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Abstract

The aim of the thesis is to design a communication system based on encrypted
sound code using the FEC (Forward Error Correction) method, STFT (Short-time
Fourier Transform), and scrambling method to ensure transmission reliability
even in the presence of noise interference. Encrypted sound can be transmitted
and received over any device which has a speaker and microphone. Transmis-
sion over the channel is inevitably degraded by the presence of environmental
noises added to the transmitted signal and therefore requires a channel code
with high correction capacity. Reed Solomon, one of the forward error cor-
rection algorithms, is used in this project to correct channel errors caused by
environmental noises. In this project, the effectiveness and performance of the
system are evaluated using various Python simulations to evaluate the amount
of errors created and corrected by varying the type and power of the noisy

signal.
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Introduction

The project is the result of a collaboration with the technology company
"Omniaweb" and provides a feasibility assessment for the implementation of a
data transfer method including duplication of a correctly prepared audio file
and listening to it via a microphone-equipped device. The technique underly-
ing QR codes [44][9] and the Shazam application [49] inspired the concept. QR
codes exploit the image of a matrix to represent a string of bits, which is then
replicated when the camera of a device captures the code. Shazam generates
an auditory fingerprint from the audio and compares it to a central database to
identify a match. Similarly, the purpose is to create a sound signal for transmis-
sion through a loudspeaker that, when decoded by a listening device, will lead
back to the original message. Frequencies of the audible should be exploited in
data transmission. Moreover, it is essential that the sequence of sounds is not
overly disturbing to those who listen to them. However, it is challenging to create
melodious sounds due to the number of frequencies that were used. Therefore
every frequency that sounds musically pleasing to the ear can not be used in
order to avoid distortions that may occur due to noise. In conclusion, due to the
vast number of frequencies used, it is challenging to generate musical sounds
in sufficient combinations. The unavoidable existence of noise that interferes
with the sampling of the microphone of the receiving device is a second issue
to address. To circumvent this issue as much as possible, a Reed-Solomon code
[30][44] is implemented, which, by adding redundancy, permits any mistakes to
be rectified during the decoding phase. Additionally, STFT was implemented to
extract frequencies using various window types [24]. The primary purpose of



windowing in the spectral analysis is the ability to zoom in on the signal’s finer
details as opposed to analyzing the entire signal. In speech signal processing,
where information such as pitch or formant frequencies are recovered by evalu-
ating signals through a window of a certain duration. Moreover, the scrambler,
[12] a frequently used technology in telecommunications, was also implemented
to modify a data stream before the transmission. The model’s capacity to correct
errors has been demonstrated using mentioned methods and various noise envi-
ronments. In the section on the state of the art, the technologies that this project
inspired are described. In the background section, the approaches utilized for
this project are described. In the section on structure and analysis, the key parts

of this project and the outcomes of the research are discussed.



State of the Art

QR Cobes

A QR code is a matrix bar code or two-dimensional code that can hold infor-
mation and is designed to be interpreted by smartphones. QR stands for "Quick
Response," implying that the contents of the code should be decoded at a rapid
rate. On a white background, the code consists of black modules arranged in a
square pattern. The encoded data may be text, a URL, or other information [44]
[42]. The QR code was created to enable rapid decoding of its data. QR codes
are becoming increasingly popular all over the world. Today, mobile phones
with an integrated camera are commonly used to read QR Codes.

Version 1 Version 2 Version 40
(21x21) (25x25) (144x144)

Figure 2.1: Versions of the QR Codes [44]

QR codes were originally created for the purpose of monitoring parts during
the construction of vehicles; however, they have since found use in a diverse
range of other contexts, such as industrial tracking, entertaining, in-store mar-
keting materials, and smartphone-user applications [44]. After scanning a QR
code, visitors will be able to open a URL and retrieve a text. Utilizing QR code-
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generating websites or mobile apps, users can generate and print their own
QR codes for others to scan and use. These codes are applied in a number of
everyday contexts. For instance, they make it easier for visitors to access promo-
tional content, which is particularly beneficial during advertising and marketing

operations.

Text Message
(retrieved)

QR Code
Hello World 11! E E Hello World !!!

- QR Code
QR Code
Encoder - Decoder
h Scanner]

[=]

Figure 2.2: Working Principle of the QR Code [44]

Text message

Encoders and decoders are the two essential components of the QR code
system [9]. While the encoder is in charge of encoding data and producing the
QR Code, the decoder is in charge of extracting the data from the QR code.
Figure 2.2 presents a high-level summary of how the QR code operates. The
plain text, URL, or other data are input into the QR code encoder, and it generates
the necessary QR code. When the information contained in the QR code needs
to be accessed, the QR code is decoded using a QR Code decoder which retrieves
the information contained in the QR code [22].

The concept behind the technology of the QR code was the limited amount
of information capacity of barcodes (can only hold 20 alphanumeric charac-
ters). QR codes are among the 2D barcodes with the highest capacity and most
widespread use. QR codes, because of the way they are constructed, are able
to encode the whole 256-byte ASCII character set [43]. The standardized, two-
dimensional QR code is capable of storing information and functioning as a
framework. QR codes can be created in a total of forty distinct forms, numbered
variant 1 through variant 40 as shown figure 2.1 [44] [42].

The structure of a QR code is shown here in figure 2.3. QR code is composed
of several segments. These are; version information, format information, data
and error correction keys, required patterns, and quiet zone.

A. Version Information

QR code determines the appropriate form number of the QR code by inspect-
ing two blue boxes, as shown in figure 2.3. These boxes are used to determine
if the QR code should use version 1 or 2, and so on. After that, it will obtain
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Figure 2.3: Design of the QR Code [9]

information regarding the total number of modules that are included in the QR
code. Form 1 has a 21*21 module, and different variants have a different module
estimate, thus this information will be used [22].

B. Format Information

The error correction level and mask pattern used in the generation of this QR
code can be determined from the format pixels. Only larger QR codes require
the version pixels, which encode the size of the QR matrix and are only used
there.

C. Data and Error Correction Keys

It includes genuine information that has been stored in a QR code and a
blunder adjustment codeword in accordance with the Reed-Solomon computa-
tion. During the process of encoding a QR code, initially information is stored
in these dark cells, and then a mistake redress codeword is stashed away. In QR
codes, we have four different mistake amendment levels (L-Level M-Level Q-
Level, and H-Level), so there are a total of 28 possible configuration data strings
[42]. Error-correction levels and their approximate ability of error correction are
listed below.

e Level L : 7% or less errors can be corrected.
e Level M : 15% or less errors can be corrected.

e Level Q: 25% or less errors can be corrected.

e Level H : 30% or less errors can be corrected.
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C. Required (Function) Patterns

The required patterns are able to convey to the QR code scanner the correct
position of the Brisk Reaction code as well as the auxiliary state it should be
in [9]. Because of the position part, QR codes may quickly respond from any
direction. It renders the QR code capable of being read in any direction. The
alignment process addresses and corrects any twists that may have occurred in
the QR codes. It was introduced at the release of form 2 of the QR codes, and the
number of illustrative configurations grows with each succeeding iteration of
the technology. The timing component is designed to function as an alternative
for high contrast areas in the various discoverer designs. In the event that an
image has been corrupted, it is used to locate the code and make necessary

adjustments to the focus organization.
C. Quiet Zone

After establishing the symbol version and module size, the size of the QR
Code symbol is determined. It is essential to include a margin or "silent zone"
around the QR Code symbol in order for it to be correctly identified [22]. The
margin is the blank space surrounding a symbol that is not printed on. To be
deemed a QR Code, a symbol must have a four-module-wide margin on all four
sides.

In conclusion, the idea behind QR codes is similar to that discussed in the
thesis: both use multimedia content as a transmission channel and, above all,
want to make the transmission as reliable as possible even in the event of noisy
events. The method used to correct these errors (Reed-Solomon Codes) is actu-
ally the subject discussed in the thesis. QR codes are very efficient technology
as they allow to achieve a very high bit rate that depends only on the reading
speed of the device framing the code, and this thesis will discuss how bit-rate

affects it.
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SHAZAM

The music identification app known as Shazam has been available for nearly
two decades at this point. Audio can be recognized by Shazam by means of
an audio fingerprint that is derived from a time-frequency graph that is known
as a spectrogram [49]. It does this by collecting a small sample of the audio
that is currently being played using the microphone that is already incorporated
into a smartphone or computer. Shazam maintains a database that contains a

catalogue of audio fingerprints. In short, Shazam’s work steps are:

e The entire music database is scanned with Shazam’s fingerprinting tech-
nology, and the associated fingerprints are saved in a database.

e A user records the music they are listening to, which fingerprints a 10-
second audio clip.

e The fingerprint is sent to Shazam'’s server, where it is compared to their
database in an effort to locate a match.

e Music information is only sent back to the user if there is a positive match;
otherwise, an error message will be displayed.

A spectrogram is a three-dimensional graph that is utilized to illustrate
sound. The spectrogram depicts the fluctuation of frequencies over time, taking
into account the amplitude or volume. Through the use of the spectrogram as
seen in figure 2.4, a constellation of peaks is produced; each peak denotes a
time-frequency point that has a higher energy level in comparison to the points
that are surrounding it.

After the constellation has been determined as seen in figure 2.5, each peak
is looked at once more and used as a reference to determine the target zone
(which is shown in figure 2.7), which is a zone consisting of sequential peaks. A
string of information is saved for each pair in the target zone. This information
is then fed into a hash algorithm (which is shown in figure 2.6), and the results
are stored in a hash table.

When the application samples a fragment of a song, its footprint and relative
hashes are immediately generated and transferred to the server; the server then
matches the fragment’s hash with those of the songs using the hash tables in
its database. The piece with the largest number of consecutive matches will be
selected.
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Figure 2.4: Example of Spectrogram [49]
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Figure 2.5: Example of Constellation Map [49]
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Figure 2.6: Example of Hast Details [49]

10




F 'equency

000

AN

2500

2000

1500

il

CHAPTER 2. STATE OF THE ART

X X o
X X
l -
X X Target Zone
x
x
-
x K e
X ® X X
I -
X X
i i i I i i
2 ] B ] 10 12
Time

Figure 2.7: Example of Combinatorial Hash Generation [49]
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Scatterplot of matching hash locations: Diagonal Present
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Figure 2.8: Example of Matched Hash Locations [49]

Figures 2.8 and 2.9 illustrate two examples of comparisons between the sam-
pled portion and the entire piece, respectively. The presence of the diagonal, as
shown in Figure 2.8, confirms the presence of the fragment within the piece. The
presence of the diagonal, as shown in Figure 2.9, does not confirm the presence

of the fragment within the piece.

Attempts have been made to include the approach into the thesis, which was
inspired by Shazam’s speech recognition technology. The thesis involves the
creation of a sound alphabet (database) by making use of a specified frequency
range, and the spectrogram is applied to find the frequencies that are being used
in created sound. The created sound is still melodic in character and discernible
by human ear, which is deliberate. This is comparable to QR codes in that they
don’t seem like anything in particular (such as a Leonardo Da Vinci or Claude
Monet painting), yet they are easily recognized by the human eye. This issue is

addressed in the analysis section.

12
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Scatterplot of matching hash locations: No diagonal
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Background

In this chapter will show the methods and algorithms that were utilized,
with reference to the approaches taken by the significant technologies covered
in the previous chapter. Additionally, a different approaches are showed in this
section of the thesis.

ReeD-SoLomoN CoDEs

Reed-Solomon codes, which were given their name after Reed and Solomon
following the publication of their work in 1960 [30], have been utilized in a broad
variety of contexts in conjunction with hard decision decoding.

Reed-Solomon codes are a type of code that is used for forward-error correc-
tion and are implemented in data transmissions that are susceptible to channel
noise. Reed-Solomon codes are a type of block code that are capable of detecting
and correcting faults inside a block of data. This is accomplished by inserting
redundant data before transmission of the code. The demonstration of standard
Reed-Solomon codes can be seen on Figure 3.1.

Reed-Solomon codes have been implemented in a wide variety of burst er-
ror correction applications, digital storage and communication systems, hybrid
ARQ systems, and various applications [10] [11] [46] [45] [19].

The research indicates that using forward error correction coding, which is
both the most effective and economical solution, is preferable when there is noise

and interference present. This allows for more efficient communication, as well

14
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Source
output

Transmission
Channe

Reed-Solomon
Endocer

Source
input

Decoder

Figure 3.1: Transmission chart of Reed-Solomon Codes

as a reduction in the requirement for retransmissions and the consumption of
energy. The convolutional encoder with the Viterbi decoder can find compound
errors with an Es/No ratio that is equivalent to 20 dB, whereas the RS coding
[28] [36] offers a superior BER for a gain that is greater than 7 dB.

CHARACTERISTICS OF REED-SoLoMoON CODEs

Reed-Solomon codes are a type of error-correcting code that uses blocks.
The encoder will append redundant data, known as parity data, to each block
of data that is sent in as input. Data that has been corrupted as a result of noise
that occurred during the communication transfer can be recovered with the use
of redundant data. The number of errors and the kinds of defects that could
be rectified dependent on the properties of the Reed-Solomon code. The Bose-
Chaudhuri-Hocquenghem (BCH) codes codes contain a non-binary sub-type
that is known as the Reed-Solomon codes [18].

They are represented by the expression Rs(1, k) using m-bit symbols, where
k represents the number of information symbols that have a length of m bits.
Encoding a word into n symbols requires the encoder to start with k data
symbols, each of which has s bits, and then add parity symbols. There are
(n — k) parity symbols, and each one consists of s bits. A Reed-Solomon decoder
has the capability of correcting up to t symbols in a codeword that include errors,
where 2t = n — k. The amount of parity symbols is related to the code’s ability
to correct and the number of symbols. A typical Reed-Solomon codeword is
illustrated in Figure 3.2.

15
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Input data symbols Parity symbols
k 2t

n

Figure 3.2: Reed-Solomon Codeword
Example:

A popular Reed-Solomon code can be created using 8-bit symbols and writ-
ten it as RS(255,223). Each codeword is made up of 255 bytes, with one symbol
equaling one byte. Out of these 255 bytes, 223 bytes provide information, while
the remaining 32 bytes contain parity. The parameters are:

n =255, k=223, m =38, 2t =32

The decoder has the capability to correct up to 16 faulty symbols where they
appear in the codeword. Within the codeword, the code can fix up to 16 bytes if
required.

Encoding and decoding Reed-Solomon codes requires a level of computa-
tional difficulty [32] thatis dependent on the number of parity symbols contained
within the codeword. The greater the number of parity symbols that are con-
nected to the information symbols, the greater the number of mistakes that the
code is able to rectify; nevertheless, this needs a greater amount of processing
power.

The maximum length of a codeword using the Reed-Solomon algorithm is
n = 2" —1. This is defined by size of m. A codeword comprised of 8-bit symbols,
for instance, has an absolute maximum length of 255 bytes.

It is feasible to shorten Reed-Solomon codes by setting a particular number
of data symbols to zero at the encoder, canceling the transmission of those data,

and then re-entering those symbols at the decoder [31].

Encoping Reep-Soromon Cobes

To do Reed-Solomon encoding, it is necessary to first compute the gener-
ating polynomial GF(2"). The amount of parity check symbols in the code is

16



CHAPTER 3. BACKGROUND

exactly directly proportionate to this polynomial’s degree. In another formu-
lation, both input and output data consist of symbols, which are elements of
GF(2™) = {0,1,a,a?,...}. These variables are structured as polynomial coef-
ficients, and the power of the polynomial variable x determines the order in
which the encoder and decoder traverse the respective symbol. For instance, the
information polynomial g(x) = ax? + a®x + a* indicates that the encoder will
process the symbol a first. Finally, symbol a* follows symbol a>. In Equation

3.2, the formula for the generator polynomial can be found.

Information symbols are moved on higher power coefficients x" ¥ and parity
symbols are inserted. Parity symbols are determined by dividing the relocated
information polynomial by the generator polynomial and taking the residual.
This generates the codeword c(x).

The equation is defined as [37]:

c(x) = i(x)x" % + [i(x)x"F|modg(x) (3.1)

Description:
c(x): primitive element of the field
i(x): the generator polynomial
g(x): the generator polynomial
[i(x)x"*]modg(x): the parity polynomial of degree

And the generator polynmial is expressed as,
[+2t-1

g(x) = l_[ (x +aP) = (x —a))(x — a"*)...(x — a2 (3.2)
p=I

The generated codeword would be acceptable since it is evenly divisible by

generator polynomial.

17
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DecopinG Reep-Soromon CoDEs

Reed-Solomon decoders make an effort to determine the location and size of
up to t errors or 2t erasures, and then rectify them if they are able to. Calculating
the syndrome of the receiver c(x) is a necessary step in the decoding of a Reed-
Solomon code. This reveals whether or not ¢(x) is a member of the codeword
set that we are looking for [18]. The presence of a zero syndrome will serve as
evidence that it is a component of the collection. On the other hand, the presence
of mistakes in the received vector will be indicated by the return of a value that
is not zero. Therefore, c¢(x) will be the sum of the vector that was sent, which is
denoted by r(x), and the vector that represents the error, which is denoted by
e(x).

Decoding steps of Reed-Solomon codes are [18]:

e Computation of syndrome.
e Computation of the error-locator polynomial o(x), whose multiplicative
inverse determines the error’s location. Various techniques exist for locat-

ing the roots of an error-locator polynomial. These are:

1. Berlekamp-Massey algorithm[18]
2. Euclidean algorithm [33]

e The Chien search technique is used to discover the roots of the error-locator
polynomial step [18].

o After the calculation of the error-locator polynomial, error values (magni-
tudes) are calculated by using Forney’s algorithm [17].

The decoding process diagram can be seen in Figure 3.3:

=, - ~ -, s .rl l“\
'/E-rml-Lclcatu.'\ Error Error
Polynomial ) b 3
rix) Syndrome 5 Locations L, Magnitudes ¥ Error clx)
Caleulation Berlekamp- Chien X Fornay Corrector
Massy =*  Search —  Algorithm

L algorithm J \ y. \ J

Input Qutput

Figure 3.3: Decoding Process of Reed-Solomon Code [27]

18
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The codeword polynomial is expressed as in Equation (3.3) and received
polynomial is expressed as in Equation (3.4):

c(x)=co+C1X + oo + Cygx™! (3.3)
r(X) =g+ X + oo+ ryx™L, (3.4)

If the polynomial that was received includes values of 7 that are greater than
zero, this indicates that 7 errors occurred during the transmitting and are located
at the location (ji, j2, ..., j-), where j is an integer between 0 and n-1. So error
polynomial is expressed in Figure 3.5

e(x) = ejlxj1 + e]-2xj2 + ..+ T, (3.5)

and the relation between them is expressed in Equation 3.6

c(x) =r(x)+e(x). (3.6)

Following the calculation of the first step, which is the determination of the
error polynomial (shown in Equation (3.5)), the next step is the rectification of
errors in the polynomial that was received using Equation (3.6). The output of
the encoder is the real codeword polynomial, which can be found by adding
the received polynomial to the error polynomial. If the Reed-Solomon code has
sufficient error correction capability, which is defined by its characteristic (1, k),
then this sum will give the correct codeword polynomial [37].

SYNDROME COMPUTATION

The syndromes for Reed-Solomon codes can be calculated using
Sk =r(a’) =ej(a')y +ep(a)? +- -+ e (a')r, (3.7)
wherebisanintegerand b <i<b+2t-1, k=0,1,...,2¢t
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and the error locator polynomial is expressed as

T
o(x) = l_[(l +altx) =1+ 01x + 02> + ...+ 02x" (3.8)
(=1

The inverses of the error locations are equivalent to the roots of the error-
locator polynomial, which are used to find errors. If this is the case, there is a
connection between the coefficients of o(x) and the syndromes can be seen in
Equation (3.9) [20]:

sa]l [s1 s2 ... S ] o:]
St _ So 5.3 coo Sty | o (3.9)
| SZT | _ST ST+1 s SZT—l_ | 01 |

Error locator polynomial can be found by result of Equation (3.9). If each
syndrome has a value of zero, therefore the codeword is transmitted correctly,
and the decoding process for the given chunk of data can be considered to have

reached its conclusion.

DETERMINATION OF THE ERROR-LOCATOR POLYNOMIAL

Using the Berlekamp technique, the coefficients of the error location polyno-
mial o(x) are computed iteratively. When a set of coefficients is calculated using
the Berlekamp algorithm, the coefficients are verified by utilizing the algorithm
to estimate a syndrome utilizing the calculated coefficients. In the case that the
check fails, a correction factor will be used to compute the coefficients of the
error location polynomial [18] during the future iteration.

We know that from Equation (3.9), §T+1 is the estimated syndrome which
is gathered using the estimated coefficients. Accordingly, discrepancy factor is

expressed as

di = Six1 + Sina (3.10)
In the equation that the estimated coefficients are accurate, then the estimated
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syndrome §T+1 will become equivalent to the syndrome that was determined to

be S;4+1. Then equation is equivalent to

di = §i+1 + Si+1 —> di =0 (3.11)

Otherwise, the equation translates into,

di=S;1+Si1—d; #0 (3.12)

Now, suppose that we have a parameter 7y as

ng =k —rg (3.13)

where ry is the degree of ox(x) and k is the iteration index.

Accordingly, Berlekamp algorithm can be expressed in a few steps. These steps
are [18]:

1. The iteration index i starts from —1. That means

6_1(.')() =1 r-1=0 d_l =0 nop=-1 (3.14)
and if i = 0, we have

Go(x) =1 ro = 0 d() = 51 nog = 0 (3.15)

2. The iteration index i is betweeni =1, ..., 2t

3. Estimated syndrome is determined by using

§i+1 = G;Si + 0,251'_1 +...+ G;iSi.g.]_ri (3.16)

Calculating the discrepancy factor requires using both the estimated syndrome

21



3.1. REED-SOLOMON CODES
and the computed syndrome. So we have

di = Si41 + Sin (3.17)

4. If d; = 0, then relation between iterations of error location polynomial are

oi+1(x) = 0i(x)  ris1 =71 (3.18)

where 7;,1 represents the degree of g;,1(x) and r; denotes the degree of o;(x)

If d; # 0, then relation between iterations of error location polynomial are

oir1(x) = 0i(x) + ei(x) (3.19)
where ¢;(x) is expressed as
ig.
ei(x) = xkdl or(x) k<i (3.20)
X dk

in which oy (x) indicates which of the previously generated polynomials such
that

ng=k—-rr k<i (3.21)

has the highest value when all of the previously generated o (x) values are taken
into consideration. Therefore, the degree of e(x) can be calculated as

pk=i—k+re > pp=i-n (3.22)

where 7y is the degree of ox(x). Therefore, calculation of o;,1(x) is expressed as

riv1 = max(rg, pr)- (3.23)

5. If i > 2t, finish the process.
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FINDING ROOTS OF ERROR-LOCATOR

To locate the roots of a polynomial g(x) [18], we test each field element in
g(x) = 0 to see if the results are zero, i.e., we test and determine those satisfying

g(a?) = 0.

g(ai) =0 i=1,..,n where:n=2"-1 (3.24)
Chien search is the name given to the recommended method for performing a
search in a systematic manner, which is done in order to facilitate the execution

of the roots search [18]. The Chien search for error location polynomial is

represented as,

1

0(x) = 0 X"+ 01X+ -+ 02x% + 01X + 0 (3.25)

When the Equation (3.25) is implemented for o/, the equation translates into,

o(a’) = 0:a’™ + 0,10V 4+ 02a% + 010’ + 0o (3.26)

So the states can be defined as,

ge = 00" e =0r1a"Y  gp=0a¥ qgr=o01dd gqo=q0 (3.27)
If x = a’*1, we get
Ge=0ca’™ gy =0c1a ™V gy =00 g =010 gy =g
(3.28)
For g; and q;, where | > 0, we have
gr=0:a" g, =012 gy=0a® gi=o1ad gy=q0  (329)
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First, in the Chien search algorithm, we calculate Equation (3.27) with i = 1, and

then we check to see whether we have or not.
Z g; =0 (3.30)
=0

If the conditions of Equation (3.30) are met, then the symbol is a root. First,
when I equals 2, we use Equation (3.29) to update the states, and then we check
to see if we have or not.

>qi=0 (3.31)
=0

If the condition in Equation (3.31) is satisfied, then a? is a root.

CALCULATION OF ERROR VALUES

The Forney algorithm [18] is responsible for the evaluation of error values in
positions j;. It is calculated like Equation (3.32).
GO CED)

ej = o (a ) (3.32)

A(x): is the error evaluator polynomial
o’: is the formal derivative of error-locator polynomial with regard to error-
locator polynomial x
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DicITaL SiGNAL PROCESSING

The Fourier transform is a mathematical method used to transform data into
a spectrum of sinusoidal components in order to simplify signal representation
and system performance analysis [25]. In some applications, the Fourier trans-
form can be used for spectral analysis, and in others, it is applied for spectrum
forming, which modifies the relative contributions of various frequency com-
ponents to the filtered output. In certain applications, the Fourier transform is
utilized for its ability to decompose the input signal into uncorrelated compo-
nents, allowing for more efficient signal processing on the individual spectral

components.

In different situations, the CT Fourier transform, the discrete-time Fourier
Fourier transform (DTFT), the discrete Fourier Fourier transform (DFT), the
fast Fourier transform (FFT), and the short-time Fourier transform (STFT) are
utilized [14] [23] [40] [50] [35].

In this section, the signal processing algorithms (such as STFT and FFT) will
be discussed.

Fast FOURIER TRANSFORM

FFT is a faster variant of the DFT. Since Cooley and Tuckey introduced the
fast Fourier transform in 1965 [15], it has evolved into a significant digital signal
processing (DSP) method. The FFT takes use of the fact that the straightforward
method for computing the Fourier transform repeats numerous multiplications.
Utilizing the algebraic features of the Fourier matrix, the FFT algorithm inte-
grates these redundant calculations in an incredibly efficient manner. In partic-
ular, the FFT utilizes patterns in the sines multiplied to complete the calculation
[25]. Essentially, the FFT factorizes the Fourier matrix into many sparse matri-
ces. Numerous entries in these sparse matrices are equal to zero. Using sparse
matrices minimizes the total number of needed calculations. The FFT eliminates
nearly all of these unnecessary calculations, which saves a substantial amount of
calculation time and makes the Fourier transform significantly more applicable

in numerous applications today [14] [38] [26].

As a starting point, the DTFT mathematical model is used to produce a
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computer tool for Fourier transformations and it is expressed as

N-1

Xp[w] = Z x[n]e jon (3.33)

n=0

where x[n] is the input signal and N is the number of points indicating the
signal’s duration. The signal in the frequency domain is sampled equally with
N points per period, 0 < w < 27, i.e,,

2
Ty

k=0,1,...,N-1 3.34
~ (334)

Wg =

The FFT can be used to effectively estimate the DFT [41]. DFT algorithm
computational complexity is on the order of N2 operations. In fact, the number of
computations performed by the FFT algorithm is about comparable to Nlog;N.
As aresult of this significant reduction in computing complexity, FFTs are almost
always favored over DFTs.

SHORT-TTME FOURIER TRANSFORM

The DTFT is a sort of Fourier Transform that identifies the sinusoidal phase
and frequency characteristics of local or divided regions of a signal as it varies
over time. STFT is one sub-type of DTFT [41]. As a result, STFT is able to
maintain some information regarding the passage of time. Given a time signal

x the STFT matrix X, can be constructed as follows:

Xnlw] = i x[n]w[n — mR]e7®" (3.35)

n=—oo

where,

X[n] = input signal at time n
w|[n] = sliding analysis window

Xm|w] = DTFT of window data centered about time mR
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R = hop size in samples. The hop size is the difference between the window

length M and the overlap length L.

Notice that if n = m and w[0] = 1, then x(n) is calculated using Equation
(3.36).

1

— / " Xplwle/“ dw. (3.36)

w[n —mR]x[n] = o

STFT algorithm leading to a twodimensional graphical representation of
the squared magnitude of the STFT called the spectrogram. The graphical
representation of STFT can be seen in Figure 3.4.

Xs(n)
xs(n)
Xa(n)
X3(n)
x2(n)
x1(n)

Segmentation/
Windowing

DFT
X ()2 Xe(f)[? X (N Xu(h)? Xs(h)[? [ Xe(1)[?
]\/ M IX(N |2
Figure 3.4: Graphical representation of STFT [39]
WINDOWING

As described in chapter 3.2.2, the window length is one of the most important
parameters influencing the STFT value [51]. The window length also influences
the STFT’s temporal resolution and frequency resolution. The narrower win-
dows have a small time duration but a broad bandwidth, they result in a fine
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time resolution but a coarse frequency resolution [47]. Because wide windows
have a long duration but a restricted frequency bandwidth, they result in a fine
frequency resolution but a coarse temporal resolution. The term for this phe-
nomena is the window effect [24]. The STFT cannot simultaneously provide a
fine time resolution and a fine frequency resolution. The STFT has the same
time resolution and frequency resolution over the whole time-frequency plane
when using a time-invariant window. There are several windowing function to
be utilized. These are:

Blackman Window:

The Blackman window is a taper formed from the first three factors of a
cosine sum [21] It was created to have the least amount of leakage possible. The
Blackman window is characterized by:

2nn 4ntn
w|[n] =0.42 — 0.5 cos (W) + 0.08 cos (W) (3.37)

The Blackman window was designed to eliminate the 3rd and 4th lower order
harmonics, however its boundaries are discontinuous, leading to a 6 dB/oct
falloff. This window is an estimation of the "precise” window, which nulls the
sidelobes less effectively but has smooth edges, leading in a rise in the fall-off
rate to 18 dB/oct [21].

Frequency response of the Blackman window
Blackman window

Amplitude
o o »
=~ © o
| s L

=) =)
N o
)
Normalized magnitude [dB]
|
@
(=]

=]
=]
|
i
N
o

d T T T T
—04 —0.2 0.0 02 04
Normalized frequency [cycles per sample]

T T T T T T
a 10 20 30 40 50
Sample

Figure 3.6: Frequency response of the Blackman window

Figure 3.5: Blackman window [34] 134]

Hamming Window:

The Hamming window is a taper created by utilizing a rising cosine with
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non-zero endpoints, with the goal of minimizing the closest side lobe. The
Hamming window is defined as

21n
M-1

w[n] =0.54 - 0.46 cos( ), 0<n<M-1 (3.38)

The Hamming was called after R. W. Hamming, a J. W. Tukey associate, and
is detailed in Blackman and Tukey [13]. It was suggested for smoothing the
shortened time-domain autocovariance function. The majority of mentions to
the Hamming window are found in the signal processing literature, where it is

one of several windowing functions used to smooth values.

Frequency response of the Hamming window
Hamming window
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Figure 3.8: Frequency response of the Hamming window

Figure 3.7: Hamming window [34] [34]

Hann Window:

The Hann window is a taper created using an increased cosine or sine-

squared with zero-touching ends. The Hann window is defined as

2
w[n] = 0.5 - 0.5cos (ML_”l) O<n<M-1 (3.39)

A significant number of references to the Hann window are found in the sig-
nal processing literature, where it is utilized as one of numerous smoothing

windowing procedures.
Blackman-Harris Window:

Blackman-Harris windows are a straightforward generalization of Hamming
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Hann window Frequency response of the Hann window
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Figure 3.9: Hann window [34] Figure 3.10: Frequency response of the Hann window [34]

windows. The Blackman-Harris window is defined as

21n d1n
w[n] = 0.35875 — 0.48829 cos (M — 1) + 0.14128 cos (M — 1)
6rtn
-0. <n< - )
001168cos(M_1), 0<n<M-1 (3.40)

L Frequency response of the Blackman-Harris window
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Figure 3.12: Frequency response of the Blackman-Harris

Figure 3.11: Blackman-Harris window [34] window [34]

Nuttall Window:

The Nuttall window is a type of 4-term Blackman-Harris window with dif-

ferent coefficients. The Nuttall window is defined as

21n dmn
w[n] = 0.3635819 — 0.4891775 cos (M 1) + 0.1365995 cos (M — 1)

6rtn
—0.0106411
Cos (M

1), 0O<n<M-1 (3.41)
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Nuttall window Frequency response of the Nuttall window
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Figure 3.13: Nuttall window [34] Figure 3.14: Frequency response of the Nuttall window [34]

Winpow LENGTH

Instead of looking at the signal as a whole, the primary objective of window-
ing in the spectral analysis is to enable the user to zoom into the more minute
aspects of the signal. When it comes to audio signal processing, where infor-
mation such as pitch and formant frequencies are recovered by evaluating the
signals via a window of a certain duration, STFT is of the utmost importance.
The width of the windowing function has an effect on the way in which the
signal is represented; specifically, it impacts whether there is good frequency
resolution (that is, frequency components that are close together may be sepa-
rated) or good temporal resolution (the time at which frequencies change) [47].
When the window is wide, the frequency resolution is improved, but the time
resolution is decreased. When the window is made narrower, the temporal
resolution is improved while the frequency resolution is decreased. These two
types of transformations are referred to as narrowband and wideband, respec-
tively. This is the exact reason why a wavelet transform was developed, where a
wavelet transform is capable of giving good time resolution for high-frequency
events and good frequency resolution for low-frequency events. In other words,
a wavelet transform can give good resolution for both time and frequency. The
application of this method of analysis works very well with real signals. The

function of the window can be understood by examining examples of its use.

As can be seen from Figure 3.15 and Figure 3.16, if window is not preferred to
use, rectangular window can be used. It is mentioned for completeness and be-
cause the rectangular window is one of the window options no tapering. When
the window types are checked, for window length is equal to 1024, hamming
window has side order of -43 dB and dynamic range is approximately 40dB for
the first peak. When examining the rectangular window, rectangular window
has side order of -21 dB. It shows that, we have better dynamic range with
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hamming window.
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Figure 3.15: Example of Periodogram (Rectangular) [48] Figure 3.16: Example of Periodogram (Hamming) [48]
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Figure 3.17: Example of Windowing (with different length) [48]

As can be seen in Figure 3.17, If window length is equal to 1024, it means that
the interval is divided into one segment to estimate power spectrum density. If
the segment length is equal to number of FFT, we can observe that the spectrum
is quite noisy If window length is equal to 256, significant reduction on variance
can be seen. If window length is down to 64, variance decreases vertically.
However, the ability to distinguish the peaks has been lost and we can not

longer to see the details associated to peaks.

OVERLAP LENGTH

Another critical parameter of the Short-time Fourier transform is the length
of overlap of individual STFT windows. Overlapping, as shown in Figure 3.4,
indicates that consecutive windows overlap when obtaining data corresponding
to a specific window size.

The optimal window length is determined by the parameters of the signal
being analyzed. The window length influences the STFT’s temporal resolu-

tion and frequency resolution. Because narrow windows have a small time
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period but a broad bandwidth, they result in a fine time resolution but a poor
frequency resolution. Because broad windows have a long duration but a re-
stricted frequency bandwidth, they result in a fine frequency resolution but a

coarse temporal resolution.

Powgr SPECTRAL DENSITY

The power spectral density (PSD) presents a graphical representation of the
frequency distribution of signals that is simpler to comprehend than the DFT
[29]. As the acronym indicates, it represents the fraction of the overall signal
power that each frequency component of a voltage signal contributes.

Consider a random process X(t) that is wide-sense stationary (WSS) and
has an autocorrelation function Rx(t). PSD of X(t) is defined as the Fourier
transform of Rx (7). PSD of X(t) is demonstrated by Sx(f). In particular, we can

write

Sx(f) = F{Rx(1)} = / " Ru(o)e 2, (3.42)

The PSD can be visualized using a variety of approaches, such as peri-

odogram and Welch’s method, among others.

PERIODOGRAM METHOD

The periodogram [25] represents a nonparametric estimation of the PSD
of a wss random process. The periodogram is the Fourier transform of the
autocorrelation sequence estimate with a bias. Periodogram definition for a

signal x,, sampled at fs samples per unit time:

N-1 2

-2
ane j2nftn ,

n=0

P(f) = % ~1/21 < f <1/21 (3.43)

FeEATURE EXTRACTION

Finding the peak frequencies of forwarded signal is one of the most essential
components of a decoder. The open-source software Scipy is used to locate these
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frequencies. The "find peaks" function is one of Scipy’s essential tools that may
be used to locate signal peaks [2].

This approach compares neighboring values to identify all local maxima in a
one-dimensional array. By creating conditions for the characteristics of a peak,
it is feasible to select a subset of these peaks. For a reliable peak extraction, it
is necessary to know its properties width, threshold, distance, and prominence.
The parameters of the function are [2]:

Height: The first parameter (height) sets a threshold for the height of the signal.
If a certain part of the signal is below the threshold, the function does not

determine the peak there.

Threshold: The second parameter (threshold) sets the vertical distance to its
neighboring samples.

Distance: The third parameter (distance) sets horizontal distance (>= 1) in sam-
ples between neighboring peaks. Initially, the smaller peaks are eliminated until

the criterion is met for the remaining peaks.

Prominence: The fourth parameter (prominence) calculates the peak by taking
the difference between the height of the peak and the higher minimum of the

two intervals.

Width: The fifth parameter (width) estimates the peak by taking the difference
between the height of the peak and the higher minimum of the two intervals.

Window length: The fifth parameter (wlen) is a sample window length that
potentially limits the assessed region for each peak to a subset of the signal.

We can see in Figure 3.18 that the width parameter is not very effective in
this case. This is due to the fact that if you choose a minimum width that is
wide, it would be unable to follow extremely near peaks in the high frequency
component of the signal. If you configure the width to be too small, you will get
multiple peaks in the left half of the signal that you do not want. The same issue
pertains to the distance. threshold is only able to compare itself to its immediate
neighbors, which is not helpful in this situation. The answer that comes from
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prominence is the most effective one.
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Figure 3.18: Test of find peak parameters

SCRAMBLING

Scramblers are a type of substitution ciphers [12] that have been deemed
acceptable for a variety of security requirements, including those used by ca-
ble and satellite television companies and providers of mobile phone services.
Scrambler is a coding process that randomizes data streams. In addition to its
usage as a cryptographic algorithm, a scrambler is frequently employed to pre-
vent DC wander and synchronization issues in communication circuits caused
by lengthy sequences of Os and 1s. Scramblers are widely used to encrypt video
and audio data for broadcasting and numerous other purposes. Scramblers are
characterized by their minimal complexity and cost, rapid operation speed, and
easy to implement.

Scrambling consists of a shuffling of the bits following the channel coding
but prior to digital modulation, with the aim of distributing the content of a
codeword within several sound fragments. Once the demodulation has been
carried out, the reverse shuffling of the previous one takes place to get the
code words back. In this way, in the event that a noisy intervention causes an
error in demodulation, the wrong bits are distributed among several codewords,
increasing the probability that these are correctable.
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SPEECH RECOGNITION

It was indicated in the introduction that the application would identify audio
signals and then send information over the phone in a transmission. In order to
recognize and transmit sound signals via mobile phone, TensorFlow Lite Maker
has been implemented. The TensorFlow Lite Model Maker module makes the
process of training a TensorFlow Lite model with the desired dataset more
straightforward and easy to understand [3]. Transfer learning is utilized so that
the required amount of training data can be reduced, hence cutting the overall
training time in half. Additionally, it is easy to integrate into Android.

For a better recording of the audio signal, it is planned to use the opening
marker before the transmitted audio signal. The opening marker is utilized to
activate the application before the encrypted sound signal is recorded. Thus,
it is ensured that the entire audio signal is recorded. In order to do that,
the proper opening marker should be chosen because transmitted sound and
opening sound should not interfere with each other. Therefore, it is important
that the frequencies used in the opening sound are as different as possible from
the frequencies in the transmitted audio signal.
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OVERALL STRUCTURE

The block diagram relating to the thesis project is shown in Figure 4.1 and

Figure 4.2.
SOUND
CNR COMPOSITION
| CODEWORD
CHANNEL CODING o [oremarare
| Clesing Marker |
@ Y Y
REDUNDANCY | sc:;:)w[:zlﬂé\m INFOCOREC | ASSIGNMENT Infocore COMPOSITION
MODULE "1 MODULE » MODULE
(not necessary)
Y
SOUND SIGNAL

Figure 4.1: Encoder block diagram
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Figure 4.2: Decoder block diagram

PrEPARATION OF CHORD DICTIONARY

The first step is to design a chord dictionary to encrypt the data stream bits.
In order to create a chord dictionary, it is necessary to evaluate the sum of all
the combinations from 1 — k sound frequencies chosen from a preselection of n
predetermined frequencies. The k value for this project was determined to be 4
and the 7 is determined to 87. In practice, the dictionary of association between
the numerical values of the binary strings and the unions of sound frequencies
of the chosen chords contains a number of terms (fixed 7n) equal to the largest
multiple of 2 lower than the sum of the simple combinations.

Cln k) = n! @.1)

(n —k)!

When the combination is calculated which is equal to C (847) = 2225895. The
choice of the n sound frequencies (which make up the chords) can be made by
taking into account the need for pleasant (or at least not annoying) listening. In
this case, you will have to choose musical chords governed by precise harmonic
laws. However, the composition of up to a maximum of 4 sound chords leads to
an estimate of a maximum of 781 codewords [1], which will have the advantage of
being harmonically acceptable to the ear, but the limited number of combinations
would force to lengthen (and greatly) the duration of the sound signal. However,
some of the sounds in this project are not designed to be musical because of
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my lack of music theory knowledge. At the same time, the frequency values
should not be too close to each other. As the interval between frequency values
decreases, it can lead to incorrect estimations when estimating frequency. For
this purpose, the frequencies were selected from a pool of 87 distinct musical
frequencies, each spaced by a specific amount. In order to distribute each of 87

frequencies, k values are selected as

ki contains first 64 (2°) frequencies

ko contains 8 (23) frequencies which is between k1 +2 < k, < k1 +9
k3 contains 8 (23) frequencies which is between k, +2 < k3 < kp +9
k4 contains 4 (22) frequencies which is between k3 +2 < ks < k3 +5
According to this, total number of combination is

ki X ko X k3 x kg = 26 x 23 x 23 x 2% = 16384. (4.2)

The range for 87 frequencies was determined to be between 415.30 Hz and
4978.03 Hz using mentioned method. In the analysis part, it is clarified why low

frequencies are not chosen.

ENcODER

First of all, the source code is a series of randomly generated 14 bits repre-
senting the message to be sent. The source code is generated by Omniaweb and
it is acquired from the server by using python. Input data is indicated as CNR
in Figure 4.1.

In the coding and decoding phase (Redundancy Module and Reducer Mod-
ule), the Reed-Solomon coding was used which, through the use of redundancy,
allows the correction of any errors caused by noisy disturbances. First of all, the
input bit is set to 14 bits, and Omniaweb decides to transmit 42 (14 x 3) bits. The
Reed-Solomon code is designated as (12,6) where n = 12, k = 6, and ceyp = 27,
The input bits are divided into 6 decimal parts, each less than or equal to 27).

To correspond to 6 decimal parts, 6 more unnecessary parts were added with
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the Reed-Solomon code. After that, decimal integers are converted into binary
digits and back to binary digits. That way, 84 bits are achieved.

After passing through the scrambler, the input bits are transformed to dec-
imal digits. Using the codeword library described in section 4.1.1, each of the
produced components is encrypted. The sound signal is then generated utiliz-
ing frequencies related with the newly produced components. Thus, a 2-second
audio signal is generated, with each component equal to 0.33 seconds.

In general, it is best to choose the sampling rate to fit the device, typically
44.1 kHz or 48 kHz [4]. However, a 16 kHz sampling rate was used in the project
because of the sampling rate which is used in the sound recognition model by the
TISCODE application (see section 3.4). Tensorflow-lite bases 16 kHz sampling
rate for its training and if the sound is created by using a 44.1 kHz sampling

rate, down-sampling or up-sampling sometimes causes a lack of information.

Algorithm 1 Encoder

dec « reshape(input) {The input bits are converted into decimal values}
encoded <« RSEncode(dec) {The decimal bits pass through Reed-Solomon
codes and redundant component are created}
encoded2 « reshape(encoded) {Encoded symbols are converted into binary
values}
scr « scrambler(encoded?2) {The reshaped bits pass through the scrambler}
x «<— reshape(scr) {Scrambled bits are converted into decimal integers}
for i < (0 — length(x)) {Integers pass through the alphabet, and for each
integer, four frequencies are obtained} do

freqli] = alphabetli, x]
end for
y < createSound(freq)

DECODER

The decoder consists of two subsections. The first subsection is the recogni-
tion of the sound heard from a device with a microphone, the second part is the

decoding of this recognized sound.

ENcODED SiGNAL LOCALIZATION

A microphone-equipped gadget listens the sound produced by the encoder.
The audio signal is recognized by the AppyTech-developed TISCODE applica-
tion. AppyTech utilizes the tenforflow-lite module for sound recognition, as
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stated in section 3.4. This application recognises the combination of the open-
ing marker and the created sound then begins to record the audio signal. The
application begins recording three seconds after detecting the opening marker.
This 4-second audio stream is then sent to the decoder.

25000 -
—25000 A
(.] 50'00 10600 15(;00 20600 25600 30600
Original Sound #

2500
0 - *—m—
—2500 T

0 10000 20000 30000 40000 50000 60000
Recorded Sound #

Figure 4.3: Example of Recorded Sound

The audio signal is firstly converted from pcm to wav format. The converted
sound can be seen in Figure 4.3. The data between the 24k and 56k is the encoded
sound signal that needs to be decoded. The data of the openning marker can
be seen at the beginning of the recorded sound. As can be seen in Figure 4.3,
there is a 10 times difference between the amplitude of produced sound and the
amplitude of the recorded sound. Due to the Sox sound processing function
utilized by the sound recognition method [5], the sound signal appears to have
10 times less amplitude. Since sound recognition is not the focus of this thesis,
it has not been highlighted.

The converted audio signal is then trimmed to capture all of the information
contained in the four seconds of audio. As stated in the encoder section, the
actual duration of the information sound is two seconds, and periodogram
method has been used to eliminate the redundant two second from the data.
Received sound has 64k sample which equals to 4 seconds. The information
part which is called "rinfo" part has exact 31998 sample which is inside the
received sound. However location is not certain. To estimate the location of
the rinfo piece, the Scipy periodogram method is utilized [6]. Periodogram
estimates the power spectral density by segmenting the data into overlapping
segments, calculating an adjusted periodogram for each segment, and averaging
the modified periodograms. Periodogram is utilized to determine the PSD of
each note frequency (which is used in alphabet) for each 32k sample of the 64k
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Number of peak frequency
4 5 6 7 8 |9
Mean decoding time (sec) 0.72 1 0.86 | 1.02 | 1.37 | 3.81 | 9.67
Decoding rates (for 50 attempts) | 52% | 64% | 78% | 84% | 86% | 88%

Table 4.1: Number of peak frequency comparison

sample set. Following the calculation, the section with the highest power for the
note frequencies is selected. After the estimation of the highest power part in
the four-second sound, the trimmed part is found as in Figure 4.4.
2500
- —
-2500 1

0 10000 20000 30000 40000 50000 60000
Recorded Sound #

2500

—2500 -

0 5000 10000 15000 20000 25000 30000
Trimmed Sound after the shifting #

Figure 4.4: Example of Trimmed Sound

As shown in Figure 4.4, the power appears to be relatively low in locations
where low frequency is utilized. A higher-frequency wave with the same ampli-
tude has greater power than a lower-frequency wave with the same amplitude,
while a higher-amplitude wave with the same frequency has greater energy.

FEATURE EXTRACTION

After the estimation of the sound signal location, the decoder starts to decode
the trimmed sound signal by using the spectrogram [7]. The 32k sample data
is initially divided into six parts. This is due to the fact that every 0.33 seconds
of data corresponds to 5333 data samples. Using the spectrogram, the first
seven peak frequencies of each 0.33 second of data are determined. The reason
behind the selection of seven frequencies is presented in Table 4.1. Increasing
the number of selected peak frequencies improves the decoder’s performance.
However, decoding processing time increases as well.

Utilizing a variety of window functions, the spectrogram is used to locate

the sound signal’s frequencies as well as the magnitudes of those frequencies.
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The Scipy spectrogram will return the following values: PSD, complex, mag-
nitude, angle, and phase are the acronyms for these [7]. The output of STFT
without any padding or boundary extension is comparable to the value referred
to as "complex." The value that is returned by the’'magnitude’ command is the
absolute magnitude of the STFT. Both "angle” and “phase’ will give you back the
complicated angle that the STFT has, with or without unwrapping, depending
on which one you use. The ‘magnitude’ is preferred as a parameter in this thesis
and it is utilized.

The window length is set as three parameters in a decoder. These are 5333,
4000, and 2667. Firstly, the decoder starts to decode the sound signal by setting
window length 5333, if it can not find any decodable bit string then it tries to
decode the sound signal again by using 4000 window length and then 2667
window length. After that, the "find peaks" method in scipy is used to locate
the peaks in the spectrogram [7]. For the figures in below (between Figure 4.5
and Figure 4.10), the used bit string and the frequencies in the created sound

signal are:
Rinfo: 000000001010100010001000000100101010010001

Peak Frequencies : [164.81 185 293.66 329.63]
Peak Frequencies : [659.25 739.99 830.61 1046.5]
Peak Frequencies : [174.61 196 246.94 277.18]
Peak Frequencies : [220 246.94 311.13 392]

Peak Frequencies : [392 587.33 698.46 830.61]
Peak Frequencies : [349.23 415.3 587.33 639.8]
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Figure 4.5: Graphical Representation of Scipy FFT
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Figure 4.6: Graphical Representation of Scipy STFT (Hamming)
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Figure 4.8: Graphical Representation of Scipy STFT (Blackman)
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Founded Frequeny (Hz)
Peaks1 | 160.7 162.81 188.21 2139 25454 291.3 327.87 359.1 381.23 439.61 599.89 659.25 830.6
Peaks2 | 1741 238.7 276.31 346.66 599.89 650.54 659.25 73221 739.99 8062 830.6 1020.3 1042.8
Peaks3 | 169.6 1741 190.7 196  238.7 2469 2544 27631 303.6 310.8 339.9 3511 369.99
Peaks 4 | 190.7 220 24994 2544 303.6 310.8 3399 3511 369.99 383.65 392 505.8 586.6
Peaks5 | 309.6 339.8 349.23 360.36 369.99 505.7 536.67 586.6 6069 639.80 672.52 698.46 830.61
Peaks 6 | 227.46 309.6 339.8 349.23 369.99 401.32 4153 439.61 5057 531.61 587.33 599.89 639.8

Table 4.2: Example of Extracted Frequencies

Afterwards, intervals are defined so that note frequencies can be determined.
For instance, if the extracted frequency is quite close to the note frequency, then
the extracted frequency will be used as the note frequency. If there is a gap
of more than 4 Hz between the founded frequency and the note frequency, the
frequency in consideration is not chosen to be a note frequency. Therefore, the
frequencies are removed one by one until a final set of seven peak frequencies
are chosen. For instance, we suppose that the alphabet contains frequencies
between 138.59 Hz and 7092 Hz and the function finds thirteen peak frequencies
by setting prominence parameter then we find the frequencies as in Table 4.2.

For example, the frequencies that should be found among 13 peak frequen-
cies in "Peaks 1" (164.81 Hz, 185 Hz, 293.66 Hz, 329.63 Hz) were found. In
addition, for example, 213.9 Hz on "Peaks 1" is a frequency not found in the
alphabet. The alphabet frequency closest to 213.9 Hz is 207.65 Hz and 220
Hz. If we observe the difference between them, 213.9 — 207.65 = 6.25 Hz and
220 - 213.9 = 6.1 Hz it is not among the alphabet frequencies of 213.9 Hz, since
the difference between them is more than 4 Hz. Beginning with this principle,
all detected peak frequencies are eliminated one by one until only seven peak
frequencies remain. The seven frequencies found for each of the 5333 sampled
data are highlighted in Table 4.1.

The selection of seven frequencies is necessitated by the fact that the decoding
time increases excessively with more frequency combinations. Since it takes less
than one second to decode the combination of seven frequencies, seven peak
frequencies were chosen during decoding. After that comes the combining
of these different frequencies. The Reed-Solomon decoder is utilized on the
data. Reed-Solomon is going to begin decoding the specified string if the Reed
Solomon syndrome discovers only three or fewer values that are greater than 0.
Because the The utilized Reed-Solomon check system can only find decodable
string if the data are 100% accurate. The use of Reed-Solomon syndrome allows
that the decoder does not have to verify every possible combination in order to
find a string that is 100% correct. The decoder is able to locate a string that can
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be decoded by checking a reduced number of possible possibilities.

ExPERIMENTAL RESULTS

In this section, the previously mentioned procedures are evaluated under
various scenarios. The first subsection discusses noise environments and their
characteristics. In the second subsection, the periodogram’s capacity to detect
sound from a microphone-equipped device is evaluated. In the third subsection,
the ability of the window functions is tested. The test was carried out according

to the window types and the performance of the window type at different noise
types.

Noise

The decoder was tested using different types of sounds. Sounds are collected
from [8]. This subsection shows the frequency range of the noises and will
explain why low frequencies are not preferred when choosing a frequency range
for the alphabet. Five different noise environments were selected to test the
decoder. These are cafe environment, bank ambiance, airport terminal, office
environment and car horn noise. The noise signals used can be seen more clearly
in the graphs below.

The primary purpose behind the selection of various types of noises is to
explore how the extraction of features is affected by the noises that are typically
encountered in daily life. For instance, cafe background noise has significant
amplitude between 190 Hz and 390 Hz. The office background noise shows its
effect between 60 Hz and 240 Hz. The car horn has a variety on frequencies. The
highest amplitudes are seen between 340 Hz - 390 Hz and 3000 Hz - 3500 Hz.
The bank ambience has a huge impact between 110 Hz and 700 Hz. The airport
terminal noise has an impact around 300 Hz. For all the noises, the highest
amplitudes are observed around 300 Hz. In conclusion, we can observe that,
the frequencies below the 350 Hz should be used in an alphabet.
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Figure 4.11: Graphical Representation of Cafe Background Noise
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Figure 4.12: Graphical Representation of Office Background Noise
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Figure 4.13: Graphical Representation of Bank Ambience Noise
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Figure 4.14: Graphical Representation of Airport Terminal Noise
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Figure 4.15: Graphical Representation of Car Horn Noise
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ANALYsIS OF ENcODED SouNnD DETECTION

As explained in encoded audio localization, the recorded audio signal is
trimmed to capture audio information. According to the encoder part, the actual
duration of the information sound is two seconds, and the periodogram method
was utilized to eliminate the extra two seconds of data. Figure 4.16 shows how

accurate the sound clipping was after 50 trials using different window functions.

60 60
50 50
40 40
30 30
20 20
10 10
0 0
Hamming Hann Blackman  Blackman-Harris Nuttall

Total Test M Correct Estimation

Figure 4.16: Test results of encoded sound detection

There are two key reasons why sound clipping is not always appropriate.
First, sound recognition cannot capture the encrypted sound in its entirety.
Second, if the surrounding environment is excessively noisy, the audio cannot
be clipped correctly. Figure 4.17 demonstrates that the complete encrypted audio
stream, which typically consists of 32k sample data, is not recorded correctly.
Only 24k sample data was collected for a portion of the sound signal that should
have had 32k sample data. An example of the correct clipping operation can be
observed in Figure 4.4.
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Figure 4.17: Example of missing recorded sound

ANALYSIS OF THE DECODER

The decoder was analyzed using the mentioned sounds and several win-
dowing techniques for two distinct frequency ranges. Using low frequencies
in a variety of noisy environments has been analyzed in terms of the outcomes
observed. In the initial investigation, the audio signal was generated using
frequencies ranging from 164.81 Hz to 1046.5 Hz. In the second examination,
frequencies between 415.3 Hz and 3228 Hz were selected.

Test 1 (164.81 Hz - 1046.5 Hz)

The data string used is the same as the data string mentioned in feature

extraction part of decoder section. The data string is:
Rinfo: 000000001010100010001000000100101010010001

164.81 185 293.66 329.63]
659.25 739.99 830.61 1046.5]
174.61 196 246.94 277.18]
220 246.94 311.13 392]

392 587.33 698.46 830.61]
349.23 415.3 587.33 639.8]

Peak Frequencies :
Peak Frequencies :
Peak Frequencies :
Peak Frequencies :
Peak Frequencies :

p— p— p— p— p— p—

Peak Frequencies :
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RS(12, 6) with Cafe Background Noise
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Figure 4.18: Cafe Background Noise Performance on Low Frequency
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RS(12, 6) with Office Background Noise
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Figure 4.19: Office Background Noise Performance on Low Frequency
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RS(12, 6) with Bank Ambience Background Noise

SNR (dB)
FFT Error B FFT Corrected M STFT 'Hamming® Error B STFT 'Hamming' Corrected

STFT "Hann' Error B STFT 'Hann' Corrected B STFT ‘Blackman' Error
STFT 'Blackman’ Corrected STFT 'Blackman-Harris’ Error [l STFT 'Blackman-Harris' Corrected

STFT ‘Nuttall' Error W STFT 'Nuttall’ Corrected

Figure 4.20: Bank Ambience Background Noise Performance on Low Frequency
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Figure 4.21: Airport Terminal Background Noise Performance on Low Frequency
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RS(12, 6) with Car Horn Background Noise

-10d8  -8dB -6 dB

-4 dB

B FFT Error W FFT Corrected

STFT 'Hann' Error

-2 dB 0dB 2 dB 4 dB 6 dB 8 dB 10 dB

SNR (dB)
B STFT ‘Hamming' Error W STFT 'Hamming' Corrected

B STFT 'Hann' Corrected B STFT 'Blackman’ Error

M STFT ‘Blackman' Corrected

B STFT "Nuttall’ Error

STFT 'Blackman-Harris' Error [l STFT 'Blackman-Harris' Corrected

W STFT 'Nuttall” Corrected

Figure 4.22: Car Horn Background Noise Performance on Low Frequency

63



4.2. EXPERIMENTAL RESULTS

As can be seen in the tables that are located above, FFT provides the right
bits when the SNR is 4 dB in environments such as cafes, offices, and airports
because it does not use any kind of noise reduction method. It produced better
results depending on the ambient noise present in the environment of the bank
and the car horn.

When we observe the STFT '"Hamming’ and the STFT "Hann’ in the figures,
we can see that these two windowing method give the bits appropriately at the
-2 dBlevel. It is possible for us to draw the conclusion that these two approaches
produce outcomes that are 6 dB more favorable than FFT.

If we look closely at the STFT ’Blackman’, ‘STFT ‘Blackman-Harris,” and
'STFT ’Nuttall’ window methods, it is noticeable that all three of these window
approaches give accurate bits at the -4 dB level.

STFT "Blackman," STFT "Blackman-Harris," and STFT "Nuttall" are able to
rectify faults even at -4 dB, as was mentioned in the section in overall structure.
This is possible due to the fact that frequency ranges that are not in the alphabet
are excluded while detecting frequencies. As can be seen in the table that have
been presented above, when the error rate is approximately 8.5%, it is clear that
the error has been totally repaired.

As was discussed in the noise section, each noise environment has a fre-
quency range that predominately dominates. Therefore, frequencies below 400
Hz in the bit strings are unable to deliver accurate results in surroundings with
a significant level of noise.
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CHAPTER 4. STRUCTURE AND ANALYSIS
Test 2 (415.3 Hz - 3228 Hz)

For the second test, the following data is the bit string and the frequencies

used to store this string are given. These are:
Rinfo: 011000101011100011001001111100101010110001

Peak: [415.3, 466.16, 698.46, 739.99]
Peak: [493.88, 554.37, 783.99, 987.77]
Peak: [1432.3,1760.0, 1918.6, 2217.46]
Peak: [415.3, 639.8, 739.99, 880]

Peak: [415.3, 622.25,720.4, 850.0]
Peak: [2217.46, 2489.02, 2876, 3228]

RS(12, 6) with Cafe Background Noise
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Figure 4.23: Cafe Background Noise Performance on Medium Frequency
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4.2. EXPERIMENTAL RESULTS

RS(12, 6) with Office Background Noise
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Figure 4.24: Office Background Noise Performance on Medium Frequency
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RS(12, 6) with Bank Ambience Background Noise
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Figure 4.25: Bank Ambience Background Noise Performance on Medium Frequency
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4.2. EXPERIMENTAL RESULTS
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Figure 4.26: Airport Terminal Background Noise Performance on Medium Frequency
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Figure 4.27: Car Horn Background Noise Performance on Medium Frequency
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4.2. EXPERIMENTAL RESULTS

The FFT, as can be seen in the chart that is located above (Figure 4.21 and
Figure 4.24), correctly identified the bit sequence this time even at a level of -2 dB
or even -4 dB. This can be explained by the fact that the frequencies utilized in
the bit string are those with a frequency higher than 400 Hz. For instance, when
determining the frequencies, the sound range in the cafe noise environment,
which ranges from 190 Hz to 390 Hz, did not have a significant impact on the
process.

When the graphs are compared for STFT "Hamming" and STFT "Hann,"
it is discovered that these two windowing methods produce the right bits for
the office background noise environment at the level of -8 dB. It is possible to
notice that it corrects the bit sequence precisely at the level of -6 dB because
the frequency range in the cafe sound environment is slightly wider than in the
office sound environment.

Evenata-10dBlevel, the STFT "Blackman," "Blackman-Harris," and "Nuttall"
window functions are able to produce reliable frequency determinations. This
is demonstrated by the figures. When the figures are observed (Figure 4.21,
Figure 4.22, Figure 4.23, Figre 4.24, and Figure 4.25), it is discovered that when
frequencies above 400 Hz are used in the alphabet, it is feasible to detect the

frequencies that are used in the alphabet even in noisy sound environments.
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Conclusions and Future Works

CONCLUSIONS

The aim of the thesis was to accomplish encryption of any data (text, sound,
image) using the approaches used in QR codes (Reed-Solomon) and (Spectro-
gram) used in Shazam, and transmitting it from one device to another device

via an audio signal. The research can be summed up as follows:
What role does frequency range have in sound transmission?

As described in the section on analysis, it has been shown that low fre-
quencies are the most affected frequency range in noise environments when
examining a variety of noise environments. Examining the noises reveals that

the frequency range most affected is 60 Hz to 390 Hz.
How might Reed-Solomon and scrambling methods be applied for error correction?

Reed-Solomon could have used it as RS(12, 6) or RS(6, 3) since it was decided
to use 14 bits in audio signal transmission as mentioned in the project. While
RS(6,3) can correct only 1 information symbol out of 6 information symbols
(this ratio is about 16%), RS(12, 6) is used in this project because RS(12, 6) can
correct 3 information symbols out of 12 information symbols (this ratio is about
25%).
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5.2. FUTURE WORKS
How effective are STFT and FFT in feature extraction and denoising?

As noted in the analysis section, the FFT method is ineffective in noisy envi-
ronments since it does not utilize any filtering technique. It has been discovered
that STFT’s blackman window function accurately transmits audio signals in
high-noise settings.

Future WoORKs

By reviewing the information collected for this thesis and the methodologies

employed, this project can be enhanced by implementing following suggestions:

e First, the number of possible combinations while creating the note alpha-
bet can be expanded. By adding to an additional note, or as an alternative
to using four frequencies for the symbol, two or three frequencies and a
quiet part can be utilized. Double, triple, or quadruple chords can be com-
bined in a single information symbol to create pleasing sounding chord
combinations. Since the STFT indicates which frequencies are utilized
during which time interval, this technique is realizable.

e Second, noise cancellation can be improved by trying additional STFT
window functions. In addition, each produced chord can be isolated
from noisy environments by training utilizing noise-prevention techniques
based on deep learning. Facebook’s denoiser tool can be used to isolate an
audio stream from its noisy environment [16]. In order not to complicate
this project even more, these methods are not included in the thesis.

In the end, the proposed technology can be considered a very promising
solution that can be expected to be developed in practical contexts, even with-
out strong connection capabilities, to simplify ubiquitous communications and
multimedia content delivery. For instance, we are aware that Internet of Things
(IoT) is a crucial technology for the present and the future. Due to the rapid
expansion of IoI, the number of connected devices has increased dramatically.
Nonetheless, this massive data collecting and processing presents its own unique
challenges. In these circumstances, error-free data transmission and data acqui-
sition becomes considerably more challenging. Numerous strategies have been
implemented to address these issues [52]. The method mentioned in this the-
sis can also play a significant role in the transfer of data in situations such as

reducing data size and ensuring data security.
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