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Abstract

The aim of this thesis is to investigate, using simplified lattice models, whether
the Efimov effect, well known in quantum mechanics, can arise in polymer
physics too, particularly in a triple stranded DNA system. Such effect con-
sists in the formation of stable trimer bound states when dimer bound states
are not stable.

We base strand interaction rules on a Poland-Scheraga model for a directed
DNA-like polymer, double-stranded first and triple-stranded later. Within the
Poland-Scheraga scheme, only interactions between base pairs with the same
monomer indexes along the strands are permitted. Thus, the identification
of the monomer index with imaginary time allows the formal mapping to the
quantum problem in which particles interact at the same time. According to
the transfer matrix method, we are able to extract information about the free-
energy of the system from matrix eigenvalues. Studying them at the critical
point of the unzipped-zipped phase transition we look for the similarities be-
tween the bound states in the polymer model and those predicted by Efimov
theory for a three particle quantum system. In particular, in Efimov theory,
an infinite series of trimer energy levels, with a constant ratio between con-
secutive levels, is found at the critical point of the 2-body problem.

In chapter 1 we briefly describe the main characteristics of double stranded
DNA physical and chemical structure, triple stranded DNA and the denatu-
ration process which will be the main arguments of this work.

In chapter 2 we give an elementary explanation of the Efimov effect in quan-
tum physics concentrating on the conditions for which the effect arises. We
also explain why to expect that an analogue of the Efimov effect could take
place in a polymer system.

In the third chapter we give an analytic procedure to solve exactly the two
strands DNA system. After that, we define the Poland-Scheraga model on
a 141 directed lattice and we introduce the transfer matrix method for the
two chain system, starting from a recursive equation for the partition function
computed on the lattice. We see how the matrix eigenvalues are related to the
free energy of the system and then to the phase transition in the denatura-
tion process. The results achieved in this chapter also act as a check of such
method on a problem that is analytically solvable.

In chapter 4 we face the task to build up the transfer matrix for the more
complex three stranded system, then in chapter 5 we table the achieved re-
sults in comparison with those of the double stranded system. In particular we
observe a shift between the transition point of the three and two chain system,
accompanied by a free energy variation, in agreement with the analogy sug-
gested by the quantum case. On the other hand, we do not find any evidence
for the existence of the analogy with the infinite series of Efimov trimers.
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Chapter 1

Introduction

Deoxyribonucleic acid, more commonly known as DNA, is a complex molecule
that contains all the information necessary to build and maintain living organ-
isms. However, DNA does more than specifying the structure and function of
living systems things, it also serves as the primary unit of heredity in organ-
isms of all types. In other words, whenever organisms reproduce, a portion
of their DNA is passed along to their offspring. This transmission of all or
part of an organism’s DNA helps ensure a certain level of continuity from one
generation to the next, while still allowing for slight changes that contribute
to the diversity of life.

The discovery of DNA double-helical structure by Watson, Crick, Wilkins and
Franklin in 1953 [11] was an important milestone of modern biology. They
observed that DNA is formed by two complementary strands where, through
hydrogen bonds, an adenine pairs with thymine, and guanine with cytosine
forming A-T and G-C base pairs. The succession of base pairs defines the ge-
netic information and gives the information to the cell to accomplish its vital
functions.

Four years later, Felsenfeld et al [9] found that in DNA there are acceptor and
donor groups that can form hydrogen bond interactions with a third strand.
This was the starting point for a number of studies that have had great impact
in medical progress, for example with the development of the Antigen Ther-
apy [5], based on gene silencing approach. This technique delivers short, single
stranded pieces of DNA, called oligonucleotides, that bind specifically between
a gene’s two DNA strands. This binding makes a triple-helix structure that
blocks the DNA from being transcribed into mRNA.

Of course, a good model is a fine starting point to understand the implica-
tions and the potential of the triple helix structure. Since DNA is a polymer
formed by a great number of monomers it is reasonable to describe it with a
mechanical statistical approach, and this is what we are going to do in this
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work with particular interest in the three chains structure.
Firstly, we need a clear understanding of the biological structure of double
and triple helical, in order to decide how to build our statistical model.

1.1 DNA structure

DNA in the form proposed for the first time by Watson and Crick is a long
polymer, made from repeated units called nucleotides. The basic structure
comprises two helical chains of nucleotides each coiled round the same axis,
and each with a pitch of 34 angstréms (A, 1 A= 0.1 nm) and a radius of 10
A. When measured in a particular solution, the DNA chain measured 22 to
26 A in width, and one nucleotide unit measured 3.3 A long [18]. Although
each individual repeating unit is very small, DNA polymers can be very large
molecules containing millions of nucleotides. For instance, the largest human
chromosome, chromosome number 1, consists of approximately 220 million
base pairs and would be 85 mm long, if completely stretched.

Figure 1.1: A section of DNA.

Each nucleotide consists of a 5-carbon sugar (deoxyribose), a nitrogen con-
taining base attached to the sugar, and a phosphate group. There are four
different types of nucleotides found in DNA, differing only in the nitrogenous
base. The four nucleotides are given one letter abbreviations as shorthand for
the four bases: adenine (A), guanine (G), cytosine (C), thymine (T). Adenine
and guanine are purines (5 carbon, 4 nitrogen) that are the largest of the two
types of bases found in DNA, while thymine and cytosine are pyrimidines (4
carbon, 2 nitrogen).

The deoxyribose sugar of the DNA backbone has 5 carbons and 3 oxygens.
The carbon atoms are numbered 1°, 2’, 3’, 4’, and 5’ to distinguish from the
numbering of the atoms of the purine and pyrmidine rings. Along the single
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strand each phosphate group binds the 3’-carbon of a deoxyribose molecule
with the 5’-carbon of the sequent sugar, forming phosphodiester bonds.

In a double stranded DNA (dsDNA), each type of nucleobase on one strand
pairs with just one type of nucleobase on the other strand. This is called
complementary base pairing. Here, purines form hydrogen bonds with pyrim-
idines, with adenine bonding only to thymine with two hydrogen bonds, and
cytosine bonding only to guanine with three hydrogen bonds.
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Figure 1.2: DNA chemical structure.

Moreover the double helical structure is stabilised not only by hydrogen
bonds, but also by the hydrophobic effect and especially by van der Waals
interactions between parallel bases, also known as base stacking interactions,
characterized by cooperativity.

1.2 Triple stranded DNA

Triple-stranded DNA (tsDNA) is a structure of DNA in which three oligonu-
cleotides wind around each other and form a triple helix. Triplex formation
is governed by sequence-specific binding rules that are conceptually similar

3
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to the familiar Watson-Crick base-pairing rules. The third nucleotide strand
binds to dsDNA through Hoogsteen or reversed Hoogsteen hydrogen bonds
[10].

In the Hoogsteen pairing the adenine base is flipped as compared to Watson-
Crick pairing and, since one nucleotide side is connected to one helix and the
other is connected to the other helix, that’s going to change the shape of that
portion of the DNA. In Fig.(1.3) are shown the two possible Hoogsteen pairs
for the TAT couple or CGC.

Thymine Cytos%

Thymine

Guanine

Adenine

T+«A-T CxG-C

Figure 1.3: TAT and CGC pairing in tsDNA. The symbol * indicate the Hoogsteen
base pairs and the — the Watson-Crick base pairs

Moreover the Hoogsteen pairing is stable only in determinate contexts,
as pH 5 or lower, and the G-C Watson-Crick pairing consists of one more
hydrogen bond than Hoogsteen pairing. Indeed normally, the Watson-Crick
structure is favoured over the Hoogsteen scheme.

Besides the TAT and CGC pairing in the tsDNA also the GGC and AAT are
permitted. In these last cases the Hoogsteen pairing G*G and A*A is said to
be reverse because the purines sugars are located in the opposite side com-
pared to the first case.

The central strand in tsDNA have to be formed by purines only, because the
pyrimidines cannot have multiple hydrogen bonds on both sides simultane-
ously.

Two particular types of tsSDNA have been identified:

e the intermolecular tsDNA, discovered in 1957, formed between triplex
forming oligonucleotides (TFO) consisting in a single DNA strand that
binds to a target sequences on duplex DNA.

o the intramolecular tsDNA (Fig.(1.4)), discovered in 1987 [23], that does
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not involve an additional strand, but formed thanks to the double helix
opening, so that one of the two free strands bind to the dsDNA itself.

Figure 1.4: Scheme of intramolecular tsDNA .

Artificially synthesised TFOs are promising gene-drugs, which can be used
in an anti-gene strategy, that attempts to modulate gene activity in vivo.
Transcriptional processes can be stopped by different strategies based on the
binding of the TFO to a target site and the subsequent creation of a physical
block to a normal cellular process. These applications can be relevant in cre-
ating cancer therapies that inhibit gene expression at the DNA level. Since
aberrant gene expression is a hallmark of cancer, modulating these endoge-
nous genes’ expression levels could potentially act as a therapy for multiple
cancer types. However, despite much in vitro success, there has been limited
achievement in cellular applications potentially due to target accessibility.
Limitations also include concerns regarding binding affinity and specificity,
in vivo stability, and uptake into cells. Researchers are attempting to over-
come these limitations by improving TFO characteristics through chemical
modifications, such as modifying the TFO backbone to reduce electrostatic
repulsions between the TFO and the DNA duplex [7].

The intramolecular tsDNA could be also related to degenerative deseas, since
it is prone to the structural alterations of DNA. Friedreich’s ataxia (FRDA),
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the autosomal recessive degenerative disorder of nervous and muscles tissue
caused by the transcriptional silencing of the FXN gene, is the only disease
known so far to be associated with DNA triplex [25].

1.3 DNA denaturation

The hydrogen bonds between bases of different strands are not covalent so
that they can be broken and reformed relatively easily. The two strands of
DNA in a double helix can therefore be pulled apart like a zipper, either by
a mechanical force or temperature increase. When DNA is destabilised by
temperature, the process is called melting, and occurs at high temperature,
low salt and high pH. However low pH also melts DNA, but since DNA is
unstable in this context, low pH is rarely used.

Since the base pair A-T forms two hydrogen bonds and G-C three, the G-C
base pair is stronger so that the dsDNA stability depends on the GC-content.
Other indicators for stability are the sequence, because the stacking is se-
quence specific, and the length, because long molecules are more stable. A
common way to measure the stability is the melting temperature T,,., which
is the temperature at which 50% of the nucleotides are converted from the
close (folded) to the open (unfolded) state.

The primary experimental tool for studying the denaturation process is the
measurement of UV light absorption at a wavelength of about 270 nm. Light
at this wavelength is preferentially absorbed by the single strands and it thus
provides a measure for the fraction of the double-stranded pairs, 6(T), at any
given temperature T. This is known as the optical melting curve of the DNA.
We expects 6 to decrease with temperature and to vanish at very high temper-
ature[21]. This kind of analysis required pug amounts of DNA, and often took
hours to complete. Contemporary DNA melting analysis uses fluorescence
because it is a more sensitive method. It needs only ng amounts of DNA,
shortening the melting time to a few minutes. (Fig.(1.5))

The denaturation process is energetically disadvantaged (Ess—Egqs = AE > 0)
because of the hydrogen bonds, while is entropically favoured (Sss—Sgs=AS >
0) because the single strands are more flexible over the double strands so that
the spatial configurations are more numerous for the denatured DNA. Indeed
the transition occurs when the system reaches a particular temperature above
which the free energy variation Fys— Fys = AF = AE—TAS became negative.

6
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Figure 1.5: Fluorescence melting curve

1.4 DNA and random walks

There are several methods to convert the DNA sequences into digital se-
quences, each one of these characterized by different accuracy levels.

A detailed study of sequence dependent effects in DNA can be faced through
molecular dynamics methods which afford detailed structural and dynamical
insights at atomic level. Thanks to molecular dynamics, noteworthy advances
have been made in the study of DNA-ligand interactions, but also in simu-
lation of large conformational transitions, including folding and unfolding of
short DNA duplexes.

Obviously the great computational cost of such methods does not make it
possible to simulate entire systems on a realistic timescale, even if the spec-
tacular improvements in software and hardware of the last years has enabled
the tackling of systems of increasing complexity and simulation of reason-
ably large system dynamics over a timescale of microseconds have now been
achieved.

Moreover large system as DNA can be addressed in statistical terms, consid-
ering the thermodynamics limit. For example the thermal denaturation can
be seen as a phase transition in a polymeric system of infinite dimension.

In order to describe such process, we will consider a simplified model in which
DNA is intended as a homopolymer neglecting all the details about the pres-
ence of different base pairs in the sequence and the interaction strength be-
tween them. In these models DNA is described by means of two interacting
random walks. The steps of such random walks cannot be interpreted as re-
lated to the real DNA monomer, in fact the helicoidal structure of DNA is

7
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stiff because subsequent monomers are constrained to maintain a fixed angle
between them for chemical reasons. We can interpret the random walk model
as an equivalent polymer in which each monomer is formed by a set of differ-
ent nucleotides. This model is known as Fquivalent freely jointed chain and
consist in a coarse graining of the real model of DNA strands.

Another fundamental aspect to consider in DNA modellisation is the ezcluded
volume effect. Experimental studies on DNA melting are always carried on in
solution and a property of a good solvent is that interaction of the polymer
with solvent molecules is energetically favoured over interaction with other
monomers. Indeed each monomer is surrounded by solvent molecules, forming
an inaccessible region for the other chain elements. The most common way
to describe such effect is the self-avoiding walk (SAW), that is a model in
which self-intersection in the chain paths are banned. The Poland-Scheraga
model that we are going to introduce in the Ch.(3) involve two different SAW,
representing dsDNA, of which only elements with the same distance from the
origin, measured along the strands, can interact. This option is useful to ap-
proximate the DNA base pairing and will enable us to develop an analogy with
the quantum case of two interacting particles. In fact is possible to interpret
the step index in the random walks as the time parameter in the quantum
problem in which particles can interact only at the same time.



Chapter 2

Efimov states

The Efimov effect is an effect in quantum mechanics first predicted by V.
Efimov in 1970 [28] for identical bosons that occupy a spatially symmetric
s-state and interact with a short-range pair-wise potential.

In these circumstances, their spectrum obeys a geometrical scaling law, such
that the ratio of the successive energy eigenvalues of the system is a constant
and accumulation of states near zero energy takes place. When the dimer
binding is zero and the two-body state is exactly at the dissociation threshold,
the number of three-body bound states is infinite. Indeed, three body bound
states are stable when two-body ones not. An issue to emphasise is the fact
that Efimov effect is independent of the details of the interaction, for example,
whether it is between atoms with a pair-wise van der Waals interaction, or
between nuclei with a nuclear force.

In 2005, for the first time the research group of Rudolf Grimm and Hanns-
Christoph Négerl from the Institute for Experimental Physics (University of
Innsbruck, Austria) experimentally confirmed such a state in an ultracold gas
of caesium atoms [16]. At such low temperatures (10 nK) thermal motion does
not mask quantum effects.

In this chapter an elementary exposition of the Efimov effect, will be given
using basic concepts of quantum mechanics.

2.1 Two body problem

2.1.1 Two-body scattering at low energy

We need to recall the most important results about the quantum mechanical
problem of a beam of particles incident at low energy upon a target. In princi-
ple, if we assume that all the in-going particles are represented by wavepackets
of the same shape and size, our challenge is to solve the full time-dependent

9
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Schrodinger equation for such a wavepacket

ihoy W (r, t) = [—%VQ + V(r)] W(r,t) (2.1)

and find the probability amplitudes for out-going waves in different directions
at some later time after scattering has taken place. However, if the incident
beam of particles is switched on for times very long as compared with the time
a particle would take to cross the interaction region, steady-state conditions
apply. Moreover, if we assume that the incident wavepacket has a well-defined
energy (and hence momentum), so it is many wavelengths long, we may con-
sider it a plane wave. Setting ¥ (r,t) = ¥(r)e *F*/" we may therefore look for
solutions #(r) of the time-independent Schrédinger equation

2
BV = |55+ V)] 00) (2.2

subject to the boundary condition that the incoming component of the wave-
function is a plane wave, ¢’**. Here E = p?/2m = h2k2/2m denotes the
energy of the incoming particles.

In the three-dimensional system the wavefunction well outside the localized
target region will involve a superposition of the incident plane wave and the
scattered spherical wave

(2.3)

where we assume that the potential perturbation V(r) depends only on the
radial coordinate and the function f(#) records the relative amplitude and
phase of the scattered components along the direction @ relative to the incident
beam.

Using the partial wave method the wavefunction can be expanded in a series
of Legendre polynomials and f(#) results

= (2 +1)fi(k)Py(cos0) (2.4)
=0

where Pj(cos 6) denote the Legendre Polynomials and f;(k) is the partial wave
scattering amplitude. At low energies is possible to show that the total scat-
tering amplitude is dominated by the s-wave (I = 0) channel and results

F(0) = fo(k) = (kcot do(k) — ik) ™" (2.5)

10



2.1 — Two body problem

where Jp(k) is the s-wave phase shift caused by potential. The scattering
between the two particles is well described [12] at low energies by two shape-
independent parameters, the scattering length a and the effective range g,
where

11
kcot do(k) = ——+ §r0k2 +... (2.6)

The scattering length a is linked to potential strength and for a square well
potential, considering h = 2m = 1, a = <1 — @) with v = U&/2R , Ug
the depth and R the width of well potential. At low energies, £k — 0, the
scattering cross-section, o = 4ma? is fixed by the scattering length alone. If
v < 1, a is negative. As vy is increased, when v = 7/2, both a and o diverge
- there is said to be a zero energy resonance. This condition corresponds to
a potential well that is just able to support an s-wave bound state. We’'ll see
that the Efimov effect arise in this context.

2.1.2 Separable two-body potential

Consider the scattering of a heavy particle of mass M interacting with a light

one of mass m, with the mass ratio p = % The relative energy is given by

Ey = k? /v where we have set again i = 2m = 1 and v/ = p/(p + 1). For
simplicity we assume p > 1 and v/ = 1. The eigenvalues equation is

(K* — Ho) [r) =V [¢) (2.7)
where Hj is the kinetic energy operator. The Eq.(2.7) takes the form
(2 + V) u) = [ @l Vi) inte' )’ (28)

in the r-space with r the relative coordinate between the two particles, and

(k2 — %) v (p) = / (Bl VD) i (p) &’ (2.9)

in the p-space, where p is the relative momentum between the two particles.
A separable potential in Hilbert space may be written as V- = —\|g) (g|, where
the negative sign is taken for attraction, and A > 0 determines the strength
of the potential. In the coordinate representation the separable potential in
r-space is given by (r| V' |[r) = —Ag(r)g(r’) where g(r) is taken to be real. The
Schrédinger equation in p-space for a bound state k? = —kzg is given by

(k5 + 1°) ¥k, () = Ag(p) / 9(p" )k, () d%p’ (2.10)

11
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where
o) = [@inar)r = e [emnciponaidt @
Rewriting Eq.(2.10) as

Vo (P) = ACk, T+ ) 9(r) ) (2.12)

with Cy, = [ g(0")k, (p')d®p’ and multiplying both sides by g(p) and integrat-
ing over d®p we obtain the equation that determines the binding energy k3 for

a given potential
Q(P)2 3
A / ————d’p=1 2.13
For explicit calculations we choose the popular Yamaguchi form g(p) = (p? +
#%)71 giving

g(r) = W / eap(ip - r)g(p)d’p = \/z emp(r o) (2.14)

ko (1) = ACkO\/g (mp(_kor) - 6xp(_5r)> (2.15)

and

T T

2.2 Efimov spectrum and the inverse square poten-
tial

Let us now focus upon the problem of a single particle of mass m in an inverse
square potential V(r) = (h?/2m))N /r? where ) is a dimensionless coupling
constant.

It’s possible to show that for A’ > —1/4 there is no bound states, while infinite
and continuous number of bound states arise for A’ < —1/4. In order to solve
this problem we need to take a short distance cut-off in some point r = 7. and
impose that eigenfunctions vanish on it [27][6].

We are interested in the situation where the potential is inverse square only
for r > r. so we can write the radial (u(r) = r¢(r)) Schrédinger equation for

this case: ) ) /

d sg+1/4 2m
where 3(2) > 0 is just a way of parametrizing the strength of an inverse square
potential whose coupling constant is smaller than —1/4. For bound states, we

12



2.3 — The three body problem

set (2m/h?)E = —k?, and require that wave functions vanish at infinity. This
equation give us an energy spectrum for shallow bound states that follows a
geometric scaling law given by [13] :

EnJrl
En

= exp(—27/5s0) n=0,1,2,..00 (2.17)

Note that as n becomes larger, the states become shallower, with an infinite
number of states accumulating at zero energy. This results will be useful, as
we’ll see in due course, to solve in the three body problem the Schrédinger
equation for radial coordinate.

2.3 The three body problem

Our aim is now to obtain an inverse square interaction, like that of the previous
section, in the three body problem where the particles interact with a short
range pair-wise potential. This objective is best served by taking two identical
heavy particles 1 and 2, each of mass M, and particle 3 of mass m < M.
The analysis is simplified if the relative coordinates R = (r; —rg) and r =
r3 — (r; + ry)/2 are introduced, where ry, ro and rs are the coordinates of
particles 1, 2 and 3 measured from an arbitrary origin. Following the common
convention, we denote by V; the interparticle potential between particles 2
and 3, and likewise for V5 and V3 in cyclic order. The Schrodinger equation
results

HU(r,R) = B¥(r, R) (2.18)

with
H = —%vg— L2 Vi - R/2) Vol 4 R/2) HV(R)  (219)
p=p/2 v=2p/(2p+1) (2.20)

where E is the total energy of the system and p = M/m, recalling that
h=2m = 1. For p > 1, v — 1, and the motion of the heavy particles is
very slow compared to that of the light particle of mass m, so that we can
apply the adiabatic Born-Oppenheimer approximation to solve the three-body
Schrodinger equation in two stages. First, the wave function is decomposed
according to

U(r,R) =9¢(r,R)p(R) (2.21)

where ¥ (r,R) with eigenenergy e(R), is first solved for the relative motion of
the light-heavy system, keeping R as parameter. For fixed R the relative ki-
netic energy of the heavy particle is zero, and the potential V3(R) is a constant

13
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shift in energy and can be neglected at this stage. Eq.(2.18) becomes
[—V2+Vi(r — R/2) + Va(r + R/2)] ¥(r,R) = (R)y(r, R) (2.22)

Next, we can solve within the adiabatic approximation the two-body Schrodinger
equation with €(R) as the adiabatic potential between the two heavy particles

[~V%&/1+ Va(R) + €(R)]|$(R) = E¢(R) (2.23)

For V; and V5 in Eq.(2.22), we take the short-range separable potential —\ |g) (g].
Thus for a fixed parameter R we have

(' =R/2[Vir — R/2) = -\’ — R/2|g)(g|r — R/2) (2.24)

' +R/2|Va|r+ R/2) = -\ +R/2|g){g|r + R/2) (2.25)

In the p-space after some algebra and letting €(R) = —k?(R) the Eq.(2.22)
takes the form

(pr)exp(ipy - R) 5
A/ ,%+/<:2 ,,+>\/ TR Bp, =1 (2.26)

The coupling constant A may be eliminated by relating it to the binding k‘g
of the two body problem from Eq.(2.13). For the Yamaguchi form g(p) =
(p? + B%)~! the integrals in Eq(2.26) may be performed analytically, giving

1—<ﬁ+k0>2:<ﬁ+k0>2[ S e (2.27)

B+k B+k) [(B—k)? R TB-k

As the distance R between the two heavy atoms is increased, the light atom
tend to attach to one of them, and k*(R) — k3. We are particularly interested
in this large R behaviour of €(R) as the two-body binding k‘g goes to zero. It’s
convenient to define ( = k— ko and substitute it into Eq.(2.27). In the resonant
limit, consider a — 400 so that kg = 1/a — 0 [13], and moreover ky < [3,
BR > 1, R/a — 0, ( < (3 so that exp(—BR) — 0 and exp(—koR) — 1. The
Eq.(2.27) in this limit results

(R
which has the solution (R = A where A = 0.5671... Hence k = ko + ( =
ko + A/R. In the resonant limit we see that ¢(R) = —k* = —A%/R?, giving
the desired inverse square potential.

In our analysis, we set ¥ = 1, which only approximately holds for p > 1.
However, setting v = 1 is not necessary, but it’s possible to show [1] that
e(R) = —puA?/(vR?) = —(1/4A%)(1 + 2p)/R%. Substituting this expression in

(&

=1 (2.28)
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2.4 — Efimov effect in polymer physics

Figure 2.1: Bound and unbound states for three and two particles system. The
bound Efimov states are shown schematically by solid lines, with a scaling factor set
artificially at 2 rather than 22.7. We see that for a < 0, even though there is no two
body bound state (dimer), more three-body bound states (trimers) are formed. For
a > 0 the trimers break up at the atom-dimer continuum, indicated by the dotted
curve.

Eq.(2.23) and neglecting the short-range potential V3 we obtain an equation
similar in form to that achieved in the previous section for single particle in
an inverse square potential.

Indeed Efimov spectrum arise in three body problem too, and the scaling
parameter sy depends on the mass ratio p. For three identical bosons we
get exp(m/sg) ~ 22.694.... The number of shallow bound states is given
approximately by [1]

sop, Ll
™ To

N ~ (2.29)

and we note that it diverges in the resonant limit ¢ — oo with finite ro for
a short range potential. Fig.(2.1) depicts the Efimov scenario for the three
boson states plotted as function of 1/a.

2.4 Efimov effect in polymer physics

After seeing the underlying causes of Efimov states in quantum mechanics,
we're going to investigate whether this effect can arise in polymer physics too.
To look into that, consider three Gaussian polymers interacting through a
DNA base pairing type short range potential. The Hamiltonian for such sys-
tem results [3]

15



CHAPTER 2. Efimov states

BH = / <8r] ) ZVkl r(s),ri(s)) (2.30)

k<l

where s is the length variable measured along the contour of the chain and
identify the monomer, j is the index of the chain (j = 1,2,3), r;(s) is the
monomer position, Vj; is the short-range attractive interaction between chains
k and [, K; is a bending rigidity controlling the flexibility of chain j.

We can obtain the partition function of the system by summing over ([ DR)
all configurations of the three chains:

_ / DR exp(—BH) (2.31)

The DNA-quantum correspondence relates the quantum critical threshold to
the thermal melting of duplex DNA, a continuous transition in this model
of Gaussian chains, with a diverging length scale. Suppose that we have
two non-interacting chains 1 and 3, both interacting with another one, chain
2. For simplicity, although not essential, in the spirit of Born-Oppenheimer
approximation we may take 1 and 3 as relatively stiffer compared to 2, noting
that in Eq.(2.30) the stiffness parameter K; in the kinetic term, takes the
place of mass of the quantum case. The system composed by chain 1 and
chain 2 or chain 2 and chain 3 is characterized generally by the presence of
many crossings which define a sequence of bubbles (Fig.2.2). These bubbles
are described by two scales: £, for the spatial extent and & for the length of
the bubbles along the chain. Since £ is linked to the correlation length of the
system and § to the relaxation time, these are related by & ~ §7, where z is
a size exponent for polymers. Moreover, we note that the melting transition
of double chain system takes place in the limit £, — oo. The diffusive or
Gaussian nature of the free chains for our case implies z = 2 [20]. If £, > R,
where R is the distance between chain 1 and 3, then in between two contacts
with chain 1, chain 2 is expected to meet chain 3, thus mediating an effective
interaction between chains 1 and 3.

By expliciting in the Eq(2.31) the sum over the configurations of each chain
we achieve:

/DRI/DRQ/DR;; exp B/N uis! (8“)

Ky (0rs\? K3 [0
+72 <ﬂ> + 73 <ﬂ> + V(ry,ra) + V(ra,r3) +V(F1,r3)]

(2.32)

Os Os
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2.4 — Efimov effect in polymer physics

7

Figure 2.2: Two non interacting Gaussian chains 1 and 3 separated by a distance
R. Each of these can pairs with a flexible chain 2, denoted by the thin line. The
extent along the bubble contour is §| and the spatial extent is £, ,while s is the length
variable measured along the contour of the chain.

Born-Oppenheimer approximation allows to perform the integration over the
configurations of flexible chain 2, fixing that of the other two chains. The
analogy with the quantum case suggests that the outcome of such operation
could be the emergence of three chains bound states at two chains critical
point, resulting in a reduction of the free energy of the system. As in the
quantum case the effect of the light particle induces an attractive interaction,
at long length scales, between the other two particles, so in the polymer system
we expect the arising of similar interaction between the stiffer chains.

We can assume the change in free energy as:

AF ~ —%f(R/m (2.33)

where the first factor is the numbers of bubbles and f(x) is a scaling function.
In the limiting behaviour suggested by the quantum analogy, for &, — oo,
Eq.(2.33) should be finite, requiring f(x) ~ =% as x — 0. Indeed, in this
limit and for z = 2 we have

AF A A

where A is constant. We see the emergence of an inverse square interaction like
in the quantum case suggesting the origin of three chain Efimov-like bound

e(R) =

17



CHAPTER 2. Efimov states

states. Different polymer models based on hierarchical diamond lattice or
Fuclidean lattice in 1+1 dimensions have been developed by Jaya Maji et
al.[20] and have given us the numerical evidence that the melting point in
DNA unzipped-zipped transition is different in the case of three or two chains.
Thus three chains bound states would appear to arise even if there are no
two chain bound states yet. In the next chapters we will try to find a direct
evidence of Efimov states in the well known Poland-Scheraga polymer model
using the transfer matrix technique that allows us to directly access the free
energy of a system of infinite chains confined in a finite lattice strip, eventually
highlighting the presence of bound states.

18



Chapter 3

Double chain DN A models

From a statistical mechanics point of view the two chain system is obviously
simpler than that with three chains. In the latter case, many difficulties are
encountered in the calculation of the partition function, so that we need an
alternative technique to obtain information about the system. In order to do
that, we will use the well known transfer matrix method.

On the other hand different theoretical models have been developed to study
the double chains DNA configurations by a statistical mechanics approach.
In this chapter we will discuss one of these models and we will see how to
obtain the partition function exactly and other analytical results. This will
be helpful because it allows to compare these analytical outcomes with those
achieved by the transfer matrix technique applied to the two chain system,
testing therefore such method in this context.

3.1 Generating function

A simple but accurate way to describe DNA structure was introduced by
Poland and Scheraga [4] and consists of two infinite random walks that can
interact when two point of different walks, whit the same distance from the
origin, touch each other. This is useful to simulate complementary DNA base
pairing, where, to a good approximation, only bases with the same chemical
distance from the origin can join together. Configurations of partially melted
DNA are represented in this model as alternating sequences of double stranded
segments (rods) and single stranded loops (bubble), as depicted in Fig.(3.1).
To make analytical computations feasible, we shall ignore the variations in
binding energy for different nucleotides, and assign an average energy € < 0
per double-stranded base pair. The weight of a rod segment formed by I
nucleotides is thus exp(—pBel) = w'. We assign also a weight o for each bubble
opening to take into account the difficulty to pass from a rod segment to the
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CHAPTER 3. Double chain DNA models
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bubble rod

Figure 3.1: Schematic representation of the Poland-Scheraga model.

bubble and the corresponding increase in free energy when two bases break
up. The parameter o reflect the breaking of cooperative stacking interaction
between consecutive base pairs. Inreal DNA ¢ ~ 107%*+10"° and denaturating
bubbles are strongly suppressed.

For the sake of simplicity we choose to start and end the DNA chain with rod
segments. We consider indeed a chain of N steps, formed by s bubbles and
s+ 1 rods with lengths, in order of position along the chain, g, j1,%1, ..., Js, s,
where j are the lengths of the bubbles and ¢ those of the rods. Since all internal
segments must measure one step at least, it is required that

> N-1
T=1

The canonical partition function results

(N-1)/2) s |
Zn(w) = Z Z (H viTw“'HgaujT) Vi (w2)" (3.2)

0 {ir,gr} \7=1

where {i;,j-} denotes the sum over all possible lengths of segments such that
io + >, (ir + jr) = N; v;. is the number of different configurations of rods
with length i, and u; is the number of different configurations of bubbles
with length j,. The g factor is 2 when the crossing of two strands is allowed
and 1 otherwise. In other words, we are defining bubbles for two chains that
are not allowed to cross each other in a one-dimensional system.
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3.1 — Generating function

The grand canonical partition function, with fugacity z, is

= i N Zn(w
N=0
co [(N-1)/2]
:NZ Z Z} (H Vi, W ’T'Hgau z“ﬂT) vm(wz)

s=0 {Z‘l’ JT T=1

55 5 ([ustwrons)ue o

s=0 N=2s {ir,j-}

g

S

- Z H Z Z vi, w(wz)'" goug, 27 Z v, (w2)%

s=071=14,=03,=0 10=0
o0 oo [e.e] s oo

= Z Z Z viw(wz) goujz! | - Z v, (w2)%
s=0 \ i=0 j—=0 i0=0

We define now the generating function V(z) for rods and U(z) for bubbles

Vi(z) = Z via', U(x) = Z ujx! (3.4)
i=0 Jj=0
Indeed we obtain
> V(wz)
G(w, z) ; wgolU (2)V (wz))® = = wgoU(2)V (w?) (3.5)

3.1.1 Directed lattice model

To compute explicitly the generating functions in Eq.(3.4) we introduce the
Poland-Scheraga model [4] for a directed self-avoiding polymer in a 1+1 square
lattice. Particularly, consider two strands moving in oblique-lattice as showed
in Fig.(3.2); at each step we enforce them to increase their coordinate along
the (1, 1) direction so that the possibles moves need to be along (1,0) or (0,1)
directions.

In this way self-intersections are banned and only interactions between

bases with the same distance from the origin are permitted, as it should happen
for two complementary DNA strands.
The last request is important regarding the problem of the quantum mapping
in which particles interact at the same time. We can map, in fact, the N-
th strand step to the N-th instant of discretized time in the formalism for
quantum particles.

21



CHAPTER 3. Double chain DNA models

Figure 3.2: Double stranded polymer in oblique lattice.

These rules demand two different possibilities at each step and therefore the
number of different paths for a rod with length 7 is v; = 2* and V results:

V(iz)=) 2’ = - _1233 (3.6)
=0

To find an explicit expression for the bubble generating function is more com-
plicated and it results [2]

U(z) = 1-2z2 —2\/1 — 4z (3.7)

Finally, the grand canonical partition function results

1
G(Z U)) — 1—2wz
! 1 1-2z—/1—14
l—wgorm — (3.8)
2

:2—4wz—wga(1 — 2z —/1—4z2)

There are two points of non analyticity for G:

e 2y = 1 that is the radius of convergence of U(z)

e 2. such that 2 — 4wz = wgo (1l — 2z — /1 — 4z), namely
1 P 1 2 go

= | Z_go|=41-41-24+L 3.9

o) = s [w ga<w+ v w+w>] (3:9)
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3.2 — Transfer matrix method

Since the free energy density f = F/N, where N is the steps number and F
the total free energy, is linked to the radius of convergence r. of the grand
canonical partition function [14] by

f= lim KgTlInr.(w) (3.10)
N—o0

we obtain that the denaturation transition take place at w; such that the two
singularities are equal

4
_2—|—ga

wy (3.11)
We can mark that in the case of allowed crossing (¢ = 2) and 0 = 1/2 it
results w; = 4/3.

Henceforward we’ll be interested only in the case with crossing, so we set g = 2
and this will the value used in the following.

In this discussion we enforce the rearmost segments to join together, but in
general we can find configurations with open strands ending in a ”fork config-
uration”. Anyhow, the generating function of fork segments don’t insert other
singularities in the partition function of the system, so that the value of w at
the transition point remains the same [24].

3.2 Transfer matrix method

An alternative form to express the canonical partition function is

N
Zy(w,0) =Y dy(z,w,0) (3.12)
=0

where x is the unsigned distance between the strands at the end of the chain
and dy(x,w, o) is the partition function for all configurations with fixed z.
So let’s see now how a recursive equation for dy can be achieved. The two
strands in the square lattice can move in four different ways, so that each
configuration with a fixed ending distance x at the N-th step can be obtained
in four different ways starting from the (N — 1)-th step: two starting from
distance x, one from = + 1 and another one from = — 1 (Fig.3.13).

In general we should apply the relation dy(x) = >, dv—1(z")u(z, 2")p(z, ')
where p(z,2’) is the number of ways of passing from distance 2’ to distance
x and p(z,z) is the weight due to bubble opening and base pair interaction
in double-stranded segments. An alternative formulation could be given if
bubble closure is weighted; the two formulations (weighting either opening
or closure) yield different results for finite size, but the same results in the
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Figure 3.3: Scheme of recurrence relation for the coefficients dy (z).

thermodynamic limit.
Therefore, the recurrence relation for the partition function with fixed x results

dN(.%') = [2dN_1(m) + dN_l(m — 1)(20’)61’1 + dN—l(-%' + 1)]?1}6””’0 (3.13)

Obviously for a system in an infinite lattice the dy (x) are vectors of infinite
dimension [dy (0),dn (1), ...,dy(c0)]T because all ending distances x between
strands are permitted. But, with appropriate periodic boundary conditions,
we can confine paths in a finite strip of transverse size L and infinite length. In
this way the dy (z) are vectors of finite dimension: [dx (0),dx (1), ...,dn (L/2)]T.
In fact, if we impose the top and bottom side of the strip to coincide, the paths
are enforced to move in a cylinder of base circumference L and the largest dis-
tance which can be achieved is L/2 [Fig.(3.4)].

Figure 3.4: Paths in a strip with periodic boundary conditions.
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3.2 — Transfer matrix method

The boundary conditions now in place are (for the case of L even)

dn(L/2) =2dn-1(L/2) +dn-1(L/2 - 1)
dy(L)2 —1) =2dn_1(L/2 — 1) + dyn_1(L/2 — 2) + 2dn_1(L/2) (314)
dn(0) =2dn—1(0)w + dn—1(1)w
dn(1) =2dy-1(1) +2dn-1(0)0 + dn—_1(2)

In particular when the ending distance is @ = L/2, two of the four possible
moves don’t change the distance and the other two lower it to L/2 — 1.

In other words we enforce reflecting boundary conditions at x = L/2 to ex-
ploit the mirror symmetry x — L — x within the cylindrical strip. Similarly,
reflecting boundary conditions are enforced at = 0 because the two chains
are allowed to cross each other.

Thanks to this confining it is possible to write the Eq.(3.13) in matrix form

L/2
r) =Y Tuydy-1(y) (3.15)
y=0
where we have introduced the transfer matrix T, which is tridiagonal and
results
20w 0
20 2 1
T 1 . e ( )
= 3.16
SO
. L2
0 1 2

Considering the Eq.(3.12) and the Eq.(3.15) we obtain immediately
ZN = Z yaAN—1(
Z yTymdN—2(m)
- Z T2, Trndn—3(n) = -
Z wdo(1)

where we adopt the Einstein’s convention for the sum over the repeated in-

(3.17)

dexes.
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CHAPTER 3. Double chain DNA models

If in general we expand the initial state dy as a superposition of the transfer
matrix eigenvectors [vi, -+, vy o], from Eq.(3.17) we obtain

Zy =) Tido(l)

- Z TN (a1v1(1) + agva(l) 4+ -+ + ar/2vr2(l))

’ (3.18)
= Z(al)\{vvl (m) + ag)\évvg(x) +---+ aL/Q)\g/QUL/Q (m))

:Z AN <a1v1(x) + as (i—f)Nvg(x) o dagy (Af—fz)NUL/z(xO

3.2.1 Free energy from the transfer matrix method

A general property of the interacting system which could be described using
the transfer matrix formalism is that thermodynamic quantities will depend
on its largest eigenvalue in the thermodynamic limit.

Supposing that eigenvalues are arranged in descending order, so that A; is the
largest one, considering the limit N — oo, in the expression that we obtained
for the partition function only the first term survives. The free energy density
in natural units is therefore given by:

f= lim %(—hlZN)

N—oo

2% <—Nln A —In (Zx: am(m)>> (3.19)

~—1In)\

Importantly, the free energy density depends only on the largest eigenvalue.
Hence, the thermodynamic quantities which are different derivatives of the free
energy density will also depend on A;.

The ratio between the second and the first eigenvalues influence the time
employed by the system to reach the equilibrium ¢ according to

1 A1 >

—=In|— 3.20

| <A2 (320
in turn related to the correlation length of the system by § = £7, with 2z = 2.

We expect both quantities to diverge for a phase transition, with £, linear
with the system size.
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3.2 — Transfer matrix method

3.2.2 Numerical results

In this section we present the main results of the transfer matrix method
applied to the two chain model. Note that all energies and free energies val-
ues given in this thesis are in unit of KT, whereas the temperature scale
is set by w = exp(—e/KpT) via the choice of the pairing energy parameter
e ~ —8.9 Kcal/mol [22].

The analytical achievement discussed in section 3.1.1 tells us that the phase
transition point is located at w = 4/3. From Eq.(3.10) we also expect the
free energy density to be constant for w < 4/3, with r. = 1/4, and start to
decrease for w > 4/3 with r. given by Eq.(3.9).

In Fig.(3.5) is shown, as a function of w, the free energy obtained from the
largest eigenvalue of the transfer matrix, for different values of matrix dimen-
sion L/2 and compared with the expected analytical function f(w). We can
see, already for L/2 = 500, the numerical data essentially agreeing with the
theoretical prediction. The vertical dashed lines correspond to the w values
for which we have observed the free energy trend at varying L, as depicted in
Fig.(3.6). Particularly, the free energy is shown as a function of 1/(L/2), so
that the limit L — oo can be seen in 1/(L/2) — 0. We note that in Fig.(3.6a)
and Fig.(3.6b) the limit for 1/(L/2) — 0 is —In4, while in Fig.(3.6¢c) is In(z.)
with z. given by Eq.(3.9) computed for w = 1.34, 0 = 1/2 (and g = 2).

The results for unbound states below the transition at w = 4/3 can also be
justified with an entropic argument: at each step the strands have four dif-
ferent possible moves, so that after N steps the entropy results S = kg In4%.
Starting from F' = U —T'S and considering two non interacting strands (U = 0,
o = w = 1), the free energy density in natural units 1/kgT, becomes exactly
f = —1In4. Since we know that for w < w; and L — oo the free energy density
must be constant, so it results f = —In4 in the entire interval [1, wy].

At w = wy = 4/3, it can be shown explicitly that A\; = 4 is an eigenvalue of the
transfer matrix of Eq.(3.16) for all L values, as indeed shown in Fig.(3.6b).
In Fig.(3.7) we plot the relaxation time §|» rescaled to the square system
size, given from Eq.(3.20) and computed for different values of L/2. Recalling
that we expect {| to diverge at transition point, we note that its peak raises
at growing L, suggesting that the phase transition takes place in the limit
L — .
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Figure 3.7: ¢ rescaled to the square system size, for different values of L /2,0 = 1/2.

It is clear that the peaks of different curves in Fig.(3.7) move towards left
when L/2 increases, approaching the transition point of the infinite system at
4/3. Therefore, we could reasonably estimate w; looking for the positions of
the peaks at every L. To improve the precision of peak localization we have
computed the relaxation time, at fixed L, for different w at steps of Aw = 1074
around the theoretical transition point. Successively, we have selected a subset
of ten points located around the maximum and interpolated with a 4th order
polynomial. The peak of the relaxation time profile was then computed by
analytically finding the local maximum of the interpolated curve. This process
was repeated varying L/2 between 200 to 2000 and the resulting w; estimates
were plotted against 1/(L/2) in Fig.(3.8) in order to point out the L — oo
limit at 1/(L/2) = 0.

3.2.3 Transfer matrix eigenvectors

It is interesting to deal with the meaning of the transfer matrix eigenvectors
in our specific problem. From Eq.(3.18) it is evident that in the N — oo limit
the only contribute to the partition function is given from the first eigenvector
vi linked to the largest eigenvalue A;. In particular the probability to have a
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Figure 3.8: Transition point w; against 1/(L/2) varying L/2 from 200 to 2000 at
steps of 100.

certain ending distance x results

dn(z)  a A v (o)
P(:C) - ZN - Zwal)\{vvl(x) (3.21)
v1 ()

> vi(x)

Therefore, when N — oo the probability distribution of ending distance x
depends on the first eigenvector components and this vector represents the
stationary state of the system. This means that whatever the initial condition
may be, the system will go to position itself in the same state. If we plot
the first eigenvector components against x (Fig.(3.9a)) or the correspondent
probability distribution P(x) (Fig.(3.9b)) for different values of w in the zipped
phase (w > 4/3), we can see that, over the transition, the states of the system
with small final distances x between strands are favoured with an exponential
decay, reminiscent of the ground state wavefunction in a d-function potential
well that would be obtained in the corresponding quantum problem.

Ultimately we want to highlight the meaning of the other eigenvectors of the
transfer matrix. In fact from Eq.(3.18) it is clear that these play a significant
role at fixed N. Their components are indeed linked to the time spent by the
system with a certain distance x before the steady state is reached after infinite
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Figure 3.9: Stationary distribution of the system.
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Figure 3.10: First four eigenvectors at w = 4/3,0 = 1/2.

steps. If we perturb the system, the time spent at some distance x could be
related to the corresponding components of the eigenvectors that follows the
first one. In Fig.(3.10) are showed the eigenvector components against the
distance x, for the vectors linked to the first four largest eigenvalues, computed
at the phase transition point, w = 4/3 . These are reminiscent of the states
found in the corresponding quantum problem of the particle in a box of size
L/2 with reflecting boundaries.

3.2.4 Mathematical notes

We need to stress that in our discussion we have implicitly assumed the first
eigenvalue of the transfer matrix to be non degenerate, so that in the Eq.(3.18)
only the first term survives in the limit N — oo.

This hypothesis is satisfied thanks to the following theorem [§].

Theorem (Perron-Frobenius for irreducibile matrices). Let A be an irreducible
non-negative n X n matriz with period h and spectral radius r = maz(|\;]),
then the following statements hold

1. The number r is a positive real number and it is an eigenvalue of the
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matriz A, called the Perron-Frobenius eigenvalue

2. The Perron-Frobenius eigenvalue r is simple. Both right and left eigenspaces
associated with r are one-dimensional

3. A has a left eigenvector v; with eigenvalue v whose components are all
positive

4. Likewise, A has a right eigenvector v, with eigenvalue r whose compo-
nents are all positive

5. The only eigenvectors whose components are all positive are those asso-
ctated with eigenvalue r

6. Matriz A has exactly h eigenvalues with absolute value r
For the sake of completeness we need to give the following definitions

Definition (Irreducibility). A matriz A is irreducible if it is not similar via
a permutation to a block upper triangular matrix

Definition (Periodicity). A square matriz A such that the matriz power
AL = A for k a positive integer is called a periodic matriz. If k is the
least such integer, then the matrix is said to have period k.

In order to apply the theorem we need to verify that the transfer matrix 7'
satisfies the condition of irreducibility and aperiodicity (h = 1). In order to do
this check, it is convenient to move on the correspondent directed graph. The
graph is defined by a set of nodes connected by edges, where the edges have a
direction associated with them. It has exactly n vertices, where n is size of A,
and there is an edge from vertex ¢ to vertex j precisely when A;; > 0. Then
the matrix A is irreducible if and only if its associated graph G4 is strongly
connected, that is, for every couple of states ¢ and j exists an oriented path
that connects them.

When A is irreducible, the period can be defined as the greatest common
divisor of all the lengths of the closed directed paths in G4 [15].
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Figure 3.11: Directed graph Gr of the transfer matrix.

In Fig.(3.11) is depicted the correspondent graph of the transfer matrix
T and it is clear that the conditions for irreversibility and aperiodicity are
respected. In fact, the graph is strongly connected and moreover the smallest
closed directed path, obtained remaining at the same state, has length 1, so
that 1 is also the common divisor of all the possible paths lengths.
Another assumption of our discussion consists in supposing the coefficient a;
in the first term of Eq.(3.18) to be non-zero. This hypothesis is equivalent to
consider that the initial condition has a non zero component along the first
eigenvector of the transfer matrix. Anyway, in order to obtain a partition
function with a physical meaning, the initial state dp(z) of the system could
not be a generic vector, but it needs to be non negative. Moreover, since we
could express a; as a scalar product between dy(z) and vy (z), that is strictly
positive from Perron-Frobenius theorem, it is straightforward to show that
also a; must be strictly positive.
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Chapter 4

Triple chain DNA models

The key theme of this work is to study the denaturation process with a ba-
sic model of triple chain DNA and verify if an analogue of the Efimov effect
takes place in that system. In fact, the polymeric system that we described
in Chap.2, under scaling hypothesis, is characterized by the presence of an
inverse square interaction between chains, very similar to that arising in the
quantum case when the Efimov states occur. Indeed, as in the quantum case
the Efimov effect predicts the appearance of three particles bound states at
the two particles resonance point, so we can suppose that an infinite number
of triple chain DNA bound states could appear at the transition point of the
two chain system.

In order to verify this fact, we will build a system analogue to the previously
described two chain system, but with three chains interacting together. Ob-
viously such system is more complicated than the previous, both from the
analytical and the computational point of view. In fact, a generic configu-
ration of three chains cannot be schematised by a sequence of bubbles and
rods, as we did in the analytic model for the two chains DNA, because other
different configurations are possible. On the other hand, the great numbers
of achievable configurations increase a lot the computation times needed to
address the problem with the transfer matrix method. Since we are interested
to see the L — oo limit, it will be appropriate to take advantage of some
system symmetries, as we will see in the next section, in order to be able to
compute the eigenvalues of the transfer matrix for a system of dimension L as
large as possible.

Our aim is to verify that variations, predicted in Eq(2.33) for the free energy
of the system, that is related to the transfer matrix eigenvalues, effectively
take place.
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CHAPTER 4. Triple chain DNA models

Figure 4.1: Three chains paths with periodic boundary conditions.

4.1 Three chains in a cylinder

Consider three interacting strands able to move in a cylindrical directed lattice
with the rules imposed by the Poland-Scheraga model, described in Sec.(3.1.1),
that is banning self intersection and permitting interactions only between
points with the same distance from the origin. (Fig.(4.1)). We associate a
weight w when two chains join together and a weight o when there is a bub-
ble opening between two strands, where w and ¢ are analogue parameters to
those already defined for the two chain model. Instead, when three chains
are involved, or in joint or in breaking a triple-stranded bond, we associate
respectively a weight w? or o2p, where p is a parameter useful to introduce a
different stacking interaction in the three body case. We set p = 1/0 since we
choose chains to interact like two pairs within the triple-stranded arrangement
(Fig.(1.3)), based on the chemical nature of the Hoogsteen base pairs.

As it is clear from Fig.(4.1), this time there are three possible ending distances
to describe the system states, x12, xo3, €13, which are respectively the distance
between chain 1 and chain 2, between chain 2 and chain 3 and between chain
3 and chain 1. Obviously only two of these are independent, so that the par-
tition function can depend only from them. Basing ourselves on the natural
definition of distance, we choose to utilize the two smallest unsigned distances
of the three. Define indeed z and y the smallest distances and z the largest
one. Consider moreover that the largest distance which can be reached in a
cylinder of base circumference L is L/2. Then we notice that the definition
of z as a function of x and y must change if the condition (z +y) < L/2 or
(x +y) > L/2 occurs.

The resulting requests are summarized in Eq.(4.1) and Eq.(4.2).
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4.1 — Three chains in a cylinder

l.o+y<L/2
x g
=z x>0
<z = 0 (4.1)
<z N
2. x+y>L/2
r+y+z=1L
Y x> (L—1y)/2
y>(L—1x)/2

y<z

In Fig.(4.2) are depicted the domains resulting from Eq.(4.1) end Eq.(4.2),
and their union that takes in all the possible configurations for the smallest
distances x and y. From now on we will assume L to be a multiple of six.

To write the partition function at fixed distances dy(z,y) we have to con-
sider eight different possible moves and their respective weights, as shown in

Fig.(4.3).

A
4

wd2.0 44y0.0 wd=.0q0v.0 o0z.1 (w)éy,o P (w)5z,o

N/
N/

w(;a:,Ow(sy,O w6x,0w5y,0 w5x,00—5y,1 wéy,OO-(s:c,l

Figure 4.3: Possible moves for three strands in an oblique square lattice.
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Figure 4.2: Domains of relative distances = and y.
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4.1 — Three chains in a cylinder

8

ISl

Figure 4.4: Possible pairs of distances x and y. The arrows outline the possible
moves for a chain starting from a particular point, and coloured points are those for
which not all moves are allowed, so that they need special boundary conditions.

In order to build the recursive equations for dy(x,y) we need to take
care imposing the boundary conditions at the polygon edges in Fig.(4.2¢c).
Obviously our system is discrete because the strands move in a lattice, so that
the possible couples of distances x and y are given by the points that are
located into the polygon and separated by the steps shown in Fig.(4.4). The
coloured points in the picture need a special attention because they cannot
allow all permitted moves; in fact they are affected by edges presence. The
blue points are those in which x = z (upper side) or y = z (right lateral side),
and starting from them the moves (1, —,\) (upper side) and (1, —, ) (right
lateral side) are denied, but there are two different ways to take the steps
(+—, 4, ) and (+, },\). To take this fact into account we have to add a factor
2 in the recursive equation for the dy(z,y) every time there is a contribute
from such edges. In order to better figure out this arguments it is useful to
see Fig.(4.5) where a graphic depiction is given.

The red points, besides being reached in two ways from each nearby boundary
point, have also another peculiarity. In fact, starting from this points the
moves 1( under upper side) and — (under right lateral side) are banned, but
there are three ways to remain in the same point instead of two. For example,
if we start from the red point with coordinates (L/2—1,1) to take the step —,
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Figure 4.5: Possible moves starting from a blue point with = 2. The circle
should depicts the cylindrical lattice seen from above, and the points are the strands
extremities. It is clear that there are two possibilities to take the steps ({,\, <)

we see that as the distance y grow of a unity the distance z decrease to L/2—1
becoming the smallest together with x, so that the couple of distances which
define the partition function dy remains unchanged. To take that into account
we need to introduce a factor which multiplies by 3 the terms dy_1(z,y — 1)
that contribute to dy(x,y — 1) when = and y belong to the upper side, and
the terms dy_1(x — 1,y) that contribute to dy(x — 1,y) when x and y belong
this time to the right lateral side.

The gray points in the left lateral side and in the down side are those in
which at least one distance x or y is zero. Starting from one of this points it is
not possible to take the steps («—,\) (lateral side) or (],) (down side), but
there are two ways to reach the points respective to the moves (—, ) (lateral
side) and (1,”\.) (down side). We need indeed to add in the recursive equation
a factor 2 which multiplies every term with a factor ¢ related to the bubble
opening and a factor 3 which multiplies the terms related to the double bubble
opening. This last is to take account of the point at the origin, because the
moves (<, |, —,\) cannot be performed starting from it, whereas (1, —) can
be performed each three times.

In the coloured point that we have listed are included also the polygon vertices
as special points, as we will see later.

We could further simplify the problem considering the symmetry of the system
under the exchange of distances x and y. In fact, states identified by the
distances (x,y) or (y, x) results clearly equivalent. Therefore, we could identify
opposite states with respect to the line ¥y = z and reduce the computation
of the partition function to those states for which y < x, introducing new
boundary conditions (Fig.(4.6)).
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Figure 4.6: The final domain in the bottom triangle, obtained taking advantage of
the system simmetry under the exchange of distances = and y.

If we consider only the bottom triangle, starting from the points on the straight
line z = y the moves (+,\, 1) cannot be allowed, but there are two ways to
do the moves (—,\,J). To take that into account we introduce a factor 2 in
the terms coming from this edge which give a contribute in the equation for
dy. Moreover, we note that also starting from the new red points under the
line y = x there are three ways to remain in the same state.
The yellow points have the peculiarity that starting from them there are four
ways to remains in the same points, and particularly for those in the bottom
side there are two ways that required bubble opening and the other two not.
Finally, let’s see the vertices, identified by green dots. Starting from the
vertex on top, or from that on the lower left there is only one points that can
be reached in six different ways. While from the vertex on the lower right
there are two points accessible, the red in four ways and the gray in two.
Now we are able to write the recursive equation for the partition function at
fixed distances dy(x,y). It is useful to define the following functions

3 if (y,z) € red dots
4 if (y,z) =(L/3,L/3 -1
(o) = o) = (L L5 (43)
2+20 if (y,x) = (1,0)
2 otherwise
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2 if (y;, ;) € edge A (y,x) & same edge
6 if (i, 2i) = (0,0) [ [(yi, xi) = (L/3, L/3)
b(yi, i,y ) = < 2 if (yi,2:) = (L/2,0) A (y,2) = (i — 1, ;) (4.4)
4 i (yi, i) = (L/2,0) A (y,2) = (yi — Lwi + 1)
1 otherwise

Then the recursive equation for dy(x,y) can be written as

dn(z,y) = f(y, )dN (@, y)w 0w o+

+dy_1(z — 1,9)0% % b(y, x — 1,y, z)+

+dy-1(z,y —1)(o )5y’1w‘sz’°b(y—1,w,y,w)+
+dy_1(z—1L,y+ Dw ’/005 Dbly+ 1 —1y,2)+ (4.5)
+dy_1(z + 1, y)w “w“b(y r+1,y,2)+

+dy_1(z,y + Dw’=0uw0b(y + 1,2, y, x)+

+dy_1(z+ 1,y — Dw 5”’°a5y’1b(y— 1,z + ly,x)

where the points (z,y) are contained in the triangle with vertexes in (0, 0),
(L/3,L/3) and (L/2,0).
We can now define the transfer matrix for the three chains system, so that

dn (CE, y) = Z T[(J:,y),(x’,y’)]del (x/, y,)
(="y") (4.6)

dy (i) = Tijdn-1(5) = TN do(5)

where we have indexed all the states of the system with a new index ¢ that
runs over every row inside the bottom triangle of Fig.(4.6) in ascending order.
An example of the transfer matrix for L = 12 is reported in Eq.(4.8). We
note that the matrix dimension M is equal to the number of points inside the
triangular domain, and can be obtained by the Pick’ theorem [26], resulting

M=A+L/2+1=(L*/12)+L/2+1 (4.7)

where A is the area of the triangular domain.
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2w? w?
6wo (2+20)w w 2w
w 2w w 2w w
w 2w w w w
w 2w w w w
w 2w 2w w w
w 2w w
20 20 2 1
20 20 2 31 2
T= 20 20 1 21 21 (4.8)
20 20 1 21 11
20 4o 13 12
11 21
11 231 2
11 12221
1 12 1
11 21
12246
12

Since we are in interested in studying the analogy between the Efimov
quantum effect and the behaviour of tsDNA bound states, we need to underline
the analogy between the Eq.(4.6) and an equation of time evolution in the
quantum problem

[ (1)) = e 17 [y(0)) (4.9)

Such formal analogy, obtained by the identification of the monomer index
with the imaginary time, suggests us to expect a common behaviour of the
hamiltonian eigenvalues and the logarithm of the eigenvalues of the transfer
matrix. Obviously this analogy could be affected by the fact that Eq.(4.9)
holds for a continuous time and the other one is defined on a discrete lattice.
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Chapter 5

Results and discussion

In this chapter we report the results we have been able to obtain by increasing
the system dimension as much as possible. In order to optimize the numer-
ical computing we took advantage of sparse matrices computation modules
under Matlab platform (R2013a), and particularly of the eigs function, useful
to compute the largest eigenvalues of the matrix [17]. In this way we have
reached a limit system dimension of L = 2940 that corresponds to a transfer
matrix dimension of 721.771.
In Fig.(5.1) it is shown an illustrative graph for the free energy density with
varying w. The different curves correspond to different small values of L,
just to highlight the behaviour of the system near to the transition point.
This picture is enough to figure that in the limit L — oo the curve before
the phase transition (w < w;) tends to become constant with limit value
—In8 = —2,0794.., similarly to the two chains system with —In 4. This result
it is also justifiable with entropic arguments, in fact now we have eight possible
moves for the strands in the lattice, instead of four. Thus we expect to find, in
natural units and in the limit L — oo, f = —In8 for w = ¢ = 1 and therefore
for the whole stretch (w < wy) before the phase transition, in the denatured
phase.
In the spirit of Efimov effect we expect to find, at the point of the two chain
transition w = 4/3, bound states for the triple chains DNA, resulting in a re-
duction of the free energy. This would correspond to find the largest eigenvalue
of the transfer matrix bigger than eight, in the limit L — oco. In Fig.(5.2) is
plotted the variation of the free energy density with respect to the denatured
phase (Af = —In(A\1/8)) against 1/L. Since we observe it to converge to a
negative value, Fig.(5.2) is in agreement with our prediction of the analogy
with the Efimov effect.

As in the case of double chains we plot in Fig.(5.3) the relaxation time
§||; rescaled to the squared system size, against w for different value of L, to
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Figure 5.1: Free energy density, 0 = 1/2, for varying w.

x107°
-1.16(

-1.162

-1.166

-1.17

-1.1741

-1.178 . . . . . ,
0.4 0.6 0.8 1 12 14

1/L x107°

Figure 5.2: Variation of the free energy density against L, at fixed 0 = 1/2, w = 4/3;
the last value is achieved for L = 2940.
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Figure 5.3: { rescaled to L?, 0 =1/2, varying w.

emphasize that we expect §| to diverge, at the transition point, when L — oo.
To estimate w; we fit, with a fourth degree polynomial, a set of ten points
located around the maximum with variable w increments and we look for the
maximum §|. In Fig.(5.4) we compare the achieved results with those obtained
from the two chain system with the same L; it is clear that the two sets of
data converge at different values. Particularly the limit value of w; of the data
set for the three chain system is clearly smaller than that of the two chain case
(4/3), under the reasonable assumption that the sequence be monotonic. Such
shift in the transition point too gives us an evidence of the presence of at least
onethree stranded DNA bound state when the double stranded transition has
not yet taken place.
The problem of assessing the existence of excited trimer bound states is much
more difficult and we will address it in the next section.

5.1 Extrapolation

The problem to extrapolate the limit of an sequence of data depending on a
parameter L, when the latter tends to infinity, is a difficult one. Any possible
choice of a particular functional form, for data dependence on L, could bias
the reliability of the final outcome.
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Figure 5.4: Comparison between the two and the three chains w; estimates.

One possible choice to face this task is to assume a particular functional form
for sequence dependence on L. The particular function opted for will depends
on a certain number of free parameters that we need to set in order to in-
terpolate the data points computed until a finite value L,,q;. As has already
been said, it is useful to observe the sequence as a function of 1/L so that we
will consider as our final estimate of the data sequence limit for L — oo the
function value extrapolated at 1/L = 0.

It is clear that such method introduces a systematic error due to the choice
of the function form. Our data can be considered free from error except from
that introduced by numerical precision, that we estimate to be of the order
of 107!2. Indeed, obtaining the function from a least square interpolation,
the statistical error obtained from the fit cannot be interpreted as a standard
error.

To put into practice what has just been said, we fit our data with differ-
ent functions, obtaining different estimates, and observe how such estimates
change by varying the function form. The variability of final extrapolated
values, under changing function, gives us an idea of the systematic error in-
troduced by function choice.

In Fig.(5.5) are shown the interpolations resulting from the comparison of two
and three stranded system transition point. In the two chain case a linear
fit of data returns a value of w; entirely in agreement with the analytical re-
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Figure 5.5: Comparison between the two and the three chains w; limit, and resulting
fit functions.

sult within the fourth digit (w; = 1.3333). While for the three chain system
we try to fit data with a quadratic (w; = 1.3326), cubic(w; = 1.3327) and
quartic (w; = 1.3328) polynomial function . We can indeed assume a sys-
tematic error of about 1074, and give an estimate of the transition point of
wey = 1.3327 + 0.0001, in agreement with the value reported in literature,
wy = 1.3326 £+ 0.0001 [20].

Having quantitatively checked the presence of a shift of the three chain tran-
sition point in relation to that of the two chain case, we are now interested
to understand if this behaviour is a consequence of an Efimov-like effect. In
order to do that we are going to search in our polymeric system, as main
features of the quantum Efimov effect, the presence of an infinite number of
three particles bound states which obey a geometrical scaling law (Eq.(2.17)).
In the transfer matrix theory at the thermodynamic limit we have seen only
the largest eigenvalue to be meaningful in the free energy computation, but
based on the formal analogy between Eq.(4.6) and Eq.(4.9) we expect that
also the logarithm of the transfer matrix eigenvalues, following the first, could
behave in the classical polymer system in the same way of the correspondent
quantum energies. If that were the case, we also expect, recalling Eq.(2.33),
that the quantities A f; = — In()\;/8) share the same properties of the hamilto-
nian eigenvalues of the quantum problem, so that they are negative and follow
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Figure 5.6: Af; and different interpolating functions, w = 4/3, o = 1/2, three chain
system.

the analogue of the quantum mechanics scaling law

Afita
Afi

where ¢ is a constant value dependent on system features.

The transfer matrix eigenvalues, corresponding to the excited states, result
smaller than eight even at the largest value of L that we have been able to
reach. In order to verify if the quantities Af; may turn out to be negative
in the L — oo, we will use the extrapolation method already described. In
Fig.(5.6) and Fig.(5.7) we plotted respectively A fo and A f3 against 1/L, with
different choices of function forms for the interpolation. In Tab.(5.1) and in
Tab.(5.2) are listed the extrapolated values, respectively of Afy and A f3, by
varying the polynomial function, and compared with those of the three chain
non interacting case (w = o = 1) for which we don’t expect Efimov effect,
since any chain behaves independently from the other chain. Similar results
are obtained for the other eigenvalues.

We can note that changing polynomial order the limit values ranges around
zero, so that we are not able to reach a conclusion about his sign; even if it
is interesting to observe that the results obtained for the interacting system
differ by four orders of magnitude with respect to that obtained for the non

=c (5.1)
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Figure 5.7: Af5 and different interpolating functions, w = 4/3, o = 1/2, three chain

system.

Table 5.1:
functions.

Limit value of Afy for L — oo, achieved with different interpolating

Polynomial type

w=4/3,0=1/2 w=1,0=1

Cubic
4th degree
5th degree
6th degree

—8.6-1078 —7.2-10712

—7.7-1078 —2.10712
4.1078 —6-10712
1.2-1078 —1-10712
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Table 5.2: Limit value of Afs for L — oo, achieved with different interpolating
functions.

Polynomial type w=4/3,0=1/2 w=1,0=1

Cubic 9.3-107 —5.5-10~1
4th degree 4.4-1077 —7.1-10712
5th degree 6.1-1078 —1.7-1071
6th degree -1.2-1077 —1.1-1071

interacting one.

To summarize, our data do not provide any evidence of the infinite series of
Efimov trimers. If present, Efimov excited bound states have an energy higher
than —10~"KpgT.

5.2 Eigenvectors

The fact that in the triple chain system the partition function depends on two
variable x and y does not change obviously the transfer matrix eigenvectors
role in the problem. Indeed, the components of the first eigenvector are linked
to the probability distribution of the two ending distances  and y. We remind
that z, y are two smallest distances between the three possible chain pairs.
Recalling that we have indexed the system states running over every row inside
the triangular domain in ascending order, in Fig.(5.8) we plot the components
of the first eigenvector normalized in such triangle for different w values and
L = 480. Before the transition point the probability to find the system in the
three-stranded state £ = y = 0 is not significant yet, and the system prefers
the states characterised by large distances between strands. After transition
to the three-stranded phase (w > w;) we observe that the states close to the
origin x = y = 0 are more probable, also at the critical point of the two chain
system, w = 4/3. Noticeably, our system has a direct transition from unbound
to three-stranded states, without an intermediate phase in which two chains
bound states are favoured.

In Fig.(5.9) are reported the eigenvectors related to the first six largest eigen-
values of the transfer matrix at the critical point w = 4/3 of the two chain
system. In order to enabling us to compare them, we multiply each vector for
the same normalizing constant of the first one.

The statistical meaning of those eigenvectors in this problem remains the same
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of previous case, that is their components give us information about the time
employed by the system to approach the equilibrium state in the thermody-

namic limit.
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Figure 5.8: Components of the first normalized transfer matrix eigenvector, com-
puted at L = 480, 0 = 1/2 for different w values. Note the different scales in the
colour bars.
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Figure 5.9: Components of the first six transfer matrix eigenvectors, computed at
L=480,0=1/2, w=4/3.

We observe that only for the Aj-eigenvector all components are positive,
in agreement with the Perron-Frobenius theorem.
The Ai-eigenvector describes a three-stranded bound state, as expected at
w > wy. Other eigenvectors describe oscillatory states, that are similar to
those obtained for the non-interacting three-chain (w = o = 1). This is
consistent with the eigenvalues analysis performed in the previous section.
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Chapter 6

Conclusions and future
perspectives

In this work we studied the denaturation transition of double-stranded and
triple-stranded DNA-like polymers setting up the transfer matrix technique
within simplified 141 directed lattice models.

We obtained results that give us a new evidence supporting the notion that
a shift in the transition point takes place moving from the two chain to the
three chain system. The achieved value of the transition point for the triple
stranded DNA is in agreement with that previously reported in literature of
wy = 1.3326 £ 0.0001 [20], to be compared with the exact result w; = 4/3 for
the double-stranded system. w = exp(—e¢/KpgT) is an adimensional param-
eter related to the base-pair interaction energy e. In order to have a finite
denaturation temperature (that is wy > 1), we set ¢ = 1/2, where o is the
adimensional cooperativity parameter weighting the opening of denaturation
bubbles.

The transfer matrix method allows us to reach a novel result, estimating the
variation in the free energy, upon addition of the third chain, in correspon-
dence of the critical point of the two chain system, that results of the order of
—10°KpT.

These results are in line with the prediction by the polymer analogue of the
quantum mechanics Efimov effect, that is the presence of three chain bound
states when there is not a correspondent two chain bound state yet.

On the other hand, we have not been able to verify the analogy with the other
features present in the Efimov effect, as the appearance of infinite trimer bound
states and the geometrical scaling law for the energy spectrum.

The reasons for this could be due to the restrictions imposed by the model
which has been used. In fact, the analogue of the quantum effect is predicted
in a continuum system, but the transfer matrix method was used to study a
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model defined on a simplified directed 1+1 lattice.

In order to understand the reasons of the incomplete analogy it would be
interesting to study a three-dimensional model for discrete polymer chains.
Such choice would enable us to discover if the discrepancies can be due to the
discretization or to the dimensionality of the system. Moreover, the transfer
matrix method cannot be used to study a 3-D Poland-Scheraga model and
numerical simulations would be probably the best option, as done for example
in [22].

Another interesting perspective would be to further explore the model used in
this thesis by varying the value of the parameter p, controlling the coopera-
tivity of the three chain bubble opening in the system. Indeed we can foresee
that, by setting it to a small value, a mixed phase of a two chain bound state
and the other one free, takes place in the DNA denaturation process, as al-
ready predicted by studying DNA model on a Sierpinsky Gasket [19]. In fact,
even though very often the results obtained on the Sierpinsky gasket turn out
to be true in the real world, nevertheless it would be interesting to obtain the
same result in a more realistic 141 lattice.
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