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Abstract 

 

 

The present work analyses the microalgae cultivation process  for energy 

production. The aim of this work is to create a dynamic mathematical model that is 

able to describe the operation of two different typologies of cultivation systems 

(open raceway pond and flat panel photobioreactor) through an accurate 

description of the microalgae growth process, together with the use of mass and 

energy balances. Moreover, a parametric analysis is conducted to evaluate the 

importance of some of the factors which influence microalgae growth. 

In the first part of Chapter 2 microalgae metabolism is briefly presented, analyzing 

the growth processes of these microorganisms and their dependence on some 

physical parameters. 

In the second part of Chapter 2, the most important technologies for microalgae 

cultivation are described, making the distinction between systems which allow 

direct mass exchange with the atmosphere and those which do not. Finally, 

harvesting methods are briefly taken into account. 

Chapter 3 contains the description of the mathematical dynamic model for 

microalgae cultivation created with the use of Matlab software. After the 

presentation of system boundaries, geometric hypothesis and the definition of 

input and output of the model, the most important equations of the model are 

described: among them, main effort is spent to include  an accurate modelling of 

the microalgae growth phase, in which the dependence on the most important 

physical parameters has to be as realistic as possible. 

In Chapter 4, the results of the simulations are presented; results of other works 

taken from literature are used to validate the model and to test its reliability, 

observing its behavior also through a parametric analysis. 
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Sommario 

 

 

Il presente lavoro prende in analisi il processo di coltivazione delle microalghe a 

fini energetici. L’obiettivo è la realizzazione di un modello dinamico che sia in 

grado di rappresentare il funzionamento di diverse tipologie di sistemi di 

coltivazione attraverso una descrizione dettagliata  dei meccanismi di crescita 

delle microalghe, insieme con l’impiego di bilanci di massa e di energia. Inoltre, si è 

cercato di osservare attraverso un’analisi parametrica quali siano i fattori più 

importanti che condizionano il funzionamento del processo di coltivazione stesso. 

Nella prima parte del Capitolo 2 viene brevemente presentato il metabolismo delle 

microalghe, ponendo l’accento sui meccanismi di crescita impiegati da questi 

microorganismi e sui fattori fisici che ne condizionano la proliferazione. 

Nella seconda parte del Capitolo 2 si descrivono brevemente le tecnologie per la 

coltivazione delle microalghe, distinguendo tra sistemi aperti all’atmosfera, 

rispetto ai sistemi che invece non permettono lo scambio di massa diretto con 

l’atmosfera. Infine si è accennato anche alle tecnologie per la raccolta delle 

microalghe al termine della fase di coltivazione. 

Nel Capitolo 3 viene descritto il modello dinamico che è stato realizzato attraverso 

l’impiego del software Matlab. A valle di una presentazione dei confini del sistema 

considerato, delle ipotesi sulla geometria e sulla definizione di input e output del 

sistema, sono descritte le equazioni che rientrano nel modello: tra queste, 

particolare attenzione è stata posta alla modellizzazione della crescita delle 

microalghe, cercando di includere in maniera più realistica possibile la dipendenza 

da fattori esterni quali la radiazione solare e la temperatura.  

Infine, nel Capitolo 4 vengono presentati i risultati delle simulazioni compiute 

attraverso il modello realizzato, cercando di valutarne la validità e l’affidabilità 

attraverso il confronto con valori presi da lavori presenti nella letteratura 

specialistica, osservandone il funzionamento anche al variare di diverse grandezze 

di input. 
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Chapter 1 

 

1.Introduction 

 

 

 

 

 

 

In the recent years, as a consequence of climate changes and fossil fuel depletion, 

there is a rising interest of both industrial and academic worlds in renewable 

energy sources for the production of fuels, based on biomass transformation [1]. 

Microalgae represent an interesting alternative to the production of first and 

second generation biofuels ([2], [3]), which are based respectively on traditional 

crops and lignocellulosic biomass, thanks to high photosynthetic yield and a lower 

land competition with food production. In addition, the ability to use CO2 directly 

from industrial emissions as a carbon resource for microalgae growth is a 

promising feature for flue gases mitigation [1]. 

 

Microalgae are single cell organisms which can be found in colonies or individual 

cells. Their most interesting characteristic is their ability of realizing a 

photosynthetic reaction in a single cell. They are extremely resistant and may grow 

in many different environments, from fresh water, to marine and hyper-saline 

water ([4], [5]). 

Studies  on microalgae have been carried out since the 80’s, but in the recent past 

few years, their importance has grown fast: the reason, as it is illustrated by Chisti 

[2], is that microalgae appear to be the only source of biodiesel that has the 

potential to completely displace fossil diesel. Moreover, compared to other biofuels 

sources, such as traditional crops and wood, microalgae have several advantages 

which can legitimize the researches led in these years: they grow extremely fast, 

thus reaching high areal and volumetric productivities, they do not require arable 
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land, they ask for less freshwater than normal crops, being able to use wastewater, 

they can directly capture CO2 released by industries and they overtake the food vs 

fuel debate; their ability of growing in a wide range of conditions, resisting to 

severe conditions of temperature, pH and salinity [6], make them even more 

attractive. 

In 1978 the National Renewable Energy Laboratory of the United States started a 

20-year program (Aquatic Species Program) to develop renewable transportation 

fuels from algae: the researches were focused both on genetic engineering for 

manipulating the metabolism of microalgae and on the engineering of microalgae 

production systems [6]. Many other academic studies have been carried all over 

the world since the 80’s: some works focus their attention on microalgae 

metabolism, genetic engineering and strain selection, to evaluate the potential of 

microalgae ([7], [8]); then, other works analyse the cultivation phase, focusing on a 

single technology such as open systems ([9], [10]), which are still seen as one of 

the most promising technologies for extensive microalgae cultivation, or closed flat 

panels ([11], [12], [13], [14]) and tubular photobioreactors ([15], [16], [17], [18]); 

some recent studies analyse through LCA methodology the microalgae cultivation 

and transformation technologies ([19], [1], [20], [21], [22], [23], [24]). 

 

 

 

1.1 Aims 

 

This work have two main aims meaning to create a mathematical description of a 

realistic cultivation system unit, which can possibly represent an element for an 

extensive microalgae cultivation plant, and to evaluate the impact of the most 

important design and operating parameters which affect microalgae growth. 

The first part of the thesis consists in a brief explanation of microalgae biology and 

metabolism, focusing on photosynthetic process for microalgae growth.  

Since there are lots of technologies available for microalgae cultivation, this work 

present the most interesting and widespread systems, describing their main 

characteristics, virtues and vices. 
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The main core of this work is represented by the dynamic model for microalgae 

cultivation phase, which is described in the central part of the thesis: the two most 

promising technologies for extensive microalgae cultivation have been considered, 

being the open raceway pond configuration and the flat panel photobioreactor. In 

the same chapter, mass and energy balances have been performed. 

The results of the model are presented in the last part of the thesis, together with a 

parametric analysis, consisting in applying a range of variation to a part on the 

input of the model, to analyse the consequent variations of the outputs. 
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Chapter 2 

 

2.Microalgae for energy production 

 

 

 

 

 

A growing interest in renewable sources of energy has affected the whole scientific 

community and the society in the past few decades. The reasons for this attention 

are both economic and environmental: the reduction of fossil fuel reserves and 

difficulties in their extraction, leading to an increase of its costs, energy security, 

climate changes and global warming, caused by greenhouse gases emissions, 

represent some of the fundamental driving forces for researchers and investors to 

focus their attention to the problem of finding a consistent substitute to the fossil 

sources of energy. Many solutions have been proposed and studied during the 

years to increase the percentage of energy coming from sustainable sources, but 

the largest part of them focus on substituting that part of fossil fuels that now is 

used for the production of electric energy.  

 

Biofuels are currently the only relevant alternative to fossil fuel consumption in 

transportation sector and might represent a fundamental support in substitute the 

global energy demand for gaseous, liquid and solid fuels. 

Biofuels can be divided into three main categories, depending on the of the 

biomass transformed into biofuel. The different “generations” of biofuels are more 

or less recent, the development is more or less advanced but production costs are 

still not competitive and for all of them research and development is still needed. 

Biofuels are now obtained mainly from traditional crops, such as sugar cane, 

rapeseed, sunflower, corn. The first generation biofuel, that is already being 

commercialized and used in transportation sector in bled with gasoline and diesel, 
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has many disadvantages from the economic, environmental and ethic points of 

view: the main issues regarding the first generation biofuels are the requirement 

for arable land and the competitiveness with food production meaning that the 

same crop might be used as fuel and as food. Moving from the first to the second 

generation biofuels, the food vs fuel struggle is overtaken. The problem with the 

second generation biofuels is that the biomass sources to produce them are 

difficult to treat from an industrial point of view. Moreover, the requirement for 

arable land is still present. 

Biofuels from microalgae represent the third generation. Microalgae might be 

considered an interesting alternative to traditional crops and lignocellulosic 

biomass for biofuel production, since their cultivation phase has less impact. 

From a practical point of view, they are easy to cultivate, can grow with little or 

even no attention, using water unsuitable for human consumption and easy to 

obtain nutrients. They can grow almost anywhere, requiring sunlight and some 

simple nutrients, although the growth rates can be accelerated by the addition of 

specific nutrients and sufficient aeration [4]. 

Moreover, since microalgae are cultivated in a liquid medium, it is necessary to 

grow them inside a pool or a basin or a closed reactor; these cultivation plants do 

not require arable land and might be built where other traditional crops cannot 

grow. The need to grow microalgae inside water and the ability of microalgae to 

grow in really harsh conditions, gives some more advantages, such as the 

possibility to use wastewater instead of freshwater as a medium for microalgae 

growth obtaining two results, reducing freshwater consumption and cleaning 

wastewater via a biological treatment, which can remove a part of the compounds 

dissolved in water. The liquid medium also gives the possibility to supply the CO2 

needed by microalgae through a bubbling system: the CO2 may come directly from 

the flue gases of an industrial plant, reducing its emissions to the atmosphere.  

Moreover, when the supply of nutrients and CO2 in addition to light is done from a 

purposefully manufactured source, this not only adds to the operating costs but 

also reduces the life cycle environmental benefit of the otherwise promising algal 

system due to energy and raw material consumption and GHG (greenhouse gas) 

emissions in the process of producing these supplies. To circumvent these 
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problems, a popular idea has been growing algae in nutrient-rich wastewater and 

with unwanted CO2 that is present in flue gases generated in combustion 

processes. In this way, the purposefully manufactured supply of nutrients and CO2 

may be completely avoided or reduced to a certain extent [9]. 

Finally, the most important advantage in using microalgae instead of traditional 

crops for biofuel production, is that they have a higher productivity reducing the 

need of land. 

 

As it has been shown in several life-cycle assessments and energy analysis [25], 

fertilizer consumption, harvesting and oil extraction from algae represent a high 

energy debt which might reduce the interest in algal biofuel: according to Molina 

Grima et al. [26] the harvesting cost can represent from 20% to 30% of the 

production cost, and when combined with oil extraction, exceeds 50% [27]. 

For these reasons, it seems to be necessary to investigate the possibility to carry 

other kinds of transformation to obtain bioenergy from microalgae. 

This work takes into account the possibility to convert microalgae directly into 

synthetic natural gas (SNG) via hydrothermal gasification: this technology allows 

to avoid the drying phase, which is extremely expensive for microalgae, and 

transform them keeping a wet state, with less than 15% of solids.  

Hydrothermal gasification of biomass is the thermochemical conversion of 

biomass into gases by processing in a hot, pressurized water environment for a 

sufficient time to break down the solid biopolymeric structure to liquid 

components, which are subsequently gasified [28]. 

 

 

 

2.1 Microalgae metabolism and growth process using 

photosynthesis 

 

Microalgae are microscopic photosynthetic single cells organisms. The most 

important characteristic of microalgae is that they are able to realize a 

photosynthetic process in a single cell: while the mechanism of photosynthesis in 
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microalgae is similar to that of higher plants, they are generally more efficient 

converters of solar energy because of their simple cellular structure. In addition, 

microalgae cells have more efficient access to water, CO2, and other nutrients 

because they grow in aqueous suspension [6]. The growth rates of microorganisms 

can be very high: some algae are able to divide, and thus to double their number, 

once every 3-4 hours, most divide every 1-2 days under favourable conditions. 

Microalgae are extremely resistant organisms, which may be found in harsh 

environments, from freshwater, to marine and hyper-saline water. 

The main classes of molecules which form microalgae cells are described in 

Williams et al., 2010 [5]: 

1. Carbohydrates. They are used by microorganisms with both structural and 

metabolic functions and they serve as starting point for the synthesis of 

other biochemicals. Different classes of algae produce specific types of 

polysaccharides. 

2. Proteins. They also have both structural and metabolic functions. As 

enzymes, they work as prime catalysts for cell metabolism to facilitate 

growth. Moreover, proteins  serve a structural role for example as a scaffold 

for the chlorophyll molecules, where they are assembled in chloroplasts. 

3. Nucleic acids. DNA and RNA provide the basis for algae division and growth. 

4. Lipids. They serve both as energy and structural components (they form cell 

membranes) and are the most important classes of molecules from the 

biofuel production point of view. The simple fatty acid triglycerides are 

important energy reserves. Membrane are mainly constructed with 

phospholipids and glycolipids. Microalgae have the ability of rapid 

adaptation to new environments, thanks to the synthesis ex novo and 

recycling of fatty acids to maintain the membrane characteristics. The fatty 

acids  of algal lipids are mainly unsaturated, especially in the membrane 

where their main function is to maintain membrane fluidity under different 

conditions. The preponderance of the shorter fatty acids has significance for 

their potential as diesel fuels. 

In a context of nutrient limitation, microalgae adapt to this condition increasing 

the lipid content; as the lipid content increases, the percentage of the sum of the 
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other components must go down. The reduction of the protein content is critical 

for the cell, for two different reasons. First these molecules set the level of the cell’s 

metabolism and, with the nucleic acids, determine the growth rate potential. 

Second,  from an economic point of view proteins are valuable bulk components of 

the cell, generating valuable by-products [5]. As a consequence to the reduction of 

protein content in the cells, the growth rate decreases, causing a significant inverse 

relationship between growth rate and lipid content. It has been known that the cell 

lipid content increases during nutrient limitation. As nutrient limitation also 

affects growth rate, this provides an explanation for the apparent inverse 

relationship between growth rate and lipid content. It is possible to conclude that 

when the nitrogen ran out, the organisms were forced to terminate the production 

of nitrogen containing material (proteins and nucleic acids) but continued to 

synthesise lipid and carbohydrates[5]. 

After this brief description of microalgae as organisms, this work focuses on the 

photosynthetic process. 

 

 

 

2.2 Description of the photosynthetic process 

 

2.2.1 Photosynthesis 

The uniqueness that separates the microalgae from other microorganisms and 

from terrestrial plants is due to the presence of chlorophyll inside each cell and the 

ability of having the photosynthetic process in a single microalgal cell [29]. 

Photosynthesis is a multistep process which allows terrestrial plants and algae to 

fix CO2 into sugar, using water and light as energy and electron source. 

It can be represented by an overall reaction: 

 

                (    )     

 

This expression is a simplified representation of a complex mechanism of reactions 

which can be divided into two groups: 
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i. Light reactions: these are extremely fast (milliseconds) 

photochemical and redox reactions, which may occur only with light 

support; 

ii. Dark reactions: they are a sequence of enzymatic reactions, which 

may occur both in the light and in the dark: the time required by these light-

independent reactions is longer, from seconds to hours. 

If the energy levels of the input, which is mainly solar radiation, and of the output 

(chemical molecules) are taken into account, the global photosynthetic process has 

a low efficiency. The difference in the duration of light and dark reactions is a first 

reason of inefficiencies [5]. 

To evaluate the light availability for the photosynthetic process, starting from the 

incoming radiation on the Earth, there is a series of losses and mechanisms which 

have to be taken into account and analysed: 

1. First of all, the spectrum of light arriving at the surface of the planet has 

been attenuated by 30% by the gases in the atmosphere and losses, due to 

light scattering and absorption by clouds. 

2. Moreover, the primary pigment involved in photosynthesis in chlorophyll; it 

has strong absorption bands in the regions 400 – 450 and 600 – 700 nm. 

This delimits the useful range of incoming radiation to 400 – 700 nm, the so 

called photosynthetically active radiation (PAR). PAR amounts to 45 – 50 % 

of the total incoming radiation: if the clear sky radiation is considered, then 

45 % of the total incoming radiation would be an appropriate value to 

adopt [5]. Because of its low absorption in the range 450 – 600 nm, 

chlorophyll itself only is able to capture some 30 – 40 % of PAR. Plants have 

overcome this by including pigments that fill in much of the chlorophyll 

window of the spectrum, increasing the portion of the spectrum that can be 

used for photosynthesis. Microalgae use the same strategy to compensate 

chlorophyll absorption limits and are able to change the quantities of these 

accessory pigments to optimize light capture; the adaptation process is 

slow compared with the time scale of the photochemical reactions. Anyway, 

the quantum efficiency may be considered more or less constant 

throughout the PAR spectrum. 
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3. The photosynthetically active parts of the chlorophyll spectrum lie at 680 

and 700 nm. This means that when chlorophyll reaches higher excited 

states due to interaction with higher energetic photons, it very rapidly 

relaxes: photochemistry is driven in the photosynthetic reaction centre 

with the energy of a red photon, regardless of the wavelength that was 

originally absorbed. Consequently, photosynthesis is unable to store the 

additional energy of the blue photons[30]. The energy of the photons, 

captured at shorter wavelength , can be transferred to the 680 – 700 nm 

region very efficiently on a quantum basis, causing only a few losses in this 

transfer from high-energy region to lower energy.  

The products of the light-dependent reactions, which are the first set of reactions 

of the photosynthetic process, is energy in the form of ATP (adenosine 

triphosphate, the biological energy currency) and “reducing power” which is used 

in the successive phase of carbon assimilation. 

The products of light-dependent reaction are used in the enzymatic light-

independent part of photosynthesis to enable the incorporation of CO2 into 

organic material: finally, the first stable products of the photosynthetic reaction 

are obtained, which are 3-carbon organic acids, the compounds from which all the 

major biochemicals (fats, fatty acids, proteins, sugars,…) are eventually formed. 

Before the calculation of the maximum photosynthetic efficiency, it is necessary to 

introduce an alternative metabolic process used by microalgae and plants. 

 

2.2.2 Respiration  

Microalgae have a supplementary energy generating process, which occurs during 

the day, consuming chemical energy, and during night, consuming organic material 

[31]. It is fundamental for plants and microalgae to have an alternative to 

photosynthesis for creating metabolic energy; the two main reasons for plants are: 

- The need to sustain their metabolism over periods of darkness, so plants 

need some energy generating  process independent from light: dark 

respiration. 

- The mismatch of time scales between the light dependent and independent 

reactions in photosynthesis, which may give rises to “traffic jams” into the 
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reaction locations in the cells, when the former reaction gets ahead of the 

latter. 

However, the use of this alternative light-independent energy generating process 

causes wastage of the energy captured from the photons. This is the major 

limitation to achieve the maximum photosynthetic efficiency in other than ideal 

laboratory situations[5]. 

During the night, respiration represent a basic maintenance energy. During the 

day, respiration occurs not only to operate a decongestion process and solve the 

mismatch between light dependent and independent reactions, as explained above,  

but also to repair or replace the components of the light gathering system which 

suffer photo-damage. 

 

2.2.3 Maximum photosynthetic efficiency 

When the photosynthetic mechanisms and the losses described in the previous 

section are taken into account, it is possible to evaluate the efficiency of the global 

photosynthetic process under natural conditions. 

If the incoming radiation is considered as the total energy which may be exploited, 

it is necessary to consider that only PAR radiation might be used by microalgae: 

this is 45% of the global incoming radiation, while the remaining 55% cannot be 

exploited. As it has been previously explained, chlorophyll transfers all the energy 

captured at different wavelength to the lower frequencies of the longer wavelength 

photons causing an energy loss equal to 20% and thus reducing the photosynthetic 

efficiency to 36%. The light-dependent and independent reactions may use 8 to 10 

mole of photons to generate 1 mole of organic carbon with the elemental 

composition of CH2O: their overall efficiency is 34%, with the major part of the 

losses occurring during the light dependent reactions; this leads the overall 

efficiency to 12%. 

At this point, there are three further forms of loss which must be taken into 

account: first of all, there are losses associated to the metabolic conversion of CH2O 

to proteins, lipids and carbohydrates; then it is necessary to consider concurrent 

respiration and photon wastage, which cause losses equal to 20%, reducing the 

overall efficiency of photosynthesis to approximately 10%. 
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As it is explained in Williams et al. [5], the overall photosynthetic efficiency for 

higher plants lies around 4.6 to 6%, the difference being due to greater respiration 

losses in higher plants. 

The higher photosynthetic efficiency may be considered one of the advantages of 

using microalgae for biofuels production instead of other biomass sources. 

 

 

 

2.3 Parameters which influence microalgae growth 

 

There is a wide range of parameters which influence microalgae metabolism and 

the overall photosynthetic process; the most important of these parameters should 

be taken into account when modelling the microalgae cultivation phase. 

 

2.3.1 Light 

Light is the most important factor influencing microalgae growth. Each microalgae 

species require an optimal amount of light intensity for the photosynthetic 

process, which is called saturation light intensity. 

Saturation light intensity roughly varies from 30 to 45 W/m2 (140-210 μE m-2 s-1) 

with a good estimation [29]. For example, according to Hanagata et al. [32] 

saturation light intensity of Chlorella sp. and Scendesmus sp. is around 200 μE m-2 s-

1. 

Light may be supplied from natural sources (sunlight) or from artificial lighting 

systems, such as fluorescent lamps and optical fibre systems. Laboratory scale 

experiments often employ artificial light to obtain a constant production 

throughout day and night and to evaluate the influence of other parameters on 

microalgae growth, excluding the dependence from variable light intensity ([33], 

[34]): if this technique was applied to large scale mass algae cultivations, it would 

represent  an excessive energy and economic demand. Moreover, the electricity 

supply for artificial lighting is often derived from fossil fuels thus negating the 

primary aim of developing a price-competitive fuel and increasing the system 

carbon footprint [3]. For these reasons, for outdoor algae production systems, 
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natural sunlight is used; the availability of sunlight is submitted to diurnal cycle 

and seasonal variations [3]: thus, light is a limiting factor to microalgae growth. 

Natural light may influence microalgae growth in different ways, depending on its 

intensity: below the optimum light intensity, the growing phase would be in light 

shortage and light becomes the limiting factor for the microalgal productivity; in 

this case, the rate of photosynthesis is usually proportional to light intensity 

because photosynthesis is limited by the rate of capture of photons. 

When light intensity is above the optimal value, microalgae become light-

saturated: their photosynthetic rate is limited by the enzymatic light-independent 

reactions, which are slower than the light-dependent reactions. Under this 

condition, the rate of photosynthesis is usually maximal and independent from 

light intensity [31]. 

If light intensity increases beyond an inhibitory threshold, the rate of 

photosynthesis starts to decrease with light intensity, due to the deactivation of 

key proteins in the photosynthetic unit [35]: in case of photo-inhibition the 

reduction of the efficiency in capturing photons is a consequence to damage of 

repair mechanism of photosystem, leading to inactivation of other systems 

including the oxygen evolving systems and electron carriers [29]. 

If the high irradiances are sustained for an hour or so, then the algae will adapt to 

them, by either increasing their enzymatic capacity but more commonly by 

reducing the capturing efficiency of photons, through the reduction of the size of 

the light-collecting antenna [5]: this phenomenon is called light-acclimation. Thus, 

the algae can exist as two physiological types: low light adapted (high chlorophyll 

content) and high light adapted (low chlorophyll content); the low light adapted 

form is the default state.  

When light is above the optimal value, the energy from the excess captured 

photons has to be disposed of in some manner, either by fluorescence or by one of 

the respiratory decongesting mechanisms explained in the previous sections. It is 

in the context of this effect that the time scale mismatch of the photochemical and 

enzymatic parts of photosynthesis becomes significant [5]. 

To avoid photo-inhibition, a good mixing inside the reactor is needed, as it would 

help the microalgae to change from a position in which they are affected by direct 
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irradiation, to other positions in the reactor, where light is attenuated by the water 

and the culture. A good mixing inside the reactor may also facilitate the flashing 

light effect: it has been suggested that when the frequency of the light/dark cycle 

increases to higher than 1 Hz, the photosynthetic efficiency of microalgae is 

improved [36]. The dark period between the flashes allows the slower enzymatic  

reactions to catch up with the extremely fast photochemical reactions. The 

optimum dark period is temperature dependent but generally it falls in the region 

of 50 ms[5].  Williams et al. [5] show that, to have a significant effect, the dark 

period needs to be 10 times greater than the light. The gains in efficiency are lost at 

flash periods shorter than 10 ms. 

 

As it has been previously said, saturation light intensity assumes for most of the 

microalgae species a low value which can be easy reached and overtaken by direct 

sun light, causing photo-inhibition during summertime in certain locations. Since 

attenuation of light intensity depends on reactor geometry and microalgae culture 

density, reactor are design to solve this potential problem [37]. Fernandes et al. 

[38] studied the effect of circular and plan geometry in light penetration. For 

similar microalgae cell concentrations, circular geometry allows a better light 

penetration,  than the plain geometry allowing a higher volume fraction of the 

reactor to receive sufficient amount of light however, plan geometry helps in 

uniform distribution of light [38]. Most of the geometries developed by different 

companies and academic laboratories aim to obtain a reduction and distribution of 

direct light in the whole culture, avoiding direct light peaks which can damage the 

microalgae and reduce the productivity of the cultivation plant. 

Light utilization efficiency (ES) and overall photosynthetic efficiency are greatly 

dependent on the ratio of incidence light intensity (I0) and saturation light 

intensity (Is). Mathematically it can be described by: 

 

   
  
  

(  
  
  

  ) 

Eq. 1 
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For better utilization of light, photobioreactor should be designed in such a way to 

minimize (I0/Is) which can be done by either decreasing I0 or increasing Is. 

Therefore selection of algal species having high Is is advisable. 

 

2.3.2 Temperature 

Temperature is the second most important factor affecting microalgae growth 

after irradiation and may limit the latitudinal extent to which the outdoor 

microalgae cultivation systems could be successfully used [5]. Many microalgae 

can easily tolerate temperatures up to 15 °C lower than their optimal, but 

exceeding the optimum temperature by only 2–4 °C may result in the total culture 

loss [4]: the exact value depends on microalgae species, but lethal temperature is 

usually between 30 °C and 40 °C. 

The intolerance of microalgae to high temperatures is a great limitation for some 

typologies of reactor geometry: if there is the possibility of reaching the lethal 

temperature for the microalgae species cultivated, the reactor must be equipped 

with a system to remove part of the heat, maintaining the temperature of the 

medium under control. 

Some different technologies have been proposed in literature to equip the 

cultivation systems with a temperature control technology: the most diffuse 

system is to spray a certain amount of water over the surface of the reactor, 

removing heat through water evaporation. Another solution recently presented 

uses a heat exchanger inside the flat panel reactor ([39], [13]) or a basin in which 

the closed reactor is submerged.([37], [40]). 

The temperature problem typically affects closed photobioreactors, while the open 

systems do not require a temperature control technology, since open ponds are 

effectively cooled by evaporation, limiting the upper temperature to about 40°C 

[41]; on the other hand, water losses through evaporation must be taken into 

account and may represent a relevant quantity of additional water that must be 

supplied to the cultivation plant. 

Low temperatures do not kill microalgae but may reduce their productivity: for 

this reason, microalgae cultivation systems cannot be built in cold weathers, unless 

the cultivation plant is stopped during winters. 
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2.3.3 Proper mixing 

At high algae concentrations, almost all the available light is absorbed only by a 

thin top layer of cells [42], causing photo-inhibition in the top layer and a state of 

light shortage in the rest of the reactor: this may be avoided by proper mixing. 

Mixing must be sufficient enough to keep the algae cells in suspension and to 

provide uniform exposure of light to all the cells. Moreover, proper mixing 

contributes to uniform the distribution of nutrients inside the medium. If there is a 

good mixing inside the reactor, it may take advantage of flashing light effect. This 

effect increases the productivity in photo bioreactors up to 40 %, in the case of 

tubular geometry.  

On the other hand, high liquid velocities and degrees of turbulence (due to 

mechanical mixing or air bubbles mixing) can damage microalgae due to shear 

stress [4]. 

 

2.3.4 pH 

pH inside the culture is strictly related to dissolved CO2 and alkalinity: as it is 

explained by Sills [43], when two of these parameters are known, the third may be 

easily evaluated. This means that pH variations may lead to variations in the 

quantity of dissolved CO2, which should always remain at good levels, since 

dissolved CO2 is consumed by microalgae during the photosynthetic process. 

Microalgae have a certain pH range which allows their growth: above and below 

this interval, the growth is reduced or even ceased. 

The pH and carbon availability are controlled simultaneously by injecting CO2. 

Injected CO2 is transferred to the culture as a function of mass transfer capacity 

into the reactor, then this variables also influencing the control strategy to be used 

and results obtained. The pH regulation in microalgae cultures is usually 

performed by classical on–off switching controllers, mainly because of the control 

scheme simplicity [44]. 

If the CO2 bubbled in the microalgae cultivation reactor is coming from flue gases, 

the pH of the culture medium can be influenced by dissolved CO2 and SOx. With 

elevated CO2 concentrations, pH drops down to 5, and with higher SOx 
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concentrations even down to 2.6 have been reported [45][46]. Whereas the pH 

change due to the CO2 had just minor influence on the algae growth, the strong pH 

change caused by SOx inhibited all growth [29]. 

 

2.3.5 CO2 

CO2 is one of the reactants and also one of the limiting factors in the 

photosynthesis of microalgae and plants. The photosynthesis of microalgae 

requires a certain CO2 concentration, and the maximum photosynthetic efficiency 

is often achieved with CO2 concentrations from 1% to 5% (by volume) [36]. 

Microalgae can fix CO2 from three different sources which are CO2 from the 

atmosphere, CO2 in discharged gases from heavy industry, and CO2 from soluble 

carbonates. Under natural growth conditions, microalgae assimilate CO2 from the 

air (contains 360 ppmv CO2). Most microalgae can tolerate and utilize 

substantially higher levels of CO2, typically up to 150000 ppmv [3]. 

In aqueous environment dissolved CO2 always exists in equilibrium with H2CO3, 

HCO3-, and CO32- which concentration depend on pH and temperature. Microalgae 

cell preferentially uptake HCO3- over CO2 despite of the fact the former is a poor 

source of carbon than the latter [29]. 

 

2.3.6 Nutrients 

The major nutrients are carbon, oxygen, hydrogen, nitrogen, phosphorus, and 

potassium. The first three are obtained from water and air and the latter three 

have to be absorbed from the culture medium. During cultivation, N and P become 

limiting. They both play a role in controlling the growth ratio and lipid production 

of microalgae. Therefore, the ratio of N and P is often used as an important 

indicator, with too high a value meaning P restriction and too low a value showing 

that the supply of N is falling short. Nitrogen is one of the essential elements for the 

growth, development, reproduction, and other physiological activities of 

microalgae. The nitrogen source and concentration also affect the accumulation of 

lipid in microalgae. Usually, ammonium salts, nitrates, urea, etc. are used as 

nitrogen sources, but their absorption rates and utilization are different. 

Experiments showed the absorption and utilization of nitrogen have the following 
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order: ammonia → urea →  nitrate → nitrite. This is because ammonia is directly 

used to synthesize amino acid while the other nitrogen sources have to be 

converted to ammonia to synthesize amino acid [36]. 

Phosphorus is of lesser importance and is required in very small amounts during 

algal growth cycle, but must be supplied in excess of basic requirement because 

phosphates ions bond with metals ions, therefore, not all the added P is 

bioavailable [3].  

Nitrogen shortage may increase lipid concentration but it reduces biomass 

productivity. 

 

2.3.7 Oxygen 

Oxygen is by-product of photosynthesis and it has been long known that high 

concentrations of oxygen inhibit photosynthesis [5]. In the case of closed photo 

bioreactors, oxygen might accumulate at a rate of about 4 mol m-3 h-1, thus 

reaching inhibitory concentrations in 20 – 30 minutes. Bioreactor systems use 

airlift pumps to circulate the water, which should strip off the accumulated oxygen.  

However these rapid rates of oxygen production imposes constraints on the 

maximum length of tubular photo bioreactors and on the minimum flow rates 

within the reactor.  

 

 

 

2.4 Cultivation techniques 

 

The growth characteristics and composition of microalgae are known to 

significantly depend on the cultivation conditions. There are mainly four types of 

microalgal cultivation techniques that are available; of these, the most dominant 

method commonly used for microalgal cultivation is phototrophic cultivation [47]. 

- Phototrophic cultivation. Phototrophic cultivation occurs when the 

microalgae use light, such as sunlight, as the energy source, and inorganic 

carbon (carbon dioxide) as the carbon source to form chemical energy 
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through photosynthesis. This is the most commonly used cultivation 

condition for microalgae growth. 

Under phototrophic cultivation, microalgae composition is extremely 

variable, depending on the type of microalgae species. Normally a nitrogen-

limiting or nutrient limiting condition is used to increase the lipid content in 

microalgae [4]. On the other side, growing microalgae in an environment 

with nutrient shortage reduces the biomass productivity, as it has been 

previously explained: thus, achieving higher lipid content is usually at the 

expense of lower biomass productivity. The major advantage of using 

autotrophic cultivation to produce microalgal oil is the consumption of CO2 

as carbon source for the cell growth and oil production. However, when 

CO2 is the only carbon source, the microalgae cultivation site should be 

close to factories or power plants which can supply a large quantity of CO2 

for microalgal growth. Compared to other types of cultivation, the 

contamination problem is less severe when using autotrophic growth. 

Therefore, outdoor scale-up microalgae cultivation systems (such as open 

ponds and raceway ponds) are usually operated under phototrophic 

cultivation conditions. [48] 

- Heterotrophic cultivation. Some microalgae species can not only grow under 

phototrophic conditions, but also use organic carbon under dark conditions, 

just like bacteria. The situation when microalgae use organic carbon as both 

the energy and carbon source is called heterotrophic cultivation. This type 

of cultivation could avoid the problems associated with limited light that 

hinder high cell density in large scale photobioreactors during phototrophic 

cultivation. 

Using heterotrophic growth gives much higher lipid productivity, as the 

highest lipid productivity from heterotrophic cultivation is nearly 20 times 

higher than that obtained under phototrophic cultivation. However, the 

sugar-based heterotrophic system frequently suffers from problems with 

contamination. 

- Mixotrophic cultivation. Mixotrophic cultivation is when microalgae 

undergo photosynthesis and use both organic compounds and inorganic 
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carbon (CO2) as a carbon source for growth. This means that the microalgae 

are able to live under either phototrophic or heterotrophic conditions, or 

both. Microalgae assimilate organic compounds and CO2 as a carbon source, 

and the CO2 released by microalgae via respiration will be trapped and 

reused under phototrophic cultivation. Compared with phototrophic and 

heterotrophic cultivation, mixotrophic cultivation is rarely used in 

microalgal oil production. 

- Photoheterotrophic cultivation. Photoheterotrophic cultivation is when the 

microalgae require light when using organic compounds as the carbon 

source. The main difference between mixotrophic and photoheterotrophic 

cultivation is that the latter requires light as the energy source, while 

mixotrophic cultivation can use organic compounds to serve this purpose. 

Hence, photoheterotrophic cultivation needs both sugars and light at the 

same time. Although the production of some light-regulated useful 

metabolites can be enhanced by using photoheterotrophic cultivation, using 

this approach to produce biodiesel is very rare, as is the case with 

mixotrophic cultivation. 

The cultivation phase can be operated with various strategies: batch mode, 

continuous mode and repeated batch mode. 

In case of batch cultivation strategy, the mass cultivation system is often placed 

next to a photobioreactor system, which works as an inoculum, to start the new  

production phase. Industrial scale batch cultivation of photosynthetic 

microorganisms is generally unviable because of the time and the expense 

involved in loading, discharging and cleaning the reactor [49]. The most used 

strategy in pilot plant scale reactors is the repeated batch mode: in this case, the 

mass production system does not need a bioreactor as inoculum and it contains 

itself the biomass that is necessary to start again with the growth phase. The 

repeated batch cultivation is an alternative form of operation for microalgae 

production. In repeated batch cultivation the reactor is initially filled with the 

cultivation medium and incubated under ideal conditions. After a certain period a 

specific cultivation volume is removed and replaced with an equal amount of fresh 

medium [49]. Consequently a part of cultivation medium is kept into the reactor as 
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starting inoculum. Repeated batch cultivation presents several operational 

advantages, the most important of which are the maintenance of a constant 

inoculum and high growth rates. If continuous cultivation mode is applied, the 

cultivation system is fed continuously with water, nutrients and CO2, while the 

same amount of water and microalgae is removed from the reactor. Continuous 

photobioreactors provide a high degree of control, growth rates can be regulated 

and maintained for extended time periods and biomass concentration can be 

controlled by varying  the dilution rate. With continuous cultivation mode, it may 

result difficult to control the parameters which are not directly related to the 

microalgae growth: for this reason, the continuous process  often requires feed-

batch culturing, and a continuous nutrient supply, making this operating technique 

similar to the repeated batch cultivation. 

 

 

 

2.5 Cultivation technologies 
 

Microalgae cultivation can be artificially grown in open-culture systems such as 

lakes or ponds and in highly controlled closed-culture systems called 

photobioreactors (PBRs), where nutrients and CO2 are supplied to the culture 

together with light, to enable the photosynthetic process.  A bioreactor is defined 

as a system in which a biological conversion is achieved. Thus, a photo-bioreactor 

is a reactor in which phototrophs (microbial, algal or plant cells) are grown or used 

to carry out a photo-biological reaction [4]. 

The open systems generally need lower investment and maintenance costs, they 

are more durable, but they are not able to reach high values of productivity. 

Nevertheless, as said by Yang [9], these systems are still considered preferable for 

extensive mass algae cultivation for biofuel production. Closed systems require 

high capital costs, since the technology is more sophisticated, and have high 

operating costs; in recent years, they  are getting more importance, since they can 

reach high productivity and generate more valuable by-products. 
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Apart from these two categories recent studies are developing new cultivation 

technologies and new reactor geometries, which are trying to combine high 

productivity and low auxiliary energy demand with low cost criteria for large-scale 

applications. Both the academic world and market companies are carrying 

research projects to reach these objectives: some of the most interesting designs 

are described in Morweiser at al. [40].  

 

2.5.1 Open Reactors 

The technology of open system groups together some different designs which have 

been all studied through the years. 

The simplest design for an open reactor cultivation system is the unmixed tank 

filled with water and nutrients, in which no mixing is applied. Unmixed open ponds 

are generally used for the mass culture of Dunaliella salina, have low productivities 

(less than 1 gm−2 d−1) and are comparatively unsuitable for the culture of most 

algal species [42]. 

A second typology of open pond cultivation systems is called thin layer reactor. 

This type of open pond is a modification of open raceway ponds in which the 

culture flows through a tilted surface by using a pump [50] from a tank. The slope 

of the surface range between 1 and 3 % and the depth of the culture is less than 2 

cm. On these conditions, the surface-to-volume ratio is high and the energy 

demand can be reduced to 100 W m-3: in this reactor, power is only required for 

elevating the culture from the tank to the upper part of the tilted surface and there 

is not any moving mechanical part helping the flow of the culture on the tilted 

surface. The CO2 is supplied inside the tank to reduce CO2 losses to the 

atmosphere.  The major advantage of this reactor, apart from its low power 

consumption, is the high light availability at which the cells are exposed, thus 

biomass concentration can reach up to 30 g l-1 being reported by Doucha et al.[51]. 

The idea of this reactor is opposite to the concept of “diluting light” to maximize 

the photosynthetic efficiency, demonstrating that different approaches still remain 

valid to improve the performance of microalgae cultures [44]. 
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Raceway ponds are the most commonly used artificial systems for microalgae 

cultivation. They are generally cheaper to build and easier to operate than closed 

photobioreactors. 

 

Figure 1: Basic design of an open raceway pond cultivation system [6] 

 

The typical geometry of the raceway pond is a closed oval-shaped channel: they 

might be excavated (and so the walls and the bottom would be covered with 

impermeable materials [42]) or built in plastic material or concrete; the depth is 

generally between 0.2 and 0.5 m (being 0.3 m the most used value [2]). Circulation 

around the oval ring and mixing are required to stabilize algae growth and 

productivity and are guaranteed with the use of a mechanical rotating organ, 

usually a paddlewheel [3]: in a continuous production cycle, algae broth and 

nutrients are introduced in the front of the paddlewheel and circulated through the 

loop to the harvest extraction point, behind the paddlewheel. The paddlewheel is 

in continuous operation to prevent sedimentation, giving the water a speed 

between 0.15 and 0.25 cm/s, also during the night, when CO2 and nutrients are not 

supplied to the culture, which is not growing due to lack of irradiation for the 

photosynthetic process. If the microalgae CO2 requirement is satisfied only from 

the interaction between the water and the atmosphere, in certain operating 

conditions and  for certain concentrations, CO2 may become a growth limiting 

factor: for this reason, open pond are often equipped with submerged aerators to 

enhance CO2 absorption. 

The direct contact between the atmosphere and the medium in which the 

microalgae grow defines many of the characteristics of the open pond, since it 
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gives the possibility to have mass and energy exchanges between the cultivation 

system and the environment. 

The mass exchange through the free surface involves that the water of the open 

pond is subjected to contamination and pollution. The possibility of contamination 

is often cited as a serious limitation of open systems: to avoid contamination, 

usually the algae species which are cultured in these systems grow in selective 

environments, under extreme and very harsh conditions: for example, as it is 

exposed in Bahadan et al. [52], some possible species are Spirulina, which requires 

high alkalinity, Dunaliella salina, which requires high salinity and Chlorella, which 

asks for high nutrients concentration. Another strategy that is often used to avoid 

contamination is to search for the best microalgae indigenous species: if this 

strategy is adopted, there is not any introduction of new species in the 

environment and the contamination has less chances to occur. 

One of the problem related to the free interface between the water of the open 

pond and the atmosphere is that the pond use carbon dioxide much less efficiently 

than closed bioreactors [2]. About one third of the CO2 that is injected in the pond 

through bubbling columns is lost in the atmosphere and could not be captured by 

the microalgae for the photosynthesis reactions. On the other hand, the possibility 

to directly release the O2 produced through the photosynthetic mechanism to the 

atmosphere, solves the problem of oxygen inhibition that sometimes can occur in 

closed systems, in which the concentration of O2 can rise up to extremely high 

values. For this reason, the closed PBR always have a system to extract the O2 from 

the water and from the reactor. 

Moreover, the  presence of the free interface between atmosphere and the pond 

makes impossible to have any sort of artificial temperature control of the pond: 

any possible way to obtain it would be too energy and economically expensive. 

This means that the temperature of the water in the pond will vary with the 

atmospheric temperature, with daily and seasonal fluctuations: the mass of water 

which forms the pons has its thermal inertia and so the thermal fluctuations will be 

reduced and shifted in time. 

Water evaporation through the free interface between the culture medium and the 

atmosphere is a loss which must be taken into account when analysing water 
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requirement of the cultivation technology, since for some locations might be a 

rather huge quantity. Evaporation losses can be seen as a  natural cooling system, 

keeping a sort of control over the temperature in the pond. 

 

2.5.2 Closed Reactors 

Open cultivation technologies have several problems and limitations including low 

volumetric productivity, contamination, evaporation, limited species sustainability 

and the need for large land area [42]. Closed photobioreactors are designed to 

overcome the limitations of open systems. They have higher efficiency and biomass 

productivity, shorter harvesting times, high surface-to-volume ratios, reduced 

contamination risks, and can be used to cultivate greater range of algal species 

than open systems [52]. Unfortunately, closed systems are also more expensive to 

construct (need for transparent materials such as Plexiglas, glass, PVC, etc.) and 

difficult to operate and scale up [53]. 

The most important closed systems for microalgae production are flat panel 

reactors and tubular reactors. These systems do not suffer of many of the 

disadvantages to which open ponds are subjected, but have higher investment and 

operational costs which still make open pond technology more attractive for 

microalgae mass cultivation for an industrial scale production. The closed photo 

bioreactors do not have any risk regarding pollution and contamination, that 

means it is possible to successfully cultivate a single species of algae for a long 

period: for these reason, at present time, closed PBRs are mainly used to grow 

algae species which have  high value products that are used in chemical industry, 

pharmaceutical and cosmetic industry. 

The most important problem which affects closed systems is related with oxygen 

concentration: if the O2 concentration in the medium is too high, it can cause 

growth inhibition; this problem does not exist in case of open systems, since the 

oxygen produced through the photosynthetic process can be easily released to the 

atmosphere. For closed PBRs, it is necessary to think of a system for oxygen 

removal: usually this is done through aeration/bubbling systems which generate 

turbulence inside the reactor and strips the oxygen from the water taking it away 
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with the bubbles. This same method is used to inject CO2 in the medium and to 

generate mixing in the culture. 

Tubular photobioreactors consist of a solar collector made of straight transparent 

plastic or glass tubes through which the culture flows, recirculated by aeration or 

mechanical pumps. The culture is passed through a bubble column or tank where 

air is supplied to avoid damaging dissolved oxygen levels. In this bubble column, 

air is supplied enriched with CO2, needed for the photosynthetic reactions [44]. 

The solar collector tubes are generally 0.1 m or less in diameter: the diameter is 

limited because light does not penetrate very deeply in the dense culture broth; 

high densities are necessary for ensuring a high biomass productivity of the 

photobioreactor [2]. The solar collector is always oriented to maximize sunlight 

capture: the solar tubes are generally placed parallel to each other, and flat above 

the ground. 

 

 

Figure 2: Basic design of a horizontal tubular photobioreactor [3] 

 

Horizontal, parallel strait tubes are sometimes arranged like a fence, in attempts to 

increase the number of tubes that can be accommodated  in a given area [2].  

Tubular photobioreactors, as previously said, are affected by the problem of 

oxygen accumulation; moreover along the length of the tubes, there could be lack 

of CO2, fundamental component for photosynthesis reactions, and consequent pH 

changes [3]. To avoid these problems, tubular photobioreactors have design 
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limitations on the length of the tubes: therefore, they cannot be scaled up 

indefinitely. 

Another major limitation for this kind of reactors is the energy requirement for 

bubbling, which is around 2000 W m-3: this value should be compared with around 

50 W m-3 as energy requirement for bubbling for flat panel reactors ([54], 

[13],[24]); the high energy consumption is necessary to reach turbulent velocities 

in the culture which permits to have sufficient short light/dark cycles.  

Flat-plate photobioreactors are suitable for mass cultures of algae due to low 

accumulation of dissolved oxygen and high photosynthetic efficiency achieved [3]. 

The flat panel reactor is basically a flat, transparent vessel, generally made of glass 

or Plexiglas or plastic or other transparent material, in which mixing is carried out 

directly in the reactor with air bubbling: the air is introduced via a perforated tube 

at the bottom of the reactor . Flat panel PBRs are never thicker than 5 – 6 cm since 

the light entering the panel would not penetrate more in the culture. Height and 

width can be varied to some extent, but in practice only panels with both a height 

and width of <1 m have been studied  [55]. The normal aeration level for flat panel 

photobioreactors is 1 liter of air per liter reactor volume per minute [22]. 

To reach a higher photosynthetic efficiency, the flat panel reactors are positioned 

vertically, closely spaced, to obtain a large specific surface and self-shading of the 

panels. 

Due to the high photosynthetic efficiency and low accumulation of dissolved 

oxygen, flat plate reactors are more suitable for large scale culture than tubular 

reactors [47]. 
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Figure 3: Basic design of a vertical flat panel photobioreactor [24] 

 

Airlift photobioreactors are vessels with two interconnecting zones. One of the 

tubes is called riser, where gas mixture is bubbled, whereas the other region is 

called downcomer which does not receive the gas. Generally they exist in two 

forms: internal loop and external loop airlift photobioreactors. In the internal loop 

reactor, regions are separated either by a draft tube or a split-cylinder. In the 

external loop, riser and downcomer are separated physically by two different 

tubes. Mixing is done by bubbling the gas through a bubbler in the riser tube 

without any physical agitation. Riser is similar to bubble column where bubbled 

gas moves upward randomly and haphazardly. This decreases the density of the 

riser making the liquid to move upward. This upward movement is assisted by the 

gas hold up of riser. Airlift reactor has characteristics advantage of creating 

circular mixing pattern where liquid culture passes continuously through dark  

and light phase giving flashing light effect to algal cells [54]. 

Bubble column reactors are cylindrical vessel with height greater than twice the 

diameter. They have the advantage of low capital cost, high surface area-to-volume 

ratio, lack of moving parts, satisfactory heat and mass transfer, efficient release of 

O2 and residual gas mixture. Mixing and CO2 mass transfer is done through 

bubbling the gas mixture from a sparger. In scale-up, perforated plates are used in 

tall bubble column to break up and redistribute. Light is natural and so provided 
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externally. Photosynthetic efficiency greatly depends on light and dark cycles: 

since the liquid circulates regularly from central dark zone to external illuminated 

zone at higher gas flow rate, efficiency is related to gas flow rate. At gas flow rate 

less than 0.01 m s-1 circulation flow pattern does not exist because of the absence 

of a good mixing. The photosynthetic efficiency can be increased significantly by 

increasing the gas flow rate to 0.05 m s-1 or more, leading to shorter light and dark 

cycles [29]. 

 

 

 

2.6 Harvesting technologies 

 

Algal harvesting phase from the cultivation system is expensive and may contribute up to 

20 – 30 % of the total biomass production cost ([4], [3]): the main reason for this high cost 

is the fact that microalgae are extremely diluted during the cultivation phase, especially if 

open pond technologies are considered; in open raceway ponds, the concentration of algae 

usually does not go over 0.5 kg m-3. For this reason, it is necessary to harvest and remove 

large quantities of water and process large algal biomass volumes.  

A suitable harvesting method may involve one or more steps and be achieved in 

several physical, chemical or biological ways, in order to reach the desired algal 

concentration before processing: the selection of harvesting technique is 

dependent on the properties of microalgae, such as density, size, the value of the 

desired products [3]. 

Microalgae harvesting can generally be divided into a two-step process, including: 

1. Bulk harvesting. The purpose of this phase is to separate the microalgae from the 

bulk suspension. The total solid matter can reach 2 – 7 % using flocculation, 

flotation or gravity sedimentation. 

2. Thickening. The purpose of this harvesting technique is to concentrate the 

slurry, with filtration and centrifugation, usually applied in this process. This 

second step need more energy than the bulk harvesting. 

Flocculation is used to aggregate the microalgal cells to increase the effective 

particle size and hence ease sedimentation, centrifugal recovery, and filtration [4]. 

Microalgae carry negative cell surface charges which, when neutralized, lead to the 



41 
 

agglomeration of the biomass into large clumps or “flocs”. These flocs can then be 

more readily separated from the culture medium. Flocculation can be induced in 

various ways like, chemical flocculation (inorganic chemicals), chemical 

flocculation (polyelectrolytes), bio-flocculation, electro-flocculation, and dissolved 

air floatation. It was concluded that chemical flocculation was too expensive for 

biofuels production. Polymeric organic flocculants (polyelectrolytes) on the other 

hand are highly charged organic aggregates, non-toxic, required in small amounts, 

produce more stable flocs and thus, are more attractive flocculation option. Some 

algal species are reported to naturally flocculate after transfer to settling ponds, 

when left quiescent for some time. This occurrence has been attributed to 

environmental stimuli, some of which have been identified, including nitrogen 

limitation, pH, and dissolved oxygen level. Electro-flocculation is a 

coagulation/flocculation process which is based on the movement of electrically 

charged particles in an electric field in which active coagulant species are 

produced by oxidation of a metal anode [42].  

Centrifugation is a well-established industrial process that uses gravitational force 

to achieve separation. The morphology and sizes of the cells being harvested affect 

the recovery (and costs) as filamentous cells and large colonial cells will settle 

more readily than single smaller cells. Centrifugation is energy intensive and the 

estimates of the energy consumption required for various types of centrifuges are 

estimated to range from 0.3 to 8 kWh/m3. The high capital and running costs 

associated with centrifuges limit their use to second-stage filtration in the 

processing of microalgae for biofuels. 

Filtration involves introducing the particles onto a screen of given aperture size. 

The particles either pass through or are retained on the screen according to their 

size. Filtration can be performed under pressure or vacuum with energy 

requirement estimates ranging from 0.2 to 0.88 kWh/m3 and 5 kWh/m3. Although, 

the costs associated with filtration are low, screen clogging and membrane fouling 

limits its suitability to larger species of microalgae. In general, this technique is not 

considered feasible from an economic point of view for microalgae extensive scale 

cultivation.  
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Chapter 3 

 

3.Cultivation phase model 

 

 

 

The microalgae cultivation phase model is presented in this chapter. After the 

presentation of system boundaries, geometric hypothesis and the definition of input 

and output of the model, the most important equations of the model are described: 

among them, main effort is spent to include  an accurate modelling of the microalgae 

growth phase, in which the dependence on the most important physical parameters 

has to be as realistic as possible. 

 

 

3.1 Introduction 

 

This chapter presents the dynamic model which describes the cultivation phase of 

microalgae. The model includes in its boundaries the reactor for microalgae 

cultivation, excluding the downstream and upstream processes. The reactor 

geometries considered in the model are the open raceway pond and the flat panel 

photobioreactor, being the most promising technologies for an extensive 

microalgae cultivation.  

The growth model is dynamic because it uses as input data a weather file for the 

given location, which reports all the hourly weather data of a year: the model is 

able to face the hourly variation of these data and the consequent evolution of all 

the other parameters through time and to take them into account in the 

computation of the output. The software used for the model composition is Matlab: 

to follow the sequential logic of the solver, a system of differential equations has 
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been changed into a sequence of algebraic equations through the application of the 

finite differences approximation. 

The central part of the model is represented by the growth equations which have 

to describe in the most accurate possible way the growth of the microalgae in the 

system. Moreover a pH control strategy is included, to maintain the optimal pH for 

microalgae growth in the medium. Time dependent mass and energy balances are 

presented for a complete description of the process. 

 

 

 

3.2 System description 

 

 

 

3.2.1 System boundaries 

 

 

Figure 4: System boundaries 

 

As shown in figure Figure 4, the system boundaries of  the dynamic mathematical 

model take into account the cultivation system, the reactor in which the microalgae 

grow through an autotrophic photosynthetic process. 

The downstream process is left outside these boundaries: the productivity of the 

cultivation system is not influenced by the downstream transformation process;  
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this implies that the model could be coupled with every kind of biofuel production 

chain, increasing its fields of application. 

Furthermore, the upstream process is also not considered in the boundaries of the 

dynamic model: the incoming mass and energy streams which enter the cultivation 

system are taken without considering their origin; the realistic possibility of 

having recirculated mass and energy fluxes coming from the downstream process 

and entering the reactor is taken into account as a general consideration, without 

including it in the dynamic model. 

The input of the cultivation phase are all required by microalgae growth, that 

gathers its energy through the photosynthetic process: 

 

                (    )     

 

Moreover, microalgae need inorganic compounds, called nutrients in the figure 

above, to build the organelles and the intracellular structures: the most important 

nutrients are nitrogen and phosphorus, together with some other compounds 

(iron, silicon) that are needed in small quantities by the microalgae; these 

micronutrients are not monitored and directly injected in the cultivation systems, 

with the assumption that the algae may find the needed quantities in the water. 

 

3.2.2 Reactor geometry 

There is no commercial scale cultivation plant for biofuel production at present in 

the world. Microalgae are cultivated to obtain more valuable products than 

biofuels and the quantities needed by the market do not require the introduction 

of extensive biomass production. 

For what concerns microalgae cultivation for biofuel production, there are a few 

pilot scale plants and R&D is still needed to reduce costs of the technologies and to 

optimize the productivity levels which can be reached in the reactors. 

It comes from literature that the two most promising geometries for a commercial 

scale cultivation plant for biofuel production are  the open raceway pond and the 

flat panel photobioreactor [24]. The most important characteristics of these 

microalgae production systems have already been described in the previous 
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chapters; in the following paragraphs, the hypothesis regarding the geometry of 

the reactors are listed. 

 

Open raceway pond 

 

Figure 5: Basic design of an open raceway pond cultivation system 

 

The main characteristics of the raceway pond used in the model have been taken 

from literature ([9], [14],  [22], [56], [57]): 

- The pond covers a surface of 1 hectare, having a length to width ratio equal 

to 10. 

- The depth of the pond is 30 cm: this parameter will be varied within a range 

in a successive parametric analysis; the most common values which can be 

found in literature are all between 20 and 30 cm, as said in the previous 

chapter. 

- The motion of water is provided by a paddle wheel, which works during day 

and night; the speed of the water in the pond is kept at a constant value of 

0.20 m/s. 

- The CO2 needed by the photosynthetic process is supplied from the bottom 

of the open pond, through a sump system (with 90% efficiency for CO2 

dilution [58]): the CO2 is injected during the day to compensate the 

consumption caused by the microalgae growth and the losses to the 

atmosphere; the bubbling systems works also during the night, when the 

photosynthetic process in not occurring, to replace the losses to the 
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atmosphere and so to guarantee a constant optimal pH in the reactor, as it is 

explained hereinafter. The air that is bubbled in the pond contains a CO2 

molar rate equal to 0.04. 

 

Flat panel 

As it has been done for the open raceway pond, also for the flat panel 

photobioreactor the main geometric characteristics have been taken from 

literature ([13], [55], [59], [39],[60], [61]): 

- The system covers a surface equal to 1 hectare, the panels are positioned 

vertically, in parallel lines: the distance between two lines is 0,5 m. 

- The height of the panels is 1,5 m, the thickness is 0,05 m. 

- The panel is made of glass that is considered to be non-absorbing glass. 

- The flat panel presents a bubbling system for  CO2 injection which has the 

double task to maintain a high level of CO2 for the photosynthetic reactions 

and to generate enough mixing in the panel to avoid sedimentation and 

light saturation. For this reason, the CO2 molar fraction of the injected gases 

is lower than in the case of the open pond: 0,02. 

- In this typology of reactor, a constant temperature is wanted to be 

maintained: for this reason, a heat exchanger is supposed to be placed in the 

reactor, to remove or supply the heat that is necessary to reach this target. 

Other heating and cooling systems which have been tested in laboratory 

and pilot scale flat photobioreactors are: a temperature controlled basin in 

which the flat panels are dipped ([40], [62]), a sprinkler system to spray 

water on the surface of the reactor ([29], [44], [62], [20]) obtaining a 

cooling effect; the spraying system does not provide the possibility to 

obtain a heating effect. 

The geometric characteristics (distance between the panels, height of the panel) 

and the direction faced by the parallel lines of the photobioreactor are parameters 

which have been varied during a later parametric analysis. 

Although the model gives the possibility to vary the direction faced by the surfaces 

of the flat panel, many researches have been done to identify the optimal position 

for this typology of photobioreactors: the largest number of papers which have 
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been taken into account suggest that the optimal position is vertical, facing east 

and west ([12], [13]); some works suggest that, to obtain a higher productivity, the 

slope of the panel should be varied during the day and during the year ([63]). 

 

3.2.3 Sedimentation tank - settler 

In addition to the bioreactor for microalgae cultivation, the model considers a 

sedimentation tank, placed downstream to the reactor. 

Thanks to this settler positioned after the bioreactor unit, the modelling of the 

cultivation phase could include a better and more general evaluation of the energy 

required by the bioreactor, taking onto account the electrical consumption of the 

pumps which are needed for the harvesting of the water and the biomass from the 

reactor. 

Moreover, if each cultivation unit has its own settler, then the discharge of the 

reactor can be done in a relatively short time, without been conditioned by the 

time needed by the biomass concentration technology downstream: the time 

required by the microalgae to grow can be decoupled from the time of the 

downstream process. 

As it has been explained in previous chapters , a sedimentation tank is also needed 

to obtain a first separation between water and biomass and to increment the 

microalgae concentration to higher levels from those reached in the reactor during 

the cultivation phase. 

Finally, if a settler is considered for each unit of reactor (which covers 1 hectare) it 

is possible to create a sort of independent cultivation unit which can be seen as a 

repeatable unit for an extensive mass microalgae cultivation. 

Therefore, the dimension of the tank should be sufficient to contain the whole 

volume of water which is in the reactor. The geometry of the tank is a cylindrical 

concrete tank with a 30 m diameter.  
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3.3 Operating strategy 

 

The pilot scale plants and the mathematical models which can be found in 

literature consider three possible different ways to run a microalgae cultivation 

system: batch mode, continuous mode, repeated batch mode. 

In this work, all the mathematical models which have been created consider the 

production to be led as a repeated batch cultivation ([49], [14], [64], [65]).  

As it is explained in Radmann [49], the repeated batch cultivation is an alternative 

form of operation for microalgae production. After a certain period in the reactor, a 

specific culture volume is removed and replaced with an equal amount of fresh 

medium. Consequently a part of cultivation medium is kept in the reactor as a 

starting inoculum. Repeated batch mode of operation  provides an excellent means 

of regulating the nutrients feed rate to optimize the productivity while at the same 

time preventing the over and underfeeding of nutrients. Repeated batch cultivation 

presents several operational advantages, the most important of which are the  

maintenance of a constant inoculum and high growth rates. 

 

Another fundamental aspect of the operating strategy is that the mathematical 

model can work in two different ways: it is possible to fix the initial and final 

concentration which are required in the reactor or to fix the initial concentration 

and the hydraulic retention time (HRT) of the culture. 

If the first strategy is adopted, the model will empty the reactor when two 

conditions are verified at the same time: the final concentration has to be reached 

and the light radiation incoming is zero; this second condition prevents the model 

to empty the reactor in the middle of the day that would cause the loss of a part of 

the incoming radiation which could have been helpful to produce more biomass. 

Throughout this first strategy, the minimum concentration acceptable for the 

harvesting is the input data, and it is possible to define a mean value for the HRT 

which can be used for the whole time period. 

The second strategy is more similar to the one which is really applied in 

microalgae cultivation plants: the HRT value is set to a fixed value which is 

sufficient to reach an adequate microalgae concentration in the reactor. The initial 
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concentration for the batch cycle is also fixed, as in the first strategy previously 

described. 

 

 

 

3.4 Model structure 

 

Even if many laboratory scale cultivations use artificial light as irradiation input to 

the culture, many authors agree in saying that this solution cannot be adopted for 

extensive microalgae cultivation as it would be an excessive energetic and 

economic cost. Therefore, the irradiation input for mass microalgal cultivation has 

to be natural light: this implies that the cultivation is subjected to weather 

conditions, which change during time. 

To obtain an accurate mathematical description of the cultivation phase through a 

Matlab model, it is thus necessary to include in the equations the dependence from 

weather conditions and so to consider their variations with time. 

Therefore, the Matlab model developed has a dynamic logic, and uses a system of 

differential equations. To simplify the resolution of this system, the finite 

differences approximation has been adopted. All the differential equations have 

been threatened as finite differences, and the backward difference formula has 

been implemented: 

  

  
  ( )      

 ( )   (   )

  
  ( ) 

Eq. 2 

This formula has been preferred to the forward difference strategy, since it is less 

vulnerable to instability. If this formula is applied to matrices and vectors, the 

following expression is obtained: 

 ̅( )   ( )       ̅(   ) 

Eq. 3 

The model includes more than one differential equation and some of them are 

strictly dependent on one another, making impossible to solve the various 

differential equation in a sequential logic: it is thus necessary to solve them 
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altogether as a system, with vector and matrices. Therefore, all the equations  have 

been manipulated to separate the known terms from the unknown variables and to 

obtain an easily solvable system of algebraic equations. This strategy has been 

adopted in particular for the mass balances: the quantities of each substance 

dissolved in the water and the quantity of microalgae at a certain time t are all 

dependent on one another. 

 

The mass and energy produced by the cultivation systems in the form of biomass is 

calculated by the Matlab model through the mass and energy balances. Before 

calculating the results of these equations, it is necessary to introduce some 

auxiliary equations, to calculate all the parameters included in the balances. 

The auxiliary equations include the microalgae growth model, the pH control 

through CO2 injection, the equations to accurately take into account the light 

entering the reactor and affecting the microalgae cells, which is not merely the 

global horizontal irradiation measured. 

Once that all the growth parameters and other parameters have been defined, it is 

possible to implement a cycle to calculate the dynamic mass and heat balance of 

the reactor at each time step. 

The following figure represent the Matlab model created:  
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Figure 6: Model structure 

 

 

 

3.5 Input of the model 

 

Since the growth of the microalgae is strictly dependent on some weather 

parameters, most of all from light intensity and temperature,  the mathematical 

model must take into account the values assumed by these parameters during the 

time period considered in the model.  

To evaluate the productivity of the cultivation technology considered in the 

mathematical model, it was necessary to know a certain amount of input data, 

shown in Figure 6.  
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The input required by the model are: 

- Location data: the open raceway pond model uses as input the longitude of 

the reactor and the hour difference between the location of the bioreactor 

and Greenwich; these data are needed to calculate the solar hour in the 

location. The flat panel model requires also the latitude of the reactor to 

evaluate, for each day of the year, the time at which the sun rises from the 

horizon of the flat panel and when the sun goes beyond the horizon of the 

flat panel. 

- Weather data are needed by the models both to calculate the irradiation 

factor which influences the microalgae growth and to evaluate the thermal 

balance. The open raceway pond model requires the global irradiation over 

a horizontal surface, while for the flat panel model it is needed to have the 

direct and the diffuse radiation over an horizontal surface as two distinct 

data. 

Moreover, both the two models require other weather data, such as the 

atmospheric temperature, wind speed, relative humidity, etc. 

Hourly data are used in all the models: the computations of the mass 

production, CO2 consumption and of all the output, as well as the 

performance parameters are evaluate with a dynamic approach, as it has 

been explained. 

- The microalgae species which is wanted to be grown in the given cultivation 

technology is another fundamental input: many parameters of the model 

depends on this input, such as the maximum growth rate, the optimal 

growth temperature, the saturation light irradiation,…all these 

characteristics assume different values depending on the microalgae 

species. 

As it is said in the previous chapter, the open raceway pond cultivation 

system has a huge limitation which consists in contamination and pollution: 

for this reason not all the microalgae species are able to grow in this 

typology of reactor. This limitation does not concern the flat panel which is 

a closed reactor where the growth conditions could be easily controlled. 
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In table Table 1 all the parameters included in the model which depend on 

algae species are listed: the two algae species in the table are those for 

which the model has been tested. 

 

Table 1: Microalgae characteristics [66] 

 

- The composition of the inlet water which is used to fill the reactor at the 

beginning of each cultivation phase is another input required: since each 

cultivation phase works as a batch reaction, it is necessary to have inside 

the medium the quantity of nutrients that is sufficient to feed the 

microalgae for the entire duration of the batch process. 

In case of shortage of nutrients, as it is explained in the previous chapter, 

the microalgae growth rate decreases and the production of new biomass 

with it, but the quantity of lipids in the biomass increases: this process can 

be extremely interesting if the downstream process aims to produce 

biodiesel. The models presented in this work do not consider the input 

condition of scarcity of nutrients, which are instead always supplied in 

excess. As a model output, it is possible to calculate the exact amount of 

nutrients consumed by the microalgae. 

The model gives as input a surplus of nutrients in the water, to guarantee 

they are not the limiting factor to microalgae growth; then, as output, it is 

possible to know the exact quantity of nutrients which have been consumed 

and thus to verify that the real water stream which would be used to feed 

the reactor contains that amount of nutrients: if it does not, then it is known 

that a certain amount of nutrients must be added to the quantity already 

existing in the water. 

Typology P. tricornutum T. pseudonana

pH_opt 8,300 8,300

alk_opt [meq/l] 0,032 0,032

LHV [kJ/kg] 21527 21527

I_sat [W/m2] 37,118 21,834

μ_max [1/h] 0,058 0,137

T_let [°C] 30,310 31,400

T_opt [°C] 21,640 24,730

beta 1,570 1,830

decay rate [h^(-1)] 0,002 0,002
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- The last input required by the model is strictly dependent on the operating 

strategy: as it has been previously explained, the mathematical models to 

predict microalgae production can be run in two different ways: if it is 

wanted to define the HRT required to reach a certain microalgae 

concentration in the reactor, then it is necessary to give as input 

information to the model, the initial and the final concentration ([g/m3]). If 

the HRT is fixed along the whole time period taken into account, then the 

input data will be the initial concentration and the HRT, leaving the final 

concentration in the reactor free to change. 

 

 

 

3.6 Output of the model 

 

Among the outputs of the Matlab model, the mass production of microalgae is the 

most important. Starting from this result, it is possible to define two global 

performance parameters which are the volumetric productivity (expressed in 

[g/(l*d)] or in [kg/(m3*d)] ) and the areal productivity (expressed in[t/(ha*y)] or 

in [kg/m2*d)] ). These two indicators are fundamental as they give the possibility 

to compare the reactor to the performance of other models with different 

geometries and operating conditions, given by literature, and also to prove the 

accuracy of the model and its reliability.  

Moreover, as shown in Figure 6Errore. L'origine riferimento non è stata trovata. 

the model is able to give as output the exact quantities of all the compounds 

consumed or produced in the time period considered by the simulation (usually 1 

year). For example, the model gives the CO2 that is needed to be bubbled in the 

reactor to maintain a constant pH level and to feed the microalgae which need the 

injected CO2 for the photosynthetic process. In this way, the model gives the 

possibility to analyse the carbon footprint of the technology or at least to 

understand the quantity of CO2 which can be fixed by the biomass produced; it is 

important to understand that a part of the injected CO2 is lost to the atmosphere: 
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this quantity can be relevant in the case of open raceway pond while is quite 

limited in the case of flat panel photobioreactor. 

Another fundamental output of the model is the total electrical and thermal energy 

required by the reactor: to evaluate these quantities, the energy balance is not 

sufficient, as it is necessary to include the electrical energy spent at the boundary 

of the system, to re-fill the reactor and to harvest the biomass from the reactor 

itself; the electrical energy also includes the quantities which are needed for the 

mixing and for the air bubbling in the bioreactor.  

Finally, another output of the model is the quantity of water needed from the 

reactor, without considering the possible water recirculation coming from the 

downstream process.  

 

 

 

3.7 Auxiliary equations 

 

3.7.1 Growth model 

In the previous chapter, the most important parameters which influence algae 

growth have been described. Here follows how these parameters have been taken 

into account in the growth phase mathematical model. 

The growth rate of algae is expressed by the following equation, taken from Yang 

[9]: 

 

         

Eq. 4 

 

Where XA is the mass concentration of microalgae [g/m3] and μA is the specific 

growth rate ([d-1]or [s-1]). 

In the equation of the specific growth rate μA , it is possible to identify the influence 

of the most important parameters which affect the growth: 
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Eq. 5 

 

 ̂  is the maximum specific growth rate: it depends on the microalgae species 

[1/day]; CO2D , NT  are quantities of dissolved nutrients and CO2 [mol/m3] at time t. 

As it can be seen in equation Eq. 5, nitrogen is the only nutrient that has been taken 

into account in the specific growth rate expression; other nutrients, such as 

phosphorus, are not explicitly taken into account, as it is suggested by Yang [9], 

with the assumption that the metabolism of the microalgae is not limited or 

inhibited by these compounds. The specific growth rate can reach higher values 

thanks to the use of some micronutrients, such as iron and silicon ([2], [5], [52], 

[67], [68]). 

The expression used in equation Eq. 5 to represent how the quantities of nitrogen 

and CO2 affect the specific growth rate is a Monod model. KC and KNA are the half-

saturation constants: the compound concentration when      ̂   . When 

nitrogen and carbon dioxide concentrations are high, these terms assume a value 

next to 1 and they do not affect the microalgae growth: if this situation occurs, it 

means that the quantities are in excess. 

The Monod model is represented in Figure 7. 

 

 

Figure 7: Evolution of the Monod model equation 
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   is the light intensity factor: the expression of this term has been taken from 

literature ([9], [44]): 

   
  
  

   (  
  
  

) 

Eq. 6 

Where    is the average light intensity in the bioreactor in a given moment t, while 

   is the saturation light intensity, which depends on the microalgae species 

considered; as it has been said in the previous chapter, the saturation intensity 

factor is usually in the range between 30 and 100 W/m2 [29]. 

 

 

Figure 8: Irradiation factor 

 

The average light intensity Ia is calculated in a different way depending on the 

geometry of the reactor, as it is explained hereinafter. It depends on the weather 

data given as input, on the turbidity caused by the microalgae and other 

substances  in the water and on the reactor depth. 

The model includes the hypothesis of perfect mixing: with this assumption, it is 

possible to consider that the whole quantity of microalgae in the water is affected 

by the same quantity if light intensity. If the perfect mixing hypothesis is not 

acceptable, the reactor should be divided in different zones, especially for the open 
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raceway pond reactor: in this case, there is an upper layer where photosynthesis 

yield is high, but there is low energy efficiency and in some cases inhibition may 

occur as well, because light intensity is higher than the saturation light intensity. 

Then there is an intermediate layer, where both photosynthesis yield and 

efficiency are high. Finally the internal layer, where photosynthesis yield is high 

but algae use less energy than what would be possible, since the incoming light is 

not sufficient. 

   is the temperature factor: the microalgae growth is affected by this parameter, 

and each microalgae species has an optimal growth temperature; when the 

medium temperature corresponds to this value, then the growth is not affected by 

temperature and the value of    is 1: this is what happens in the closed reactor, 

where a heat exchanger is used to keep a constant optimal temperature. Below and 

above the optimal growth temperature, the growth is negatively influenced by the 

water temperature. Above the optimal temperature, the value of    decreases fast 

and reaches 0 for a certain temperature that again depends on the algae species: 

this value is called lethal temperature (Tlet) and the growth is not possible at all. 

The expression of the temperature factor is shown in the following equation and 

was taken from Slegers et al. [66]: 

 

   (
       

         
)

 

   (  (
       

         
  )) 

Eq. 7 

 

As it is possible to see in the equation, there is a parameter β, that depends on the 

algae species and that it is a curve modulating constant. 

The following figure (Figure 9) shows the shape of the temperature factor   : the 

parameter overestimates the growth for low temperature values. 
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Figure 9: Temperature factor 

 

3.7.2 pH control strategy 

Each microalgae species has an optimal pH value: the model includes a control 

system to keep the optimal value of pH in the reactor. 

As shown in the following equations from Sills [43], pH level depends on dissolved 

CO2 concentration and alkalinity; if these two parameters are kept constant, it is 

possible to control the pH value. 

CT is defined as the total concentration of carbonate species in solution. 
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Eq. 8 

 

Note that [     
 ]   [   (  )]. 

The molar concentration of each carbonate species (as a fraction of CT) is 

dependent on pH, as it is shown by the following equations: 
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Eq. 10 
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Eq. 11 

Finally: 

   
           

      
 

Eq. 12 

 

From equations Eq. 10 and Eq. 11, α1 and α2 are calculated; , since pH is the 

concentration of dissolved [  ] in the water and pH = 14 – pOH, all the terms in 

equation Eq. 12 are known and the total concentration of carbonate species may be 

obtained, remembering that dissolved CO2 concentration is [   (  )]  [     
 ] , it 

is possible to define the dissolved CO2 quantity which must be kept constant to 

preserve the optimal pH value. 

This term will be a part of the time dependent CO2 mass balance, that is used to 

calculate the CO2 injection at each time t. 

 

3.7.3 Mean light intensity for open pond 

The light intensity factor in the specific growth rate (Eq. 6) expression contains   , 

the average light intensity in the bioreactor in a given moment. Starting from global 

horizontal radiation, the model evaluates    using the Beer-Lambert’s law; it 

assumes an exponential decay of the light intensity from the external surface of the 

cultivation system: 

 

  ( )       (     ) 

Eq. 13 

 

As it is explained by Béchet et al. [31], Ia(s) is the local light intensity, s is the 

distance from the external surface of the system to the position under 

consideration, I0 is the incident light intensity, σ is the extinction coefficient, and Xa 

the cell concentration. 
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To apply the Beer–Lambert’s law, the culture medium must be isotropic (i.e. the 

optical properties of the broth are independent from light direction) and algae 

cells must not scatter light. Unfortunately, if the first condition is often met in well-

mixed outdoor cultivation systems, algae cells do scatter light. The model 

considers that both these two conditions are always verified. 

The equations to calculate Ia are strictly dependent on the geometry of the 

bioreactor: for the open pond, as it is suggested by Yang [9], it has been used an 

integration through the pond depth of the Beer-Lambert’s law: 

 

   
 

 
∫      (    )  

 

 

 

Eq. 14 

 

Where I0 is obtained directly from the global horizontal radiation IGHR: I0 = PAR* 

IGHR. PAR is the photosynthetic active radiation, the quantity of solar radiation 

which is used by the microalgae for the photosynthesis and which corresponds to 

45% of the total. 

Ke is correlated to algal concentration in the pond, and it is called extinction 

coefficient: 

             

Eq. 15 

 

If Ke is constant through the pond depth, then it is possible to integrate the 

expression of Ia: 

 

   
  

   
   (      ) 

Eq. 16 

 

3.7.4 Light intensity for flat panel 

In case of flat panel, the complexity of the geometry requires the use of different 

equations from those applied for the open pond. First of all, the input data are 

direct and diffuse radiation on the horizontal surface; moreover, the equations 
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must take into account also the reflection of the radiation on the surface of the 

panel. It is fundamental to remember that the two faces of the flat panel are both 

made of transparent material, and so the radiation may enter from both the sides 

of the panel. 

As it is explained in Slegers et al. [69], if the direct horizontal radiation is given, 

since the panel is vertical, it is necessary to introduce a geometrical parameter for 

direct radiation: 

       ( )  
    

     
 

Eq. 17 

 

In which θ is the solar incidence angle, and θz is the solar zenith angle. The values 

assumed by these angles during each day of the year depend on the location and 

have been calculated with the equations taken from Duffie [70]. For large scale 

cultivations, parallel positioned flat panels are used. Parallel placement causes 

shading and consequently part of the panels no longer receive direct sky light. The 

shadow height on vertical reactor panels is given by: 

          
     (     )

   (   )
 

Eq. 18 

 

Which is a function of the reactor height h [m], the distance between the reactor 

panels d [m], the solar elevation, which is equal to 90-θz and the angle between the 

solar rays and the azimuth of the surface. 

If hshadow is greater than 0, then the flat panel is divided into two parts. The upper 

part receives direct and diffuse radiation, the lower part only diffuse light. The 

separation between the upper and the lower part varies with the solar position 

and is calculated every simulation step. 

Parallel placement of the reactors also influences the penetration of diffuse sky 

light into the space between the panels; the light intensity decreases from the top 

to the bottom. Similarities can be seen with the penetration of light in urban street 

canyons [71]. 
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For these reasons, the geometrical factor for diffuse light is different for the heights 

inside the panel which are above hshadow [m] and those which are below. 

At height y < hshadow 

 

         
     (   )

 
 

Eq. 19 

 

Where u = atan(y/d), β [°] is  the slope of the reactor, the angle that the surface 

makes with the surface of the earth. 

At height y > hshadow 

 

         
     ( )

 
 

Eq. 20 

 

The reactor panels at the border of the algae plant experience a different light 

pattern. In the model it is assumed that this effected is negligible on large scale. 

Therefore, all the panels are treated similarly in the calculations. Moreover, ground 

reflection is low for parallel placed panels and is therefore not taken into account. 

The total amount of light falling on each reactor surface at a given height y, for a 

given moment t is: 

 

  (   )         ( )       ( )          ( )        ( ) 

Eq. 21 

 

At this point, it is fundamental to consider the reflected fraction of the irradiation 

which does not enter into the reactor and so does not contributes to the growth of 

the microalgae. 

The amount of reflected light on each interface is related to the differences in 

refractive indices and the angle of incidence [72]. The angle of refracted light 

follows from Snell’s law. 
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The angle of incidence for diffuse radiation which is considered to evaluate the 

light reflection is assumed to be 60°, as it is suggested by Duffie et al. [70]. 

Light reflection by the flat panel walls follow Fresnel equations: 
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Eq. 22 
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Eq. 23 

 

Where θi [rad] is the incidence angle, ηi [-] is the refractive index of the material 

before the interface, ηt [-] is the refractive index for the material after the interface. 

Normal sunlight is non-polarized, therefore the overall reflection coefficient equals 

the average of the reflection coefficients for s-polarized and p-polarized light: 

 

   
     

 
 

Eq. 24 

 

The light reflected within the reactor wall is completely transmitted to the air, 

introducing the hypothesis of a non-absorbing material for the walls of the reactor. 

The light transmitted to the culture, which has to be calculated separately for 

direct and diffuse radiation, is: 

 

  ( )    ( )(        )   

Eq. 25 

 

Additional light may be lost due to a low transparency of the wall material, 

indicated by Tm [-]. 
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The calculation is done for both the two sides of the reactor and, for parallel 

positioned panels, for each height. R’1 and R’2 are the reflection coefficients for the 

air-reactor wall interface and the reactor wall-culture volume interface 

respectively. 

Two light intensity gradients exist in the culture volume. First, as a function of 

height due to shading and the penetration of diffuse light between parallel 

positioned panels. Second, in the liquid between the two reactor walls. The second 

gradient runs from the reactor wall to the centre of the reactor and is caused by 

the absorption of light by the medium and the algae [69]. 

Only the photosynthetic active radiation (PAR) of the spectrum is absorbed by the 

algae. This accounts for about 45% of the total light. 

The Lambert-Beer’s law, as it was for the open pond, is used for the overall light 

gradient in the culture volume: 

 

 (     )          
 (         )         

 (         )(   ) 

Eq. 26 

 

This equation gives the light intensity at location z [m] inside the reactor thickness 

[m], at a given height y [m] in the reactor at a time t. 

 

At this point, to simplify the model, the values of light intensity I(y,z,t) from 

equation Eq. 26 are integrated to find a mean value of irradiation for the whole 

culture inside the whole reactor in a given time t: with these integrations, it is 

possible to obtain a single value of radiation to use in the growth model, for the 

whole panel, at a given time t. 

The hypothesis of a perfect mixing inside the culture at each time t is necessary to 

integrate above the whole reactor geometry. 

 

3.8 Mass and energy balances 

 

3.8.1 Mass balances 
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The balance of nitrogen and oxygen can be modelled in a similar way, suggested by 

Yang [9]: 

 

  

  
             (    ) 

Eq. 27 

 

Where M is the concentration of the respective component in the water in the 

bioreactor, YAM is the mass of the respective component consumed or generated by 

the microalgae per unit mass of microalgae produced. The last term of the right-

end side of the equation represents the mass transfer between the atmosphere and 

the pond, where kLgα is the mass transfer coefficient for a given element, M* is the 

saturation concentration of the respected dissolved element. 

For total inorganic carbon, the mass balance assumes a different formulation, since 

during the growth phase, the CO2 is injected continuously in the pond, to keep a 

constant concentration of dissolved CO2 in the reactor, balancing the losses of CO2 

to the atmosphere and the consumption of CO2 by the microalgae. 
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Eq. 28 

 

Where fCO2 represents the flux of CO2 introduced by the supply of gas flow into the 

system. Since the quantity of dissolved CO2 is wanted to remain constant (dCO2/dt 

= 0), the mass balance can be written again as 

 

    
           

     (       
 ) 

Eq. 29 

 

Finally the mass balance for microalgae species can be written as 
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Eq. 30 

 

Where all the terms in the equation have been already explained. 

As it can be seen, all these equations are time dependent, and are all strictly 

dependent from one another: this means that they form altogether a system of 

differential equations. 

To solve this system in Matlab, it has been adopted the strategy to solve each 

differential equation with the finite different methodology, and thus to solve the 

system of differential equations as a system of algebraic equations. 

 

3.8.2 Thermal balance for open pond 

 

Figure 10: Thermal balance for open pond [66] 

 

The expression of the thermal balance is different for the bioreactor considered, as 

it is strictly dependent on the reactor geometry. For the open raceway pond, the 

model uses the thermal balance as it is suggested by Slegers et al. [66]. 

 

       

   

  
                                    

Eq. 31 

 

With VR [m3] volume of the pond, cpw [J/(kg °C)] the heat capacity of the growth 

medium, ρw [kg/m3] the density of the growth medium, Tw [°C] the temperature in 

the pond, Qirr [W] the heat flow to the pond by the sunlight, Qalgae [W] the light 
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energy flow to algae during growth, Qrad [W] the heat flow by emission of long-

wave radiation in the infrared region, Qevap [W] the heat flow caused by either 

evaporation or condensation, Qconv [W] the heat flow by convection and Qcond [W] 

the heat flow between the pond and the ground via conduction. 

The water in the pond is heated by sunlight that enters the culture volume. Solar 

energy that is not used by algae for growth is considered as thermal energy. The 

total heat flow by the sunlight is given by: 

               ( ) 

Eq. 32 

 

with Aw [m2] the water surface area of the pond and Isurface [J/(kg °C)] the total light 

falling on the pond. Part of this light is absorbed by microalgae for growth: 

 

                        

Eq. 33 

 

which is a function of the combustion energy of algae biomass hcomb [J/kg], the 

specific growth rate μgrowth [s−1] and the biomass  concentration Xa [kg/m3]. 

The water in the pond emits thermal energy by long-wave radiation. The overall 

long-wave radiation flow between the water in the pond and the sky is calculated 

using Duffie [70]: 

 

          ((         )      
 ) 

Eq. 34 

 

Where εw [-] is the emissivity of the water in the infrared region, σ [W/(m2 K4)] the 

Stefan-Boltzmann constant and Tsky [K] the equivalent sky temperature for clear 

sky days, which is expressed by Duffie [70] as: 

 

     (           )(                             
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Eq. 35 
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Where Ta [°C] is the air temperature, Tdew [°C] the dew point temperature and tsolar 

[-] the number of hours after solar midnight. The effect of cloud covers is not 

included in the calculation. Evaporation has a large effect on the water 

temperature, especially in locations with low humidity and high wind velocities. 

The evaporation rate depends on the shape of the water area, wind velocity, thus 

also movement of the water. The evaporation flow is driven by the difference of 

water vapour pressures between the ambient air and the saturated water body. 

The evaporation energy flow is given by: 

 

             (       ) 

Eq. 36 

 

The evaporation flow depends on the heat exchange coefficient for evaporation 

hevap [W/(m2 Pa)], the saturated water pressure p’s [Pa] at water temperature Tw 

and the water pressure of air p’a [Pa] at air temperature Ta. The evaporation rates 

have been calculated using the heat exchange coefficient hevap found in Duffie [70]: 

 

                   

Eq. 37 

 

Where v [m/s] is the wind speed. 

The Antoine equation is applied to calculate the saturated water pressure p’s [Pa] 

at water temperature Tw, and the water pressure of the air p’a [Pa] at air 

temperature Ta: 

 

        
(             (

      
   

)) 
       

         

Eq. 38 

 

Where RH [-] is the relative humidity and T [°C] the temperature. 
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Convection and evaporation are related processes. The flow for passive and forced 

convection at the water surface mainly depends on the difference between water 

and air temperature. The convection flow is given by: 

 

            

  (     )

    (       )
      

Eq. 39 

 

Where CBowen is the Bowen constant [Pa/°C], pa is the ambient pressure [Pa] and pref 

the reference pressure [Pa], p’s and p’a are derived using equation Eq. 38. 

Conductive heat transfer takes place between the open pond and the soil. The soil 

is assumed to be an infinite source for heat transfer. This heat transfer calculation 

is derived from Fourier's law: 

 

                (        ) 

Eq. 40 

 

Where hsoil [W/(m2 °C)] is the heat transfer coefficient of the surrounding soil 

layer, Asoil [m2] is the area of the pond that is embedded in the soil and Tsoil [°C] is 

the temperature of the soil surrounding the pond. 

  

2.8.3 Thermal balance for flat panel 

Due to the significant difference in the geometry of the reactor and the 

temperature strategy adopted, the thermal balance for the flat panel assumes 

another form from the one that has been implemented for the open raceway pond. 

For the flat panel, the temperature of the water is wanted to be maintained at a 

constant value, using a heat exchanger placed at the bottom of the reactor to 

remove or supply the heat necessary to reach this aim. 

 

       

   

  
                              

Eq. 41 
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Equation Eq. 41 represents the thermal balance for the flat panel. As it has been 

said, the water temperature TW [°C] in the reactor should remain constant. For this 

reason, the thermal balance can be written as follows: 

 

   

  
                                    

Eq. 42 

 

Qirr [W] is given by the following expression: 

 

                    

Eq. 43 

 

Where Apanel is the surface of the reactor, that is multiplied by 2, as it is necessary 

to consider both the front and the back surfaces; Imean [W/m2] is the radiation 

previously calculated taking into account both the direct and the diffuse radiation 

and the reactor geometry: it is the radiation which interacts with the water in the 

reactor and with the microalgae. 

As calculated for the open pond, a part of the incoming heat is used by the 

microalgae for the growth: 

 

                        

Eq. 44 

 

which is a function of the combustion energy of algae biomass hcomb [J/kg], the 

specific growth rate μgrowth [s−1] and the biomass  concentration Xa [kg/m3]; VR [m3] 

is the reactor volume. 

The model takes into account the natural convection over the panel surface caused 

by the wind and the conductivity of the glass: 

 

                         (       ) 

Eq. 45 
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Where 

                 

Eq. 46 

 

Where Ucond is the conductivity of the glass [W/(m2K)] and Uconv is the conductivity 

of the natural convection: it is obtained from Duffie [70]. 

Using the equations above, it is possible to evaluate the quantity of heat which has 

to be removed or supplied by the heat exchanger at each time t.  

Since the flat panel temperature is always kept between 20 and 30 °C, depending 

on the optimal temperature for microalgae growth, it is supposed that the heat 

exchange through radiation can be omitted. 

 

3.8.4 Electrical energy for harvesting, refilling, mixing and bubbling 

For both the open pond and the flat panel, the harvesting of the water from the 

reactor and its re-filling are carried out in 8 hours, during 1 night: 3,5 h for the 

harvesting and 3,5 hours for the refilling. These operations are run with a pump, 

which electrical consumption has been calculated has follows: 

 

                             

Eq. 47 

 

Where the power of the pump comes from: 

 

      
    

     
 

Eq. 48 

 

Where ρ is water density [kg/m3], g is the acceleration of gravity [m/s2], ηpump [-] is 

the efficiency of the pump, set at 0.85, Q [m3/s]  is the volumetric flow rate which 

has to be pumped if the time for each harvesting and refilling is wanted to be 

followed and h [m] is the height difference between the two basins before and after 

the pump: thanks to the fact that the model includes also the design of a settler 
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positioned after the bioreactor, it is possible to know the exact h for the harvesting, 

which has been increased to consider the losses in the pipes, while for the refilling, 

data have been taken from literature, considering h equal to 1 m for the open pond 

and 3 m for the flat panel: the difference between these two values is again related 

to energy losses in pipes. 

For what concerns the mixing in the open pond, the following formula has been 

implemented: 

     
    

            
 

Eq. 49 

 

Where Q [m3/s] is obtained from the speed of the water that should be kept in the 

reactor (0.20 m/s) and from the cross-section of the open pond (which depends on 

the geometry), h is the given height difference before and after the paddle wheel, 

taken from literature (0.05 m). ηpaddlewheel is lower that the efficiency of a normal 

pump and is equal to 0.25. 

Both for the open pond and from the flat panel, a bubbling system has to be taken 

into account: for the flat panel, this system should be able both to supply the CO2 

necessary for the  photosynthesis of the microalgae and to guarantee an adequate 

mixing inside the reactor: for this reason, the air bubbled in the flat panel is a 

higher quantity than the air supplied in the open pond. These quantities are 

controlled by the CO2 molar fraction inside the injected air which are 0.04 in the 

case of open pond, 0.02 for the flat panel. The design and the energy consumption 

for the bubbling system have been calculated through Belsim Vali, using a 

compressor. The results is that it is necessary to supply 4 kJ for each kg of air 

injected in the reactor. 
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Chapter 4 

 

 

4.Model Results and Parametric Analysis 
 

 

 

 

 

This chapter presents the results obtained from the dynamic model for microalgae 

cultivation developed. The most significant results obtained from both the 

geometrical configurations (meaning the open raceway pond and the flat panel 

photobioreactor) have been compared to values coming from literature, to evaluate 

the reliability of the model. From this comparison, it came out that the model created 

is able to evaluate the performance of open raceway pond with good accuracy, since 

results are consistent to those coming from literature. Model results for flat panel 

photobioreactor find less correspondence in literature and it seems that they are 

quite optimistic . Moreover, different sets of input data have been used to study the 

behaviour of the model to input variation. 

 

 

 

As explained in the previous chapter, the dynamic models for microalgae growth 

have been created considering two different possible operating strategy: 

1. Both the initial concentration of microalgae in the reactor and the final 

concentration are known. The initial concentration is necessary to start 

again the cultivation after the harvesting. The final concentration, that is the 

concentration at which the microalgae are harvested, depends on the 

technology which is used to separate microalgae from water: this phase 
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may be more or less extreme depending on which is the downstream 

process used to convert microalgae into biofuels or other bioenergy forms. 

The final concentration also depends on the cultivation system. Open pond 

is not able to reach high concentrations, since the light distribution and the 

consequent light regime would cause a reduction in microalgae 

productivity. For flat panels, it is possible to obtain higher concentrations. 

This system configuration is used to evaluate, depending on the location 

and the variable weather data, which is the mean time needed by 

microalgae to reach the target concentration, the mean hydraulic retention 

time (HRT). When HRT in known, it is possible to run the model with the 

second operating strategy. 

2. In this case, the known input data are the initial concentration and the 

mean HRT, which is used during the whole year, or at least for the whole 

season. 

This second strategy is usually applied in real cultivation systems in which 

the harvesting is always done after the same amount of days, without 

considering if the target concentration has been reached or overtaken. 

 

 

 

4.1 Open raceway pond 

 

The following table groups the input data used for the open pond modelling, for 

both the first and second operating strategies: 
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Table 2: Input data for open raceway pond cultivation model 

 

Sevilla (Spain) and Petrolina (Brazil), have been chosen between other locations 

because they have good weather conditions for the whole year, which might 

ensure high productivity values for the supposed microalgae cultivation plant. 

Moreover in Petrolina there is a sugar industry which might supply to the 

cultivation plant both a wastewater stream containing nutrients and flue gases to 

supply CO2 to the culture. The weather data file available for the two locations 

represents a standard year, since it contains measured data coming from different 

years: this increases the reliability of the results of the simulations, as they do not 

refer to the weather conditions of a single year, but to a standard year for the 

location. It is important to notice that the model is able to operate with real 

measured data and to deal with dynamic physical quantities. 

Microalgae species chosen for the simulations have been taken from literature: 

Slegers et al. [66] uses these typologies of microalgae to evaluate the productivity 

of an open pond. This work uses the same microalgae species for the open raceway 

pond and for the closed flat panel photobioreactor to have the possibility to 

compare the technologies. 

All the other input data have been chosen from literature, taking the most common 

values applied in other simulations and models, as presented in the previous 

chapter. 

The value of the final target concentration has been set to 490 g/m3 since in open 

raceway ponds higher concentrations would be difficult to reach, as suggested in 

Sevilla (SPA) Sevilla (SPA)

Petrolina (BRA) Petrolina (BRA)

P. Tricurnutum P. Tricurnutum

T. pseudonana T. pseudonana

Xa_init [g/m
3
] 100 Xa_init [g/m

3
] 100

Xa_target [g/m3] 490 HRT [day] 7

Tw_in [°C] 15 Tw_in [°C] 15

CO2 rate [%] 0.04 CO2 rate [%] 0.04

Z_pond [m] 0.3 Z_pond [m] 0.3

LW [-] 10 LW [-] 10

Location

Tipology

HRT not fixed, X target fixed HRT fixed, X target not fixed

Location

Tipology
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literature: Jiménez [73] uses 470 g/m3 as output concentration while Lee [74] sets 

the output concentration at 500 g/m3. 

 

The following figures show the dynamic variations of some of the most important 

input and output parameters of the model for a time interval higher than HRT. 
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After the dynamic modelling which evaluates the data for each hour of the year, 

some global analysis has been done, obtaining the results showed in the following 

table: 

 

 

Table 3: Output from open raceway pond cultivation model 

 

Open pond productivity obtained are consistent with values found in literature: 

Slegers et al. [66] estimated an annual biomass production for Netherlands and 

Algeria respectively equal to 41.5 t/(ha y) and 63.7 t/(ha y). Acién Fernàndez et al. 

[44] gave a maximum microalgae areal productivity equal to 30 g/(m2 d), higher 

than what results from the model calculations, but still of the same order of 

magnitude. Jiménez et al. [73] obtained for a location in Southern Spain (Malaga) a 

volumetric productivity equal to 0.05 kg/(m3 d), cultivating the microalgae until a 

maximum concentration of 470 g/m3: the cultivation conditions and the results 

from the dynamic model are consistent with the results of this work. 

One of the most important results from the model is the Net Energy Ratio (NER), 

which is defined by Jorquera et al. [24] as the ratio of the total energy produced 

over the energy content of photobioreactor construction and materials, plus the 

Petrolina Sevilla Petrolina Sevilla

N harvesting / HRT 45 50 7 7

Mass microalgae [t] 57.29 64.68 54.04 67.88

CO2 captured [t] 140 156 133 163

CO2 injected [t] 243 260 235 268

CO2 lost to atmosphere [t] 78.62 77.35 78.14 77.27

CO2 ratio losses 0.324 0.298 0.33 0.29

CO2 ratio algae 0.57 0.6 0.56 0.61

N absorbed [t] 5.8 6.55 5.57 6.8

Water injected [t] 109210 121640 120220 119600

Water evaporation [t] 5.8 5.01 5.83 5.24

Energy microalgae [kWh] 342610 386790 323180 405930

Electrical energy [kWh] 18497 19024 18522 19111

Thermal energy [kWh] - - - -

Volumetric productivity [kg/(m
3
*d)] 0.0523 0.0591 0.0494 0.062

Areal productivity [kg/(m
2
*d)] 0.0157 0.0177 0.0148 0.0186

NER 0.108 0.0603 0.1146 0.0942

HRT fixedHRT not fixed

X target fixed X target not fixed
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energy required for all plant operation; in this work, the Net Energy Ratio is 

defined in a slightly different way: 

 

                     
                                      

                        (       )
 

 

If NER is defined as above, it expresses the fraction of the energy produced in the 

cultivation system used by the system itself to generate the biomass. If this value is 

next to 1, the production of microalgae is too energy intensive, requiring a big 

share of the energy produced. 

From the table above, it appears that for both the locations analysed by the model, 

the NER is quite far from 1, showing that the energy demand for the operation of 

the cultivation system in Petrolina is 10.8% of the energy contained in the biomass 

produced, while for Sevilla is 6%. This values are quite promising for a potential 

production of microalgae in these locations, since NER is far enough from 1: even if 

the energy content of open pond construction and materials are added to the total 

energy requirement, it seems reasonable to say that the plant would still be 

convenient from an energetic point of view. 

The mass of biomass produced in 1 year and the number of harvesting is higher in 

Sevilla than in Petrolina: this result may appear not so obvious, since light 

irradiation in Petrolina is higher and more uniform along the year than in Sevilla. 

The reason of a lower productivity in Petrolina might be seen in the temperatures 

reached by the pond, which are higher during the whole year, due to higher 

irradiation: if the temperature of the water is higher than the optimal value for 

microalgae growth, the productivity decreases fast, as showed in the previous 

chapter, where the temperature factor affecting the growth rate is presented 

(Figure 9). Since there is no temperature control and the temperature of the water 

in the pond varies depending on weather conditions, the thermal energy 

requirement for the open system is 0.  

Another important output of the model is the quantity of CO2 fixed by the 

microalgae during the growth process; this result is interesting from an 

environmental point of view: the downstream process to transform microalgae 

biomass into biofuel releases CO2 to the atmosphere, with a negative 
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environmental impact. Since the cultivation phase captures more CO2 than the 

quantity released, using the data of CO2 fixed in the algae it is possible to generate 

a global balance for the CO2, for the entire biofuel production chain: this 

environmental analysis may lead to a comparison to other biofuel chain 

production and with traditional fossil fuel, to evaluate which product has a positive 

or negative environmental impact. 

About one third of the CO2 injected in the pond is lost to the atmosphere due to gas 

exchange through the surface of the pond; the saturation concentrations of the 

substances in the water vary with the temperature of the water: the higher the 

temperature is, the lower the CO2 saturation limit is. For this reason, the quantity 

of CO2 lost to the atmosphere is higher in Petrolina than in Sevilla. 

The higher biomass production in Sevilla implies a higher value of injection of CO2, 

to ensure the growth of the microalgae: CO2 is not wanted to be a limiting factor to 

the growth. 

At each re-filling of the pond, for the restart of the cultivation phase, nutrients are 

supplied in excess, to ensure that the nutrients would not be a limiting factor: the 

model gives as output the exact quantity of nutrients consumed by the microalgae. 

If the hydrothermal gasification is the downstream process to the cultivation, this 

process includes also a phase of salt separator: this means that all the nutrients 

added in excess might be collected and reused in the pond. 

The electrical energy supplied to the pond is higher for Sevilla than for Petrolina: 

even if there is more energy requirement in Petrolina for CO2 injection, the energy 

required for the harvesting and the refilling, which are more in Sevilla than in 

Petrolina, determines this situation. 

In the model is run with the first operating strategy (meaning that the inputs are 

the initial and final concentration), one of the output would be the days needed to 

reach the target final concentration. As showed in the following figures (Figure 11 

and Figure 12), the number of days is not the same along the year, since it varies 

with weather conditions. 
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Figure 11 and Figure 12: Hydraulic Retention Time evaluation for Sevilla and Petrolina 

 

For Sevilla (Figure 11), in wintertime, the harvesting time is extremely long, due to 

low irradiation and low temperatures, which make the microalgae growth in the 

pond slow and difficult. A possible strategy to overcome this limitation might be to 

interrupt the production during the winter and being operative only in 

summertime: in this case, the productivity during the whole year would decrease, 

since a part of the biomass would not be produced, but the NER would positively 

decrease, because there would not be any energy consumption during the winter: 

the production lost is less than the energy saving obtained, and so the overall effect 

would be positive. 

For Petrolina (Figure 12) the hydraulic retention time is more homogeneous along 

the year, but longer: the reason might be that weather conditions in Petrolina 

cause a strong increase of pond temperature, that may cause a consequent 

reduction in microalgae productivity, when pond temperature is higher than the 

optimal temperature for microalgae growth (see Figure 9, temperature factor). 

This is a reasonable explanation to the lower productivity of Petrolina, if compared 

to Sevilla, since the longer hydraulic retention time occurs in summer, when 

atmospheric temperature is higher.  

 

After a first analysis has been conducted using the input data from literature, a 

parametric analysis took place, and some of the inputs have been changed within a 

range, trying to evaluate how to increase the productivity of the open reactor. 
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Many of the input data might not be modified without implying a strong change in 

the reactor: these are, for example, the location or the microalgae species; also the 

microalgae output concentration cannot be higher than the value already used in 

the simulation, being 0.5 kg/m3 the most used concentration in literature. 

For these reasons, the depth of the open raceway pond and the initial 

concentration of the microalgae are the most significant parameters that might 

change within a range. A parametric analysis has been carried out, varying the 

values of these input characteristics, for both the locations. Here are reported the 

results for Petrolina, being those for Sevilla quite similar. 

Before creating a simulation tree, pond depth has been varied between 0.1 m and 1 

m, to understand which are the most interesting values to analyse in a further 

simulation. All the other input of the model have been kept constant, assuming the 

values reported in Table 2. Here the most interesting results are reported: 

 

 

Figure 13 and Figure 14: areal [g/(m2*d)] and volumetric [g/(m3*d)] productivity for open 
raceway pond when pond depth varies between 0.1 and 1 m 

 

From the figures above, areal productivity increases with depth: this is quite 

obvious, since the more volume per unit area there is, the more biomass is 

produced per unit area; the slope of the curve, after an initial linear trend until 

approximately 0.4 m depth, gradually decreases and it seems that for deeper 

ponds, areal productivity might reach an asymptote. Volumetric productivity 

reaches a maximum value for 0.3 m depth, showing that the most interesting 

values to consider for a further analysis are between 0.2 m and 0.4 m. The 

volumetric and areal productivities of the open raceway pond change with depth 
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for a combination of different factors; all of them are related with light penetration 

in the pond, and pond temperature: light in particular is the most relevant factor 

which determines the evolution of these parameters.  

If depth is analysed together with the initial microalgae concentration in the pond, 

the following simulation tree is created: 

 

 

Figure 15: Simulation tree for open pond parametric analysis 

 

Table 4 , in the following page, shows the results of this parametric analysis, giving 

for each couple of values of depth and initial concentration the values assumed by 

some of the most important parameters. 

The production of microalgae mass increases when the initial concentration 

changes from 50 g/m3 to 250 g/m3: keeping in the pond a higher initial 

concentration implies to have the possibility to start the consecutive growing 

phase after the harvesting with a higher growth rate of the reactor, which means 

that in the same amount of time, the reactor produces more biomass. For this same 

reason, HRT decreases when biomass initial concentration assumes higher values.  
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Volumetric productivity maintains the same trend with pond depth seen in figure 

14 only when initial concentration assumes low values. For higher initial 

concentrations, volumetric productivity reaches its peak for low depths: when the 

pond is deep and microalgae concentration is high, solar radiation cannot easily 

enter the reactor. Areal productivity increases with initial concentration biomass 

and with pond depth, since it does not take into account in its expression pond 

depth itself: the higher the biomass produced is, the higher areal productivity 

would be. 

Finally, NER is higher in case of high initial concentration, because more energy is 

required for the more frequent phase of harvesting and refilling of the pond. 
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Table 4: Parametric analysis results for open raceway pond 

mass [t] 31.54

HRT [d] 10

Vol prod 0.0432

Ar prod 0.008

NER 0.12

mass [t] 49

HRT [d] 11

Vol prod 0.0452

Ar prod 0.0136

NER 0.12

mass [t] 61

HRT [d] 11

Vol prod 0.042

Ar prod 0.0168

NER 0.13

mass [t] 42

HRT [d] 7

Vol prod 0.0589

Ar prod 0.0118

NER 0.1

mass [t] 60

HRT [d] 7

Vol prod 0.0557

Ar prod 0.0167

NER 0.1

mass [t] 73

HRT [d] 7

Vol prod 0.0503

Ar prod 0.0201

NER 0.11

mass [t] 49

HRT [d] 5

Vol prod 0.0663

Ar prod 0.0133

NER 0.09

Vol prod 68

HRT [d] 5

Vol prod 0.0622

Ar prod 0.018

NER 0.095

mass [t] 80

HRT [d] 5

Vol prod 0.0554

Ar prod 0.0221

NER 0.1

X_init [g/m3]

50 Z_pond [m]

0.2

0.3

0.4

150 Z_pond [m]

0.2

0.3

0.4

250 Z_pond [m]

0.2

0.3

0.4



89 
 

 

4.2 Flat Panel Photobioreactor 

 

The following table shows the input data for the flat panel model, for both the two 

operating strategies: 

 

 

Table 5: Input data for flat panel photobioreactor cultivation model 

 

The same locations and microalgae species have been used for both the open 

raceway pond and the flat panel simulations, to have the possibility of a 

comparison between the two cultivation systems taken into analysis. 

The azimuth of the panel is an input which may vary from 0°, when the panel faces 

south, to -90°, when the panel faces east. The model is not able to consider 

different slopes of the reactor, which may only be positioned vertically: this 

position is the most favorable for light distribution and dilution, leading to the 

highest values of productivity ([13]). 

CO2 molar concentration in the injected gases is lower than for the open raceway 

pond, since injected gases in flat panel photobioreactor do not only have the task 

to supply the CO2 needed by the microalgae for the photosynthesis, but also to 

generate the necessary mixing in the reactor: as explained in the previous chapter, 

Sevilla Sevilla

Petrolina Petrolina

P. Tricurnutum P. Tricurnutum

T. pseudonana T. pseudonana

0 0

-90 -90

slope [°] 90 slope [°] 90

Xa_init [g/m3] 3000 Xa_init [g/m3] 3000

Xa_target [g/m3] 6000 HRT [d] 4 or 5

CO2 rate [%] 0.02 CO2 rate [%] 0.02

h [m] 1.5 h [m] 1.5

s [m] 0.05 s [m] 0.05

d [m] 0.5 d [m] 0.5

Location

Tipology

azimuth [°]

HRT not fixed, X target fixed HRT fixed, X target not fixed

Location

Tipology

azimuth [°]
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adequate mixing is essential to obtain good levels of productivity in every 

microalgae cultivation system.  

Since the flat panel photobioreactor has a complex geometry, more geometrical 

data are needed as input, if compared to the open raceway pond system. As 

explained by Acién Fernàndez et al. [44], heights lower than 1.5 m and widths less 

than 0.10 m are preferred; following this indication and data from Slegers et al. 

[69], the distance between the vertical panels has been set equal to 0.5 m, the 

height of each panel to 1.5 m and the thickness to 5 cm. Both the height and the 

distance between panels have been varied within a range of possible values in a 

further parametrical analysis. 

The initial and final concentrations have been suggested by Münkel et al. [11]; the 

values are higher than in the case of open raceway pond: the more sophisticate 

closed photobioreactor allows to reach higher concentrations without 

compromising the productivity of the cultivation system. This is possible thanks to 

an optimal light distribution over the whole reactor, for the entire operational 

time, guaranteed also by an adequate mixing of the medium. 

 

The flat panel model, as the open raceway pond model, is able to produce the 

dynamic trend of all the time dependent physical quantities which are included in 

the analysis: the results are graphically similar to those produced by the flat panel 

and for this reasons they are not reported here. 

The global results for the flat panel reactor are shown in the following tables: the 

first table reports the results for the first operating strategy, meaning the case in 

which both the input and output concentrations of microalgae are known, while 

the second table corresponds to the second operating strategy, when the input 

parameters are the input concentration and the hydraulic retention time. 
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Table 6: Output from flat panel photobioreactor cultivation model (1) 

 

 

Table 7: Output from flat panel photobioreactor cultivation model (2) 

 

Petrolina Sevilla Petrolina Sevilla

N harvesting 65 77 88 81

Mass microalgae [t] 289 345 393 366

CO2 captured [t] 860 976 1083 1025

CO2 injected [t] 956 1085 1204 1139

CO2 ratio algae 0.9 0.9 0.9 0.9

N absorbed [t] 35.92 40.77 45.2 42.77

Water injected [t] 46023 54592 62353 57742

Energy microalgae [kWh] 1733700 2063700 2350700 2191100

Electrical energy [kWh] 35634 40476 44906 42473

Thermal energy [kWh] 1310300 2124000 1267400 2093900

Volumetric productivity [kg/(m3*d)] 0.5851 0.6965 0.7934 0.7395

Areal productivity [kg/(m2*d)] 0.0794 0.0946 0.1077 0.1004

NER 1.55 2.09 1.1165 1.95

south east

HRT not fixed HRT not fixed

Petrolina Sevilla Petrolina Sevilla

HRT 5 5 4 4

Mass microalgae [t] 284 367 390 380

CO2 captured [t] 844 1041 1081 1052

CO2 injected [t] 938 1157 1201 1168

CO2 ratio algae 0.9 0.9 0.9 0.9

N absorbed [t] 35023 43044 45.11 43.88

Water injected [t] 46691 52620 62422 57201

Energy microalgae [kWh] 1701300 2197000 2336600 2273000

Electrical energy [kWh] 34973 43043 44819 43542

Thermal energy [kWh] 1292400 2264900 1262700 2113900

Volumetric productivity [kg/(m3*d)] 0.5742 0.7415 0.7886 0.7672

Areal productivity [kg/(m2*d)] 0.078 0.1007 0.1071 0.1041

NER 1.56 2.101 1.1192 1.8983

Xa final mean [kg/m
3
] 5.87 6.707 6016 6.077

HRT fixed HRT fixed

south east
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For the two operating strategies, the results are reported for both the locations 

(Sevilla and Petrolina) and for the two most significant orientations, meaning 

when the flat panel is facing south (and north) and when it is facing east (and 

west). 

For both the locations, the east-west orientation appears to be preferable, since it 

leads to a higher microalgae production: as explained by Sierra et al. [13], if the 

orientation of the two faces of the reactor is east-west, the intercepted radiation is 

maximum during the first and last solar hours, because of the orientations towards 

sunrise and sunset. Therefore, light availability during the daylight solar cycle is 

also more homogenous for this configuration. 

Areal and volumetric productivities are consistent with values found in literature: 

Chisti [2] reports a volumetric productivity equal to 1.535 kg m-3 d-1, higher than 

the values obtained from the model;  if compared to some other works, the results 

coming from the dynamic model, especially the areal productivity, seem to be 

optimistic: for example, the microalgae production coming from the model (~ 400 

t/(ha*year) ) is two times higher than the production obtained by Slegers et al. 

[69] from a flat panel reactor located in Algeria which produces up to 200 

t/(ha*year). Moreover, the volumetric productivity for a flat panel reported by 

Jorquera et al. [24] is equal to 0.27 kg m-3 d-1 , where the model reports values 

equal to 0.8 kg m-3 d-1. Form a recent work by Münkel et al. [11], volumetric 

productivities equal to 1.25 kg m-3 d-1 have been reached in experimental analysis. 

The difference to some values found in literature could be a consequence of a 

series of related factors: the microalgae species chosen may strongly influence the 

productivity of the reactor; moreover, the model created in this work contains a 

temperature control which fixes the temperature inside the reactor at the optimal 

level for microalgae growth: this means that the specific growth rate is not infected 

by the temperature factor (which is always equal to 1), and consequently it is 

nearer to the maximum growth rate than in the real operating conditions, where 

the temperature is kept inside a range of acceptable values for the growth of 

microalgae; moreover, the locations chosen for the analysis present optimal values 

of irradiation, next to the saturation irradiation, where the light intensity factor 

affecting the growth rate is next to 1. 
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From Table 6 and Table 7 it is possible to see that there is a high difference in 

productivity in Petrolina depending on the orientation of the panel: if the two faces 

of the reactor are oriented towards east and west, the productivity is higher than 

in the case in which the reactor is oriented towards south and north. A possible 

explanation might be related to radiation reflection by the panel: when the sun is 

high in the sky, the radiation hits the flat panel with an incident angle next to 90°; if 

the incidence angle is too high, radiation could not enter the reactor, due to glass 

reflection. For this reason, if the panel is oriented towards south, the largest part of 

the radiation during summer is lost and do not contribute to microalgae growth: if 

the orientation if east-west, the radiation is collected during the morning and the 

afternoon with a incidence angle next to 0°. 

The same situation does not take place in Sevilla, because the sun does not reach 

high elevations during the whole year; the east-west orientation is preferable also 

in Sevilla, as suggested by Sierra et al. [13]. 

In general, higher volumetric and areal productivity values have been reached both 

in Sevilla and in Petrolina, and the difference between the two locations is less 

remarkable than it was for the open pond; flat panel photobioreactor growth 

model includes a temperature control which maintains the temperature of the 

water at a constant level. 

In spite of the high productivities reached in Sevilla, this location appear to be less 

suitable for a flat panel photobioreactor, than Petrolina, as shown by the NER 

parameter. The thermal energy requirement is extremely high in Sevilla, where 

winter time brings low atmospheric temperatures: the photobioreactor should 

operate only during summertime. 

Microalgae mass production in flat panel reactor is much higher than in open 

raceway pond, CO2 absorption is more efficient, but the thermal energy 

requirement implies a NER value higher than 1; there are different possible 

strategies to solve this problem: it might be chosen to keep the water in the reactor 

within a range of suboptimal temperatures, where the productivity of microalgae 

is still high, and the thermal energy requirement is lower; moreover, there is the 

possibility to leave the temperature in the reactor without any control during the 

night: this might be an interesting solution also to limit the microalgae losses due 
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to dark respiration which are higher for optimal temperature: if water 

temperature is lower than the optimal value for growth, the metabolic energy 

required by the microalgae for their maintenance during the night is lower. 
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Chapter 5 

 

5.Conclusions 

 

 

 

 

The aim of this work is to create a dynamic mathematical model that is able to 

describe the operation of two different typologies of cultivation systems (open 

raceway pond and flat panel photobioreactor) through an accurate description of 

the microalgae growth process, together with the use of mass and energy balances. 

Moreover, a parametric analysis is conducted to evaluate the importance of some 

of the factors which influence microalgae growth. 

In the first part of Chapter 2, microalgae biology is presented, together with the 

reasons which make this biomass an interesting alternative to traditional crops 

and lignocellulosic biomass for energy production.  Moreover, microalgae 

metabolism and the photosynthetic process are described dedicating some 

attention to the parameters which influence microalgae growth, which will be later 

used in the cultivation phase modelling. In the second part of Chapter 2 an 

overview of the technologies for the cultivation of the microalgae is performed.  

Chapter 3 contains the description of the model of the microalgae cultivation phase 

which has been developed. After the description of the system boundaries the 

reactor geometry is analysed:  two different configurations have been taken into 

account, being the open raceway pond and the flat panel photobioreactor. The 

central and most important part of the model is the microalgae growth model 

which includes the mathematical description of the dependence on physical 

parameters.  

In Chapter 4, the results of the simulations are presented; results of other works 

taken from literature are used to validate the model and to test its reliability, 

observing its behavior also through a parametric analysis. 
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From the analysis that has been conducted, open raceway pond appeared to be a 

promising technology for extensive microalgae cultivation: low investment and 

maintenance costs and a favourable value of NER demonstrate the possibility of 

cultivating microalgae with a positive economic and energy balance. On the other 

hand, low productivity dictates the necessity of covering wide surfaces of ground. 

Although the mass produced by the flat panel photobioreactor in 1 year is more 

than five times higher than the production reached by the open pond, the energy 

demand of this technology is extremely high: in particular, thermal energy 

requirement makes the production of microalgae with this technology 

inconvenient from an energetic point of view. Research and development are 

needed to make this technology more competitive. 

Both the two cultivation technologies are strictly dependent on the microalgae 

species that is cultured: light and temperature factors, together with maximum 

specific growth rate assume different values changing from one microalgae species 

to another. A possible strategy to increase the productivity of these technologies 

might be to operate a genetic engineering research to create an sort of “optimal” 

microalgae species for energy production: at present, there are many researchers 

which are exploring this possibility.  

The dynamic model for microalgae growth phase that has been created is a flexible 

instrument for the evaluation of the productivity of cultivation systems. The 

possibility of varying all the input data of the model, such as the location, the 

microalgae species considered or the geometry of the reactor make the model an 

interesting tool for different kind of applications. Moreover, the use of a 

wastewater stream as a source for nutrients and the use of flue gases for CO2 

injection allow the model to be coupled with tradition power plants; coupling a 

microalgae cultivation and transformation plant with some typologies of industries 

such as, sugar cane industry, it is possible to create a system with no CO2 emissions 

and with a positive exploitation of the industrial wastes.  
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