
Master Thesis in ICT for Internet and Multimedia

Performance of encoding/decoding of bit strings
using coded sound signals

Master Candidate Supervisor

Yükselcan Sevil Leonardo Badia
Student ID 1216127 University of Padova

Academic Year
2021/2022

This paper is dedicated to my supervisor Prof. Leonardo Badia under whose constant
guidance I have completed this dissertation. He not only enlightened me with academic

knowledge but also gave me valuable advice whenever I needed it the most.

Abstract

The aim of the thesis is to design a communication system based on encrypted
sound code using the FEC (Forward Error Correction) method, STFT (Short-time
Fourier Transform), and scrambling method to ensure transmission reliability
even in the presence of noise interference. Encrypted sound can be transmitted
and received over any device which has a speaker and microphone. Transmis-
sion over the channel is inevitably degraded by the presence of environmental
noises added to the transmitted signal and therefore requires a channel code
with high correction capacity. Reed Solomon, one of the forward error cor-
rection algorithms, is used in this project to correct channel errors caused by
environmental noises. In this project, the effectiveness and performance of the
system are evaluated using various Python simulations to evaluate the amount
of errors created and corrected by varying the type and power of the noisy
signal.

Contents

List of Figures

List of Tables

List of Algorithms

1 Introduction 1

2 State of the Art 3
2.1 QR Codes . 3
2.2 Shazam . 7

3 Background 14
3.1 Reed-Solomon Codes . 14

3.1.1 Characteristics of Reed-Solomon Codes 15
3.1.2 Encoding Reed-Solomon Codes 16
3.1.3 Decoding Reed-Solomon Codes 18

3.2 Digital Signal Processing . 25
3.2.1 Fast Fourier Transform . 25
3.2.2 Short-Time Fourier Transform 26
3.2.3 Power Spectral Density . 33
3.2.4 Feature Extraction . 33

3.3 Scrambling . 35
3.4 Speech Recognition . 36

4 Structure and Analysis 37
4.1 Overall Structure . 37

4.1.1 Preparation of Chord Dictionary 38
4.1.2 Encoder . 39

CONTENTS

4.1.3 Decoder . 40
4.2 Experimental Results . 51

5 Conclusions and Future Works 71
5.1 Conclusions . 71
5.2 Future Works . 72

References 73

Acknowledgments 78

List of Figures

2.1 Versions of the QR Codes [44] . 3
2.2 Working Principle of the QR Code [44] 4
2.3 Design of the QR Code [9] . 5
2.4 Example of Spectrogram [49] . 8
2.5 Example of Constellation Map [49] 9
2.6 Example of Hast Details [49] . 10
2.7 Example of Combinatorial Hash Generation [49] 11
2.8 Example of Matched Hash Locations [49] 12
2.9 Example of Unmatched Hash Locations [49] 13

3.1 Transmission chart of Reed-Solomon Codes 15
3.2 Reed-Solomon Codeword . 16
3.3 Decoding Process of Reed-Solomon Code [27] 18
3.4 Graphical representation of STFT [39] 27
3.5 Blackman window [34] . 28
3.6 Frequency response of the Blackman window [34] 28
3.7 Hamming window [34] . 29
3.8 Frequency response of the Hamming window [34] 29
3.9 Hann window [34] . 30
3.10 Frequency response of the Hann window [34] 30
3.11 Blackman-Harris window [34] . 30
3.12 Frequency response of the Blackman-Harris window [34] 30
3.13 Nuttall window [34] . 31
3.14 Frequency response of the Nuttall window [34] 31
3.15 Example of Periodogram (Rectangular) [48] 32
3.16 Example of Periodogram (Hamming) [48] 32
3.17 Example of Windowing (with different length) [48] 32

LIST OF FIGURES

3.18 Test of find peak parameters . 35

4.1 Encoder block diagram . 37
4.2 Decoder block diagram . 38
4.3 Example of Recorded Sound . 41
4.4 Example of Trimmed Sound . 42
4.5 Graphical Representation of Scipy FFT 44
4.6 Graphical Representation of Scipy STFT (Hamming) 45
4.7 Graphical Representation of Scipy STFT (Hann) 46
4.8 Graphical Representation of Scipy STFT (Blackman) 47
4.9 Graphical Representation of Scipy STFT (Blackman-Harris) 48
4.10 Graphical Representation of Scipy STFT (Nuttall) 49
4.11 Graphical Representation of Cafe Background Noise 52
4.12 Graphical Representation of Office Background Noise 53
4.13 Graphical Representation of Bank Ambience Noise 54
4.14 Graphical Representation of Airport Terminal Noise 55
4.15 Graphical Representation of Car Horn Noise 56
4.16 Test results of encoded sound detection 57
4.17 Example of missing recorded sound 58
4.18 Cafe Background Noise Performance on Low Frequency 59
4.19 Office Background Noise Performance on Low Frequency 60
4.20 Bank Ambience Background Noise Performance on Low Frequency 61
4.21 Airport Terminal Background Noise Performance on Low Fre-

quency . 62
4.22 Car Horn Background Noise Performance on Low Frequency . . 63
4.23 Cafe Background Noise Performance on Medium Frequency . . . 65
4.24 Office Background Noise Performance on Medium Frequency . . 66
4.25 Bank Ambience Background Noise Performance on Medium Fre-

quency . 67
4.26 Airport Terminal Background Noise Performance on Medium

Frequency . 68
4.27 Car Horn Background Noise Performance on Medium Frequency 69

List of Tables

4.1 Number of peak frequency comparison 42
4.2 Example of Extracted Frequencies 50

List of Algorithms

1 Encoder . 40

1
Introduction

The project is the result of a collaboration with the technology company
"Omniaweb" and provides a feasibility assessment for the implementation of a
data transfer method including duplication of a correctly prepared audio file
and listening to it via a microphone-equipped device. The technique underly-
ing QR codes [44][9] and the Shazam application [49] inspired the concept. QR
codes exploit the image of a matrix to represent a string of bits, which is then
replicated when the camera of a device captures the code. Shazam generates
an auditory fingerprint from the audio and compares it to a central database to
identify a match. Similarly, the purpose is to create a sound signal for transmis-
sion through a loudspeaker that, when decoded by a listening device, will lead
back to the original message. Frequencies of the audible should be exploited in
data transmission. Moreover, it is essential that the sequence of sounds is not
overly disturbing to those who listen to them. However, it is challenging to create
melodious sounds due to the number of frequencies that were used. Therefore
every frequency that sounds musically pleasing to the ear can not be used in
order to avoid distortions that may occur due to noise. In conclusion, due to the
vast number of frequencies used, it is challenging to generate musical sounds
in sufficient combinations. The unavoidable existence of noise that interferes
with the sampling of the microphone of the receiving device is a second issue
to address. To circumvent this issue as much as possible, a Reed-Solomon code
[30][44] is implemented, which, by adding redundancy, permits any mistakes to
be rectified during the decoding phase. Additionally, STFT was implemented to
extract frequencies using various window types [24]. The primary purpose of

1

windowing in the spectral analysis is the ability to zoom in on the signal’s finer
details as opposed to analyzing the entire signal. In speech signal processing,
where information such as pitch or formant frequencies are recovered by evalu-
ating signals through a window of a certain duration. Moreover, the scrambler,
[12] a frequently used technology in telecommunications, was also implemented
to modify a data stream before the transmission. The model’s capacity to correct
errors has been demonstrated using mentioned methods and various noise envi-
ronments. In the section on the state of the art, the technologies that this project
inspired are described. In the background section, the approaches utilized for
this project are described. In the section on structure and analysis, the key parts
of this project and the outcomes of the research are discussed.

2

2
State of the Art

2.1 QR Codes

A QR code is a matrix bar code or two-dimensional code that can hold infor-
mation and is designed to be interpreted by smartphones. QR stands for "Quick
Response," implying that the contents of the code should be decoded at a rapid
rate. On a white background, the code consists of black modules arranged in a
square pattern. The encoded data may be text, a URL, or other information [44]
[42]. The QR code was created to enable rapid decoding of its data. QR codes
are becoming increasingly popular all over the world. Today, mobile phones
with an integrated camera are commonly used to read QR Codes.

Figure 2.1: Versions of the QR Codes [44]

QR codes were originally created for the purpose of monitoring parts during
the construction of vehicles; however, they have since found use in a diverse
range of other contexts, such as industrial tracking, entertaining, in-store mar-
keting materials, and smartphone-user applications [44]. After scanning a QR
code, visitors will be able to open a URL and retrieve a text. Utilizing QR code-

3

2.1. QR CODES

generating websites or mobile apps, users can generate and print their own
QR codes for others to scan and use. These codes are applied in a number of
everyday contexts. For instance, they make it easier for visitors to access promo-
tional content, which is particularly beneficial during advertising and marketing
operations.

Figure 2.2: Working Principle of the QR Code [44]

Encoders and decoders are the two essential components of the QR code
system [9]. While the encoder is in charge of encoding data and producing the
QR Code, the decoder is in charge of extracting the data from the QR code.
Figure 2.2 presents a high-level summary of how the QR code operates. The
plain text, URL, or other data are input into the QR code encoder, and it generates
the necessary QR code. When the information contained in the QR code needs
to be accessed, the QR code is decoded using a QR Code decoder which retrieves
the information contained in the QR code [22].

The concept behind the technology of the QR code was the limited amount
of information capacity of barcodes (can only hold 20 alphanumeric charac-
ters). QR codes are among the 2D barcodes with the highest capacity and most
widespread use. QR codes, because of the way they are constructed, are able
to encode the whole 256-byte ASCII character set [43]. The standardized, two-
dimensional QR code is capable of storing information and functioning as a
framework. QR codes can be created in a total of forty distinct forms, numbered
variant 1 through variant 40 as shown figure 2.1 [44] [42].

The structure of a QR code is shown here in figure 2.3. QR code is composed
of several segments. These are; version information, format information, data
and error correction keys, required patterns, and quiet zone.
A. Version Information

QR code determines the appropriate form number of the QR code by inspect-
ing two blue boxes, as shown in figure 2.3. These boxes are used to determine
if the QR code should use version 1 or 2, and so on. After that, it will obtain

4

CHAPTER 2. STATE OF THE ART

Figure 2.3: Design of the QR Code [9]

information regarding the total number of modules that are included in the QR
code. Form 1 has a 21*21 module, and different variants have a different module
estimate, thus this information will be used [22].

B. Format Information

The error correction level and mask pattern used in the generation of this QR
code can be determined from the format pixels. Only larger QR codes require
the version pixels, which encode the size of the QR matrix and are only used
there.

C. Data and Error Correction Keys

It includes genuine information that has been stored in a QR code and a
blunder adjustment codeword in accordance with the Reed-Solomon computa-
tion. During the process of encoding a QR code, initially information is stored
in these dark cells, and then a mistake redress codeword is stashed away. In QR
codes, we have four different mistake amendment levels (L-Level M-Level Q-
Level, and H-Level), so there are a total of 28 possible configuration data strings
[42]. Error-correction levels and their approximate ability of error correction are
listed below.

• Level L : 7% or less errors can be corrected.

• Level M : 15% or less errors can be corrected.

• Level Q : 25% or less errors can be corrected.

• Level H : 30% or less errors can be corrected.

5

2.1. QR CODES

C. Required (Function) Patterns

The required patterns are able to convey to the QR code scanner the correct
position of the Brisk Reaction code as well as the auxiliary state it should be
in [9]. Because of the position part, QR codes may quickly respond from any
direction. It renders the QR code capable of being read in any direction. The
alignment process addresses and corrects any twists that may have occurred in
the QR codes. It was introduced at the release of form 2 of the QR codes, and the
number of illustrative configurations grows with each succeeding iteration of
the technology. The timing component is designed to function as an alternative
for high contrast areas in the various discoverer designs. In the event that an
image has been corrupted, it is used to locate the code and make necessary
adjustments to the focus organization.

C. Quiet Zone

After establishing the symbol version and module size, the size of the QR
Code symbol is determined. It is essential to include a margin or "silent zone"
around the QR Code symbol in order for it to be correctly identified [22]. The
margin is the blank space surrounding a symbol that is not printed on. To be
deemed a QR Code, a symbol must have a four-module-wide margin on all four
sides.

In conclusion, the idea behind QR codes is similar to that discussed in the
thesis: both use multimedia content as a transmission channel and, above all,
want to make the transmission as reliable as possible even in the event of noisy
events. The method used to correct these errors (Reed-Solomon Codes) is actu-
ally the subject discussed in the thesis. QR codes are very efficient technology
as they allow to achieve a very high bit rate that depends only on the reading
speed of the device framing the code, and this thesis will discuss how bit-rate
affects it.

6

CHAPTER 2. STATE OF THE ART

2.2 Shazam

The music identification app known as Shazam has been available for nearly
two decades at this point. Audio can be recognized by Shazam by means of
an audio fingerprint that is derived from a time-frequency graph that is known
as a spectrogram [49]. It does this by collecting a small sample of the audio
that is currently being played using the microphone that is already incorporated
into a smartphone or computer. Shazam maintains a database that contains a
catalogue of audio fingerprints. In short, Shazam’s work steps are:

• The entire music database is scanned with Shazam’s fingerprinting tech-
nology, and the associated fingerprints are saved in a database.

• A user records the music they are listening to, which fingerprints a 10-
second audio clip.

• The fingerprint is sent to Shazam’s server, where it is compared to their
database in an effort to locate a match.

• Music information is only sent back to the user if there is a positive match;
otherwise, an error message will be displayed.

A spectrogram is a three-dimensional graph that is utilized to illustrate
sound. The spectrogram depicts the fluctuation of frequencies over time, taking
into account the amplitude or volume. Through the use of the spectrogram as
seen in figure 2.4, a constellation of peaks is produced; each peak denotes a
time-frequency point that has a higher energy level in comparison to the points
that are surrounding it.

After the constellation has been determined as seen in figure 2.5, each peak
is looked at once more and used as a reference to determine the target zone
(which is shown in figure 2.7), which is a zone consisting of sequential peaks. A
string of information is saved for each pair in the target zone. This information
is then fed into a hash algorithm (which is shown in figure 2.6), and the results
are stored in a hash table.

When the application samples a fragment of a song, its footprint and relative
hashes are immediately generated and transferred to the server; the server then
matches the fragment’s hash with those of the songs using the hash tables in
its database. The piece with the largest number of consecutive matches will be
selected.

7

2.2. SHAZAM

Figure 2.4: Example of Spectrogram [49]

8

CHAPTER 2. STATE OF THE ART

Figure 2.5: Example of Constellation Map [49]

9

2.2. SHAZAM

Figure 2.6: Example of Hast Details [49]

10

CHAPTER 2. STATE OF THE ART

Figure 2.7: Example of Combinatorial Hash Generation [49]

11

2.2. SHAZAM

Figure 2.8: Example of Matched Hash Locations [49]

Figures 2.8 and 2.9 illustrate two examples of comparisons between the sam-
pled portion and the entire piece, respectively. The presence of the diagonal, as
shown in Figure 2.8, confirms the presence of the fragment within the piece. The
presence of the diagonal, as shown in Figure 2.9, does not confirm the presence
of the fragment within the piece.

Attempts have been made to include the approach into the thesis, which was
inspired by Shazam’s speech recognition technology. The thesis involves the
creation of a sound alphabet (database) by making use of a specified frequency
range, and the spectrogram is applied to find the frequencies that are being used
in created sound. The created sound is still melodic in character and discernible
by human ear, which is deliberate. This is comparable to QR codes in that they
don’t seem like anything in particular (such as a Leonardo Da Vinci or Claude
Monet painting), yet they are easily recognized by the human eye. This issue is
addressed in the analysis section.

12

CHAPTER 2. STATE OF THE ART

Figure 2.9: Example of Unmatched Hash Locations [49]

13

3
Background

In this chapter will show the methods and algorithms that were utilized,
with reference to the approaches taken by the significant technologies covered
in the previous chapter. Additionally, a different approaches are showed in this
section of the thesis.

3.1 Reed-Solomon Codes

Reed-Solomon codes, which were given their name after Reed and Solomon
following the publication of their work in 1960 [30], have been utilized in a broad
variety of contexts in conjunction with hard decision decoding.

Reed-Solomon codes are a type of code that is used for forward-error correc-
tion and are implemented in data transmissions that are susceptible to channel
noise. Reed-Solomon codes are a type of block code that are capable of detecting
and correcting faults inside a block of data. This is accomplished by inserting
redundant data before transmission of the code. The demonstration of standard
Reed-Solomon codes can be seen on Figure 3.1.

Reed-Solomon codes have been implemented in a wide variety of burst er-
ror correction applications, digital storage and communication systems, hybrid
ARQ systems, and various applications [10] [11] [46] [45] [19].

The research indicates that using forward error correction coding, which is
both the most effective and economical solution, is preferable when there is noise
and interference present. This allows for more efficient communication, as well

14

CHAPTER 3. BACKGROUND

Figure 3.1: Transmission chart of Reed-Solomon Codes

as a reduction in the requirement for retransmissions and the consumption of
energy. The convolutional encoder with the Viterbi decoder can find compound
errors with an Es/No ratio that is equivalent to 20 dB, whereas the RS coding
[28] [36] offers a superior BER for a gain that is greater than 7 dB.

3.1.1 Characteristics of Reed-Solomon Codes

Reed-Solomon codes are a type of error-correcting code that uses blocks.
The encoder will append redundant data, known as parity data, to each block
of data that is sent in as input. Data that has been corrupted as a result of noise
that occurred during the communication transfer can be recovered with the use
of redundant data. The number of errors and the kinds of defects that could
be rectified dependent on the properties of the Reed-Solomon code. The Bose-
Chaudhuri-Hocquenghem (BCH) codes codes contain a non-binary sub-type
that is known as the Reed-Solomon codes [18].

They are represented by the expression 𝑅𝑠(𝑛, 𝑘) using 𝑚-bit symbols, where
𝑘 represents the number of information symbols that have a length of 𝑚 bits.
Encoding a word into 𝑛 symbols requires the encoder to start with 𝑘 data
symbols, each of which has 𝑠 bits, and then add parity symbols. There are
(𝑛− 𝑘) parity symbols, and each one consists of 𝑠 bits. A Reed-Solomon decoder
has the capability of correcting up to t symbols in a codeword that include errors,
where 2𝑡 = 𝑛 − 𝑘. The amount of parity symbols is related to the code’s ability
to correct and the number of symbols. A typical Reed-Solomon codeword is
illustrated in Figure 3.2.

15

3.1. REED-SOLOMON CODES

Figure 3.2: Reed-Solomon Codeword

Example:

A popular Reed-Solomon code can be created using 8-bit symbols and writ-
ten it as 𝑅𝑆(255, 223). Each codeword is made up of 255 bytes, with one symbol
equaling one byte. Out of these 255 bytes, 223 bytes provide information, while
the remaining 32 bytes contain parity. The parameters are:

𝑛 = 255, 𝑘 = 223, 𝑚 = 8, 2𝑡 = 32

The decoder has the capability to correct up to 16 faulty symbols where they
appear in the codeword. Within the codeword, the code can fix up to 16 bytes if
required.

Encoding and decoding Reed-Solomon codes requires a level of computa-
tional difficulty [32] that is dependent on the number of parity symbols contained
within the codeword. The greater the number of parity symbols that are con-
nected to the information symbols, the greater the number of mistakes that the
code is able to rectify; nevertheless, this needs a greater amount of processing
power.

The maximum length of a codeword using the Reed-Solomon algorithm is
𝑛 = 2𝑚−1. This is defined by size of 𝑚. A codeword comprised of 8-bit symbols,
for instance, has an absolute maximum length of 255 bytes.

It is feasible to shorten Reed-Solomon codes by setting a particular number
of data symbols to zero at the encoder, canceling the transmission of those data,
and then re-entering those symbols at the decoder [31].

3.1.2 Encoding Reed-Solomon Codes

To do Reed-Solomon encoding, it is necessary to first compute the gener-
ating polynomial 𝐺𝐹(2𝑚). The amount of parity check symbols in the code is

16

CHAPTER 3. BACKGROUND

exactly directly proportionate to this polynomial’s degree. In another formu-
lation, both input and output data consist of symbols, which are elements of
𝐺𝐹(2𝑚) = {0, 1, 𝛼, 𝛼2, ...}. These variables are structured as polynomial coef-
ficients, and the power of the polynomial variable 𝑥 determines the order in
which the encoder and decoder traverse the respective symbol. For instance, the
information polynomial 𝑔(𝑥) = 𝛼𝑥2 + 𝛼3𝑥 + 𝛼4 indicates that the encoder will
process the symbol 𝛼 first. Finally, symbol 𝛼4 follows symbol 𝛼3. In Equation
3.2, the formula for the generator polynomial can be found.

Information symbols are moved on higher power coefficients 𝑥𝑛−𝑘 and parity
symbols are inserted. Parity symbols are determined by dividing the relocated
information polynomial by the generator polynomial and taking the residual.
This generates the codeword 𝑐(𝑥).

The equation is defined as [37]:

𝑐(𝑥) = 𝑖(𝑥)𝑥𝑛−𝑘 + [𝑖(𝑥)𝑥𝑛−𝑘]𝑚𝑜𝑑𝑔(𝑥) (3.1)

Description:

𝑐(𝑥): primitive element of the field

𝑖(𝑥): the generator polynomial

𝑔(𝑥): the generator polynomial

[𝑖(𝑥)𝑥𝑛−𝑘]𝑚𝑜𝑑𝑔(𝑥): the parity polynomial of degree

And the generator polynmial is expressed as,

𝑔(𝑥) =
𝑙+2𝑡−1∏
𝑝=𝑙

(𝑥 + 𝑎𝑝) = (𝑥 − 𝑎 𝑙)(𝑥 − 𝑎 𝑙+1)...(𝑥 − 𝑎 𝑙+2𝑡−1) (3.2)

The generated codeword would be acceptable since it is evenly divisible by
generator polynomial.

17

3.1. REED-SOLOMON CODES

3.1.3 Decoding Reed-Solomon Codes

Reed-Solomon decoders make an effort to determine the location and size of
up to 𝑡 errors or 2𝑡 erasures, and then rectify them if they are able to. Calculating
the syndrome of the receiver 𝑐(𝑥) is a necessary step in the decoding of a Reed-
Solomon code. This reveals whether or not 𝑐(𝑥) is a member of the codeword
set that we are looking for [18]. The presence of a zero syndrome will serve as
evidence that it is a component of the collection. On the other hand, the presence
of mistakes in the received vector will be indicated by the return of a value that
is not zero. Therefore, 𝑐(𝑥) will be the sum of the vector that was sent, which is
denoted by 𝑟(𝑥), and the vector that represents the error, which is denoted by
𝑒(𝑥).
Decoding steps of Reed-Solomon codes are [18]:

• Computation of syndrome.

• Computation of the error-locator polynomial 𝜎(𝑥), whose multiplicative
inverse determines the error’s location. Various techniques exist for locat-
ing the roots of an error-locator polynomial. These are:

1. Berlekamp-Massey algorithm[18]
2. Euclidean algorithm [33]

• The Chien search technique is used to discover the roots of the error-locator
polynomial step [18].

• After the calculation of the error-locator polynomial, error values (magni-
tudes) are calculated by using Forney’s algorithm [17].

The decoding process diagram can be seen in Figure 3.3:

Figure 3.3: Decoding Process of Reed-Solomon Code [27]

18

CHAPTER 3. BACKGROUND

The codeword polynomial is expressed as in Equation (3.3) and received
polynomial is expressed as in Equation (3.4):

𝑐(𝑥) = 𝑐0 + 𝑐1𝑥 + ... + 𝑐𝑛−1𝑥𝑛−1 (3.3)

𝑟(𝑥) = 𝑟0 + 𝑟1𝑥 + ... + 𝑟𝑛−1𝑥𝑛−1, (3.4)

If the polynomial that was received includes values of 𝜏 that are greater than
zero, this indicates that 𝜏 errors occurred during the transmitting and are located
at the location (𝑗1, 𝑗2, ..., 𝑗𝜏), where j is an integer between 0 and n-1. So error
polynomial is expressed in Figure 3.5

𝑒(𝑥) = 𝑒 𝑗1𝑥
𝑗1 + 𝑒 𝑗2𝑥

𝑗2 + ... + 𝜏𝑥 𝑗𝜏 , (3.5)

and the relation between them is expressed in Equation 3.6

𝑐(𝑥) = 𝑟(𝑥) + 𝑒(𝑥). (3.6)

Following the calculation of the first step, which is the determination of the
error polynomial (shown in Equation (3.5)), the next step is the rectification of
errors in the polynomial that was received using Equation (3.6). The output of
the encoder is the real codeword polynomial, which can be found by adding
the received polynomial to the error polynomial. If the Reed-Solomon code has
sufficient error correction capability, which is defined by its characteristic (𝑛, 𝑘),
then this sum will give the correct codeword polynomial [37].

Syndrome Computation

The syndromes for Reed-Solomon codes can be calculated using

𝑆𝑘 = 𝑟(𝑎 𝑖) = 𝑒 𝑗1(𝑎 𝑖)𝑗1 + 𝑒 𝑗2(𝑎 𝑖)𝑗2 + · · · + 𝑒 𝑗𝜏(𝑎 𝑖)𝑗𝜏 , (3.7)

where b is an integer and 𝑏 ≤ 𝑖 ≤ 𝑏 + 2𝑡 − 1, 𝑘 = 0, 1, ..., 2𝑡

19

3.1. REED-SOLOMON CODES

and the error locator polynomial is expressed as

𝜎(𝑥) =
𝜏∏

ℓ=1
(1 + 𝛼 𝑗ℓ 𝑥) = 1 + 𝜎1𝑥 + 𝜎2𝑥2 + . . . + 𝜎2𝑥𝜏 (3.8)

The inverses of the error locations are equivalent to the roots of the error-
locator polynomial, which are used to find errors. If this is the case, there is a
connection between the coefficients of 𝜎(𝑥) and the syndromes can be seen in
Equation (3.9) [20]:

𝑆𝜏+1

𝑆𝜏+1
...

𝑆2𝜏

=

𝑆1 𝑆2 . . . 𝑆𝜏
𝑆2 𝑆3 . . . 𝑆𝜏+1
...

...

𝑆𝜏 𝑆𝜏+1 . . . 𝑆2𝜏−1

𝜎𝜏
𝜎𝜏−1
...

𝜎1

(3.9)

Error locator polynomial can be found by result of Equation (3.9). If each
syndrome has a value of zero, therefore the codeword is transmitted correctly,
and the decoding process for the given chunk of data can be considered to have
reached its conclusion.

Determination of the Error-locator Polynomial

Using the Berlekamp technique, the coefficients of the error location polyno-
mial 𝜎(𝑥) are computed iteratively. When a set of coefficients is calculated using
the Berlekamp algorithm, the coefficients are verified by utilizing the algorithm
to estimate a syndrome utilizing the calculated coefficients. In the case that the
check fails, a correction factor will be used to compute the coefficients of the
error location polynomial [18] during the future iteration.

We know that from Equation (3.9), �̂�𝜏+1 is the estimated syndrome which
is gathered using the estimated coefficients. Accordingly, discrepancy factor is
expressed as

𝑑𝑖 = �̂�𝑖+1 + 𝑆𝑖+1 (3.10)

In the equation that the estimated coefficients are accurate, then the estimated

20

CHAPTER 3. BACKGROUND

syndrome �̂�𝜏+1 will become equivalent to the syndrome that was determined to
be 𝑆𝜏+1. Then equation is equivalent to

𝑑𝑖 = �̂�𝑖+1 + 𝑆𝑖+1→ 𝑑𝑖 = 0 (3.11)

Otherwise, the equation translates into,

𝑑𝑖 = �̂�𝑖+1 + 𝑆𝑖+1→ 𝑑𝑖 ≠ 0 (3.12)

Now, suppose that we have a parameter 𝑛𝑘 as

𝑛𝑘 = 𝑘 − 𝑟𝑘 (3.13)

where 𝑟𝑘 is the degree of 𝜎𝑘(𝑥) and 𝑘 is the iteration index.

Accordingly, Berlekamp algorithm can be expressed in a few steps. These steps
are [18]:

1. The iteration index 𝑖 starts from −1. That means

𝜎−1(𝑥) = 1 𝑟−1 = 0 𝑑−1 = 0 𝑛−1 = −1 (3.14)

and if i = 0, we have

𝜎0(𝑥) = 1 𝑟0 = 0 𝑑0 = 𝑆1 𝑛0 = 0 (3.15)

2. The iteration index 𝑖 is between 𝑖 = 1, . . . , 2𝑡

3. Estimated syndrome is determined by using

�̂�𝑖+1 = 𝜎
′
1𝑆𝑖 + 𝜎

′
2𝑆𝑖−1 + . . . + 𝜎

′
𝑟𝑖𝑆𝑖+1−𝑟𝑖 (3.16)

Calculating the discrepancy factor requires using both the estimated syndrome

21

3.1. REED-SOLOMON CODES

and the computed syndrome. So we have

𝑑𝑖 = �̂�𝑖+1 + 𝑆𝑖+1 (3.17)

4. If 𝑑𝑖 = 0, then relation between iterations of error location polynomial are

𝜎𝑖+1(𝑥) = 𝜎𝑖(𝑥) 𝑟𝑖+1 = 𝑟𝑖 (3.18)

where 𝑟𝑖+1 represents the degree of 𝜎𝑖+1(𝑥) and 𝑟𝑖 denotes the degree of 𝜎𝑖(𝑥)
If 𝑑𝑖 ≠ 0, then relation between iterations of error location polynomial are

𝜎𝑖+1(𝑥) = 𝜎𝑖(𝑥) + 𝑒𝑖(𝑥) (3.19)

where 𝑒𝑖(𝑥) is expressed as

𝑒𝑖(𝑥) = 𝑥 𝑖𝑑𝑖
𝑥𝑘𝑑𝑘

𝜎𝑘(𝑥) 𝑘 < 𝑖 (3.20)

in which 𝜎𝑘(𝑥) indicates which of the previously generated polynomials such
that

𝑛𝑘 = 𝑘 − 𝑟𝑘 𝑘 < 𝑖 (3.21)

has the highest value when all of the previously generated 𝜎𝑘(𝑥) values are taken
into consideration. Therefore, the degree of 𝑒(𝑥) can be calculated as

𝑝𝑘 = 𝑖 − 𝑘 + 𝑟𝑘 → 𝑝𝑘 = 𝑖 − 𝑛𝑘 (3.22)

where 𝑟𝑘 is the degree of 𝜎𝑘(𝑥). Therefore, calculation of 𝜎𝑖+1(𝑥) is expressed as

𝑟𝑖+1 = 𝑚𝑎𝑥(𝑟𝑘 , 𝑝𝑘). (3.23)

5. If 𝑖 > 2𝑡, finish the process.

22

CHAPTER 3. BACKGROUND

Finding roots of error-locator

To locate the roots of a polynomial 𝑔(𝑥) [18], we test each field element in
𝑔(𝑥) = 0 to see if the results are zero, i.e., we test and determine those satisfying
𝑔(𝛼𝑖) = 0.

𝑔(𝛼𝑖) = 0 𝑖 = 1, ..., 𝑛 where: 𝑛 = 2𝑚 − 1 (3.24)

Chien search is the name given to the recommended method for performing a
search in a systematic manner, which is done in order to facilitate the execution
of the roots search [18]. The Chien search for error location polynomial is
represented as,

𝜎(𝑥) = 𝜎𝜏𝑥𝜏 + 𝜎𝜏−1𝑥𝜏−1 + · · · + 𝜎2𝑥2 + 𝜎1𝑥 + 𝜎0 (3.25)

When the Equation (3.25) is implemented for 𝛼𝑖 , the equation translates into,

𝜎(𝛼𝑖) = 𝜎𝜏𝛼
𝑖𝜏 + 𝜎𝜏−1𝛼

𝑖(𝜏−1) + · · · + 𝜎2𝛼
2𝑖 + 𝜎1𝛼

𝑖 + 𝜎0 (3.26)

So the states can be defined as,

𝑞𝜏 = 𝜎𝜏𝛼
𝑖𝜏 𝑞𝜏−1 = 𝜎𝜏−1𝛼

𝑖(𝜏−1) 𝑞2 = 𝜎2𝛼
2𝑖 𝑞1 = 𝜎1𝛼

𝑖 𝑞0 = 𝑞0 (3.27)

If 𝑥 = 𝛼𝑖+1, we get

𝑞
′
𝜏 = 𝜎𝜏𝛼

𝑖𝜏 𝑞
′
𝜏−1 = 𝜎𝜏−1𝛼

𝑖(𝜏−1) 𝑞
′
2 = 𝜎2𝛼

2(𝑖+1) 𝑞
′
1 = 𝜎1𝛼

(𝑖+1) 𝑞
′
0 = 𝑞0

(3.28)

For 𝑞𝑙 and 𝑞
′
𝑙 , where 𝑙 > 0, we have

𝑞
′
𝜏 = 𝜎𝜏𝛼

𝜏 𝑞
′
𝜏−1 = 𝜎𝜏−1𝛼

𝜏−1 𝑞
′
2 = 𝜎2𝛼

2 𝑞
′
1 = 𝜎1𝛼

1 𝑞
′
0 = 𝑞0 (3.29)

23

3.1. REED-SOLOMON CODES

First, in the Chien search algorithm, we calculate Equation (3.27) with 𝑖 = 1, and
then we check to see whether we have or not.

𝜏∑
𝑗=0

𝑞 𝑗 = 0 (3.30)

If the conditions of Equation (3.30) are met, then the symbol is a root. First,
when I equals 2, we use Equation (3.29) to update the states, and then we check
to see if we have or not.

𝜏∑
𝑗=0

𝑞
′
𝑗 = 0 (3.31)

If the condition in Equation (3.31) is satisfied, then 𝛼2 is a root.

Calculation of Error Values

The Forney algorithm [18] is responsible for the evaluation of error values in
positions 𝑗𝑙 . It is calculated like Equation (3.32).

𝑒 𝑗𝑙 =
(𝛼 𝑗𝑙)2−𝑏Λ(𝛼−𝑗𝑙)

𝜎′(𝛼−𝑗𝑙) (3.32)

Λ(𝑥): is the error evaluator polynomial
𝜎
′: is the formal derivative of error-locator polynomial with regard to error-

locator polynomial 𝑥

24

CHAPTER 3. BACKGROUND

3.2 Digital Signal Processing

The Fourier transform is a mathematical method used to transform data into
a spectrum of sinusoidal components in order to simplify signal representation
and system performance analysis [25]. In some applications, the Fourier trans-
form can be used for spectral analysis, and in others, it is applied for spectrum
forming, which modifies the relative contributions of various frequency com-
ponents to the filtered output. In certain applications, the Fourier transform is
utilized for its ability to decompose the input signal into uncorrelated compo-
nents, allowing for more efficient signal processing on the individual spectral
components.

In different situations, the CT Fourier transform, the discrete-time Fourier
Fourier transform (DTFT), the discrete Fourier Fourier transform (DFT), the
fast Fourier transform (FFT), and the short-time Fourier transform (STFT) are
utilized [14] [23] [40] [50] [35].

In this section, the signal processing algorithms (such as STFT and FFT) will
be discussed.

3.2.1 Fast Fourier Transform

FFT is a faster variant of the DFT. Since Cooley and Tuckey introduced the
fast Fourier transform in 1965 [15], it has evolved into a significant digital signal
processing (DSP) method. The FFT takes use of the fact that the straightforward
method for computing the Fourier transform repeats numerous multiplications.
Utilizing the algebraic features of the Fourier matrix, the FFT algorithm inte-
grates these redundant calculations in an incredibly efficient manner. In partic-
ular, the FFT utilizes patterns in the sines multiplied to complete the calculation
[25]. Essentially, the FFT factorizes the Fourier matrix into many sparse matri-
ces. Numerous entries in these sparse matrices are equal to zero. Using sparse
matrices minimizes the total number of needed calculations. The FFT eliminates
nearly all of these unnecessary calculations, which saves a substantial amount of
calculation time and makes the Fourier transform significantly more applicable
in numerous applications today [14] [38] [26].

As a starting point, the DTFT mathematical model is used to produce a

25

3.2. DIGITAL SIGNAL PROCESSING

computer tool for Fourier transformations and it is expressed as

𝑋𝑚[𝜔] =
𝑁−1∑
𝑛=0

𝑥[𝑛]𝑒−𝑗𝜔𝑛 (3.33)

where 𝑥[𝑛] is the input signal and 𝑁 is the number of points indicating the
signal’s duration. The signal in the frequency domain is sampled equally with
N points per period, 0 < 𝜔 < 2𝜋, i.e.,

𝜔𝑘 =
2𝜋
𝑁

𝑘, 𝑘 = 0, 1, . . . , 𝑁 − 1 (3.34)

The FFT can be used to effectively estimate the DFT [41]. DFT algorithm
computational complexity is on the order of𝑁2 operations. In fact, the number of
computations performed by the FFT algorithm is about comparable to 𝑁𝑙𝑜𝑔2𝑁 .
As a result of this significant reduction in computing complexity, FFTs are almost
always favored over DFTs.

3.2.2 Short-Time Fourier Transform

The DTFT is a sort of Fourier Transform that identifies the sinusoidal phase
and frequency characteristics of local or divided regions of a signal as it varies
over time. STFT is one sub-type of DTFT [41]. As a result, STFT is able to
maintain some information regarding the passage of time. Given a time signal
𝑥 the STFT matrix 𝑋𝑚 can be constructed as follows:

𝑋𝑚[𝜔] =
∞∑

𝑛=−∞
𝑥[𝑛]𝜔[𝑛 − 𝑚𝑅]𝑒−𝑗𝜔𝑛 (3.35)

where,
𝑋[𝑛] = input signal at time 𝑛

𝜔[𝑛] = sliding analysis window

𝑋𝑚[𝜔] = DTFT of window data centered about time 𝑚𝑅

26

CHAPTER 3. BACKGROUND

𝑅 = hop size in samples. The hop size is the difference between the window
length 𝑀 and the overlap length 𝐿.

Notice that if 𝑛 = 𝑚 and 𝜔[0] = 1, then 𝑥(𝑛) is calculated using Equation
(3.36).

𝜔[𝑛 − 𝑚𝑅]𝑥[𝑛] = 1
2𝜋

∫ 𝜋

−𝜋
𝑋𝑚[𝜔]𝑒 𝑗𝜔𝑛𝑑𝜔. (3.36)

STFT algorithm leading to a twodimensional graphical representation of
the squared magnitude of the STFT called the spectrogram. The graphical
representation of STFT can be seen in Figure 3.4.

Figure 3.4: Graphical representation of STFT [39]

Windowing

As described in chapter 3.2.2, the window length is one of the most important
parameters influencing the STFT value [51]. The window length also influences
the STFT’s temporal resolution and frequency resolution. The narrower win-
dows have a small time duration but a broad bandwidth, they result in a fine

27

3.2. DIGITAL SIGNAL PROCESSING

time resolution but a coarse frequency resolution [47]. Because wide windows
have a long duration but a restricted frequency bandwidth, they result in a fine
frequency resolution but a coarse temporal resolution. The term for this phe-
nomena is the window effect [24]. The STFT cannot simultaneously provide a
fine time resolution and a fine frequency resolution. The STFT has the same
time resolution and frequency resolution over the whole time-frequency plane
when using a time-invariant window. There are several windowing function to
be utilized. These are:

Blackman Window:

The Blackman window is a taper formed from the first three factors of a
cosine sum [21] It was created to have the least amount of leakage possible. The
Blackman window is characterized by:

𝜔[𝑛] = 0.42 − 0.5 cos
(
2𝜋𝑛
𝑀

)
+ 0.08 cos

(
4𝜋𝑛
𝑀

)
(3.37)

The Blackman window was designed to eliminate the 3rd and 4th lower order
harmonics, however its boundaries are discontinuous, leading to a 6 dB/oct
falloff. This window is an estimation of the "precise" window, which nulls the
sidelobes less effectively but has smooth edges, leading in a rise in the fall-off
rate to 18 dB/oct [21].

Figure 3.5: Blackman window [34] Figure 3.6: Frequency response of the Blackman window
[34]

Hamming Window:

The Hamming window is a taper created by utilizing a rising cosine with

28

CHAPTER 3. BACKGROUND

non-zero endpoints, with the goal of minimizing the closest side lobe. The
Hamming window is defined as

𝜔[𝑛] = 0.54 − 0.46 cos
(

2𝜋𝑛
𝑀 − 1

)
, 0 ≤ 𝑛 ≤ 𝑀 − 1 (3.38)

The Hamming was called after R. W. Hamming, a J. W. Tukey associate, and
is detailed in Blackman and Tukey [13]. It was suggested for smoothing the
shortened time-domain autocovariance function. The majority of mentions to
the Hamming window are found in the signal processing literature, where it is
one of several windowing functions used to smooth values.

Figure 3.7: Hamming window [34] Figure 3.8: Frequency response of the Hamming window
[34]

Hann Window:

The Hann window is a taper created using an increased cosine or sine-
squared with zero-touching ends. The Hann window is defined as

𝜔[𝑛] = 0.5 − 0.5 cos
(

2𝜋𝑛
𝑀 − 1

)
, 0 ≤ 𝑛 ≤ 𝑀 − 1 (3.39)

A significant number of references to the Hann window are found in the sig-
nal processing literature, where it is utilized as one of numerous smoothing
windowing procedures.

Blackman-Harris Window:

Blackman-Harris windows are a straightforward generalization of Hamming

29

3.2. DIGITAL SIGNAL PROCESSING

Figure 3.9: Hann window [34] Figure 3.10: Frequency response of the Hann window [34]

windows. The Blackman-Harris window is defined as

𝜔[𝑛] = 0.35875 − 0.48829 cos
(

2𝜋𝑛
𝑀 − 1

)
+ 0.14128 cos

(
4𝜋𝑛
𝑀 − 1

)
− 0.01168 cos

(
6𝜋𝑛
𝑀 − 1

)
, 0 ≤ 𝑛 ≤ 𝑀 − 1 (3.40)

Figure 3.11: Blackman-Harris window [34] Figure 3.12: Frequency response of the Blackman-Harris
window [34]

Nuttall Window:

The Nuttall window is a type of 4-term Blackman-Harris window with dif-
ferent coefficients. The Nuttall window is defined as

𝜔[𝑛] = 0.3635819 − 0.4891775 cos
(

2𝜋𝑛
𝑀 − 1

)
+ 0.1365995 cos

(
4𝜋𝑛
𝑀 − 1

)
− 0.0106411 cos

(
6𝜋𝑛
𝑀 − 1

)
, 0 ≤ 𝑛 ≤ 𝑀 − 1 (3.41)

30

CHAPTER 3. BACKGROUND

Figure 3.13: Nuttall window [34] Figure 3.14: Frequency response of the Nuttall window [34]

Window Length

Instead of looking at the signal as a whole, the primary objective of window-
ing in the spectral analysis is to enable the user to zoom into the more minute
aspects of the signal. When it comes to audio signal processing, where infor-
mation such as pitch and formant frequencies are recovered by evaluating the
signals via a window of a certain duration, STFT is of the utmost importance.
The width of the windowing function has an effect on the way in which the
signal is represented; specifically, it impacts whether there is good frequency
resolution (that is, frequency components that are close together may be sepa-
rated) or good temporal resolution (the time at which frequencies change) [47].
When the window is wide, the frequency resolution is improved, but the time
resolution is decreased. When the window is made narrower, the temporal
resolution is improved while the frequency resolution is decreased. These two
types of transformations are referred to as narrowband and wideband, respec-
tively. This is the exact reason why a wavelet transform was developed, where a
wavelet transform is capable of giving good time resolution for high-frequency
events and good frequency resolution for low-frequency events. In other words,
a wavelet transform can give good resolution for both time and frequency. The
application of this method of analysis works very well with real signals. The
function of the window can be understood by examining examples of its use.

As can be seen from Figure 3.15 and Figure 3.16, if window is not preferred to
use, rectangular window can be used. It is mentioned for completeness and be-
cause the rectangular window is one of the window options no tapering. When
the window types are checked, for window length is equal to 1024, hamming
window has side order of -43 dB and dynamic range is approximately 40dB for
the first peak. When examining the rectangular window, rectangular window
has side order of -21 dB. It shows that, we have better dynamic range with

31

3.2. DIGITAL SIGNAL PROCESSING

hamming window.

Figure 3.15: Example of Periodogram (Rectangular) [48] Figure 3.16: Example of Periodogram (Hamming) [48]

Figure 3.17: Example of Windowing (with different length) [48]

As can be seen in Figure 3.17, If window length is equal to 1024, it means that
the interval is divided into one segment to estimate power spectrum density. If
the segment length is equal to number of FFT, we can observe that the spectrum
is quite noisy If window length is equal to 256, significant reduction on variance
can be seen. If window length is down to 64, variance decreases vertically.
However, the ability to distinguish the peaks has been lost and we can not
longer to see the details associated to peaks.

Overlap Length

Another critical parameter of the Short-time Fourier transform is the length
of overlap of individual STFT windows. Overlapping, as shown in Figure 3.4,
indicates that consecutive windows overlap when obtaining data corresponding
to a specific window size.

The optimal window length is determined by the parameters of the signal
being analyzed. The window length influences the STFT’s temporal resolu-
tion and frequency resolution. Because narrow windows have a small time

32

CHAPTER 3. BACKGROUND

period but a broad bandwidth, they result in a fine time resolution but a poor
frequency resolution. Because broad windows have a long duration but a re-
stricted frequency bandwidth, they result in a fine frequency resolution but a
coarse temporal resolution.

3.2.3 Power Spectral Density

The power spectral density (PSD) presents a graphical representation of the
frequency distribution of signals that is simpler to comprehend than the DFT
[29]. As the acronym indicates, it represents the fraction of the overall signal
power that each frequency component of a voltage signal contributes.

Consider a random process 𝑋(𝑡) that is wide-sense stationary (WSS) and
has an autocorrelation function 𝑅𝑋(𝜏). PSD of 𝑋(𝑡) is defined as the Fourier
transform of 𝑅𝑋(𝜏). PSD of 𝑋(𝑡) is demonstrated by 𝑆𝑋(𝑓). In particular, we can
write

𝑆𝑋(𝑓) = 𝐹{𝑅𝑋(𝜏)} =
∫ ∞

−∞
𝑅𝑋(𝜏)𝑒−2𝑗𝜋 𝑓 𝜏𝑑𝜏. (3.42)

The PSD can be visualized using a variety of approaches, such as peri-
odogram and Welch’s method, among others.

Periodogram Method

The periodogram [25] represents a nonparametric estimation of the PSD
of a wss random process. The periodogram is the Fourier transform of the
autocorrelation sequence estimate with a bias. Periodogram definition for a
signal 𝑥𝑛 sampled at 𝑓 𝑠 samples per unit time:

�̂�(𝑓) = 𝜏
𝑁

���� 𝑁−1∑
𝑛=0

𝑥𝑛𝑒−𝑗2𝜋 𝑓 𝜏𝑛

����2, −1/2𝜏 < 𝑓 ≤ 1/2𝜏 (3.43)

3.2.4 Feature Extraction

Finding the peak frequencies of forwarded signal is one of the most essential
components of a decoder. The open-source software Scipy is used to locate these

33

3.2. DIGITAL SIGNAL PROCESSING

frequencies. The "find peaks" function is one of Scipy’s essential tools that may
be used to locate signal peaks [2].

This approach compares neighboring values to identify all local maxima in a
one-dimensional array. By creating conditions for the characteristics of a peak,
it is feasible to select a subset of these peaks. For a reliable peak extraction, it
is necessary to know its properties width, threshold, distance, and prominence.
The parameters of the function are [2]:

Height: The first parameter (height) sets a threshold for the height of the signal.
If a certain part of the signal is below the threshold, the function does not
determine the peak there.

Threshold: The second parameter (threshold) sets the vertical distance to its
neighboring samples.

Distance: The third parameter (distance) sets horizontal distance (>= 1) in sam-
ples between neighboring peaks. Initially, the smaller peaks are eliminated until
the criterion is met for the remaining peaks.

Prominence: The fourth parameter (prominence) calculates the peak by taking
the difference between the height of the peak and the higher minimum of the
two intervals.

Width: The fifth parameter (width) estimates the peak by taking the difference
between the height of the peak and the higher minimum of the two intervals.

Window length: The fifth parameter (wlen) is a sample window length that
potentially limits the assessed region for each peak to a subset of the signal.

We can see in Figure 3.18 that the width parameter is not very effective in
this case. This is due to the fact that if you choose a minimum width that is
wide, it would be unable to follow extremely near peaks in the high frequency
component of the signal. If you configure the width to be too small, you will get
multiple peaks in the left half of the signal that you do not want. The same issue
pertains to the distance. threshold is only able to compare itself to its immediate
neighbors, which is not helpful in this situation. The answer that comes from

34

CHAPTER 3. BACKGROUND

prominence is the most effective one.

Figure 3.18: Test of find peak parameters

3.3 Scrambling

Scramblers are a type of substitution ciphers [12] that have been deemed
acceptable for a variety of security requirements, including those used by ca-
ble and satellite television companies and providers of mobile phone services.
Scrambler is a coding process that randomizes data streams. In addition to its
usage as a cryptographic algorithm, a scrambler is frequently employed to pre-
vent DC wander and synchronization issues in communication circuits caused
by lengthy sequences of 0s and 1s. Scramblers are widely used to encrypt video
and audio data for broadcasting and numerous other purposes. Scramblers are
characterized by their minimal complexity and cost, rapid operation speed, and
easy to implement.

Scrambling consists of a shuffling of the bits following the channel coding
but prior to digital modulation, with the aim of distributing the content of a
codeword within several sound fragments. Once the demodulation has been
carried out, the reverse shuffling of the previous one takes place to get the
code words back. In this way, in the event that a noisy intervention causes an
error in demodulation, the wrong bits are distributed among several codewords,
increasing the probability that these are correctable.

35

3.4. SPEECH RECOGNITION

3.4 Speech Recognition

It was indicated in the introduction that the application would identify audio
signals and then send information over the phone in a transmission. In order to
recognize and transmit sound signals via mobile phone, TensorFlow Lite Maker
has been implemented. The TensorFlow Lite Model Maker module makes the
process of training a TensorFlow Lite model with the desired dataset more
straightforward and easy to understand [3]. Transfer learning is utilized so that
the required amount of training data can be reduced, hence cutting the overall
training time in half. Additionally, it is easy to integrate into Android.

For a better recording of the audio signal, it is planned to use the opening
marker before the transmitted audio signal. The opening marker is utilized to
activate the application before the encrypted sound signal is recorded. Thus,
it is ensured that the entire audio signal is recorded. In order to do that,
the proper opening marker should be chosen because transmitted sound and
opening sound should not interfere with each other. Therefore, it is important
that the frequencies used in the opening sound are as different as possible from
the frequencies in the transmitted audio signal.

36

4
Structure and Analysis

4.1 Overall Structure

The block diagram relating to the thesis project is shown in Figure 4.1 and
Figure 4.2.

Figure 4.1: Encoder block diagram

37

4.1. OVERALL STRUCTURE

Figure 4.2: Decoder block diagram

4.1.1 Preparation of Chord Dictionary

The first step is to design a chord dictionary to encrypt the data stream bits.
In order to create a chord dictionary, it is necessary to evaluate the sum of all
the combinations from 1→ 𝑘 sound frequencies chosen from a preselection of 𝑛
predetermined frequencies. The 𝑘 value for this project was determined to be 4
and the 𝑛 is determined to 87. In practice, the dictionary of association between
the numerical values of the binary strings and the unions of sound frequencies
of the chosen chords contains a number of terms (fixed 𝑛) equal to the largest
multiple of 2 lower than the sum of the simple combinations.

𝐶(𝑛, 𝑘) = 𝑛!
𝑘!(𝑛 − 𝑘)! (4.1)

When the combination is calculated which is equal to 𝐶
(87

4
)
= 2225895. The

choice of the 𝑛 sound frequencies (which make up the chords) can be made by
taking into account the need for pleasant (or at least not annoying) listening. In
this case, you will have to choose musical chords governed by precise harmonic
laws. However, the composition of up to a maximum of 4 sound chords leads to
an estimate of a maximum of 781 codewords [1], which will have the advantage of
being harmonically acceptable to the ear, but the limited number of combinations
would force to lengthen (and greatly) the duration of the sound signal. However,
some of the sounds in this project are not designed to be musical because of

38

CHAPTER 4. STRUCTURE AND ANALYSIS

my lack of music theory knowledge. At the same time, the frequency values
should not be too close to each other. As the interval between frequency values
decreases, it can lead to incorrect estimations when estimating frequency. For
this purpose, the frequencies were selected from a pool of 87 distinct musical
frequencies, each spaced by a specific amount. In order to distribute each of 87
frequencies, k values are selected as

𝑘1 contains first 64 (26) frequencies

𝑘2 contains 8 (23) frequencies which is between 𝑘1 + 2 ≤ 𝑘2 ≤ 𝑘1 + 9

𝑘3 contains 8 (23) frequencies which is between 𝑘2 + 2 ≤ 𝑘3 ≤ 𝑘2 + 9

𝑘4 contains 4 (22) frequencies which is between 𝑘3 + 2 ≤ 𝑘4 ≤ 𝑘3 + 5

According to this, total number of combination is

𝑘1 × 𝑘2 × 𝑘3 × 𝑘4 = 26 × 23 × 23 × 22 = 16384. (4.2)

The range for 87 frequencies was determined to be between 415.30 Hz and
4978.03 Hz using mentioned method. In the analysis part, it is clarified why low
frequencies are not chosen.

4.1.2 Encoder

First of all, the source code is a series of randomly generated 14 bits repre-
senting the message to be sent. The source code is generated by Omniaweb and
it is acquired from the server by using python. Input data is indicated as CNR
in Figure 4.1.

In the coding and decoding phase (Redundancy Module and Reducer Mod-
ule), the Reed-Solomon coding was used which, through the use of redundancy,
allows the correction of any errors caused by noisy disturbances. First of all, the
input bit is set to 14 bits, and Omniaweb decides to transmit 42 (14× 3) bits. The
Reed-Solomon code is designated as (12, 6) where 𝑛 = 12, 𝑘 = 6, and 𝑐𝑒𝑥𝑝 = 27.
The input bits are divided into 6 decimal parts, each less than or equal to 27).
To correspond to 6 decimal parts, 6 more unnecessary parts were added with

39

4.1. OVERALL STRUCTURE

the Reed-Solomon code. After that, decimal integers are converted into binary
digits and back to binary digits. That way, 84 bits are achieved.

After passing through the scrambler, the input bits are transformed to dec-
imal digits. Using the codeword library described in section 4.1.1, each of the
produced components is encrypted. The sound signal is then generated utiliz-
ing frequencies related with the newly produced components. Thus, a 2-second
audio signal is generated, with each component equal to 0.33 seconds.

In general, it is best to choose the sampling rate to fit the device, typically
44.1 kHz or 48 kHz [4]. However, a 16 kHz sampling rate was used in the project
because of the sampling rate which is used in the sound recognition model by the
TISCODE application (see section 3.4). Tensorflow-lite bases 16 kHz sampling
rate for its training and if the sound is created by using a 44.1 kHz sampling
rate, down-sampling or up-sampling sometimes causes a lack of information.

Algorithm 1 Encoder
𝑑𝑒𝑐 ← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑖𝑛𝑝𝑢𝑡) {The input bits are converted into decimal values}
𝑒𝑛𝑐𝑜𝑑𝑒𝑑 ← 𝑅𝑆𝐸𝑛𝑐𝑜𝑑𝑒(𝑑𝑒𝑐) {The decimal bits pass through Reed-Solomon
codes and redundant component are created}
𝑒𝑛𝑐𝑜𝑑𝑒𝑑2← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑒𝑛𝑐𝑜𝑑𝑒𝑑) {Encoded symbols are converted into binary
values}
𝑠𝑐𝑟 ← 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑟(𝑒𝑛𝑐𝑜𝑑𝑒𝑑2) {The reshaped bits pass through the scrambler}
𝑥 ← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑠𝑐𝑟) {Scrambled bits are converted into decimal integers}
for 𝑖 ← (0 → 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)) {Integers pass through the alphabet, and for each
integer, four frequencies are obtained} do

𝑓 𝑟𝑒𝑞[𝑖] = 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡[𝑖 , 𝑥]
end for
𝑦 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑜𝑢𝑛𝑑(𝑓 𝑟𝑒𝑞)

4.1.3 Decoder

The decoder consists of two subsections. The first subsection is the recogni-
tion of the sound heard from a device with a microphone, the second part is the
decoding of this recognized sound.

Encoded Signal Localization

A microphone-equipped gadget listens the sound produced by the encoder.
The audio signal is recognized by the AppyTech-developed TISCODE applica-
tion. AppyTech utilizes the tenforflow-lite module for sound recognition, as

40

CHAPTER 4. STRUCTURE AND ANALYSIS

stated in section 3.4. This application recognises the combination of the open-
ing marker and the created sound then begins to record the audio signal. The
application begins recording three seconds after detecting the opening marker.
This 4-second audio stream is then sent to the decoder.

Figure 4.3: Example of Recorded Sound

The audio signal is firstly converted from pcm to wav format. The converted
sound can be seen in Figure 4.3. The data between the 24k and 56k is the encoded
sound signal that needs to be decoded. The data of the openning marker can
be seen at the beginning of the recorded sound. As can be seen in Figure 4.3,
there is a 10 times difference between the amplitude of produced sound and the
amplitude of the recorded sound. Due to the Sox sound processing function
utilized by the sound recognition method [5], the sound signal appears to have
10 times less amplitude. Since sound recognition is not the focus of this thesis,
it has not been highlighted.

The converted audio signal is then trimmed to capture all of the information
contained in the four seconds of audio. As stated in the encoder section, the
actual duration of the information sound is two seconds, and periodogram
method has been used to eliminate the redundant two second from the data.
Received sound has 64k sample which equals to 4 seconds. The information
part which is called "rinfo" part has exact 31998 sample which is inside the
received sound. However location is not certain. To estimate the location of
the rinfo piece, the Scipy periodogram method is utilized [6]. Periodogram
estimates the power spectral density by segmenting the data into overlapping
segments, calculating an adjusted periodogram for each segment, and averaging
the modified periodograms. Periodogram is utilized to determine the PSD of
each note frequency (which is used in alphabet) for each 32k sample of the 64k

41

4.1. OVERALL STRUCTURE

Number of peak frequency
4 5 6 7 8 9

Mean decoding time (sec) 0.72 0.86 1.02 1.37 3.81 9.67
Decoding rates (for 50 attempts) 52% 64% 78% 84% 86% 88%

Table 4.1: Number of peak frequency comparison

sample set. Following the calculation, the section with the highest power for the
note frequencies is selected. After the estimation of the highest power part in
the four-second sound, the trimmed part is found as in Figure 4.4.

Figure 4.4: Example of Trimmed Sound

As shown in Figure 4.4, the power appears to be relatively low in locations
where low frequency is utilized. A higher-frequency wave with the same ampli-
tude has greater power than a lower-frequency wave with the same amplitude,
while a higher-amplitude wave with the same frequency has greater energy.

Feature Extraction

After the estimation of the sound signal location, the decoder starts to decode
the trimmed sound signal by using the spectrogram [7]. The 32k sample data
is initially divided into six parts. This is due to the fact that every 0.33 seconds
of data corresponds to 5333 data samples. Using the spectrogram, the first
seven peak frequencies of each 0.33 second of data are determined. The reason
behind the selection of seven frequencies is presented in Table 4.1. Increasing
the number of selected peak frequencies improves the decoder’s performance.
However, decoding processing time increases as well.

Utilizing a variety of window functions, the spectrogram is used to locate
the sound signal’s frequencies as well as the magnitudes of those frequencies.

42

CHAPTER 4. STRUCTURE AND ANALYSIS

The Scipy spectrogram will return the following values: PSD, complex, mag-
nitude, angle, and phase are the acronyms for these [7]. The output of STFT
without any padding or boundary extension is comparable to the value referred
to as "complex." The value that is returned by the’magnitude’ command is the
absolute magnitude of the STFT. Both ’angle’ and ’phase’ will give you back the
complicated angle that the STFT has, with or without unwrapping, depending
on which one you use. The ’magnitude’ is preferred as a parameter in this thesis
and it is utilized.

The window length is set as three parameters in a decoder. These are 5333,
4000, and 2667. Firstly, the decoder starts to decode the sound signal by setting
window length 5333, if it can not find any decodable bit string then it tries to
decode the sound signal again by using 4000 window length and then 2667
window length. After that, the "find peaks" method in scipy is used to locate
the peaks in the spectrogram [7]. For the figures in below (between Figure 4.5
and Figure 4.10), the used bit string and the frequencies in the created sound
signal are:

Rinfo: 000000001010100010001000000100101010010001

Peak Frequencies : [164.81 185 293.66 329.63]
Peak Frequencies : [659.25 739.99 830.61 1046.5]
Peak Frequencies : [174.61 196 246.94 277.18]
Peak Frequencies : [220 246.94 311.13 392]
Peak Frequencies : [392 587.33 698.46 830.61]
Peak Frequencies : [349.23 415.3 587.33 639.8]

43

4.1. OVERALL STRUCTURE

Figure 4.5: Graphical Representation of Scipy FFT

44

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.6: Graphical Representation of Scipy STFT (Hamming)

45

4.1. OVERALL STRUCTURE

Figure 4.7: Graphical Representation of Scipy STFT (Hann)

46

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.8: Graphical Representation of Scipy STFT (Blackman)

47

4.1. OVERALL STRUCTURE

Figure 4.9: Graphical Representation of Scipy STFT (Blackman-Harris)

48

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.10: Graphical Representation of Scipy STFT (Nuttall)

49

4.1. OVERALL STRUCTURE

Founded Frequeny (Hz)
Peaks 1 160.7 162.81 188.21 213.9 254.54 291.3 327.87 359.1 381.23 439.61 599.89 659.25 830.6
Peaks 2 174.1 238.7 276.31 346.66 599.89 650.54 659.25 732.21 739.99 806.2 830.6 1020.3 1042.8
Peaks 3 169.6 174.1 190.7 196 238.7 246.9 254.4 276.31 303.6 310.8 339.9 351.1 369.99
Peaks 4 190.7 220 249.94 254.4 303.6 310.8 339.9 351.1 369.99 383.65 392 505.8 586.6
Peaks 5 309.6 339.8 349.23 360.36 369.99 505.7 536.67 586.6 606.9 639.80 672.52 698.46 830.61
Peaks 6 227.46 309.6 339.8 349.23 369.99 401.32 415.3 439.61 505.7 531.61 587.33 599.89 639.8

Table 4.2: Example of Extracted Frequencies

Afterwards, intervals are defined so that note frequencies can be determined.
For instance, if the extracted frequency is quite close to the note frequency, then
the extracted frequency will be used as the note frequency. If there is a gap
of more than 4 Hz between the founded frequency and the note frequency, the
frequency in consideration is not chosen to be a note frequency. Therefore, the
frequencies are removed one by one until a final set of seven peak frequencies
are chosen. For instance, we suppose that the alphabet contains frequencies
between 138.59 Hz and 7092 Hz and the function finds thirteen peak frequencies
by setting prominence parameter then we find the frequencies as in Table 4.2.

For example, the frequencies that should be found among 13 peak frequen-
cies in "Peaks 1" (164.81 Hz, 185 Hz, 293.66 Hz, 329.63 Hz) were found. In
addition, for example, 213.9 Hz on "Peaks 1" is a frequency not found in the
alphabet. The alphabet frequency closest to 213.9 Hz is 207.65 Hz and 220
Hz. If we observe the difference between them, 213.9 − 207.65 = 6.25 Hz and
220 − 213.9 = 6.1 Hz it is not among the alphabet frequencies of 213.9 Hz, since
the difference between them is more than 4 Hz. Beginning with this principle,
all detected peak frequencies are eliminated one by one until only seven peak
frequencies remain. The seven frequencies found for each of the 5333 sampled
data are highlighted in Table 4.1.

The selection of seven frequencies is necessitated by the fact that the decoding
time increases excessively with more frequency combinations. Since it takes less
than one second to decode the combination of seven frequencies, seven peak
frequencies were chosen during decoding. After that comes the combining
of these different frequencies. The Reed-Solomon decoder is utilized on the
data. Reed-Solomon is going to begin decoding the specified string if the Reed
Solomon syndrome discovers only three or fewer values that are greater than 0.
Because the The utilized Reed-Solomon check system can only find decodable
string if the data are 100% accurate. The use of Reed-Solomon syndrome allows
that the decoder does not have to verify every possible combination in order to
find a string that is 100% correct. The decoder is able to locate a string that can

50

CHAPTER 4. STRUCTURE AND ANALYSIS

be decoded by checking a reduced number of possible possibilities.

4.2 Experimental Results

In this section, the previously mentioned procedures are evaluated under
various scenarios. The first subsection discusses noise environments and their
characteristics. In the second subsection, the periodogram’s capacity to detect
sound from a microphone-equipped device is evaluated. In the third subsection,
the ability of the window functions is tested. The test was carried out according
to the window types and the performance of the window type at different noise
types.

Noise

The decoder was tested using different types of sounds. Sounds are collected
from [8]. This subsection shows the frequency range of the noises and will
explain why low frequencies are not preferred when choosing a frequency range
for the alphabet. Five different noise environments were selected to test the
decoder. These are cafe environment, bank ambiance, airport terminal, office
environment and car horn noise. The noise signals used can be seen more clearly
in the graphs below.

The primary purpose behind the selection of various types of noises is to
explore how the extraction of features is affected by the noises that are typically
encountered in daily life. For instance, cafe background noise has significant
amplitude between 190 Hz and 390 Hz. The office background noise shows its
effect between 60 Hz and 240 Hz. The car horn has a variety on frequencies. The
highest amplitudes are seen between 340 Hz - 390 Hz and 3000 Hz - 3500 Hz.
The bank ambience has a huge impact between 110 Hz and 700 Hz. The airport
terminal noise has an impact around 300 Hz. For all the noises, the highest
amplitudes are observed around 300 Hz. In conclusion, we can observe that,
the frequencies below the 350 Hz should be used in an alphabet.

51

4.2. EXPERIMENTAL RESULTS

Figure 4.11: Graphical Representation of Cafe Background Noise

52

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.12: Graphical Representation of Office Background Noise

53

4.2. EXPERIMENTAL RESULTS

Figure 4.13: Graphical Representation of Bank Ambience Noise

54

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.14: Graphical Representation of Airport Terminal Noise

55

4.2. EXPERIMENTAL RESULTS

Figure 4.15: Graphical Representation of Car Horn Noise

56

CHAPTER 4. STRUCTURE AND ANALYSIS

Analysis of Encoded Sound Detection

As explained in encoded audio localization, the recorded audio signal is
trimmed to capture audio information. According to the encoder part, the actual
duration of the information sound is two seconds, and the periodogram method
was utilized to eliminate the extra two seconds of data. Figure 4.16 shows how
accurate the sound clipping was after 50 trials using different window functions.

Figure 4.16: Test results of encoded sound detection

There are two key reasons why sound clipping is not always appropriate.
First, sound recognition cannot capture the encrypted sound in its entirety.
Second, if the surrounding environment is excessively noisy, the audio cannot
be clipped correctly. Figure 4.17 demonstrates that the complete encrypted audio
stream, which typically consists of 32k sample data, is not recorded correctly.
Only 24k sample data was collected for a portion of the sound signal that should
have had 32k sample data. An example of the correct clipping operation can be
observed in Figure 4.4.

57

4.2. EXPERIMENTAL RESULTS

Figure 4.17: Example of missing recorded sound

Analysis of the Decoder

The decoder was analyzed using the mentioned sounds and several win-
dowing techniques for two distinct frequency ranges. Using low frequencies
in a variety of noisy environments has been analyzed in terms of the outcomes
observed. In the initial investigation, the audio signal was generated using
frequencies ranging from 164.81 Hz to 1046.5 Hz. In the second examination,
frequencies between 415.3 Hz and 3228 Hz were selected.

Test 1 (164.81 Hz - 1046.5 Hz)

The data string used is the same as the data string mentioned in feature
extraction part of decoder section. The data string is:

Rinfo: 000000001010100010001000000100101010010001

Peak Frequencies : [164.81 185 293.66 329.63]
Peak Frequencies : [659.25 739.99 830.61 1046.5]
Peak Frequencies : [174.61 196 246.94 277.18]
Peak Frequencies : [220 246.94 311.13 392]
Peak Frequencies : [392 587.33 698.46 830.61]
Peak Frequencies : [349.23 415.3 587.33 639.8]

58

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.18: Cafe Background Noise Performance on Low Frequency

59

4.2. EXPERIMENTAL RESULTS

Figure 4.19: Office Background Noise Performance on Low Frequency

60

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.20: Bank Ambience Background Noise Performance on Low Frequency

61

4.2. EXPERIMENTAL RESULTS

Figure 4.21: Airport Terminal Background Noise Performance on Low Frequency

62

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.22: Car Horn Background Noise Performance on Low Frequency

63

4.2. EXPERIMENTAL RESULTS

As can be seen in the tables that are located above, FFT provides the right
bits when the SNR is 4 dB in environments such as cafes, offices, and airports
because it does not use any kind of noise reduction method. It produced better
results depending on the ambient noise present in the environment of the bank
and the car horn.

When we observe the STFT ’Hamming’ and the STFT ’Hann’ in the figures,
we can see that these two windowing method give the bits appropriately at the
-2 dB level. It is possible for us to draw the conclusion that these two approaches
produce outcomes that are 6 dB more favorable than FFT.

If we look closely at the STFT ’Blackman’, ’STFT ’Blackman-Harris,’ and
’STFT ’Nuttall’ window methods, it is noticeable that all three of these window
approaches give accurate bits at the -4 dB level.

STFT "Blackman," STFT "Blackman-Harris," and STFT "Nuttall" are able to
rectify faults even at -4 dB, as was mentioned in the section in overall structure.
This is possible due to the fact that frequency ranges that are not in the alphabet
are excluded while detecting frequencies. As can be seen in the table that have
been presented above, when the error rate is approximately 8.5%, it is clear that
the error has been totally repaired.

As was discussed in the noise section, each noise environment has a fre-
quency range that predominately dominates. Therefore, frequencies below 400
Hz in the bit strings are unable to deliver accurate results in surroundings with
a significant level of noise.

64

CHAPTER 4. STRUCTURE AND ANALYSIS

Test 2 (415.3 Hz - 3228 Hz)

For the second test, the following data is the bit string and the frequencies
used to store this string are given. These are:

Rinfo: 011000101011100011001001111100101010110001

Peak: [415.3, 466.16, 698.46, 739.99]
Peak: [493.88, 554.37, 783.99, 987.77]
Peak: [1432.3, 1760.0, 1918.6, 2217.46]
Peak: [415.3, 639.8, 739.99, 880]
Peak: [415.3, 622.25, 720.4, 850.0]
Peak: [2217.46, 2489.02, 2876, 3228]

Figure 4.23: Cafe Background Noise Performance on Medium Frequency

65

4.2. EXPERIMENTAL RESULTS

Figure 4.24: Office Background Noise Performance on Medium Frequency

66

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.25: Bank Ambience Background Noise Performance on Medium Frequency

67

4.2. EXPERIMENTAL RESULTS

Figure 4.26: Airport Terminal Background Noise Performance on Medium Frequency

68

CHAPTER 4. STRUCTURE AND ANALYSIS

Figure 4.27: Car Horn Background Noise Performance on Medium Frequency

69

4.2. EXPERIMENTAL RESULTS

The FFT, as can be seen in the chart that is located above (Figure 4.21 and
Figure 4.24), correctly identified the bit sequence this time even at a level of -2 dB
or even -4 dB. This can be explained by the fact that the frequencies utilized in
the bit string are those with a frequency higher than 400 Hz. For instance, when
determining the frequencies, the sound range in the cafe noise environment,
which ranges from 190 Hz to 390 Hz, did not have a significant impact on the
process.

When the graphs are compared for STFT "Hamming" and STFT "Hann,"
it is discovered that these two windowing methods produce the right bits for
the office background noise environment at the level of -8 dB. It is possible to
notice that it corrects the bit sequence precisely at the level of -6 dB because
the frequency range in the cafe sound environment is slightly wider than in the
office sound environment.

Even at a -10 dB level, the STFT "Blackman," "Blackman-Harris," and "Nuttall"
window functions are able to produce reliable frequency determinations. This
is demonstrated by the figures. When the figures are observed (Figure 4.21,
Figure 4.22, Figure 4.23, Figre 4.24, and Figure 4.25), it is discovered that when
frequencies above 400 Hz are used in the alphabet, it is feasible to detect the
frequencies that are used in the alphabet even in noisy sound environments.

70

5
Conclusions and Future Works

5.1 Conclusions

The aim of the thesis was to accomplish encryption of any data (text, sound,
image) using the approaches used in QR codes (Reed-Solomon) and (Spectro-
gram) used in Shazam, and transmitting it from one device to another device
via an audio signal. The research can be summed up as follows:

What role does frequency range have in sound transmission?

As described in the section on analysis, it has been shown that low fre-
quencies are the most affected frequency range in noise environments when
examining a variety of noise environments. Examining the noises reveals that
the frequency range most affected is 60 Hz to 390 Hz.

How might Reed-Solomon and scrambling methods be applied for error correction?

Reed-Solomon could have used it as 𝑅𝑆(12, 6) or 𝑅𝑆(6, 3) since it was decided
to use 14 bits in audio signal transmission as mentioned in the project. While
𝑅𝑆(6, 3) can correct only 1 information symbol out of 6 information symbols
(this ratio is about 16%), 𝑅𝑆(12, 6) is used in this project because 𝑅𝑆(12, 6) can
correct 3 information symbols out of 12 information symbols (this ratio is about
25%).

71

5.2. FUTURE WORKS

How effective are STFT and FFT in feature extraction and denoising?

As noted in the analysis section, the FFT method is ineffective in noisy envi-
ronments since it does not utilize any filtering technique. It has been discovered
that STFT’s blackman window function accurately transmits audio signals in
high-noise settings.

5.2 Future Works

By reviewing the information collected for this thesis and the methodologies
employed, this project can be enhanced by implementing following suggestions:

• First, the number of possible combinations while creating the note alpha-
bet can be expanded. By adding to an additional note, or as an alternative
to using four frequencies for the symbol, two or three frequencies and a
quiet part can be utilized. Double, triple, or quadruple chords can be com-
bined in a single information symbol to create pleasing sounding chord
combinations. Since the STFT indicates which frequencies are utilized
during which time interval, this technique is realizable.

• Second, noise cancellation can be improved by trying additional STFT
window functions. In addition, each produced chord can be isolated
from noisy environments by training utilizing noise-prevention techniques
based on deep learning. Facebook’s denoiser tool can be used to isolate an
audio stream from its noisy environment [16]. In order not to complicate
this project even more, these methods are not included in the thesis.

In the end, the proposed technology can be considered a very promising
solution that can be expected to be developed in practical contexts, even with-
out strong connection capabilities, to simplify ubiquitous communications and
multimedia content delivery. For instance, we are aware that Internet of Things
(IoT) is a crucial technology for the present and the future. Due to the rapid
expansion of IoT, the number of connected devices has increased dramatically.
Nonetheless, this massive data collecting and processing presents its own unique
challenges. In these circumstances, error-free data transmission and data acqui-
sition becomes considerably more challenging. Numerous strategies have been
implemented to address these issues [52]. The method mentioned in this the-
sis can also play a significant role in the transfer of data in situations such as
reducing data size and ensuring data security.

72

References

[1] 2010. url: https://it.paperblog.com/ars-magna-magna-295175/.

[2] url: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.signal.find_peaks.html?highlight=find_peak.

[3] url: https://www.tensorflow.org/lite/api_docs/python/tflite_
model_maker.

[4] url: https://developer.android.com/ndk/guides/audio/sampling-
audio#:~:text=In%5C%20general%5C%2C%5C%20it%5C%20is%5C%

20best.

[5] url: http://sox.sourceforge.net/.

[6] url: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.signal.periodogram.html.

[7] url: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.signal.spectrogram.html.

[8] url: https://pixabay.com/tr/music/.

[9] Mukesh Arora, Chetan kumar, and Atul Kumar Verma. “Increase Capacity
of QR Code Using Compression Technique”. In: 2018 3rd International
Conference and Workshops on Recent Advances and Innovations in Engineering
(ICRAIE). 2018, pp. 1–5. doi: 10.1109/ICRAIE.2018.8710429.

[10] L. Badia, M. Levorato, and M. Zorzi. “Analysis of Selective Retransmission
Techniques for Differentially Encoded Data”. In: 2009 IEEE International
Conference on Communications. 2009, pp. 1–6. doi: 10.1109/ICC.2009.
5198746.

73

https://it.paperblog.com/ars-magna-magna-295175/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html?highlight=find_peak
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html?highlight=find_peak
https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker
https://www.tensorflow.org/lite/api_docs/python/tflite_model_maker
https://developer.android.com/ndk/guides/audio/sampling-audio#:~:text=In%5C%20general%5C%2C%5C%20it%5C%20is%5C%20best
https://developer.android.com/ndk/guides/audio/sampling-audio#:~:text=In%5C%20general%5C%2C%5C%20it%5C%20is%5C%20best
https://developer.android.com/ndk/guides/audio/sampling-audio#:~:text=In%5C%20general%5C%2C%5C%20it%5C%20is%5C%20best
http://sox.sourceforge.net/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
https://pixabay.com/tr/music/
https://doi.org/10.1109/ICRAIE.2018.8710429
https://doi.org/10.1109/ICC.2009.5198746
https://doi.org/10.1109/ICC.2009.5198746

REFERENCES

[11] Leonardo Badia, Marco Levorato, and Michele Zorzi. “Markov analysis of
selective repeat type II hybrid ARQ using block codes”. In: IEEE Transac-
tions on Communications 56.9 (2008), pp. 1434–1441. doi: 10.1109/TCOMM.
2008.060374.

[12] Gm Bhat et al. “VHDL modeling and simulation of data scrambler and
descrambler for secure data communication”. In: 2 (Jan. 2009), pp. 41–42.
doi: 10.17485/ijst/2009/v2i10/30718.

[13] R. B. Blackman and J. W. Tukey. “The measurement of power spectra from
the point of view of communications engineering Part I”. In: The Bell
System Technical Journal 37.1 (1958), pp. 198–228. doi: 10.1002/j.1538-
7305.1958.tb03874.x.

[14] Harish Chuppala et al. “Modified Cooley-Tukey algorithm for implemen-
tation of integrated serial FFT/IFFT processor in half-duplex OFDM sys-
tems”. In: 2017 IEEE International Conference on Power, Control, Signals and
Instrumentation Engineering (ICPCSI). 2017, pp. 2328–2331. doi: 10.1109/
ICPCSI.2017.8392133.

[15] James W. Cooley and John W. Tukey. “An algorithm for the machine
calculation of complex Fourier series”. In: Mathematics of Computation 19.90
(1965), pp. 297–301. doi: 10.1090/s0025-5718-1965-0178586-1.

[16] Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. Real Time Speech
Enhancement in the Waveform Domain. 2020. doi: 10.48550/ARXIV.2006.
12847. url: https://arxiv.org/abs/2006.12847.

[17] G. Forney. “Generalized minimum distance decoding”. In: IEEE Transac-
tions on Information Theory 12.2 (1966), pp. 125–131. doi: 10.1109/TIT.
1966.1053873.

[18] Orhaz Gazi. Forward Error Correction via Channel Coding. Jan. 2020, pp. 219–
257. isbn: 978-3-030-33379-9. doi: 10.1007/978-3-030-33380-5.

[19] André Goalic et al. “Underwater acoustic communication using Reed
Solomon Block Turbo Codes channel coding to transmit images and speech”.
In: OCEANS 2010 MTS/IEEE SEATTLE. 2010, pp. 1–6. doi: 10 . 1109 /
OCEANS.2010.5664507.

[20] Robert H. and Morelos Zaragoza. The art of error correcting coding. 2nd ed.
Oct. 2002, pp. 61–72. isbn: 0-471-49581-6. doi: 10.1002/0470847824.ch4.

74

https://doi.org/10.1109/TCOMM.2008.060374
https://doi.org/10.1109/TCOMM.2008.060374
https://doi.org/10.17485/ijst/2009/v2i10/30718
https://doi.org/10.1002/j.1538-7305.1958.tb03874.x
https://doi.org/10.1002/j.1538-7305.1958.tb03874.x
https://doi.org/10.1109/ICPCSI.2017.8392133
https://doi.org/10.1109/ICPCSI.2017.8392133
https://doi.org/10.1090/s0025-5718-1965-0178586-1
https://doi.org/10.48550/ARXIV.2006.12847
https://doi.org/10.48550/ARXIV.2006.12847
https://arxiv.org/abs/2006.12847
https://doi.org/10.1109/TIT.1966.1053873
https://doi.org/10.1109/TIT.1966.1053873
https://doi.org/10.1007/978-3-030-33380-5
https://doi.org/10.1109/OCEANS.2010.5664507
https://doi.org/10.1109/OCEANS.2010.5664507
https://doi.org/10.1002/0470847824.ch4

REFERENCES

[21] F.J. Harris. “On the use of windows for harmonic analysis with the discrete
Fourier transform”. In: Proceedings of the IEEE 66.1 (1978), pp. 58–64. doi:
10.1109/PROC.1978.10837.

[22] information capacity and versions of qr code. Last accessed 29 July 2022. url:
https://www.qrcode.com/en/about/version.html.

[23] Aimé Lay-Ekuakille et al. “Leak Detection in Waterworks: Comparison
Between STFT and FFT with an Overcoming of Limitations”. In: Metrology
and Measurement Systems Vol. 24 (Dec. 2017), Pages: 631 –644. doi: 10.
1515/mms-2017-0049.

[24] Rica Mangueira Lima et al. “Analysis of the influence of the window used
in the Short-Time Fourier Transform for High Impedance Fault detection”.
In: 2016 17th International Conference on Harmonics and Quality of Power
(ICHQP). 2016, pp. 350–355. doi: 10.1109/ICHQP.2016.7783465.

[25] Vĳay K Madisetti. The digital signal processing handbook. 2nd ed. CRC Press,
2010, pp. 1.1–1.7, 14.1–14.11. isbn: 978-1420046045.

[26] Badri Narayan Mohapatra and Rashmita Kumari Mohapatra. “FFT and
sparse FFT techniques and applications”. In: 2017 Fourteenth International
Conference on Wireless and Optical Communications Networks (WOCN). 2017,
pp. 1–5. doi: 10.1109/WOCN.2017.8065859.

[27] Hamidreza Mohebbi. “Parallel SIMD CPU and GPU Implementations of
BerlekampMassey Algorithm and Its Error Correction Application”. In:
International Journal of Parallel Programming 47 (Feb. 2019), pp. 6–7. doi:
10.1007/s10766-018-0574-x.

[28] Nejah Nasri et al. “Efficient encoding and decoding schemes for wire-
less underwater communication systems”. In: 2010 7th International Multi-
Conference on Systems, Signals and Devices. 2010, pp. 1–6. doi: 10.1109/SSD.
2010.5585540.

[29] Power Spectral Density. url: https : / / www . probabilitycourse . com /
chapter10/10_2_1_power_spectral_density.php.

[30] Irving S. Reed and Gustave Solomon. “Polynomial Codes Over Certain
Finite Fields”. In: Journal of The Society for Industrial and Applied Mathematics
8 (1960), pp. 300–304.

75

https://doi.org/10.1109/PROC.1978.10837
https://www.qrcode.com/en/about/version.html
https://doi.org/10.1515/mms-2017-0049
https://doi.org/10.1515/mms-2017-0049
https://doi.org/10.1109/ICHQP.2016.7783465
https://doi.org/10.1109/WOCN.2017.8065859
https://doi.org/10.1007/s10766-018-0574-x
https://doi.org/10.1109/SSD.2010.5585540
https://doi.org/10.1109/SSD.2010.5585540
https://www.probabilitycourse.com/chapter10/10_2_1_power_spectral_density.php
https://www.probabilitycourse.com/chapter10/10_2_1_power_spectral_density.php

REFERENCES

[31] Martyn Riley and Iain Richardson. reed-solomon codes. url: https://www.
cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.

html.

[32] F.E. Sandnes. “Efficient large-scale multichannel audio coding”. In: Pro-
ceedings 27th EUROMICRO Conference. 2001: A Net Odyssey. 2001, pp. 392–
397. doi: 10.1109/EURMIC.2001.952480.

[33] Dilip V. Sarwate and Zhiyuan Yan. “Modified Euclidean algorithms for
decoding Reed-Solomon codes”. In: 2009 IEEE International Symposium
on Information Theory. 2009, pp. 1398–1402. doi: 10.1109/ISIT.2009.
5205901.

[34] Scipy Get Window. url:https://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.get_window.html.

[35] Ahmet Serbes. “Fast and Efficient Sinusoidal Frequency Estimation by
Using the DFT Coefficients”. In: IEEE Transactions on Communications 67.3
(2019), pp. 2333–2342. doi: 10.1109/TCOMM.2018.2886355.

[36] SS Shah, S Yaqub, and Faiza Suleman. “Self-correcting codes conquer noise
- Part one: Viterbi codecs”. In: Edn -Boston then Denver then Highlands Ranch
Co- 46 (Feb. 2001), pp. 131–+.

[37] SYED SHAHZAD SHAH et al. Self-correcting codes conquer noise, part 2:
Reed-Solomon codecs. Last accessed 29 July 2022. 1969. url: https://www.
edn.com/self- correcting- codes- conquer- noise- part- 2- reed-

solomon-codecs/.

[38] Hundo Shin and Ramesh Harjani. “Low-Power Wideband Analog Chan-
nelization Filter Bank Using Passive Polyphase-FFT Techniques”. In: IEEE
Journal of Solid-State Circuits 52.7 (2017), pp. 1753–1767. doi: 10.1109/
JSSC.2017.2700792.

[39] short-time fourier transform - matlab stft. url: https://www.mathworks.
com/help/signal/ref/stft.html.

[40] Hye-young Son et al. “Prediction of Flooded Compartment Damage Lo-
cations in Ships by Using Spectrum Analysis of Ship Motions in Waves”.
In: Journal of Marine Science and Engineering 10 (Dec. 2021), p. 17. doi:
10.3390/jmse10010017.

76

https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://doi.org/10.1109/EURMIC.2001.952480
https://doi.org/10.1109/ISIT.2009.5205901
https://doi.org/10.1109/ISIT.2009.5205901
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html
https://doi.org/10.1109/TCOMM.2018.2886355
https://www.edn.com/self-correcting-codes-conquer-noise-part-2-reed-solomon-codecs/
https://www.edn.com/self-correcting-codes-conquer-noise-part-2-reed-solomon-codecs/
https://www.edn.com/self-correcting-codes-conquer-noise-part-2-reed-solomon-codecs/
https://doi.org/10.1109/JSSC.2017.2700792
https://doi.org/10.1109/JSSC.2017.2700792
https://www.mathworks.com/help/signal/ref/stft.html
https://www.mathworks.com/help/signal/ref/stft.html
https://doi.org/10.3390/jmse10010017

REFERENCES

[41] Andreas Spanias, Ted Painter, and Venkatraman Atti. Audio signal pro-
cessing and coding. 1st ed. John Wiley and Sons, 2007, pp. 13–25. isbn:
978-0471791478.

[42] Phaisarn Sutheebanjard and Wichian Premchaiswadi. “QR-code genera-
tor”. In: 2010 Eighth International Conference on ICT and Knowledge Engineer-
ing. 2010, pp. 89–92. doi: 10.1109/ICTKE.2010.5692920.

[43] Burcu Tepekule, Utku Yavuz, and Ali Emre Pusane. “On the use of modern
coding techniques in QR applications”. In: 2013 21st Signal Processing and
Communications Applications Conference (SIU). 2013, pp. 1–4. doi: 10.1109/
SIU.2013.6531318.

[44] Sumit Tiwari. “An Introduction to QR Code Technology”. In: 2016 Inter-
national Conference on Information Technology (ICIT). 2016, pp. 39–44. doi:
10.1109/ICIT.2016.021.

[45] Beatrice Tomasi et al. “A Study of Incremental Redundancy Hybrid ARQ
over Markov Channel Models Derived from Experimental Data”. In: Pro-
ceedings of the Fifth ACM International Workshop on UnderWater Networks.
WUWNet ’10. Woods Hole, Massachusetts: Association for Computing
Machinery, 2010. isbn: 9781450304023. doi: 10.1145/1868812.1868816.
url: https://doi.org/10.1145/1868812.1868816.

[46] M. Tomlinson et al. Error-Correction Coding and Decoding. Jan. 2017, p. 167.
isbn: 978-3-319-51102-3. doi: 10.1007/978-3-319-51103-0.

[47] Thanh Tran et al. “Separate Sound into STFT Frames to Eliminate Sound
Noise Frames in Sound Classification”. In: 2021 IEEE Symposium Series on
Computational Intelligence (SSCI). 2021, pp. 1–4. doi: 10.1109/SSCI50451.
2021.9660125.

[48] Barry Van Veen. The Periodogram for Power Spectrum Estimation. 2022. url:
https://www.youtube.com/watch?v=Qs-Zai0F2Pw&t=272s.

[49] Avery Wang. “An Industrial Strength Audio Search Algorithm.” In: Jan.
2003, pp. 2–7.

[50] Tarun Kumar Yadav et al. “Real Time Audio Synchronization Using Au-
dio Fingerprinting Techniques”. In: 2022 1st International Conference on the
Paradigm Shifts in Communication, Embedded Systems, Machine Learning and
Signal Processing (PCEMS). 2022, pp. 16–20. doi: 10.1109/PCEMS55161.
2022.9808050.

77

https://doi.org/10.1109/ICTKE.2010.5692920
https://doi.org/10.1109/SIU.2013.6531318
https://doi.org/10.1109/SIU.2013.6531318
https://doi.org/10.1109/ICIT.2016.021
https://doi.org/10.1145/1868812.1868816
https://doi.org/10.1145/1868812.1868816
https://doi.org/10.1007/978-3-319-51103-0
https://doi.org/10.1109/SSCI50451.2021.9660125
https://doi.org/10.1109/SSCI50451.2021.9660125
https://www.youtube.com/watch?v=Qs-Zai0F2Pw&t=272s
https://doi.org/10.1109/PCEMS55161.2022.9808050
https://doi.org/10.1109/PCEMS55161.2022.9808050

REFERENCES

[51] Wang Yuegang, Ji Shao, and Xu Hongtao. “Non-stationary Signals Pro-
cessing Based on STFT”. In: 2007 8th International Conference on Electronic
Measurement and Instruments. 2007, pp. 3.301–3.304. doi: 10.1109/ICEMI.
2007.4350914.

[52] Alberto Zancanaro, Giulia Cisotto, and Leonardo Badia. “Challenges of
the Age of Information Paradigm for Metrology in Cyberphysical Ecosys-
tems”. In: 2022 IEEE International Workshop on Metrology for Living Environ-
ment (MetroLivEn). 2022, pp. 127–131. doi: 10.1109/MetroLivEnv54405.
2022.9826967.

78

https://doi.org/10.1109/ICEMI.2007.4350914
https://doi.org/10.1109/ICEMI.2007.4350914
https://doi.org/10.1109/MetroLivEnv54405.2022.9826967
https://doi.org/10.1109/MetroLivEnv54405.2022.9826967

Acknowledgments

I cannot adequately express my appreciation to my professor Leonardo Badia
for his invaluable patience and feedback. In addition, this undertaking would
not have been possible without the generous support of Omniaweb, which
supported my research.

I would be remiss if I did not mention my family and friends, especially
my mother. Their confidence in me has kept my spirits and motivation high
throughout this endeavor.

79

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	State of the Art
	QR Codes
	Shazam

	Background
	Reed-Solomon Codes
	Characteristics of Reed-Solomon Codes
	Encoding Reed-Solomon Codes
	Decoding Reed-Solomon Codes

	Digital Signal Processing
	Fast Fourier Transform
	Short-Time Fourier Transform
	Power Spectral Density
	Feature Extraction

	Scrambling
	Speech Recognition

	Structure and Analysis
	Overall Structure
	Preparation of Chord Dictionary
	Encoder
	Decoder

	Experimental Results

	Conclusions and Future Works
	Conclusions
	Future Works

	References
	Acknowledgments

