—) DIPARTIMENTO
— DI INGEGNERIA
— DELL'INFORMAZIONE

UNIVERSITA DEGLI STUDI DI PADOVA

Department of Information Engineering

Master’s degree in Computer Engineering

Master’s degree Thesis

Methodologies to support the development

of secure code

Supervisor: Candidate: Enrico Vicentini
Dr. Mauro Migliardi Badge number: 2024043
Company supervisors:

Luca Bianconi, Filippo Oliva

Academic year 2021/2022

Graduation date 05/12/2022

i

Contents

1 Introduction

2 State of the art
2.1 Cyberattacks
2.1.1 Cross-Site Scripting attack (XSS attack)
2.1.2 SQL Injection attacko
2.2 Compiler level security
2.2.1 .NET Compiler Platform API ("Roslyn”)
2.3 Visual Studio Analyzers and code-fixes
2.3.1 Code static analysis
2.3.2 Roslyn based analyzers features
233 Code fixes
2.4 Language utilitieso

3 Security Enhancer implementation
3.1 Project structure
3.2 SecurityEnhancer SDK o000
3.3 SecurityEnhancer analyzers L.
3.3.1 XSS analyzer
3.3.2 SQL analyzero

4 Results evaluation

5 Conclusions

13
19
23
24
26
28
28
32
33

35
35
37
39
39
46

55

61

Abstract (english version)

In the development of industrial software products, adherence to certain standards, first
and foremost security standards, is essential to ensure not only the quality of the software
but also to make sure that the software is not a vehicle for the introduction of security
flaws into the systems that host it. The modern software industry routinely involves the
use of third-party libraries and software components for integration into its programs.
This code is often shared publicly through opensource repositories (and practices). How-
ever, in using this code, one usually sets out to adopt it to fulfill the functional needs
necessary for the systems it becomes part of, without taking into account its security
details and requirements.

A key aspect of producing quality software is therefore to have the ability to analyze and
evaluate the security of these libraries before and after they are inserted within one’s code
(and software).

Gruppo SIGLA as a software company has a primary interest in ensuring according to
industry standards the quality of the code produced by its projects. In particular, Gruppo
SIGLA wants to implement a static code-security analyzer (e.g., third-party library safety
analysis) and auto-correction suggestion tools to support its engineers in meeting specific
code quality requirements, in terms of safety.

In addition, it is important to understand the state of the art, identify and define ap-
propriate metrics for evaluating each of the code safety parameters under consideration.
Once defined, it will also be necessary to implement and validate the algorithms for cal-
culating these metrics.

Ultimately, the goal is to implement the designed analysis tools in an ”analyzer” module
that can eventually be integrated within development environments (IDEs) to more nim-
bly support the work of developers. In the first instance, one can think of integrating the
analyzer as a Visual Studio 2022 Community Edition plugin with the possibility, later, of
it being easily integrated into other IDEs, such as Visual Studio Code.

CONTENTS CONTENTS

Abstract (italian version)

Nello sviluppo di prodotti software di tipo industriale il rispetto di determinati standard,
innanzitutto di sicurezza, e essenziale per garantire non solo la qualita del software ma
anche per fare in modo che quest’ultimo non sia veicolo per l'introduzione di falle di
sicurezza nei sistemi che lo ospitano. La moderna industria del software prevede, come
pratica di routine, 1'utilizzo di librerie e componenti software di terze parti da integrare
nei propri programmi. Questo codice e spesso condiviso pubblicamente tramite repository
(e pratiche) opensource. Tuttavia, nell'utilizzo di questo codice di solito ci si propone di
adottarlo per assolvere alle necessita funzionali necessarie ai sistemi di cui entra a fare
parte, senza tenerne in considerazione dettagli e requisiti di sicurezza.

Un aspetto fondamentale per produrre software di qualita € quindi avere la possibilita
di analizzare e valutare la sicurezza di queste librerie prima e dopo che vegano inserite
all'interno del proprio codice (e del proprio software).

Gruppo SIGLA in quanto azienda produttrice di software ha un precipuo interesse nel
garantire secondo standard industriali la qualita del codice prodotto dai suoi progetti.
In particolare, Gruppo SIGLA vuole implementare un analizzatore di sicurezza statica
del codice (ad es. analisi sicurezza librerie di terze parti) e strumenti di suggerimento
di correzione automatica per supportare i suoi tecnici nel rispetto di specifici requisiti di
qualita del codice, in termini di sicurezza.

Inoltre, e importante comprendere lo stato dell’arte, individuare e definire adeguate met-
riche di valutazione di ciascuno dei parametri di sicurezza del codice presi in consider-
azione. Una volta definite sara inoltre necessario implementare e validare gli algoritmi di
calcolo di suddette metriche.

Da ultimo l'obiettivo € quello di implementare gli strumenti di analisi progettati in un
modulo “analizzatore” che possa essere infine integrato all’interno di ambienti di sviluppo
(IDE) per supportare pit agilmente il lavoro degli sviluppatori. In prima battuta, si puo

pensare all’integrazione dell’analizzatore come plugin di Visual Studio 2022 Community

4

CONTENTS CONTENTS

Edition con la possibilita, a seguire, di essere facilmente integrato in altri IDE, come ad

es. Visual Studio Code.

1 Introduction

Making mistakes is very often a good way to learn, however, if these mistakes cause
the security and integrity of a system to be compromised, it is a good idea to make sure
they are as few as possible. In most cases errors come from a human oversight and so are
not voluntary. In particular in the field of I'T, programmers are faced with the problem
of ensuring the security of the code they develop in order to limit the possibility of some
malicious person being able to break into the system exploiting code flaws. It is for this
reason that "Gruppo S.I.G.L.A.” has proposed as a thesis project the development of a
tool that can support programmers in writing secure code.

Information technology has now become part of everyday life, both in the private and
business spheres, resulting in an increase in the number of network-connected devices
and the emergence of new technologies. This phenomenon has led to an increase in the
number of people interested in the world of information technology that, who for passion,
who for the prospects of earning money, are investing time and money in this new field of
work. With regard to the case at hand, this translates into an increase in the number of
individuals with programming skills that, in most cases, are hired in a work environment
in compliance with laws and regulations, while in others are employed in illegal activities
that lead to the perpetration of cyber crimes. The growth in the number of hackers has
obviously resulted in the growth in the number of cyber attacks, suffice it to say that the
number of annual malware infections has increased from 12.4 million in 2009 to 812.67
million in 2018 with an increase of more than 8 million in the different malware specimens

between 2007 and 2017. Figure 1 and Figure 2 show this two trends.

1 INTRODUCTION

Number of new malware specimen 8.40
(count in millions) 6.83
6.00

5.14

3.38
2.58 2.64

0.89
2009 20610 2011 20612 2013 2014 2015 2016 2017 2018 0.13 | |

Total Malware Infection Growth Rate (In Millions) 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 1: Server configuration for Elgg Figure 2: Server configuration for example

The vastness of computer systems (larger system means more entry points) and the
wide variety of cyber attack kinds makes the situation of absolute security almost unattain-
able. Even a careful design of the system structure and careful definition of defensive
systems may not necessarily be suffcient to prevent the most dangerous intrusions or to
limit their damages.

This is the motivation behind the need for the creation of a tool that can warn the
programmer in real time if he or she has written code that is potentially prone to vulner-
abilities.

To be more specific, the idea is to implement a syntactic analyzer with code fix capability
able to highlight in real time critical issues in the code, i.e., those variables, properties,
etc., which can become vehicles for malicious code or otherwise give access to confidential
data or memory areas, and propose to the user a possible countermeasure to the vul-
nerability. The analyzer will be built as a plugin for the popular Microsoft IDE Visual
Studio Community 2022. The .NET Compiler Platform SDK (Roslyn API) present
within this editor will act as a power supply for the analyzer making it possible to have
instantaneous supervision over what is typed by triggering alerts and correction hints in
case of irregularities in the code. Due to the fact that the analysis is performed without

executing the program, it has been called static.

This thesis will present the analyzer creation process starting from Chapter 2 which
illustrates the fundamental concepts which the experience is built on. Special attention
is paid to explain what a cyberattack is and to present the two kinds of attack that
the analyzer aims at addressing. Moreover, the development environment is introduced,
exposing the meaning of compiler, with a focus on the .NET Compiler Platform SDK
("Roslyn”), and of analyzer, in terms of structure and theoretical features. After that
the thesis will continue with Chapter 3 which shows the implementative details of the

solution and so, to be more precise, how the error detection and the code fix procedures

7

1 INTRODUCTION

are carried out. Chapter 4 shows the project results, verifying the proper functioning of
the extension in identifying and correcting errors. Chapter 5 contains a sum up of the
experience to verify the effectiveness of the work done, focusing in understanding how
available this solution can be, what are the critical points and which aspects may and
what aspects can improve the overall experience of using the extension in terms of types

of errors detected and quality of corrections.

2 State of the art

This section will present the basic concepts for understanding the topics covered and
the tools used. It will be clarified what a cyber attack consists of and more specifically
the Cross-Site Scripting Attack (XSS Attack) and SQL Injection types will be explained.
These are indeed the threats to code security, which the analyzer developed as the subject
of this thesis aims to detect and eradicate. Therefore, it will be seen how errors or
carelessness during software coding can make it vulnerable to these kinds of attacks.
As next step there will be the analysis of the tools that made the project achievable,
so, in particular, the Roslyn API and the context which embeds it. Finally, the thesis
will provided information on the structure of an analyzer and also about the theoretical

concepts used in it.

2.1 Cyberattacks

Perpetrating a cyberattack consists of exploiting a vulnerability of a computer, infras-
tructure, network or computerized system to cause a harm to the target. In this context,
the term damage includes loss of data confidentiality, integrity and availability, where
for confidentiality is meant data access granted only to allowed people, for integrity that
private data or system functionalities did not change without the owner will or control
and for availability the possibility to access data, resources and functionalities whenever
the need arises. In addition to these three principles called C-I-A Triad other two char-
acteristics are sometimes desirable: the authentication, the ability to demonstrate the
truthfulness and validity of something, and the nonrepudiation, that is the assurance
that what has been established between two parties cannot be denied. As a consequence
harms can be classified in four categories: interception, interruption, modification

and fabrication; depending on the attacker’s goal [1].

2.1 CYBERATTACKS 2 STATE OF THE ART

If the attack permits to the attacker to obtain information that normally he is not
authorized to achieve, a loss of confidentiality occurred due to the interception of private
assets. An example of this kind attack is the so called phishing in which using a fake
version of a website login page, victim’s credentials are intercepted and stolen. Figure 3

shows a schematization of the situation.

Original Connection P/ 1Y

&= - EEE
A ~7

h\ /4

[

New Connection

Man in the middle

Figure 3: Interception type scheme

When an attack is able to tamper the usual functioning of a system’s asset instead,
availability problem arises and an interruption of a system’s service or functionality oc-
curs. The so called DoS - Denial-of-Service attacks are an example of this threat, in
fact overloading a system’s network connections through a huge quantity of resource’s
requests, brings it to collapse or at least to slowing down. Scheme of this can be found in

Figure 4.

Security Attacks

Interruption

I sok

® intruder interzapt iniFe #Thit |s ar altaceon avel sbilty
micid & and stop
covmunl cition

®An pet ve intruder
Itrader -

Figure 4: Interruption type scheme

10

2 STATE OF THE ART 2.1 CYBERATTACKS

In the cases in which system’s functionalities or data are altered by someone not au-
thorized, an integrity loss occurs and a modification attack is performed. An example of
such an attack is the Cross-Site Scripting attack (XSS attack) that will have a detailed
presentation later on in the discussion. Just to give an idea, Figure 5 contains a graphical

representation of this situation.

Active Attacks (Modifications of messages)

Internet

Figure 5: Modification type scheme

In the fabrication category fall all those attacks that create from scratch illegitimate
data, information or resources, providing the public with material whose authenticity has
not been verified. The SQL Injection attack, presented at page 19, is an example of attack
which is executed in the just explained way. Figure 6 provides a visual scheme of how the

attacks belonging to this category operate.

Fabrication

& 2

Alice Bob

Fabricated .
Intruder

message

Wintruder fabricate a message and send B This is an attack on authenticity

impersonatingthe sender BAnactiveintruder

Figure 6: Modification type scheme

11

2.1 CYBERATTACKS 2 STATE OF THE ART

Countermeasures types

The term countermeasure refers to a means of countering threats. The eventual dam-

ages resulting from the exposure to an attack can be managed in different ways:

Prevention: Implementing measures able to remove a vulnerability. It can be done

inside or outside the system. Some examples are firewalls, access limitation, etc.

Deterrence: Discourage attackers by increasing the effort required to perform the

attack or even better remove the motivation behind it.

Deflection: Redirection towards a more convenient target like sandbox or honeypot

where the attack becomes harmless

Detection: Identifies whenever any event tries to activate not planned behaviours

of the system.

Recovery: Set up tools that permits the recover from the damages caused by

successful attack, such as backup procedure.
Mitigation: Activate procedure to limit the impact of an attack against the system.

To limit the exposure of systems to the threat of cyberattacks, countermeasures can be
placed in different points of the system depending on the defensive strategy applied [2].

Figure 7 gives a general idea about where and how controls act.

Preemption y
. System Perimeter
prelazione (/ \
External Internal System
Prevention Prevention Resource
\ ’ Detection
—_— . ALLARME
R S = o
Intrusion ~ i ——
Attempts __gge- ”0|9—.— Response
7' — = N
/ deflection
External Internal
Deterrence \ Deterrence Faux falso /

Environment

Figure 7: Controls location places

Within this context ,the proposed project acts like an intermediate solution between

the detection and prevention types, in fact it will identify the vulnerabilities in the just

12

2 STATE OF THE ART 2.1 CYBERATTACKS

produced code, warns the programmer about the possible weaknesses and suggests any

methods able to prevent the occurrence of the attacks.

Now that an overview about which dangers a computer system may have to face was
given, it’s time to focus the attention on the kinds of attacks that the analyzer designed in
the project will try to prevent. The choice was made taking into account the candidate’s
personal knowledge of attacks, the opportunity to enrich the cybersecurity knowledge by
dealing with an attack that has not yet been dealt with, and the suggestions given by the
host company about how useful it might actually be having a support against this kind
of threat. These are the motivation between the choice of building an analyzer that helps
in preventing code flaws that can expose the system to Cross-Site Scripting attack

(XSS attack) and SQL Injection attack.

2.1.1 Cross-Site Scripting attack (XSS attack)

A Cross-Site Scripting attack is a cyberattack which involves three different actors:
an attacker, a victim and a web application through which the attack is carried out.
The owner of the web application plays also the role of victim because if a user suffers a
damage the provider itself is subject of harm due to the consequent loss of reliability. The
XSS exploit the principle of code injection to alter the regular behaviour of the infected

software.

Having access to a user’s personal web page is usually difficult for an attacker due
to the presence of security measures like authentication, sessions cookies and so on. For
this reason hackers adopted another strategy to execute their malicious purposes, that
is injecting code into victim’s browser instead of directly in the pages. This solution is
quite simple to put in place, in fact browsers execute every instructions received from a
web page. If this instructions consist of malicious code the browser is not aware of its
nature and treats it as normal code performing whatever he reads from it. For this reason
if someone is able to read and modify the URL generated by, for example, the website
request message of editing a field in a user’s profile, that person has the capability to
create a modified version of it and the power to control the behaviour of the page. Of
course to do that, is also necessary to be in possess of the authentication token of the

user’s session that is one time generated during the login operation, and so not so easy

13

2.1 CYBERATTACKS 2 STATE OF THE ART

to get. However, if it’s the user himself to access the page in which the malicious code is
injected, the token is already associated with his session and so the only thing left to the
hacker is to write the correct instructions to trigger the editing request that the user did
not actually authorize. To be aware of the structure of the url used by the website, the
attacker just need to enrol in it and use a sniffing tool to intercept the request messages
that the pages sent when an operation on the data is required. Figure 8 shows a simple

representation of the scenario.

a - Malicious code

Attacker . _ Target

i web5|te

® Page from

- the target website "
3 [
Victim

Figure 8: General scheme of an XSS attack

Two types of attack

There are two typical ways for attackers to inject their code into a victim ’s browser
via the target website. One is called non-persistent XSS attack, and the other is called
persistent XSS attack [3].

a. Non-persistent (Reflected) XSS Attack

When it comes to Non-persistent XSS, it means that the attack is performed exploiting
a behaviour of some websites that after having received an input and having elaborated it,
they send a response message containing the input itself (reflection). If this input consist
of JavaScript malicious code and if no appropriate countermeasures (input sanitize) are
applied from the website, the script will be injected in the returned page during the

reflection step.

As an example let’s imagine that the following URL is sent to a victim and that

him/her opens it (obviously special characters need to be encoded):

http://www.example.com/search?input=<script>alert("attack");</script>

14

2 STATE OF THE ART 2.1 CYBERATTACKS

where input is the name of the parameter that contains the text typed from the user.

The website www.example.com as response returns a page containing the result of the
search and the original input as a reminder of about what the search was for. If the input
is not properly sanitized the script part is injected into the victim’s browser and the

alert message is displayed. Figure 9 shows this type of attack in a simple scheme.

a \ Il Malicious code

Attacker
¥
Other pages or ——— . y _
applications T (I —_—
— coiEtEL ge
- Page from W cbsite
- the target wehsite _ ! i
. ;.| -
Victim

Figure 9: Non-persistent XSS attack

b. Persistent XSS Attack

In the persistent XSS attacks instead, attackers can directly send the malicious code
to the target website, which stores it in a persistent storage. If later on an unaware user
accesses the website area in which the injected code is stored, their browsers execute it
like normal code bringing to fruition the attack. Obviously, even in this case, the attack
is successful if no input sanitizing methods are applied. The experiment treated in the
this report is based on precisely this second type of attack. In Figure 10 you can see a

representation of this attack.

Attacker 4’94'0.
~°¢¢ s

.._‘\‘ e

) Target

% Page from I- & website
- the target website =

r.-J | - —

Victim

Figure 10: Persistent XSS attack

15

2.1 CYBERATTACKS 2 STATE OF THE ART

When talking about cross-site attack is important to pay attention in not confusing
the Cross-Site Scripting (XSS) with the Cross-Site Request Forgery (CSRF) [1]. In
CSRF, the forged requests are actually real cross-site requests because the malicious web-
site page (the third-part) sends a the forged request to another website on behalf of the
victim, while in XSS they are in reality ”same-site” requests. A CSRF can be performed
only if the victim has an active session, authentication included, in the target website and
during this time the user visits the malicious page. The "evil” website can now forge a

request for the target using victim’s cookies and information.

XSS possible damages

XSS attacks, like others, if successfully performed, can lead to different kind of damages

depending on the attacker objective.

Stealing information: With the malicious code an attacker can steal user’s per-

sonal data, session cookies, web application data stored locally and so on.

Spoofing request: Using JavaScript, and in particular Ajax [5], HTTP requests
can be forged that allow hacker to operate on behalf of the victim (adding fake

information, editing existing ones, etc.).

Web defacing: The injected JavaScript can use the DOM [6] APIs to access and
modify the elements that make up the structure of the web page (DOM nodes) and
so it gives to the attacker the power to modify the aspect and the behaviour of the

whole page.

Countermeasures

From what said before emerges that the weakness of a web application is related to
what the browser reads as source code. In fact, while to distinguish between page code
and pure data is what the HTML parser is built for, it is not able to detect if the code
read belongs to the original page or if it was inserted from the outside. To counter this
problem two approaches have been thought out. The first one analyses the input to search
for not allowed patterns (like the presence of script tag in variables or parameters), while
the other one is based on understanding if the code comes from a reliable source, the web
application developer, or from an unknown source; it can be considered as a sort of access

control.

16

2 STATE OF THE ART 2.1 CYBERATTACKS

Famous XSS attack

The story of Cross-Site Scripting attacks starts in 1999 when the firsts reports of sites
in which script and image tags were being injected into html pages without the approval
of the owner. Some of these attacks were carried out through links, which were then
opened by unsuspecting victims, who then had their user’s cookies stolen and sent to
third parties. The majority of these attack were Reflect XSS but in only a few year the

dominant type become the Persistent XSS thanks to the social networks advent [7].

Samy worm

In 2005, Samy Kamkar discovered a breach in the way in which browsers processed
the input received from users through forms. Consequently he realized that through that
flaw he was able to make browsers run scripts not belonging to the website. The virus
was released on MySpace but as just said it does not exploit MySpace vulnerability but
a problem in the way browsers execute JavaScript code [8]. The attack consist of a piece
of self-replicating JavaScript code injected in Samy profile that creates a copy of itself in
the pages of every user that visited Samy’s page. Due to his self-propagating behaviour
and the way in which this attack is performed, expert classified it as cross-site scripting
worm (XSS worm) and called it ”Samy worm” (also known as JS.Spacehero). The worm
itself was relatively harmless; it carried a payload that would display the string ”but
most of all, samy is my hero” on a victim’s MySpace profile page as well as send Samy a
friend request, but thanks to the its propagation speed it has been acknowledged as the
fastest-spreading virus of all time with one million infection in 20 hours [9]. From the

most, Samy is considered the virus that changed the world of web security forever [10].

eBay

Between December 2015 and January 2016 eBay discovered a vulnerability in the pa-
rameter of the "url” that permits the redirection to the right eBay page. The absence
of control on the value of this parameter opens the opportunities for hackers to build a
fake web page, in every way the same as the eBay login page. In this way the victim is
unaware of the falsehood of the page and inserting the credential they send them to the
hackers instead of the real website. The attacker is so able to control the profile of the

unfortunate, steal their payment details and so on. This is an example of phishing attack

17

2.1 CYBERATTACKS 2 STATE OF THE ART

exploited through an XSS vulnerability [11].

British Airways

A cross-site scripting vulnerability was also discovered by British Airways between
August and September 2018. The breach allowed hackers to steal the credit card details
and personal information of the victims. The hacker group known as ” Magecart” injected
a malicious JavaScript library, known as Feedify, into an unsecured payment form in the
airline’s website, so that, when users submitted the form, the confidential information
were sent to a server owned by the criminals. The company noted that around 380,000
customers could have been affected, and the economic injury caused by this XSS attack

was huge [12].

Fortnite

In January 2019 also Fortnite, the popular online video game by Epic Games, had to
deal with a cyber-attack. Through a retired non protected page (an old web page owned
by Epic Games) attackers injected a link that would execute rogue JavaScript code in a
user’s browsers when visited. To bring people to this site hackers found a state parameter
in the request sent by the real authentication page that could be manipulated to redirect
to the old vulnerable website. Once reached, the malicious JavaScript payload is executed
through the XSS vulnerability. The injected code intercepts the single-sign on authenti-
cation token and sends it to a server controlled by the attackers, allowing them to obtain

the control of user’s account [13].

Nowadays, Cross-Site scripting (or XSS) is often considered one of the most com-
mon bugs that are harvested by cybercriminals to compromise an organization’s networks
or systems. And history proves it; attackers have utilized this vulnerability in various
cyberattacks, causing damages of millions to those organizations, and in turn these orga-

nizations are spending a fortune to try and stop these attackers [11].

18

2 STATE OF THE ART 2.1 CYBERATTACKS

2.1.2 SQL Injection attack

Since the amount of data managed by web applications is by now massive, it was
necessary to use databases to optimize their storage and use. As a consequence, the web
applications’ implementation need to include a procedure to create and send an SQL state-
ment to the database that, after having execute it, returns the result of the execution back
to the web application. The SQL statement usually is composed by a fixed part defined
by the web application developer and a ”parametric” part that consist of data received
by the final user. This "user-dependent” second part, if not correctly managed, could
permit malicious users to request data which, normally, they’re not allowed to access. In
fact, if the data received from the user can be interpreted as SQL code and no sanification
procedure are applied, the web application can become victim of SQL Injection. This type
of vulnerability is considered one of the most common in web applications and this the
reason why is important to help programmers in preventing its rising as much as possible.
Figure 11 illustrates the typical structure of a web application. As can be seen, the
user does not interact directly with the database but through the functionalities provided
by the web server. This intermediary is responsible for receiving instructions from the
browser and returning the corresponding response, and for interacting with the database
which is in charge of storing the contents. The crucial point of the communication is how

the web application server manages the data received from the user. [17]

Communication methods

Communication between user and server is through the exchange of HT'TP requests
and responses. HTTP requests use GET and POST methods to attach the user-defined
data to the message. The most common way to exploit this behaviour is filling the forms
fields provided by the application. The web application server obtains in this way the data
that are going to complete the predefined query that will be executed by the database to
provide the required information. The result of query execution is then returned to the

web application server, which will take care of making it available to the requesting user.

19

2.1 CYBERATTACKS 2 STATE OF THE ART

Browser Web Application Server Database
HTTP Request SQL Statement
el - — >

Result

Result

| ‘--\&J:;-:J_ User
<>

Figure 11: Web application architecture scheme

SQL Injection launch

To better understand how an SQL Injection attack is performed, the process will now
be shown from a more illustrative point of view. Consider, for example, the SQL statement

below.

SELECT name, surname, card_number
FROM Person

WHERE username=' ' AND password=' '

The SQL statement template is defined by the web application developer while the blank
section will be filled with the data received from the user. Here is where a vulnerability
point emerges. If the completion consist of a string formatted following SQL language
rules and construct the behaviour of the query can radically change. If the user for

7

examples inserts the string "P0001 * # ” in the username field, the query returns name,
surname and card number with no regard in what the password field in the WHERE clause
contains. In fact, with the apostrophe (’) closes the username field writing while the
remaining part of the WHERE clause is commented through the usage of the pound sign

(#) which is the SQL symbol to denote the starting point of a comment. Below you can

see how the query is actually executed.

SELECT name, surname, card_number
FROM Person

WHERE username=' P0001 '

In this way if a malicious user knows the username corresponding to another person’s

profile he can gain access its card number with no difficulties.

20

2 STATE OF THE ART 2.1 CYBERATTACKS

Another alarming situation can be generated if the string sent from the user is something
like: ”anything’” OR 1=1 #”. Even in this case the password check is bypassed through
the comment identification symbol "#”. The difference is that the "OR 1=1" WHERE
condition is always returning true and so, independently from the first WHERE condition
("anything”), the query returns name, surname and card number of all the users stored

in the Person table. Below is shown the resulting query.

SELECT name, surname, card_number
FROM Person

WHERE username='anything' OR 1=1 #

As last examples, the two following query will show respectively a case in which through
the updating operation an hacker could modify database data to increase or decrease
someone’s bank account while the other deletes the whole database causing huge damage

to users and service provider.

UPDATE Person

SET new_pw='

WHERE username='

This is the case in which is requested a password change/reset. If the applicant knows the
name of the database table’s field associated with the value of the bank account, it can
change it to increase or decrease its value. Below you can see how to set the parameters
to play out this attack (is supposed that the field containing the bank account value is

called ”bank_account”).

username — "P0O1’ #" : target’s username, the pound sign is to comment the

password field.
password — "anything" : will be commented.

new_pw — '"new_password’, bank account=(amount) #": the values the attacker
wants to set (the pound sign at the end prevent other parameters to interfere with

the injection).

21

2.1 CYBERATTACKS 2 STATE OF THE ART

SELECT name, surname, card_number
FROM Person

WHERE username='anything'; DROP DATABASE exampledb;

In the last case the string received corresponds to ”"anything ;s DROP DATABASE exam-
pledb;”. Here you can see that using the semicolon (;) it has been possible to concatenate
two different SQL statement: the usual SELECT and the DROP DATABASE which deletes
the whole database. The possibility to concatenate statement permits to the attacker to

perform any kind of operation on the database like as if he were the owner.

SQL Injection possible damages

SQL Injection attacks, like others, if successfully performed, can lead to different kind

of damages depending on the attacker objective [16].

Stealing information: Obtain the access to private information contained in the

database without the owner’s authorization.

Data fabrication an modification: Fake data can be inserted in the databases
mining the authenticity of the information provided. It also comprehends the mod-

ification of stored data.

Service interruption: Problems in the database structure can compromise the

correct behaviour of the web application.

Countermeasures

Like said for the Cross-Site Scripting, the weakness of the the system lies in how inputs
are interpreted. In fact, even in this case if the string received from the user is interpreted
as pure string or at least measures to detect any ”injection-related” pattern the threat
can be averted or at least mitigated. To achieve this goal input sanitization procedure
can be put in place, like filtering the received data searching for specific attack pattern
or, alternatively, by sending the query to the database so that no ambiguity are present

between what should be executed and the pure data (parametrized query) [L7].

22

2 STATE OF THE ART 2.2 COMPILER LEVEL SECURITY

2.2 Compiler level security

Before beginning the presentation of the basic concepts on which the project is built,
it is necessary to make a clarification. Throughout the discussion the term semantics
will be used several times, but with a different meaning in respect to the usual one. In
this case, in fact, when the word semantics is used to talk about an object, it refers to
all those characteristics that can describe its nature (type, belonging class, etc) and the
relationships it has with other objects. Instead of point out the relation between the
syntax and the calculus model, and so the intrinsic meaning of a language word, is used

to identify the set of characteristics which describes a specific program element.

Now that the proper premises have been made, the first tool that needs to be pre-
sented is the compiler. The compiler is in charge of translating the code belonging to a
programming language into another, an in most cases, this process starts from a high-level
programming language (human-readable) to a lower level one which can be executed by
the machine. To be more specific the compiler carries out an essential function in building
a detailed model of the coded program, after having validated its syntax and semantics.
This model in fact contains a lot of useful information about the code and its structure
which are not visible during the programming phase. The model in fact grants access to
the so called syntazx tree which gives a representation of how the program instructions are
organized, their hierarchical expansion and their role inside the tree. Moreover, it also in-
cludes the semantic information in terms of relations between different program elements
and in objects characteristics. It goes without saying that being able to access this inter-
mediate environment between programming language and machine-code can brings big
benefits during the code development phase. In fact, being able to access this model opens
the doors to the world of code static analysis. This practice permits to understand what
is being coded, to point out which instructions may lead to the rising of an exception,
to detect eventual programming guideline violation and to make real time suggestions
appear. The desire to achieve this kinds of functionality led to the creation of tools that
would ensure access to the models created by the compilers. Therefore, projects such as
ReShaper from JetBrains, Babel from Open Collective, SonarQube from SonarSource and
Roslyn from Microsoft, the one on which this project is based, were born.

In Figure 12 are shown the functional areas which compose the compilation process. In

23

2.2 COMPILER LEVEL SECURITY 2 STATE OF THE ART

the first one, source code is tokenized and parsed to provide a syntax pertinent to the
language grammar. The second, the so called declaration phase, extrapolates the named
symbols from the source text and from the imported metadata. The following binding
phase links the symbols with the corresponding identifier. The last one, the emit phase,

is in charge of preparing the actual assembly which carries all the required information [15].

Compiler
Pipeline

- 1L Emitter

Figure 12: Standard compiler pipeline

This is the framework on which the NET Compiler Platform SDK (”Roslyn APIs”)
created for C# (CSharp) and Visual Basic languages is based. This new tool provides
an API layer that, reflecting the traditional compiler architecture, grants access to the

above-mentioned model.

2.2.1 .NET Compiler Platform API (”Roslyn”)

The .NET Compiler Platform SDK (”Roslyn APIs”) is born as a tool to manage
the model built from the compilation of the source code. This mean provides dedicated
APIs to access the data contained in each pipeline phase. It transforms the compilation
process in a platform available to consulting and open to modification. It is precisely
because of the possibilities offered by this architecture that code analyzer and code fixer

have been able to emerge.

After this little introductory part, it is time to look a little more in depth at what this
API consists of and what it allows to do. As said before the .NET Compiler Platform
SDK (”Roslyn APIs”) mirrors the behaviour of C# and Visual Basic compilers adding
to them different API layers which ensure the ability to perform real time code-related
operations. This layers are called: compiler APIs, diagnostic APIs, scripting APIs, and
workspaces APIs. All this APIs are allowed to dispose of the tools exposed by the various
compiler pipeline phases like the syntax tree provided by the parsing phase, the hierarchi-
cal symbol table supplied by the declaration phase, the result of the compiler’s semantic

analysis produced by the binding phase and the IL (Intermediate language) byte code

24

2 STATE OF THE ART 2.2 COMPILER LEVEL SECURITY

obtained by the emit phase.

Compiler APIs

This layer contains all the object models produced by every compiler pipeline phase with
the addition of the assembly references, the compiler options and the source code files
obtained from a single invocation of the compiler. This kind of APIs require high com-
pliance with the programming language they refer to. This is the reason behind the need
of a dedicated API for C# and one for Visual Basic. Figure 13 gives an idea about the

relations between standard compiler pipeline and the Compiler API layer.

Language -
Service

Compiler API ‘ SyntaxTree API Emit API

Compiler
Pipeline

(&)

o g
=l
-

o
2=
o 2

IL Emitter

Metadata
Import

Figure 13: Standard compiler pipeline and Compiler APIs matching

Diagnostic APIs

Diagnostic information includes syntax, semantic and definite assignment errors, not op-
timal code structure warnings and general informational report. This kind of data are
produced by the Compiler API and made available to the user through the Diagnostic
API which also enables the creation of user-defined notification and code-fixing suggestion.
Graphically, diagnostics, appears as coloured underlines and program tooltips. Figure 14

gives an example of how diagnostics appear.

25

2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES 2 STATE OF THE ART

(AT TE Tl Sl TypelnferenceRewriter.cs Program.cs

(€8] TransfarmationCS = "% TransformationCS.Program

=namespace Transformationcs
{

class
r

static void Main(string[] args)
{

on test = CreateTestCompilation();

Generate method "Program.CreateTestCompilation | i | € C50103 The name ‘CreateTestCompilation’ does not exist in the current
} context

private static vllution CreateTestConpilation()

throw new Nt ImplementedExenption()}

Figure 14: Underline and tootltip example

Scripting APIs

To accumulate a runtime execution context and to execute targeted code sections, the
hosting and scripting APIs have been realized. Based on these APIs tools to interactively

execute code while writing have been made.

Workspaces APIs

The Workspace API grants access to the entire solution grouping all projects object mod-
els into a single one. In this way the operations of analysis and refactoring can be executed
without parsing files, configuring the compilation options o managing the dependencies

between projects.

All this technology is what stands upstream the creation of personalized analyzer and
code-fixes. In fact, it serves as entry point for the ”black-box” that, before its creation,

was the compilers world [19].

2.3 Visual Studio Analyzers and code-fixes

One of the powerful features that the .NET Compiler Platform SDK offers is the
capability to build diagnostic analyzers. These tools permit to create an interactive com-
munication between programmers and the code they are writing. It provides users with

visual hint about the code they are writing in term of errors, warning, or quality sugges-

26

2 STATE OF THE ART 2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES

tions. Therefore, analyzers can be seen as compilers extensions which enforce programmer
in respecting specific coding measures in order to improve the quality, the correctness and
the ease of maintenance of the code. In addition to this, if properly designed, personalized
analyzers can be configuerd to focus their attention on specific issues to which a program
may be exposed. Least but not last, they can also detect patterns that do not satisfy
eventual code style and design requirements.

The analyzers, being built over the Roslyn compiler API, have the ability to access the
object models that the latter provides i.e. syntax tree nodes, code symbols, code blocks,
the whole solution structure and so on. This allow them to intercept changes in different
units of code, to communicate any irregularities to the user and to arrange targeted ac-
tions to manage the reporting. All the information gathered from the code are inserted
in the list of the compiler diagnostics to provide the user with detailed explanation about

what was discovered [20].

Severity levels

Talking about Roslyn, reports can be classified according to the impact that the af-

fected code will have on the correct execution of the program:

Errors: report which indicates an issues that prevent code from compiling or that

generates a runtime error (red squiggles under the code).

Warnings: report which indicates an issues that do not prevent the code to be
compiled, but that may affect the efficiency of the code (green squiggles under the
code).

Suggestion: report which provides information that may be considered useful for

the program.

Figure 15 gives an example on how this reports appear in the code.

27

2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES 2 STATE OF THE ART

nnnnn

{
I

int Add(int i1, int i2)
{

return i1 + i2;

i;

Figure 15: Severity levels example

2.3.1 Code static analysis

Code static analysis is a practice that verifies the compliance of source code with
predefined rules which is performed at compile time. In most cases, this solution is
adopted with the goal of enforcing specific programming standards such as to improve
the readability of the code and lighten the review procedures by reducing the number of
errors made. The adherence to predefined standards turn out to be useful even for the
other programmers which may be involved in the project or that will take over it. The

final result is a overall improvement of the whole design and coding process.

2.3.2 Roslyn based analyzers features

As mentioned so far, the role of the diagnostic analyzer is to scan the code for irregular-
ities. After the obvious phase of code analysis, which identifies procedures that may lead
to the violation of imposed standards, compilation errors, or inefficiencies in the solution,
a second phase can be planned, in which developing the procedures that will propose a
solution to the previously founded issues.

The first of the two can be considered as a diagnostic step which uses the syntax and
semantics of the code for the detection operations, while the second one uses the diagnos-
tics previously produced to suggest possible solutions, and this is why it can be referenced

as code fix.

It’s now time to present the APIs’ elements, the Visual Studio functionalities and the

Roslyn tools involved in the project.

Syntax Tree

The Syntax Tree is a structure, accessible through the Compiler API, which organizes

the various syntactical and lexical elements of the source code in a hierarchical structure

28

2 STATE OF THE ART 2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES

composed by nodes and leafs. This is an immutable entity, in fact the syntax tree of a
program cannot be directly accessed and modified except through the appropriate tools
that will be presented later on in the thesis. The motivation behind this feature lies in
making the tree resistant to the inconsistency that can be generated by simultaneous
accesses to it. The immutability of the syntax tree also permits to have a snapshot of the
actual state of the code. In this way, during the fixing phase, a preview of the correction
can be graphically shown (Figure 16 shows a correction preview).

statc void DeMothing()

14 Generate type 'statc’ * | €3 IDE1007 The name 'statc' does not exist in the current context.
1¢ Change 'statc’ to 'static’.

~ Add accessibility modifiers

Stack - using Systern.Collections;

Stack - using System.Collections.Generic;
Preview changes

Figure 16: Example of code fix preview

The Syntax Visualizer provided by Visual Studio exhibits the representation of the tree
in both, a schematized way and also in a graphical one. The schematized view in particu-
lar brings with it a section containing the properties which characterized each syntactical
element. On the other side the graphical representation is given by a Directed Syntax
Graph, highlights the hierarchical relation between the elements and their nature. Fig-

ure 17 and Figure 18 show the two kinds of representation.

Syntax Visualizer
Syntax Tree

]

AV VVVVYTVV

Operation [249..3235)

Figure 17: Syntax tree example

29

2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES 2 STATE OF THE ART

VariableDeclaration Node

PredefinedType Node VariableDeclarator Node

Y
v ~—
Y

‘string’ Token searchTerm' Token EqualsValueClause Node
- F 4

~ \\ // = ~
| A
EndOflineTrivia WhitespaceTrivia WhitespaceTrivia WhitespaceTrivia gLi 5SS)

StringLiteralExpression Node
I
| !
4
WhitespaceTrivia "AW00011010™ Token

Figure 18: Example of graphical representation of a syntax tree

Syntax Elements

Syntax elements are the entities which compose the syntax tree. They have a strict
relation with the part of code they refer to, in fact, their purpose consist of giving a
deeper comprehension of of the written code pointing out its role inside the project and
the specific properties which characterized it. Depending on their nature, syntax elements
can be divided in three groups: nodes, tokens and trivia. As can be seen from the previous
figures, nodes, tokens and trivia are respectively represented with the colors blue, green

and red.

Syntax nodes

Nodes are the syntax elements which form the tree backbone. They identify function
calls, assignments, declarations, code blocks, statements, and so on. An essential feature
is the fact that they are all non-terminal tree elements and so they must have other nodes
or token as children. Another important trait to be emphasized is that they are charac-
terized by a type and a kind. The type represents the subclass of
Microsoft.CodeAnalysis.SyntaxNode which the node belongs to. As subclass it pos-
sesses all the properties and methods inherited from the SyntazNode class plus the dedi-
cated ones specific for what they represents. While the type property identifies the type of
anode, the kind property denotes the type of the syntactic element to which it refers (tree
point of view versus syntactic point of view). To be more clear, a type can be associated
with many kinds but a kind is linked with only one type. Figure 19 gives an idea about

the properties associated with a node.

30

2 STATE OF THE ART 2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES

Properties

Type
Kind

Figure 19: Node properties example

Syntax tokens

Syntax tokens correspond to the leaf of the tree, in other words the terminals of the
language grammar. Example of them are punctuation signs literals, identifiers, keywords,
and so on. As well as nodes, tokens are syntactically categorized through the type and
kind properties. What differentiates them from nodes is that the value of the type prop-
erty is the same for all the tokens (SyntaxToken). Figure 20 shows the type and kind

properties for a token.

4 |dentifierToken [

all: \

Properties

Type SyntaxToken
Kind IdentifierToken
Classification Local Name -

Figure 20: Token type and kind example

Syntax trivia

Syntax Trivia are source text items which are not fundamental for the correct interpre-
tation of the program. Examples of them are comments, white spaces and preprocessor

directives. In terms of type and kind properties they are organized like tokens with the

31

2.3 VISUAL STUDIO ANALYZERS AND CODE-FIXES 2 STATE OF THE ART

difference that for all the trivia their membership class is the SyntaxTrivia.

Semantic Model

As previously said, used in this context, the term semantic indicates a set of features
that provides additional information about the nature of the symbol which the code el-
ement refers to. The tools which allow to pull out this kind of data are the Symbol
API and the Semantic API contained in the Compiler API. Symbols are a unique rep-
resentation of a code element (like properties, local variables,...), and thanks to these
two APIs the user is able to obtain information about the name of the class to which
they belong, the namespace containing them, the project within which is located, and
many others. During the development of the project, to access the semantic model of a
code element, the property SemanticModel of the contexr object, which belongs to the

SyntaxNodeAnalysisContex class, was used.

2.3.3 Code fixes

Through the diagnostics provided by analyzers, refactoring measures can be prepared
to modify the code in order to solve the detected issues. This procedure is called code fix-
ing. This kind of syntax transformation can be performed exploiting one of the following

strategies.

Factory methods This kind of code refactoring uses the methods belonging to the
SyntaxFactory class to create from scratch syntax objects whose class is derived from
SyntaxNode. These newly created nodes will then either go on to replace existing nodes
or fit into specific positions within the syntactic tree. The SyntaxFactory class pro-
vides dedicated methods for creating nodes, tokens and trivia according to their kind.
For example, if you want to create a node of ExpressionStatement kind, SyntaxFac-
tory makes available the SyntaxFactory.ExpressionStatement method which returns
a new ExpressionStatementSyntax node. ExpressionStatementSyntax represents the
type property associated with the ExpressionStatement kind. Due to the fact that the
syntax tree is an immutable entity, the new node cannot be inserted only modifying its
structure. This is the reason behind the usage of the ReplaceNode method which cre-
ates a fresh new instance of the syntax tree with the new node placed in the correct
position, specifying the node that will replace, and updating recursively the links of the

nodes hierarchy. The same behaviour, but for the insertion operation, can be obtained

32

2 STATE OF THE ART 2.4 LANGUAGE UTILITIES

using the InsertNodesAfter o InsertNodesBehind functions.

Rewriters The class CSharpSyntaxRewriter enables the performing of multiple
transformation on the syntax tree. Unlike ReplaceNode, which modifies one node at a
time and then returns the new tree, it allows changes to be accumulated during the tree
traversal and then applied when finished. Prerequisite is that the modified nodes are
all of the same type. In fact, to implement this solution, is necessary to extend the
CSharpSyntaxRewriter class and to override the abstract method which works with the
chosen syntax node type. In this way, during the syntax tree navigation, each time a nodes
matches the chosen type, it will be refactored as determined by the override method and

only at the end of the crossing the new syntax tree is generated.

For what concerns the project, only the first one of the two solutions is applied.

2.4 Language utilities

Attributes

Attributes in C# permit to associate metadata or declarative information with the
code they refers to. The target of an attribute can be only a code element belonging to
the following list: assembly, module, field (class or struct field), event, method, param,
property, return and types (struct, class, interface, enum, delegate). Attributes have the

following properties:

e They add metadata to the program, information about the defined types to which
they refer to.

The same element can be associated with one or more attributes.

Attributes can be built using arguments as is also usually done for methods and

properties.

e To examine attributes metadata a special technique must be used, the so called

Reflection.

In addition to the attributes provided by .NET, it’s also possible to create custom

ones.

Reflection

33

2.4 LANGUAGE UTILITIES 2 STATE OF THE ART

Reflection provides objects of type Type which contains descriptive information about
the accessed entity. If the reflection is applied to an attribute, it grants access to all its
functionalities and contents. In case of custom attributes the key method that permits
to exploit the reflection is GetCustomAttributes. This is the function that needs
to be called when no compilation environment access is provided. On contrary, if the
compilation environment is already accessible, for example through the semantic model,

reflection can be deployed through the GetAttribute method owned by symbols.

Extension Methods

Extension methods are methods that allow you to add extra functionalities/methods
to an existing type without having to inherit the type or write a wrapper around it. These
methods provide a powerful way of writing additional functionalities with minimal effort

and code.

public static class ExensionMethods

{
public static string StringProcessing(this string s, /*...%/)
{
// Instructions
}

The above code shows a simple example of how an extension method can be defined.

There are three aspects which are fundamentals to define an extension method:

e The static keyword in the class declaration. Extension methods can only be cre-
ated inside static classes in .NET. The static modifier is mostly used when data,
behaviour of a class and the elements within it, do not depend by the identity of

the object used to call them.

e The static keyword in the method declaration. Static classes allow only static

members.

e The this keyword associated with the first parameter of the function. The type
of the first parameter matches the object type on which the extension method was
called. The this keyword makes the new functions seeming like a call to a method
belonging to the object class. The object from which the call comes becomes the

first parameter of the extension method.

34

3 Security Enhancer implementation

This chapter will describe the work behind the creation of the syntax analyzer, expos-
ing the design choices and presenting the project structure. Particular attention will be
focused on the implementation aspects of the solution, that is, the code that makes up
the various components of the analyzer.

The analyzer at issue is called SecurityEnhancer and it has been realized using the
Visual Studio Community 2022 IDE. This tool simplifies the integration of the .NET
Compiler Platform SDK package which hosts the analyzer project. The programming
language which characterizes the implementation is the C# language.

The solution is designed to be deployed on a client-server architecture in which the server
will host and execute the actual analyzer code while the clients, i.e., the machines of pro-
grammers, access it without having to add extensions to their program. This will create
a unified environment for all users and the computational burdens will be decentralized

to a dedicated machine thus easing the load on individual devices.

3.1 Project structure

The project structure follows the one proposed by the template ” Analyzer with code
fix (NET Standard)” provided by Visual Studio. The complete solution is build up by

five projects (Figure 21 shows the workspace organization):

e Analyzer contains the analyzer code an so the detection operations an the creation

of the diagnostics, it may contain one or more analyzers;

e Analyzer.CodeFixes contains the code which, starting from the diagnostics, per-

forms the code refactoring operations, it may contain one or more code fixes;

e Analyzer.Package used to create the NuGet package that makes the analyzer

35

3 SECURITY ENHANCER IMPLEMENTATION

usable for the users community;

e Analyzer.Test corresponds to the test unity, grants the possibility to verify the

correct functioning of analyzers and code fixes;

e Analyzer.Vsix corresponds to the startup project, it opens a fresh new instance
of Visual Studio in which the analyzer is uploaded to emulate the actual behaviour

assumed by the analyzer once installed by users;

Solution Explorer
/\ ? '61 s @ I_L] 1'1‘.9 v &
Search Solution Explorer (Ctrl+&)
7= Solution ‘Analyzer' (5 of 5 projects)
ic%] Analyzer

4
4
4
i
g

[c#] Analyzer.Vsix

Figure 21: Standard project structure for a code analyzer

The creation of the NuGet package makes shareable the created analyzer as extension.
NuGet is in fact the platform through which developers can share their personalized Visual

Studio packages [21].

Following the above mentioned template, the SecurityEnhancer structure is organized

as represented in Figure 22 and in particular:

e The analyzer project contains the files of four different diagnostic analyzes which

can be divided in two categories: the XSS Analyzers and SQLAnalyzers.

e The code fixes project mirrors the previous structure with four different code fixes
files which can be grouped in two different categories: one for the code refactoring

measures against XSS vulnerability and the other for the SQL injection ones.

Only one analyzer was needed to counter the XSS vulnerability, as only one type of
code element capable of carrying this vulnerability was identified. On the other side,
three code elements vulnerable to SQL injection have been identified, hence the decision
to create three diagnostic analyzers. The choice to separate the two kind of analyzers,
and in the same way the two code fixes, was made to provide a tidy, understandable
and modular solution. In fact, thanks to this subdivision, the user can even run just the

analyzer he or she needs.

36

3 SECURITY ENHANCER IMPLEMENTATION

curityEnhancer' (5 of 5 projects)
SecurityEnhancer

nhancer.Package

b &4 Dependencies

B B3 tools

T3 SecurityEnhancer. Test

b &4 Dependencies

b Bl Verifiers

P C# SecurityEnhancerUnitTests.cs
SecurityEnhancer.Vsix

xmanifest

Figure 22: Structure of the proposed solution

In addition to the architecture provided by the Visual Studio template, it was planned
to create in a separate project an SDK (Software Development Kit), called SecurityEn-
hancerSDK, which provides programmers with predefined tools to integrate the analyzer

solution with standardized objects and update-tolerant procedures.

3.2 SecurityEnhancer SDK

The SecurityEnhancer SDK is essentially a library which comes with the SecurityEn-
hancer project that defines predefined functions and code elements for its proper execu-
tion. It can be seen as a utility class which can be enriched with new supporting tools
depending on the design choice of the "main” solution. At the same time, it makes possible

to simplify the procedures for updating any external libraries used by the analyzers.

To be more precise this library contains the definition of a custom attribute and class

which defines the Extension Methods that will activate the sanitize operations.
Custom attribute

The attribute is called XSSVulnerability Attribute and is designed to mark all those
properties that, without appropriate countermeasures, could convey a script injection. It
works like a reminder for programmers: when an expression is assigned to a property

tagged with this attribute, the expression at issue may need to be sanitized.

37

3 SECURITY ENHANCER IMPLEMENTATION

The attribute shown in Figure 23 is a custom attribute as it is user-defined and not
native of the .NET ones. To create a custom attribute is necessary to declare a class
derived from System.Attribute and to define the target kind of elements with which the
attribute can be associated. In the present case this operation is carried out through the
instruction [AttributeUsage(AttributeTarget.Property)] which denotes that only
the code element type "property” can be tagged with the custom attribute XSSVulnera-

bilityAttribute.

AttributeTargets.Property)]

Figure 23: Attribute creation example

Extension methods

For what concerns the extension methods, a dedicated class has been designed to col-
lect the functions which will be called from the code fixes. The class StringExtensions
contains, for example, the method XSSSanitize which, being an extension method, in-
vokes the string sanitization function specified within it on the calling object.

This function is called Sanitize and it comes from an imported NuGet package called
HtmlSanitizer, a dedicated tool to clean HTML from constructs that can be used for

cross-site scripting. Figure 24 shows the extension methods used.

ng XSSSanitize(this string @this)

T san = new er();
turn san.Sanitize(@this);

ing SQLSanitize(this string @this)

return @this;

Figure 24: Extension methods used

38

1
2
3

3 SECURITY ENHANCER IMPLEMENTATION

3.3 SecurityEnhancer analyzers

It is time to get into the meat of the thesis through the presentation of the projects
that make up the analyzers and the code fixes. Two section will be exposed, one for the

analyzers and code fixes against XSS vulnerability and one for the SQL injection ones.

3.3.1 XSS analyzer
Diagnostic analyzer
Each analyzer features the following functionalities:

e Register actions. With action is meant a change in the source code. Whenever
an action is detected, the analyzer is triggered and the check on violations defined

inside of it is performed.

e Create diagnostics. When a violation is detected a report is created to notify it.
The report consist of a diagnostic object which groups information about the alert,

as determined by the analyzer.

The creation of a diagnostic analyzer starts with the declaration of a new class derived
from DiagnosticAnalyzer and the association of the [DiagnosticAnalyzer]| attribute
that accepts as a parameter the language on which it operates. The following snippet

shows how the analyzer is declared.

[DiagnosticAnalyzer (LanguageNames.CSharp)]
public class XSSAnalyzer : DiagnosticAnalyzer

{

Next, it is necessary to define the description produced as diagnostics. The object
appointed for this purpose is the DiagnosticDescriptor, which requires the following

parameters to perform its function:
e id: string parameter which uniquely identifies a diagnostics;

e title: string or LocalizableString parameter which specifies the title of the alert

message;

39

10

3 SECURITY ENHANCER IMPLEMENTATION

e messageFormat: string or LocalizableString parameter which defines the

parametric message that will be displayed in the violation report;
e category: string which allows to give a categorization to the diagnostic;

e defultSeverity: DiagnosticSeverty object kind that classifies the severity of the

violation, in the treated cases it will be set to "warning”;

e isEnabledByDefault: boolean that indicates if the diagnostic to which it refers,

is enabled from the analyzer startup;

e optional parameters

The parameters instantiation is made through a resource file which organizes the con-

tents like a dictionary. This solution simplifies the editing procedures by avoiding the
need to search the code for where the assignment is made.
After that, overriding the abstract property SupportedDiagnostics, a set of descriptors
is produced for the diagnostics that this analyzer is capable of producing. This part of
the code shows its usefulness in the testing project, however this environment was not
used in the experiment since the results were verified through the VSIX project.

The below snippet of code shows how the diagnostics description is built.

public const string DiagnosticId = "XSS01";

private static readonly LocalizableString Title = new

LocalizableResourceString(nameof (Resources.XSSAnalyzerTitle), Resources.ResourceManager,

typeof (Resources)) ;

private static readonly LocalizableString MessageFormat = new

LocalizableResourceString(nameof (Resources.XSSAnalyzerMessageFormat) , Resources.ResourceManager,
typeof (Resources)) ;

private static readonly LocalizableString Description = new

LocalizableResourceString(nameof (Resources.XSSAnalyzerDescription), Resources.ResourceManager,
typeof (Resources)) ;

private const string Category = "Input validation and representation";

private static readonly DiagnosticDescriptor Rule = new DiagnosticDescriptor(DiagnosticId, Title,

MessageFormat, Category, DiagnosticSeverity.Warning, isEnabledByDefault: true, description: Description);

public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics { get { return
ImmutableArray.Create(Rule); } }

Now that the diagnostics is ready to be produced, it’s time to have a look at the pro-
cess which led to its creation.

As said before, a diagnostic report should be generated when an action on the code results

40

IS TN N N SR

3 SECURITY ENHANCER IMPLEMENTATION

in a violation. The method which allows to register code actions is called Initialize. This
function uses an AnalysisContext kind object as a ”collector” for the detected actions.
The method in charge of associate an action with the corresponding detection function
is called RegisterSyntaxNodeAction. It requires as parameters: the name of the function
that manages the code analysis operation and the syntax element kind of the code part
which requires to be monitored.

In the cross-site scripting case the instructions vulnerable to injection are the assignment
operation. In fact, if the entered data is not properly sanitized these variables can con-
vey the insertion of the malicious script within a web application. In terms of syntax,
an association operation is identified by the SympleMember A ccessExpression kind.
This is the reason behind the choice of this syntax kind as RegisterSyntaxNodeAction

parameter as shown by the code below.

public override void Initialize(AnalysisContext context)
{
context.ConfigureGeneratedCodeAnalysis(GeneratedCodeAnalysisFlags.None) ;

context.EnableConcurrentExecution() ;

// DONE: Detection of property that could require sanification
context.RegisterSyntaxNodeAction(action: AnalyzeSyntax, syntaxKinds:
SyntaxKind.SimpleAssignmentExpression) ;

}

The function invoked by RegisterSyntaxNodeAction is called AnalyzeSyntax and
receives as input parameter all the syntax nodes belonging to the AssignmentExpres-
sionSyntax type, which is the class associated with SimpleMemberAccessExpression
kind, through the contex object. Using the property Node on the context element the
assignment expression node and its subtree are now accessible.

Among all the nodes derived in this way, we must now identify those of interest to the
analyzer, that is, those nodes that represent the assignment of a value to a property
marked with the attribute XSSVulnerabilityAttribute. As a first step, it is necessary
to obtain the semantic model of the node representing the property access. In this way,
In this way it will be possible to access the list of its attributes and verify whether one of
them matches with the one sought.

To do this, the semantic model was extracted from the contex object via the Semantic-
Model property, and in parallel, the node corresponding to the left side of the equality

was reached via the Left property of the assignment node.

41

© 0 N U R W N

=
= o

B~ W N

ot

3 SECURITY ENHANCER IMPLEMENTATION

var semanticModel = context.SemanticModel;

// The nodes that can be vehicle of XSS attack are the ones in which a value is
// assigned to a particular property
var syntaxExpression = (AssignmentExpressionSyntax)context.Node;

MemberAccessExpressionSyntax syntaxWord;
// The right side on the assignment is what can contain malicious code while

// the left one corresponds to the property that stores the value

var toBeSecure = syntaxExpression.Right;

Once this operations are done, the analyzer will have to obtain the symbol information
about the property being accessed (reminder: object.property). Therefore, it will con-
tinue the subtree navigation starting from the last node obtained, which is a node of
type MemberAccessExpressionSyntax, until it reaches the target element through the
property Name.

Once reached, it can be used as a parameter for the function GetSymbolInfo, belonging
to the object semanticModel, to obtain the information regarding its nature, such as class

of membership, data type, and so on.

syntaxWord = syntaxExpression.Left as MemberAccessExpressionSyntax;

// In this case left and right side represent the object and its property
TypeInfo leftSideInfo = semanticModel.GetTypeInfo(syntaxWord.Expression) ;
SymbolInfo rightSideInfo = semanticModel.GetSymbolInfo(syntaxWord.Name) ;

The property attributes can now be accessed through the GetAttributes function that
creates the list of attributes from which to search for the desired one.

In case of positive result, it is finally possible, after reaching the proper node in the syntax
tree, to check whether the assigned expression (right side of the assignment) has already
been sanitized or not.

If the answer to this question is negative, the diagnostics creation procedure are performed
and the report about a possible XSS vulnerability point is produced.

The Create method generates the diagnostic message using the previously defined descrip-

tion rules and indicating the position in the code of the affected node (location). This

42

B~ W N

o N o wu

10
11
12
13

14

16

17
18

3 SECURITY ENHANCER IMPLEMENTATION

parameters are useful for the displaying of the visual aids, in facts the location permits
the visualization of the squiggles under the detected instruction, while the description is
used in the error list to explain the reporting. The ReportDiagnostic method, on the

other side, makes effective the diagnostics and activates the visual alert on the code.

// Array of the attributes for the extracted symbol
ImmutableArray<AttributeData> symbolAttributes = rightSideInfo.Symbol.GetAttributes();

if (symbolAttributes != null)

{
foreach (var attribute in symbolAttributes)
{
if (attribute.AttributeClass.Name.CompareTo("XSSVulnerability") == 0 ||
attribute.AttributeClass.Name.CompareTo("XSSVulnerabilityAttribute") == 0)
{

if (!toBeSecure.ToString().Contains(".XSSSanitize()"))
{
// For all such symbols, produce a diagnostic.
var diagnostic = Diagnostic.Create(Rule, syntaxExpression.GetLocation(),
rightSideInfo.Symbol.Name) ;

context.ReportDiagnostic(diagnostic) ;

Code fix

As mentioned earlier, securing the code against the threat of a cross-site scripting at-
tack will be implemented by calling a sanitization function that removes the malicious
portion of code from the string. Now that the goal has been set, what remains to be
done is to arrange the code fix project to insert the necessary nodes in the syntax tree
and then to add the sanitization function call to the expression (right side) of the target

assignment instruction.

As previously done with the analyzer project, to declare a code fix class it is necessary,
at creation time, to derive the class CodeFixProvider and to associate the attribute Ex-

portCodeFixProvider like shown in the following code snippet.

43

1
2
3

N S

3 SECURITY ENHANCER IMPLEMENTATION

[ExportCodeFixProvider (LanguageNames.CSharp, Name = nameof (XSSCodeFixProvider)), Shared]
public class XSSCodeFixProvider : CodeFixProvider

{

The first step in implementing the code fix class is to override the abstract property
FixableDiagnosticlds. It allows a code fix project to be associated with its syntactic
analyzer via its identifier (DiagnosticId). The code shown below points out this opera-

tion.

public sealed override ImmutableArray<string> FixableDiagnosticIlds
{

get { return ImmutableArray.Create(XSSAnalyzer.DiagnosticId); }
3

The method RegisterCodeFixesAsync is then tasked with intercepting the created di-
agnostics and calling the function responsible for handling the syntactic tree modification
procedures.

In this case, in order for the code fixing to be notified and then applied on the code, it
is necessary to register the change action on the object of class Context via the method
RegisterCodeFix. It requires as parameters the code action that will be invoked to
apply the changes and the diagnostic to which the action refers.

The fixing action is generated by the (CodeAction.Create) method through the use of

the following parameters:

e title: string or LocalizableString parameter which specifies the title of the

fixing operation;

e createChangedDocument: Func<CancellationToken, Task<Document>> which
specifies the function that creates the new version of the Document (or Solution if

the fixing interests more files);

e equivalenceKey: optional string parameter which determines the equivalence

between different CodeActions;

The createChangedDocument parameter invokes the AddSanitizationAsync function

which is specifically created to address the XSS sanification code fixing procedures. It

44

w

© 0 N ;T

10

11
12
13
14

16

17

18
19

3 SECURITY ENHANCER IMPLEMENTATION

receives as parameters the Document on which to make the changes and the target node of
the diagnostics. The following code shows the structure of the RegisterCodeFixesAsync

function.

public sealed override async Task RegisterCodeFixesAsync(CodeFixContext context)
{
var root = await

context.Document .GetSyntaxRootAsync (context.CancellationToken) .ConfigureAwait (false);

// DONE: Diagnostic detection and beginning of sanitization process
var diagnostic = context.Diagnostics.First();
var diagnosticSpan = diagnostic.Location.SourceSpan;

// Find the property that requires sanitization identified by the diagnostic.
var accessExpr =

root.FindToken(diagnosticSpan.Start) .Parent.AncestorsAndSelf () .0fType<AssignmentExpressionSyntax>() .First();

// Register the action that will invoke the fix.
context.RegisterCodeFix(
CodeAction.Create(
title: CodeFixResources.XSSCodeFixTitle,
createChangedDocument: ¢ => AddSanitizationAsync(context.Document, accessExpr,
@y
equivalenceKey: nameof (CodeFixResources.XSSCodeFixTitle)),
diagnostic);

The goal of the AddSanitizationAsync function is to recreate the structure of a function
call which invokes the sanitization method and then rebuild the syntax tree. Figure 25

shows the subtree that will replace the vulnerable node one in the new tree.

InvocationExpression Node
_ ¥

SimpleMemberAccessExpression Node ArgumentList Node

StringLiteralExpression Node IdentifierName Node

Y

\J
John™ Token ‘X55Sanitize’ Token

Figure 25: Syntactic node hierarchy corresponding to a method invocation

In order to reconstruct the structure shown by the code snippet above, the methods for
creating new syntactic elements made available by the SyntaxFactory class were used.

The node that will define the callsign of the sanitize function belongs to the kind Identi-

45

[SLEF VN N)

N O

10

3 SECURITY ENHANCER IMPLEMENTATION

fierName, so, during its creation, the name of the sanitize function will have to be used as
a parameter for the SyntaxFactory.IdentifierName method, in the present case XSS-

Sanitize. The snippet below represents the new nodes hierarchy creation process.

// The node before the sanitization
ExpressionSyntax rightSide = accessExpr.Right;

// Sanitized node creation: InvocationExpressionSyntax node composition
IdentifierNameSyntax sanitizeFunc = SyntaxFactory.IdentifierName("XSSSanitize");

MemberAccessExpressionSyntax sanitizeCall =
SyntaxFactory.MemberAccessExpression(SyntaxKind.SimpleMemberAccessExpression, rightSide, sanitizeFunc);

// New version of the vulnerable node

InvocationExpressionSyntax newNode = SyntaxFactory.InvocationExpression(sanitizeCall);

Now that the new subtree is available, the last thing left to do, is to use it to replace
the old ExpressionSyntax node. This will be done through the previously mentioned
function ReplaceNode which, starting from the old one, will create a new root for the

new syntactic tree of the document, containing the new subtree in place of the older one.

// The vunerable node is now replaced with the new one previously created and the new syntax tree is
returned through its root

SyntaxNode newRoot = oldRoot.ReplaceNode(accessExpr.Right, newNode) ;

return document.WithSyntaxRoot (newRoot) ;

3.3.2 SQL analyzer

What has been called the SQL analyzer actually consists of three separate projects.
This choice was made because, although one is the threat addressed, there are actually
three points in the code that make it vulnerable to it. For this reason it was decided to cre-
ate three analyzers in different files: the SQLStringAnalyzer, SQLProperty Analyzer, and
SQLParameterAnalyzer. Of course, again, each diagnostic analyzer will be accompanied

by the corresponding code fix.

Diagnostic analyzer

The initial part of these diagnostic analyzers is very similar to the one presented above

for the XSS analyzer: the declaration statement of the analyzer class with the derivation

46

3 SECURITY ENHANCER IMPLEMENTATION

from the DiagnosticAnalyzer, the assignment of the [DiagnosticAnalyzer] attribute,
the creation of the DiagnosticDescriptor, the overriding of the SupportedDiagnostics

property and the Initialize function. What differentiates them are:

e The value associated with the DiagnosticDescriptor object’s parameters, for ex-
ample the DiagnosticId value of the XSS analyzer was ”XSS01” while for the SQL
analyzers will be set to "SQL01”, ”SQL02” or ”SQL03”.

e the action and syntaxKinds parameters values which change depending on, respec-

tively, the function called and the kind of syntactic element to be analyzed.
SQLStringAnalyzer

This analyzer aims to identify a weakness in the usage of interpolated strings that
may lead them to be prone to SQL injection. An interpolated string is a string literal
that might include the usage of the value of a variable as part of the text defining it.
The variable inserted in the string is used to change the behaviour of the represented
query depending on its content. Usually, this variable, contains text received from an
external source like a web application user. Not having total control over what it receives
as input, its value can change the behaviour of the query into something unintended. To
solve this problem interpolated strings have been modified adding a placeholder in place
of the variable thus making the resulting queries parametric queries. In parametrized
queries, the body of the text and any parameters are sent to the database separately, thus
preventing the original code and the customised values from mixing.

The easiest way to explain the situation is through an example. The code snippet below

shows the appearance of a vulnerable string.

var query = "SELECT Title, Body, Excerpt FROM Post WHERE SearchTerm = '" + SearchTerm + "' ORDER BY
Published DESC";

The problem with the above queries is that the variable SearchTerm comes from user
input and it’s simply inserted or concatenated as is in the query. When the program is
executed, the variable is simply replaced with its value and then the resulting string is sent
to the database which runs it, no matter from where the query pieces come from. The way
used by parametrized queries to avoid this problem is not including user-provided values

in the query at all. A placeholder substitutes the variable in the string and a dedicated

47

3 SECURITY ENHANCER IMPLEMENTATION

method is delegated of its association with the variable. The issue did not arises because
the SQL parameter is encapsulating the search term data such that it is sent to the server
separate from the SQL query text. The task of the diagnostic analyzer will be to identify
vulnerable strings and report them to the user, who may decide to sanitize them, and
thus make them parametric strings using the placeholder, via the appropriate code fix.

The string contained in the previous example would be written like this:

var query = "SELECT Title, Body, Excerpt FROM Post WHERE SearchTerm = Q@SearchTerm ORDER BY Published
DESC";

Now that the purpose of the SQL analyzer is clear is time to have a look at the details
of its implementation.
As can be seen from the next code snippet, the syntactic elements involved in our search
are the InterpolatedStringExpression nodes, a particular type of nodes which in this
case are used to identify strings that will act as queries. The function in charge of detect-

ing the vulnerable ones is called SQLStringDetectSyntax.

//Registers code actions on InterpolatedStringExpression nodes
context.RegisterSyntaxNodeAction(action: SQLStringDetectSyntax, syntaxKinds:
SyntaxKind.InterpolatedStringExpression) ;

The InterpolatedStringExpression is the kind associated with Interpolated-
StringExpressionSyntax node type. These types of nodes are the roots of subtrees
containing the types of nodes that will allow the vulnerable strings to be identified. The
vulnerable string is composed by pure text and one or more variables. In syntactic terms,
purely textual nodes are associated with type InterpolatedStringTextSyntax while
variables with InterpolatedSyntax.

What will discriminate the vulnerability of a string will be the presence or the absence
of the 7@Q” character in the last position of the string representation of an Interpo-
latedStringTextSyntax node which comes before an InterpolatedSyntax node. The
presence denotes that the following variable should be treated as a placeholder while the
absence as a normal variable. It is precisely the absence of this character that indicates

the vulnerability of the string and will therefore result in the generation of the alert.

48

o vt WoN

3 SECURITY ENHANCER IMPLEMENTATION

What remains to be done, therefore, is to navigate the previously mentioned subtree
nodes in search of this pattern: InterpolatedStringTextSyntax node not ending with
7@” followed by an InterpolatedSyntax node. The subtree navigation takes place via
the ChildNodes method which, by returning the child nodes list of the Interpolated-
StringExpressionSyntax root node, will allow iterating on it in search of the previously

mentioned sequence of nodes. The ChildNodes usage is shown in the following snippet.

// Iterate over the child nodes of the detected InterpolatedStringExpressionSyntax node
foreach (var i in interpolated.ChildNodes())
{

Once the textual representation of the syntax token has been accessed through the Text-
Token.Text property (property which belongs to an InterpolatedStringTextSyntax
node), the function EndsWith can be used to check whether the string ends with the
7@” character. Only in the negative case the diagnostics will be produced to report the
vulnerability, in fact the absence of this character indicates that no placeholders are used.

The code snippet below shows the just described process.

// If the string to be checked does not ends with the "@" character it means that the variable
corresponding
//to the Interpolation kind node could be vehicle of injection and so it should be reported
if (!toBeChecked.TextToken.Text.EndsWith("@"))
{

// Diagnostics creation using the InterpolatedStringExpressionSyntax node

var diagnostic = Diagnostic.Create(Rule, interpolated.GetLocation(),
interpolated.Contents.ToString());

context.ReportDiagnostic(diagnostic);

}

SQLProperty Analyzer

On the other side, the SQLPropertyAnalyzer has similar behaviour to the XSSAn-
alyzer. In fact, it checks the access occurrences to the property named CommandText,
which belongs to the SqlCommand objects, and creates the diagnostic report when a set
property operation is performed without having sanitized the assigned expression. The

below snippet represents some cases of unsafe assignment.

49

[I LV I

[B N O

3 SECURITY ENHANCER IMPLEMENTATION

using (var command = new SqlCommand(sql, connection))

{

command .CommandText = sql;

command . CommandText "Test";

command . CommandText

I oos

sql.ToString() ;

In this case, the sanitization function which the analyzer aims to insert through the code
fixing operations is called SQLSanitize and consists of an extension method containing
the sanitization procedures which rebuild the received strings making them SQL injection-
proof. The implementation of this method will be subject of future developments. The

expected result is the one shown in the snippet below.

using (var command = new SqlCommand(sql, connection))
{

command . CommandText sql.SQLSanitize();
"Test".SQLSanitize();
command . CommandText = sql.ToString() .SQLSanitize();

74 coo

command . CommandText

This time the RegisterSyntaxNodeAction function calls the method SQLCmdDe-
tectSyntax and sets as target syntax node kind the SimpleAssignmentExpression.
This is the same node kind that was used in the XSSAnalyzer case, in fact the process
of navigating the syntactic tree to reach the node is very similar. The differences lie
in the membership class of the object to which the property belongs, namely SqlCom-
mand, and the value of the string which prevents the diagnostics appearance, namely
?.SQLSanitize()”. The diagnostic generation and ”publication” process follows the one
explained in the XSSAnalyzer section. The code snippet present below shows shows the

sequence of checks implemented to distinguish vulnerable from secure code.

50

10
11
12
13

3 SECURITY ENHANCER IMPLEMENTATION

if (leftSidelInfo.Type.TypeKind == TypeKind.Class && leftSideInfo.Type.Name.CompareTo("SqlCommand") == 0)
{
// If the property name is CommandText
if (rightSideInfo.Symbol.Name.CompareTo("CommandText") == 0)
{
if (!toBeSecure.ToString().Contains(".SQLSanitize()"))
{
// For all such symbols, produce a diagnostic.
var diagnostic = Diagnostic.Create(Rule, syntaxExpression.GetLocation(),
rightSideInfo.Symbol.Name) ;
context.ReportDiagnostic(diagnostic) ;

}

SQLParameter Analyzer

Another point in the code which requires sanitization is the first parameter of the
SqlCommand constructor. This function creates a new instance of the object that will
manage the communication with the database. In this case SqlCommand needs as first pa-
rameter the string which represents the query to be executed by the server and as second
one the object which represents the connection with the database (created through the
constructor SqlConnection).

In this case the function which performs the vulnerability detection is called SQL-
ParamDetectSyntax and the syntax kind subject of the search is the ObjectCre-
ationExpression. This kind is associated with the node type ObjectCreationEx-
pressionSyntax which is used to represent the nodes containing the constructor method
call to initialise a new object of a class.

After having reached the syntax node related to the first parameter of the SqlCommand
constructor through the function ArgumentList.Arguments.First (), the only things left
to do are the checking that the string representation of the selected node does not con-
tain the ”7.SQLSanitize()” pattern (which indicates that the sanitization operation have
already been arranged) and, in case of positive feedback resulting from this last check,
the creation and ”publication” of the diagnostics. The following code snippet represents
the method which implements the vulnerabilities detection and diagnostics creation pro-

cedures.

o1

© 0 N ke W N

10
11
12
13
14
15

16
17
18
19

3 SECURITY ENHANCER IMPLEMENTATION

private static void SQLParamDetectSyntax(SyntaxNodeAnalysisContext context)
{
// Node extraction from the context

var commandCreation = (ObjectCreationExpressionSyntax)context.Node;

// Get the first parameter of the constructor

var firstParam = commandCreation.ArgumentList.Arguments.First();

if (commandCreation.Kind() == SyntaxKind.ObjectCreationExpression &&
commandCreation.Type.ToString() . CompareTo("SqlCommand") == 0)
{
// If not already sanitized, diagnostic should be created
if (!firstParam.ToString().Contains(".SQLSanitize()"))
{
// Diagnostic generation using the creation instruction
var diagnostic = Diagnostic.Create(Rule, commandCreation.GetLocation(),
firstParam.ToString());

context.ReportDiagnostic(diagnostic) ;

Code fix

For what concern the code fixing operations they are organized in three projects de-
pending on the diagnostic analyzer they are linked with. The class declaration part of
these projects mirrors the one presented for the XSSAnalyzer with the appropriate nam-
ing corrections. What changes are the content of the RegistrCodeFixAsync function and

the methods which manages the code fixing operations.
SQLStringCodeFixProvider

The RegisterCodeFixesAsync function for the SQLStringCodeFixProvider project
works with the diagnostics affecting the node type InterpolatedStringExpressionSyn-
tax. The vulnerable node obtained by reading the diagnostics will become the parameter
of the fixing function that will be called inside the CodeAction.Create method. This
function is used to create the action that will be registered as code fix operation by Reg-

isterCodeFix method.

52

N OO W N

3 SECURITY ENHANCER IMPLEMENTATION

// Register a code action that will invoke the fix.
context.RegisterCodeFix(
CodeAction.Create(
title: CodeFixResources.SQLStringCodeFixTitle,
createChangedDocument: ¢ => SanitizeStringAsync(context.Document, interString, c),
equivalenceKey: nameof (CodeFixResources.SQLStringCodeFixTitle)),
diagnostic);

The function in charge of defining the refactoring procedures is called SanitizeStringAsync.

Inside of it, the subtree which has the vulnerable InterpolatedStringExpressionSyn-
tax node as root will be travelled, like previously done during the code analysis phase, in
order to find the InterpolatedStringTextSyntax node which must be modified to make
the dangerous variable, represented by a node of type InterpolationSyntax, a place-
holder. To perform this operation, the single-quote that is usually present at the end of
the text string which precedes the dangerous variable is replaced with the ”@” character.
For tidier code, also the single-quote which follows the variable will be removed.

The new strings thus obtained will then be used to generate, through the appropriate
methods belonging to the SyntaxFactory class, the new syntax nodes that will make up

the new subtree. The resulting hierarchical structure is the one shown in Figure 26.

InterpolatedStringExpression Node

- S - —
InterpolatedStringText Node Interpolation Node

P ' v -
|
v

Vg
'SELECT EmailAddress FROM dbo.DimCustomer WHERE CustomerAlternateKey = @' Token IdentifierName Node

‘SearchTerm' Token

Figure 26: Subtree resulting from the code fix operation

Once the new subtree is ready, the creation of the main syntax tree via the previously

mentioned ReplaceNode function can be implemented.
SQLPropertyCodeFixProvider

The code fix operations corresponding to the diagnostics created by the SQLProperty-
Analyzer are the same as those adopted for the XSSAnalyzer. The only difference is the

name of the sanitization function that in this case is SQLSanitize.

SQLParameterCodeFixProvider

33

N O U e WN

10
11

12
13
14
15

3 SECURITY ENHANCER IMPLEMENTATION

The refactoring of the code corresponding to the diagnostics created by the SQLPa-
rameterAnalyzer analyser is very similar to the one carried out for the XSSAnalyzer
and SQLPropertyAnalyzer. The main difference is that the replaced node is no longer
the root of the subtree but an internal node of it. As can be seen from the code snippet,
the node replaced via ReplaceNode is the one corresponding to the first parameter of the
constructor, node type InvocationExpressionSyntax, and not the one used as starting

point in the detection process, node type ObjectCreationExpressionSyntax.

private static async Task<Document> SQLParameterSanitizeAsync(Document document,
ObjectCreationExpressionSyntax creationExpr, CancellationToken cancellationToken)
{

SyntaxNode oldRoot = await document.GetSyntaxRootAsync(cancellationToken).ConfigureAwait(false);

IdentifierNameSyntax sanitizeFunc = SyntaxFactory.IdentifierName("SQLSanitize");

MemberAccessExpressionSyntax sanitizeCall =
SyntaxFactory.MemberAccessExpression(SyntaxKind.SimpleMemberAccessExpression,
creationExpr.ArgumentList.Arguments.First () .Expression, sanitizeFunc);

InvocationExpressionSyntax newNode = SyntaxFactory.InvocationExpression(sanitizeCall);

SyntaxNode newRoot = oldRoot.ReplaceNode(creationExpr.ArgumentList.Arguments.First() .Expression,

newNode) ;

return document.WithSyntaxRoot (newRoot) ;

o4

4 Results evaluation

This chapter will focus on the evaluation of the results obtained in order to verify
the proper functioning of the tools developed. It will present the the effectiveness of
the developed solutions testing the code through the .VSIX project which creates a new
instance of Visual Studio that runs the analyzers implemented in the SecurityEnhancer
solution. The results will be shown through images representing the testing environment
before and after the activation of the analysis and code fix tools. This will highlight the

changes made by the developed solution compared to a normal case study.

XSSAnalyzer solution

The XSSAnalyzer diagnostic analyzer was intended to act as a programmer’s reminder,
as it generates a diagnostic whenever a property marked with the XSSVulnerability-
Attribute participates in an assignment operation. This was done to prevent sensitive
properties from being a vehicle for script injection. Figure 27 shows an examples of how

the XSSVulnerability attribute had been used in the testing project.

Person

nerability]

Name {

erability]

Surname

Figure 27: Example of how the attribute is used in a testing project

This example assumes that the Name and Surname properties of the Person object are

assigned with string values or other variables. By pretending that, these properties were

95

4 RESULTS EVALUATION

somehow used in the creation of a dynamic web page, and therefore contributed to defin-
ing its content, they hey can be considered vulnerable to script injection. For this reason,
the creator of the web application code may want to be sure that they cannot convey
security threats to his program. The developer will therefore be able to mark them with
the attribute provided by the SecurityEnhancerSDK in order to not forget to sanitise
them when they will be used.

Whenever a marked property is involved as target in an assignment operation, the XSS-
Analyzer will produce a diagnostics alerting the programmer about the absence of sani-
tization measures. Figure 28 and figure 29 show the status of the code before and after

the activation of the XSSAnalyzer.

dude.BirthPlace = "London"; :
dude.Name = "John"; e o
— np ", @- G System String

dude : Name - F'aLll L Represents text as a sequence of UTF-16 code units.

dU'de * surna‘me = tEStl ; XSS01: The property 'Surname’ should be sanitized to prevent injection

dude.Surname = test2; ot fives (ATt Enter or Cirl+)
Figure 28: Code appearance before the acti- Figure 29: Code appearance after the activa-
vation of the XSS diagnostic analyzer tion of the XSS diagnostic analyzer

To be noted that the property BirthPlace, which is not tagged with the XSSVulnera-
bility attribute is not affected by the detection.

To relieve the developer of the burden of implementing the sanitization function, the
analyzer is able to produce tooltips in relation to the newly produced diagnostic which
proposes the insertion of the call to the sanitization function XSSSanitize. Figure 30
shows this situation (do be noted the presence of a preview of the proposed code fix).

In case the programmer chooses to apply the proposed code fix, the code will be trans-
formed as shown in figure 31. To be noted that in presence of the XSSSanitize function
call the diagnostic alert does not arises, and also that the changes were applied whether

the expression on the right side of the assignment consisted of a string or a variable.

56

4 RESULTS EVALUATION

dude . BirthPlace =
dude . Name_=

dude . Name aul
dude . Surname = testl;
dude.Surname = test2;

@~

Sanitize the property vent injection

or G
> dude.Surname = testl; - - =
dude. Surname = test2; dude.BirthPlace = "London";
dude. Surname = test2 XSSSanitize()]; d“de . Name = . ”J{.‘h [T' ;
dude.Name = "Paul".XSSSanitize();

st2.XSSSanitize();

Figure 30: Example of code fix suggestion Figure 31: Code fix results for XSS vulnera-
against XSS vulnerability bility

SQLStringAnalyzer solution

The SQLStringAnalyzer project has the objective of detecting strings created by the
programmer to be used as queries that may give rise to a sql injection. This section of
the thesis will show some examples of vulnerable strings, the related warnings produced
by diagnostics and what they will look like after the refactoring operations.

The structure of a vulnerable string was shown earlier in chapter 3, but it is not the
only form that a vulnerable string can take. A vulnerable interpolated string can be
represented as normal text which contains one or more variables, concatenation of string
and variables and so on. Figure 32 shows some examples of vulnerable and not vulnerable

(already in parametric form) interpolated strings.

earchTerm}";
" + §"g{SearchTerm}";

*{SearchTerm}'";
‘{SearchTerm}' ' {other}'";

*{SearchTerm}'" + $"and '{other}'";

‘{SearchTerm}'" + nd @{other}"”;

= '{SearchTerm}'
+ §"'{SearchTerm}'";

§"'{SearchTerm}'";

Figure 32: Examples of vulnerable and not vulnerable interpolated strings

It is therefore time to check if the created analyzer is able to identify the vulnerable strings

and leave out those that are not. Figure 33 presents the obtained result.

57

4 RESULTS EVALUATION

. {SearchTerm}'"

[fSE§rchTerm}' a

FROM dbo.DimC

M dbo.DimCust

+ §°

{SearchTerm}";
" + $"@{SearchTerm}";

@{other}";

1n

n {other}";

tomer WHERE omerAlternate

omerAlter

WHERE Ci

Figure 33: SQL injection vulnerable interpolated strings detection results

The previous figure shows that the analyzer is perfectly able to distinguish the vulnerable

strings from those who are not. In the event that the vulnerable string corresponds to

a composition of strings, it is also able to provide the alert only for the component that

generates the vulnerability.

It is now time to verify that the code fix operations effectively transform ”"bad strings”

into parametric strings. Figure 34 shows the strings appearance after having applied the

code fix procedures.

@fSearchTerm}”;

@{SearchTerm} a

LECT EmailAddress
ustomer
@fSearchTerm}" +

{SearchTerm}" + $"an

{SearchTerm} and @fother}";

FROM dbo.DimC

omer WHERE

Sanitize the stri

* IntelliCode st LECT EmailAddress FROM...

Suppress or Configure i

email £

connection +ionlconnectionStrina))

| &~ 4

ings | @ 0of16 Build + IntelliSense

TestForSecurityEnhg
Dependen
C= Program.cs

q

{s earchTerm}E" 7
f{SearchTerm}";

ix all occurrence

Figure 34: Code fixing results on SQL injection vulnerable interpolated string

o8

4 RESULTS EVALUATION

SQLPropertyAnalyzer solution

The principle behind the SQLProperty Analyzer project is very similar to the XSSAna-
lyzer one, which is to provide the possibility for the programmer to sanitize the expression
assigned to a particular property (SqlCommand.CommandText) as unaware of its con-

tent. Figure 35 and figure 36 show the situation before and after activating the analyzer.

C command = and(sql, connection})

command . CommandText =
command.CommandText = :
command.CommandText = sql.ToString();

Figure 35: CommandText property assignments vulnerable to SQL injection

command .CommandText = sql;

command.CommandText = "Test";

command . CommandText = sql.ToString();
@ -

command . Parameters . Add(SqlParame SQLO2: The property ‘CommandText' should be sanitized to prevent SQL injection

(Alt+Enter or Ctrl+.)

Figure 36: Diagnostic alert on CommandText property assignment operations

If the programmer decides to apply the sanitization, the appearance of the resulting code

is the one shown in figure 37.

command . CommandText = " SQLSanitize();
command . CommandText = sql.ToString();

©® -
v e - . e e e o e
Sanitize the expression . v 'CommandText' should be sanitized to prevent SQL
uppress or Configure issues ¥ jectic
L 1
while (reader.Read(command.CommandText = "Test".SQLSanitize();

{) command . CommandText = sql.ToString();
: g email = command.CommandText = sql.ToString()f.SQLSanitize());
emails.Add(ema:]

Figure 37: CommandText property assignments refactoring

SQLParameter Analyzer solution

The behaviour of the SQLParameter Analyzer project is quite similar to the SQLProp-

erty Analyzer one, the difference stands in the code elements on which it acts. In this case,

39

4 RESULTS EVALUATION

instead of reporting a violation on a property, the first parameter of the SQLCommand
constructor is highlighted. Figure 37 and figure 37 show respectively the creation of the

diagnostic and the refactoring results of this solution.

(var command = new S i(sql, connection))

® -~ _ o
W D S m d cannection) (+ 3 overloa
command . Commana i ex

e of the query and a SgiC
command . CommandTex it
command . CommandTex 501 03: The parameter ‘sql’ should be sanitized to prevent SQL injection

command . Parameters es (Alt+Enter or Ctrl+.)

Figure 38: SqlCommand constructor vulnerable parameter detection

command = S nd(sql.SQLSanitize(), connection))

Figure 39: SqlCommand constructor vulnerable parameter sanitization

To be noted the changing of the analyzer ID in the different diagnostics.

60

5 Conclusions

The purpose of the thesis was to develop a syntactic analyzer for the C# language,
usable as extension of Visual Studio, that would be able to alert programmers about
portions of code that would make it vulnerable to some types of cyber attacks. Obvi-
ously covering the entire case history of cyber attacks would have been impossible in the
time available, so only two of these were chosen as a starting point: cross-site scripting
(XSS) and SQL injection. The tool which allows the creation of this kind of analyzer
is the .NET Compiler Platform SDK ("Roslyn”). It makes available dedicated APIs for
the development of custom diagnostics and code fixes. Thanks to it, it was possible to
achieve the set goals and produce an analyzer that met the requirements. Indeed, after
studying how target cyber attacks operate and what defensive measures are usually im-
plemented to counter them, it was possible to identify vulnerable instructions in the code,
flag them, and create appropriate procedures to sanitize them. This was possible through
the acquisition of knowledge about the syntactic structure behind C# code development
obtained from the original documentation provided by Microsoft and from experimenta-
tion on separate auxiliary projects created in parallel with the main project for purely
illustrative purposes. The final results confirmed the effectiveness of the work done. The
testing phase showed that the code static analysis correctly detects all the different types
of vulnerabilities to which the code is subjected in terms of cross-site scripting and SQL
injection attacks. Likewise, the results of code fix operations correctly produce a new
version of the original code containing the changes defined in the design phase. As of
today, the proposed solution is ready to be tested in a real-world scenario in order to
verify its effectiveness on programs not specifically created for its testing.

The solution produced as thesis project is just a starting point. The SecurityEnhancer
analyzer is designed to protect code development operations from the greatest number of
vulnerabilities. In fact, it can be updated through the inclusion of new diagnostic analyz-

ers and code fixes that secure code from other attacks such as Buffer Overflow, Cross-Site

61

5 CONCLUSIONS

Request Forgery (CSRF), XPath Injection, and so on. It can also be enriched with new
sanitization functions through the SecurityEnhancerSDK utility project. Because of the
modularity with which it was built, it can also be configured to focus analysis only toward
a particular type of violation. Finally, the proposed analyzers can be improved by includ-
ing functions that can refine the search for vulnerabilities and by creating from scratch

the methods that will be used to sanitize the code.

62

Bibliography

BumMmsuk JuNG, INGOO HAN, SANGJAE LEE

2001 - Security threats to Internet: a Korean multi-industry investigation
CHARLES P. PFLEEGER, SHARI LAWRENCE PFLEEGER, JONATHAN MARGULIES
2015 - Security in Computing - Fifth Edition

WENLIANG Du
2019 - Computer & Internet Security A Hands-on Approach - Second Edition

WIKIPEDIA
2021 - Cross-site request forgery https://it.wikipedia.org/wiki/
Cross-site_request_forgery
WIKIPEDIA
2021 - AJAX https://it.wikipedia.org/wiki/AJAX
WIKIPEDIA

2022 - Document Object Model https://it.wikipedia.org/wiki/Document_
Object_Model

RyaN OBERFELDER

2017 - Describing XSS: The story hidden in time https://medium.com/
O@ryoberfelder/describing-xss-the-story-hidden-in-time-80c3600ffe81

THE VIRUS ENCYCLOPEDIA

Spacehero http://virus.wikidot.com/spacehero

WIKIPEDIA

2022 - Samy (computer worm) https://en.wikipedia.org/wiki/Samy_
(computer_worm)
LORENZO FRANCESCHINI-BICCHIERAI

2015 - The MySpace Worm that Changed the In-
ternet Forever https://www.vice.com/en/article/wnjwb4/
the-myspace-worm-that-changed-the-internet-forever

LisA VAAS
2016 - eBay XSS bug left wusers wulnerable to (almost) wundetectable
phishing attacks https://nakedsecurity.sophos.com/2016/01/13/

ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/

63

BIBLIOGRAPHY BIBLIOGRAPHY

[12] YONATHAN KLIJNSMA

2018 - Inside the Magecart Breach of British Airways: How 22
Lines of Code Claimed 380,000 Victims https://www.riskiq.com/blog/
external-threat-management/magecart-british-airways-breach/

[13] LuciAN CONSTANTIN

2018 - Fortnite Attack Allowed Taking Qver Player
Accounts https://securityboulevard.com/2019/01/
fortnite-attack-allowed-taking-over-player-accounts/

[14] BRAD ANDERSON

2020 - 3 Dangerous Cross-Site Scripting At-
tacks of the Last Decade https://readwrite.com/
3-dangerous-cross-site-scripting-attacks-of-the-last-decade/

[15] PANKAJ SHARMA

2005 - SQL Injection Techniques € Countermeasures CERT-In: Indian Com-
puter Emergency Response Team

[16] H. ALSOBHI AND R. ALSHAREEF

2020 - SQL Injection Countermeasures Methods SQL Injection Attacks Coun-
termeasures Assessments. Indonesian Journal of Electrical Engineering
and Computer Science

[17] ALENEZI, MAMDOUH & NADEEM, MUHAMMAD & ASIF, RAJA

2020 - SQL Injection Attacks Countermeasures Assessments Indonesian Jour-—
nal of Electrical Engineering and Computer Science

[18] 2021 - The .NET Compiler Platform SDK https://learn.microsoft.com/en-us/
dotnet/csharp/roslyn-sdk/

[19] 2021 - Understand the .NET Compiler Platform SDK model https://learn.
microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model

[20] MANISH VASANI
2017 - Roslyn Cookbook

[21] MAARTEN BALLIAUW, XAVIER DECOSTER
2012 - Pro NuGet

64

	1 Introduction
	2 State of the art
	2.1 Cyberattacks
	2.1.1 Cross-Site Scripting attack (XSS attack)
	2.1.2 SQL Injection attack

	2.2 Compiler level security
	2.2.1 .NET Compiler Platform API ("Roslyn")

	2.3 Visual Studio Analyzers and code-fixes
	2.3.1 Code static analysis
	2.3.2 Roslyn based analyzers features
	2.3.3 Code fixes

	2.4 Language utilities

	3 Security Enhancer implementation
	3.1 Project structure
	3.2 SecurityEnhancer SDK
	3.3 SecurityEnhancer analyzers
	3.3.1 XSS analyzer
	3.3.2 SQL analyzer

	4 Results evaluation
	5 Conclusions

