, the extreme of integration x is the quantity mX/TRH
where mX is the decaying particle mass. As we learn from this graph, as long as TRHmX ,
the integral remains constant, while as soon as TRH drops below mX , the integral begins
to sharply fall; this is due to the fact that if TRH < mX , X number density is Boltzmann
suppressed, resulting in a lower final yield.

which upon changing variable to energy reads

gX
2π2

mX

∫
dE
√
E2 −m2

Xe
−E/T , (D.7)

which by definition of modified Bessel function of the first kind

mXTK1(mX/T ) =

∫ ∞
mX

dE
√
E2 −m2

Xe
−E/T , (D.8)

gives

gX

∫
d3p

8π3

fX
γX

=
gX
2π2

m2
XTK1(mX/T ). (D.9)

This means that when we use the function K2 we’re using the equilibrium number den-
sity of a particle species, while when we use the K1 we’re including a Lorentz factor in
our integral (which is most of the time throughout this work).

To conclude, we show in fig. D.1 the behaviour of the useful integral

y(x) =

∫ ∞
x

dzz3K1(z), (D.10)

to make it clear that there is a strong dependence of the decay yield on the reheating
temperature.
In the case of chapter 4, the lower integration extreme corresponds to mX/TRH where
mX is the decaying particle mass.
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