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Introduzione

Lo scopo di questa tesi �e presentare gli argomenti della meccanica quantistica supersimmet-
rica, della localizzazione equivariante e mostrare come quest'ultima, insieme ad altri tipi di
localizzazione e invarianza di deformazione, emerga quando studiamo sistemi quantistici super-
simmetrici.

Ottenere risultati esatti in meccanica quantistica �e un compito di�cile, ma in certe situ-
azioni le caratteristiche del sistema in esame ci aiutano a eseguire calcoli esatti: �e il caso dei
sistemi quantistici supersimmetrici, una classe di sistemi per i quali possiamo fare ci�o applicando
strumenti matematici avanzati come quelli discussi in questa tesi.

Per localizzazione intendiamo il fenomeno di riduzione di propriet�a globali di una variet�a
a propriet�a globali di una sottovariet�a propria: ad esempio, la riduzione dell'integrale di una
forma di�erenziale a una somma �nita di contributi da punti isolati. In particolare, la localiz-
zazione equivariante �e un tipo di localizzazione indotta da un'azione di gruppo. Con invarianza
per deformazione intendiamo il fenomeno di invarianza di propriet�a di un sistema quantistico
quando applichiamo una deformazione continua dell'Hamiltoniano. Le idee di localizzazione e
invarianza di deformazione di alcune propriet�a di un sistema supersimmetrico, come l'indice di
Witten, sono apparse nell'articolo di Witten [4] del 1982.

Inoltre, lavorando con un sistema basato su una variet�a compatta, la supersimmetria o�re
un contesto interessante per enunciare e abbozzare una dimostrazione di alcuni profondi teo-
remi della geometria di�erenziale: teorema di decomposizione di Hodge, disequazioni di Morse,
teorema di Chern-Gauss-Bonnet e una versione pi�u debole del teorema di Poincar�e-Hopf.

Nel Capitolo 1 presentiamo un'introduzione generale alla meccanica quantistica super-
simmetrica con N = 2 e discutiamo alcuni esempi di base. Nel Capitolo 2 presentiamo
un'introduzione generale alle forme di�erenziali e alla localizzazione equivariante, enunciamo
la formula di localizzazione di Berline-Vergne e discutiamo alcuni esempi di base. Nel Capi-
tolo 3 presentiamo un particolare sistema quantistico supersimmetrico basato su una variet�a
compatta, e alcune sue deformazioni. Dimostriamo alcuni risultati utilizzando gli strumenti dei
capitoli precedenti insieme ad altri teoremi, la cui dimostrazione �e riportata in bibliogra�a. In
particolare, calcoliamo l'indice di Witten del sistema in diversi modi, derivando come sotto-
prodotto i teoremi di topologia di�erenziale sopracitati. Tutti questi metodi di calcolo si basano
su un tipo di deformazione: l'aggiunta di un termine d'interazione generato da una funzione
di Morse, un campo vettoriale di Killing o il ridimensionamento dell'Hamiltoniano non modi�-
cano l'indice, quindi possiamo eseguire il calcolo esatto in un limite appropriato del parametro
di deformazione, dove avviene la localizzazione. Nell'Appendice A dimostriamo la formula di
localizzazione di Berline-Vergne, mentre nell'Appendice B abbozziamo una dimostrazione del
lemma 3.10.

Nella tesi presentiamo e sviluppiamo le idee delle lezioni di Tong [3] e dell'articolo di Witten
[4], chiarendo rigorosamente una buona quantit�a di passaggi matematici, facendo riferimento
anche ad altre fonti.



Introduction

The aim of this thesis is to present the topics of supersymmetric quantum mechanics, equiv-
ariant localization and to show how the latter, together with other types of localization and
deformation invariance, emerges when we study supersymmetric quantum systems.

Obtaining exact results in quantum mechanics is a di�cult task, but in certain situations
the features of the system under examination help us to perform exact calculations: this is the
case of supersymmetric quantum systems, a class of systems for which we can do so by applying
advanced mathematical tools such as those discussed in this thesis.

By localization we mean the phenomenon of reduction of global properties of a manifold
to global properties of a proper submanifold: for example, the reduction of the integral of a
di�erential form to a �nite sum of contributions from isolated points. In particular, equivariant
localization is a type of localization induced by a group action. By deformation invariance we
mean the phenomenon of invariance of properties of a quantum system when we apply a con-
tinuous deformation of the Hamiltonian. The ideas of localization and deformation invariance
of some properties of a supersymmetric system, such as the Witten index, appeared in Witten's
paper [4] of 1982.

Furthermore, working with a system based on a compact manifold, supersymmetry o�ers an
interesting framework to state and sketch a proof of some deep theorems of di�erential geometry:
Hodge decomposition theorem, Morse inequalities, Chern-Gauss-Bonnet theorem and a weaker
version of Poincar�e-Hopf theorem.

In Chapter 1 we present a general introduction to N = 2 supersymmetric quantum me-
chanics and discuss some basic examples. In Chapter 2 we present a general introduction to
di�erential forms and equivariant localization, state the Berline-Vergne localization formula and
discuss some basic examples. In Chapter 3 we present a particular supersymmetric quantum
system based on a compact manifold, and some deformations of it. We prove some results using
the tools of the previous chapters together with other theorems, whose proof are reported in
the bibliography. In particular, we compute the Witten index of the system in di�erent ways,
deriving as a byproduct the di�erential topology theorems mentioned above. All these methods
of computation are based on a type of deformation: adding an interaction term generated by a
Morse function, a Killing vector �eld or scaling the Hamiltonian does not change the index, so
we can perform the exact computation in a suitable limit of the deformation parameter, where
localization occurs. In Appendix A we prove the Berline-Vergne localization formula, while in
Appendix B we sketch a proof of lemma 3.10.

Throughout the thesis we present and develop the ideas of Tong's lectures [3] and Witten's
paper [4], rigorously clarifying a good amount of mathematical steps, also referring to other
sources.
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Chapter 1

N = 2 supersymmetric quantum
mechanics

1.1 General theory

Given a quantum system (H; H), we say it is supersymmetric with N = 2 conserved super-
charges if there exists a densely de�ned linear operator Q 6= Q�, called the complex supercharge
operator, and a self-adjoint operator F , called the fermion number operator, whose spectrum
is a set of natural numbers f0; : : : ; ng, such that

Q 6= Q�

Q2 = 0n
Q; (−1)F

o
= 0

H = fQ;Q�g ;

where f�; �g is the anticommutator. The operator (−1)F is called the parity operator. The

conserved supercharges are Q + Q� and i (Q−Q�). If eQ is a conserved supercharge, then

H = eQ2 and the name is trivially justi�ed by
h
H; eQi = 0. Note that H� = H 6= 0. The Hilbert

space H is decomposed as H = HB �HF , where

HB =
n
 2 H : (−1)F  =  

o
is called bosonic Hilbert space and

HF =
n
 2 H : (−1)F  = − 

o
is called fermionic Hilbert space. We sometimes require the stronger property that

[F;Q] = Q;

in which case we say the system is completely graded, implying also that
n
Q; (−1)F

o
= 0. Now

we prove some general results.

Proposition 1.1. H is positive semi-de�nite and a state  has zero energy if and only if
Q = Q� = 0. In symbols,

H � 0

kerH = kerQ \ kerQ�:
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Proof. For a state  ,

( ;H ) = ( ; fQ;Q�g )

= ( ;QQ� ) + ( ;Q�Q )

= (Q� ;Q� ) + (Q ;Q )

= kQ� k2 + kQ k2

� 0;

and ( ;H ) = 0 if and only if Q = Q� = 0.

Proposition 1.2. If Q�Q = 0, then Q = 0. If QQ� = 0 then Q� = 0.

Proof.
0 = (Q�Q ; ) = (Q ;Q ) = kQ k2 ;

so Q = 0. The proof of the second part is analogous.

Proposition 1.3. We have [H;Q] = 0.

Proof.

[H;Q] = [fQ;Q�g ; Q]

= [QQ�; Q] + [Q�Q;Q]

= QQ�Q−QQ�Q
= 0:

Proposition 1.4. If the system is completely graded, we have [H;F ] = 0. In the general case

we have
h
H; (−1)F

i
= 0.

Proof. Since

FQ = Q (F + 1)

QF = (F − 1)Q;

then we have

Q�F = (F + 1)Q�

FQ� = Q� (F − 1)

and

[H;F ] = [fQ;Q�g ; F ]

= QQ�F +Q�QF − FQQ� − FQ�Q
= Q (F + 1)Q� +Q� (F − 1)Q−Q (F + 1)Q� −Q� (F − 1)Q

= 0:

The proof of the second part is similar.

Proposition 1.5. If H gives a �nite-dimensional eigenspaces decomposition

H =
M
N>0

H(N)
B �H(N)

F �H(0);

where H(N)
B and H(N)

F are the bosonic and fermionic part of each energy eigenspace H(N), then

dimH(N)
B = dimH(N)

F .
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Proof. We claim that, given a conserved supercharge eQ, it is an isomorphism between H(N)
B

and H(N)
F with N 6= 0. Firstly, eQH(N)

B � H(N)
F , since [H;Q] = 0 and

n
Q; (−1)F

o
= 0. Then, it

is also invertible with inverse 1
EN
eQ, where EN > 0 is the energy of H(N). In fact, if restricted

on H(N)
B ,

1

EN
eQ2 =

1

EN
H = 1:

We now restrict our study to systems which full�ll the conditions of the previous proposition.

Moreover, we require that the energies of the eigenspace are such that EN
N!1−! 1 and we

assume they are increasing. This will be the case of all the systems we care about in this thesis.

De�nition 1.1. We de�ne the Witten index W as

W = dimH(0)
B − dimH(0)

F :

For � > 0, if the following is a trace-class operator, we have

tr
�

(−1)F e−�H
�

=W ;

since

tr
�

(−1)F e−�H
�

=
X
N>0

e−�EN
�

dimH(N)
B − dimH(N)

F

�
+ dimH(0)

B − dimH(0)
F

= dimH(0)
B − dimH(0)

F :

Proposition 1.6. If there are no convergence issue in the following proof, every state  in the
domain of Q and Q� can be decomposed as

 =  0 +Q 1 +Q� 2;

where H 0 = 0, and the three addends are unique. In symbols,

H = kerH � imQ� imQ�:

Proof. Firstly, we decompose the state in the energy eigenspaces

 =  0 +
1X
N=1

�N

H�0 = 0

H�N = EN�N ;

with EN > 0. We have

 =  0 +Q
1X
N=1

1

EN
Q��N +Q�

1X
N=1

1

EN
Q�N :

The only issue is about the convergence of the sum, but we assume it can be solved. For the
uniqueness, we suppose

 0 +Q 1 +Q� 2 =  00 +Q 01 +Q� 02

Q�Q ( 1 −  01) = 0;

so Q 1 = Q 01, the same for Q 2 and �nally for  0.

5



This proposition will be the key to prove the Hodge decomposition theorem.

Proposition 1.7. For every energy eigenspace, there is a state  1 such that Q 1 = 0 and a
state  2 such that Q� 2 = 0.

Proof. If H� = E�, HQ� = QH� = EQ� and QQ� = 0, so the �rst part of the proposition is
true with  1 = Q�. The second part is proved in the same way.

Proposition 1.8. Assuming the same hypotheses of the proof of decomposition, there is an
isomorphism between kerH and the quotient set

kerQ

imQ
;

given by
 7! [ ] :

Proof. We have to �nd an inverse to this map. Our claim is the map

[ ] = [ 0 +Q 1 +Q� 2] 7!  0:

Firstly, we verify it is well-de�ned, so

[ +Q�] = [ 0 +Q( 1 + �) +Q� 2]!  0:

Then, we verify it is actually the inverse map. Since Q = 0, QQ� 2 = 0 and Q� 2 = 0, so

[ 0] = [ 0 +Q 1] = [ ] :

Remark. If we call
Hk = f 2 H : F = k g ;

in a completely graded system we have a chain complex

0
Q� − H0

Q� − H1
Q� − : : :

Q� − Hn−1
Q� − Hn

Q� − 0

and a cochain complex

0
Q−! H0

Q−! H1
Q−! : : :

Q−! Hn−1
Q−! Hn

Q−! 0:

Regardless of whether the system is completely graded, we call a state of Hk a state of degree
k, a state in kerQ a Q-closed state and a state of imQ a Q-exact state.

Corollary 1.9. We have

W =
nX
k=0

(−1)k dim kerHjHk =
nX
k=0

(−1)k dim

�
kerQjHk

imQjHk−1

�
:

Proof. The isomorphism of the previous proposition restricts to isomorphisms

kerHjHk !
kerQjHk

imQjHk−1

;
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hence

W = dimH(0)
B − dimH(0)

F

= dim kerHjHB − dim kerHjHF
=

X
(−1)k=1

dim kerHHk −
X

(−1)k=−1

dim kerHHk

=
nX
k=0

(−1)k dim kerHjHk

=
nX
k=0

(−1)k dim

�
kerQjHk

imQjHk−1

�
:

1.2 Basic examples

Example 1.1 (Particle in a line). A simple example with N = 2 conserved supercharges and
dimension n = 1 is the system with Hilbert space L2(R)
 C2 and

Q = (D +W 0(X))

�

0 0
1 0

�

F

�
�
 

�
=

�
0
 

�
;

with D the derivative and W a smooth function. With this setup we have

Q� = (−D +W 0(X))

�

0 1
0 0

�
H = −D2 +W 0(X)2 −W 00(X)
 �3:

In order to calculate the Witten index, we have to solve the zero-energy states equation

Q

�
�
 

�
= Q�

�
�
 

�
= 0

(
�0 +W 0� = 0

− 0 +W 0 = 0(
� = AeW

 = Be−W
;

but we have to check if �;  2 L2(R).

1. If W (x)
jxj!1−! 1, then eW =2 L2(R) and e−W 2 L2(R), so there are no bosonic ground

states and W = −1.

2. If W (x)
jxj!1−! −1, then eW 2 L2(R) and e−W =2 L2(R), so there are no fermionic ground

states and W = 1.

3. In all the other cases, eW ; e−W =2 L2(R), so there are no zero-energy states and W = 0.
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Example 1.2 (Particle in a circle). Another example with N = 2 and n = 1 is the system
with Hilbert space L2(S1) and the same supercharge as the previous example, now with W a
smooth function on S1. The solutions to the zero-energy states equation are always in L2(S1),
so for every bosonic state �

AeW

0

�
there is a fermionic state �

0
Ae−W

�
;

and W = 0.

Example 1.3 (Pauli equation). The Pauli Hamiltonian for a 1
2
-spin particle constrained on the

xy plane (the Hilbert space is L2(R2)
 C2) and immersed in an orthogonal uniform magnetic
�eld

B(x; y) = (0; 0; Bz(x; y))

has a supersymmetric form with supercharge

Q = ((Px − Ax) + i (Py − Ay))

�

0 1
0 0

�
;

where B = r�A, choosing a particular gauge for the vector potential A. We have

QQ� =
(
(Px − Ax)2 + (Py − Ay)2 − i [Px − Ax; Py − Ay]

�


�

1 0
0 0

�
=
(
(P−A)2

T − i [Ay; Px] + i [Ax; Py]
�


�

1 0
0 0

�
=
(
(P−A)2

T + (r�A)z
�


�

1 0
0 0

�

Q�Q =
(
(P−A)2

T − (r�A)z
�


�

0 0
0 1

�
and

H = (P−A)2
T + (r�A)z 
 �z:

With some arguments from the �rst example, supersymmetric quantum mechanics can also
be useful to exactly solve a class of quantum system which share a property named shape
invariance, but we do not talk about it in this thesis.
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Chapter 2

Di�erential forms and equivariant
localization

In this chapter, we work with a n-dimensional orientable compact Riemannian manifold (M; g).
When a compact group G acts on the manifold, we can derive interesting facts about di�erential
forms which are invariant for the group action. We restrict our study to isometric actions of
S1, which are generated by Killing vector �elds V .

2.1 Di�erential forms

We work with the vector space of (complex inhomogeneous) di�erential forms


(M) = 
 = C

nM
k=0


k(M);

and the k-degree component of a di�erential form ! is denoted by !k. Unless otherwise speci�ed,
all the operators 
k ! 
k0 are extended by linearity. The integral of a di�erential form on a
k-dimensional submanifold N �M is de�ned as the integral of its k-degree componentZ

N

! =

Z
N

!k:

Proposition 2.1. For a di�erential form !,Z
N

d! =

Z
@N

!:

.

Proof. Let k = dimN . Since dim @N = k − 1, by Stokes theoremZ
N

d! =

Z
N

(d!)k =

Z
N

d(!k−1) =

Z
@N

!k−1 =

Z
@N

!:

Notation 2.1. For a di�erential form !, we use the notation

(−1)F ! =
nX
k=0

(−1)k !k:

! is called even if (−1)F ! = !, odd if (−1)F ! = −!.
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Remark. Obviously, (−1)F (−1)F ! = !, (−1)F d! = −d (−1)F ! and analogous relations. It is
no chance that the symbol used is the same as in the previous chapter: we will see why in the
next chapter.

Proposition 2.2. For di�erential forms !; � and a vector �eld V ,

d(! ^ �) = d! ^ � + (−1)F ! ^ d�
iV (! ^ �) = iV ! ^ � + (−1)F ! ^ iV �:

Proof.

d(! ^ �) =
nX

i;j=0

d(!i ^ �j)

=
nX

i;j=0

d!i ^ �j +
nX

i;j=0

(−1)i !i ^ �j

= d! ^ � + (−1)F ! ^ d�:

The other one is analogous.

De�nition 2.1. Given an analytic function f : Cn+1 ! C with Taylor series

f(z0; : : : ; zn) =
1X

i0;:::;in=0

ai0:::inz
i0
0 : : : z

in
n ;

we de�ne for a di�erential form !

f(!) =
1X

i0;:::;in=0

ai0:::in!
i0
0 ^ : : : ^ !inn ;

which is well-de�ned because !ik = 0 for k 6= 0 and i > n
k
, so

f(!) =
X
i1�n

: : :
X
ik�nk

: : :
X
in�1

 
1X
i0=0

ai0:::in!
i0
0

!
!i11 ^ : : : ^ !inn

=
X
i1�n

: : :
X
ik�nk

: : :
X
in�1

bi1:::in!
i1
1 ^ : : : ^ !inn :

Remark. If ! is of 0-degree, f(!) = f(!; 0; : : : ; 0).

Remark. We denote the function e(z0;:::;zn) = ez0+:::+zn . It is easy to prove that e! = e!0^: : :^e!n
and d

d�
e�! = ! ^ e�!.

Proposition 2.3. Given an analytic function f : Cn+1 ! C, a di�erential form ! and a vector
�eld V ,

df(!) =
nX
k=0

d!k@kf(!)

iV f(!) =
nX
k=0

iV !k@kf(!):

Remark. de! = d! ^ e! and iV e
! = iV ! ^ e!.
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De�nition 2.2. Given a vector �eld V , we de�ne the V -equivariant exterior derivative

dV = d+ iV

and the vector space of V -equivariant di�erential forms


V
C (M) = kerLV :

Remark. dV (! ^ �) = dV ! ^ � + (−1)F ! ^ dV � and dV e
! = dV ! ^ e!.

Proposition 2.4. If ! is a V -equivariant di�erential form, d2
V ! = 0.

Proof. Since ! 2 kerLV , LV ! = 0.

d2
V = (d+ iV )2 = d2 + fd; iV g+ i2V = LV ;

therefore d2
V ! = LV ! = 0.

De�nition 2.3. An (V -)equivariant form ! is called (V -)equivariantly closed if dV ! = 0, while
it is called equivariantly exact if ! = dV � for some equivariant form �.

2.2 Equivariant localization

Lemma 2.5 (Equivariant localization lemma). Let � be a V -equivariantly closed di�erential
form on a manifold M . Let � be a V -equivariant di�erential form. Then, for every � 2 R,Z

M

� =

Z
M

� ^ e−�dV �:

Proof. We prove that
d

d�

Z
M

� ^ e−�dV � = 0:

Firstly,
d

d�

Z
M

� ^ e−�dV � =

Z
M

� ^ d

d�
e−�dV � = −

Z
M

� ^ dV � ^ e−�dV �:

On the other hand, since dV � = 0 and d2
V � = 0,

dV ((−1)F � ^ � ^ e−�dV �) =

= dV (−1)F � ^ � ^ e−�dV � + � ^ dV � ^ e−�dV �

+ � ^ (−1)F � ^ dV e−�dV �

= � ^ dV � ^ e−�dV � − �� ^ (−1)F � ^ d2
V �e

−�dV �

= � ^ dV � ^ e−�dV �:

Therefore, since
R
M
iV ! = 0,

d

d�

Z
M

� ^ e−�dV � = −
Z
M

� ^ dV � ^ e−�dV �

= −
Z
M

dV (�� ^ � ^ e−�dV �)

= −
Z
M

d(�� ^ � ^ e−�dV �)

= 0:
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Theorem 2.6. Let � be a V -equivariantly closed di�erential form. If V is Killing with respect
to the metric g, then Z

M

� = lim
�!1

Z
M

� ^ e−�dV iV g:

Proof. We could apply Lemma 2.5 with � = iV g if LV iV g = 0. This is the case, since

LV iV g = iVLV g + i[V;V ]g = 0:

The hypotheses of the lemma are ful�lled, soZ
M

� =

Z
M

� ^ e−�dV iV g = lim
�!1

Z
M

� ^ e−�dV iV g:

Corollary 2.7 (Berline-Vergne localization formula). With the previous hypotheses, if M is
2n-dimensional and the zeros of V are isolated,Z

M

� =
X

V (x)=0

(2�)n

pf(dV [(x))
�0(x):

Proof. See Appendix A.

Example 2.1. A basic example of application of the Berline-Vergne localization formula is the
integration on a sphere

S2 =
�
x 2 R3 : kxk = 1

	
of a 2-form

etH!;

where ! is the volume 2-form and H is the height function

H(x; y; z) = z:

Our Killing vector �eld V is the generator of rotation around an axis of the sphere. The
integrand is not equivariantly closed but it is equal to the top-degree component of

1

t
et(!+H):

After choosing as Killing �eld
V (x; y; z) = (y;−x; 0) ;

our claim is that ! +H is equivariantly closed (and so the new integrand). In angular coordi-
nates, excluding the poles, we have

! 7! e!(�; �) = sin �d� ^ d�
V 7! eV (�; �) = (1; 0)

H 7! eH(�; �) = cos �;

so we verify
ieV e!(�; �) + d eH(�; �) = sin �d� − sin �d� = 0:

At the poles the relation holds trivially, since they are critical points of H and zeros of V . Our
integral can be written as the integral of an equivariantly closed form, namelyZ

S2

etH! =
1

t

Z
S2

et(!+H):
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The last steps to apply the localization theorem are computing �0 = 1
t
etH and pf(dV [) at the

poles, the only zeros of V . For the north pole, we choose projection coordinates

(x; y; z) 7! (x; y);

with which
V 7! V (x; y) = (y;−x)

g 7! g��(0; 0) = ��� ;

so
@�V�(0; 0) = @�(g��V

�)(0; 0) = @�V
�(0; 0);

corrisponding to a matrix �
0 −1
1 0

�
;

resulting in pf(dV [) = 1 at the north pole, while we can check that at the south pole it changes
sign. The �nal result is Z

S2

etH! = 2�

�
et

t
− e−t

t

�
= 4�

sinh t

t
:

Example 2.2 (Duistermaat{Heckman formula). A generalization of the previous example in-
volves 2n-dimensional symplectic manifold (M;!) with Hamiltonian function H. We know
that, for a Hamiltonian vector �eld V , since d! = 0,

dV (! +H) = iV ! + dH = 0;

If M is also a Riemannian manifold such that V is Killing, thenZ
M

etH!n =
n!

tn

Z
M

et(!+H) =
n!

tn

X
V (x)=0

(2�)n

pf(dV [(x))
etH(x):

In view of this last example, equivariant localization can be useful to compute the partition
function of classical systems when certain symmetries are available.
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Chapter 3

N = 2 supersymmetric quantum
mechanics in di�erential forms Hilbert
space

In this chapter we present a N = 2 supersymmetric quantum system and discuss about its
Witten index. We work with a n-dimensional orientable compact Riemannian manifold (M; g),
unless otherwise speci�ed. The �rst thing to do is de�ne the right Hilbert space, so we start by
talking about Hilbert spaces of sections of a �ber bundle, a generalization of classic L2 spaces.
The issue of domains of operators is neglected, but it can be solved de�ning Sobolev spaces.

3.1 Hilbert space: L2(E) for a vector bundle E

De�nition 3.1. A Hermitian vector bundle (E; h) is a complex vector bundle E !M with a
Hermitian product hx : Ep � Ep ! C on each �ber, such that, for every two smooth sections
X; Y 2 Γ(E),

x 7! hx(X(x); Y (x))

is a smooth function.

Notation 3.1. Let vol 2 
n be the volume form induced by the metric of M . We call (M;�)
the measure space with the Borel measure

�(U) =

Z
U

vol :

We denote by L1(M) the space of integrable functions f : M ! C, and their Lebesgue integral
by Z

M

f vol :

We use the notation Z
M

f vol =

Z
M

f(x) volx :

Proposition 3.1. Given a Hermitian vector bundle E, we de�ne L2(E) as a space of equiva-
lence classes of sections X such that

x 7! hx(X(x); X(x))

14



is integrable, where X � Y if X = Y almost everywhere. The Hermitian vector space
(L2(E); (�; �)), with

(X; Y ) =

Z
M

hx(X(x); Y (x)) volx;

is a separable Hilbert space, and Γ(E) is dense in it.

We use as vector bundle the vector space of (complex inhomogeneous) completely antisym-
metric tensors

E = C

nM
k=0

�kT �M;

whose smooth sections are di�erential forms in

Γ(E) = 
(M):

The Hermitian product on each �ber Ex = C

Ln

k=0 �k(T �xM) is given by

hx(!; �) volx = (! ^ ?�)n ;

where ? is the Hodge star extended by antilinearity. From now on we will use L2(E) as Hilbert
space.

De�nition 3.2. Given a 1-form  , we de�ne two linear operators, called respectively fermion
creation and annihilation operators:

a�( ) =  ^
a( ) = i # ;

where # is the metric isomorphism T �M ! TM extended by linearity. The operator F such
that

F!k = k!k

is our fermion number operator.

Remark. The symbol (−1)F introduced in the previous chapter acts as the operator denoted in
the same way.

Proposition 3.2. Fermion creation and annihilation operators are one the adjoint of the other,
and

fa�( ); a(�)g = g( #; �#)

fa�( ); a�(�)g = 0:

We call Hodge Laplacian the self-adjoint operator � = fd; d�g = (d+ d�)2, where d� is the
adjoint of d. Given a local orthonormal basis (e1; : : : ; en) of TM , we can show that

d! =
nX
i=1

a�(ei)rei

d�! = −
nX
i=1

a(ei)rei :
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3.2 Hamiltonian: Hodge theory and Witten deformation

We have to specify the supersymmetric Hamiltonian, so we choose as in [4] (page 665) the
supercharge

Q� = e−�Wde�W ;

with � � 0 and W a smooth function on M . This deformation of d is called Witten deformation.
We easily check that

Q2
� = e−�Wd2e�W = 0

FQ� = e−�WFde�W = e−�Wd(F + 1)e�W = Q�(F + 1):

The system is thus completely graded. It follows directly that

Q� = �dW ^+d = �a�(dW ) + d

and

H� = f�a�(dW ) + d; �a(dW ) + d�g
= fd; d�g+ � fd; idW#g+ � fd; idW#g� + �2 fa�(dW ); a(dW )g
= � + � (LdW + L�dW ) + �2dW 2;

where dW 2 = g(dW#; dW#). We call H0 = H. Note that example 1.2 was just this model
with � = 1 and M = S1. We assume the true fact that the eigenspaces of H� are all �nite-
dimensional, together with the other hypotheses used in the proof of 1.6: a proof of this
properties can be found in literature under the name of Hodge theorem. We can compute the
Witten index with its de�nition

W� = dim kerHjΩB − dim kerHjΩF :

Remark. As a byproduct, the application of 1:6 tells us that every di�erential form ! can be
decomposed uniquely as

! = d� + d�� + 
;

where �
 = 0. This is called Hodge decomposition theorem.

Proposition 3.3. We have that, for each k,

dim kerH�jΩk = dim kerHjΩk :

Proof. We use the degree-preserving isomorphism

! 7! e−�W!:

to show that

kerQ�jΩk ' kerQjΩk
imQ�jΩk ' imQjΩk

and then we conclude by the fact used in the proof of 1.9. If d! = 0, then

Q�e
−�W! = e−�Wd! = 0:

If ! = d�, then
e−�W! = e−�Wd� = Q�e

−�W �:

The same facts are true for the inverse map

! 7! e�W!:

16



From the previous proposition we can conclude that

W� =W0 =W ;

so we understand that this type of deformation does not change the Witten index (and more
generally the dimension of the kernel for each degree). We can exploit this invariance by
studying the system when � ! 1, as happens in Morse theory (see next section for a brief
introduction): we will �nd a formula for the Witten index localized on the critical point of W .

From 1:9 we deduce a �rst formula for the Witten index:

dim kerHjΩk = dim

�
ker djΩk

im djΩk−1

�
= dimHk(M)

= bk(M);

the dimension of the k-th de Rham cohomology group, which is just the Betti number bk(M), a
topological invariant. Hence, we have that

W =
nX
k=0

(−1)k bk(M) = �(M);

the Euler characteristic, another topological invariant. We have learnt that the Witten index
of all these deformations depends only on the topology of the base manifold.

3.3 Localization via �-invariance: Morse theory

The aim of this section is to compute the Witten index exploiting its �-invariance, in particular
for arbitrarily large �. Morse theory is the study of the topology of a manifold by analyzing the
behaviour of a particular class of functions, called Morse functions. A basic result are Morse
inequalities, which we will prove as a byproduct of a localization argument.

De�nition 3.3. A smooth function f : M ! R is called a Morse function if every critical
point is regular, where regular means that the determinant of the Hessian of f in a chart is
non-zero at the point. We de�ne

Crit(f) = fx 2M : df(x) = 0g ;

the set of critical points of f . Given a chart containing a critical point x, if the Hessian of f in
the chart at the point has k positive eigenvalues, we say that x is a critical point of order k, or

x 2 Critk(f):

From now on we assume that W is a Morse function. Except for the critical points of
W , the Hamiltonian H� becomes very large for large �, so we expect that the eigenstates will
localize at the critical points. This behaviour is encoded in the following lemma, which proof
is technical, but relies on the approximation of the ground states with known local solutions
of approximated Hamiltonian near the critical points (see B to understand how this idea is
applied with a di�erent deformation).

Lemma 3.4. For every c > 0, there exists �0 > 0 such that, if � � �0, the number of eigenvalues
in [0; c] of H�jΩk equals the number of critical points of W of order k, named mk(W ).

Proof. See the section Proof of Proposition 5.5 of [5] (page 83).
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Now, �xing c; � > 0, let Fk be the subspace spanned by the eigenstates of H�jΩk with
eigenvalues in [0; c]. These sets form the cochain subcomplex

0
Qλ−! F0

Qλ−! F1
Qλ−! : : :

Qλ−! Fn−1
Qλ−! Fn

Qλ−! 0:

We want to check if Q�PFk = PFk+1
Q�, where PV is the projection operator on a subspace V .

If ! 2 Fk,

! =
lX

r=0

�r;

with �r 2 
k, H��r = Er�r and Er 2 [0; c]. If ! 2 Fk+1,

! =
lX

r=0

Q��r +
mX
r=0

�r;

with �r 2 
k+1, H��r = E 0r�r and E 0r 2 [0; c]. Let ! 2 
k, with its eigenspace decomposition

! =
lX

r=0

�r +
1X
N=1

!N :

We have

Q�PFk! =
lX

r=0

Q��r = PFk+1
Q�!:

Now, if V � H is a vector subspace such that PVk+1
Q = QPVk ,

dim

�
kerQjVk

imQjVk−1

�
= dim

�
kerQjHk

imQjHk−1

�
= bk(M);

since we have the isomorphism
[ ] 7! [ ];

with inverse
[ ] 7! [PVk ] :

This is well-de�ned because, if Q = 0, QPVk = PVk+1
Q = 0, and

[PVk( +Q�)] =
�
PVk +QPVk+1

�
�

= [PVk ] :

We know from the previous lemma that, for � � �0,

mk(W ) = dimFk

= dim kerQ�jFk + dim imQ�jFk
= dim imQ�jFk + dim imQ�jFk + bk(M);

so we conclude that
iX

k=0

(−1)kmi−k(W ) =
iX

k=0

(−1)k bi−k(M) + dim imQ�jFi

iX
k=0

(−1)kmi−k(W ) �
iX

k=0

(−1)k bi−k(M);

the strong Morse inequality, and
nX
k=0

(−1)kmk(W ) =
nX
k=0

(−1)k bk(M) = �(M):

We understand that a combination of number and order of critical points of a Morse function is
constrained to the topology of the base manifold. We found two ways of computing the Witten
index of the theory, but there is a third one.
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3.4 Localization via �-invariance: Chern-Gauss-Bonnet

theorem

The aim of this section is to compute the Witten index exploiting the �-invariance, namely

W = tr
�

(−1)F e−�∆
�
;

in particular for arbitrarily small �. We use a heat kernel method, which is based on studying
the behaviour of the heat equation

d

dt
 t = −� t;

exactly solved by
e−t∆ 0:

On a general manifold we can't �nd an explicit solution, so we try to guess an approximate
solution for t � 0 and then verify it is actually a good approximation.

De�nition 3.4. Given a densely de�ned self-adjoint operator A on L2(E) with eigenstates
( N)N2N such that

A N = �N N ;

we de�ne its kernel as

KA(x; y) =
1X
N=0

�N N(y)hx(�;  N(x));

for x; y 2M , when the sum converges in the topology of L(Ex; Ey).

Proposition 3.5. The trace of an operator A is given by

trA =

Z
M

trKA(x; x) volx :

Proof. From the de�nition of the trace,Z
M

trKA(x; x) volx =
1X
N=0

�N

Z
M

hx( N(x);  N(x)) volx

=
1X
N=0

Z
M

hx(A N(x);  N(x)) volx

=
1X
N=0

(A N ;  N)

= trA:

We de�ne the heat kernel of A as

�A(x; y; �) = Ke−βA(x; y):

Note that as a function of y it solves the evolutionary problem

d

d�
 � = −A �:

Working again with di�erential forms, the Witten index is, for � > 0,

W =

Z
M

tr
�

(−1)F �∆(x; x; �)
�

volx :
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Proposition 3.6 (Weitzenb�ock identity). Let x 2M and let (e1; : : : ; en) be a local orthonormal
basis of TM such that reiej(x) = 0. Then, de�ning the Bochner Laplacian

�e�!�
x

=
nX
i=0

reirei!

and the Ricci endomorphism

Ric!(V1; : : : ; Vk) =
nX

i;j=0

(R(ej; Vi)!)(V1; : : : ; ej; : : : ; Vk);

where R is Riemann curvature tensor and ej is in the i-th place, we have

� = e� + Ric :

Proof. See the section The Weitzenb�ock Curvature of [1] (page 343).

Proposition 3.7. Given a local orthonormal basis (e1; : : : ; en) of TM , Ricci endomorphism
acts as

Ric = Rijkla
�(ei)a(ej)a�(ek)a(el);

where
Rijkl = g(R(ei; ej)ek; el):

As a heat kernel approximation for � � 0, we de�ne

�∆(x; x; �) =
1

(4��)
n
2

e−�Ricx ;

an endomorphism of �kT �xM . This is similar to the classic heat kernel on Rn, except for the
curvature part (Ric is 0 on a 
at manifold). Given an endomorphism T of �kT �xM and an
orthonormal basis (e1; : : : ; en) of TxM , it can be shown that T can be decomposed uniquely as

T =
X
IJ

cIJAIJ ;

where I; J are multi-indexes I = (I1; : : : ; Ik), with k � n, I1 < : : : < Ik, and

AIJ = a(eI1) � � � a(eIk)a�(eJ1) � � � a�(eJl):

We denote by T2n the component of T with multi-indexes (1; : : : ; n), (1; : : : ; n). We can also
prove that

tr
�

(−1)F T
�

= tr
�

(−1)F T2n

�
:

Lemma 3.8. There exists C > 0 such that, for all � 2 (0; 1],

k(�∆ − �∆)(x; x; �)2nk � C�;

with operator norm.

Proof. See the section Proof of the Chern-Gauss-Bonnet Theorem of [2] (page 115).
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Since ���tr�(−1)F (�∆ − �∆)(x; x; �)2n

���� � n



(−1)F (�∆ − �∆)(x; x; �)2n





� nk(�∆ − �∆)(x; x; �)2nk
� nC�

tr
�

(−1)F (�∆ − �∆)(x; x; �)2n

�
= o(1);

we conclude that

W =

Z
M

tr
�

(−1)F �∆(x; x; �)
�

volx

=

Z
M

tr
�

(−1)F �∆(x; x; �)2n

�
volx

=

Z
M

tr
�

(−1)F �∆(x; x; �)2n

�
volx +o(1)

=
1

(4��)
n
2

Z
M

tr
�

(−1)F
(
e−�Ricx

�
2n

�
volx +o(1):

Expanding e−�Ricx with its series, the �rst term of order 2n is

(−1)k
�k

k!
Rickx;

with k = dn
2
e. All the other terms of order 2n are o(�k). Hence,

W =
(−1)k

(4�)
n
2 k!

�k−
n
2

Z
M

tr
�

(−1)F Rick
�

vol +o(�k−
n
2 ) + o(1):

Taking the limit � ! 0, it follows that

• If n is odd, k − n
2
> 0 and W = 0.

• If n is even, k = n
2

and

W =
(−1)k

(4�)kk!

Z
M

tr
�

(−1)F Rick
�

vol :

De�ning the Euler form

! =
(−1)k

(4�)kk!
tr
�

(−1)F Rick
�

vol;

which has an expression in local coordinates in terms of Riemann curvature tensor (see [2],
page 112), if M is even-dimensional we conclude that

�(M) =W =

Z
M

!;

which is the Chern-Gauss-Bonnet theorem. Note that ! depends only on the Riemannian
metric of M , so this is a topological constraint to the metric structure. We also proved that
Euler characteristic of an odd-dimensional manifold is 0.
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3.5 Another deformation: Killing vector �eld

In this last model, which also appeared in [4] (page 676), we use the same ideas of equivariant
localization, Chapter 2. Let V be a Killing vector �eld with isolated zeros and let M be
2n-dimensional. Our supercharge will be

Q� = d�V = d+ �iV = d+ �a(V [)

with � � 0, but
Q2
� = �fd; iV g = �LV

(Q��)
2 = �L�V ;

so we restrict our Hilbert space to H = kerLV \ kerL�V . For � 6= 0, the supercharge does not
increase the degree of the forms, but only change their parity (the system is not completely
graded). We de�ne the Cli�ord operators

c(V ) = a�(V [)− a(V [)bc(V ) = a�(V [) + a(V [);

which, for a orthonormal basis (e1; : : : ; en), have properties

bc(V )2 = g(V; V )

fc(V );bc(W )g = 0

[rei ; c(V )] = c(reiV )

d+ d� =
2nX
i=0

c(ei)rei :

The Hamiltonian is thus

H� = (Q� +Q��)
2

= (d+ d� + �bc(V ))2

= (d+ d�)2 + �
2nX
i=0

fc(ei)rei ;bc(V )g+ �2g(V; V )

= � + �
2nX
i=0

(c(ei)bc(reiV ) + fc(V );bc(ei)grei) + �2g(V; V )

= � + �

2nX
i=0

c(ei)bc(reiV ) + �2g(V; V ):

Remark. Since it can be proved that LV ? = ?LV ,

LV (� ^ ?�) = LV � ^ ?� + � ^ ?LV �

and Z
M

LV (� ^ ?�) =

Z
M

LV � ^ ?� +

Z
M

� ^ ?LV �

=

Z
M

diV (� ^ ?�) +

Z
M

iV d(� ^ ?�)

= 0:
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This implies that L�V = −LV and H = kerLV , the closure of the vector space of V -equivariant
di�erential forms. Note also that the restriction of the Hilbert space did not change the kernel
of H�, since, if H�! = 0 for ! in the original Hilbert space, then

0 = H�!

= fQ�; Q
�
�g!

= (fQ�; Q
�
�g+ �LV + �L�V )!

=
(
fQ�; Q

�
�g+Q2

� +Q��
2
�
!

= (Q� +Q��)
2 !

and similarly
0 = H�! = (Q� −Q��)

2 !;

resulting in Q�! = 0 and LV ! = 0.

Now, we want to apply equivariant localization to compute the inner product (�; �) of two
states such that � 2 kerQ�, � 2 kerQ��. We prove that �^ ?� is V -equivariantly closed. Since

0 =

Z
M

Q�(� ^ ?�)

=

Z
M

Q�� ^ ?� +

Z
M

(−1)F � ^Q� ? �

= (Q��; �) +
�

(−1)F �; ?−1Q� ? �
�

= (Q��; �) +
�
�; (−1)F ?−1 Q� ? �

�
;

we have
Q�� = (−1)F ?−1 Q�?

? (−1)F Q�� = Q� ? :

Therefore,

Q�(� ^ ?�) = Q�� ^ ?� + (−1)F � ^Q� ? �

= Q�� ^ ?� + (−1)F � ^ ? (−1)F Q���

= 0:

We have all the ingredients to apply the Berline-Vergne localization formula 2.7:

(�; �) =

Z
M

� ^ ?� =
X

V (x)=0

(2�)n

pf(dV [(x))
(� ^ ?�)0(x):

We now prove that for � 6= 0 the Witten index is independent of �.

Proposition 3.9. If �; �0 6= 0, there is an isomorphism

kerH�jΩB ! kerH�0 jΩB kerH�jΩF ! kerH�0 jΩF ;

given by

! 7! e
− log

�
λ0
λ

�
P
!;

where P is the projection operator on kerH.

23



Proof. If Q�! = 0, (d+ �iV )! = 0 and

Q�0e
− log

�
λ0
λ

�
P
! = (d+ �0iV )e

− log
�
λ0
λ

�
P

(P! + (1− P )!)

= (d+ �0iV )

�
�

�0
P! + (1− P )!

�
= d! + �iV P! + �0iV (1− P )!:

Now, since diV P! = −iV dP! = 0,
iV P! 2 kerH

and, since d�i�V P! = −i�V d�P! = 0,

i�V P! 2 kerH:

The latter means that (1− P )i�V P = 0, PiV (1− P ) = 0 and

iV (1− P ) 2 kerH?:

We conclude that

e
log
�
λ0
λ

�
P
Q�0e

− log
�
λ0
λ

�
P
! = e

log
�
λ0
λ

�
P

(d! + �iV P! + �0iV (1− P )!)

=
�0

�
d! + �0iV P! + �0iV (1− P )!

=
�0

�
(d+ �iV )!

=
�0

�
Q�!

Q�0e
− log

�
λ0
λ

�
P
! =

�0

�
e
− log

�
λ0
λ

�
P
Q�! = 0:

By symmetry, we can prove the same fact about Q��. Finally, the map has inverse

! 7! e
log
�
λ0
λ

�
P
!

and, since
h
H; (−1)F

i
= 0, we can check it preserves the parity of forms.

We deduce that, if �; �0 6= 0 and the eigenspaces are again all �nite-dimensional,

W� =W�0 :

As long as � 6= 0, the Witten index is again independent of the deformation, but we can show
that this is the case even if � = 0. For now, we call

W0 =W

and for � 6= 0
W� = fW :

Again, in order to compute the index we could exploit its invariance for arbitrarily large �,
expecting a localization on the zeros of V , in a similar way to the Morse function localization.
This is captured in the proof of the following lemma.

Lemma 3.10. For every c > 0, there exists �0 > 0 such that, if � � �0, the number of
eigenvalues in [0; c] of H�jΩB equals the number of zeros of V .
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Proof. See Appendix B.

The conclusions after this lemma are the same as after lemma 3.4. For � 6= 0, the dimension
of

kerH� \ 
B;

the space of even ground states, is equal to the number of zeros of V (it is not true for � = 0). It
can be shown in the same way of B that there are no odd ground states. Since the restriction of
the Hilbert space did not change the kernel of H�, this proposition is true even for the original
Hilbert space. It also tells us that

fW = #fV (x) = 0g:

The Poincar�e-Hopf theorem for Killing vector �elds says that

�(M) = #fV (x) = 0g;

so we could prove it if only we knew thatW = fW andW = �(M). The second equality is true
since the restriction of the Hilbert space did not change the dimension of cohomology groups:
we can prove it in the same way as we did after 3.4. The �rst equality comes from general
theory of elliptic operators.

Conclusions

We have seen a series of connections between supersymmetric quantum systems and geometrical
properties of their base manifold. The themes of localization and deformation invariance were
present throughout the presentation. It is also interesting and elegant how all the di�erential
geometry theorems shown emerge in the framework of supersymmetric quantum mechanics.
In two di�erent models we noted how exploiting the invariance of the Witten index under
deformations led us to localization arguments, the second one similar to the one that allowed
us to prove the Berline-Vergne localization formula. All the theorems we have discussed are
totally non-trivial and their proofs rely on di�cult technical lemmas, but the intution behind
them is somehow clear: we have managed to present almost all key steps and sources to �ll the
gaps. For further information about all the proofs, it is recommended to read [2] and [5].
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Appendix A

Proof of Berline-Vergne localization
formula 2.7

This proof follows the one in the section Berline-Vergne localization formula of [5] (page 29).
Firstly,

dV iV g = diV g + iV iV g = diV g + g(V; V );

so

(� ^ e−�dV iV g)n = e−�g(V;V )(� ^ e−�diV g)n

=
X

i+2j=2n

e−�g(V;V )(−1)j
�j

j!
�i ^ (diV g)j

= (�):

Now we perform the calculation in convenient coordinates. Let x be a zero of V . In a su�ciently
small neighborhood U of x (that does not contain other zeros of V ), we use a chart � : U !
U 0 � R2n such that

�(x) = 0

g��(0) = ���

g��V
�V �(y) = yTAy;

where A is a matrix. With @�V�(0) = e
�� , in these coordinates

e
T e
 = A

LV g 7!
(
V �@�g�� + g��@�V

� + g��@�V
�
�
dy� 
 dy� :

So, since LV g = 0, e
�� + e
�� = 0:

In matrix notation we have
−e
2 = e
T e
 = A:

The matrix 
 is even-dimensional and skew-symmetric, hence after a rotation of the chart it
has the unique form


 =

0B@
1

. . .


m

1CA 
i =

�
0 −!i
!i 0

�
:
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With these new rotated coordinates,

g(V; V ) 7!

8>>>><>>>>:
g��V

�V �(y) =

= −yT
2y

=
nX
i=1

!2
i

(
y2

2i−1 + y2
2i

�

diV g 7!

8>>>><>>>>:
@�(V �g��)(y)dy� ^ dy� =

= (
�� + o(1)) dy� ^ dy�

= −2
nX
i=1

(!i + o(1)) dy2i−1 ^ dy2i:

Now we compute (�) in these coordinates.

(�) 7!
X

i+2j=2n

e−�
Pn
i=1 !

2
i (y22i−1+y22i)2j

�j

j!
e�i(y) ^

 
nX
k=1

(!i + o(1)) dy2k−1 ^ dy2k

!j

=
nX
j=1

(: : :) e�2(n−j)(y) ^
nX

k1;:::;kj=1

(
!k1 � � �!kj + o(1)

�
dy2k1−1 ^ dy2k1 ^ � � � ^ dy2kj−1 ^ dy2kj :

With

e�2(n−j)(y) ^ dy2k1−1 ^ dy2k1 ^ � � � ^ dy2kj−1 ^ dy2kj = f
(k1;:::;kj)
j (y)dy1 ^ � � � ^ dy2n;

applying 2.6 we conclude thatZ
U

� =

= lim
�!1

nX
j=1

2j
�j

j!

nX
k1;:::;kj=1

Z
U 0
e−�

Pn
i=1 !

2
i (y22i−1+y22i) (: : :) f

(k1;:::;kj)
j (y)dy1 � � � dy2n

= lim
�!1

nX
j=1

2j
�j

j!

nX
k1;:::;kj=1

1

!2
1 � � �!2

n

��
�

�n
!k1 � � �!knf

(k1;:::;kj)
j (0)

=
1

n!

(2�)n

!2
1 � � �!2

n

nX
k1;:::;kn=1

!k1 � � �!knf (k1;:::;kj)
n (0)

=
(2�)n

!1 � � �!n
�0(x):

The product !1 � � �!n is just the Pfa�an of the antisymmetric matrix 
, which as an operator
TxM ! TxM is identi�ed through the metric with dV [, henceZ

U

� =
(2�)n

pf(dV �(x))
�0(x):

If the neighborhood U does not contain any zeros of V it can be shown thatZ
U

� = 0;

so via partition of unity we get the thesis.
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Appendix B

Proof of lemma 3.10

First part of this proof comes from section 4 of [5] (page 64), while second part is identical to
the proof cited in 3.4.

We recognize as domain of Q� and Q�� the Sobolev space H1(E) (see for example page 33
of [2] for a de�nition). First part of the proof is �nding approximate local solutions of equation
H�� = 0 for � ! 1. Let Ux be disjoints neighborhoods of all the zeros x of V . We choose a
chart � : Ux ! B(0; 4) � R2n around a zero x of V such that

�(x) = 0

V 7! eV (y) = 
y

for an antisymmetric (since V is Killing) matrix


 =

0B@
1

. . .


m

1CA 
i =

�
0 −!i
!i 0

�
:

If needed we choose a smaller a in order to be able to do so for all zeros. Now we write in these
coordinates the operator H�, deformed by changing the metric to the 
at one induced by this
chart. With this prescription it becomes

−
(
� + �cT
bc+ �2Y T
2Y

�
;

where � is the ordinary Laplacian and c = (c(e1); : : : ; c(e2n)), bc = (bc(e1); : : : ;bc(en)) for the
canonical basis of R2n. We want to split the new Hamiltonian in two components, the �rst
being an harmonic oscillator with 0 ground energy. The �rst component is thus

A = −
2nX
i=0

@2
i + �2

nX
i=0

!2
i

(
Y 2

2i−1 + Y 2
2i

�
− 2�

nX
i=0

!i;

while the second is

B = −�
2nX
i;j=0


ijc(ei)bc(ej) + 2�
nX
i=0

!i:

If we decompose the space of L2 forms (our candidates as approximate solutions) of R2n as
L2(R) 
 �(R2n), then A acts only on L2(R) and B acts only on �(R2n). Moreover, A is an
harmonic oscillator with 0 ground energy and we already know its ground state from quantum
mechanics: it is

 �(y) = exp

 
−�

2

nX
i=0

!i
(
y2

2i−1 + y2
2i

�!
:
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For the equation B� = 0, we know from [5] (page 65) that it has only a solution and it is even,
called ��. Given this approximate solution in a chart around x, we glue it to the manifold via
a smoothing function 
 such that (


(y) = 1 jyj � 1


(y) = 0 jyj � 2;

getting
�� = C��

� (
 ���) ;

where C� is a normalization constant. We do the same thing for all the other zeros of V , getting
an approximate kernel of H� restricted to even forms of dimension equal to m, the number of
zeros. This approximate kernel is spanned by the approximate (even) solutions glued to the
manifold for each zero:

E� = span
n
�

(1)
� ; : : : ; �

(m)
�

o
:

Second part of the proof is showing that, for � big enough,

dimE� = dim kerH� \ 
B:

Let P� be the projection on E� and P?� the projection on ET
� . We start by decomposing

D� = (Q� +Q��) jΩB as

D� = D
(1)
� +D

(2)
� +D

(3)
� +D

(4)
�

D
(1)
� = P�D�P�

D
(2)
� = P�D�P

?
�

D
(3)
� = P?� D�P�

D
(4)
� = P?� D�P

?
� :

1. We have D
(1)
� = 0.

Proof. From the de�nition of E�,

P� =
mX
i=0

�
(i)
� (�; �(i)

� ):

If ! is odd, P�! = 0. If ! is even, P�! is even, but D�P�! is odd and D
(1)
� ! = 0.

2. There exists �1 > 0 such that, for � � �1, if ! 2 E?� \H1 \ 
B and !0 2 E�,


D(2)
� !




 � 1

�
k!k




D(3)
� !0




 � 1

�
k!0k :

Proof. If ! 2 E?� \H1 \ 
B, then P?� ! = ! and

D
(2)
� ! = P�D�! =

mX
i=0

�
(i)
� (D�!; �

(i)
� ) =

mX
i=0

�
(i)
� (!;D��

(i)
� )




D(2)
� !




 � mX
i=0




D��
(i)
�




 k!k ;
but in coordinates it can be veri�ed that


D��

(i)
�




 � C1e
−C2�;

proving the �rst inequality. The second inequality follows from D
(3)
� being the adjoint of

D
(2)
� .

The rest of the proof is as in [5], from page 84.
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