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Abstract 

 

Automatic segmentation of brain tumors and stroke lesions from medical images using deep 

learning algorithms is crucial for prognosis, clinical assessment and treatment planning, and 

provides valuable clinical information. The analysis of the current state-of-the-art both for brain 

tumors and stroke lesions segmentations pointed out the most efficient techniques in these 

fields. It also underlined that most of them treat input MR images acquired with distinct 

modalities without caring of  the divergence between the intensities with which the different 

cerebral and tumoral subregions are represented in these different modalities. Moreover, it was 

highlighted the almost complete absence of deep learning algorithms dealing with both brain 

tumors and stroke lesions segmentation. The main objective of this thesis was therefore to 

separate input images into the different available modalities, so that features extracted from 

images with divergent intensities may not be fused at earl levels, and to develop an Inter-

pathology Learning technique between brain tumor and stroke lesion segmentation models, to 

transfer knowledge between those fields. The most promising and efficient model was 

identified in nnUNet, a self-adaptive framework that automatically adapts its network 

architecture to the specific task and dataset. 

Two different methods to separate input images of different MR modalities where thus 

developed: the first based on ensemble of models, while the second consisting in a multi-path 

network, modifying nnUNet by creating one different encoder for each input modality including 

dense connections, and resulting in the creation of Dense Multi-path nnUNet, which was the 

most promising one. The Dense Multi-path nnUNet models were then trained and evaluated 

using FeTS 2022 dataset for Brain Tumor Segmentation, while using ISLES 2022 dataset for 

Stroke Lesion Segmentation, being able to obtain Dice scores for the three tumoral regions (ED, 

NCR and ET) of 0.886, 0.823 and 0.903, with an average of 0.871; while the Dice score 

obtained for the segmentation of the stroke lesion was 0.660, overcoming the performances of 

nnUNet in both cases. 

An Inter-pathology Learning technique was also developed between the brain tumor 

segmentation model trained with FLAIR images, and the corresponding stroke lesion 

segmentation model trained with FLAIR images, showing superior performances of the basic 

model trained to segment stroke lesions. 
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1. Introduction 

 

Before presenting the goals of this thesis, a short introduction about brain tumors and stroke 

lesions is performed. Their treatment is strictly dependent from the accurate and quick 

identification of the lesion from medical images, and the consequent resection (of the tumoral 

mass) or analysis and care (of the stroke lesion). For these reasons, the acquired imaging 

modalities in these aims are analyzed, and a description of the most used methods for lesions 

segmentation is realized. 

Tumors of the nervous system are growing masses of neoplastic and abnormal cells in the brain 

or spinal cord which can have different origins. Brain Tumors are tumoral forms that affects 

the Central Nervous System (CNS), and can be classified in: primary tumors, which develop 

directly from cells of the central nervous system; and secondary tumors, or metastasis, that arise 

from tumors that originate in other organs and later diffuse in the nervous system. Primary brain 

tumors cause 2% of all cancer deaths in Europe. The most diffuse type of primary brain tumors 

are Gliomas, whose name derives from their origin in the brain’s glial cells (which provide 

support and stability to neurons to keep them healthy and guide their development), and it 

represents 81% of all malignant brain tumors (Ostrom et al., 2014) and 45% of all primary brain 

tumors (Liu et al., 2016). Moreover, the World Health Organization (WHO) has classified 

Gliomas in 4 grades based on their degree of severity and their level of malignancy or 

benignancy (Tiwari et al., 2020): I) adult-type diffuse gliomas, II) pediatric-type diffuse low-

grade gliomas (LGG), III) pediatric-type diffuse high-grade gliomas (HGG), and IV) 

circumscribed astrocytic gliomas. The difference between low-grade gliomas and high-grade 

gliomas is that LGG often grow slower, can be benign or malignant but can evolve in HGG; 

they can be treated with radiotherapy, chemotherapy and surgery. While HGG are malignant, 

with high mortality, they grow rapidly and aggressively and they are often forming a necrotic 

core, with surrounding oedema and swelling (Kamnitsas, Bai, et al., 2017). Moreover, gliomas 

can be classified also based on the glial cells affected; among those, Glioblastoma represents 

the most aggressive and malignant form. 

On the other hand, stroke is one of the most common cerebrovascular diseases, and one of the 

main causes of long-term disabilities and mortality worldwide, affecting one in six adults, with 

an estimated 3-6 million cases annually (Praveen et al., 2018). There are two types of stroke: 

hemorrhagic stroke, which is due to bleeding inside the brain caused by the rupture of a blood 
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vessel; and ischemic stroke, which is due to the blockage of a blood vessel which causes the 

reduction or loss of blood supply to a region of the brain. In either case, parts of the brain 

become damaged or die, causing brain damage, long-term disability or even death. Ischemic 

stroke represents 80-85 % of all strokes (Praveen et al., 2018) and can be caused by 

atherosclerosis, hypertension, physical inactivity, while age, gender and ethnicity represent risk 

factors. Moreover, stroke can be divided by the duration of the episode, in acute (0 – 24 h), sub-

acute (24h – 2 weeks), and chronic (more than 2 weeks). Clinical decisions and timing of 

interventions are essential for treatment at any stage and to limit subsequent damage: at the 

acute stage, early intervention can facilitate short-term functional recovery, while at sub-acute 

or chronic stages, treatment can promote long-term recovery. 

Medical imaging is essential for diagnosis, quantitative evaluation and treatment planning of 

both ischemic strokes and gliomas. Magnetic resonance imaging (MRI) is the most effective 

technique to generate multi-modal images to identify and analyze different tumor regions; the 

most used MRI modalities for Glioma diagnosis are: T2-weighted fluid attenuated inversion 

recovery (FLAIR), T1-weighted (T1), T1-weighted contrast-enhanced (T1ce), and T2-weighted 

(T2) (ben naceur et al., 2020). MRI represents also the preferred imaging method for the 

treatment of ischemic stroke, but the lesion should be located and quantified within 3 hours 

from the onset of the stroke event, and MRI is not suitable for this scope because it’s a slow 

imaging technique. For acute strokes, computed tomography perfusion (CTP) is preferred, 

because it’s faster and cheaper (Y. Zhang et al., 2022). 

Lesion segmentation allows accurate delineation of brain tumor region and subregions, and of 

ischemic stroke lesion: it represents the identification of lesions’ outline on medical images, by 

classifying each voxel as lesion or non-lesion. The goal of brain tumor segmentation is tumor 

resection, that is to remove as much of the tumor as possible to minimize the chance of 

recurrence avoiding injuries to vital brain areas; while ischemic stroke lesion segmentation is 

crucial to estimate the location and volume of the lesion, to assess brain damage and possible 

risk factors. The preferred way is to have a specialized neuro-radiologist performing manual 

segmentation of lesions, but this is a tedious, time-consuming procedure, with high inter-rater 

disagreement. Moreover, it becomes really difficult in the case of gliomas, which have different 

intra-tumoral structures: Necrotic and Non-Enhancing tumor, Peritumoral Edema, Enhancing 

tumor (ben naceur et al., 2020).  

The introduction of deep learning represents a breakthrough for artificial intelligence. Deep 

Learning is a machine learning branch based on Artificial Neural Networks (ANNs), whose 

structure was inspired by information processing and communication between neurons inside 
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the brain: briefly, a network is composed by layers of nodes (neurons), in which each node 

receives many inputs from neurons of the previous layers, performs a weighted sum of them 

and its output is obtained by the application of an activation function. The weights are learnt by 

the network during training thanks to the backpropagation process, in which the gradient is 

computed to minimize a specific loss function over the weights. Automatic lesion segmentation 

is then performed by deep learning algorithms: they allow segmentation of unlabeled medical 

images by using a model trained on manually annotated lesions, used as training cases; this can 

better assist diagnosis, prognosis, treatment planning and evaluation, playing a crucial role in 

image understanding, feature extraction, analysis and interpretation (Wadhwa et al., 2019). In 

recent years, Convolutional Neural Networks (CNNs) are becoming the most common type of 

deep learning frameworks used for segmentation; they consist in a combination of 

convolutional layers, normalization layers and pooling layers that allow to automatically extract 

statistical rules from the data and use these rules to predict and analyze unseen data. Among 

CNNs, the state-of-the-art models for image segmentation are variants of encoder-decoder 

architectures like U-Nets. 

In this thesis, the most recent and best techniques used for brain tumors and ischemic stroke 

lesions segmentation are analyzed, implemented, modified and tested in different conditions on 

some of the most recent and comprehensive datasets in this fields, which are mainly Brain 

Tumor Segmentation (BraTS) challenge datasets and Ischemic Stroke Lesion Segmentation 

(ISLES) challenge datasets. 

Among these methods, I focused on some, considered the most interesting ones, like nnUNet, 

a deep learning framework that allows to achieve 3D semantic segmentation on a lot of different 

biomedical applications. 

It is also known that gliomas can have the same appearance and shape than ischemic stroke in 

MRI data (Zhao et al., 2018), but the number of techniques developed for the segmentation of 

both ischemic stroke lesions and glioma brain tumors is really limited, so is it possible to 

achieve the new state-of-the-art with this dual aim? 
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2. Related works 

 

A state-of-the-art analysis was performed in the fields of Brain Tumor and Stroke Lesion 

Segmentation, with the goals of identifying the newest techniques and algorithms developed in 

these scopes, the ones achieving the highest performances, and also those implementing  

peculiar and innovative structures. The aim of this study was to identify and point out possible 

candidates that could be used as baselines for further research. 

Methods were identified searching articles published after 2015, year in which UNet network 

was introduced, which marked a breakthrough in images segmentation task. 

First of all, the most performing models in popular challenge were picked out, analyzing 

challenges in the domains of interest. Moreover, articles were found using specific key words 

in Google Scholar, or starting from analyzed reviews. A table was produced after each field 

studied (Table 2.1, Table 2.2), in which specific colors were used to highlight disparate aspects: 

• Orange was used to underline the most interesting articles, mainly related to the usage 

of 3D CNNs, which nowadays represent indispensable architectures to perform well on 

medical images segmentation; 

• Yellow was used to point remarkable articles, but involving segmentation of medical 

images outside the domain of brain tumors and stroke lesions; 

• Green was used to highlight limitedly cited/interesting articles, but implying the 

introduction of structures or architectures judged relevant or unique. 

 

 

 

2.1 Brain Tumor Segmentation 

 

In the field of Brain Tumor Segmentation, at first articles were searched starting from the 

winning and top performing methods in BraTS 2021 challenge, which is the most recent brain 

tumor segmentation challenge, sanctioning then the current state-of-the-art. 

Afterwards, algorithms were identified searching in Google Scholar, using specific keywords 

like “brain tumor segmentation” or “automatic brain tumor segmentation”. 

Finally, many articles were found out starting from the following analyzed reviews: “State of 

the art survey on MRI brain tumor segmentation” (Gordillo et al., 2013), “A review on brain 
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tumor segmentation of MRI images” (Wadhwa et al., 2019), “Brain tumor segmentation and 

classification from magnetic resonance images: Review of selected methods from 2014 to 

2019” (Tiwari et al., 2020), “Deep Learning for Brain Tumor Segmentation: A Survey of State-

of-the-Art” (Magadza & Viriri, 2021). 

A brief description is provided below for the most interesting methods, while details about 

architectures and respective performances can be visualized in Table2.1a and Table 2.1b. 

Starting from the top performing methods in BraTS 2021, Isensee et al. introduced in 2018 

nnUNet, a self-adapting framework able to perform semantic segmentation in many different 

biomedical domains, without needing to design a specific solution and architecture for the given 

task or dataset. It was the winning method of BraTS 2020 challenge, but it was applied for the 

segmentation in many different biomedical domains, achieving a new state-of-the-art in several 

of these (Isensee et al., 2020a). Furthermore, an extended version of nnUNet was introduced by 

H.M. Luu et al. and took the first place in BraTS 2021 challenge; the architecture remained 

nnUNet, but with Group Normalization instead of batch normalization, because it works better 

with a reduced batch size, a larger encoder, and with the use of axial attention in the decoder 

(Luu & Park, 2021). Further analysis on these architectures will be performed in the following 

chapters. Siddiquee & Myronenko introduced SegResNet, an encoder (with ResNet blocks and 

skip connections)-decoder network with instance normalization; the most efficient architecture 

was identified carrying out an ensemble of the most performing models between the trained 

networks, and executing an average with equal weights. It ranked second in BraTS 2021.  

L. Fidon et al. took part to BraTS 2021 with a network consisting in an efficient test-time 

ensemble of seven 3D networks, both traditional Unets and their transformer variations, 

TransUNets (including a vision transformer in the bottleneck), exploring different learning 

schemes. They introduced the Generalized Wasserstein Dice Loss, able to improve 

segmentation performances (Fidon et al., 2021). M. Futrega et al. took third place in BraTS 

2021 challenge, by realizing an ablation study to select the optimal UNet variant, testing: classic 

UNet; SegResNetVAE, obtained by adding to SegResNet a Variational Autoencoder (VAE) 

(Myronenko, 2018); UNETR, a UNet in which the encoder is a generalization of a Vision 

Transformer (ViT) (Nvidia et al., n.d.); Attention UNet, with an attention gate added in the 

decoder (Oktay et al., 2018); Residual UNet (He et al., n.d.); finding out that UNet remains the 

most performing one. They also optimized the model by increasing the encoder path, the 

number of convolutional filters, etc. (Futrega et al., 2021). H. Jia et al. developed HNF-Netv2, 

which represents an extension of HNF-Net by adding interscale and intra-scale semantic 

discrimination enhancing blocks to exploit global semantic discrimination; it ranked 8th in 
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BraTS 2021 challenge (Jia et al., 2022). A. Hatamizadeh et al. proposed Swin UNETR, a 

network exploiting UNETR architecture but using a hierarchical Swin Transformer as encoder, 

which extracts features at five different resolutions, and is connected to a FCNN-based decoder 

at each resolution step via skip connections (Hatamizadeh et al., 2022). In 2016 K. Kamnitsas 

et al. introduced DeepMedic, a 3D CNN with eleven layers, that consists in two parallel 

convolutional paths that work at different scales (the second path works with subsampled 

images) with residual connections between outputs of every two layers (Kamnitsas et al., n.d.). 

In 2017 they improved DeepMedic by adding a 3D fully connected Conditional Random Field 

(CRF), that consists in a post-processing regularization method which removes false positives 

modeling dependencies between neighboring pixels. It was also developed a specific training 

pipeline (dense training) which allowed to raise batch size without increasing memory 

consumption (Kamnitsas, Ledig, et al., 2017). M. Havaei et al. in 2015 studied different CNN 

architectures, leading to the identification of InputCascadeCNN, a cascade of two 2D CNNs, in 

which the output of the first CNN becomes the input of the second, by substituting the last fully 

connected layer with a convolutional output layer. Each network has a local and a global 

pathway, to extract corresponding features (Havaei et al., 2015). In 2019 Hu et al. extended 

InputCascadeCNN by proposing a multi-cascaded convolutional neural network (MCCNN), 

based on the cascade of three cascaded networks trained respectively with axial, coronal and 

sagittal images, followed by a Conditional Random Field (K. Hu et al., 2019). A. Myronenko 

won the 1st place in BraTS 2018 challenge with an encoder-decoder architecture, characterized 

by a large encoder to extract deep features; it was also added a Variational Autoencoder, used 

only during training to reconstruct input images and regularize the shared encoder (Myronenko, 

2018). G. Wang et al. proposed a cascade of anisotropic CNNs, used to decompose the multi-

class segmentation problem with three single-class segmentations in sequence, exploiting the 

hierarchical structure of tumoral regions (Wnet to segment WT, Tnet to segment TC, Enet to 

segment ETC) (G. Wang et al., 2017). S. Chen et al. introduced a new dual force training 

strategy that allows to learn high-quality hierarchical features, and applied it to UNet and 

MLDeepMedic (DeepMedic modified to extract multi-level features); they also implemented a 

Multi-Layer Perceptron-based post-processing approach that allows to refine segmentation 

results (S. Chen et al., 2019). W. Wang et al. implemented TransBTS, an encoder-decoder 

structure in which the encoder uses a 3D CNN to capture local information, while they exploited 

a Transformer between encoder and decoder to extract global (long-range) features, by feeding 

it with tokens obtained elaborating feature maps (W. Wang et al., 2021). Z. Zhou et al. 

developed a deeply-supervised encoder-decoder network, UNet++, with a series of nested, 
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dense skip pathways between encoder and decoder, to reduce the semantic gap and increase the 

combination of feature maps between encoder and decoder; it was applied in the segmentation 

of multiple medical images: nodule segmentation in the low-dose CT scans of chest, nuclei 

segmentation in the microscopy images, etc. (Z. Zhou et al., 2018). K. Kamnitsas et al. won the 

first position in BraTS 2017 with EMMA (Ensembles of Multiple Models and Architectures), 

which represents an ensemble of DeepMedic, three 3D FCNNs and two 3D UNets, trained 

following different pipelines to average away the variance, and combined at inference time by 

calculating for each voxel the average confidence of the individual models for that voxel, and 

assigning the class with the highest confidence (Kamnitsas, Bai, et al., 2017). M. Chen et al. 

introduced Deep Convolutional Symmetric Neural Network (DCSNN), which exploits the left-

right asymmetry of tumor regions by passing to the network the original image and its left-right 

flipped version and by using Left-Right Similarity Masks (LRSMs) to extract features (H. Chen 

et al., 2020). D. Zhang et al. proposed a cross-modality deep feature learning framework, 

including two learning processes: the cross-modality feature transition (CMFT) process, which 

consists in a Generative Adversarial Network (GAN) that learns cross-modality features, and a 

cross-modality feature fusion (CMFF) process, which fuses features previously extracted to 

generate segmentation maps (D. Zhang et al., 2022). To solve class imbalance, one of the major 

problems for medical images segmentation, C. Zhou et al. developed a multi-task learning 

strategy based on incorporating the three brain tumor segmentation tasks into a single model: 

One-pass Multi-task Network (OM-Net). The three tasks are trained in an increasing order of 

difficulty and a Cross-talk Guided Attention (CGA) module is added to use the prediction 

results of preceding tasks to guide the following one (C. Zhou et al., 2019). Z. Jiang et al. 

designed a two-stage cascaded UNet which ranked 1st in 2019 BraTS challenge. The first stage 

consists of a UNet variant to obtain a coarse segmentation, while in the second stage the network 

is larger and with two decoders to increase performances; its inputs are the coarse segmentation 

maps produced by the previous model, and the raw images (Jiang et al., 2020). Brain SegNet, 

devised by X. Hu et al., can work efficiently for both brain tumor segmentation and stroke 

lesion outcome prediction. It consists in a 3D CNN with a Unet-like structure, based on an 

evolution of ResNet for segmentation, with a designed 3D refinement module to encode for 

both fine structures and high-level context information (X. Hu et al., 2020). M.T. Duong et al. 

implemented a 3D UNet to perform automated FLAIR lesion segmentation, following that most  

brain lesions are characterized by an hyperintense signal on FLAIR images. It was applied to 

perform segmentation on 19 different brain pathologies (Duong et al., 2019).  
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To conclude, all details about these cited methods, and many more, can be visualized in Table 

2.1a and 2.1b, which have been split for visualization purposes, but contain different 

information of the same articles. 
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Title Authors Citations Publication 2D/3D Aim Sensitivity Precision (PPV) Dice score HD95 Datasets

Extending nn-UNet for brain tumor segmentation H.M. Luu et al. 0 2021 3D BTS / / 88.36 (test set) 10.61 (test set) BraTS 2021 Dataset

Redundancy Reduction in Semantic

Segmentation of 3D Brain Tumor MRIs

M.M.R. Siddiquee et al. 0 2021 3D BTS / / 89.11 (val. set) 6.16 (val. set) BraTS 2021 Dataset

nnU-Net for Brain Tumor Segmentation F. Isensee et al. 28 2020 3D BTS / / 85.35 (test set) 14.55 (test set) BraTS 2020 Dataset

Generalized Wasserstein Dice Loss, Test-time Augmentation, and Transformers 

for the BraTS 2021 challenge

L. Fidon et al. 0 2021 3D BTS / / 89.4 (test set) 10 (test  set) BraTS 2021 Dataset

Optimized U-Net for Brain Tumor Segmentation M. Futrega et al. 1 2021 3D BTS / / 88.55 (val. set) / BraTS 2021 Dataset

HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging H. Jia et al. 0 2021 3D BTS / / 89.21 (test set) 9.89 (test set) BraTS 2021 Dataset

Swin UNETR:Swin Transformers for Semantic Segmentation of Brain Tumors in 

MRI Images

A. Hatamizadeh et al. 1 2021 3D BTS / / 88.53 (test set) 12.12 (test set) BraTS 2021 Dataset

DeepMedic for Brain Tumor Segmentation K. Kamnitsas et al. 252 2016 3D BTS 81.3 (train. Set) 80.83 (train. Set) 79.3 (train. set) / BraTS 2015/16 Dataset

Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion 

segmentation

K. Kamnitsas et al. 2367 2017 3D BTS/SS 71.5, 63 (BraTS test, 

ISLES)

77.73, 77 (BraTS test, 

ISLES)

71.5, 66 (BraTS test, 

ISLES)

55.93 (ISLES) BraTs 2015/ISLES SISS 2015

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation X. Zhao et al. 449 2018 2D BTS 75 (test set) / 73 (2015 test set) / BraTS 2013/2015/2016 

Dataset

Brain Tumor Segmentation with Deep Neural Networks M. Havaei et al. 2344 2017 2D BTS 82 (test set) 78.67 (specificity) 80 (test set) / BraTS 2013 Dataset

Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images S. Pereira et al. 1762 2016 2D BTS 84.3 (2013 test set) 83 (2013 test set) 82.67 (2013 test set) / BraTS 2013/2015 Dataset

Brain Tumor Segmentation Using Multi-Cascaded Convolutional Neural Networks 

and Conditional Random Field

K. Hu et al. 73 2019 2D BTS 85.3, 80.3, 84,6 

(2013, 2015, 2018)

74.3, 82, 99.45 (2013, 

2015, 2018)

77.67, 79.3, 78.28 

(2013,2015, 2018)

9.30 (2018) BraTS 2013/2015/2018 

Dataset

Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction 

Using Biologically Inspired BWT and SVM

N.B. Bahadure et al. 359 2017 / BTS 97.72 94.2 (specificity) 0.82 / DICOM Dataset, Brain Web 

Dataset

Deep learning based enhanced tumor segmentation approach for MR brain 

images

M. Mittal et al. 115 2019 / BTS / 98.81 / / BRAINIX medical images

3D MRI brain tumor segmentation using autoencoder regularization A. Myronenko 496 2018 3D BTS / / 82.2 (2018 test set) 4.83 (2018 test set) BraTS 2018 Dataset (winner)

Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional 

Neural Networks

G. Wang et al. 376 2017 3D BTS / / 81.18 (test set) 16.5 (test set) BraTS 2017 Dataset

Dual-force convolutional neural networks for accurate brain tumor segmentation S. Chen et al. 97 2019 3D BTS 80.1, 79.78  82.08, 79.57 (2017 78.88, 79.20 (2017 / BraTS 2015/2017 Dataset
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation O. Ciçek et al. 3641 2016 3D / / / / / Microscopic Dataset of 

Xenopus kidney

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer W. Wang et al. 36 2021 3D BTS / / 83.62, 83.78 (2019, 

2020)

5.14, 10.89 (2019, 2020)BraTS 2019/2020 Dataset

No New-Net F. Isensee et al. 323 2018 3D BtTS / / 82.10 (test set) 4.67 (test set) BraTS 2018 Dataset

UNet++: A Nested U-Net Architecture for Medical Image Segmentation Z. Zhou et al. 1728 2018 3D / Cell nuclei/colon 

polyp/liver/lung nodule

Ensembles of Multiple Models and Architectures for Robust Brain Tumour 

Segmentation

K. Kamnitsas et al. 369 2017 3D BTS / / 80 (test set) 21.37 (test set) BraTS 2017 Dataset (winner)

Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the 

BRATS 2017 Challenge

F. Isensee et al. 376 2017 3D BTS 78.67, 82.23 (2015 

test, 2017 val)

75.33 (2015 test) 74.33, 76 (2015 test, 

2017 test)

7 (2017 val) BraTS 2015/2017 Dataset

A Fully Automated Deep Learning Network for Brain Tumor Segmentation C.G.B. Yogananda et al. 18 2020 3D BTS 82.67, 84.3, 80.67  

(2017, 2018, Oslo)

/ 82.67, 84, 80.67 

(2017, 2018, Oslo)

6.9, 5.97, 5.25 BraTS 2017/2018, Oslo 

Datasets

Brain tumor segmentation and grading of lower-grade glioma using deep learning 

in MRI images

M.A. Naser et al. 59 2020 2D BTS 92 92 (specificity) 84 / Cancer Imagig Archive (TCIA) 

and segmented

Brain tumor segmentation with deep convolutional symmetric neural network M. Chen et al. 57 2020 3D BTS / / 70.47 (test set) / BraTS 2015 Dataset

ERV-Net: An efficient 3D residual neural network for brain tumor segmentation X. Zhou et al. 20 2021 3D BTS 87.39 (test set) / 86.57 (test set) 4.46 (test set) BraTS 2018 Dataset

RescueNet: An unpaired GAN for brain tumor segmentation S. Nema et al. 59 2020 2D BTS 91.38, 91.05 (2015 

test, 2017 test)

/ 91.87, 91.26 (2015 

test, 2017 test)

/ BraTS 2015/2017 Dataset

A novel end-to-end brain tumor segmentation method using improved fully 

convolutional networks

H. Li et al. 77 2019 2D BTS 74.47 (2015 test set) 74.27 (2015 test set) 71.43, 76.03 (2015 

test, 2017 test)

/ BraTS 2015/2017 Dataset

Cross-Modality Deep Feature Learning for Brain Tumor Segmentation D. Zhang et al. 47 2021 3D BTS / / 82.8, 84.3 (2017 val, 

2018 val)

5.11, 5.12 (2017 val, 2018 val)BraTS 2017/2018 Dataset

One-pass Multi-task Networks with Cross-task Guided Attention for Brain Tumor 

Segmentation

C. Zhou et al. 68 2020 3D BTS / / 84.48, 85.88 (2017 

val, 2018 val)

5.07, 4.9 (2017 val, 2018 val)BraTS 2017/2018 Dataset 

Brain tumor segmentation based on deep learning and an attention mechanism 

using MRI multi‑modalities brain images

R. Ranjbarzadeh et al. 22 2021 2D BTS 94.38 (10% of training 

set)

/ 90.14 1.83 BraTS 2018 Dataset

Fully automatic brain tumor segmentation with deep learning-based selective 

attention using overlapping patches and multi-class weighted cross-entropy

M. Akil et al. 35 2020 2D BTS 78.2, 79.03, 76 99.6, 99.6, 99.7 

(specificity)

77.63, 78.47, 77.5 9.35, 8.72, 8.75 BraTS 2018 Dataset

Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural 

Networks With Uncertainty Estimation

G. Wang et al. 97 2019 2.5D BTS / / 81.07, 80.7 (2017 test, 

2018 test)

16.5, 5.61 (2017 test, 2018 test)BraTS 2017/2018 Dataset

Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 

Segmentation Task

Z. Jiang et al. 128 2019 3D BTS / / 85.25 (test set) 3.8 (test set) BraTS 2019 Dataset (winner)

Bag of Tricks for 3D MRI Brain Tumor Segmentation Y.X. Zhao et al. 55 2019 / BTS / / 85.13 (test set) 3.82 (test set) BraTS 2019 Dataset + 

Decathlon

Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a 

Deep Cascaded Neural Network

S. Cui et al. 104 2018 2D BTS 82.3 85 84 / BraTS 2015 Dataset

H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor 

Segmentation from CT Volumes

X. Li et al. 1026 2018 2D/3D Liver TS / / 82.4, 93.7 (Lesion 

MICCAI, Tumor 

3DIRCADb)

/ MICCAI Liver Tumor 

Segmentation 2017 + 

3DIRCADb

Convolutional neural network with batch normalization for glioma and stroke 

lesion detection using MRI

J. Amin et al. 23 2020 / BTS/SS / 97.2, 1 (BraTS, ISLES) 97.54, 93.69 (BraTS, 

ISLES)

/ BraTS 2017 + ISLES 2015

A New Approach for Brain Tumor Segmentation and Classification Based on Score 

Level Fusion Using Transfer Learning

J. Amin et al. 47 2019 / BTS/SS / 99.94, 94.89 (BraTS, 

ISLES)

99.89, 94.66 (BraTS, 

ISLES)

/ BraTS 2017 + ISLES 2018

A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion 

Segmentation— With Application to Tumor and Stroke

B.H. Menze et al. 77 2015 / BTS/SS / / 78, 78 (BraTS, Zurich) / BraTS 2012 + Zurich Stroke 

Data

Brain SegNet: 3D local refinement network for brain lesion segmentation X. Hu et al. 20 2020 3D BTS/SS 73.7  (BraTS) 78.7 (specificity), 35 

(BraTS, ISLES)

74, 30 (BraTS, ISLES) / BraTS 2015 + ISLES 2017

Unsupervised brain lesion segmentation from MRI using a convolutional 

autoencoder

H.E. Atlason et al. 24 2019 3D Lesion / 75.7 76.6 / AGES-Reykjavik Study

Convolutional Neural Network for Automated FLAIR Lesion Segmentation on 

Clinical Brain MR Imaging

M.T. Duong et al. 42 2019 3D Lesion 76.7 76.9 78.9 / Patients of Hospital of the 

University of Pennsylvania

Deep Active Lesion Segmentation A. Hatamizadeh et al. 27 2019 2D BTS  / / 88.8 (Brain MR) 2.322 (Brain MR) Multiorgan Lesion 

Segmentation (MLS)

MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-

Aware Embedding for Semi-Supervised Brain Lesion Segmentation

G. Chen et al. 0 2021 3D BTS/SS 68.10, 75.4 (10% 

ISLES, 10% BraTS)

72.52 (10% ISLES) 61.66, 71.94 (10% 

ISLES, 10% BraTS)

37.39, 13.93 (10% ISLES, 10% BraTS)ISLES 2015 + BraTS 2018

Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck 

Tumor Segmentation in PET/CT

V. Andrearczyk et al. 40 2020 / Head and Neck 

Tumor

/ 83.32 75.91 / Data from 5 centers with 

H&N cancer

Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck 

Tumor Segmentation and Outcome Prediction in PET/CT Images

V. Andrearczyk et al. 29 2021 / Head and Neck 

Tumor

/ / 77.85 3.08 Data from 6 centers with 

H&N cancer

Improvement of Unet architecture evaluated using IoU

 

Table 2.1a: Title, authors, number of citations, publication year, type of input images (2D/3D), aim and sensitivity, 

precision, Dice score, HD95 computed in the application to specific datasets, of articles studied during state-of-

the-art analysis in brain tumor segmentation field. 
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Title Method Network Loss Function Optimization Data augmentation Normalization

Extending nn-UNet for brain tumor segmentation MRI nn-UNet modified cross-entropy + bath Dice Loss SGD with Nesterov momentum of 

0.99

Random rotation and scaling, elastic deformation, additive 

brightness augmentation, gamma scaling

Group Normalization

Redundancy Reduction in Semantic

Segmentation of 3D Brain Tumor MRIs

MRI SegResNet from MONAI Barlow Twins Loss + Dice Loss Adam Random axis mirror flip (for all 3 axes) with a probability 

0.5

Zero mean and unit std for non-zero voxels

nnU-Net for Brain Tumor Segmentation MRI nn-UNet cross-entropy + Dice Loss SGD with Nesterov momentum of 

0.99

Rotation, Scaling, Gaussian Noise and Blur, Brightness, 

Contrast, Low Resolution Simulation, Gamma 

augmentation, Mirroring

Instance Normalization

Generalized Wasserstein Dice Loss, Test-time Augmentation, and Transformers 

for the BraTS 2021 challenge

MRI ensemble of 7 3D U-Nets with vision 

transformer

cross-entropy + generalized 

Wasserstein Dice

loss

SGD, SGDP, ADAM, ASAM Random zoom, rotation, Gaussian Noise, Gaussian Spatial 

Smoothing, Gamma augmentation, right/left flip

/

Optimized U-Net for Brain Tumor Segmentation MRI Unet modified binary cross-entropy + Dice Loss for 

each region

Adam Biased crop, Zoom, Flips, Gaussian Noise, Gaussian Blur, 

Brigthness, Contrast

Subtracting the mean and dividing by std of non-zero 

voxels

HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging MRI HNF-Netv2 binary cross-entropy  + generalized 

Dice Loss

Adam / Zero mean and unit std for non-zero voxels

Swin UNETR:Swin Transformers for Semantic Segmentation of Brain Tumors in 

MRI Images

MRI Swin UNETR Dice Loss Not specified Random axis mirror flip for all 3 axis, random intensity 

shift in range (-0.1,0.1) and scale in range (0.9, 1.1)

Zero mean and unit std for non-zero voxels

DeepMedic for Brain Tumor Segmentation MRI Deep Medic not mentioned Not mentioned Reflection with respect to the mid-sagittal plane Subtracting the mean and dividing by std of non-zero 

voxels

Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion 

segmentation

MRI Deep Medic + CRF CRF used for optimization Stochastic gradient descent  Saggital reflections Zero mean and unit std for non-zero voxels

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation MRI FCNNs + CRF-RNN CRF used for optimization Not mentioned / N4ITK bias correction to T1 and T1c, subtracting image 

mode and normalizing std to be 1

Brain Tumor Segmentation with Deep Neural Networks MRI CNNs (different architectures, best: 

InputCascadeCNN)

Cross-entropy Gradient descent with momentum Flipping input images Removing 1% highest and lowest intensities, N4ITK bias 

correction to T1 and T1c, subtracting the mean and 

dividing by std  

Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images MRI CNNs (HGG and LGG) with small kernels Categorical cross-entropy SGD with Nesterov momentum Rotating operations (90°) N4ITK bias correction,  intensity normalization method 

proposed by Nyúl et al., normalize to have zero mean and 

unit std

Brain Tumor Segmentation Using Multi-Cascaded Convolutional Neural Networks 

and Conditional Random Field

MRI Multi-Cascade CNN (MCCNN) + CRF CRF used for optimization Stochastic gradient descent / Removing 1% highest and lowest intensities, N4ITK bias 

correction to T1c, subtracting the mean and dividing by std  

Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction 

Using Biologically Inspired BWT and SVM

MRI Barkeley Wavelet Transform (BWT) + SVM / / / /

Deep learning based enhanced tumor segmentation approach for MR brain 

images

MRI Random Forest + Growing CNN (GCNN) / / / Selected and estimated background (SEB) method

3D MRI brain tumor segmentation using autoencoder regularization MRI Encoder-Decoder (ResNet blocks) based CNN Dice Loss + L2 Loss + KL Loss (VAE 

penalty term)

Adam Random intensity and scale shift, axis mirror flip with 

probability 0.5

Zero mean and unit std for non-zero voxels

Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional 

Neural Networks

MRI Cascaded Anisotropic CNNs (Wnet, Tnet, 

Enet)

Dice Loss Adam / Subtracting the mean and dividing by std of non-zero 

voxels

Dual-force convolutional neural networks for accurate brain tumor segmentation MRI Dual-Force Training of MLDeepMedic + U-Net (New) Label distribution-based loss 

function

Stochastic gradient descent / Zero mean and unit std for non-zero voxels

3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation Microscope 3D U-Net Weighted cross-entropy Loss Stochastic gradient descent Rotation, scaling and gray value augmentation, smooth 

dense deformation field

/

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer MRI TransBTS (encoder (3D CNN) -Transformer - 

decoder)

Softmax Dice Loss Adam Random cropping, mirror flipping across saggital, coronal 

and axial planes, random intensity and scale shift

/

No New-Net MRI 3D U-Net (small modifications) Multiclass Dice Loss + negative log-

likelihood

Adam Random rotations, scaling, elastic deformations, gamma 

correction augmentation and mirroring 

Subtracting the mean and dividing by std of non-zero 

voxels

UNet++: A Nested U-Net Architecture for Medical Image Segmentation Microscopy/CT Unet++ Binary cross-entropy + Dice Loss Adam / /

Ensembles of Multiple Models and Architectures for Robust Brain Tumour 

Segmentation

MRI Ensembles of Multiple Models and 

Architectures (EMMA)

Cross-entropy/IoU/Dice Loss Adam / (1) Z-score, (2) Bias field correction followed by 1), (3) 2) 

followed by piece-wise linear normalization, followed by 1)

Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the 

BRATS 2017 Challenge

MRI derived from Unet (modified) Multiclass Dice Loss Adam Random rotations, scaling, elastic deformations, gamma 

correction augmentation and mirroring.

Subtracting the mean and dividing by std of non-zero 

voxels,clip the resulting images at [−5, 5] and rescale to [0, 

1]

A Fully Automated Deep Learning Network for Brain Tumor Segmentation MRI ensemble of 3 3D-Dense-Unets / Adam Horizontal flipping, vertical flipping, random rotations and 

translational rotations

Zero mean and unit std for non-zero voxels

Brain tumor segmentation and grading of lower-grade glioma using deep learning 

in MRI images

MRI Unet + transfer learning using a convolution-

base of Vgg16 for classification

Negative value of Dice similarity 

coefficient (DSC)

Adam / Tissue regions pixel values are rescaled to be between [-

1,1], non tissue regions are kept at -1

Brain tumor segmentation with deep convolutional symmetric neural network MRI Deep Symmetric Convolutional Neural 

Network (DSCNN)

Focal Loss Minibatch SGD and Adam with 

momentum 0.9

/ Pixel values scaled to be between [0-1]

ERV-Net: An efficient 3D residual neural network for brain tumor segmentation MRI ERV-Net (encoder: ShufleNetV2, decoder: 

residual blocks)

Cross-entropy Loss + Dice Loss Adam Gamma correction, random rotations, Gaussian noise, 

elastic and scaling deformations, mirror and brightness 

transformation

Zero mean and unit std for non-zero voxels

RescueNet: An unpaired GAN for brain tumor segmentation MRI RescueWNet, RescueENet, RescueCNet Aversial Loss + Cycle consistency Loss 

(in GANs)

Not mentioned Unpaired training procedure /

A novel end-to-end brain tumor segmentation method using improved fully 

convolutional networks

MRI Cascaded of improved UNet models Dice Loss Adam / Zero mean and unit std for non-zero voxels

Cross-Modality Deep Feature Learning for Brain Tumor Segmentation MRI Cross-modality Feature Transition (CMFT) + 

Cross-modality Feature Fusion (CMFF)

Adversial Loss + Cycle consistency 

Loss

Adam / Zero mean and unit std for non-zero voxels

One-pass Multi-task Networks with Cross-task Guided Attention for Brain Tumor 

Segmentation

MRI One-pass Multi-tak Network (OM-Net) con 

Cross-talk Guided Attention (CGA)

SoftMaxWithLoss SGD with momentum of 0.99 / Zero mean and unit std for non-zero voxels

Brain tumor segmentation based on deep learning and an attention mechanism 

using MRI multi‑modalities brain images

MRI Cascade CNN (C-CNN) Cross-entropy Loss  Adam / Zero mean and unit std for non-zero voxels

Fully automatic brain tumor segmentation with deep learning-based selective 

attention using overlapping patches and multi-class weighted cross-entropy

MRI SparseMultiOCM + InputSparseMultiOCM + 

DenseMultiOCM

Cross-entropy Loss with weights for 

the 4 classes

Minibatch SGD  Use of overlapping patches Removing 1% lowest and highest intensities, zero mean 

and unit std for non-zero voxels, put background pixels to -

9

Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural 

Networks With Uncertainty Estimation

MRI Cascade of CNNs (Wnet, Tnet, Enet) Dice Loss Adam Random rotation, flipping and scaling, intensity noise 

extracted using MonteCarlo simulations

Zero mean and unit std for non-zero voxels

Two-Stage Cascaded U-Net: 1st Place Solution to BraTS Challenge 2019 

Segmentation Task

MRI Two Stage Cascaded Unet Soft Dice Loss Adam Random intensity shift to [-0.1, 0.1] of std of each channel, 

intensity scaling between [0.9, 1.1], random crops and flips

Subtracting the mean and dividing by std of non-zero 

voxels

Bag of Tricks for 3D MRI Brain Tumor Segmentation MRI Self-ensemble Unet Cross-entropy Loss + Dice Loss SGD with momentum  Random axis mirror along the horizontal axis Pixel values scaled to be between [0-1]

Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a 

Deep Cascaded Neural Network

MRI Tumor Localization Network (TLN) + 

Intratumor Classification Network (ITCN)

Categorical Cross-entropy Loss Minibatch SGD / Removing 1% lowest and highest intensities, zero mean 

and unit std for non-zero voxels

H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor 

Segmentation from CT Volumes

MRI H-Dense Unet Weighted cross-entropy Loss SGD with momentum Random mirror and scaling between 0.8 and 1.2 Truncate the image intensity values to the range of [-

200,250] to remove the irrelevant details

Convolutional neural network with batch normalization for glioma and stroke 

lesion detection using MRI

MRI CNN model not specified Not mentioned / Zero center normalization

A New Approach for Brain Tumor Segmentation and Classification Based on Score 

Level Fusion Using Transfer Learning

MRI Threshold + Morphological Opening 

(Segmentation), AlexNet +GoogleNet 

(Classification)

not specified / / Input images resized with 256

A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion 

Segmentation— With Application to Tumor and Stroke

MRI Generative Probabilistic model + 

Discriminative Probabilistic model

not specified / Augment the dataset with random samples from a 

Gaussian distribution with mean 0 and standard deviation 

of 1

Image intensities are scaled linearly

Brain SegNet: 3D local refinement network for brain lesion segmentation MRI Brain SegNet (3D refinement module) Focal Loss Adam Random amplification of voxel intensities, rotations of 

slices, slices are rescaled, horizontal and vertical flips, 

random cropping

/

Unsupervised brain lesion segmentation from MRI using a convolutional 

autoencoder

MRI Segmentation Auto-Encoder (SegAE) L = (Y p − Yˆ p ) ^2 Adam / /

Convolutional Neural Network for Automated FLAIR Lesion Segmentation on 

Clinical Brain MR Imaging

MRI Fine-tuned 3D Unet Cross-entropy Loss Adam Random rotations, translations, scaling, and free-form 

deformations

Zero mean and unit std for non-zero voxels

Deep Active Lesion Segmentation MRI/CT Deep Active Lesion Segmentation (DALS) Dice Loss Adam / Zero mean and unit std for non-zero voxels

MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-

Aware Embedding for Semi-Supervised Brain Lesion Segmentation

MRI Multi-Scale Mean Teacher Combined 

Adversarial Network (MTANS)

Segmentation + Consistency Loss 

(teacher) + multi-scale loss 

(discriminator)

AMSGrad / Zero mean and unit std for non-zero voxels

Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck 

Tumor Segmentation in PET/CT

FDG-PET/CT winner Unet with Squeeze and Excitation 

Normalization

Dice Loss + Focal Loss Not mentioned / /

Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck 

Tumor Segmentation and Outcome Prediction in PET/CT Images

FDG-PET/CT winner 3D nn-Unet with Squezze and 

Excitation Normalization

Dice Loss + Focal Loss Not mentioned Rotation, scaling, mirroring, Gaussian noise and Gamma 

correction

Zero mean and unit std for non-zero voxels

 

Table 2.1b: Title, acquisition method, network name, loss function, optimization method, data augmentation and 

normalization pipelines performed, for the same articles as Table 1a. 
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2.2  Stroke Lesion Segmentation 

 

Articles concerning stroke lesion segmentation were sought in literature at first by identifying 

winners and best performing methods in ISLES 2018, 2017 and 2016 challenges; then by 

researching in Google Scholar using keywords like “Stroke Lesion Segmentation”, “Automatic 

Stroke Lesion Segmentation” and “Stroke Lesion Segmentation Deep Learning”. Articles were 

then identified because cited by other papers, or analyzing reviews; in this scope, the only 

review studied was “Application of Deep Learning Method on Ischemic Stroke Lesion 

Segmentation” (Y. Zhang et al., 2022). 

As for brain tumor segmentation, also in this case the cut-off year for articles selection was 

chosen to be 2015, in which, as stated before, UNet was first introduced, basically downgrading 

the majority of other methods used in medical images segmentation. 

A brief description is provided for the most interesting methods, while details about 

architectures and respective performances can be visualized in Table 2. For my specific 

objective, investigation was mainly (but not only) focused on papers dealing with ischemic 

stroke. 

To deal with the lesion variability between subacute and chronic stroke phases, and 

hemorrhagic and ischemic stroke lesions, Y. Xue et al. introduced a system defined as 2.5D, 

because composed by nine end-to-end UNets, each taking as input a 2D slice (sagittal, axial or 

coronal), along with three different normalizations. A 3D convolutional kernel is then used to 

merge 2D outputs from each path, showing that it gives a better accuracy than majority voting 

(Xue et al., 2020). Tao Sang proposed a 3D multi-scale U-shape network with ‘atrous 

convolution’, which allows to enlarge the field of view of filters to include a larger context 

without increasing the number of parameters (L.-C. Chen et al., 2016). This network also uses 

skip connections to combine low-level and high-level feature maps, and a multi-scale loss 

function, given by the combination of Jaccard index and binary cross entropy, to constraint the 

back-propagation of the network. It ranked 1st in ISLES 2018 competition (Song, n.d.). X. Hu 

et al. developed StrokeNet, a 3D segmentation network with an incorporated 3D refinement 

module, which aggregates rich fine-scale spatio-temporal features and allows to explore local 

and high-level context information. They also introduced a new training strategy that 

incorporates curriculum learning and Focal loss, allowing the network to naturally deal with 

data imbalance (X. Hu et al., n.d.). S. Wang et al. designed Consistent Perception GAN 

(CPGAN), composed by three networks: a segmentation network, with a UNet architecture 

provided with a similarity connection module (SCM) to capture long-range contextual 
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information, and fed with original and rotated image; a discriminator network that, with the 

help of an assistant network, learns to distinguish rotated images and so learns meaningful 

feature representations often lost during training stage (S. Wang et al., 2020). J. Donahue et al. 

developed Bidirectional GAN (BiGAN) for discrimination tasks: it consists basically in a GAN 

with the addiction of an inverse mapping, an encoder which maps data to their latent 

representations (opposite to the conventional generator), and the discriminator discriminates 

jointly in data and latent space. In this way, BiGAN encoder can learn useful feature 

representations (Donahue et al., 2016). To apply this structure in the medical segmentation 

field, C. Baur et al. modified BiGAN in AnoVAEGAN, where the deep generative model has 

a form of an encoder-decoder network, in which the encoder is a spatial Variational 

AutoEncoder (VAE), able to capture the “global” normal anatomical appearance, 

reconstructing the healthy tissues but avoiding anomalies, while the decoder is trained with the 

help of an adversarial network. Lesions are then segmented computing the distance between 

input and reconstructed images, and it was applied for multiple sclerosis lesions segmentation 

(Baur et al., 2018). J. Dolz et al. proposed a multi-path architecture, in which multiple 

modalities are processed in different paths to exploit their unique information, and layers of the 

same path and different paths are densely-connected. Single architectures are UNets, with two 

additional dilated convolutional blocks to learn larger context information (Dolz, Ayed, et al., 

2018). Y. Zhou et al. introduced D-UNet, in which the encoder performs 3D and 2D feature 

extraction on a small number of consecutive slices and then those features are combined to 

achieve a small number of parameters and less computation time in comparison of 3D networks, 

while obtaining a better segmentation performance than 2D networks. They also proposed a 

new Enhance Mixing Loss (EML), which combines Dice loss and Focal loss and adds a 

weighted focal coefficient, that allows a faster convergence (Y. Zhou et al., 2019). To include 

unannotated data into the training of CNNs, W. Cui et al. designed a semi-supervised learning 

approach, adapting the mean teacher model (Tarvainen & Valpola, n.d.), developed for image 

classification. They built a teacher and a student model, sharing the same DeepMedic 

architecture, following a self-ensembling framework for training: the student model is updated 

at each step minimizing two losses computed using respectively annotated and unannotated 

data, while the teacher model is updated combining the current student model and the historical 

information of teacher models (Cui et al., 2019). R. Guerrero et al. implemented uResNet, a 

network able to segment and differentiate between white matter hyperintensities (WMH) and 

stroke lesions. WMHs are a characteristic of small vessel diseases, and the accurate assessment 

of their burden can be crucial for diagnosis and treatment of WMHs, and to determine their 
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associations with cognitive and clinical data; however, stroke lesions often appear hyperintense 

and can be confused with WMHs. uResNet is a U-shaped architecture characterized by an 

analysis path to capture context, and a symmetric synthesis path, to enable precise localization 

(Guerrero et al., 2018). For accurate acute and sub-acute ischemic lesion segmentation, A. 

Clèrigues et al. proposed a 3D asymmetric encoder-decoder network (75% of parameters in the 

encoder) based on the UNet architecture, with global and local residual connections. Class 

imbalance is addressed using small patches and a weighted loss function (Clèrigues et al., 

2018).  

For highly unbalanced segmentations (like ischemic stroke lesions), classic regional losses 

(Dice or cross-entropy losses) have limitations, because they assume identical importance for 

all classes and samples; for these reasons, H. Kervadec et al. devised a boundary loss, which 

uses integrals over the interface between regions, instead of over the regions. It is implemented 

as the sum of linear functions of the regional softmax probability outputs of the network, and 

can be combined with standard regional losses, improving their performances (Kervadec et al., 

2019). N. Tomita et al. proposed a novel training strategy, called two-stage zoom-in&out 

strategy, based on training first using small volumes (this stage has a regularization effect and 

is computational inexpensive), and then finetuning the models on larger volumes. They applied 

this strategy on a modified UNet, obtained replacing each convolutional layer with a residual 

block and substituting batch normalization with group normalization (Tomita et al., 2020). To 

solve the problems of insufficient training data and high computational cost of 3D CNNs, H. 

Hui et al. introduced a partitioning-stacking prediction fusion (PSPF) method, which consists 

in three steps: first, slices are partitioned based on the acquisition plane, in subsets according to 

the similarity of brain’s anatomical structures, and each subset is used to perform training and 

prediction separately (partitioning); then, the 2D slice results are stacked to form a 3D lesion 

map (stacking); and finally the three orthogonal planes 3D results are fused using soft voting 

(fusion). This method is applied to a UNet with an attention gate (AG), used to highlight salient 

features for a specific task (Hui et al., 2020). Finally, R. Zhang et al. proposed a 3D fully 

convolutional and densely connected convolutional network (3D FC-DenseNet) for 

segmentation of ischemic stroke lesions from DWI scans, where there exist many artifacts that 

mimic the intensity and shapes of stroke lesions. Basically, FC-DenseNet is obtained by 

extending DenseNets to 3D, by exploiting dense connectivity to boost information and 

gradients flow in the network (R. Zhang et al., 2018). 

All details about architectures and performances of the cited methods, and many more, can be 

visualized in Table 2.2. 
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Table 2.2: Title, authors, number of citations, publication year, type of input images (2D/3D), aim, sensitivity, 

precision, Dice score, HD95 computed in the application to specific datasets, acquisition method, network name, 

loss function, optimization method, data augmentation and normalization pipelines performed, for articles studied 

during state-of-the-art analysis in stroke lesion segmentation field 
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2.3 Relevant architectures: nnUNet (“no-new-UNet”) 

 

Among all the analyzed methods, nnUNet can now be considered the state-of-the-art model for 

brain tumors segmentation, and for this reason it was chosen for further examinations and tests 

within this thesis. It was first introduced by Isensee et al. in 2018 and it was applied, with limited 

modifications, including adaptation of postprocessing, region-based training, a more aggressive 

data augmentation, and small adjustments of nnUNet pipeline, to BraTS 2020 challenge, where 

it took the first place an won the competition. An extended version of nnUNet was also 

submitted to BraTS 2021 challenge by H.M. Luu et al., who proposed to use a larger encoder, 

to substitute batch normalization with group normalization, and introduced an axial attention in 

the decoder; this method won the competition too, ranking 1st. 

The unique feature of nnUNet is that it automatically adapts to the specific dataset used for 

training, and so to the specific task, without needing to modify either the architecture, 

preprocessing or training processes adopted. It automatically configures segmentation pipelines 

for arbitrary biomedical datasets, without requiring expertise or extensive experimentation. 

Moreover, the authors also stated that small modifications of the architecture are not superior 

to a properly tuned model, and often do not provide significant results. They demonstrated that 

some of the recently presented architectural modifications, such as residual connections, dense 

connections or attention mechanisms, are in part overfitted to the specific problem, or in part 

could suffer from imperfect validation that results from sub-optimal reimplementations of the 

state-of-the-art (Isensee et al., 2018). For this reason, they underlined the importance of 

hyperparameters tuning, instead of modifications of the architecture, pre-processing, training, 

inference or post-processing, which quite often cause the U-Net to underperform when used as 

a benchmark. It can be also demonstrated that these small architectural tweaks, which are 

intended to improve the performance of the model, work well only if the network is not yet 

fully optimized: regarding this aspect, they analyzed Kidney Tumor Segmentation (KiTS) 2016 

challenge, showing that all top 15 methods are based on U-Net, but none of the architectural 

modifications used are an essential condition for performance improvement. 

Much of the networks’ performances can be gained or lost due to modifications in: 

preprocessing (e.g. resampling and normalization), training (e.g. loss, optimizer setting and data 

augmentation), inference (e.g. patch-based strategy and ensembling across test-time 

augmentations and models) and a possible post-processing (Isensee et al., 2018).  

nnUNet was successfully applied to 19 datasets and 49 segmentation tasks, achieving a new 

state-of-the-art in 29 of them. 
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2.3.1 General description 

 

nnUNet automatically generates three simple U-Net architectures (“no-new-UNet”) and the 

best configuration is chosen through cross-validation after the training phase. The three 

networks are: a 2D UNet, a 3D UNet and a UNet cascade. The 2D UNet is intuitively 

suboptimal for 3D medical images segmentation, because it isn’t able to aggregate information 

along the z-axis; however, it is possible to demonstrate that, in presence of anisotropic datasets 

(like the Prostate dataset of the Decathlon challenge), conventional 3D methods deteriorate in 

performance, and 2D methods could overcome. The 3D UNet trained on full resolution images 

is, in the majority of cases, the best method, as it represents the appropriate model of choice for 

3D image data. As last, the UNet cascade consists in a first stage, where a 3D UNet is trained 

on downsampled images, while in the second stage, the results of the first UNet are upsampled 

to the original voxel spacing, and passed as additional input channels to a second 3D UNet, 

which is trained on patches at full resolution to refine the first segmentation maps. This last 

solution is ideal with datasets with large image sizes, where the 3D UNet patch size could be 

too small. 

To automatically adapt to a specific task and generate specific methods for previously unseen 

datasets, nnUNet is able to generate and follow systematic rules. In particular, the pipeline 

optimization problem is condensed in a set of heuristic rules that robustly generate a high-

quality pipeline fingerprint (key design and architectural choices for the specific network) from 

the corresponding dataset fingerprint (key features of the dataset) while considering the 

computational (hardware) constraints (Figure 2.1, from Isensee et al., 2019). 

As a first step, nnUNet crops the training data to their nonzero region. This phase has no effect 

in most datasets, but it highly reduces image size of brain datasets, improving computational 

efficiency (Isensee et al., 2019).  

Secondly, based on the cropped training images, nnUNet generates a dataset fingerprint, which 

represents a standard description of the dataset, including relevant parameters and properties 

such as images sizes before and after cropping, modalities, images spacings (i.e., the physical 

size of the voxels), number of classes for all images, dimension of training set, as well as mean, 

standard deviation and 0.5 and 99.5 percentiles of the intensity values in the foreground regions 

(voxels belonging to class labels).  
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After that, nnUNet automatically designs deep learning methods by generating a pipeline 

fingerprint, that contains all relevant architectural choices, and is composed by three types of 

parameters: inferred parameters, design choices inferred directly from the dataset fingerprint 

using a set of heuristic rules, considering the project-specific hardware constraints; blueprint 

parameters, data-independent; and empirical parameters, optimized during training. 

 

 

 

2.3.1.1 Blueprint parameters    

 

The blueprint parameters represent the baseline UNet template, from which all nnUNet 

configurations originate. This template follows the original UNet architecture and its 3D 

counterpart, with two blocks per resolution step in both encoder and decoder, in which each 

block consists in a convolution, followed by instance normalization and leaky ReLU; 

downsampling is then implemented as strided convolution, upsampling as convolution 

Figure 2.1: Comparison between current practice and nnUNet configuration identification. In current practice 

(a), the architecture is identified by an iteration between manual hyperparameters and configuration tuning and 

network training and validation. With nnUNet (b), starting from a dataset fingerprint, a pipeline fingerprint is 

generated (inferred parameters, blueprint parameters and empirical parameters) and three architectures are 

trained in a 5-fold cross validation. Finally, nnUNet automatically selects the optimal configuration. 
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transposed. The initial number of feature maps is 32, doubled (halved) at each downsampling 

(upsampling) operation. The original template has been slightly modified: it was exploited a 

small batch size (most of 3D configurations use a batch size of only 2), to enable for large patch 

sizes; batch normalization was substituted with instance normalization, because the former 

doesn’t work well with small batch sizes. Furthermore, ReLU was replaced with Leaky ReLU, 

and the networks were trained with deep supervision: to ease training of all layers in the network 

and allow gradients to be injected deeper inside it, additional auxiliary losses are added in the 

decoder to all but the two lowest resolutions (Isensee et al., 2019). For what concerns the 

training schedule, the total number of epochs was set to 1000, where each epoch represents an 

iteration over 250 minibatches, and oversampling was implemented to handle class imbalance: 

training cases are chosen randomly and 66.7% of samples come from random locations inside 

the selected training case, while 33.3% surely contain one of the foreground classes. The 

learning rate follows the ‘polyLR’ learning rate decay, (1 −
𝑒𝑝𝑜𝑐ℎ

𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥
)0.9, and the loss function 

was chosen to be the sum of cross-entropy and Dice loss. The optimization method chosen is 

Stochastic Gradient Descent (SGD) with Nesterov Momentum (µ = 0.99). 

Data augmentations techniques are applied directly on the fly during training; their parameters 

are randomly extracted from predefined ranges, which don’t change across different datasets. 

The following augmentations are automatically applied by nnUNet: 

1. Rotation and Scaling. They are applied together, with a probability of 0.2 each; if 3D 

patches are anisotropic (see Blueprint parameters) angles of rotation around the three axes 

(in degrees) are extracted from a uniform distribution between -30 and 30 (indicated as U(-

30,30)). While if the patch is anisotropic or 2D, the angle of rotation is extracted from U(-

180,180), and finally if the patch size is 2D and anisotropic, the angle is extracted from U(-

15.15). Scaling is applied by multiplying coordinates for a scaling factor (<1 results in a 

zoom out, >1 in a zoom in) sampled from U(0.7,1.4); 

2. Gaussian Noise. It is added to each voxel independently a zero centered Gaussian noise, 

with variance drawn from U(0,0.1). It’s applied with a probability of 0.15; 

3. Gaussian Blur. Applied with a probability of 0.2 for each sample. If is triggered in a sample, 

blurring is applied to each modality with a probability of 0.5, and the width (in voxels) of 

the Gaussian kernel used for blurring is extracted from U(0.5,1.5); 

4. Brightness. Voxel intensities are multiplied for a value sampled from U(0.7,1.3) with 

probability 0.15; 

5. Contrast. Voxel intensities are multiplied, as before, for a value extracted from U(0.65,1.3) 

with probability 0.15. After multiplication, values are clipped to their initial range; 
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6. Simulation of low resolution. Augmentation applied with a probability of 0.25 for sample 

and 0.5 for each associated modality. The considered modality is downsampled by a factor 

of U(1,2) using nearest neighbor interpolation, and then sampled back to its original 

dimensions using cubic interpolation; 

7. Gamma augmentation. Patch intensities are scaled to a factor of [0,1] of their respective 

value range. Then, voxel intensities are raised to a value gamma drawn from U(0.7,1.5), 

and subsequently they are scaled back to their original range. With a probability of 0.15, 

voxel intensities are inverted before the augmentation, following the transformation 

(1 − 𝑖𝑛𝑒𝑤) = (1 − 𝑖𝑜𝑙𝑑)𝛾 

8. Mirroring. All patches are mirrored with probability 0.5. 

For the full resolution Unet of the Unet cascade, the following augmentations are applied to the 

segmentation map generated by the low resolution 3D Unet: 

4.3 Binary Operators. A binary operator, randomly chosen from dilation, erosion, opening 

and closing, is applied to all labels in the predicted masks with probability 0.4. The 

structure element is a sphere with radius sampled from U(1,8); 

4.4 Removal of Connected Components. Components smaller than 15% of the patch size 

are removed with probability 0.2. 

To conclude, images are predicted with a sliding window approach, where the window size is 

equal to the patch size used during training, and test-time augmentation by mirroring is applied 

along all axes. 

 

 

 

2.3.1.2 Inferred parameters    

 

They represent modifications to the network topology directly derived from the dataset 

fingerprint and automatically computed by nnUNet. They basically regard: 

- Intensity normalization. The default normalization scheme applied for all modalities 

except CT images is z-scoring, applied independently to each image during training and 

inference. CT images intensity values are quantitative and reflect physical properties of 

tissues; for this reason, during normalization this information is preserved by using a 

global normalization scheme: the mean and standard deviation used for images 

normalization are the average ones computed for all training cases, as well as the 0.5 

and 99.5 percentiles used for clipping; 
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- Resampling. nnUNet resample all images to the same target spacing, because images, 

especially in the biomedical domain, can have a heterogeneous voxel spacing, while 

CNNs don’t consider this aspect by operating on voxel grids. The default resampling 

method is third order spline, but for anisotropic images (maximum axis spacing / 

minimum axis spacing > 3) nearest neighbor method is applied along the low resolution 

axis (Z axis) to suppress resampling artifacts; 

- Target spacing. Larger spacings result in too small images and a loss of information, 

while smaller spacings result in too large images limiting the network on learning 

conceptual information, so it represents a crucial parameter. For the 3D full-resolution 

UNet, the chosen default target spacing is the median value of the spacings found in the 

training cases, independently for each axis. For anisotropic datasets this method can 

result in a loss of information due to interpolation artifacts, so the target spacing of the 

lowest resolution axis is selected to be the 10th percentile of the spacings computed in 

the training images. For the 2D UNet, nnUNet usually applies the same method to the 

two axes with the highest resolution; 

- Batch size and path size. A big patch size allows for more contextual information to be 

aggregated, increasing segmentation results; however, a larger patch size decrease the 

batch size, resulting in noisier gradients during backpropagation. For these reasons, 

nnUNet fixes the patch size as large as possible, while allowing a minimum batch size 

of 2 and remaining inside a predefined GPU memory budget. The patch size is then 

initialized to the median image shape after resampling and when the patch size is 

configured, the optional available GPU memory headroom is used to increase the batch 

size. If the GPU is already fully utilized, the batch size is left to 2; 

- Architecture topology. The default kernel size for convolution is 3x3x3 (for 3D UNets) 

and 3x3 (for 2d UNets). The number of downsampling operations along each axis 

depends on the patch size and voxel spacing. High resolution axes are downsampled 

separately until their resolution is within factor 2 of the low resolution axis, then all axes 

are downsampled simultaneously, and this process is stopped for each axis 

independently when continuing downsampling would produce a feature map smaller 

than 4 voxels, or the feature map spacings become anisotropic: 

- Adaptation of GPU memory budget. When the patch size is set, it is initially too large 

to fit into the GPU in most cases (median image shape after resampling is really large). 

The patch size is therefore iteratively reduced, while updating network architecture in 

each step, until the memory budget is reached; the GPU memory consumption is 
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estimated by nnUNet based on the size of feature maps of the network, and using 

reference values of known memory consumption. 

- Configuration of 3D UNet cascade. The 3D UNet cascade is designed so that the second, 

full resolution 3D UNet refines the segmentation maps of the first one, a low resolution 

network that uses maximal contextual information to create its output. When the 3D 

UNet cascade is triggered (only for datasets where the patch size of the 3D full-

resolution UNet covers less than 12.5% of the median image shape), the target spacing 

for downsampled data and the architecture of the 3D low-resolution UNet are 

configured together iteratively. The target spacing is first set to the target spacing of the 

full resolution data, and is increased at each step by 1%, while updating the architecture 

accordingly, until the patch size of the network overcomes 25% of the current median 

image shape. The configuration of the second UNet is the same as the 3D full-resolution 

UNet. 

 

 

 

2.3.1.3 Empirical parameters    

 

They consist in the choice of the optimal UNet configuration, which is automatically 

determined by nnUNet based on the average foreground Dice coefficient estimated by cross-

validation on the training set. The selected network can be a single model (2D UNet, 3D full-

resolution UNet, 3D low-resolution UNet, 3D UNet cascade) or an ensemble of any two of 

these configurations, merged by averaging softmax probabilities. 

To conclude, the last step for the architecture and pipeline definition is Postprocessing. nnUNet 

performs connected component-based postprocessing, which is commonly used in medical 

image segmentation because it consists in the removal of all but the largest connected 

component, and helps to remove spurious false positives. It is performed only once all 5 folds 

have been trained, and consists on considering all foreground classes as one component, and 

removing all but the largest component; if this doesn’t lead to the reduction of the Dice 

coefficient for any of the classes, but actually improves it, then this postprocessing method is 

applied. After that, the same procedure is evaluated for individual classes, assessing if 

suppressing all but the largest component for each class, considering the difference of Dice 

coefficients before and after. 
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2.3.2 Implementation details 

 

nnUNet is implemented using PyTorch (Paszke et al., 2019), and it needs a GPU, with at least 

4 GB of VRAM. It already provides a lot of pretrained models for different tasks (e.g., 

Task001_BrainTumour, Task029_LiTS, Task082_BraTS2020). 

It requires to create the following folders: nnUNet_raw_data_base/nnUNet_raw_data, where 

the initial raw data must be saved, nnUNet_prprocessed, where nnUNet will automatically save 

preprocessed data, and nnUNet_trained_models, where trained models will be saved, together 

with validation results and possible inference results. 

Raw data must be saved following the Medical Segmentation Decathlon (MSD) dataset format: 

each segmentation dataset is described by a Task, associated to a specific ID (three-digit 

integer) and a task name (e.g., Task123_name); corresponding data are stored in a task-specific 

folder (marked by task ID and name) in nnUNet_raw_data. Each folder contains the following 

subfolders: 

Task123_name/ 

 dataset.json 

 imagesTr 

 (imagesTs) 

 labelsTr 

Where imagesTr is the training set, containing all images used by nnUNet for networks training 

and architecture’s tuning, labelsTr includes the ground truth associated with the training images, 

while images Ts is optional and represents the test set, that can be used during inference. 

Dataset.json holds the dataset metadata, and is automatically generated by nnUNet during 

preprocessing. All images must be 3D nifty files (.nii.gz) and follow the naming convention 

case_identifier_XXX.nii.gz, where case_identifier corresponds to a dataset specific name (like 

BRATS or FETS) followed by a number which is specific for the training case (001, 002, 003 

etc.). Moreover, each image file can have multiple modalities, which are identified by a four-

digit integer (XXXX) at the end of the filename; the association between this integer and the 

related modality can be found inside the dataset.json file. In the majority of brain tumor images, 

the four modalities, and corresponding identifiers, are: FLAIR (0000), T1 (0001), T1ce (0002), 

T2 (0003). 

nnUnet requires also the ground truth segmentations to contain ordered labels, which is trivial 

for stroke lesions data, that only have two labels (0=background, 1=lesion), but not for the brain 
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tumors (-BraTS labels are 0,1,2,4). To correct and order those labels, it is possible to apply an 

nnUNet specific function, called copy_BraTS_segmentation_and_convert_labels. It must be 

specified that, for construction, this function substitutes label 4 with label 3, but also label 2 

with label 1 and vice versa, inverting the first two labels. 

Once the dataset has been organized in the correct way, preprocessing and subsequent training 

of the model can be achieved. 

At the end of the model training, nnUNet makes automatically available the validation results 

(segmentation maps and corresponding metrics) for each fold, a visualization of the best 

performing network architecture, and also a plot of training and validation losses through the 

epochs. 

 

 

 

2.3.3 Application to BraTS 2020 

 

For the application to BraTS 2020 challenge, Isensee et al. incorporated BraTS-specific 

modifications to nnUNet, which can be considered just a baseline for method development, and 

so needed to be optimized for BraTS competition. The proposed modifications were (Isensee 

et al., 2020b): 

- Region-based training. The provided BraTS labels in ground truth segmentation maps 

are ‘edema’, ‘non-enhancing tumor and necrosis’ and ‘enhancing tumor’, but (as will 

be discussed in the analysis of BraTS dataset in Chapter 3) the evaluation of 

performances is carried out on three overlapping regions: the whole tumor (WT, which 

corresponds to all three labels), the tumor core (TC, corresponding to the classes ‘non-

enhancing tumor and necrosis’ and ‘enhancing tumor’) and enhancing tumor. It has been 

demonstrated that the optimization of these three regions leads to better performances 

on BraTS datasets, and for this reason the softmax non-linearity was replaced with a 

sigmoid, and the optimization target was moved to the three regions. Moreover, cross-

entropy loss was substituted with binary cross-entropy loss, that works independently 

in each region; 

- Batch size. To improve the model accuracy, batch size has been increased from 2 to 5. 

BraTS dataset has become, indeed, bigger and bigger each year, and with larger datasets 

a reduced batch size results in noisier gradients, which potentially reduce overfitting but 

also limit the model accuracy;  
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- Data augmentation. Even if nnUNet already uses a large amount of data augmentations, 

they proposed even more aggressive augmentations to increase the robustness of the 

model. More in detail: the probability to apply rotation and scaling was increased from 

0.2 to 0.3, the scale range was increased from (0.85, 1.25) to (0.65, 1.6), the scaling 

factor was chosen to be selected independently for each axis, elastic deformation was 

applied with a probability of 0.3, brightness augmentation was added with probability 

of 0.3, the aggressiveness of Gamma augmentation was increased. 

- Batch normalization. During their participation to other challenges, Isensee et al. 

noticed that a more aggressive data augmentation can help to reduce the domain gap 

between different datasets (especially the training and test ones) when used in 

conjunction with batch normalization. In BraTS the reduction of Dice scores of the test 

set, compared with training and validation sets, suggests a domain gap between these 

datasets, so they decided to replace instance normalization with batch normalization; 

- Batch Dice. Sample Dice was replaced by Batch Dice. Sample Dice was the common 

Dice loss used, consisting in computing the loss for every sample in the minibatch 

independently, and then average the losses; but small errors in samples with few 

annotated voxels can cause large gradients. If these errors are caused by model 

imperfections, they should push the model to better predictions, but if they are caused 

by imperfect labels, these large gradients will be counterproductive during training. For 

this reason, they introduced Batch Dice, consisting in computing the dice loss over all 

samples in the minibatch, considering them just as a single large sample. In this way, 

samples with few annotated voxels are shadowed by the other samples in the batch; 

- Postprocessing. BraTS challenge uses a ‘rank than aggregate’ approach for methods 

ranking, which means that each test case is ranked six times (one for each of the three 

evaluated regions, times two evaluation metrics, Dice score and Hausdorff distance 

HD95), and then the ranks are averaged across all cases and metrics. The final ranking 

is hence normalized by the number of participating algorithms, so that it ranges from 0 

to 1. Knowing this, when a specific image doesn’t contain ‘enhancing tumor’ region, 

BraTS identifies zero false positives, assigning a Dice score of 1 (it would be otherwise 

undefined due to division by 0), placing the corresponding model in the first rank for 

this test image. This aspect was exploited by introducing a postprocessing method which 

entirely removes ‘enhancing tumor’ region, if the predicted volume is less than a certain 

threshold, optimized during cross-validation, once by maximizing the mean Dice score, 

and once minimizing the ranking score. Removed enhancing tumor was replaced with 
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necrosis, guaranteeing that corresponding voxels continued to be considered part of the 

tumor core. In this way, they were able to obtain more perfect rankings, despite having 

some additional cases with a Dice score of 0 (worst rank), but the net gain out-weighed 

the losses. 

 

These modifications were combined in different ways, leading to the training of various 

configurations. Models were ranked based on their performances on training and validation 

sets, leading to different top-performing networks; they chose to trust more the results on the 

validation set and selected the three best models: the one condensing all proposed 

modifications, the model with all changes but batch dice, and the network with all adjustments 

but without using more aggressive data augmentations. For each configuration, the five models 

from cross-validation, together with 10 model of the second network, each trained with a 

random 80:20 split of the training set, where ensembled, consisting in an ensemble of 

5+5+5+10=25 models. The final ensemble achieved mean Dice scores of 88.95, 85.06 and 

82.03 and HD95 of 8.498, 17.337 and 17.805 for whole tumor, tumor core and enhancing tumor, 

respectively on the test set, taking the first place in the competition (Isensee et al., 2020b). 

 

 

 

2.3.4 Extension for the application to BraTS 2021 

 

For the application to BraTS 2021 challenge, H.M. Luu et al. extended nnUNet by 

experimenting several modifications, with which they won the first place in the final ranking 

on unseen test data (Luu & Park, 2021). 

The architecture used was the one including BraTS-specific modifications, with the inclusion 

of multiple architectural changes: first of all, the size of the network was asymmetrically 

increased by doubling the number of filters only in the encoder, to deal with the large BraTS 

dataset. BraTS 2021 dataset, indeed, includes four times the number of images with respect to 

BraTS 2020 dataset, so increasing the size of the network could help to model the larger variety 

of data and extract deep image features; the maximum number of filters was also increased, for 

this purpose, from 320 to 512. 

The second proposed modification was to substitute batch normalization with group 

normalization. As previously stated, 3D convolutional networks require a high amount of GPU 

memory, which automatically limits the batch size that can be used during training. It has been 
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demonstrated that Group Normalization works better than batch normalization with low batch 

size, because its accuracy is stable for a large range of batch sizes, and its efficiency is 

independent from them(Wu & He, n.d.). The idea behind Group Normalization is to divide 

channels in groups (32 in this case), and normalize their feature maps by computing mean and 

standard deviation within each group, exploiting the consideration that there are groups of 

channels which share similar properties, and that can then be normalized together. 

The final architectural change was the introduction of axial attention in the decoder. Self-

attention mechanisms or transformers were originally introduced for Natural Language 

Processing (NLP), and basically consist in assigning a weight to each part of the input (each 

word for NLP) and updating that weight based on the dependency of each word from the 

context. In this way the input iteratively interacts with itself, learning where to give more 

importance, and allowing not to lose long-term dependencies. Its application to Computer 

Vision represents a breakthrough because, especially in the field of semantic segmentation, it 

addresses training towards the most relevant regions in the image. Self-attention layers in 

Computer Vision take feature maps as inputs and learn ‘attention weights’ between features; 

but the problem of its application in the segmentation field is that the computational cost of 

attention mechanisms scales quadratically with the input images size, becoming too large 

especially with 3D input data.   

To overcome these problems on the application of attention mechanisms on multi-dimensional 

data, axial attention was introduced (Ho et al., 2019). Axial attention consists in the application 

of self-attention independently to each axis of the input, allowing the computation to scale only 

linearly with the image size, letting attention mechanisms to be applied also with 3D data. H.M. 

Luu et al. applied this method on the four lower resolutions of the network, finding that it was 

not possible to apply it to the highest resolution features (128x128x128). Axial attention 

consists in running the attention block on the output of the transposed convolution upsampling 

for each axis, and the results are then summed and added to the original input (Figure 2.2). 
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Figure 2.2: Explanation and visualization of the axial attention block. Self-attention is applied to each axis of the 

output from the transposed convolution in the decoder, results are then summed and added back to the original 

input, which is concatenated to the encoder. 

 

The followed training procedure was the same as the original nnUNet, but the new, 

experimented modifications were tested with a batch size of two. By testing singular proposed 

changes, they observed that using group normalization instead of batch normalization decreased 

the dice metric; using the axial attention encoder did not improve the performance, but 

combining a larger encoder and group normalization increased slightly the results for the tumor 

core and the whole tumor, with the cost of a larger usage of GPU memory. 

The final method was then obtained by ensembling the segmentations obtained by the tested 

configurations, leading to an improvement of all metrics when compared to the baseline 

nnUNet: average Dice score across all classes increased from 87.94 to 88.36, and HD95 

decreased from 12.18 to 10.61. 

 

 

 

2.4 Relevant architectures: IVD-Net: Dense Multi-path U-Net 

 

For the purposes of this thesis, which are related on treating in a separate way images of 

different modalities, avoiding fusing at early stages information extracted from, in some cases, 

images with opposite intensities, another relevant and peculiar architecture is IVD-Net. The 

network of interest was published by Dolz et al. in 2018, and consisted in the development of a 

dense multi-path UNet for ischemic stroke lesion segmentation, but the corresponding code was 

not made publicly available. 

By contacting directly the author (Jose Dolz), he highlighted the existence of a second 

architecture (IVD-Net), which was developed by the same working group, with an identical 
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structure, but for the purpose of segmentation of intervertebral disc (IVD) from multi-modal 

images (Dolz, Desrosiers, et al., 2018), whose code was publicly released. 

The great advantage and improvement of this method is the development of a UNet architecture 

in which each image modality is processed by a different encoder to better exploit their unique 

information, allowing to extract relevant features from each modality independently. The 

majority of networks in fact, included nnUNet (where different input modalities are treated as 

different color channels), perform an early fusion strategy, based on merging multiple 

modalities from the original input space of low-level features (Dolz, Ayed, et al., 2018), 

assuming a simple relationship between modalities, which often doesn’t correspond to reality, 

due to their different acquisition setups. 

To keep images of different modalities separated, and allow the fusion of the extracted features 

only at late levels, the authors chose to disentangle input data, splitting the encoding path of the 

UNet architecture into N streams, one for each input modality (Figure 2.3); the only drawback 

of this structure is the incapability of extracting complex relationships between modalities, 

which have been demonstrated to be highly complex and could allow to extract relevant 

information for the segmentation task. For this reason, it was chosen to implement hyper-dense 

connections within the same and between multiple paths, to model better the existing and 

complex relationships between different modalities without merging them, to help improving 

the flow of information and gradients through the entire network. Dense connections also have 

a regularizing effect, reducing the risk of overfitting. 

 

 

Figure 2.3: Representation of the multi-path dense UNet developed by Dolz et al. (taken from Dolz, Ayed, et al., 

2018) for ischemic stroke lesion segmentation task. It can be noticed the presence of one different stream for each 

acquisition modality, whose feature maps are then concatenated creating a “bridge” before the decoding path. 

Dotted lines represent some of the dense connections adopted between and within paths. 

 

While in standard CNNs, the output of each layer is obtained from the output of the previous 

layer usually by the application of a convolution layer followed by a non-linear activation; 

instead, in densely-connected networks all the outputs of previous layers are concatenated and 
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used as input of the current layer, not to lose past information. Moreover, hyper-dense 

connections allow to link also outputs from different paths, leading to a much more powerful 

representation than early or late fusion strategies, allowing the network to learn complex 

relationships between different modalities within and in-between all the levels of abstraction 

(Dolz, Ayed, et al., 2018). 

The last addition introduced by the authors was the extension of the convolutional module of 

InceptionNet, facilitating learning of multiple context information. In ischemic stroke lesion 

segmentation, but also in brain tumor segmentation, the size of the area occupied by the lesion 

or by the tumoral subregions highly changes from one image to another, compromising the 

choice of the optimal kernel size. InceptionNet(Szegedy et al., 2016) includes convolutions 

with multiple kernel sizes operating on the same level, solving the problem of the choice of the 

kernel size, but increasing also the efficiency by factorizing n×n convolutions into a 

combination of 1×n and n×1 convolutions, which have been demonstrated to be more efficient. 

Dolz et al. further extended InceptionNet by adding two convolutional blocks with different 

dilation rates, which help the module to learn from multiple receptive fields and to increase the 

context. 

Nothing changes in the architecture of IVD-Net, only the task. These methods were 

implemented to work with 2D images. 
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3. Publicly available datasets 

 

First of all, a review about the most employed datasets in the fields of brain tumors and stroke 

lesions segmentation was performed, to allow a better understanding about the growing 

dimension of available data, and to point out the most advanced and avant-garde datasets. 

Datasets were identified performing a state-of-the-art analysis about brain tumor and stroke 

lesion segmentation techniques, and searching information about the most cited datasets in the 

papers analyzed. 

 

 

 

3.1  Brain Tumor datasets 

 

Most of the algorithms developed in last ~5 years for brain tumor segmentation were trained 

and implemented using Brain Tumor Segmentation (BraTS) challenge datasets.   

The first BraTS challenge was held in conjunction with the 15th International Conference on 

Medical Image Computing and Computer Assisted Intervention (MICCAI 2012) on October 

1st, 2012 in Nice, France (MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation 

Proceedings of MICCAI-BRATS 2012 October 1 St, Nice, France, n.d.). 

At the time it was difficult to compare methods because of the large difference between 

validation datasets employed, type of lesions and state of the disease; for these reasons the aim 

of BraTS 2012 was to make available a large dataset of glioma brain tumor MR scans, in which 

tumor regions have been manually delineated by expert neuroradiologist. The introduction of 

such dataset allowed programmers to train algorithms on a dataset significantly large for that 

time, and that enabled comparison of different methods, because they were all evaluated on the 

same type of scans and lesions. 

After 2012, BraTS challenge was proposed each year with a larger dataset, with new scans 

provided by new centers (BraTS 2012 consisted just of 80 gliomas from real patient cases) and 

with new challenges. 

Because of the growing dimension of these datasets, I started analyzing from BraTS 2017, 

because previous editions are no more used. All the detailed information about these datasets 

is provided in Table 3.1. 
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BraTS 2017 consists of 477 (285 for training, 46 for validating, 146 for testing) pre-operative 

MRI scans provided by 16 distinct institutions worldwide. Different sequences of MRI scans 

are supplied: T2 and FLAIR images, which mostly highlight the whole tumor region (including 

infiltrative edema), and T1 and T1ce images, which give a better contrast for the tumor core 

region (G. Wang et al., 2019) (same modalities are provided every year). All images were 

preprocessed by co-registration to the same template, resampling to a uniform resolution ad 

skull-stripping; then they were segmented manually by 1-4 raters, and after annotations were 

approved by expert neuro-radiologists. The Challenge tasks were: 1) Segmentation of gliomas 

in sub-regions: the enhancing tumor (ET), the tumor core (TC) and the whole tumor (WT). The 

ET is characterized by areas that show hyper-intensity in T1ce when compared to T1; the TC 

represents what is typically resected, and it entails the ET, as well as the necrotic (NCR) and 

non-enhancing (NET) tumor core, which are typically hypo-intense in T1ce when compared to 

T1; finally, the WT represents the entire tumor, and it encloses the TC and the peritumoral 

edema (ED), which is typically hyper-intense in FLAIR. The labels in provided data were: 1 

for NCR/NET, 2 for ED, 4 for ET, 0 for anything else, as specified in Figure 3.1 

(MICCAI_BraTS_2017_proceedings_shortPapers, n.d.). This task is shared by all the other 

BraTS challenges. 2) Prediction of patient overall survival, by extracting imaging features from 

the given data. 

 

 

BraTS 2018 dataset consists of 542 (285 for training, 66 for validating, 191 for testing) MRI 

scans provided by 19 different centers. Also in this case, images pre-processing and annotation 

Figure 3.1: Glioma subregions considered in BraTS challenge: the provided labels are shown in panel D, and 

consist in Necrotic Tumor Core (label 1), Enhancing Tumor (label 2), and peritumoral edematous/invaded tissue 

(label 4), while the evaluation is performed based on Enhnacing tumor (panel A) which coincides with label 2, 

Tumor Core (panel B), which contains label 1 and 2, and Whole Tumor (panel C) that contains all labels. 
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protocols were the same for all the BraTS challenges. The tasks were the same then BraTS 

2017. 

BraTS 2019 dataset consists of 646 (355 for training, 125 for validating and 166 for testing) 

MRI scans provided by 19 separate institutions. A third task was added for this challenge: 

quantification of uncertainty in segmentation, with the aim of rewarding participation methods 

which are confident when correct and uncertain when incorrect. An uncertainty map (associated 

with the traditional BraTS Dice metric) was provided for each segmented subregion. 

BraTS 2020 dataset consists of 800 (420 for training, 150 for validating, 230 for testing) pre-

operative and post-operative MRI scans provided by 21 different centers. Also in this case a 

third task was added, different from the one proposed in 2019: distinction of tumor recurrence 

from treatment related effects, with the aim of developing radiomics and machine learning 

solutions to reliably distinguish benign pseudo-progression (PsP), a benign side-effect of the 

chemoradiation therapy, from tumor recurrence. 

BraTS 2021 dataset consists of 2000 (1251 for training, 219 for validating, 570 for testing) pre-

operative and post-operative multi-parametric MRI (mpMRI) scans provided by 21 distinct 

institutions. It focuses only on glioblastoma and task 2 changed with respect to the previous 

editions: determination of MGMT (O[6]-methylguanine-DNA methyltransferase) promoter 

methylation status on pre-operative scans via integrative analysis of quantitative imaging 

features and machine learning algorithms. MGMT is a DNA repair enzyme, and the methylation 

of its promoter in diagnosed glioblastoma has been identified as a favorable prognostic factor 

and a predictor of chemotherapy response, and for this reason could influence decision making 

and treatment planning (Baid et al., 2021). 

Another popular dataset is Medical Segmentation Decathlon (MSD) which is composed by 

2633 3D images collected across multiple anatomies of interests, multiple modalities and 

multiple institutions, for various tasks. The most important for my purposes is the one 

associated with Task01_BrainTumor, which is just composed by a total of 750 (484 for training, 

266 for testing) MRI scans coming from data used in 2016 and 2017 BraTS challenges. 

Among the most advanced and newest datasets, Federated Tumor Segmentation (FeTS) 2021 

and 2022 datasets must be cited. The performance of algorithms on “real-world” clinical data 

often remains unclear, as the data included in international challenges and used to train those 

algorithms are usually acquired in controlled settings by few institutions, with privacy and 

ownership hurdles. For these reasons, FeTS challenge was introduced: it includes scans from 

previous BraTS challenges and its goals are: 1) the training of models via federated learning 

from multiple institutions, while their data are kept within each institution, and 2) the evaluation 
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of the generalizability of brain tumor segmentation models on data different from training 

datasets, to assess their robustness (Pati et al., 2021). 
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Table 3.1: Most used datasets and related characteristics in the field of brain tumor segmentation 
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3.2  Stroke Lesion datasets 

 

In the field of stroke lesions segmentation, the most used datasets are Anatomical Tracings of 

Lesions After Stroke (ATLAS) and Ischemic Stroke Lesion Segmentation (ISLES) challenge 

datasets. 

The first version of ATLAS (v1.2) was released in 2018 and it comprised 304 T1w MRIs (T1 

is a commonly used modality in stroke rehabilitation research, as it provides excellent spatial 

resolution at subacute or chronic stage, when rehabilitation usually starts) and manually 

segmented lesion masks. However, many methods developed using this dataset reported low 

accuracy and were improperly validated, limiting their application. For these reasons, in 2021 

it was introduced ATLAS v2.0, a large dataset of 955 T1w MRI scans, composed by 655 public 

training images and 300 hidden test images coming from 11 different cohorts worldwide and 

harmonized by the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) 

stroke recovery working group (Liew et al., n.d.). ATLAS was also released with an additional 

hidden test set composed by 135 MRI scans coming from completely different cohorts, 

available only on segmentation challenges for the evaluation of generalizability of algorithms 

on unseen data. Images were first manually segmented by team members, who received lesion-

tracing training and followed a standard protocol for lesions identification to ensure consistency 

among tracers. After that, lesion masks were checked by two separate raters. The raw dataset 

was released together with a preprocessed dataset, following the same pipeline of ATLAS v1.2: 

intensity normalization, registration to a standard template and remotion of non-brain data. 

Current challenges using ATLAS data are Rapid Analytics and Model Prototyping (RAMP) 

Challenges and Ischemic Stroke Lesion Segmentation (ISLES) Challenge (Liew et al., n.d.). 

The ISLES challenge is one of the best-known stroke lesion segmentation challenges; it was 

firstly introduced in 2015 at the International Conference on Medical Image Computing and 

Computer Assisted Intervention (MICCAI) in Munich, Germany, with two sub-challenges: 

Sub-Acute Stroke Lesion Segmentation (SISS), dealing with the later stroke analysis, and 

Stroke Perfusion Estimation (SPES), dealing with the study of the acute phase of stroke. The 

reasons for its introduction were multiple: first of all, stroke lesions vary significantly their 

appearance over time, especially starting from the sub-acute phase, at the beginning of which 

lesions usually are hyperintense in DWI sequence and moderately hyperintense in FLAIR; 

while, towards the second week, the hyperintensity in FLAIR sequence increases while the 

DWI becomes isointense, underlying the necessity of acquiring multiple modalities to have the 

whole picture about stroke lesion progression. Second, lesions can show in any location in the 
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brain and with any shape, not always manifesting as homogeneous regions. To make ischemic 

stroke lesion segmentation even more complicated, their appearance can be really similar to 

other pathologies, like chronic stroke lesions or white matter hyperintensities (WMHs) (Maier 

et al., 2017).  

SISS dataset is composed by 64 sub-acute ischemic stroke cases (28 for training, 36 for testing) 

provided by two institutions, and the modalities included were T1, T2, DWI and FLAIR. MRI 

sequences were skull-stripped, resampled to an isotropic spacing and co-registered to the 

FLAIR sequence; annotations were created on the FLAIR sequence (lower inter-rater 

differences) by experienced raters. 

SPES dataset is composed by 50 MRI scans (30 for training, 20 for testing) provided by a single 

center; sequences acquired were T1ce, T2, DWI, cerebral blood flow (CBF), cerebral blood 

volume (CBV), time-to-peak (TTP) and time-to-max (Tmax). All images were skull-stripped, 

resampled to an isotropic spacing and registered to the T1ce sequence, and they were segmented 

semi-manually by a medical doctor with Slicer 3D Version 4.3.1. 

ISLES 2016 dataset consists of 54 MRI scans (35 for training, 19 for testing) acquired from 

patients treated for acute ischemic stroke at the University Hospital of Bern. All MRI sequences 

were initially skull-stripped and anonymized, and they were annotated by a certified 

neuroradiologist using again 3D Slicer v4.5.0-1 and based on a 90-day follow up T2 image 

acquired only for this purpose and not released. Test cases were annotated by two raters 

independently, and segmentation maps were merged via the STAPLE algorithm. The associated 

challenge consisted in two tasks: I) lesion outcome prediction (segmentation map generation) 

and II) clinical outcome prediction, through the mRM score, denoting the degree of disability 

(Winzeck et al., 2018).  

ISLES 2017 dataset consists of 75 MRI scans (43 for training, 32 for testing) acquired, 

preprocessed and annotated in the same way than ISLES 2016 dataset, but in this case, the 

additional test cases were annotated by a single rater. 

ISLES 2018 dataset consists of 156 MRI/CTP scans (94 for training, 62 for testing) from 

patients presenting acute ischemic stroke from 3 US centers and 1 Australian center; CT scans 

were acquired within 8 hours from the stroke onset. CT scans were motion corrected and 

registered to a standard template, while DWI scans were coregistered to the corresponding CTP 

acquisitions; annotations were manually delineated by expert neuroradiologists, and then 

subjected to group review, on additional MR DWI images not included in the challenge dataset, 
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where the infarct zone is seen more clearly and which were acquired within 3 hours of the initial 

CT scan (Clèrigues et al., 2019). 

ISLES 2022 dataset consists of 400 pre- and post- interventional MRI scans (250 for training, 

150 for testing) provided by 3 institutions. Data were anonymized, brain-extracted, FLAIR 

images were coregistered to corresponding DWI, and DWI and ADC maps were skull-stripped 

and resliced. For labeling purposes, a 3D Unet was trained on DWI data that were pre-annotated 

for other research projects by using a single MRI modality. Segmentations were then checked 

by medical students with special stroke lesion segmentation training, and their annotations were 

revised by a neuroradiology resident. After a new pre-segmentation algorithm was trained on 

correct annotations, and the process was repeated (Petzsche et al., 2022). The aim of this year’s 

challenge is different from previous editions because it targets I) the delineation of not only 

large infarct lesions but also multiple embolic and/or cortical infarcts from DWI, ADC and 

FLAIR images; and II) single-channel T1w lesion segmentation in acute, sub-acute and chronic 

stroke (ATLAS challenge). 

All these information can be seen in detail in Table 3.2. 
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Table 3.2: Most used datasets and related characteristics in the field of stroke lesion segmentation 
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3.3 Other datasets 

 

Before going into details about the datasets used during this study, it is worth analyzing also 

the largest and most used datasets in the segmentation of other types of medical images. These 

datasets were met when analyzing certain types of deep learning algorithms really efficient in 

other fields, and consequently they’re reported to get to know the most advanced datasets for 

these scopes. Detailed information is reported in Table 3.3. 

Liver Tumor Segmentation (LiTS) challenge was organized in 2017 in conjunction with the 

IEEE International Symposium on Biomedical Imaging (ISBI) and International Conference 

On Medical Image Computing & Computer Assisted Intervention (MICCAI). The challenge’s 

task is the segmentation of patients’ liver lesions (primary and secondary tumors, metastases). 

LiTS dataset consists of 201 (131 for training, 70 for testing) CT volumes of patients with 

hepatocellular carcinoma (HCC) provided by seven hospitals and research institutions 

worldwide. CT scans are used to study livers’ anomalies, which can be important biomarkers 

for diagnosis of primary and secondary hepatic tumors, and they show different types of tumor 

contrast levels (hyper- /hypo-intense), shape and size, making it very difficult for intensity-

based methods to generalize well on unseen test data (Bilic et al., 2019). Data have been 

manually annotated by trained radiologists and oncologists, and verified by three experienced 

radiologists. 

The first HEad and neCK (H&N) TumOR (HECKTOR) challenge was organized as a satellite 

event of the 23rd International Conference on Medical Image Computing and Computer 

Assisted Intervention (MICCAI) in 2020. The task of the competition was the automatic 

segmentation of head and neck primary Gross Tumor Volumes in the oropharynx region, from 

a dataset of 254 (201 for training, 53 for testing) FDG-PET/CT images (which include 

complementary information about cancerous lesions) acquired by five institutions. The task is 

challenging due to the variation in image acquisition across centers and the presence of lymph 

nodes with high metabolic response in PET images (Andrearczyk et al., n.d.). Images weren’t 

preprocessed, but pieces of code to load, crop, resample the data and train a baseline CNN were 

provided. Data annotations were generated by expert radiation oncologists and later modified 

by a VOI (Volume Of Interest) quality control, supervised by an expert who is both radiologist 

and nuclear medicine physician. 

HECKTOR 2021 dataset consists of 325 (224 for training, 101 for testing) FDG-PET/CT scans 

provided by six centers worldwide. This year’s challenge was composed by 3 tasks: 1) the 

automated segmentation of H&N primary Gross Tumor Volumes; 2) the automated prediction 
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of Progression Free Survival (PFS); and 3) the same as task 2, but with ground truth annotations 

provided to participants. Initial data annotations were made by expert oncologists and later re-

annotated; while data added with respect to 2020 challenge (from CHUP center) were 

segmented with a Fuzzy Locally Adaptive Bayesian (FLAB) segmentation and corrected by an 

expert oncologist, while re-annotations were drawn by three experts with the MIM software 

(Andrearczyk et al., 2022). 
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Table 3.3: Most used and advanced datasets and related characteristics in the segmentation of different biomedical 

images 
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3.4  FeTS 2022 

 

Among all the existing datasets used for brain tumor segmentation, FeTS 2022 represents the 

most advanced and complete one, not only because it contains BraTS 2021 data, which 

represents nowadays the most complete and largest dataset about gliomas, but also because it 

is based on federated learning. 

 

 

 

3.4.1 Description of FeTS Dataset 

 

In order to analyze properly BraTS data, it was necessary to study the characteristics of data 

provided by the donating cohorts, to understand possible differences between them. After 

contacting directly BraTS 2020 challenge official email, it was possible to discover that this 

information is not released by BraTS challenge, but only by FeTS, a challenge created expressly 

for this purpose. 

FeTS 2021 was the first challenge introduced based on federated learning, a machine learning 

branch that carries out the training of an algorithm through a multitude of decentralized servers 

with local data, without merging those data but keeping them locally. For this reason, it allows 

to create a strong and effective machine learning model without sharing data, and so solving 

problems of privacy, data security, data access rights and so on. Moreover, it also allows to 

study properties of data coming from different centers, without pooling their data together. 

Specifically, FeTS 2022 data are multi-parametric MRI (mpMRI) provided by a total of 23 

institutions worldwide: some of them come from BraTS 2021 challenge, while others from 

various remote independent institutions included in the collaborative network of a real-world 

federation (The Federated Tumor Segmentation (FeTS) Challenge 2022: Structured Description 

of the Challenge Design Mission, n.d.). The dataset is provided with the addition of non-

imaging data including information about their partitioning based on the originating institute 

(partitioning_1.csv) and also it was made an extra partitioning based on the median tumor size 

in the 5 largest institutions (partitioning_2.csv). 

It was possible to access FeTS 2022 data by enrolling for the challenge, without uploading any 

method but just downloading the dataset for analysis’ purpose. 

Only training data were used; they were realized in the 8th April 2022 and downloaded in the 

31st May 2022. 
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3.4.2 Intensities distribution analysis 

 

To better understand the characteristics and peculiarities of FeTS 2022 dataset, it was performed 

an intensity distribution analysis on images provided by the different centers. As a first step, 

based on the information provided inside partitioning_1.csv, it was realized an histogram on 

the number of images supplied (Figure 3.2). Unfortunately, the partitioning ID is just a number 

identifying the providing cohort, therefore it was not possible to obtain any detail about the 

name or location of those institutions, but only to understand that there was a total of 23 

different centers. 

 

 

From Figure 3.2 it is evident that center 1 and 18 are the ones providing the largest number of 

images (511 the former, 382 the latter, out of a total of 1666 images), with the first institution 

providing more or less one third of the total number of images, and thus being the most 

representative one. Before proceeding, it must be specified that each “image”, as stated before, 

is in reality a folder containing 4+1 scans, one for each MR modality provided (T1, T1ce, T2, 

FLAIR) and a segmented image containing the ground truth labels, all associated to the same  

subject and so, obviously, coregistered. For this reason, excluding the annotated images, the 

real number of scans inside FeTS 2022 dataset is 6664. 

After that, different folders were created and images were divided based on the providing 

center, and inside it based on the different modalities, as described by the underlying schema. 

Figure 3.2: Histogram describing the number of images provided by the 23 different institutions contributing 

to FeTS 2022 dataset 
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Before proceeding with the study, some random images and the corresponding intensities were 

analyzed, observing that the range of values assumed by images provided by different centers 

changes a lot. To make results and histograms more comparable, it was decided to normalize 

all images’ values between 0 and 1, creating new folders which follow the schema previously 

introduced. 

As stated before, the intensity distribution analysis consists in the realization of four histograms 

per center, one for each modality, in which, as a matter of fact, each histogram represents the 

distribution of intensities (values) of images of that specific center. Four images were then 

created (one for each modality), each comparing the distribution of images’ values of all 

/ FeTS_analysis/norm_mod_FeTS2022 

          images_center1 

        FLAIR 

   FeTS2022_01341_flair.nii.gz 

   FeTS2022_01333_flair.nii.gz 

   … 

  T1 

   FeTS2022_01341_t1.nii.gz 

   FeTS2022_01333_t1.nii.gz 

   … 

  T1ce 

   FeTS2022_01341_t1ce.nii.gz 

   FeTS2022_01333_t1ce.nii.gz 

   … 

  T2 

   FeTS2022_01341_t2.nii.gz 

   FeTS2022_01333_t2.nii.gz 

   … 

 images_center2 

  FLAIR 

   FeTS2022_01415_flair.nii.gz 

   … 

  … 

 … 
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centers, for the same modality. Given that the number of images provided is highly imbalanced, 

to select the number of images to be used for the realization of such histograms it was chosen 

to use thresholds based on the specific number of images supplied by each center: if the images 

are more than 100, it was decided that it was enough to select 10% of them; while if they are 

less than 100, then the threshold used was 50%. At this point, the selected percentage of images 

taken randomly were concatenated for each modality, and the corresponding histograms were 

calculated.  

As last step, values equal to zero were discarded from the histograms, as they are associated 

with the background and so they represent the majority while being non informative. 

For histograms visualization, it is chosen to set density=True so that the area under each 

histogram would sum up to 1, allowing histograms’ normalization and so a better comparison 

between them. Moreover, to increase the differentiation between histograms, it is used the 

‘rainbow’ Matplotlib palette, extracting 23 random colors (one for each histogram) for each 

modality (Figure 3.3, Figure 3.4, Figure 3.5, Figure 3.6). 

 

Figure 3.3: Average histograms of intensities distribution of FLAIR images, for the 23 providing centers 
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Figure 3.4: Average histograms of intensities distribution of T1 images, for the 23 providing centers 

Figure 3.5: Average histograms of intensities distribution of T1ce images, for the 23 providing centers 
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Figure 3.6: Average histograms of intensities distribution of T2 images, for the 23 providing centers 
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4. Methods 

 

This study was performed exploiting the computing power of a machine in the Padova 

Neuroscience Center (PNC), which has access to two powerful NVIDIA Tesla V100-PCIE-

16GB. All the analysis was done working on Jupyter Lab, with Python 3.9 and PyTorch 1.11.0. 

 

 

 

4.1 Explorative analysis of the used datasets 

 

Before proceeding with the primary analysis of this thesis, a preliminary examination of the 

utilized datasets was performed, to understand the diversity of the exploited images. 

The descriptive statistics technique that was chosen to be used for this research is the Box Plot, 

which is a method for visualizing the locality, spread and dispersion of data through quartiles, 

providing information on the variability of the considered dataset, indicating how the values of 

images are spread out. The term “box-plot” derives from its structure: it is composed by a 

rectangle (box), in which the top represents the third quartile (𝑄3 or 75th percentile, which is 

the minimum value below which it falls the 75% of values of the dataset), a horizontal line 

inside the box represents the median (𝑄2) and the bottom of the rectangle indicates the first 

quartile (𝑄1 or 25th percentile, which represents the minimum value below which it falls the 

25% of values). The difference between the 25th and 75th percentiles, which consists also in the 

height of the box, is called Interquartile Range (IQR). Two vertical lines, called “whiskers”,  

extend then from the top and the bottom of the rectangle, indicating the maximum and minimum 

values of the dataset: the maximum value is obtained by adding the interquartile range to the 

third quartile, while the minimum is computed by subtracting the interquartile range from the 

first quartile. In a normally distributed dataset, 99.3% of data stand inside these whiskers, while 

for all the other cases, in which the assumption of Gaussian distribution can’t be done (like in 

this analysis), it can be concluded anyway that the majority of data stay between those vertical 

lines. All the other values, which are not included inside the box or whiskers, are data points 

which are really far away from most of the others; they consist in outliers and are represented 

as small circles. 

The Box Plots have been derived for each of the analyzed datasets (BraTS 2020, FeTS 2022, 

ISLES 2022), considering a defined number of representative images. In particular, for each 



 

59 

 

image it was computed a mask for all the labels present in the segmentation map (1,2,4 for brain 

tumors images, 1 for stroke lesion) and multiplied for the corresponding images of the different 

modalities. In this way, from a single picture it was possible to obtain one image for each class, 

containing only the voxels belonging to the corresponding brain tumor subregion or to the 

stroke lesion. After that, Box Plots were computed for images of the same class and of the same 

modalities, and were compared between each other. 

 

 

 

4.1.1 BraTS 2020 dataset 

 

In the analysis of the BraTS 2020 dataset, 5 subjects were randomly extracted from the training 

set. For each subject, the previously explained procedure was repeated for all the present 

modalities (FLAIR, T1, T1ce, T2): a mask for each class (ED, NCR, ET) was obtained and 

multiplied for the corresponding image. For each tumoral subregion, from the 5 masks of the 

same modality 1D arrays was obtained by selecting only values different from 0: much of the 

images were indeed composed by zeros, so that the resulting box plots were highly unbalanced. 

For these reasons it was chosen to discard those values which weren’t informative for the study. 

After that, noting that images of different subjects had different ranges of values, to make the 

box plots of different subjects, for each modality, more comparable, they were also normalized 

to the maximum value reached by the considered images, and the corresponding box plots were 

obtained.  

Given that no information was included inside the BraTS dataset about which centers provided 

the different images, it was not possible to compare Box Plots of images of the same modalities 

between different centers. The box plots of the 5 images, and their corresponding normalized 

box plots for the first class (ED), and for the different available modalities (FLAIR, T1, T1ce, 

T2), are showed respectively in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8, while the related 

ones for the second class (NCR) are showed in Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15 

and 4.16; and finally for last class (ET) in Figures 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23 and 

4.24. 

It can be observed that there are some subjects in which the distribution of values is more similar 

to others, while, in other cases, the dispersion of values of images of different subjects acquired 

with the same modality is completely different, having a variable number of outliers, a variable 

size of the box and of the whiskers, and a different median value. 
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Figure 4.1: Box Plots of FLAIR images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue) and having 

removed zero values. 

 

 

 

 
Figure 4.2: Box Plots of FLAIR images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue), having 

removed zero values and having normalized them to the maximum value reached by all images (obtained by image 

5). 
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Figure 4.3: Box Plots of T1 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue) and having 

removed zero values. 

 

 

 

 

 
Figure 4.4: Box Plots of T1 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue), having 

removed zero values and having normalized them to the maximum value reached by all images (obtained by image 

5). 
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Figure 4.5: Box Plots of T1ce images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue) and having 

removed zero values. 

 

 

 

 

Figure 4.6: Box Plots of T1ce images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue), having 

removed zero values and having normalized them to the maximum value reached by all images (obtained by image 

5). 
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Figure 4.7: Box Plots of T2 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue) and having 

removed zero values. 

 

 

 

 
Figure 4.8: Box Plots of T2 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ED: peritumoral edematous/invaded tissue), having 

removed zero values and having normalized them to the maximum value reached by all images (obtained by image 

5). 
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Figure 4.9: Box Plots of FLAIR images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the second class (NCR: necrotic tumor core) and having removed zero 

values. 

 

 

 

 

 
Figure 4.10: Box Plots of FLAIR images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (NCR: necrotic tumor core), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 3). 
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Figure 4.11: Box Plots of T1 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the second class (NCR: necrotic tumor core) and having removed zero 

values. 

 

 

 

 

Figure 4.12: Box Plots of T1 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (NCR: necrotic tumor core), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 3). 
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Figure 4.13: Box Plots of T1ce images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the second class (NCR: necrotic tumor core) and having removed zero 

values. 

 

 

 

 

Figure 4.14: Box Plots of T1ce images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (NCR: necrotic tumor core), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 3). 
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Figure 4.15: Box Plots of T2 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the second class (NCR: necrotic tumor core) and having removed zero 

values. 

 

 

 

 

Figure 4.16: Box Plots of T2 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (NCR: necrotic tumor core), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 5). 
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Figure 4.17: Box Plots of FLAIR images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the third class (ET: enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.18: Box Plots of FLAIR images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ET: enhancing tumor), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 5). 

 

 



 

69 

 

 
Figure 4.19: Box Plots of T1 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the third class (ET: enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.20: Box Plots of T1 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ET: enhancing tumor), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 3). 
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Figure 4.21: Box Plots of T1ce images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the third class (ET: enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.22: Box Plots of T1ce images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ET: enhancing tumor), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 5). 
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Figure 4.23: Box Plots of T2 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the third class (ET: enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.24: Box Plots of T2 images of 5 randomly extracted subjects, after having multiplied them for the 

corresponding segmentation masks for the first class (ET: enhancing tumor), having removed zero values and 

having normalized them to the maximum value reached by all images (obtained by image 5). 
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4.1.2 FeTS 2022 dataset 

 

Luckily, information about centers providing data is available for FeTS 2022 dataset, allowing 

a better comparison between values of images coming from different cohorts.  

Not to make the analysis too heavy or tedious, only 5 centers from the 23 existing ones have 

been randomly extracted and compared between each other; the random extracted centers for 

this study were centers 4, 5, 13, 20, 21. To limit the magnitude of the analysis, it was chosen to 

randomly sample just one subject for each institution, after that a mask was created for each 

label (ED, NCR, ET) and multiplied for the images of the different modalities (FLAIR, T1, 

T1ce, T2). From the masked images, for each modality and for each class, Box Plots were 

obtained, always after removing zero values which were not informative 

In this way, it was possible to compare box plots obtained from images of the same modalities 

for different centers, for each class, to actually examine the difference between images provided 

by the various institutions.  

It was also chosen to normalize each group of visualized box plots (for each class and for each 

modality) for the maximum value reached by the visualized images, to effectively show the 

differences between images provided by dissimilar centers. 

The box plots of the 5 images extracted from random centers, and their corresponding 

normalized box plots for the first class (ED), and for the different available modalities (FLAIR, 

T1, T1ce, T2), are showed respectively in Figures 4.25, 4.26, 4.27, 4.28, 4.29, 4.30, 4.31 and 

4.32, while the related ones for the second class (NCR) are showed in Figures 4.33, 4.34, 4.35, 

4.36, 4.37, 4.38, 4.39 and 4.40; and finally for last class (ET) in Figures 4.41, 4.42, 4.43, 4.44, 

4.45, 4.46, 4.47 and 4.48. 

From all these images it is possible to appreciate the different dispersion of values of images 

acquired with the same acquisition setup, but from different centers. 
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Figure 4.25: Box Plots of FLAIR images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue) and having removed zero values. 

 

 

 

 

 

Figure 4.26: Box Plots of FLAIR images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue), having removed zero values and having normalized them to the maximum 

value reached by all images (obtained by image 1). 
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Figure 4.27: Box Plots of T1 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue) and having removed zero values. 

 

 

 

 

 

Figure 4.28: Box Plots of T1 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue), having removed zero values and having normalized them to the maximum 

value reached by all images (obtained by image 1). 
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Figure 4.29: Box Plots of T1ce images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue) and having removed zero values. 

 

 

 

 

 

Figure 4.30: Box Plots of T1ce images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue), having removed zero values and having normalized them to the maximum 

value reached by all images (obtained by image 1). 
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Figure 4.31: Box Plots of T2 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue) and having removed zero values. 

 

 

 

 

 

Figure 4.32: Box Plots of T2 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the first class (ED: 

peritumoral edematous/invaded tissue), having removed zero values and having normalized them to the maximum 

value reached by all images (obtained by image 1). 
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Figure 4.33: Box Plots of FLAIR images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core) and having removed zero values. 

 

 

 

 

 

Figure 4.34: Box Plots of FLAIR images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core), having removed zero values and having normalized them to the maximum value reached by 

all images (obtained by image 1). 
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Figure 4.35: Box Plots of T1 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core) and having removed zero values. 

 

 

 

 

 

Figure 4.36: Box Plots of T1 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core), having removed zero values and having normalized them to the maximum value reached by 

all images (obtained by image 4). 
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Figure 4.37: Box Plots of T1ce images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core) and having removed zero values. 

 

 

 

 

 

Figure 4.38: Box Plots of T1ce images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core), having removed zero values and having normalized them to the maximum value reached by 

all images (obtained by image 2). 
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Figure 4.39: Box Plots of T2 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core) and having removed zero values. 

 

 

 

 

 

 
Figure 4.40: Box Plots of T2 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the second class (NCR: 

necrotic tumor core), having removed zero values and having normalized them to the maximum value reached by 

all images (obtained by image 1). 

 



 

81 

 

 
Figure 4.41: Box Plots of FLAIR images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.42: Box Plots of FLAIR images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor), having removed zero values and having normalized them to the maximum value reached by all 

images (obtained by image 1). 
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Figure 4.43: Box Plots of T1 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.44: Box Plots of T1 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor), having removed zero values and having normalized them to the maximum value reached by all 

images (obtained by image 1). 
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Figure 4.45: Box Plots of T1ce images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.46: Box Plots of T1ce images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor), having removed zero values and having normalized them to the maximum value reached by all 

images (obtained by image 1). 
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Figure 4.47: Box Plots of T2 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor) and having removed zero values. 

 

 

 

 

 

Figure 4.48: Box Plots of T2 images of 5 randomly extracted subjects from 5 randomly chosen center (one for 

each center), after having multiplied them for the corresponding segmentation masks for the last class (ET: 

enhancing tumor), having removed zero values and having normalized them to the maximum value reached by all 

images (obtained by image 4). 
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4.1.3 ISLES 2022 dataset 

 

For the exploratory analysis of the ISLES 2022 training set, 5 subjects were randomly drawn 

from the dataset, as for previous analyzed datasets. The following procedure was then repeated 

for the realization of representative box plots: for each modality, a new image was obtained by 

multiplying the segmentation mask of the ischemic stroke lesion with the corresponding scan; 

after, zero values were extruded because they were not informative, and finally box plots were 

derived from these concatenated images. 

As before, for a better visualization and comparison between box plots, they were also 

normalized for the highest value reached by all analyzed images, for each modality. 

The box plots of the 5 images, and their corresponding normalized box plots for the unique 

class of the stroke lesion, and for the different available modalities (ADC, DWI and FALIR), 

are showed respectively in Figures 4.49, 4.50, 4.51, 4.52, 4.53 and 4.54. 

From the comparison between box plots of images of different modalities it’s possible to notice 

that the appearance of the ischemic stroke lesion significantly changes from one modality to 

the other: the position and dimension of box and whiskers, the number of outliers and the value 

of the median are very different between subjects. Moreover, it can be noticed that some images 

are characterized by values which are so lower with respect to the other images acquired with 

the same acquisition setup, that their boxplots, compared to the others, are not even visible. 

Only after normalization it’s possible to appreciate it. This peculiarity underlines the huge 

difference of values that it’s possible to find inside images of the same datasets. 
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Figure 4.49: Box Plots of 5 randomly extracted ADC images, after having multiplied them for the corresponding 

segmentation masks for the stroke lesion and having removed zero values. 

 

 

 

 

 

Figure 4.50: Box Plots of 5 randomly extracted ADC images, after having multiplied them for the corresponding 

segmentation masks for the stroke lesion, having removed zero values and having normalized them to the maximum 

value reached by all images (obtained by image 3). 
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Figure 4.51: Box Plots of 5 randomly extracted DWI images, after having multiplied them for the corresponding 

segmentation masks for the stroke lesion and having removed zero values. 

 

 

 

 

 

Figure 4.52: Box Plots of 5 randomly extracted DWI images, after having multiplied them for the corresponding 

segmentation masks for the stroke lesion, having removed zero values and having normalized them to the 

maximum value reached by all images (obtained by image 1). 
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Figure 4.53: Box Plots of 5 randomly extracted FLAIR images, after having multiplied them for the corresponding 

segmentation masks for the stroke lesion and having removed zero values. 

 

 

 

 

 

Figure 4.54: Box Plots of 5 randomly extracted FLAIR images, after having multiplied them for the 

corresponding segmentation masks for the stroke lesion, having removed zero values and having normalized 

them to the maximum value reached by all images (obtained by image 5). 
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4.2 Implementation of the best performing model 

 

nnUNet was deeply analyzed and used as starting point for this thesis not only because it 

represents the state-of-the-art method for brain tumor segmentation, winning both BraTS 2020 

and BraTS 2021 competitions, but also for its capability to adapt to every task and dataset 

automatically: nnUNet just needs to receive as input data organized in the correct manner and 

format, and it will be able to generate a dataset fingerprint independently. Dataset.json is a json 

file that must be generated once the data have been correctly organized, and it contains the 

number of training and test set, the modalities and labels; starting from it nnUNet extracts all 

the dataset characteristics during experiment planning and preprocessing, and automatically 

selects the best UNet configuration in an easy and straightforward way. 

For these reasons nnUNet was chosen as baseline to perform further analysis. nnUNet 

architecture can obviously be modified, but it has been chosen to include only minor 

modifications to achieve my purposes, also to respect the ideal of the authors, which stated that 

small architectural modifications are not superior to a properly tuned model, and often a  

configuration carefully adapted to the given task performs better than a complex and 

computational heavy model. 

Before proceeding with the analysis, a first, simple training was performed using BraTS 2020 

data and the basic trainer (nnUNetTrainerV2) to understand computational time and costs. 

Training and validation performing cross-validation only on fold 0 (instead of all five folds) 

took about 24 hours using a small dataset (90 images for training and 30 for testing, where each 

image consists in four modalities). From the analysis of metrics and losses during training, it 

was possible to recognize that validation loss more or less stabilized after 100 epochs: from 

Figure 4.56 it is possible to notice that even if the validation loss is still oscillating, the general 

trend is stable. To reduce training time and allow a comparison between well representative 

models, it was chosen to perform an initial study using this number of epochs (instead of 1000) 

and training only on fold 0. Furthermore, only the 3D full-resolution UNet was trained to 

additionally reduce training times, and because it represents the best configuration in the  

majority of cases. The network was trained from scratch, letting nnUNet learn directly from 

the dataset the optimal architecture.  

As previously described in Chapter 2.3.2, nnUNet architecture is automatically adapted to the 

specific dataset; in Figure 4.55 it’s showed the structure of the best network generated for the 

BraTS 2020 challenge. 
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The performances using the basic trainer were also compared with a more BraTS-specific 

trainer, which was chosen to be nnUNetTrainerV2_DA3_BN. In this case a more aggressive 

data augmentation is performed, instance normalization is substituted with batch normalization, 

and batch dice loss is introduced. It was chosen not to apply region-based training and the  

postprocessing method from the modifications performed on nnUNet for the subscription to 

BraTS 2020 challenge, because they’re specific changes which allow a better evaluation using 

BraTS metrics, and avoid obtaining small Dice scores, with the primary purpose of ranking in 

the best possible position in the challenge. The aim of this study is to develop a method directly 

applicable in clinics, able to exploit the dataset information to delineate lesions in the best 

possible way, with a minor computational cost and as fast as possible, so these modifications 

are not considered. The batch size was kept to two, because increasing to five would lead to 

small performances improvements, with large computational costs. The extensions introduced 

by H.M. Luu et al. aren’t considered too, because they only slightly improved the performances, 

while widely increasing the computational time and complexity of the model. 

Figure 4.55: Network architecture generated from nnUNet from the BraTS 2020 dataset. Each gray block 

represents a 3x3x3 convolution, followed by instance normalization and Leaky ReLU; the input patch size is set 

to 128x128x128, and the initial number of feature maps is 32, doubled at each downsampling step. Feature maps 

sizes are showed only for the encoder, as they are symmetrically equal in the decoder. In this case the input is 

composed by 4 channels, one for each modality. 
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4.3 Introduction of Wassertian Dice Loss 

 

nnUNet makes available different possible loss functions that could be used during training, 

like the General Dice Loss, Soft Dice Loss, Dice Loss based on Matthews Correlation 

Coefficient, Cross-Entropy Loss etc. But the best performing loss, and more suitable for brain  

tumors and stroke lesions segmentation task, is specified to be the combination between General 

Dice Loss (GDL) and Cross-Entropy (CE) loss. 

A possible nnUNet modification which doesn’t collide with the ideals of Isensee et al. and 

doesn’t change significantly the computational cost is the exploitation of a different loss 

functions. 

Figure 4.56: Trend of training (blue) and validation (red) losses for Task500, which uses the first 90 images of 

BraTS 2020 for training. It is evident that the model stabilizes after more or less 100 epochs, and can then be used 

for comparison with other networks. The green curve represents the average Dice score of the foreground classes; 

however, the same authors say that it isn’t a reliable metric for model evaluation, because it is computed on 

patches randomly drawn from the validation set at the end of each epoch, treating the patches as if they all 

originate from the same image. It is computed because it’s easy to calculate during training and is still able to 

identify if the model is training or not. 
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As previously stated, for the application of their method to BraTS 2021 challenge, L. Fidon et 

al. applied the Wassertian Dice Loss (Fidon et al., 2021), which they previously introduced in 

2017 (Fidon et al., 2017) and exploited in the BraTS 2020 challenge and for other medical 

images segmentation tasks, showing superior segmentation performances when compared to 

the mean Dice Loss. 

In particular, the generalized Wassertian Dice Loss, has been specifically designed for brain 

tumor segmentation task, because it takes advantage of the hierarchical structure of the set of 

classes in BraTS. The formula of the generalized Wassertian Dice Loss is: 

 

ℒ𝐺𝑊𝐷𝐿(𝑝̂, 𝑝) = 1 −
2 ∑ ∑ 𝑝𝑖,𝑙(1 − 𝑊𝑀(𝑝̂𝑖 , 𝑝𝑖))𝑖𝑙≠𝑏

2 ∑ [𝑙≠𝑏 ∑ 𝑝𝑖,𝑙(1 − 𝑊𝑀(𝑝̂𝑖 , 𝑝𝑖))]𝑖 + ∑ 𝑊𝑀(𝑝̂𝑖 , 𝑝𝑖)𝑖
 

∀𝑖,       𝑊𝑀(𝑝̂𝑖 , 𝑝𝑖) = ∑ 𝑝𝑖,𝑙(∑ 𝑀𝑙,𝑙′𝑝̂𝑖,𝑙′)

𝐿

𝑙′=1

𝐿

𝑙=1

 

 

Where L is the number of classes, i the index for voxels (N number of voxels), l the index for 

classes, 𝑝̂ the predicted probability map, p the ground-truth probability map, 𝑊𝑀(𝑝̂𝑖 , 𝑝𝑖), is the 

distance between the predicted 𝑝̂𝑖 and the ground truth 𝑝𝑖; b is the class corresponding to the 

background (0), while the peculiarity of the Wassertian Dice Loss is represented by the matrix 

M, which is a distance matrix between BraTS labels. Given the classes 0: background, 1: 

enhancing tumor, 2: edema, 3: non-enhancing tumor, M is set as: 

 

𝑀 = (

0 1
1 0

1 1
0.7 0.5

1 0.7
1 0.5

0 0.6
0.6 0

) 

 

In this way, when the labeling of a voxel is too ambiguous, the matrix was designed to favor 

mistakes that remain consistent with the sub-regions used in the evaluation of BraTS (Fidon et 

al., 2021). 

This represents just a particularization of the Wassertian Dice Loss for the application in the 

brain tumor segmentation field, but it was generally proposed for any multi-class segmentation 

problem, building the matrix M based on the Wassertian distance, which allows to represent 

the semantic relationship between classes as the comparison between label probability vectors 

(Frogner et al., n.d.), in the probabilistic label space (Fidon et al., 2017). Given these 

peculiarities of the generalized Wassertian Dice Loss, it doesn’t make sense to apply it in the 
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segmentation of stroke lesions, because it’s just a binary classification problem (0=background, 

1=lesion), thus no matrix could be defined. 

On the other hand, it could be easily applied as an alternative of the Dice Loss in the brain 

tumors segmentation problem, having a matrix already set for this aim. 

nnUNet was then modified combining the Cross-Entropy Loss with the generalized Wassertian 

Dice Loss, using the experimental conditions previously mentioned. nnUNet was trained with 

a dataset of 90 images (each containing four modalities) extracted from the BraTS 2020 training 

set, and tested using 80 images randomly extracted from FeTS 2022 training set, so that training 

and test set used are completely independent, allowing a more robust and reliable evaluation. 

As showed in Table 4.1, the introduction of Wassertian Dice Loss is not improving the 

performances when using the classic nnUNet training pipeline, because it achieves an average 

Dice Loss of 0.613, against the 0.658 of the classic model with general Dice Loss. Instead, 

when coupling the Wassertian Dice Loss with BraTS-specific trainer and modifications, the  

altered loss function is able to improve the results, obtaining a higher Dice Score for all three 

classes. 

Table 4.1: Comparison of the Dice scores obtained in the segmentation of the three classes (ED stands for 

Enhancing Tumor, NCR for Necrotic tumor Core, ET for peritumoral Edematous tissue), and their average, 

when using Cross-Entropy (CE) loss combined with Dice loss, or CE combined with Wassertian Dice loss. Using 

classic nnUNet trainer (nnUNetTrainerV2), the segmentation results don’t improve (a), while using BraTS 

specific trainer (nnUNetTrainerV2_DA3_BN) the performances increase on single classes and on average (b) 
 

 

It follows that Wassertian Dice loss can be used as a valid alternative to classic Dice loss, when 

using nnUNet model in the brain tumor segmentation task, only when coupled with an 

appropriate training pipeline, which benefits of an increase data augmentation and the usage of 

batch normalization, that privileges and is more suitable with brain tumor segmentation task 

and data. 

 

 

 

a)   b)  

 CE + Dice CE + Wassertian Dice  
 CE + Dice CE + Wassertian Dice 

ED 0.740 0.732  ED 0.732 0.751 

NCR 0.500 0.425  NCR 0.426 0.506 

ET 0.733 0.683  ET 0.683 0.720 

Mean 0.658 0.613  Mean 0.614 0.659 
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4.4 Analysis of the dependency of nnUNet training from different input 

modalities 

 

nnUnet works by treating multi-modal images as color channels. In this way, different 

modalities of the same image are processed together by the network, which is fusing their 

information at early stages and extracting features from their conjunction. However, different 

modalities can contain really dissimilar, and in some cases totally opposite, information. In T1-

weighted images, for example, white matter appears white, gray matter looks gray, while 

cerebrospinal fluid (CSF) appears dark; on the other side T2-weighted images cause the white 

matter to look more gray, gray matter to appear white and CSF to appear lighter (Figure 4.57), 

so they basically provide opposite information, highlighting regions in a completely different 

way. On one hand it makes sense feeding a neural network with multiple modalities, so that it 

can learn to identify the lesion (or tumor) from images in which it is emphasized in contrasting 

manners, but on the other hand using single modalities could avoid mixing contrasting 

information, and help extracting more intrinsic features of the image and especially of the 

lesion. 

For these reasons, both for stroke lesions and brain tumors segmentation, it has been performed 

a single modality analysis, which consists in feeding the network (nnUNet) with images of a 

single modality at a time, and compare the segmentation results, to examine the dependency of 

the network training from the modalities, and identify possible modalities from which the 

network is better able to localize the lesion. For each analysis, it was necessary to create a new 

dataset (and so, a new task) with a single modality with ID 0000, specify in dataset.json the 

name of the modality, and nnUNet was able to extract all necessary information, adapting the 

framework and considering one single channel per time. 

An ulterior analysis was also performed, training nnUNet by leaving out one modality at a time, 

allowing therefore the network to learn from all but one modality. This study was carried out 

to further optimize the identification of the dependency of the segmentation results produced 

by nnUNet by the different modalities, to point out possible modalities which are more 

remarkable, or other that are substantially useless, for the different tasks of brain tumors and 

stroke lesions segmentation. 
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4.4.1 Brain Tumor Segmentation data analysis 

 

The investigation about the dependency of nnUNet from single modalities started from the brain 

tumor segmentation field. The representative dataset from which training images where 

extracted was BraTS 2020 dataset, from which the first 90 subjects (for a total of 360 images, 

considering the four modalities) were used for training these models. While, to encourage a 

representative and effective analysis, escaping overfitting due to the excessive similarity of 

training and testing images, 80 subjects were chosen from a completely different dataset, FeTS 

2022, by extracting randomly images provided by different centers. In this way, by avoiding 

using images coming from the same dataset both for training and testing, it is possible to 

replicate a real-life application, in which these methods could be exploited to segment images 

generated from direct examinations, with nothing in common with the ones used for training. 

Moreover, it was chosen to randomly draw images from different providing centers to further 

increase their variability and the generalizability of the results. 

As stated before, each input consists in four modalities: FLAIR, T1, T1ce, T2. In Figure 4.57 

it can be appreciated the difference between how each modality highlights the different brain 

regions and especially the tumoral portions, underlining the need to study separately the distinct 

modalities. In particular, from the visualization of the corresponding ground truth labels, it is 

possible to notice the intake of the information from the different modalities in the delineation 

of the distinct tumoral regions: the tumor core (necrotic tumor core and enhancing tumor) is 

more visible in T1ce scan, while the precise contours of the peritumoral edematous/invaded 

tissue are more visible in FLAIR scan. 

 

 

Figure 4.57: Available modalities (flair, t1, t1ce, t2) and corresponding ground truth segmentation for the first 

image (BRATS_001) in BraTS 2020 dataset. It’s immediate to notice how the different brain regions, and 

especially tumoral regions, appear distinct, and in some cases opposed, in different modalities, providing 

complementary information. 

 

First of all, a study removing one modality at a time was performed. 
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4.4.1.1 Training performed with all but one modality 

 

The first research was performed by training models removing one modality at a time. Four 

new datasets were created, following the rules of the baseline model chosen, nnUNet, each 

containing all but one modality: the first model was trained removing FLAIR modality, the 

second was trained taking away T1 images, the third eliminating T1ce, and the fourth removing 

all T2 images. This study was performed to investigate how the segmentation results produced 

by nnUNet depend from the diverse modalities, with the aim of identifying possible modalities 

not useful for the task, and whose removal doesn’t affect the performances of the model. To 

quantify the intake of each modality, all these networks were obviously compared with the 

complete model, which uses all modalities for training. 

The progress of training and validation losses during training for all tasks can be visible in 

Figures 4.58, 4.59 and 4.60, from which it’s possible to notice some peculiar characteristics: 

first of all, in all cases the validation loss is becoming more or less stable after 100 epochs; it’s 

not possible to know if it will continue to decrease afterwards, but this demonstrates that 100 

epochs can be used as a good comparison value between testing models. There aren’t signs of 

overfitting or underfitting, but the validation loss shows noisy movements, oscillating a lot with 

respect to training loss: this can originate from the training-validation split, which for nnUNet 

is set to 80:20; considering that the training dataset is just composed by 90 images, only 18 are 

used for validation at each step. This small number of images can justify the oscillating trend 

of the validation loss, and also for this reason validation results weren’t used for the comparison 

between models. 

After the end of the training of all models, their performances were compared by testing on the 

same 80 images extracted from the FeTS 2022 dataset, and evaluating the results. 
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Figures 4.58: (a) Trend of training (blue) and validation (red) losses for the full model, trained with all available 

modalities, and for the network in which the training dataset is composed by all modalities but T2 (b). As 

previously stated, the green curve (global Dice score) is displayed by way of example, and is computed on patches 

randomly drawn from the validation set at the end of each epoch, treating the patches as if they all originate from 

the same image. It is computed because it’s easy to calculate during training and is still able to identify if the 

model is training or not. 

(b) Training and validation losses for the model trained with all but FLAIR images 

(a)   Training and validation losses for the full model 
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(a)  Training and validation losses for the model trained with all but T1 images 

(b) Training and validation losses for the model trained with all but T1ce images 

Figure 4.59: (a) Trend of training (blue) and validation (red) losses for the model trained with all but T1 modality, 

and for the network in which the training dataset is composed by all modalities but T1ce (b). As previously stated, 

the green curve (global Dice score) is displayed by way of example, and is computed on patches randomly drawn 

from the validation set at the end of each epoch, treating the patches as if they all originate from the same image. 

It is computed because it’s easy to calculate during training and is still able to identify if the model is training or 

not. 
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4.4.1.2 Training performed with a single modality 

 

Following the pipeline of the previous analysis, to investigate the dependency of nnUNet from 

input modalities it was chosen to train different models, each with a single input modality. For 

this purpose, four new datasets were created, following the rules of nnUNet, and used to train 

four distinct models: the first one was trained using only FLAIR images; the second model 

using only T1 images; the third networ employing only T1ce modality; and the last model 

utilizing only T2 images. 

As before, the performances of what were called ‘single’ models (trained with a single 

modality) were compared with the results of the ‘full’ model (trained with all modalities). This 

study was performed to further point out possible modalities which are more relevant than 

others for the segmentation of the brain tumor’s regions, providing results closer to the full 

model, and thus capable to segment in an efficient way even if a single image modality is used. 

Figure 4.60: Trend of training (blue) and validation (red) losses for the model trained with all but T2 modality. As 

previously stated, the green curve (global Dice score) is displayed by way of example, and is computed on patches 

randomly drawn from the validation set at the end of each epoch, treating the patches as if they all originate from 

the same image. It is computed because it’s easy to calculate during training and is still able to identify if the model 

is training or not. 

Training and validation losses for the model trained with all but T2 images 
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On the other hand, all models trained with single modalities were expected to perform quite 

poorly with respect to the full model, because they were trained with a quarter of the images 

used for the complete model, and because they couldn’t benefit from the fusion of features 

extracted from modalities providing different information. 

The progress of training and validation losses during training can be appreciated in Figures 

4.61 and 4.62; the progress of the full model is the same as exposed in section 4.4.1.1 so it’s 

omitted. The same considerations as before can be made: the threshold of 100 epochs remains 

a good comparison value between models, while the trend of training and validation losses is 

really similar to the models trained with all but one modality, so can be considered acceptable. 
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Figure 4.61: Trend of training (blue) and validation (red) losses for the network in which the training dataset is 

composed by only FLAIR modality (a) and for the network in which the training dataset is composed by only T1 

images (b). As previously stated, the green curve (global Dice score) is displayed by way of example, and is 

computed on patches randomly drawn from the validation set at the end of each epoch, treating the patches as if 

they all originate from the same image. It is computed because it’s easy to calculate during training and is still 

able to identify if the model is training or not. 

(a)   Training and validation losses for the model trained with only FLAIR images 

(b)     Training and validation losses for the model trained with only T1 images 
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(a)    Training and validation losses for the model trained with only T1ce images 

Figure 4.62: Trend of training (blue) and validation (red) losses for the network in which the training dataset is 

composed by only T1ce modality (a) and for the network in which the training dataset is composed by only T2 

images (b). As previously stated, the green curve (global Dice score) is displayed by way of example, and is 

computed on patches randomly drawn from the validation set at the end of each epoch, treating the patches as if 

they all originate from the same image. It is computed because it’s easy to calculate during training and is still 

able to identify if the model is training or not. 

(b)    Training and validation losses for the model trained with only T2 images 
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4.4.1.2.1 Equalization of computational times 

 

As emerged from the previous investigations, models trained with single modalities are not able 

to reach the performances of the full model, trained with all available images. One of the 

motivations behind this is that the number of images used to train the full model is four times 

the number used for models trained with images of a single modality, and so it has a lot more 

inputs to learn from. A necessary step to correctly compare the results obtained by single models 

and by the complete model is to equalize their computations. There are tons of possible ways 

to make models comparable, a first method that was chosen to be exploited was to equalize the 

computational times between models.  

Before doing that, training of networks was modified adding some lines of code to track the 

total time required. It was therefore observed that the time required for training models using 

images of a single modality was 2 hours and 19 minutes for the model trained with only FLAIR 

images, 2 hours and 26 minutes for the network trained using T1 scans, 2 hours and 35 minutes 

for the model using only T1ce modality and 2 hours and 24 minutes for the architecture learning 

only from T2 images. To complete the research, the time required by the full model, trained 

with all image modalities, was 6 hours and 47 minutes. 

To make the segmentation results of the models comparable, it was chosen to compute the 

average training time of single models, which was estimated to be 2 hours and 26 minutes, and 

stop the training of the complete model, when that threshold training time was reached. 

As can be visualized in Figure 4.63, the full model was thus stopped after 50 epochs. Moreover, 

it’s possible to notice that even if the number of epochs is halved with respect to the standard 

value used for evaluation, the trend of validation loss can be considered analogous with the 

regular cases, making the results comparable. 

At the end, an inference was performed on the common test set composed by 80 images 

extracted from FeTS 2022 dataset, and the Dice scores obtained by different models were 

compared. 
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4.4.1.2.2 Equalization of number of training images 

 

The alternative method that was chosen to be exploited to equalize the computations between 

models trained with a single modality and the full model, is the equalization of the number of 

training images. As previously stated, as long as the full model was trained with all available 

modalities (FLAIR, T1, T1ce, T2), the number of images used for its training is four times 

bigger than the quantity of images used to train models exploiting one single modality. For this 

reason, to equalize the computations between networks and allow single models to learn useful 

features from the same amount of images used by the full model, it was chosen to equalize the 

number of training images for all configurations. To be more specific, the number of subjects 

used to train the complete model was 90, each consisting of four modalities, for a total of 360 

Figure 4.63: Trend of training (blue) and validation (red) losses for the network trained with all available images, 

but stopping its training at the time employed by models trained with a single modality. As previously stated, the 

green curve (global Dice score) is displayed by way of example, and is computed on patches randomly drawn from 

the validation set at the end of each epoch, treating the patches as if they all originate from the same image. It is 

computed because it’s easy to calculate during training and is still able to identify if the model is training or not. 

Training and validation losses of the full model stopped at 50 epochs 
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images contributing in the training of the networks. It was then chosen to create four new 

datasets, each with a corresponding TaskID, where each dataset was composed by 360 images 

of a single modality extracted from the training set of BraTS 2020 dataset. 

In this way, it was given the possibility to each single model to learn from the same quantity of 

images with respect to the complete model, and segmentation results could be more comparable 

than previous cases. 

As an example, in Figure 4.64 it’s reported the trend of training and validation losses for the 

model trained only with T1 modality, while the other single models have a really similar course. 

It can be seen that the model is pretty good, since the training and validation losses decrease for 

a larger amount of time, meaning that the model is learning for more time with respect to the 

previous cases, having more available images from which it can learn useful information. Also, 

the gap between training and validation losses is smaller, and the oscillations of the validation 

loss decrease, given that the number of validation images is higher, consisting of 72 images, 

and is therefore capable of providing informative and exploitable results. 

After training models, inference was performed by testing their results on the same 80 images 

extracted from FeTS 2022 dataset and comparing the obtained average Dice scores. 

To conclude this study and verify the reproducibility of the results, the same analysis was 

performed reducing in a proportional way the number of images used to train each model: 

starting from 360 images for single models and 90 subjects for the full one (examined in this 

case), passing to 176 images for single models, together with 44 subjects for the complete one, 

then 88 images for single models and 22 for the full one, after 40 and 10 and to conclude 20 

and 5. This examination was done to check if segmentation results were consistent and to 

analyze how they changed with respect to the number of training images. 
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4.4.2 Stroke Lesion Segmentation data analysis 

 

The same analysis with mutual purposes was realized on stroke lesion segmentation data. The 

dataset of ISLES 2022 challenge was used, because it entails the most advanced and recently 

released data in this field. ISLES 2022 challenge is the current year competition, so to access 

the data it was necessary to sign up to the challenge, but without submitting any method, with 

the only purpose of retrieving and study the data. The training data were released on 10 th of 

May 2022, and they were requested and obtained on 15th July 2022. 

For subsequent purposes, the number of training images chosen for this research was 70, while 

40 images were chosen to compose the test set. The testing images were also extracted from the 

ISLES 2022 dataset, because the other more reliable ischemic stroke lesion segmentation 

Figure 4.64: Trend of training (blue) and validation (red) losses for the network trained only with T1 images, 

but quadrupling their number, from 90 to 360. As previously stated, the green curve (global Dice score) is 

displayed by way of example, and is computed on patches randomly drawn from the validation set at the end of 

each epoch, treating the patches as if they all originate from the same image. It is computed because it’s easy to 

calculate during training and is still able to identify if the model is training or not. 

Training and validation losses for the model trained with 360 T1 images 
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datasets are composed by different modalities, so they are not helpful for the current study. For 

this reason, with respect to the previous evaluation done on BraTS data, the testing results were 

expected to be closer to the validation results, because the images used to test the model are 

extracted from the same dataset of the training images (unlike for the brain tumor segmentation 

study), so the results will be less generalizable with respect to the previous case. 

In this case, each image consists in three modalities: ADC, DWI and FLAIR, that can be 

visualized in Figure 4.65. Also in this case it is evident how the different modalities highlight 

cerebral and lesion regions in distinct ways: while flair images were already met in brain tumor 

segmentation task, DWI and ADC images are more informative for stroke lesions. DWI exploits 

the diffusion of water molecules, which can be quantitatively assessed using the apparent 

diffusion coefficient (ADC) value, calculated and displayed via parametric maps. By 

construction, the ADC value is opposite to DWI, because in ADC high values reflect high 

diffusivity of water and the opposite, while in DWI images the lower the degree of diffusion of 

a molecule, the higher (lighter) the signal. For these reasons, as can be seen in Figure 4.64, an 

ischemic stroke lesion hinders the diffusivity of water, reducing ADC, while appearing really 

bright in DWI. The lesion is then highlighted in different, and in some cases opposite, ways, 

according to the modality. 

 

 

 

Figure 4.65: Visualization of a specific slice of ADC, DWI and FLAIR images of case 3 from ISLES 2022 dataset. 

The corresponding provided ground truth segmentation is also showed. From this case, which was chosen because 

of the magnitude of the stroke lesion, that can be easily seen, it’s possible to appreciate how the lesion is differently 

highlighted in distinct modalities, being much more visible in DWI image. 

 

 

Also in this study, a basic (full) model was created, associated to Task700 and containing all 

the modalities. A preliminary preprocessing of this dataset was sent to investigate its 

characteristics and evaluate its integrity. Unfortunately, unlike BraTS and FeTS datasets which 

are provided ready to be used, ISLES images are not coregistered. In particular, ADC and DWI 

images have the same dimensions as the ground truth segmentation, which is variable between 

images but usually has size 73x112x112; while flair images come in a totally different size, 
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which is really incompatible between provided images, for example in the first patient, its size 

is 352x352x281, while in the seventh patient it’s 230x352x352. It can be also observed that in 

some cases the number of slices is the first dimension, while in others it’s the last dimension. 

Moreover, because of the strength of nnUNet technique, it was also possible to detect and 

quantify a mismatch between origins, spacings and directions of all images (not only FLAIR2) 

with respect to the masked segmentations. 

As a first step, flair images were transposed so that they could match segmentations, having the 

number of slices as first index in all cases. After that, resizing images would not be sufficient 

because the mismatch with respect to the segmentations would remain. For this reason, it was 

chosen to coregister the images of the three modalities with respect to the ground truths, which 

haven’t been changed at all; not only FLAIR images, but also ADC and DWI were fixed, to 

correct their geometry. For the coregistration, it was used SPM12 software in MATLAB, 

arranging one patient at a time to the corresponding segmentation. It was automatically 

performed by finding parameters that either maximize or minimize an objective function; 

because it consisted in a multi-modal registration, the preferred and default function was 

Normalized Mutual Information. The images were then interpolated using 4th Degree B-Spline, 

which is slow but more accurate because it considers more neighbors. 

At the end of this process, corrected images were saved according to nnUNet’s canons and they 

were ready to be used. 

To start, a study removing all modalities but one was performed. 

 

 

 

 

4.4.2.1 Training performed with all but one modality 

 

The analysis performed for Brain Tumor Segmentation was replicated on Stroke Lesion 

Segmentation: three new datasets were created, each consisting of images of all but one 

modality, and three new models were trained from them. Each dataset was built and organized 

coherently with nnUNet rules, so that it could be able to automatically extract datasets 

information and adapt its architecture: the first model was trained with all but ADC modality; 

the second network, was trained without considering DWI images; while the last was trained 

removing FLAIR images. The segmentation results where then compared between each other 

and with the full model, trained with all modalities. 
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This study was performed to identify possible modalities unnecessary or limitedly useful for 

the segmentation of stroke lesions, analyzing how the segmentation results are dependent from 

the specific modality, and how the generated maps are affected by their selective remotion.  

Before proceeding with the study, a previous investigation was performed on the full model to 

identify possible modifications of the training procedure: as it can be seen in Figure 4.66, 

training and validation losses have a different trend with respect to brain tumor segmentation 

models. It must be specified that, unlike brain tumor segmentation problems, stroke lesions 

tasks are characterized only by two classes (0: non-lesion, 1: lesion) and the number of 

modalities is lower; for these reasons, training took significantly less time with respect to the 

previous analysis. It was then attempted to increase the number of epochs to 200, because 

training times continued to remain low, and could thus allow a more precise comparison 

between testing models. In reality, doubling the number of epochs increased the performances 

on the test set of barely 0.03 (average Dice score) while, obviously, doubling the training time; 

it was then decided that it wasn’t worth it. Moreover, it was also tried to implement the BraTS 

specific settings (increased data augmentation, batch normalization instead of instance 

normalization), to identify if they were able to improve the performances also for the 

segmentation of stroke lesions. In this case, the average Dice score on the test images increased 

of 0.02, while almost doubling computational times; it was thus chosen not to use this 

configuration and to remain to the basilar architecture. 
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In Figures 4.67 and 4.68 it’s possible to visualize the trend of training and validation losses for 

models trained with all but one modality. A required observation is that the validation loss 

oscillates much more than the brain tumor segmentation cases, and the reason can be found in 

the number of training cases: as pointed out before, the number of chosen training images was 

70, and 20% of them were used for validation. It means that only 14 images were used to 

validate the model, and this really small number explains why validation results fluctuate so 

much and aren’t highly reproducible.  

 

Figure 4.66: Trend of training (blue) and validation (red) losses for the full model, in which the training dataset 

is composed by all modalities (ADC, DWI, flair). As previously stated, the green curve (global Dice score) is 

displayed by way of example, and is computed on patches randomly drawn from the validation set at the end of 

each epoch, treating the patches as if they all originate from the same image. It is computed because it’s easy to 

calculate during training and is still able to identify if the model is training or not. 

Training and validation losses for the model trained with all modalities 
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Figure 4.67: Trend of training (blue) and validation (red) losses for the model trained with all but ADC images 

(a), and for the network trained removing DWI modality (b). As previously stated, the green curve (global Dice 

score) is displayed by way of example, and is computed on patches randomly drawn from the validation set at the 

end of each epoch, treating the patches as if they all originate from the same image. It is computed because it’s 

easy to calculate during training and is still able to identify if the model is training or not. 

(a)   Training and validation losses for the model trained with all but ADC images 
 

(b)   Training and validation losses for the model trained with all but DWI images 
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4.4.2.2 Training performed with a single modality 

 

Following the same procedure than brain tumor segmentation analysis, a research about the 

dependency of nnUNet from single modalities was performed also in the stroke lesion 

segmentation field. In particular, three new models were designed, each trained with images of 

a single modality, and their performances were compared between each other and with the full 

model, trained with all provided modalities. For the training of each single model, three new 

datasets, associated to a corresponding task ID, were generated, following as before the rules 

set up by nnUNet: the first dataset was composed by only ADC images, the second one 

constituted by only DWI scans, and the last one was formed by only FLAIR images. 

This study was performed to complete the previous analysis for the identification of the most 

relevant modalities for nnUNet when employed for ischemic stroke lesions segmentation. The 

Figure 4.68: Trend of training (blue) and validation (red) losses for the model trained with all but FLAIR images. 

As previously stated, the green curve (global Dice score) is displayed by way of example, and is computed on 

patches randomly drawn from the validation set at the end of each epoch, treating the patches as if they all 

originate from the same image. It is computed because it’s easy to calculate during training and is still able to 

identify if the model is training or not. 

Training and validation losses for the model trained with all but FLAIR images 
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expectations were that models trained with images of a single modality would perform poorly 

with respect to the full model, on one side because they can learn useful information from one 

third of the images used by the model trained with all modalities, so the size of the training set 

is considerably lower, on the other because they couldn’t exploit the fusion of deep features 

extracted by different modalities, which could underline different lesion characteristics and 

provide complementary information. 

In Figures 4.69 and 4.70 the trends of training and validation losses for the different tasks are 

depicted; the same considerations of previous cases can be carried out, giving special attention 

on underlining that the excessive oscillations of the validation losses are probably due to the 

very limited number of images used for validation. Validation results were then chosen not to 

be showed, focusing more on test set results, which are more reliable and more generalizable. 

 

 

Figure 4.69: Trend of training (blue) and validation (red) losses for the model trained only with ADC images. As 

previously stated, the green curve (global Dice score) is displayed by way of example, and is computed on patches 

randomly drawn from the validation set at the end of each epoch, treating the patches as if they all originate from 

the same image. It is computed because it’s easy to calculate during training and is still able to identify if the 

model is training or not. 

Training and validation losses for the model trained with only ADC images 
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Figure 4.70: Trend of training (blue) and validation (red) losses for the model trained only with DWI images (a) 

and for the network trained with only FLAIR modality (b). As previously stated, the green curve (global Dice 

score) is displayed by way of example, and is computed on patches randomly drawn from the validation set at the 

end of each epoch, treating the patches as if they all originate from the same image. It is computed because it’s 

easy to calculate during training and is still able to identify if the model is training or not. 

(a)  Training and validation losses for the model trained with only DWI images 
 

(b)  Training and validation losses for the model trained with only FLAIR images 
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4.4.2.2.1 Equalization of computational times 

 

To keep up with the analysis performed for Brain Tumor Segmentation and allow a better 

comparison between the segmentation results obtained from the examination of nnUNet models 

trained with images of a single modality and the full model, trained with all available images, 

an equalization of computations is needed. As a matter of fact, likewise it happened for brain 

tumor segmentation, the complete model was trained with a number of images which is, in this 

peculiar case, three times the amount of images fed into single models, because there are three 

available modalities: ADC, DWI and FLAIR.  

This reduces the fairness of comparison of the performances of these models, because the full 

model has a lot more images in input from which it can learn and extract useful features for the 

accurate identification of the stroke lesion. There are many possible techniques that can be used 

to equalize the computations between models and allow a correct comparison between them. 

As a first test, it was chosen to equalize the training times required by the models, so that, even 

if the complete model has many more images from which it can learn, it is given the same 

amount of time to all networks to learn useful information from their provided inputs. 

To get more in details, it was tracked the time required by training all models, in particular the 

network fed with only ADC images took 1 hour and 26 minutes to be trained, the model which 

used only DWI images had a training time of 1 hour and 31 minutes, while the configuration 

with only FLAIR modality took 1 hour and 32 minutes. On the other side the full model, fed 

with all these three modalities, employed 2 hours and 38 minutes to train. It must be specified 

that the training time required by all models is significantly lower than the brain tumor 

segmentation task, because for the stroke lesion segmentation problem, it can be appreciated a 

reduction of both the number of modalities (three instead of four) and the number of 

segmentation classes (one instead of three). This is not directly correlated on a simplification 

of the task, because stroke lesions have a really variable shape and location. 

To equalize the computation between single models and the full model, the training of the 

complete model was stopped when the average time required by networks trained with a single 

modality was reached, and this threshold was estimated to be 1 hour and 30 minutes. 

In Figure 4.71 it’s shown the trend of validation and training losses for the full model, when 

the training was cut off at the specified threshold, corresponding to a total number of epochs of 

66. It is visible that, even if the number of epochs is almost halved, the validation loss can be 

considered already stable, and segmentation results are therefore expected not to vary so much 

from the complete model. 
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As before, after training all models, inference was performed using a common test set composed 

by the last 40 images of ISLES 2022 dataset, and their performances were compared. 

 

 

 

 

 

4.4.2.2.2 Equalization of number of training images 

 

The second method chosen to equalize the computations between models was the equalization 

of the number of training images. As previously disclosed, the full model, fed with all available 

images, has a lot more content from which it can learn useful features for the identification of 

stroke lesions, with respect to networks trained with images of a single modality. In details, the 

complete model is fed with 70 training cases, each consisting in three images, one for each 

modality (ADC, DWI, FLAIR), for a total of 210 images used as input. On the other hand, for 

Figure 4.71: Trend of training (blue) and validation (red) losses for the network trained with all available images, 

but stopping its training at the time employed by models trained with a single modality. As previously stated, the 

green curve (global Dice score) is displayed by way of example, and is computed on patches randomly drawn from 

the validation set at the end of each epoch, treating the patches as if they all originate from the same image. It is 

computed because it’s easy to calculate during training and is still able to identify if the model is training or not. 

Training and validation losses of the full model stopped at 66 epochs 
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single models the number of training images is just 70, because only scans of a single modality 

are passed inside the network. To allow a fair comparison between segmentation results 

obtained by all models, and force all networks to learn from an equivalent input, it was chosen 

to triple the number of images used to train single models. Three new datasets were then created, 

each consisting of 210 images of a single modality extracted from the ISLES 2022 training 

dataset. This was the main reason for which, at the beginning of the study, the number of 

training subjects was set to 70: knowing that the total amount of images available for the study 

was 250, which is the length of ISLES 2022 dataset, the size of the test set was set to 40 images, 

so that fixing the training set at 70 images could allow to perform this specific study in which 

the number of training images was tripled, using all available images, 210 for training and 40 

for testing. In this way, even if all images come from the same dataset, training and test set 

remain independent and no images used to train are also used to test the models. One additional 

consideration that come from this analysis was that four cases from the ISLES 2022 dataset, 

subjects 98, 150, 151 and 170 respectively, don’t have any type of stroke lesions, so they 

represent just healthy patients, not useful for this task. 

In Figure 4.72 it’s showed the trend of training and validation losses of the model trained with 

210 ADC images, which is similar to the progress of other single models. The same 

considerations made on the brain tumor segmentation field are here valid: the training and 

validation losses decrease is longer than before, meaning that the model is learning for more 

time, and the oscillations of the validation loss are reduced due to the increased number of 

images used to validate, yielding to more reproducible results. The full model was untouched 

for this study.  

At the end of training, inference was performed using the last 40 images of ISLES 2022 dataset 

as test set, and performances of models were compared. 

To conclude this study and verify the reproducibility of the results, the same analysis was 

performed reducing in a proportional way the number of images used to train each model: 

starting from 210 images for single models and 70 subjects for the full one (examined in this 

paragraph), passing to 108 images for single models together with 36 subjects for the complete 

one, then 54 images for single models and 18 for the full one and to conclude 27 and 9. This 

examination was done to check if segmentation results were consistent and how they changed 

with respect to the number of training images. 

 



 

118 

 

 

 

 

 

4.5 Ensemble of models: a new perspective 

 

The results from the study of nnUNet models trained with images of a single modality show 

that, even if the full model kept having the best overall performances, the analysis of single 

configurations had promising results from some points of view. First of all, the training 

procedure of those models took considerably less time than the full model, reducing their 

computational cost. Moreover, focusing on some specific modalities: the network trained with 

T1ce images, for the brain tumor segmentation task, was able to achieve results more or less 

comparable, on average, with the full model, being able to overcome the latter in the 

segmentation of two classes out of three. While, for the ischemic stroke lesion segmentation 

task, the model trained with DWI modality was able to obtain comparable performances, and 

in some cases to overcome the complete model. 

Figure 4.72: Trend of training (blue) and validation (red) losses for the network trained only with ADC images, 

but tripling their number, from 70 to 210. As previously stated, the green curve (global Dice score) is displayed 

by way of example, and is computed on patches randomly drawn from the validation set at the end of each epoch, 

treating the patches as if they all originate from the same image. It is computed because it’s easy to calculate 

during training and is still able to identify if the model is training or not. 

Training and validation losses for the model trained with 210 ADC images 
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As a last consideration, the analysis of models trained with images of single modalities was 

performed to avoid to mix up information and features extracted from images in which cerebral 

and especially tumoral regions are highlighted in a different and in some cases completely 

opposite way, risking the model to elaborate opposite features in a joint manner. 

For these reasons, to complete the research about images of single modalities, it was then 

chosen to carry out an ensemble learning strategy. 

Ensemble learning is a branch of deep learning which involves combining a finite number of 

algorithms, with the conception that they could obtain a better performance than any of the 

single networks used on the ensemble. Literally, it consists on building models on many simpler 

ones, with the aim of exploiting the different learning capabilities of dissimilar networks, to 

improve the overall accuracy and efficiency, even if increasing the computational cost, due to 

the need of training more than one model. 

There are two main ensemble learning strategies: bagging (bootstrap aggregation), in which 

constituent models are independent and trained on bootstrap samples of training data, allowing 

their errors to be independent as well, hence reducing variance but without affecting bias; and 

boosting, in which models are sequential and thus dependent, trained in sequence by reducing 

the errors of examples that were misclassified from previous models. The most used ensemble 

learning method with deep learning algorithms is bagging, because bagging technique is able 

to parallelize training of single models, reducing their training time (which is really high with 

neural networks). Moreover, neural networks often have high variance and low bias, and their 

differences seem to be mostly due to variance: by reducing variance without affecting bias, 

bagging is the ideal method. 

Once the constituent models have been trained independently, there are several different ways 

in which they can be combined, and many of these techniques have been tried during this study, 

therefore they will be analyzed subsequently. 

In this thesis, ensemble of models has been used to combine models trained with images of a 

single modality both for brain tumor and stroke lesion segmentation, to keep modalities 

separated and allow single models to learn specific features, combining them at inference time. 

The aim of this research was to identify if the road of the ensemble was passable, opening a 

new perspective and offering a new possible baseline in these segmentation tasks, allowing to 

treat images of different modalities independently but still combining their capabilities. 
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4.5.1 Implementation of ensemble learning 

 

As introduced before, it was chosen to implement the ensemble of models at inference time; for 

this reason, training of models wasn’t modified: the used networks were the ones already trained 

with images of a single modality.  

Going into more detail, a new Python script was created for the prediction using the ensemble 

learning technique, and obtained by modifying the standard prediction method used by nnUNet. 

This baseline method requires to specify the folder containing the testing images, the output 

folder (automatically created it if it doesn’t exist yet) where predictions will be saved, and the 

folder automatically generated by nnUNet containing the trained model.  

The new prediction technique developed, on the other hand, requires the following inputs, 

which must be specified when calling the script: 

- The input folder, which is the nnUNet_raw_data folder containing images used to test 

the model, without requiring to separate the different modalities as if they were to be 

fed into single models, but organizing images as if they were to be used by the full 

model, always following the structure of nnUNet; 

- The output folder, which will be automatically created if it doesn’t exist yet, where 

predictions will be saved; 

- The 3d_fullres folder, automatically created by nnUNet and containing all the 3D full-

resolution UNets trained for the different tasks. For this study it was assumed that only 

3D UNets configurations could be used for prediction, given that they were the only 

ones trained; 

- -z, that, if mentioned, allows to save the softmax probabilities as numpy arrays in the 

output folder; 

- --only_ensemble, which can be specify to avoid making predictions from single models, 

if they were already done or available, and simply perform the ensemble of models. 

A new function was then created, which, once this method is called, automatically identifies 

the existing modalities inside the dataset by exploring the dataset.json file, which was 

previously necessarily created to run nnUNet. 

After that, another function was designed to use the previously extracted information to select 

only images of a specified modality, from a dataset composed with all available images and 

following the nomenclature of nnUNet (e.g., BraTS_001_0000 for subject 1, modality 

0000=FLAIR). This function was specifically defined to deal with images of BraTS challenge 
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(with modalities FLAIR=0000, T1=0001, T1ce=0002, T2=0003) or ISLES challenge (with 

modalities ADC=0001, DWI=0002, FLAIR=0003), because it can retrieve the specific 

modality from its associated index. This function is focalized on the specific purpose of this 

thesis, but it could be expanded in future to be able to deal with every dataset. 

Once the prediction starts, if it wasn’t previously chosen the –only_ensemble option, first of all 

predictions of images of single modalities using the corresponding single models are 

performed: images of single modalities are extracted from the whole dataset using the 

previously defined function, while single models are extracted from all trained nnUNet models, 

identifying networks which contain in their specific TaskID, isolated, the name of the modality 

they were trained with (e.g., Task600_FLAIR). Another necessary requirement to run this 

ensemble method was therefore to associate to models trained with single modalities, a task 

name containing only, or in any case isolated, that specific modality. 

The prediction pipeline follows then the one defined by Isensee et al.  

Once prediction of single models is completed, or if the –only_ensemble option is inserted, the 

function for ensemble of models is called. This function iteratively selects one subject at a time, 

and considers only the softmax files generated by the prediction of single models for all the 

present modalities. These softmax files are necessary to apply the ensemble strategy, and thus 

the corresponding option (-z) must be specified during prediction of single models. Analyzing 

also the properties files of each segmented image generated during inference of single models, 

it was possible to notice a detail: the softmax images of different modalities but corresponding 

to the same subject, often have slightly different shapes between them, due to the cropping of 

non-zero voxels applied during preprocessing. To ensemble single models softmax images are 

required to have the same shape, so they were chosen to be reshaped: it was tried to reshape 

them considering the information about the size of the cropped region inserted inside the 

properties of each image, and resize to the original shape by zero padding. Anyway, this 

technique didn’t perform so well, and it was then chosen to use a different method depending 

on the type of dataset, applying the zero padding and switching back to the original shape only 

after the ensemble is completed. 

After that, the proper ensemble is performed and the final segmentation map is produced and 

saved. 
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4.5.2 Output of the ensemble model 

 

Over the years, several different ensemble techniques have been developed and tried in many 

biomedical domains and not only. Two main ensemble methods have been explored in this 

thesis: prediction averaging, which is rather intuitive and involves on simply averaging the 

predictions of the considered models, and majority voting, that consists on assigning to each 

voxel the value which has been voted by most networks. 

To improve the overall performances, several different alternatives have been tried. In some 

cases, the simplest methods are also the best performing ones: first of all, it was in fact chosen 

simply to try averaging softmax probabilities produced by model trained with images of single 

modalities, and then to assign each pixel to the class with highest probability, as implemented 

in many segmentation methods developed over the years (Marmanis et al., 2016; Kumar et al., 

2017; Gu et al., 2022; Moon et al., 2020). 

Instead of simply averaging the predictions generated by single models, another more accurate 

possibility could be to perform a weighted average, assigning a different weight to each model. 

These weights could be trained during the training phase, to optimize a given loss function, but 

given that it was chosen to implement the ensemble method during inference, once models have 

been already trained, this technique wasn’t chosen. Different values could be used as weights, 

and the complicated part was to select the ones leading to the optimal performances: Devan et 

al. suggested to perform grid search between 0 and 1 during training, to identify weights leading 

to better performances of any contributing model and of the ensemble model trained with equal 

weights (Shaga Devan et al., 2022). M. Sewell chose to train all single models, obtain the 

corresponding predictions and weight each voxel prediction by the model’s posterior 

probability, and then perform the average of these weighted results (Sewell & Tat, 2011). Wan 

et al., like many other authors, identified a specific weight function to be trained, to find the 

optimal weights (Wan & Yang, 2013). 

Based on literature, on intuition and on the most used metrics for semantic segmentation, it was 

chosen to implement a weighted average between model ensembled, where the softmax 

probabilities produced by each model for each class (1=ED, 2=NCR, 3=ET for brain tumor, 

1=Lesion for stroke lesion), excluding the background, for all voxels, were multiplied for the 

average Dice Scores obtained during the validation phase for that specific class. Meaning that, 

after the validation phase, the average Dice scores obtained in the prediction of the three classes 
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were computed and saved as weights; after that, during inference, the probability of a specific 

pixel to belong to a given class was multiplied for the corresponding weight. 

The only inconvenient was that the Dice scores, as previously cited, were available only for the 

foreground classes. Therefore, in the case in which the posterior probabilities of a specific 

foreground class and of the background were really close for a given pixel, which was wrongly 

classified as background, multiplying the probability of the foreground class for a weight 

between 0 and 1 can’t be able to improve the performances, because it would reduce its 

probability. For this reason, it was also chosen to try to double the Dice scores obtained in the 

validation phase and use them as weights. 

As suggested by Zhou et al. and by Quek et al., in some cases it is better to ensemble only some 

instead of all learners, considering only the most important ones for the segmentation purposes 

(Z.-H. Zhou & Tang, n.d.), (Quek et al., 2003). For this reason, it was tried to include in the 

prediction averaging only the base models able to achieve an average Dice score across all 

classes in the validation phase above a certain threshold, which was chosen to be varied between 

0.5 and 0.7. 

Another tried technique was to perform majority voting: each single model votes for a specific 

class for each pixel, and the given pixel is then assigned to the most voted class. It was also 

tried to modify this method to improve the performances: first of all, before performing majority 

voting, the posterior probabilities of each class, for each model, were multiplied for specific 

weights (average Dice scores obtained in the validation phase for each class, these are the 

weights used also in the following methods); after that the class with the highest probability 

was identified for each model, and majority voting was performed for each pixel. 

It was also attempted to perform majority voting by doubling the vote of models with an average 

Dice score across all classes in the validation set higher than 0.7, or also 0.5 was tried. To be 

more specific, it was then tried to double the vote of models voting for a specific class and 

achieving an average Dice score above the previously specified threshold for that specific class, 

in the validation set. 

The same procedure was repeated, but following the ideas of Zhou et al. and Quek et al., and 

performing majority voting considering only the votes of models able to achieve a Dice score 

on the validation set (on average or considering separately each class) over 0.7. 

Finally, it was tried the following method: for each class, the model achieving the best 

performances on the validation set on that specific class was identified. If, for a specific pixel, 

the model with highest Dice score for a given class predicts that specific class, then this value 

is considered also for the ensemble; on the other hand, if this happens for more than one class 
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at the same time, it is followed the vote of the model which has a higher average Dice score on 

the validation set for the voted class (e.g., the model with highest performances on label ED 

votes for ED and has an average Dice score of 0.8 on the validation set for ED class, and the 

model with highest performances on ET label votes for ET and has an average Dice score of 

0.7 on the validation set for ET class, then the pixel is assigned to class ED). If none of the 

previous cases happens, majority voting is applied. 

The same procedure was then repeated but, if at the end majority voting is applied, and a specific 

class is chosen, but the model with the highest weight for that label doesn’t vote for it, then the 

pixel is simply assigned to the background. 

All these alternatives were tried for the identification of the optimal ensemble technique, both 

for brain tumor and stroke lesion segmentation tasks. 

 

 

 

4.5.3 Ensemble of Brain Tumor Segmentation models trained with 

single modalities 

 

As it was anticipated in previous chapters, before proceeding with the ensemble technique, the 

shapes of the softmax images of different modalities of the same subjects generated during 

training were compared between each other, leading to the identification of a lack of overlap 

between them, due to cropping to a different size during preprocessing. Analyzing more in 

detail the difference between the shapes of the softmax files of the available modalities (FLAIR, 

T1, T1ce and T2), it was observed that it was really small and not always present, removing the 

necessity of identifying the optimal shape: it was then chosen simply to resize all images to the 

first softmax file shape (it could be chosen randomly given the small differences between them), 

corresponding to the FLAIR image. It was also tried to resize each probability file to its original 

shape, considering that all images had the same shape before cropping, but this method lead to 

worse performances and it was therefore discarded. 

Ones the sizes of all softmax images of the same subject were modified to be the same, the 

different ensemble techniques previously exposed were tried, considering both prediction 

averaging and majority voting techniques. 

Only at the end of the prediction the segmentation map was brought back to its original shape, 

using the information included in the properties file of the first modality image (FLAIR).  
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4.5.4 Ensemble of Stroke Lesion Segmentation models trained with 

single modalities 

 

The same analysis was repeated for the stroke lesion segmentation task, considering, however, 

some adjustments, due to the difference with the brain tumor segmentation task: in this case the 

number of modalities is three instead of four (ADC, DWI and FLAIR); but especially, the 

number of classes is reduced, having a single label related to the stroke lesion instead of three 

of the previous study. For this last reason, the ensemble techniques that required to identify the 

best performing models for the different classes, based on the average Dice scores obtained in 

the validation phase, in this case are simplified by obtaining a unique model, associated to a 

specific modality, which is the one obtaining the best results in the validation set with respect 

to the single label of the stroke lesion. 

After that, in this case it was discovered that the difference between softmax files shapes of 

images of different modalities wasn’t negligible. Resizing all images to their original shape 

before cropping didn’t lead to optimal results, and reshaping all files to the size of the first 

image was considered too simplistic and carried to too many errors. It was thus chosen to resize 

all softmax files of each subject, to the shape of the modality image whose corresponding model 

obtained the highest average Dice score on the validation set. 

Ones the sizes of all softmax images of the same subject were unified, the different ensemble 

techniques previously exposed were tried, considering both prediction averaging and majority 

voting techniques. 

Only at the end of the prediction the segmentation map was brought back to its original shape, 

using the information included in the properties file of the most important modality previously 

identified.  
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4.6 Adaptation of nnUNet to IVD-Net structure: Dense Multi-path 

nnUNet 

 

As introduced in Chapter 2.4, a relevant and interesting architecture for the purposes of brain 

tumors and stroke lesions segmentation, is the one introduced by Dolz et al. for the 

segmentation of ischemic stroke lesions (Dolz, Ayed, et al., 2018), whose baseline architecture 

was equivalent to IVD-Net, implemented by the same authors for the purpose of localization 

and segmentation of intervertebral disc (IVD) (Dolz, Desrosiers, et al., 2018), but whose code 

was publicly released. 

It basically consists of a UNet network with a multi-path architecture, where the encoding path 

is split into a number of streams equal to the amount of acquisition modalities used for the 

study, allowing to feed each stream with images of a specific modality. To allow a better flow 

of information through the network, hyper-dense connections were also developed within and 

between multiple paths, and the different streams were then concatenated to form a bridge that 

allows to convey all the extracted information into a single decoder for the segmentation of the 

image. 

The importance of this architecture is straightforward for this thesis: disentangling the input 

data based on their different modalities has the same purpose of the ensemble learning methods 

previously implemented, that is to separate the different modalities allowing not to fuse their 

information at early stages inside the network and to separately extract features from images of 

the same subject but with intensities that would be, in some cases, even opposite.  

On the other hand, this method has the drawback of not being able to capture complex 

relationships between modalities, which could supply a relevant addition to better segment 

medical images. To make up for this lack of the model, hyper-dense connections between 

multiple paths and within the same ones were introduced inside the original architecture, 

allowing to better model the relationships between modalities. In the original paper, hyper-

dense connections were implemented by feeding each level of the UNet encoders with the 

concatenation of the outputs of the different encoders from the previous level. To increase the 

performances and the regularization effect, they also chose to concatenate feature maps in a 

different order for each branch: 

𝑥𝑙
𝑎 = 𝐻𝑙([𝑥𝑙−1

𝑎 , 𝑥𝑙−1
𝑏 , 𝑥𝑙−1

𝑐 , 𝑥𝑙−1
𝑑 ]) 

𝑥𝑙
𝑏 = 𝐻𝑙([𝑥𝑙−1

𝑏 , 𝑥𝑙−1
𝑐 , 𝑥𝑙−1

𝑑 , 𝑥𝑙−1
𝑎 ]) 
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Where 𝑥𝑙
𝑎 is the output of the layer l from stream a, 𝐻𝑙 defines the specific dense block, which 

consists on a convolutional layer, followed by batch or instance normalization and by a non-

linear activation, while 𝑥𝑙−1
𝑎 , 𝑥𝑙−1

𝑏 , 𝑥𝑙−1
𝑐 , 𝑥𝑙−1

𝑑  represent the outputs of the previous layer from 

the different streams (a, b, c, d). For each path, the feature maps are concatenated sorting them 

starting from the output of the corresponding stream indeed. This was performed starting from 

the second level, so that the images of different input modalities are still fed into separated 

streams; knowing that the original UNet was developed by Dolz et al. with a total of four levels. 

Moreover, to increase again connectivity and the flow of information inside the network, 

starting from the third level they also decided to concatenate to the previously analyzed tensor, 

for each encoder, the input of the precedent layer of the same network, cropped to the matching 

size. 

This network seemed to match the investigations performed in this thesis, and the will of this 

research, but it was developed for 2D images, needing thus to be fed with 2D scans. Instead of 

modifying the input data to directly apply the IVD-Net architecture on brain tumor and stroke 

lesions data, it was chosen to follow a different road: given the countless advantages of building 

a 3D network, and knowing the great capabilities of the nnUNet model, it was decided to adapt 

the nnUNet architecture to the IVD-Net one, trying to merge the power of both models. 

To do that, it was necessary to manually override the automatic setting of nnUNet and fix the 

number of channels to just one, knowing that each encoder must deal with images of a single 

modality. After that, before proceeding with the implementation of the IVD-Net architecture, 

the first network implemented was developed by just disentangling the input data and create N 

different encoders, one for each input modality, inside the nnUNet architecture. The outputs of 

the N streams were then concatenated and fed into a bridge, whose architecture was taken 

directly from IVD-Net released code, and which allows the connection between the N encoders 

and the decoder. After this first adaptation, different variants were tried, especially starting from 

the brain tumor segmentation aim and adapting to the stroke lesion segmentation one. 

The produced architecture was then called Dense Multi-path nnUNet. 

 

 

 

4.6.1 Brain Tumor Segmentation Task 

 

The number of streams, which corresponds to the amount of input modalities, was obviously 

set to 4 (FLAIR, T1, T1ce and T2). The number of levels, each of which consists in two stacked 
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convolutional blocks (convolution followed by instance normalization and leaky ReLU 

activation function), was automatically set by nnUNet to be equal to 5. 

After creating 4 different encoders, the input data were separated in the different available 

modalities and fed into the corresponding streams. 

Following this first, simple architecture, it was chosen to properly adapt the nnUNet model to 

the IVD-Net one, implementing the hyper-dense connections, while skip connections between 

encoders and the decoder were already generated by nnUNet, with the only difference that, at 

each level, the proper skip connection was obtained by averaging the skip connections coming 

from the four paths.  

To accurately implement the IVD-Net architecture, it was necessary to modify the number of 

input and output channels, which was again automatically set by nnUNet, to follow the 

dimension of the different concatenations performed, and it was also used a function developed 

by Dolz et al. to crop input feature maps, so that they could be concatenated with the input of 

the following level.  

However, the development of this architecture to deal with 2D scans, has an important 

throwback in its 3D adaptation: the number of parameters, and thus the operations and the 

computational cost, increase consistently, leading to occupy the whole available GPU, and 

going out of memory when trying to train this adapted architecture. By removing a level, 

passing from 5 to 4, the computational cost remains still excessive. 

To reduce the computations, it was therefore tried to decrease the number of channels at 

different levels, in two distinct ways: by manually reducing the number of channels in some 

levels of the encoders, and by introducing some convolutions with kernel size of 1x1x1 with 

the aim of reducing the dimensionality of feature maps by compressing their information into 

a lower feature size. Implementing these modifications, the problem was solved and it was also 

possible to add back the last 5th level, going back to the original nnUNet configuration. 

Other adjustments were proposed to increase the efficiency and decrease the computations of 

the network: first of all, following the structure of IVD-Net, the input at each level was initially 

obtained by concatenating all the outputs of the previous level from the different encoders, 

leading to obtain four (one for each modality) pretty big tensors, which contain the same 

information in different order. It was thus decided to neglect the idea that the ordering of the 

concatenated tensors is relevant, and create one single array for each level, independent from 

the order, being able to reduce the computational cost. After that, the produced tensor was fed 

into a 1x1x1 convolution, with the same aim as before: reduce the number of channels and 

decrease the computations. The compression factor was set at 1/4 and, after that, the input of 
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the following level of each encoder is obtained by concatenating that tensor with the specific 

output of that path, instead of the input: in this way, the input tensor for each level of each 

encoder contains a 50% of path-specific information, and a 50% of scrambled and compressed 

cross-path information, in order to maintain the dense connections between different streams 

but also to keep streams separated and to allow them to extract different features. A schematic 

representation of the stream of information from consequent levels in the encoder can be 

appreciated in Figure 4.73 (courtesy of L. F. Tshimanga). 

The last proposed improvements were related to the skip connections: by integrating the 

structure of IVD-Net and nnUNet, encoders’ outputs were saved inside specific containers and, 

at the corresponding level in the decoder, the skip connections of different paths were averaged; 

the averaged skip connection was then concatenated with the corresponding tensor fed into the 

localization pathway. A schematic representation of those considered skip connections can be 

visualized in Figure 4.73.  

 

 

Figure 4.73: Schematic representation on how information is passed through different levels of the encoders, 

maintaining the skip connections (red lines, as can be seen in the legend) how they were conceived in the original 

IVD-Net. Outputs of the same levels of different streams are concatenated, and the produced tensor, in this first 

trial, was chosen to be compressed with a unique 1x1x1 convolution; for each path, the result is then concatenated 

with the output of that stream, obtaining the input of the following level. The outputs of each level (Dense Blocks) 

are used as skip connections. L. F. Tshimanga is warmly thanked for the realization of these graphs. 

 

Giving that the information contained inside the skip connections correspond to the one inside 

the concatenated tensors created at each level, to save memory and computations it was tried to 

use the concatenated tensors as skip connections as well, after their compression with 1x1x1 
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convolutions (Figure 4.74). In this way, at each level of the decoder, no average between skip 

connections coming from the different streams must be performed, because the compressed 

tensor is ready to be used as skip connection and concatenated with the corresponding tensor 

passed inside the decoder. Another method that we tested consisted in using four different 

1x1x1 convolutions of the concatenated tensor at each level, one for each stream, so that, during 

training, the learnt weights for each stream could be specific for that path. This compressed 

tensors, could then be used as specific skip connections for each path, and averaged at each 

level of the decoder, as suggested in the original architecture (Figure 4.75). This method will 

be the one resulting in the higher performances, and so chosen as final architecture. 

A network for each technique was trained, repeating the analysis if the model was able to obtain 

good performances, to verify the reproducibility of the results. 

 

 

Figure 4.74: Schematic representation on how information is passed through different levels of the encoders, 

modifying the skip connections with respect to the original architecture. The structure and flow of information 

inside the encoders is unchanged, while, for each level, the tensor obtained by concatenating the outputs of the 

previous level, is compressed with a factor of ¼, and this compressed tensor is used as skip connection, and 

concatenated with the corresponding tensor at the decoder level. L. F. Tshimanga is warmly thanked for the 

realization of these graphs. 
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Figure 4.75: Schematic representation on how information is passed through different levels of the encoders, 

modifying the skip connections. The flow of information inside the encoders is slightly modified because, for each 

level, the tensor obtained by concatenating the outputs of the previous level, is compressed with a 1x1x1 

convolution specific for each path. The resulting compressed tensors for the different paths are thus used as skip 

connections and averaged at the corresponding level of the decoder. L. F. Tshimanga is warmly thanked for the 

realization of these graphs. 

 

 

 

 

4.6.2 Stroke Lesion Segmentation Task 

 

The number of encoders created for the Dense Multi-path nnUNet for stroke lesion 

segmentation was three, having three available modalities (ADC, DWI and FLAIR). In this 

case, the number of levels, each consisting as before of two stacked convolutional layers, 

automatically set by nnUNet was four, one less than brain tumor segmentation. As before, an 

initial architecture was created by modifying nnUNet to have three encoders, one for each input 

modality, whose outputs are connected through a bridge to a single decoder.  

After this, it was chosen to implement the IVD-Net structure into nnUNet, developing the dense 

connections between and within paths, always remembering that the skip connections were 

already implemented by nnUNet; they were only modified so that skip connections coming 

from the three input encoders are averaged at the corresponding level of the decoder. Moreover, 

the difference in the initial architecture with respect to brain tumor segmentation allowed to 

avoid to encounter the same problems met before, so that the network obtained by inserting the 
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IVD-Net structure into nnUNet could be run without meeting memory or computations 

problems. 

The number of channels was then left unchanged. On the other hand, the best performing 

techniques for brain tumor segmentation, obtained by increasing the efficiency and decreasing 

the computations of the architecture with changes in the concatenations and skip connections, 

and corresponding to the structures visualized in Figures 4.74 and 4.75 for brain tumor 

segmentation, were also adapted and tried for stroke lesion segmentation, to identify the 

network able to obtain the best results in this field too. 

 

 

 

4.7 Inter-pathology Learning 

 

The main purpose of this thesis is to divide the input data based on the different acquisition 

modalities, and keep them separated while they are fed inside the network, so that the 

information extracted from them is not fused at early stages. This therefore allows not to merge 

features extracted from images which contain the same information which is, in some cases, 

highlighted in opposite ways. This procedure has been applied both for brain tumor and stroke 

lesion segmentation, but without finding a way to combine these two tasks. 

Analyzing the provided and studied datasets for the two tasks, ISLES 2022 is the main dataset 

used for stroke lesion segmentation, as well as the most recently released, and is composed by 

images of ADC, DWI and FLAIR modalities, while FeTS 2022 is the most used dataset for 

brain tumor segmentation, as well as the most recently released in this case too, and 

comprehends FLAIR, T1, T1ce and T2 images.  

Given that images of FLAIR modality are useful and used for both tasks, it was chosen to 

perform a technique called “Inter-pathology Learning” between the model trained with only 

FLAIR images for brain tumor segmentation, and the corresponding network trained as well 

with only FLAIR images for stroke lesion segmentation. “Inter-pathology Learning” is a term 

that refers to the application of the Transfer Learning methods between tasks involved in 

different pathologies. 

Transfer Learning can be defined as a machine learning technique based on exploiting 

knowledge gained on solving one problem, to solve a new one. When dealing with deep 

learning models, its definition can be adapted as tuning a network pre-trained and pre-designed 

for a given task, to perform on a similar one. The advantages of transfer learning are that, if the 
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two tasks are similar between each other, it allows to take advantage of what the model has 

already learnt from the first task, reducing the time of building and validating a second network, 

which is usually really time consuming. On the other hand, if the two tasks are not identical, 

there might be information that the original model has learnt which is not useful for the second 

one, and new information that the new model needs to learn from the data. There are two ways 

in which transfer learning can be applied: if the two tasks are really similar between each other 

and/or the data available are limited, after the training of the first model, the training of the 

second network is performed by freezing the weights of all but the last layers (or only last layer, 

depending on the task), so that only the last layers, which features are linked to task specific 

information, are updated. While if the tasks are dissimilar and/or the amount of available data 

is huge, all weights can be updated, but starting from the final weights of the previous task, 

instead of a random initialization. Transfer Learning works well only if the low and 

intermediate level features learnt from the first task are general, and can be meaningful for the 

second one, and so if the first task is linked and can represent a generalization of the second 

one. 

In this thesis the two analyzed tasks were brain tumor and stroke lesion segmentation. No 

assumptions about the similarity between the tasks could be made, given that brain tumors and 

ischemic stroke lesions are two different pathologies, with disparate causes, manifestations and 

characteristics. Anyway, given that images of the same acquisition modality (FLAIR) are used 

for both brain tumor and stroke lesion segmentation, it was tried to apply Transfer Learning 

between these tasks, assuming that brain tumor segmentation can be considered a more general 

task, given the greater number of classes and the general better performances in this field.  

It was therefore performed the Transfer Learning technique between two different pathologies, 

from brain tumor to stroke lesion segmentation, to identify if the architecture and the weights 

learnt for the former task could be useful also for the latter, and thus provide some additional 

information which could in some way link these pathologies; for these reasons this method was 

called ‘Inter-pathology learning’.  

Given that nnUNet automatically sets the preprocessing methods for each task and during this 

procedure derives the dataset fingerprint used to create the model architecture, a preliminary 

step was to preprocess the stroke lesions FLAIR data with the same plans used to preprocess 

the brain tumors FLAIR data, so that nnUNet could automatically generate the same 

architecture as the first task for the second one. After the complete training of the first model, 

trained for brain tumor segmentation using only FLAIR data, the correspondent weights were 

saved and used for the stroke lesion segmentation model, in turn trained with only FLAIR 
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images. The first analysis was performed by using the pretrained weights coming from the brain 

tumor segmentation task, only as an initialization of the weights for stroke lesion segmentation, 

given that the two tasks are not so similar and the amount of data is quite high. After that, it 

didn’t make sense to freeze all layers with the exception of the last one, because dealing with 

UNets, this means that all the features learnt in the encoder and decoder pathways are related 

to brain tumors, and using them to segment stroke lesions can’t lead to good performances, 

given that also the relationship between image intensities is different. A sensible analysis, which 

was chosen to be performed, was to freeze only the weights of the encoder from the brain tumor 

segmentation model, and learn during training the weights of the decoder, initializing them to 

the corresponding weights learnt for brain tumor segmentation: in this way, it is possible to 

identify if the features learnt from brain tumors can be relevant also for the localization of stroke 

lesions.  

The brain tumor segmentation model was trained using 90 FLAIR images extracted from BraTS 

2020, while the stroke lesion segmentation model with 70 FLAIR images from ISLES 2022. 

This study allows to understand if a model already pretrained for the brain tumor segmentation 

task with FLAIR images, could be useful also for the identification of the optimal model for 

stroke lesion segmentation using images acquired with the same acquisition modality. 

 

 

 

 

4.8 Final models 

 

The final training of the best performing models was then carried out, based on some 

considerations: other than the original nnUNet models, for both stroke lesion and brain tumor 

segmentation, the chosen architectures were the previously tested ones able to reach or even 

overcome the performances of the correspondent nnUNet model in the previous analyzes, 

showing promising results. Therefore, the chosen final networks were: 

- Original nnUNet for Brain Tumor Segmentation; 

- Original nnUNet for Stroke Lesion Segmentation; 

- Dense Multi-path nnUNet for Brain Tumor Segmentation; 

- Dense Multi-path nnUNet for Stroke Lesion Segmentation; 

- Original nnUNet trained with FLAIR images for Brain Tumor Segmentation (baseline 

model to be used for Inter-pathology Learning); 
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- nnUnet trained using Inter-pathology Learning technique with FLAIR images for Stroke 

Lesion Segmentation. 

With respect to the previous tests realized, these models were trained and evaluated using larger 

datasets, and increasing also the number of epochs, leading to a net increase of the training time 

but also of the overall performances.  

For the stroke lesion segmentation task, it was chosen to use the most recently released dataset, 

which was also used for the previous analyzes: the ISLES 2022 dataset. Having only 250 

available subjects, it was decided to randomly extract 210 subjects for the training set, and 40 

for the test set. Remembering that images of three modalities (ADC, DWI and FLAIR) were 

acquired from each subject, the training set is composed by a total of 630 images. 

The FeTS 2022 dataset was used for brain tumor segmentation, which is the most recently 

released in this aim and in which the amount of subjects is much bigger than the ISLES 2022 

dataset: 1254 subjects, randomly divided between training and test set with an 80/20% split 

(1003 subjects in the training set, 251 in the test set). Knowing that each subject consists in 

images of four modalities (FLAIR, T1, T1ce and T2), the total dimension of the training set is 

4012 images. 

It can be therefore derived that the Inter-pathology Learning technique is applied between a 

model trained for brain tumor segmentation using 1003 FLAIR images, and a model trained for 

stroke lesion segmentation with 210 FLAIR images. 

The number of training epochs was initially set to 1000, which was the default value chosen by 

Isensee et al. for nnUNet. After the completion of the training of the first model, the original 

nnUNet for stroke lesion segmentation, it was noticed that the validation loss was pretty much 

static, without improving after more or less 600 epochs, as can be seen in Figure 4.76. 

Moreover, the Dice score obtained didn’t change so much with respect to the one obtained using 

100 epochs; it was therefore chosen to use 600 epochs to train the other final models. 

The average Dice scores obtained in the test set by models trained for the same tasks were then 

compared between each other. 
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Figure 4.76: Trend of training (blue) and validation (red) losses for the original nnUNet model trained for stroke 

lesion segmentation, using 1000 epochs. As previously stated, the green curve (global Dice score) is displayed by 

way of example, and is computed on patches randomly drawn from the validation set at the end of each epoch, 

treating the patches as if they all originate from the same image. It is computed because it’s easy to calculate during 

training and is still able to identify if the model is training or not. 
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5. Results 

 

All the results of the previously exposed methods are presented in this section, comparing 

between each other the different studied methodologies on common test sets uniquely 

determined at the beginning of the analyses both for brain tumor and stroke lesion segmentation.  

To be more specific, the test set used during the investigations for brain tumor segmentation 

was composed by 80 images extracted from the FeTS 2022 dataset, while the one used for 

stroke lesion segmentation was composed by 40 images sampled from the ISLES 2022 dataset. 

The evaluation metric used to evaluate the results obtained and compare the different 

segmentation methods was the Dice score, or Dice similarity coefficient (DSC), which 

measures the similarity between two segmentation maps based on their overlap (Li et al., 2019). 

It ranges between 0 and 1 and a higher value means a better match between the segmented 

image and the ground truth mask, underlining a better segmentation performance. For each 

class, being 𝑃𝑖 ∈ (0,1) the binary image produced by segmentation models for class i, while 

𝑇𝑖 ∈ (0,1) the corresponding ground truth map, the Dice score is defined as: 

 

𝐷𝑖𝑐𝑒(𝑃, 𝑇) =  
2 × |𝑃𝑖 ∩ 𝑇𝑖|

(|𝑃𝑖| + |𝑇𝑖|)
 

 

Where |𝑃𝑖 ∩ 𝑇𝑖| calculates the amount of elements which are common in both sets, meaning the 

pixels which are equal to 1 in both 𝑃𝑖 and 𝑇𝑖. |𝑃𝑖| and |𝑇𝑖| are instead the cardinalities of the 

two sets, defined as the number of pixels where 𝑃𝑖=1 and 𝑇𝑖=1. 

The results are then presented in the order exposed in Chapter 4. 

 

 

 

5.1 Brain Tumor Segmentation analysis 

 

5.1.1 Training of nnUNet with all but one modality 

 

The Dice Scores for the three classes, and their average, obtained by all the evaluated models 

on the test set are visible in Table 5.1. 
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It is possible to notice that the removal of T1 and T2 images doesn’t affect the segmentation 

results, instead the Dice scores for classes 2 and 3, and the average between classes, increase 

with respect to the full model. On the other hand, the segmentation outcome drastically 

decreases when removing T1ce modality, especially for classes 2 and 3, suggesting the large 

importance of T1ce images on the delineation of the tumor core, which comprehends the 

enhancing tumor (label 3) and the necrotic tumor core (which is reminded that is associated to 

label 2 and not 1, because of the switch performed by nnUNet for labels adjustment). 

The removal of FLAIR modality decreases slightly the performances exclusively for the first 

class, while only the deletion of FLAIR or T1ce images causes a strong reduction of the Dice 

score for the first label, which defines the general contour of the tumor edematous region. 

This study suggests that the most contributing and effective modalities in the segmentation of 

the different brain tumor subregions are T1ce and FLAIR, while the intake provided by T1 and 

T2 modalities seems to be significantly lower compared to the first two, reducing their impact 

for the delineation of the brain tumor. 

 

  
Model trained 
without FLAIR 

images 

Model trained 
without T1 

images 

Model trained 
without T1ce 

images 

Model trained 
without T2 

images 
  Full model 

ED 0.669 0.733 0.667 0.733   0.735 

NCR 0.547 0.549 0.285 0.545   0.523 

ET 0.725 0.779 0.360 0.758   0.716 

Mean 0.647 0.687 0.437 0.679   0.658 

 

Table 5.1: Dice scores obtained for the three classes (ED stands for peritumoral Edematous tissue, NCR for 

Necrotic tumor Core, ET for Enhancing Tumor), and their average, by the four models, each trained with all 

modalities except one, compared with the full model (last column) trained using all modalities. The greatest Dice 

scores with respect to the full model, underlining a small need of the corresponding modality, are highlighted in 

green, while the smallest Dice scores, underlining a great need of the corresponding modality, are highlighted in 

red. 

 

 

 

5.1.2 Training of nnUNet with a single modality 

 

Table 5.2 shows the Dice scores of the three classes, and their average, obtained by the single 

models, compared with the full model. In most cases, the behavior of single models reflects the 
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expectations: networks fed with images of a single modality are not able to accomplish 

comparable results with respect to the full model, on one side because the number of images 

used to train single networks is much lower than the ones used for the full model, on the other 

because the single networks can’t take advantage of the fusion of features from different 

modalities, that can bring complementary information. 

But, on the other hand, it has been previously demonstrated that not all modalities are really 

useful for obtaining good segmentation results, and, furthermore, some modalities have a huge 

impact on the results with respect to the others. This assumption was strengthened with this 

subsequent analysis: it is evident that, even if all modalities perform quite poorly with the 

segmentation of the first class, which represents the general burden of the tumor, the model fed 

with T1ce modality obtains excellent results on the segmentation of second and third classes, 

overcoming the full model. This means that T1ce modality is more useful than all the others in 

the identification of the tumor core, and its performances even get worse due to the influence 

of other modalities: it seems that, in this specific case, it’s better to use the single T1ce modality 

for the identification of the tumor core, because it performs better than fusing all modalities. 

 

  

Model trained 
only with FLAIR 

images 

Model trained 
only with T1 

images 

Model trained 
only with T1ce 

images 

Model trained 
only with T2 

images 
  Full model 

ED 0.664 0.515 0.577 0.613   0.735 

NCR 0.283 0.300 0.560 0.374   0.523 

ET 0.352 0.342 0.762 0.387   0.716 

Mean 0.433 0.386 0.633 0.458   0.658 

 

Table 5.2: Comparison of the Dice scores of the single (trained using a single modality) models with respect to 

the full one (trained with all modalities) in the segmentation of the three tumoral regions (ED stands for 

peritumoral Edematous tissue, NCR for Necrotic tumor Core, ET for Enhancing Tumor). Segmentation results 

obtained by single models are much worse than the full model, except for the model fed with T1ce modality, which 

is able to overcome the performances of the full model for classes 2 and 3; the best values obtained for each class 

are highlighted in bold 
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5.1.2.1 Equalization of computational times 

 

The Dice scores obtained by models trained with images of a single modality, and the full 

model, equalizing its training time with respect to the single models, are showed in Table 5.3. 

It’s evident that this result is not so much informative, because it doesn’t provide additional 

information compared to the previous analyzes. As reported inside the table, indeed, the 

segmentation results obtained by the full model by equalizing the computational time, and so 

cutting off its training at 50 epochs, are even better than the results obtained by the full model, 

trained completing the 100 epochs. 

These results can be explained with the oscillatory trend of training and validation losses, and 

it also represents an additive proof that the model stabilizes before the chosen threshold of 100 

epochs. The remarks that can be inferred from these results are the same carried out for the 

analysis of nnUNet models trained with images of a single modality for brain tumor 

segmentation task (previous paragraph). Anyway, it must be highlighted that the comparison 

between results obtained by models trained with images of a single modality with the ones 

obtained by the full model is more meaningful and more correct in this last case, because the 

computations have been equalized and all the models had the same amount of time available to 

learn from the given input images. 

 

  

Model 
trained with 
only FLAIR 

images 

Model 
trained 

with only 
T1 images 

Model 
trained with 

only T1ce 
images 

Model 
trained with 

only T2 
images 

  

Full model 
equalizing 

training time 
with single 

models 

Full Model 
trained 

with 100 
epochs 

ED 0.664 0.515 0.577 0.613   0.747 0.735 

NCR 0.283 0.300 0.560 0.374   0.555 0.523 

ET 0.352 0.342 0.762 0.387   0.775 0.716 

Mean 0.433 0.386 0.633 0.458   0.692 0.658 

Table 5.3: Comparison of the Dice scores of models trained with images of a single modality with respect to the 

full one (trained with all modalities), and with the full model but equalizing the training times, in the segmentation 

of the three tumoral regions (ED stands for peritumoral Edematous tissue, NCR for Necrotic tumor Core, ET for 

Enhancing Tumor). Segmentation results obtained by single models are worse than the full model, except for the 

model fed with T1ce modality, which is able to overcome the performances of the full model for classes 2 and 3; 

the best values obtained for each class are highlighted in bold 
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5.1.2.2 Equalization of number of training images 

 

The other chosen method to equalize the computations between full and single models was by 

equalizing the number of images used to train each architecture, and therefore quadrupling the 

amount of training images for single models. The Dice scores obtained by models trained 

following this pipeline, and by the full model, are indicated in Table 5.4. By increasing the 

number of images from which single models can learn, the performances improve a lot with 

respect to the equalization of the computational time. These results can be explained on one 

hand because, as previously stated, the full model stabilizes before the threshold of 100 epochs, 

so limiting its training time didn’t affect the results (which indeed increased); on the other hand, 

even limiting the training time, the full model has the possibility to learn useful features from 

four times the number of images available from single models, increasing a lot the variability 

that the full model can learn, and thus the possibility to generate more detailed segmentations. 

In consequence, the results obtained using this equalization of computations method are more 

informative, because it was provided to each model the possibility to learn from an input of the 

same size. Observing Table 5.4, the difference between Dice scores obtained by single models 

and by the full model are much less marked than before. The gap between performances of 

models trained with only FLAIR, T1 or T2 images still exists, but it’s less evident. 

On the other side, while the network fed with T1ce scans was able to obtain comparable results 

with the full model, even when the number of training images was four times lower, in this case 

its segmentation results largely exceed the outcome of the full model, having a comparable Dice 

score for the segmentation of the peritumoral edematous/invaded tissue (ED), but overcoming 

the performances of the full model for the segmentation of the tumor core (NCR+ET) and on 

average. 

It represents a strong result, suggesting that, if it was available a large amount of T1ce images, 

an nnUNet network trained with them could perform better than using images of four modalities 

(FLAIR, T1, T1ce and T2) in the segmentation of brain tumor subregions. 
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Model trained 
quadrupling 
FLAIR images 

Model trained 
quadrupling T1 

images 

Model trained 
quadrupling 
T1ce images 

Model trained 
quadrupling T2 

images 
  Full Model 

ED 0.787 0.680 0.726 0.749   0.735 

NCR 0.541 0.573 0.791 0.611   0.523 

ET 0.561 0.586 0.820 0.601   0.716 

Mean 0.630 0.613 0.779 0.654   0.658 

Table 5.4: Comparison of the Dice scores of models trained with 360 images of a single modality with respect to 

the full one, in the segmentation of the three tumoral regions (ED stands for peritumoral Edematous tissue, NCR 

for Necrotic tumor Core, ET for Enhancing Tumor). Segmentation results obtained by single models are more or 

less comparable with the full model, except for the model fed with T1ce modality, which is able to largely overcome 

the performances of the full model for classes 2 and 3 and on average; the best values obtained for each class are 

highlighted in bold 

 

 

 

5.1.2.3 Analysis of the consistency of results 

 

The analysis of models trained with images of single modalities was repeated with a 

proportionally decreasing trend to analyze the consistency of the results and identify if the 

relationship between single models was stable when varying the number of training images. 

For each class (ED, NCR and ET) and on average, on Figures 5.1 and 5.2 are showed the Dice 

scores of the single models trained respectively with 20, 40, 88, 176 and 360 images of a unique 

modality, compared with the full model trained with 5, 10, 22, 44 and 90 subjects, each 

consisting of four images of the different available modalities, and thus with the same amount 

of images of single models.  

 

From Figure 5.1 it’s possible to notice that the performances of single models for the ED class 

have a continuous and almost linear increase, proportional with the number of training images, 

while the full model tends to be more stable, and is indeed overcome by the FLAIR model 

already with 176 training images, but also by the T2 model with 360. For the second class 

(NCR), it’s visible the superiority of the T1ce model with respect to all the others, including 

the full one, even for a small number of training images, but the peculiar aspect is that, when 

using 360 images for training, all single models are able to beat the performances of the full 

one. On the other hand, the T1ce model is even more separated from the other networks for the 

last class (ET), always overcoming the full model. But, unlike the previous case, the full model 
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is here superior to all the other single networks for the whole range of number of training images 

used. 

 

 

Figure 5.1: Consistency analysis for the different brain tumor classes. Five models were trained (four with images 

of a single modality, which can be FLAIR, T1, T1ce or T2, and a full model using all those) with an increasing 

number of training images, specifically: 20, 40, 88, 176 and 360. After that, their performances were compared 

and the trend of the Dice scores for the different number of training images is showed for the three tumoral 

subregions: peritumoral Edematous/invaded (ED), Necrotic tumor core (NCR), Enhancing tumor (ET)  

 

Figure 5.2 shows the average Dice scores over the three classes. The T1ce model keeps being 

better than the full one for all the range of training images, being exactly equal to it for the 

lower number of images tried (20). Moreover, if the performances of the single models keep 

increasing with the number of training images used, it seems like the full model tends to 

stabilize: the difference between the full model and FLAIR, T1 and T2 models is huge with a 

small number of training images, but keeps decreasing until it can be considered more or less 

at the same level with 360 images. 

These results can suggest that models trained with images of a single modality have higher 

capability to continue to increase while increasing the number of training images, with respect 

to the model trained with images of all modalities. 
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5.1.3 Ensemble of nnUNet models trained with a single modality 

 

As analyzed in Chapter 4, many different ensemble techniques were tried for the brain tumor 

segmentation task. The results of the most representative ones, together with the Dice scores 

obtained by single models and by the full model are visible in Table 5.5. The first ensemble 

methods tried weren’t able to obtain optimal results: simply averaging, for each class, the 

softmax probabilities produced by models trained with images of a single modality, and then 

assigning to each pixel the class with the highest probability, lead to an average Dice score of 

merely 0.453, against the 0.658 obtained by the full model.  

On the other hand, by continuing to use the averaging techniques, but employing as weights the 

average Dice scores obtained for each class during the validation phase, multiplied by two; that 

is, by multiplying the softmax probability produced by a single model for each class, for the 

average Dice score obtained for that specific class in the validation set, the Dice score increased 

to 0.500, which was still really low. 

It was discovered that, in this field, the majority voting techniques were able to produce much 

better results. All the previously specified techniques were therefore tried, leading to increasing 

results, until the final ensemble model, the one obtaining the best results among all the tried 

Figure 5.2: Consistency analysis on average. Five different models were trained (four with images of a single 

modality, which can be FLAIR, T1, T1ce or T2, and a full model using all those) with an increasing number of 

training images, specifically: 20, 40, 88, 176 and 360. After that, their performances were compared and the trend 

of the average Dice scores for the different number of training images is showed. 
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methods, was chosen: it consists in the procedure based on saving the best performing model 

on the validation set for each class; then, during prediction, if the model obtaining the best 

performances for a given class, predicts that class for a certain pixel, then that pixel is assigned 

to the voted class; while if this happens for more than one class (meaning that if more than one 

network obtaining the best Dice scores on the validation phase for a given class predicts the 

corresponding class), it is followed the prediction of the model having the highest weight. If 

none of this happens, majority voting is performed; but if the voted class for a given pixel isn’t 

voted by the best performing model for that class, then the pixel is assigned to the background. 

With this complex method, the model was able to reach an average Dice score on the test set of 

0.647, which was really close to the full model but wasn’t able to reach it. 

Positively, the ensemble model was able to beat, on average, the single model trained with only 

T1ce images (and therefore all the other single models), but on the other hand the T1ce network 

was still able to obtain better Dice scores for NCR and ET classes: these results suggest that, 

for those two classes, in the ensemble strategy, the T1ce model was corrupted by the presence 

of the other models, without allowing the ensemble model to reach optimal results. On the other 

hand, this is still a good result, meaning that there is still room for improvements of the 

ensemble technique. 

Moreover, as it can be seen in Table 5.5, the final ensemble model is able to beat the original 

architecture for the segmentation of the second class, corresponding to the Necrotic Tumor Core 

(NCR). 

 

  

Model 
trained 

with 
only 

FLAIR 
images 

Model 
trained 

with 
only T1 
images 

Model 
trained 

with 
only 
T1ce 

images 

Model 
trained 

with 
only T2 
images 

Ensemble 
(predictions 
averaging) 

Ensemble 
(predictions 

averaging 
with 2*DS 
weighting) 

Final 
Ensemble  

  
Full 

model 

ED 0.664 0.515 0.577 0.613 0.510 0.596 0.711   0.735 

NCR 0.283 0.300 0.560 0.374 0.427 0.445 0.541   0.523 

ET 0.352 0.342 0.762 0.387 0.421 0.455 0.690   0.716 

Mean 0.433 0.386 0.633 0.458 0.453 0.500 0.647   0.658 

Table 5.5: Comparison of the Dice scores obtained by models trained with images of a single modality, and to the 

full one, compared with the results obtained by using different ensemble techniques, in the segmentation of the 

three tumoral regions (ED stands for peritumoral Edematous tissue, NCR for Necrotic tumor Core, ET for 

Enhancing Tumor). For each row, the Dice score in bold is the higher value obtained for that specific class (or on 

average) while the results of the final ensemble model, the one with the higher performances, are underlined.  
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5.2 Stroke Lesion Segmentation analysis 

 

5.2.1 Training of nnUNet with all but one modality 

 

Segmentation results, expressed as Dice scores obtained by the networks in the segmentation 

of the ischemic stroke lesions, are showed in Table 5.6, in which the performances of models 

trained with all but one modality, are compared with the full model, trained with all available 

images. To compare the computational costs of these models, also the training time is 

represented inside the table. 

The results mirror the expectations on this analysis: by alternatively removing one modality 

and using the remaining two to train a model, the segmentation performances are inferior with 

respect to the full model, trained using all available modalities. Even if the difference is not 

marked as for the brain tumor segmentation task, in this study it’s possible to identify a modality 

whose discharge decreases the overall performances more with respect to the other modalities. 

By expressing the results as a percentage of reduction of the Dice score of the models with 

respect to the full model, the decrease caused by the removal of ADC and FLAIR modalities is 

extremely low, between 2% and 3% (precisely 2.7% and 3.3% for ADC and FLAIR 

respectively), while the reduction caused by using all images except DWI for training is about 

10.5%. It must be specified that, even in this latter case, the decrease is really low and all models 

can be considered comparable with the full one, but a prior intuition can be that stroke lesions 

are more evident in DWI images, and this modality could thus be more efficient and could allow 

to extract more relevant information for the segmentation of those lesions. 

To conclude, the training time of models trained by removing one modality at a time is more or 

less two thirds of the time employed by the full model, as expected because each model is 

trained with two thirds of the number of images used by the full model. 
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Model trained 

without ADC 

images 

Model trained 

without DWI 

images  

Model trained 

without FLAIR 

images 

  Full model 

Lesion 

label 
0.679 0.625 0.675   0.698 

Training 

time 
1h 40 min 1h 41 min 1h 44 min   2h 38 min 

 

Table 5.6: Comparison of the Dice scores and training times obtained by models trained by removing one modality 

at a time (ADC, DWI and FLAIR) with respect to the full model, trained using all available images. 

 

 

 

 

5.2.2 Training of nnUNet with a single modality 

 

The Dice scores obtained by nnUNet networks trained with a single modality, compared with 

the full model are showed in Table 5.7, together with the time employed for training each 

configuration. It’s straightforward to notice that the results reflect the expectations for almost 

all modalities: the two models trained respectively only with ADC and FLAIR images obtain 

really low Dice scores when trying to segment the stroke lesions, with an average value which 

is almost one half than the performances obtained by the full model. It means that these two 

modalities are not able to properly identify and segment the ischemic stroke lesions when used 

alone, but instead benefit a lot from the conjunction with other modalities. 

Moreover, analyzing more in details these results, it was also noticed that in more than one 

testing case, models trained only with images of ADC or FLAIR modality achieve a Dice score 

of 0.0, being not able to segment the lesion at all, and localizing it in a totally different position. 

This is probably due to the way in which the lesion is highlighted in these modalities, because 

the model confuses it as a part of brain anatomy and isn’t able to identify it, combined with the 

fact that, in many of these cases, the size of the lesion is pretty small. 
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Figure 5.3: Visualization of the ADC, DWI and FLAIR scans for subject number 232 of the ISLES 2022 dataset, 

and corresponding segmentation map. It’s possible to notice how the DWI image can highlight the lesion, while 

it’s confused with cerebral regions in the other two scans. 

 

While, on the other hand, the reduction of the Dice score obtained by the model trained with 

DWI images is significantly lower than the other two modalities, and it achieves comparable 

results with the full model. In Figure 5.3 it’s showed a specific testing case, in which the model 

trained with ADC images obtains a Dice score really close to 0 (0.06), and the model trained 

with FLAIR modality achieves a Dice score of 0, even if the dimension of the lesion is not so 

small. DWI image, on the other side, is better able to highlight the lesion and in this specific 

case obtains a Dice score of 0.67. 

These results strengthen the idea initially developed in the analysis of models trained with all 

but one modality: models trained with DWI images are better able to localize ischemic stroke 

lesions with respect to the other modalities, because lesions are pointed out and underlined more 

in detail in those images. 

 

 

  
Model trained 
only with ADC 

images 

Model trained 
only with DWI 

images 

Model trained 
only with FLAIR 

images 
  Full model 

Lesion 
label 

0.416 0.630 0.396   0.698 

Training 
time 

1h 26 min 1h 31 min 1h 32 min   2h 38 min 

 

Table 5.7: Comparison of the Dice scores and training times obtained by models trained with images of a single 

modality (ADC, DWI and FLAIR respectively) with respect to the full model, trained using all available images. 

The Dice score obtained by the network trained with DWI images is highlighted in bold because it’s the only 

modality able to obtain comparable results with respect to the full model 
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5.2.2.1 Equalization of computational times 

 

The Dice scores obtained by models trained only with ADC, DWI or FLAIR images, and by 

the network fed with all those three modalities, but cutting off its training to the average training 

time of single models, are showed in Table 5.8. Following the trend of the brain tumor 

segmentation task, also in this case the results don’t add much information with respect to the 

case in which the training of the full model wasn’t stopped. As a matter of fact, it can be noticed 

that the decrease of the Dice score obtained by the model whose training was stopped at 66 

epochs with respect to the complete model is just of 0.05, giving credit to the hypothesis for 

which, even for stroke lesions segmentation, the nnUNet model stabilizes before reaching the 

threshold of 100 epochs. 

Even if the results could seem to be useless, because the same observations carried out in the 

previous paragraph can be reported here, in reality this study allows a more correct comparison 

between models with respect to the study in which the training of the complete model wasn’t 

cut off, because unlike the previous analysis, in this current investigation it is given to all models 

the same amount of time to learn from input images, equalizing then computations. 

 

  
Model trained 
only with ADC 

images 

Model trained 
only with DWI 

images 

Model trained 
only with FLAIR 

images 
  

Full model 
equalizing 

training time 
Full model  

Lesion 
label 

0.416 0.630 0.396   0.693 0.698 

 

Table 5.8: Comparison of the Dice scores obtained by models trained with a single modality at a time (ADC, DWI 

and FLAIR) with respect to the full model, trained using all available images, with and without limiting its training 

time to a threshold set to be the average training time of single models. 

 

 

 

 

 

5.2.2.2 Equalization of number of training images 

 

The other exploited method to equalize computations between tested models was to balance the 

number of images used to train each network. In Table 5.9 the Dice scores obtained by models 

trained with images of a single modality (ADC, DWI, FLAIR) and of the configuration trained 

with all these images are showed. Since the full model was trained using 70 subjects, each 

consisting in images of three modalities, to equalize the computations between networks, 
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models trained with images of a unique modality were trained tripling the input images, from 

70 to 210. This study allows a better comparison between models, and giving to each 

architecture an input of the same dimension enables all models to learn useful features from a 

larger quantity of images, which could be better representative of the stroke lesions variability. 

Unfortunately, the performances of models trained with ADC and FLAIR images didn’t 

improve so much, being not able to reach comparable results with respect to the full model. On 

the other hand, the unique network whose segmentation results became comparable with the 

full model was the one fed with DWI images: the model trained with those images, in fact, 

obtained a Dice score able to overcome the one obtained by the full model, even if only by 

0.001. 

The improvement of performances obtained by the model fed with only DWI images is so small 

that can be considered meaningless, though it suggest a relevant consideration: based on the 

assumptions and training schedules followed in this study, training a model for ischemic stroke 

lesion segmentation using ADC, DWI and FLAIR images leads to get more or less the same 

results obtained by training a model using the same amount of DWI images, which is the most 

meaningful and informative modality for stroke lesions. 

 

  
Model trained 

tripling ADC 
images 

Model trained 
tripling DWI 

images 

Model trained 
tripling FLAIR 

images 
  Full model  

Lesion 
label 

0.490 0.699 0.505   0.698 

Table 5.9: Comparison of the Dice scores of models trained with 210 images of a single modality with respect to 

the full one, trained with 70 subjects (210 images) in the segmentation of ischemic stroke lesions. Segmentation 

results obtained by single models remain lower than the full model, except for the model fed with DWI images, 

which is able to match the performances obtained by the full model (in bold) 

 

 

5.2.2.3 Analysis of the consistency of results  

 

The analysis of nnUNet models trained with images of a single modality (ADC, DWI and 

FLAIR) was repeated using a proportionally decreasing number of training images, to 

demonstrate the consistency of the results and verify if the relationship between models’ 

performances was stable over the number of images used to train them. 

Starting from the previously analyzed case, where single models were trained with 210 images 

of single modalities, while the full model used 70 subjects (each consisting of three modalities), 
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the following variants were trained: single models trained with 108, 54 and 27 images and full 

model respectively with 36, 18 and 9 subjects. 

The trend of the Dice scores for the unique class of the stroke lesion are showed in Figure 5.4. 

All models, including the full one, seem to have an increasing trend over the number of training 

images, but the inferiority of the results obtained by the ADC and FLAIR models is evident. 

On the other hand, the DWI model tends to have higher performances than the full network for 

all the range of training images tried, even if the gap is really low, and even if the difference 

between them with 360 images is extremely limited, as underlined in the previous paragraph. 

This result strengthens the idea for which, between all models trained with images of a single 

modality for the stroke lesion segmentation task, the DWI is the only one that can reach 

comparable performances or even overcome the full one.  

 

 

 

 

 

 

 

5.2.3 Ensemble of nnUNet models trained with a single modality 

 

All the ensemble techniques introduced in Chapter 4 were tried also for the stroke lesion 

segmentation task, but, unfortunately, the results were not as good as for the brain tumor 

segmentation task. 

Figure 5.4: Consistency analysis for the stroke lesion class. Four different models were trained (three with images 

of a single modality, which can be ADC, DWI or FLAIR, and a full model using all those) with an increasing 

number of training images, specifically: 27, 54, 108 and 210. After that, their performances were compared and 

the trend of the Dice scores for the different number of training images is showed for the unique label of the 

ischemic stroke lesion 
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Having a single class, and so dealing with a binary classification problem for the identification 

of the label of each voxel, the room for ensemble learning reduces drastically: as emerged 

previously, the best performing model also on the validation set was the one trained with DWI 

images. Implementing the averaging techniques, with weights or not, doesn’t produce relevant 

results: the good segmentation results produced by the model trained with DWI images are 

indeed soiled by the interaction with the other single models, which inevitably reduces the 

performances due to their lower capabilities. 

The same considerations can be done on the majority voting technique and all the different 

methods explained in Chapter 4. In all those cases, the contamination of the DWI network with 

the other single models could only lower the performances. 

The negative side of the application of ensemble learning in the stroke lesion segmentation 

field, which blocks its application with this task, is the presence of this unique label: while in 

the brain tumor segmentation task, the ensemble of models techniques could exploit the 

capability of different models to perform better in the segmentation of one class over another, 

merging their different segmentation abilities, in the stroke lesion segmentation field the 

presence of a single label allows to identify a single model performing better than the others on 

that class, while the combination with the other models, with worse performances, can only 

reduce the results.  

It follows that, with the ensemble learning strategy, the performances of the model are always 

worse than the full model, except in the case in which the ensemble of models follows the best 

performing model (trained with DWI images), and in this case its corresponding Dice score 

(0.699 against 0.698 of the full model) is obtained. 

 

 

 

5.3 Dense Multi-path nnUNet 

 

The architecture of IVD-Net, a network developed by Dolz et al. for the segmentation of the 

intervertebral disc (IVD) and subsequently adapted for the segmentation of 2D images of stroke 

lesions, was merged with nnUNet for the generation of Dense Multi-path nnUNet. Different 

architectures were created and trained, based on the combination of different aspects of these 

networks, and on their modification to increase efficiency and decrease the computational cost. 

The large part of these alterations was tried for brain tumor segmentation, and then the best 

performing ones were adapted also for ischemic stroke lesion segmentation, allowing to identify 
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a new baseline for both the tasks, able to overcome the performances obtained by the simple 

nnUNet. 

 

 

5.3.1 Brain Tumor Segmentation task 

 

Different architectures derived from the combination of IVD-Net and nnUNet were tried for 

brain tumor segmentation, and the average Dice scores obtained during inference for the 

segmentation of the three tumoral subregions (ED: peritumoral Edematous tissue, NCR: 

Necrotic tumor Core, ET: Enhancing Tumor), and their average, are showed in Table 5.10. All 

architectures are obviously compared between each other and with the baseline, the original 

nnUNet, represented in the last column. 

As can be seen, by simply modifying the structure of nnUnet and disentangling the input data 

and feed them into four different encoders, concatenated through a bridge to a unique decoder, 

the performances approach the basic model, but without being able to reach it. On the other 

hand, when trying to complicate the model by adapting the nnUNet structure to the one of IVD-

Net, the performances increase considerably, being able, for each architecture and modification 

proposed, to overcome the performances of the original nnUNet in the segmentation of all 

single classes and, of course, on average. After simply combining nnUNet with IVD-Net, it was 

tried to implement some modifications with the aim of increasing the efficiency, decrease the 

computational cost, and at the same time, increase the capability of the network to keep 

separated the input images acquired with different acquisition modalities. 

A substantial improvement (leading to an increase of the average Dice score from 0.690 to 

0.697) was obtained by modifying the dense connections between the different levels of the 

encoders (see Chapter 4.6.1) and using the tensor obtained by concatenating the outputs of the 

same level of the different streams, and compressing the result, as skip connection at each level, 

as showed in Figure 4.74.  

The last network, obtained by using path-specific skip connection, using indeed stream-specific 

compressions of the concatenated tensor, as showed in Figure 4.75, is the one obtaining the 

best performances. Its training was repeated to demonstrate the consistency of the results and 

this model was chosen as baseline, being able to overcome all the other tried alternatives, and 

to largely overtake the results obtained by the original nnUNet. 
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nnUNet with 
4 encoders 

nnUNet 
combined 

with IVD-Net 

Dense Multi-
path nnUNet 

modified 
skips 

according to 
Figure 4.74 

Dense Multi-
path nnUNet 

modified 
skips 

according to 
Figure 4.75 

Last case 
repeated 

  
Original 
nnUNet 

ED 0.692 0.744 0.751 0.748 0.748   0.735 

NCR 0.539 0.589 0.588 0.579 0.576   0.523 

ET 0.693 0.736 0.753 0.788 0.774   0.716 

Mean 0.641 0.690 0.697 0.705 0.699   0.658 

Table 5.10: Average Dice scores obtained in the testing phase in the segmentation of the three tumoral subregions 

(ED: peritumoral Edematous tissue, NCR: Necrotic tumor Core, ET: Enhancing Tumor) and their mean, achieved 

by the different architectures tried combining IVD-Net and nnUNet, compared to the original nnUNet. It is evident 

that all networks, with the exception of the one obtained by only adapting nnUNet to have 4 encoders, are able to 

overcome the original nnUNet. The bold values are the best Dice scores reached for each class (or on average). 

 

 

 

 

5.3.2 Stroke Lesion Segmentation task  

 

The same analyzes performed for brain tumor segmentation, were repeated for stroke lesion 

segmentation, and the average Dice scores achieved in the test set for the segmentation of the 

ischemic stroke lesion, by the different network variants implemented merging IVD-Net and 

nnUNet, are shown in Table 5.11 compared to the original nnUNet. 

The first and simplest architecture, implemented by splitting the encoder into three paths, one 

for each input modality, isn’t able to achieve comparable performances with respect to the 

original nnUNet.  

Unfortunately, also the architecture realized by adapting the nnUNet structure to the one of 

IVD-Net, can’t reach the Dice score obtained by the original nnUNet, even if it gets closer with 

respect to the previous case. The last two architectures, in which the dense connections between 

the different levels of the encoders were modified to increase the efficiency and decrease the 

computations, while the skip connections were changed in two distinct ways, as showed in 

Figures 4.74 and 4.75, are the most promising ones, being able to achieve the best performances 

for the brain tumor segmentation task. As a matter of fact, both these methods are able to 

overcome the original nnUNet, allowing to identify a new baseline, which consists in the model 

where the skip connections at each level are identified as the tensor obtained by concatenating 
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the outputs of the previous level of the encoder (Figure 4.74), which represents the best 

performing model for the stroke lesion segmentation task, and the new baseline chosen. 

 

  
nnUNet with 3 

encoders 

nnUNet 
combined with 

IVD-Net 

Dense Multi-
path nnUNet 

modified skips 
according to 
Figure 4.74 

Dense Multi-
path nnUNet 

modified skips 
according to 
Figure 4.75 

  
Original 
nnUNet 

Stroke 
Lesion 

0.677 0.692 0.710 0.700    0.698 

Table 5.11: Average Dice scores obtained in the testing phase in the segmentation of stroke lesions, achieved by 

the different architectures tried combining IVD-Net and nnUNet, compared to the original nnUNet. Only the last 

two networks (whose Dice scores are highlighted in bold) are able to overcome the performances of the original 

nnUNet. 

 

 

 

 

5.4 Inter-pathology Learning 

 

The alternative models trained for stroke lesion segmentation using the Inter-pathology 

Learning technique from the corresponding model trained for brain tumor segmentation, both 

using FLAIR images, were evaluated using a test set composed by 40 images extracted from 

ISLES 2022, as performed in previous analyzes. The average Dice scores produced by these 

networks are showed in Table 5.12, compared with the results obtained by the original model 

trained with the same FLAIR training images. 

It can be observed that implementing the transfer learning technique and maintaining the same 

weights learnt in the encoder for brain tumor segmentation doesn’t improve the capability of 

the model to identify and segment precisely stroke lesions, causing a decrease of the overall 

Dice score. This is an important result, meaning that the features learnt in the encoder of the 

nnUNet model trained for the brain tumor segmentation task are not useful for the 

correspondent model for stroke lesion segmentation, underlining the difference of the two 

pathologies and the inadequacy of considering the former task as a generalization of the latter 

one. 

But these results don’t mean that brain tumor and stroke lesion segmentation are two completely 

independent and separated tasks. Transfer Learning can still be helpful: by considering the 

previous annotation, and noticing that the difference of the two tasks but also the availability of 
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a huge amount of data, it was chosen also to apply transfer learning by considering the nnUNet 

structure used for brain tumor segmentation also for stroke lesion segmentation, but without 

freezing the pretrained weights of the first task, and instead using them just as an initialization 

for the second task. In this way, allowing the network to learn features related to stroke lesions, 

starting from a structure and weights learnt from brain tumors, the performance of the network 

improves, as underlined in Table 5.12.  

This result highlights the connection between these two tasks, and the capability to increase the 

performances of a model trained for stroke lesion segmentation, if a model for brain tumor 

segmentation is available and was already trained with the same type of images. 

 

  

nnUNet using brain 
tumor 

segmentation 
pretrained weights 

nnUNet using brain 
tumor 

segmentation 
pretrained weights 

and freezing 
encoder 

  
nnUNet trained with 

FLAIR images 

Stroke 
Lesion 

0.440 0.366   0.396 

Table 5.12: Average Dice scores obtained in the testing phase in the segmentation of stroke lesions, achieved by 

models obtained implementing inter-pathology learning from the model trained with FLAIR images for brain 

tumor segmentation, trying to freeze or not the encoder’s weights, compared to the original nnUNet trained with 

FLAIR images. Only the first network, where weights were not frozen (whose Dice scores are highlighted in bold) 

is able to overcome the performances of the original nnUNet. 

 

 

 

 

5.5 Final models 

 

In this section are reported the results of the best performing models, between the previously 

tested ones, employing improved training datasets and increasing also the training epochs. 

 

 

 

5.5.1 Brain Tumor Segmentation 

 

Table 5.13 summarizes the Dice scores obtained by the original nnUNet, compared to the Dense 

Multi-path nnUNet, on the three tumoral subregions (ED, NCR and ET) and on average, on the 
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test set obtained from the FeTS 2022 dataset. The training times and the number of trainable 

parameters for the two models are also reported. 

By letting nnUNet learn from a large training set and increasing the number of training epochs 

in which the network can optimize itself, good performances can be obtained, reaching an 

average Dice score of 0.868. On the other hand, the large computational cost of Dense Multi-

path nnUNet has been decreased for this task, not to stumble in an out of memory problem, by 

reducing the number of channels for each level: in this way, its number of trainable parameters 

is still larger than nnUNet, as can be seen in Table 5.13, but the difference is not so huge, javing 

also that the training time of Dense Multi-path nnUNet is lower. 

Under all these circumstances, Dense Multi-path nnUNet is still able to overcome the 

performances of nnUNet on all classes (with the exception of the first one in which they 

equalize) and on average. 

These results underline the strength and the potential of Dense Multi-path nnUNet, and the 

possibility to continue to increase its performances by increasing again the number of channels 

and restore the original values automatically set by nnUNet, if the available GPU memory 

allows it. 

 

  nnUNet 
Dense Multi-path 

nnUNet 

ED 0.886 0.886 

NCR 0.816 0.823 

ET 0.902 0.903 

Mean 0.868 0.871 

Training time 38h 35min 37h 27 min 

Number of 
parameters 

31˙198˙976 70˙468˙080 

Table 5.13: Average Dice scores obtained by nnUNet and Dense Multi-path nnUNet in the segmentation of the 

three tumoral subregions (ED: peritumoral edematous/invaded tissue, NCR: necrotic tumor core, ET: enhancing 

tumor), and on average, in a test set extracted from the FeTS 2022 dataset. The training times and the number of 

trainable parameters of the two models are also report 

 

The segmentation maps produced by nnUNet and Dense Multi-path nnUNet, compared with 

the corresponding ground truths, of some random subjects extracted from the test set are showed 

in Figure 5.5. The related T1ce images are also reported, being the ones which are more capable 

of highlighting the brain tumoral subregions. 
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Figure 5.5: Comparison of the ground truth segmentations with the segmentation maps produced by the original 

nnUNet and Dense Multi-path nnUNet for three random cases extracted from the test set. For each segmentation 

map a zoom of the tumoral region is shown, to better visualize the differences between the segmented subregions. 

The corresponding T1ce images are also showed, because brain tumor subregions are more visible in this 

modality. Moreover, the “gist_heat” matplotlib color map has been used to better highlight the different regions: 

red represents the peritumoral edematous/invaded tissue (ED), white the enhancing tumor (ET) while orange the 

necrotic tumor core (NCR). 

 

 

 

 

5.5.2 Stroke Lesion Segmentation 

 

The average Dice scores obtained by the original nnUNet and Dense Multi-path nnUNet in the 

segmentation of stroke lesions on a test set derived from the ISLES 2022 dataset is reported in 

Table 5.14. The training times are also showed for the two networks, remembering the original 
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nnUNet model for stroke lesion segmentation was the first trained model for these final 

analyses, and was thus trained with 1000 epochs. After that, it was chosen to set the number of 

training epochs to 600, given that the validation loss didn’t change considerably in the last 400 

epochs. Anyway, even if the number of epochs for the Dense Multi-path nnUNet is almost 

halved, its training time is superior to nnUNet, underlining a large computational cost of this 

last network, justified by its huge number of trainable parameters, as can be seen in Table 5.14, 

with resepct to nnUNet. 

The results are consistent with the previous analyses, with the Dense Multi-path nnUNet being 

able to beat the performances of the original nnUNet. 

It must be specified that the Dice scores are inferior to the ones obtained with a smaller training 

dataset and with just 100 training epochs because, in that case, training and test images were 

picked sequentially, while in this last case they were selected randomly, removing any possible 

correlation between consecutive images that could influence the results. 

 

  nnUNet 
Dense Multi-path 

nnUNet 

Stroke Lesion 0.635 0.660 

Training time 
35h 13min (1000 

epochs) 
36h 47min 

Number of 
parameters 

16˙548˙832  294˙755˙520 

Table 5.14: Average Dice scores obtained by nnUNet and Dense Multi-path nnUNet in the segmentation of stroke 

lesions in a test set extracted from the ISLES 2022 dataset. The training times and the number of trainable 

parameters of the two models are also reported. 

 

Figure 5.6 also reports a comparison of the segmentation maps produced by the original 

nnUNet and by Dense Multi-path nnUNet, with the ground truth segmentation, for three random 

cases extracted from the test set. 
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Figure 5.6: Comparison of the ground truth segmentations with the segmentation maps produced by the original 

nnUNet and Dense Multi-path nnUNet for three random cases extracted from the test set. For each segmentation 

map a zoom of the stroke lesion is shown, to better visualize the differences between the segmented regions. The 

corresponding DWI images are also showed, because ischemic strokes are more visible in this modality. 

 

 

 

5.5.3 Inter-pathology Learning 

 

The comparison between the average Dice scores obtained in the segmentation of stroke lesions 

by the original nnUNet trained with FLAIR images, and the nnUNet network trained with the 

Inter-pathology Learning technique transferring the knowledge learnt from the model trained 

for brain tumor segmentation with FLAIR images, are visible in Table 5.15. 
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The results are consistent with the previous tests, with the second model being able to overcome 

the performances of the first one. They also strengthen the assumption for which, if a nnUNet 

model is available and was already trained for brain tumor segmentation with FLAIR images, 

it can be used as a basis applying an Inter-pathology Learning technique with the corresponding 

stroke lesion segmentation model trained with FLAIR images, increasing its performances with 

respect to its traditional training. 

 

  
nnUNet trained 

with FLAIR images 

nnUNet trained 
with FLAIR images 

with Inter-
pathology Learning 

Stroke Lesion 0.509 0.583 

Table 5.15: Average Dice scores obtained by the basic nnUNet model and the network obtained applying the 

Inter-pathology Learning strategy, both trained with FLAIR images, in the segmentation of stroke lesions in a 

test set extracted from the ISLES 2022 dataset.  

 

The segmentation maps produced by the two models, compared with the ground truths, are also 

reported in Figure 5.7 for three subjects sampled from the test set. The corresponding FLAIR 

images are showed too, being the only acquisition modality used in this study.  

In the first case it can be observed that, even if the segmentation map produced by the last model 

isn’t optimal, it’s still much better than the one generated by the original nnUNet. While in the 

last subject, the nnUNet isn’t able to identify the stroke lesion at all, obtaining an average Dice 

score of 0.0, while the transfer Learning technique allows an accurate localization of the lesion, 

with an average Dice score of 0.622. 
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Figure 5.7: Comparison of the ground truth segmentations with the segmentation maps produced by the original 

nnUNet model and the nnUNet trained using the Inter-pathology Learning technique from brain tumor 

segmentation, both trained with FLAIR images, for three cases extracted from the test set. For each segmentation 

map a zoom of the stroke lesion is shown, to better visualize the differences between the segmented regions. The 

corresponding FLAIR images are also showed. 
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6. Discussion 

 

Accurate delineation and segmentation of brain tumors and ischemic stroke lesions represent a 

crucial aspect for diagnosis, treatment planning and subsequent evaluations of entity and 

consequences of brain lesions or tumors. Since manual depiction of medical images is time 

consuming and laborious, many automatic methods have been developed for those tasks, 

achieving important results for both of them. 

After a meticulous analysis of the most recent and advanced techniques in these fields, an 

optimal baseline for the subsequent research was identified in nnUNet (“no-new-UNet”), given 

its capability to win the latest versions of the Brain Tumor Segmentation challenge (2020, 2021) 

and setting a new state-of-the-art in the segmentation of many other medical images. Its great 

performances are due to its capacity to adapt the architecture of the model to the dataset to 

which it’s applied, identifying the best possible UNet configuration for the specific task under 

examination.  

All the analyses were performed using common training and test sets for the two tasks of brain 

tumor and stroke lesion segmentation, extracted from BraTS 2020, FeTS 2022 and ISLES 2022 

datasets.  

nnUNet was submitted to the BraTS 2020 challenge with some minor modifications, some of 

which were introduced with the only aim of increasing the segmentation results based on the 

specific BraTS evaluation metrics, while others targeting a better adaptation of nnUNet to the 

brain tumor segmentation task, including a more aggressive data augmentation, the substitution 

of instance normalization with batch normalization and the introduction of the Batch Dice loss. 

These modifications were implemented and evaluated, pointing out their incapability to 

increase much the overall performances if used alone. During the investigations about the 

application of nnUNet for brain tumor segmentation, it was observed an increase of the average 

Dice score obtained in the test set from 0.613 to 0.659 when coupling these BraTS specific 

modifications with the Wassertian Dice Loss, a peculiar Dice Loss introduced by Fidon et al. 

(Fidon et al., 2021) which takes advantage of the hierarchical structure of BraTS labels.  

These results show the ability of the Wassertian Dice Loss to improve the segmentation results 

of nnUNet but only when coupled with BraTS specific settings and applied for brain tumor 

segmentation, identifying a new alternative for the classic Dice Loss. 
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However, the main goal of this thesis was the detachment of the input images into the different 

available acquisition modalities before feeding them inside the model, allowing the network to 

extract specific features from the modalities’ images while keeping them separated. This study 

was performed due to the big differences between the highlighting of stroke lesions or brain 

tumoral subregions between the available modalities inside the used datasets: nnUNet, as many 

other networks, treats images of different modalities as different input channels, merging their 

information at early stages. In this way, features extracted from images in which lesions are 

highlighted in different, or even opposite ways, are combined and mixed. 

With this aim, the most relevant acquisition modalities for the considered tasks were identified 

by training nnUNet models for brain tumor or stroke lesion segmentation with all the available 

modalities but one, and with just images of one modality at a time. In particular, for the brain 

tumor segmentation task, T1ce was pointed out as the most useful modality, given by comparing 

the results of a nnUNet model trained with all available modalities (FLAIR, T1, T1ce and T2) 

and a nnUNet network trained with an equal number of T1ce images, the latter one obtained 

the best performances on the segmentation of the Tumor Core (Necrotic Tumor Core + 

Enhancing Tumor) and on average. This analysis was repeated for an increasing number of 

training images, validating the results for the full tested range. These results underline the 

superiority of the T1ce modality in the delineation of the brain tumor subregions with respect 

to the other modalities, and the possible contamination of its performances when combining 

T1ce images with the other modalities (especially T1 and T2), decreasing the overall 

performances. The general message is that, if a large amount of T1ce images is annotated and 

therefore available for brain tumor segmentation, it is preferable to use only those images 

instead of combining them with the corresponding images of other modalities. 

On the other side, for stroke lesion segmentation the most meaningful modality was found to 

be DWI. Also in this case, by training a model with all available modalities (ADC, DWI and 

FLAIR) and training another nnUNet network with the same number of images, but only DWI, 

the second one was able to overcome the performances of the full model, for the whole range 

of training images tried. DWI has thus the same role for stroke lesion segmentation, that T1ce 

has for brain tumor segmentation, leading to point out the DWI modality as the most effective 

one in the highlighting of stroke lesions. 

The contamination of the most performing acquisition modalities with the others, is probably 

due to the way in which the extracted features are mixed in the early stages of the network. The 

fusion of information extracted from images of different modalities can still be useful, but 

different ways of combining it were explored. 
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The first idea was to develop an ensemble of models, each trained with images of single 

modalities, and then combined at inference level. This road was walkable only for brain tumor 

segmentation, where it was possible to combine models performing better for one class over 

the others; while for stroke lesion segmentation, the ensemble of models wasn’t able to 

overcome the performances of the best model trained with images of a single modality (DWI) 

so didn’t produce significant results. On the other hand, for brain tumor segmentation, after 

having tried different ensemble techniques, a complex majority voting method was able to 

produce good results, being able to overcome the model trained only with T1ce images on 

average and on the segmentation of the first class, but not for the segmentation of the tumor 

core, and also without being able to reach the Dice scores of the full nnUNet model (average 

Dice score of 0.647 against 0.658). However, these results highlight that there is still room for 

improving the Ensemble technique, trying to approach the performances of the T1ce model for 

the second and third class and, as a consequence, overcome the full model. 

The most important model developed in this thesis is the Dense Multi-path nnUNet, obtained 

by combining the architectures of nnUNet and IVD-Net, a UNet developed by Dolz et al. in 

which the encoder is split in N streams, in which N corresponds to the number of input 

modalities, which flow into a bridge that finally convey the information to a unique decoder. 

This structure, with the presence of dense connections between paths, allows to keep the input 

modalities separated, and however combine the information extracted from them. After the 

introduction of some modifications to increase the efficiency and decrease the computational 

cost, this model was able to obtain excellent results. 

On the final evaluation, increasing the number of training epochs and of training images, the 

Dense Multi-path nnUNet was able to overcome the performances of the simple nnUNet 

obtaining a Dice score of 0.660 against 0.635 for stroke lesion segmentation, and an average 

Dice score of 0.871 against 0.868 for brain tumor segmentation. 

This last model demonstrates that, keeping the input modalities separated but combining the 

extracted features to better model their relationships, allows to increase the performances of an 

optimal network such as nnUNet. 

Finally, the presence of FLAIR images both for brain tumors and stroke lesions segmentation, 

suggested the implementation of an Inter-pathology Learning strategy between the two tasks, 

with the following result: by training a model for brain tumor segmentation with FLAIR images 

and applying transfer learning without freezing any weight for the training of the corresponding 

model for stroke lesion segmentation using only FLAIR images, the Dice score increased from 

0.509 (obtained by the same model without using transfer learning) to 0.583.  
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Possible future improvements could be the identification of other acquisition modalities useful 

for the segmentation of both brain tumors and stroke lesions, or even the usage of modalities 

with similar characteristics (with comparable intensities for the same regions) for the 

application of the Inter-pathology Learning method. 
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7. Conclusion 

 

The principal objective of this thesis was the identification of alternative ways in which images 

of different acquisition modalities could be fed inside a network, by separating them and 

without fusing at early stages features extracted from images in which stroke lesions or tumoral 

subregions could be highlighted in different or even opposite ways. After the analysis of the 

best performing and most recently released methods for Brain Tumor and Stroke Lesion 

segmentation, nnUNet was selected as baseline architecture, representing the state-of-the-art 

for brain tumor segmentation but also in many other medical images segmentation fields. The 

combination of nnUNet with IVD-Net, a UNet with a number of streams (encoders) equal to 

the number of input modalities, with the introduction of modifications in skip and dense 

connections between paths, lead to the implementation of Dense Multi-path nnUNet. 

Comparing its performances with the original nnUNet using a test set extracted from FeTS 2022 

dataset for brain tumor segmentation, and from ISLES 2022 dataset for ischemic stroke lesion 

segmentation, it was observed an increase of the performances for both tasks. 

Dense Multi-path nnUNet therefore represents a very promising architecture, and possible 

future improvements could be the further reduction of its computational cost, the automatic 

adaptation of the number of streams from the number of input modalities, and the combination 

of the Wassertian Dice loss and BraTS specific settings in the segmentation of brain tumors. 

Moreover, to exploit the knowledge learnt for Brain Tumor Segmentation also for Stroke Lesion 

Segmentation, an Inter-pathology Learning technique was developed between the two tasks, 

taking advantage of the availment of FLAIR images in both fields. This method increased the 

overall segmentation performances compared to the original case, leading to the result that, if 

a model is available and was already trained for brain tumor segmentation, transferring and 

retraining it for stroke lesion segmentation is better than training a model from scratch for this 

task. 
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