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Abstract

The radioactive isotope of aluminum 26Al was the first v-ray emitter observed in
our galaxy, playing a crucial role in understanding various nucleosynthesis processes
in the Universe, especially within the framework of Multi-Messenger Astronomy [2].
Due to its half-life (7.17-10° years), which is long on human timescales but extremely
short in interstellar processes, its presence can be directly observed through the
radiation produced by its decay. The presence of 26Al reveals valuable information
about the evolution of nuclei within the galaxy and supernova explosions. Moreover,
meteorites have been found in our solar system with clear remnants of 26Al decay,
indicating that there was an injection of radioactive aluminum before the formation
of “our” solar system [4].

Several space-born measurements and observations have been made regarding
the presence of 2°Al in our galaxy, which has a total mass estimated at 2.0 — 3.6
solar masses [3]. It has been shown that the production of this nucleus occurs
predominantly in very massive stars. Specifically, stellar models suggest that the
nucleosynthesis of 2Al occurs during three distinct phases in the evolution of such
stars: the hydrogen-burning phase in Wolf-Rayet stars, the convective carbon-shell
burning phase, and the explosive neon/carbon burning phase before and during
the core collapse in a supernova explosion [1] [7]. To explain the presence of 26Al
in the solar system, it has been hypothesized that this nucleus could have been
produced within Asymptotic Giant Branch (AGB) stars, evolved, luminous, and
cool stars characterized by a carbon and oxygen core [5]. The most widely accepted
hypothesis today is that 2°Al was injected by a cosmic wind from a nearby AGB
star or supernova into the protosolar nebula, playing a crucial role in the fusion,
differentiation, and crust formation of planetary bodies in the early evolutionary
stages of the solar system [34].

Two reactions of great interest to the nucleosynthesis of 26Al are the neutron de-
struction channels 26Al(n, a)*Na and 2Al(n, p)*Mg. These reactions involve 26Al
in both the ground state and the isomeric state at 228 keV [6], which has a relatively
short half-life (T 1= 6.35 s) and can be considered a different nuclear species in most
cases of astrophysical interest. However, the reaction rates are still poorly known,
and despite some studies showing a predominance of the 26 A19%(n, p)*Mg reaction,
a variation of a factor 10 in the reaction rates would lead to critical changes in the
astrophysical field.



Since experimental data on nuclear reactions involving 26Al are scarce and cover
only part of the energy range of astrophysical interest (where temperatures are
in the range of 1.1 — 2.3 GK), a more in-depth analysis of the cross-sections of
2 Al(n, a)**Na and 2°Al(n, p)*Mg is necessary. Research on neutron-induced reac-
tions on unstable nuclei is extremely challenging, even when the unstable nucleus
has a long half-life and can be used to produce a physical target. This difficulty
is mainly due to the unavailability of ®Al in nature (especially in pure form) and
the challenges of producing a neutron beam, often resulting in experiments with
non-negligible systematic errors and low statistics. A valid alternative to simplify
the experiment in such cases is the so-called “Trojan Horse Method” (THM). In
this work the THM is applied to the H(?*®A19%, a**Na)p and 2H(?*A19*, p*Mg)p QF
reactions.
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Introduction

Aluminum-26 (?°Al), a radioactive isotope with a half-life of approximately 7.2 10°
years, serves as a critical tracer for ongoing nucleosynthesis within our Galaxy. The
y-rays emitted from the decay of 26Al with an energy E = 1809 keV offer a unique
“snapshot” of nuclear processes, as the Galaxy is relatively transparent to this form
of radiation. High-resolution spectral measurements of 26 Al emission have confirmed
that the regions emitting 2°Al co-rotate with the Galaxy, supporting a widespread
origin rather than local sources [3]. The current mass of ?*Al in the Galaxy has been
estimated at approximately 2.8 + 0.8 solar masses, derived from the ~-ray emission

detected across the Galactic plane.

Satellite observations across the galaxy (COMPTEL and INTEGRAL) have con-
sistently shown that 2°Al is predominantly concentrated along the Galactic plane,
suggesting that massive stars, which are distributed throughout the Galaxy, play
a significant role in its production. In addition, meteorite studies have provided
evidence of 2°Al enrichment in the early solar system, potentially due to nearby
supernovae or other stellar events. However, the broad distribution of 26Al across
the Galaxy implies that it is primarily produced in star-forming regions rather than
from isolated stellar events.

These findings have significant implications for our understanding of the star

formation rate in the Galaxy, particularly for massive stars, which are the primary
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Figure 1.1: Abundances of 26Al in the all-sky map: as it is easily seen, 25Al is more concentrated in
the Galactic plane.

sources of 2Al. The data suggest that the current rate of core-collapse supernovae
events that contribute to the synthesis of 2°Al is approximately 1.9 4 1.1 events per
century [2]. This, in turn, provides an estimate for the overall star formation rate
in the Galaxy, aligning with other methods used to study star formation in spiral
galaxies similar to our own. From abundances of 2°Al, it is also possible to derive
the neutron stars (NS) formation rate and, consequently, the expected NS merger
and gravitational waves (GWs). Today, the neutron star formation rates derived
from abundances of 2Al and from observation of pulsars (psr = 2.8 &= 0.5 events
per century, to which we have to add RRATs, XDINs and Magnetars to reach the
value of 10.8777) are different, so there is a necessity to better understand processes

involving the formation and the destruction of 2°Al [2] [3].

The production and distribution of 26Al in the Galaxy not only offer insights
into stellar nucleosynthesis but also serve as a key tool for probing the large-scale
dynamics and structure of the Milky Way. Understanding the origin and behavior
of 25A1 can help refine models of Galactic evolution and the processes that govern

the lifecycle of stars.



1.1 LEVEL SCHEME OF 2°AL
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Figure 1.2: Level scheme of 26Al. Energies and J™-values are reported. The vertical arrows repre-
sent y-ray transitions. In 26Al, the thick vertical lines denote experimentally measured transitions,
while the decay rates for the thin vertical lines have been estimated using shell model calculations.

Aluminum-26 has two main states: the ground state (*Al9) and an isomeric state
(6A1™) with an excitation energy of 228 keV, as seen in Figure 1.2. The ground
state decays via beta emission to magnesium-26 (*Mg). The first excited state,
then, emits the characteristic y-ray at 1809 keV mentioned above, which has been

observed in the Galactic plane.

The isomeric state, on the other hand, has a much shorter half-life of 6.35 seconds
and decays directly to the ground state of 2 Mg without v emission. Due to the sig-

nificant difference in spin and parity between the ground and isomeric states, direct



~-ray transitions between these two states are highly suppressed. However, at high
temperatures, these states can achieve thermal equilibrium through intermediate
excited states of 26Al [1].

Thermal equilibration between 26A19 and 26Al™ depends on the temperature of
the stellar environment. At temperatures above approximately 0.45 GK, the two
states are in thermal equilibrium, meaning their populations are governed by the
Boltzmann distribution. Below 0.15 GK, the states are decoupled, and each decays
independently according to its own half-life. In the intermediate temperature range,
between 0.15 GK and 0.45 GK, the equilibration process is more complex, and
the effective decay rate of 2°Al can differ significantly from the rates assumed for

individual states [3].

Previous studies provided a basic framework for understanding the thermal equili-
bration of 26Al, but more recent work has revealed that this process is more nuanced.
Modern approaches utilize shell model calculations to estimate the «-ray transition
rates that facilitate equilibration between the ground and isomeric states. These
findings indicate that accurate modeling of 26 Al synthesis and decay requires careful
consideration of these thermal equilibration processes, particularly in environments

with temperatures within the critical range.

1.2 EXISTING DATA

A missing piece of information is the experimental determination of nuclear reaction
rates which influence the amount of 2Al produced in different stellar sites. Major
uncertainties to determine 26 Al abundances during convective C burning and explo-
sive Ne/C burning in stars before and during core collapse are the neutron-induced

destruction reactions (n,«) and (n, p).

In their sensitivity study, Iliadis et al. [6] conclude that present uncertainties of
the 2Al(n, p) reaction at stellar temperatures above 1 GK have the largest impact
on estimates of overall 26 Al production in massive stars. Among the candidates for
the pollution of the early solar system with 26 Al are asymptotic giant branch (AGB)
stars. The contribution of low-mass (< 4 M) AGB stars to this process depends

sensitively on how much 2°Al is destroyed by the neutron-induced (n,p) and (n, «)
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reactions. This requires an accurate knowledge of these reaction rates for stellar

temperatures around 0.3 GK.
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Figure 1.3: Left panel: the experimental reaction rates for the 26A19%(n, p)?°Mg channel from [8]
(blue line), from [9] (solid circles) and from [10] (green line). This latter result refers to the py chan-
nel only, leaving 2Mg in the ground state. Right panel: The experimental reaction rates for the
26A19%(n, )*3Na channel from [8] (blue line), from [11] (purple line with error bars) and from [10]
(green line). This latter result refers to the cig channel only, leaving 22Na in the ground state.

The data on the 26A19%(n, p)*Mg and of the 26A19°(n, a)**Na cross sections are
quite scarce. All the available data were measured at quite low energies, below
about 100 keV and often information on Mg and 23Na excited states contribution
to the total cross sections are only partial (or inclusive). Finally, the few data
sets often significantly disagree, though the situation is quite better at thermal
neutron energy, which lays way outside the astrophysical region of interest. Figure
1.3 shows a summary of the available data for the experimental 26 A19%(n, p)**M and
of the 26A19%(n, a)**Na reaction rates (the contribution of the 2Al™ to the total
cross sections and reaction rates is presently very uncertain, even two orders of

magnitude in some temperature ranges) [5].

In more details, there is a significant disagreement among the different experi-
mental data sets available in literature, as evidenced by the results from Koehler
et al. [8] and De Smet et al. [11] for the (n,a) channel. Additionally, the cross
sections reported by Koehler et al. [8] include either the p; or the o channels only,
which correspond to the population of the first excited state of 2 Mg and the ground
state of 2*Na. Furthermore, the data from Trautvetter et al. [9] seem to conflict
with the results from Koehler et al. [8]. Computational models, as could be seen in

[5], also exhibit considerable variation depending on the parameters used.
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This analysis of the existing data clearly highlights the need for new, more precise
measurements of the cross sections for 26 A19%(n, p)*Mg and 26A19°(n, a)*3Na, as the
current data are either questionable or, in the case of the high-precision data from
De Smet et al. [11], limited to a single channel (the (n, a4+ a;) channel) and only

partially cover the energy range of astrophysical relevance.



Astrophysical nuclear reactions

In this chapter the main features of nuclear reactions are briefly presented (see
Section 2.1), focusing in particular on the peculiarities of the astrophysical ones

(see Section 2.2) and those induced by neutrons (see Section 2.3).

2.1 BASIC FEATURES OF NUCLEAR REATIONS

A general nuclear reaction is expressed in the form:
A+xz—B+y (2.1)

or, equivalently, in the condensed form A(x,y)B. In this notation, A is the target, x
is the projectile, y is the ejectile and B is the residual recoil nucleus. Every nuclear

reaction must conserve the energy, so it is useful to define the reaction Q-value:
Q = (mx -+ mag — my — mB) . C2 = Ek,y + Ek,B — Ek#« — Ek,A (22)

where m are the masses of the nuclei and FEj are the kinetic energies. () > 0 means
that the reaction is exothermic, so it releases energy, while () < 0 stands for an

endothermic reaction that needs energy in order to occur.

Thermonuclear reactions are important for the nucleosynthesis and the energy

7



production in stars. A useful parameter to express the probability for a nuclear
reaction to take place is the cross section o, which is a quantitative measure defined

as follows:

# interactions per time

o =
(# incident particles per area per time)(# target nuclei within the beam)

NR/t
7 INGA N 2

where o is measured in barns [1b = 107*¢m?]. In reality, it is more useful to use
the so-called differential cross section, which gives the amount of particles produced
in the reaction as a function of the solid angle in which the detector is placed.
Assuming an ideal detector able to detect every particle produced, it is possible to

define the differential cross section as follows:

do N, (0)

o _ _N(0) 4
dQ ~ NopaAQ (24)

where N, () represents the number of y-type nuclei emitted at a specific polar angle
0, N, denotes the number of incident particles of type x, pa is the density of A-type
nuclei present in the target, and AQ is the solid angle subtended by the detector.

N,
N, Ejectiles .
Target e
Ny nuclei ,/
Beam particles Detector area
—————————————————————— (dF=r2dQ)
= L] L E?\
LE N L] 5 S —— & T T, ]
/().:__'_:-_'_:._-__'--L'.-_-. =
—_—
Beam area A

Target area A,

Figure 2.1: Schematic representation of the cross section of a reaction with a fixed target.

Both cross section and differential cross section help to determine another impor-
tant quantity in the astrophysical context, which is instead the reaction rate, which

is the number of reactions per time ¢ and unit of volume V' that occur in the stellar



plasma. The reaction rate is defined as:
RBy = NANCCUU (25)

where N stands for number density of the interacting particles and v is the velocity
of the projectile in a fixed target experiment or the relative velocity between the
incident nuclei in a stellar plasma. Equation 2.5 can be easily obtained from Equa-
tion 2.3 through little manipulation. However, differently from an experiment, the
particles in a star do not move with a fixated kinetic energy, but, since the stellar
plasma under quiescent burning conditions can be described as a non-degenerate

and non-relativistic gas of particles, follow a Maxwell-Boltzmann distribution [12]:

3/2 *7”’(}2
27:ZT) e 2k 4 dy (2.6)

It is possible to substitute the values of v and o(v) in Equation 2.5 using the

P(v)dv = <

Maxwell-Boltzmann equation in 2.6:
Rp, = (14 64z) "NaN, < ov > (2.7)

where d4, is a factor: d4, = 0 if A#x and d4, = 1 if A=x. It is also possible to

write:

<ov>= /OOO P(v)vo(v)dv (2.8)

Once the rate is determined, it becomes possible to obtain information on the
time evolution of the abundances of the nuclei involved in a specific nuclear reaction.
For a generic reaction A(x,y)B, the change of abundance of nuclei A caused by the

bombardment of nuclei = is expressed as:
dN
<d—t"‘) = — <ov> N,Ny (2.9)

The average lifetime of nuclei A depends, therefore, on the densities N4 and N, and
the reaction rate per particle pair. This last quantity depends on the temperature of
the astrophysical environment. Moreover, the cross section depends on the energy,
which in turn reflects the dependence of the abundance variation on the mechanism

through which the reaction proceeds.



2.1.1 CENTRIFUGAL BARRIER

The strong nuclear force is an attractive force that binds nucleons together. The
nuclear strong force has unique characteristics: it acts only at distances on the order
of a femtometer (1 Fermi), comparable to the size of a nucleus, it is attractive at
medium distances and repulsive at very short distances, preventing nucleons from
collapsing into each other. In order to model the behavior of a neutral nucleon (i.e. a
neutron) under this force, we use a central potential V' (r), which is only a function
of the modulus of the radial distance r, and the time-independent Schroedinger

equation for a single particle:

h — —

o + VI 01 = Eu() (2.10)
m

where A is the reduced Planck constant, m and E are respectively the mass and the

total energy of the particle and 1 (7) is the wave function of the particle. In order

to isolate the radial part, we separate the wave function into a radial part and an

angular part:

() = R(r)Yim(6, ¢) (2.11)
where R(r) is the radial wave function and Y},,,(0, ¢) are the spherical harmonics
that describe the angular dependence.

Substituting into the Schroedinger equation and focusing on the radial part, we
obtain the radial Schroedinger equation:

B0 4 (v + DY ) =ty 212

1(I+1)R?
2mr2

to the nucleon angular momentum. This term creates an effective potential that

where u(r) = rR(r) and the term

represents the centrifugal potential due

pushes the neutron outward if it has non-zero angular momentum.
It is possible to calculate the transmission probability P, of such a barrier for a free
neutral particle, such as a neutron: P, o< E2* and hence o x E2 [35]. As a

consequence we have:

« s-wave neutron capture usually dominates at low energies (except if hindered
by selection rules);

10



o higher [ neutron capture only plays role at higher energies (or if [ = 0 capture
suppressed).

100 g
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Figure 2.2: | dependence of penetrability through centrifugal barrier (left) and dependence of neu-
tron capture cross section (right). It is clearly shown that at low energies lower [ values dominate
the reaction rate and that the cross section decreases strongly with decreasing energy.

2.1.2 COULOMB BARRIER

In the specific case of a nuclear reaction between two charged particles, it is pos-
sible to define another barrier that comes into play, which is the Coulomb barrier
generated by the repulsion of the charges of the nuclei. In order to simplify the
discussion, let us consider two nuclei A and x with charge Z4 and Z,, respectively.
If these nuclei are at distances larger than their nuclear dimensions r, = R4 + R,,
they experience a Coulomb repulsion force and therefore the Coulomb potential

energy is equal to:
. 1 ZAZIG2
dmey 1

Ec(r) (2.13)

At large distances (r >> r,) the interaction between the two nuclei is essentially
governed only by the electromagnetic force, while at distances comparable or smaller
than the nuclear dimensions the interaction occurs only by means of the strong
nuclear force. The net result is seen in Fig. 2.3.

In a classical picture, in order for the nuclear reaction to take place, the distance

between the colliding nuclei has to be smaller than r,, so the incident energy has

11



to overcome the threshold value of:

ZAZZ

Tn

B, = 1.44

MeV (2.14)

Considering both stellar and primordial nucleosynthesis processes, the energy E of
the incident nucleus can vary from 107! to 102 keV. This value is typically much
lower than the Coulomb barrier between the two interacting nuclei. Therefore,
from a classical point of view, the reaction should be impossible because crossing
the Coulomb barrier is not permitted.

However, from a quantum point of view there exists a probability, small but finite,
that such a crossing can occur also in the conditions where the relative energy
between the interacting nuclei is smaller than the Coulomb potential energy. This
phenomenon of penetration of the Coulomb barrier, known as “tunnel effect”, is
of fundamental importance for stellar processes. The same reasoning can also be

applied to the centrifugal barrier, as long as [ > 0.

Yir)
Ee
Coulomb barrier
S ah
\ projectile
E N --‘-}Tx
0 - ‘ »
t
Classical Relative Distance r
turning point
Re
-V
v

Nuclear Radius

T

Figure 2.3: Total potential between two interacting nuclei as function of their relative distance r.
The sharp shape of the Coulomb barrier around the nuclear radius r,, is only indicative.
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2.1.3 ELECTRON SCREENING

The discussion so far has taken into account only bare nuclei, where the forces in
play are only the obvious Coulomb repulsion plus, as seen in the previous subsection,
the centrifugal barrier. In reality, for nuclear reactions studied in the laboratory,
the target and the projectile are respectively neutral atoms or molecules and ions.
This implies the presence of an electronic cloud around the interacting nuclei and
therefore of an electronic shielding potential. This potential is called electron screen-
ing [14]. The presence of a negative electronic potential reduces the height of the
Coulomb barrier between the two interacting nuclei, making it zero outside the
atomic radius R,. Since the presence of the electron shielding reduces the height of
the Coulomb barrier, the probability of interaction between the two nuclei increases

and so does the reaction cross section.

E.

Bare nucleus .

f /Elecnomc cloud
5
= E+U. = Ew
& ST R — e ——
; 0 r_lucleus -

Rﬂ Ra RC I

Figure 2.4: Behavior of the potential between charged particles: the presence of the electron cloud
reduces the Coulomb barrier between the interacting nuclei. The electron screening effects cause an
enhancement of the cross section.

2.2 FEATURES OF ASTROPHYSICAL REACTIONS

Nuclear reactions play a fundamental role in astrophysical environments, being cru-
cial for energy production, stellar evolution and nucleosynthesis. These reactions
are typically referred to as thermonuclear reactions because a star contracts, con-

verting gravitational energy into thermal energy until the temperature and density

13



reach levels high enough to initiate these processes. In the stellar environment, un-
der thermodynamic equilibrium, the velocities and energies of interacting particles
follow the Maxwell-Boltzmann distribution. The temperatures, which vary depend-
ing on the star’s mass and evolutionary stage, generally range between 10° and 10°
K. By using the relationship between energy and temperature given by £ = kgT),
where kp is the Boltzmann constant, the energies at which thermonuclear reactions

occur in stars can be estimated.

In this section, we will focus on the different types of astrophysical reactions and
the ways to determine the cross sections of each of them. The particular case of

reactions induced by neutrons will be treated in the following Section 2.3.

2.2.1 NON-RESONANT REACTIONS

Non-resonant reactions are direct transitions from the initial state to the final state
without the formation of an intermediate excited state. In this case, the probability
of tunneling through Coulomb barrier for charged particle reactions at energies
E << FE¢, assuming full ion charges and zero orbital angular momentum, can be

written as:

sl

P oxe ™ =¢”

(2.15)

where 7 is called Sommerfeld parameter and for a generic interaction between two

charged nuclei, it can be written as:

[ ZsZ,e?

and determines an exponential drop in the abundance curve, as can be seen in
Fig. 2.5. The factor 27n is also called Gamow factor and can be expressed as
2mn = 31.29Z4 7, (u/E)*/? with p in amu and E in keV.

For non resonant reactions of the type a + X — b+ Y, the cross section can be

written as:
aoch%B-Pl(E)-|<b—|—y|H|A+x>|2 (2.17)

where A%, is a geometrical factor that includes the particle’s de Broglie wave-
lenght, P,(E) is the penetrability probability which depends on projectile angular
momentum [ and energy F, while | < b+ Y |H|a + X > | is the interaction matrix

14



P, x exp(-271)

penetrability [a.u.]
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energy [a.u.]

Figure 2.5: Penetrability, the probability of tunneling, as a function of energy: it is easy to see the
exponential drop of such probability near 0.

element. An easier way to express this formula is given by the following relation
[12]:
1
o(E) = Ee_Q’T"S(E) (2.18)

in which the first term has non-nuclear origin, but only strong energy dependence,
whereas the second contains has nuclear origin and consequently a weak energy de-
pendence. Equation 2.18 defines the so-called astrophysical S(E)-factor. If angular

momentum is non zero, the centrifugal barrier has also to be taken into account.

Substituting Eq. 2.18 in Eq. 2.8, it is possible to obtain the following expression:

E b

< ov > /S(E)ekBTﬁ (2.19)

which is a function that has its maximum at an energy Eg, that is called Gamow
energy peak, that depends on the type of reaction and the temperature. Since for
non-resonant reactions the astrophysical factor S(E) varies little with energy (as
shown in Fig. 2.6) [15], the behavior of the Eq. 2.19 depends only the exponential
term in the integral function.

The Gamow energy peak has a proper width and is the energy range in which the

reaction of interest has the maximum probability of happening, so it identifies the

15
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taken from [12].

energy window of interest, as can be seen in Fig. 2.7.

_ (bksT 3/2_ 2 72 A\1/372/3
Eo= (= = 0.122(Z322A) T MeV (2.20)
4
AEG = —+/EgkpT = 0.237(Z% 22 A)VOT2/% Mev (2.21)

V3

where A is the reduced mass. Thermonuclear reactions within a star’s core primarily
occur within an energy range centered around the Gamow energy peak. The width
of this range depends on the nuclear species involved. This energy region is signifi-
cantly lower than the Coulomb barrier (in quiescent burning, Eg/Ec ~ 0.01 —0.1),
making it extremely challenging to directly measure reaction cross sections at as-
trophysically relevant energies. Consequently, there are considerable uncertainties
in determining o(F). In order to address this issue, the typical approach involves

measuring S(E) over a broad energy range down to the lowest achievable labora-
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Figure 2.7: Representation of the Gamow peak as a convolution of the Maxwell-Boltzmann distribu-
tion and the probability of tunneling through the Coulomb barrier.

tory energies, and then extrapolating the results to astrophysical energies using the

theory of nuclear reactions.

2.2.2 RESONANT REACTIONS

Resonant nuclear reactions occur when the energy of the incoming particles aligns
closely with the excitation energy of a specific state in the intermediate compound

nucleus. This situation can be described by the formula:
A+2—C"—= B+y (2.22)

where C* is the compound nucleus at an excited state. For a reaction to be resonant,

the following condition must be satisfied [13]:
Ecy+Q =E, (2.23)

where Fc)s represents the center-of-mass energy of the reacting particles A and =,
(@ is the reaction threshold energy, and E, is the resonance energy corresponding
to the excited state of C*.
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The probability of such reactions is described by the Breit-Wigner formula, which

provides the resonant cross section opy as a function of the energies involved [12]:

2J+1 Iy
(2J1 4+ 1)(2Jr + 1) (E — E,)? 4+ (I'/2)?

opw = A (2.24)

where:
o the first term is the geometrical fraction term proportional to 1/E;

 the second term is a spin factor in which J is the spin of the compound nucleus,
J1 is the spin of the projectile and Jr the one of the target;

o the third term is strongly energy dependent: I'; is the partial width for decay
as “entrance channel configuration” (i.e. the probability of compound nucleus
formation via entrance channel), I'y is the partial width for decay as “exit
channel configuration” (i.e. the probability of compound nucleus decay via
exit channel), F, is the resonance energy and I' is the total width of the
compound’s excited state.

It is important to underline that partial widths are not constant but energy

dependent. In fact they can be written as:

2h
i = 2 A(E)0 (2.25)

where P(E) gives strong energy dependence and 6, is the so called “reduced width”

that contains nuclear physics info.

It is possible to distinguish two simplifying cases of resonances:

 narrow (isolated) resonances;

e broad resonances.

When only narrow, isolated resonances (so that I' << E,.) are near astrophysically
relevant energies, they dominate the reaction rates, making it easier to approximate
certain parameters, such as the Maxwell-Boltzmann distribution and the partial
widths, as constant over the resonance region. The reaction rate can be expressed

through the following formula:

2w 3/2 9 Er
< oV >19= D e kBT 2.26
oo o= () R ) (2.26
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2J +1 0y
2J1+1)(2Jr+1) T

where the rate is entirely determined by the “resonance strength” w~v and the en-

wy = ( (2.27)

ergy of the resonance F,. The exponential dependence on energy means that the
rate is strongly dominated by low-energy resonances (F, — kgT') and that small
uncertainties in E,. (even a few keV) imply large uncertainties in the reaction rate,

as can be seen from Fig. 2.8.

MAXWELL- BOLTZMANN
DISTRIBUTION

/ NARROW RESONANCE

b

WIDTH M<< ER

RELATIVE PROBABILITY

=
ER ENERGY E

Figure 2.8: Isolated narrow resonance near the energy range of astrophysical interest. The Maxwell-
Boltzman distribution is assumed constant over resonance region. The Partial widths are also con-
stant I';(E) < T';(E,). Figure taken from [12].

In the case of broad resonances (I' ~ E,.) the peak is broader than the relevant
energy window for the given temperature. In this case the cross section can be
determined using the Breit-Wigner formula seen in Eq. 2.24 with the energy depen-
dence of partial and total widths, differently from the case of narrow resonances.
There is also a possibility of overlapping broad resonances that give interference
effects and resonances outside the energy range can also contribute through their

wings.
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2.2.3 SUB-THRESHOLD RESONANCES

In nuclear astrophysics, sub-threshold resonances are a crucial phenomenon where
the energy F, associated with an excited state C* of the compound nucleus is below
the threshold energy FE,;, required to form C* directly. Specifically, a sub-threshold
resonance occurs if E, < ), where () is the reaction’s Q-value.

Although the resonance energy lies below the threshold, its influence extends above
the threshold because of the energy width (I') of the state. This extension can
provide a significant contribution to the nuclear reaction cross-section and, conse-
quently, to the astrophysical S-factor. The physical basis for this lies in the tails
of the resonance, which extend into the region of astrophysical interest, as depicted
in Fig. 2.9. In this case, the contribution of such resonances is evaluated using the

Breit-Wigner formula for cross-section calculations.

)
g EXTRAPOLATION | DIRECT EXPERIMENTAL
o l MEASUREMENTS T
(¥
v !. LOW-ENERGY
o R TAIL OF BROAD
10 RESONANCE
o
’
. NONRE SONANT
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Est F £
R R 1 INTERACTION ENERGY ¢

Figure 2.9: Example of sub-threshold resonance and its possible effects on the cross section in the
energy range of astrophysical interest. Figure taken from [12].

2.3 REACTIONS INDUCED BY NEUTRONS

Non-resonant neutron-induced reactions typically involve a two-particle exit chan-
nel, described schematically as A(n,z)B. As in the case of charged particles, these
processes can be understood as two-step interactions, where an excited intermediate

compound nucleus C* is first formed and then decays into the observed products B

20



and x. Mathematically, the cross-section for such reactions can be expressed in a

semi-classical form:
Oain X App| < B+ z|Ho|C >< C|H|A+n > | (2.28)

where \ppg is the de Broglie wavelength of the incident neutron, H; and H, are the
interaction Hamiltonians for the entrance and exit channels, respectively.

The probability of forming the compound nucleus via neutron capture is encoded
in the partial width I',,(£,) defined as follows:

LW (Ey) < v, P, (Ey) (2.29)

where v, is the neutron velocity, P, (E,) is the penetration probability through the
centrifugal barrier, and [,, is the orbital angular momentum of the neutron.

In the low-energy regime (typically E,, < 500 keV) neutron-induced reactions are
dominated by s-wave interactions (I, = 0), as higher partial waves are suppressed
due to the centrifugal barrier. For s-wave neutrons, the penetration probability
P, (E,) approaches unity, and the cross-section becomes inversely proportional to

the neutron velocity:
1

o(E,) " (2.30)
This results in the reaction rate per particle pair is nearly constant at astrophysical
energies, where thermal neutrons dominate (E,, ~ kgT'). The low-energy behavior
of neutron cross-sections simplifies the determination of reaction rates in astrophysi-
cal environments. For non-resonant neutron-induced reactions, the constancy of ov,
ensures that reaction rates are less sensitive to temperature variations compared to
reactions involving charged particles. However, as neutron energy increases, contri-
butions from higher partial waves (I, > 0) begin to play a role, and the cross-section

acquires a mild velocity dependence.

As neutrons are particles without electric charge, they are not subject to the
electromagnetic fields generated by the protons in the nuclei involved in the reaction,
so they are more penetrating in the matter. Being subject only to the strong nuclear
force generated by the other nucleons, neutrons can travel within matter even for

a few centimeters without being detected. Neutrons interact with atomic nuclei
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giving origin to [16]:

« emission of secondary radiation (n, «), (n,7), (n, p) or (n, fission), in particular
for slow neutrons (F, < 100 keV);

« Change in energy and direction of the neutrons, especially in the case of elastic
scattering for fast neutrons (F, > 100 keV).

2.3.1 FEATURES OF NEUTRON INDUCED REACTIONS

Producing neutron beams for experimental studies poses significant challenges, pri-
marily due to the unique characteristics of neutrons. Unlike charged particles, neu-
trons are unaffected by electromagnetic fields, making them difficult to transport
or accelerate. Furthermore, using pure neutron targets is very difficult due to their
short mean life.

In realizing neutron beams, the beam energy can only be manipulated indirectly,
primarily through moderation, a process that slows neutrons down using materials

like water or graphite.

In most neutron production methods, the emitted neutrons exhibit a Maxwellian
energy distribution. Consequently, specialized techniques are required to determine
the energy of each individual neutron involved in the reaction of interest. For two-
body reactions in the final state, the conservation of momentum and energy can be
utilized to select specific neutron energies by measuring their emission angles.
Another widely employed technique is the Time-of-Flight (ToF) method. This ap-
proach involves measuring the time a neutron takes to traverse a known distance,
leveraging the relationship between kinetic energy and velocity, £ = %va. To
achieve high precision in time measurements, flight paths typically extend over sev-

eral tens of meters.

The experimental methods discussed in the previous paragraphs provide a basis
for understanding the dynamics of reactions induced by neutrons, yet their applica-

tion is often hindered by significant obstacles:
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o as already said, neutron beams typically exhibit a Maxwellian energy distri-
bution, making it necessary to use of advanced tagging systems to isolate
neutrons of the desired energy, minimizing the influence of background neu-
trons and enabling precise reaction studies;

e in the case of mono-energetic neutron beams generated via binary reactions,
achieving sufficient statistical data often requires long periods of time, given
the relatively low flux of neutrons at specific energies;

o the ToF technique resolution is related on the length of the flight path: ex-
perimental setups using this technique often require lengths of tens of meters,
which introduce additional logistical and instrumental complexities;

e mneutrons can activate surrounding materials in the experimental environment,
leading to the emission of secondary radiation.

As we will see in Chapter 3, the THM offers an innovative solution to some of
these challenges by employing a virtual neutron source embedded within a Trojan

Horse nucleus, such as deuterium. This approach provides several advantages:

o the method enables the study of neutron-induced reactions directly at astro-
physical energies, bypassing the need for neutron beams and avoiding compli-
cations related to barrier penetration and electron screening effects;

« only a single beam energy is required to explore a wide range of center-of-mass
energies: this eliminates the need for energy-tagged neutron beams, thereby
streamlining the experimental design;

» while not yielding absolute cross-section values, THM allows for comparison
with direct measurements via normalization procedures, ensuring consistency
and reliability of the extracted data.
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Trojan Horse Method (THM)

In order to overcome the challenges outlined in the previous chapter, several alterna-
tive methods have been developed in recent years: rather than studying the reaction
of interest directly, these approaches rely on different techniques to derive the cross-
section of astrophysical reactions indirectly. These techniques, collectively referred
to as indirect methods, are each grounded in a specific reaction mechanism and
are connected to the cross-section of astrophysical interest through a corresponding

theoretical framework.

Among these techniques there is the so called Trojan Horse Method (THM).
This approach utilizes a transfer reaction involving an unbound system to measure
the cross-section of a two-body process. It is particularly effective for studying
charged particle reactions at astrophysical energies, allowing the extraction of the
astrophysical two-body cross-section from the quasi-free (QF) contribution of an
appropriate three-body reaction. For charged particle-induced reactions, the THM
[18] [19] is a robust indirect technique: the three-body reaction is induced at energies
above the Coulomb barrier in the entrance channel, allowing the THM to bypass
complications such as Coulomb barrier penetration and electron screening effects
[17].

In fact, while direct measurement of the S-factor at ultra-low energies is notoriously

challenging and necessitates the extrapolation of experimental data obtained at
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much higher energies, the THM provides a direct way to extract the S-factor in
the Gamow energy region without extrapolation. However, as the method does
not yield absolute cross-section values, a normalization procedure based on direct
measurements is required, making THM a complementary tool for investigating

nuclear reactions in astrophysics.

In recent years, the THM has been extended to the study of neutron-induced reac-
tions. This development leverages deuterium as a virtual neutron source, simplifying
experimental setups for studying such reactions and enabling precise investigations

of neutron-related nuclear processes.

3.1 (QUASI-FREE BREAKUP MECHANISM

In the study of the interaction between two nuclear systems, it is possible to distin-
guish two extreme cases: direct and compound nucleus reaction. In direct reactions,
the interacting nuclei exchange nucleons without forming an intermediate state, re-
sulting in a rapid interaction time (~ 10722 s). On the other hand, compound
reactions involve the formation of an intermediate excited nucleus, redistributing

kinetic energy into internal excitation before decaying into final states.

The THM is based on the theory of direct nuclear reactions and in particular
of QF breakup mechanisms [19] [20], that can be carried out using the Impulse
Approximation (IA) [18] [19] [20] [21]. The QF mechanism is a specific subset of
direct reactions where one of the reaction participants acts as a spectator, minimally
interacting with the primary participants of the reaction of interest.

For the sake of simplicity, let us consider the reaction A +a — ¢+ C' + s, where
a (the target nucleus, in this case) can be described with high probability by the
wave function of a cluster configuration. Let these clusters be x and s (in short,
a=x®s). At this point, the Impulse Approximation (IA) can be employed, which

relies on the following three assumptions:

» the incident particle A never interacts simultaneously with both clusters of a;

o the interaction between the projectile A and z occurs as if z were a free
particle, meaning that the presence of s does not influence the interaction;
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 the binding energy of the clusters in a is negligible compared to the interaction
energy between A and z.

Under these conditions, s serves as a spectator, retaining its original momentum
distribution within a and not actively participating in the reaction. This framework
enables the study of the two-body reaction A(zx,c)C' through the three-body QF
reaction A(a,cC)s. The reaction is sketched in Fig. 3.1.

Figure 3.1: Diagram of the functioning of a generic nuclear reaction studied with the THM.

The nucleus a (called “Trojan Horse nucleus”) is chosen because of:

o its large amplitude in the a = x @ s cluster configuration;
o its relative low binding energy;

o its known z — s momentum distribution |®(p;)| in a.

3.2 KINEMATICAL CONDITIONS

The QF mechanism imposes specific kinematic constraints that simplify reaction
analysis:

o the momentum distribution of the spectator s post-breakup mirrors its origi-

nal distribution in a, with a peak centered around zero momentum for s-wave
interactions for example;
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« the reaction products (c and C') emerge at characteristic angles (. and 0¢, re-
spectively) corresponding to QF kinematics. These “QF angles” are essential
for selecting events dominated by the QF mechanism.

By detecting particles ¢ and C' at these angles, it is possible to isolate the QF
contribution to the reaction, minimizing contamination from other mechanisms.
One of this other mechanisms is the so called sequential mechanism: in some cases,
the same final-state particles (s, ¢, C') can arise from sequential decay processes in-
volving intermediate compound states. For instance, the formation and subsequent
decay of a nucleus X; can mimic the products of a QF reaction, as seen in Fig. 3.2.
These sequential mechanisms introduce a background signal that must be identi-
fied and subtracted during data analysis. The QF mechanism’s unique kinematic

conditions aid in discriminating it from these sequential processes.
S
D c
@
g

Figure 3.2: Formation and decay of intermediate states during the A — a interaction: these kind
of sequential mechanisms lead to the same particles in the exit channel, causing background for the
event selection.

3.3 FEATURES OF THE THM

The idea of the extension of the QF mechanisms to reactions of astrophysical interest
was proposed by Baur in [18]. However, in that idea, it was foreseen that the Fermi
velocity of the particle x in a, which is the velocity associated with the relative
motion of one of the particles in the Trojan Horse nucleus, could partly compensate
the energy of the incident nucleus a (see Fig. 3.3), which implies a relative energy
FE 4, comparable to the energies at which thermonuclear reactions are triggered in
the astrophysical environment. However, Baur’s idea is very difficult to achieve
experimentally. In order to overcome these problems, a measurement technique

was devised using the low binding energy Eg of a nucleus to reach the astrophysical
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Figure 3.3: Sketch of a general reaction with a cluster particle: vg is the Fermi velocity, so the
relative velocity of x inside the cluster.

energies and exploiting the knowledge of QF mechanisms, developed in Catania in
the 70s and 90s by researchers from Catania and Zagreb [19] [20]. In detail, it is

possible to select the accessible energy region according to the relation:
Ecy = Ear — Ep,, (3.1)

where E¢ojs is the centre of mass energy of the 2-body astrophysically relevant
reaction, F,, is the center of mass energy for the reaction of the lower pole in Fig.
3.1 and Ep_, represents the binding energy of the system x — s. From the law of
conservation of energy and in the hypothesis of post-collision prescription suggested
by [23], the value of E¢yy is:

ECM = ECC - QQ bodies (32)

where Q3 pogies 18 the Q-value for the two-body reaction A+ x — C + c.

3.4 THM FORMULATION IN PLANE WAVE IMPULSE
APPROXIMATION (PWIA)

The quasi-free (QF) break-up mechanism, central to the Trojan Horse Method
(THM), can be rigorously described using various theoretical formalisms. Among
these, the Distorted Wave Impulse Approximation (DWIA) (Chant and Roos, 1977),
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the Modified Plane Wave Born Approximation (MPWBA) (Typel and Wolter,
2000), and the Plane Wave Impulse Approximation (PWIA) (Fallica et al., 1978)
are most frequently employed. Each approach offers varying degrees of complexity

and precision.

The DWIA is the most sophisticated formalism as it accounts for distortions in
the momentum distribution of interacting particles. These distortions arise from
phenomena such as Coulomb interactions between the nuclear fragments, which are
significant at low energies. While the DWIA provides nuanced corrections, studies
have shown that both the DWIA and the PWIA yield similar energy dependencies
for the deduced cross-section when the recoil momenta of the spectator particle k,
are less than 100 MeV /c. This simplifies the problem significantly, as in such cases
the PWIA becomes a viable and computationally efficient alternative [24].

The PWIA operates on three primary assumptions, collectively referred to as the
impulse approximation (IA) already seen in Sec. 3.1 [24]. Under these assumptions,
the triple-differential cross-section for the reaction A+a — C'+c+s can be expressed
in the PWIA as:

o
dQ.dQcdE,

HOES
d%) (3.3)

< () e (4

CM

where:

o KF' is a kinematic factor accounting for phase space population and depend-
ing on the observable variables. In particular:

kkiEE E2,,

KF =
kaE.k.Es + E.lk. — kacos(0.) + kccos(6c — 6,)]

(3.4)

where k; and E; are, respectively, the wave numbers and the energy of the
i—th particle involved in the reaction, while #; indicates the respective angles;

. |Q>(p2)|2 represents the distribution of impulses, that is the Fourier transform
of the wave function ¢(7) of the relative motion of the clusters in a:

“+00

1B(py)| = (2)2/® o(F)e~*Fdr (3.5)

—00
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(dggw)gﬂofs is the Half-Off-Energy-Shell (HOES) two body cross section for
the reaction A(x,c)C induced at energy Ecps in the centre of mass. The
cross section is referred to as “half off-energy shell” because the participant
particle z in the reaction is virtual [25]. This arises from the binding energy of

the Trojan Horse nucleus, which disrupts the standard relationship between

energy and momentum given by the mass-shell equation, E, = %. Under

quasi-free (QF) conditions, the relative energy between a and x is instead
determined by the relation:

2
Doz

Eaa: -
2mar — €az

(3.6)
where €,, represents the binding energy of the Trojan Horse nucleus. However,
in the exit channel, this relationship is restored because the emitted ¢ and C
particles are real. In the context of the THM, the cross section derived for
the virtual two-body reaction reflects only the nuclear component, as contribu-
tions from the Coulomb and centrifugal barriers are absent [19]. This allows a
direct focus on the nuclear processes driving the reaction. The half-off-energy-
shell cross section is expressed in arbitrary units. Consequently, it must be
normalized using cross-section values obtained from direct measurements at
suitable energies to ensure consistency and enable meaningful interpretation.

Reversing Eq. 3.3, we can obtain the HOES cross-section:

do HOES __da
( Az) o __d9cd0cdE, (3.7)

A ) ey (KF)|0(p)]

To transition from the HOES cross-section to the direct two-body cross-section,
corrections for the Coulomb field effect are introduced using the penetration factor
P, [Cherubini et al., 1996]:

dos don, \ HOES
z W, P, z 3.8
ds h Z o ( ds )CM 38)

where P, represent the transmission coefficient for the [** partial wave and W; is the

weight coefficient through the barriers.
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3.5 THM IN ?AL%(n, a)®NA AND °AL%(n,p)**Ma

This thesis focuses on the experimental measurement of the cross sections for the
reactions 20Al19%(n, a)**Na and 20Al%%(n,p)?°Mg using the Trojan Horse Method
(THM) applied to the quasi-free reaction 2H+26Al. As outlined earlier, the aim
of the experiment was to analyze the three-body decays *H(*°Al%%, a?*Na)p and
2H(?6A19%, p*Mg)p, specifically considering only events consistent with the quasi-
free mechanism required to satisfy the THM conditions for studying the correspond-

ing two-body decays.

The deuteron was selected as the Trojan Horse nucleus because of its very low
proton-neutron binding energy (Ep = 2.2 MeV) and the well-characterized mo-
mentum distribution of its clusters, determined through independent experiments
[26]. Furthermore, it has been verified that the angular momentum coupling of the
deuteron is predominantly in the s-wave state (96%) meaning that the cluster mo-
mentum distribution peaks around 0 MeV /c [27]. In particular its analytical form
is given by the Hulthén function as expressed by the following equation:

o—ar _ o—br 1 1

O x ——— = P = o) ¢ | s

(3.9)
where a = 0.2317 fm! and b = 1.202 fm! are fixed [26]. The shape of the p — n

relative motion momentum distribution is sketched, in arbitrary units, in Fig. 3.4,

while the reactions are illustrated schematically in Fig. 3.5.
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Figure 3.4: Momentum distribution for the p — n relative motion inside the deuteron. The shape of
such function is described by the Hulthén function.
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Figure 3.5: Sketch of the reactions analysed in this work.
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Experiment and data analysis

4.1 RADIOACTIVE IoN BEAM (RIB)

Experiments with radioactive ion beams (RIB) are generally characterized by low
statistics, and during beam production, numerous technical and physical challenges
must be addressed. The experiment under consideration, utilizing 2°Al, which is a
metastable nucleus with a very long half-life, will not face issues related to short
half-lives. However, this does not mean that other equally significant problems do

not need to be taken into account during the experiment design phase.

In particular, it is essential to ensure that the chosen reaction mechanism provides
the highest possible cross section for the process of interest. This goal is achieved
by optimizing the combination of projectile and target, intensity of the primary
beam and the power dissipated in the target. Additionally, beam production must

be selective to avoid contamination by unwanted nuclear species.

4.1.1 THE ISAC raciLiTY AT TRIUMF

The experiment was conducted at the TRIUMF laboratory, located in Vancouver,
Canada, where the ISAC (Isotope Separator and ACcelerator) facility employs the

Isotope Separation On-Line (ISOL) technique for the production of radioactive ion
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beams. An accelerator, called a driver, delivers high energy light projectiles, the
primary beam, toward a thick target. The light projectiles, protons or light ions,
interact with the target nuclei producing neutral radioactive isotopes. These neu-
tral atoms are then transported into a source where they are ionized and extracted
at source potential. The radioactive ions are magnetically separated and post ac-
celerated to reach the final energy requested [28] [29]. The ISOL method produces
high quality emittances but the complicated and relatively slow process reduces the
possibility of extracting isotopes with few ms half-lives. However, in this case, as

mentioned above, the half-life of 26Al is long, so this is not an issue.

In the TRIUMEF facility, the primary beam is produced through a H™ cyclotron,
which is the largest cyclotron in the world and has operated for almost 35 years. It
accelerates H™ ions up to an intensity of 250 uA to a maximum energy of 500 MeV.
The H™ are then stripped and protons are extracted in three different beam lines
at different energies, the maximum energy being 500 MeV. One of these beam lines
is dedicated for the ISAC radioactive beam production. In this case the beam is
extracted at 500 MeV and up to 100 pA [28].

The ISAC facility has two independent target stations. This allows service on
one target station while producing and delivering radioactive beams with the other.
Each target station is composed of five modules. The entrance module houses
the diagnostic and protection monitors for the proton beam. The target module
contains the target and the source: this module is routinely removed to change both
target and source. Three target modules are available (Nb, SiC, or Ta, depending
on the experimental requirements). The beam dump module is located downstream
of the target module. The last two are the extraction modules housing the optics
elements. They are oriented perpendicular to the proton beam direction.
Downstream of the targets there is a common preseparator. The target modules
and preseparator are inside a concrete shielded area. The preseparator reduces the
radioactivity transported outside the shielded area in the downstream beam line.
After the preseparator the RIBs are selected using the mass separator. This device

is installed on a biased platform to increase the resolution [29].

The first stage of acceleration uses a radio frequency quadrupole (RFQ) acting
as an injector. The RFQ boosts the energy from 2 keV/u to 150 keV/u. It can
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accelerate mass to charge ratio of 3 < A/Q < 30. The eight meter long resonant
structure is composed of nineteen split rings supporting the electrodes. Part of the
beam transmitted but not accelerated is stopped into a fixed collimator downstream
of the RFQ. After the RFQ the charge state of the ions is increased by stripping
the ions through a thin carbon foil (4 pg/cm?) [29].

After that, the Drift Tube Linac (DTL) is a variable energy machine accelerating
the beam in the entire range of energies 150 keV/u < E < 1.8 MeV/u. The DTL
is also used as an injector for the ISAC-II superconducting (SC) linac. The SC
linac is at present composed of five cryomodules. Each cryomodule houses four
superconducting cavities and one superconducting solenoid, allowing the production
of RIBs with energies up to 5-11 MeV /u [28].
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Figure 4.1: Overview of the TRIUMF site. Figure taken from [29].
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4.1.2 A1, BEAM FEATURES

To investigate the (n,p) and (n,«) reactions of interest, it has been used a ra-
dioactive 2°Al19% beam, accelerated to 3.5 MeV /u and directed towards the TUDA
reaction chamber. This beam impinges on a thin CD, target with a thickness of
116 pug/cm?. In this setup, the deuteron undergoes breakup, generating a neutron
(participant) and a proton (spectator) [25]. Only the reaction products originating
from the excited 27Al*, specifically above the proton and alpha separation thresh-
olds, will be detected. However, there are a number of considerations that need to

be done:

« Potential beam contamination from the 26Al isomeric state does not pose a
significant challenge as angular distributions will be measured. This allows
differentiation between the contributions from the 0+ excited state and those
from other states due to their distinct angular patterns.

e In order to achieve measurements at angles as small as 1°, the maximum beam
intensity is constrained to 2 - 10% 26A19% per second.

e The CD, target thickness balances the required angular and energy resolution
with the expected yield. At the proposed beam energy of 3.5 MeV /u, energy
loss within the target is negligible (1.4%), ensuring high fidelity in the Q-value
reconstruction [25].

4.2 EXPERIMENTAL SETUP

Since the intensity of the Radioactive Ion Beam is of the order of 10° particles
per second (pps), designing a high-performance detector requires the following key

features:

 identification of charge and mass for all reaction products, with the highest
possible energy resolution;

« wide solid angle coverage to compensate for the low RIB intensities and en-
able coincident detection of particles emitted simultaneously at large relative
angles;

o high segmentation to improve angular resolution for the detected particles.
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Figure 4.2: ISAC-I facility in TRIUMF. Figure taken from [28].

The energy deposition of a particle traversing a thin material layer depends sig-
nificantly on the layer material and is strongly influenced by the particle charge
and mass. This makes the first requirement achievable through the use of at least
two-stage telescopes for particle detection. To meet the second and third require-
ments, Double-Sided Silicon Strip Detectors (DSSSDs) can be arranged in a suitable

configuration around the target.

4.2.1 TARGET

A significant issue that can arise, and for which there is no simple remedy, is the
case where the incoming 2° Al beam is not well collimated. Since the experiment is
conducted in inverse kinematics, the heaviest reaction product is emitted at very
small forward angles. This is highly favorable for detection efficiency under optimal
conditions but can become problematic if the beam deviates by a few degrees from

its nominal direction as it strikes the target.

2 simulations indicate

Using a CDs target with a surface density of 116 ug/cm
that the expected count rate for the innermost strip of the detectors in our setup is
approximately 150 counts per second for a beam intensity of 2 - 10° 26Al atoms per

second. Although such a rate is well within the tolerance of the silicon telescopes
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Figure 4.3: Simulated coincidence rate for the 2H(26AI9%, a?3Na)p and the 2H(?5AI9%, p*Mg)p
reactions. The vyield is expressed as a function of the 26Al95 — n relative energy for the two channels.
Integration of the spectra leads to a count rate mentioned above. Quasi-free process is enforced by
introducing a 40 MeV/c momentum cut on the proton spectator.

used (see Subsec. 4.2.2), it is worth noting that the distance between the beam
and the considered strip is only 12 mm. If the beam were not properly collimated,
it might end up directly hitting the detector. This could result in malfunctions,

damage, or, at best, the generation of a high number of spurious coincidences.

In order to prevent such a scenario, a collimation system has been installed at
the beam production point. This system includes three anti-scattering diaphragms
with diameters of 4.7 mm, 2.5 mm and 2 mm in the target holder. When the beam
in the experiment was changed, there was a check that it was correctly collimated
by counting the events of the elastic scattering due to the collision or the grazing
of the nuclei of the beam against the metal of the target holder. If no counts were
seen, it was a signal that the beam was going through the anti-scattering diaphragms
perfectly. However, among the factors that could cause beam deflection is the target

itself, which might not be optimally positioned or perfectly homogeneous.

4.2.2 DETECTORS

In the experiment under consideration, the Trojan Horse Method (THM) is em-
ployed to derive the cross sections of these two-body reactions by measuring the
cross sections of surrogate three-body reactions. The heavy fragment of the reaction
(Mg or 23Na) is detected in coincidence with the corresponding light fragment (p

or «) or the remaining low-energy proton, which acts as a spectator under THM
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Figure 4.4: The target holder used in the experiment: as it can be seen, there are different types of
target used throughout the experimental run. From above: a thin foil of pure %7Au (90 ug/cm?),
two targets of CDy with a thickness of 116 ug/cm?, three “collimators” (anti-scattering diaphragms)
of respectively 4.7 — 2.5 — 2 mm of diameter. The last step is a ZnS layer in which we can see the
beam spot in dark yellow.

conditions. The other undetected particle is reconstructed through energy and mo-

mentum conservation.

The experiment is conducted in inverse kinematics, where a beam of 2°Al, as
seen in Sec. 4.1, is directed onto a CDy target to initiate the two reactions. In this
setup, the conservation of momentum ensures that the heavy fragment is emitted
at very small forward angles, while the light fragments can have a broad range of
emission angles, particularly in the case of protons. For this reason, the NEFASTA
(NEar FAr Silicon Telescope Array) detector array, consisting of 8 telescopes, has
been rearranged into two separate groups. Four telescopes are positioned close to
the target at a distance of approximately 49.5 mm (referred to as Group A), while
the other four are placed at small angles at a distance of around 69.5 cm from the

target (referred to as Group B). The position of the detectors is visible in Fig. 4.5.
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Figure 4.5: Layout of the detectors used in the experiment. The eight telescopes are arranged into
two groups. Group A is placed close to the target, about 49.5 mm away. Group B is mounted at
about 69.5 cm from the target. For sake of clarity, the position of the target is highlighted with a
red sphere and the beam direction with a blue line.

Each telescope in Group A consists of a Double-Sided Silicon Strip Detector
(DSSSD) with a thickness of 1000 um, featuring 32 x 32 strips over an active area
of 51.2 x 51.2 mm?, providing a resolution of 1024 pixels. This is followed by a PAD
detector, 1500 pm thick, for detecting the protons from the (n,p) reaction channel
of interest (which, as will be seen, typically have energies below 20.7 MeV). The
angular coverage of Group A detectors varies based on their arrangement: those in
the vertical plane (AU and AD) cover the angles § = 9.4° — 55.6°, while those in
the horizontal plane (AR and AL) cover an angular range of § = 32.9° — 79.1°.

The Group B detectors are positioned farther from the target to achieve good
angular resolution for the small angles at which the heavy fragments are emitted.
Like Group A, these are arranged in pairs on the vertical (BU and BD) and horizon-
tal (BL and BR) planes. Each Group B telescope consists of a Single-Sided Silicon
Strip Detector (SSSSD) with 16 strips and a nominal thickness of 20 pm, followed
by a 16 x 16 strips DSSSD with a thickness of 1000 pum for detecting the heavy
fragments. The 20 um detector introduces an energy threshold of 44 MeV for 2*Na,
and of 48.8 MeV for 2Mg. The BU and BD telescopes cover an angular range of
0 = 1°—5.1°, while the BL and BR telescopes cover the angles 8 = 2.9°—7.1°. The
B2 detectors partially overlap with B1, but only in the inactive regions of the Bl
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detectors. The angles covered by the detectors can be seen in Fig. 4.6.
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Figure 4.6: Positioning of the detectors as a function of the polar and azimuthal angles. We can
see clearly that the A telescopes, being near the target, cover the region at higher 6, while the B
telescopes cover small angles in the forward region.

Simulations using the GROOT (GEANT4 and ROOT Object-Oriented Toolkit)
simulation system [30], incorporating reaction kinematics, target thickness, beam

intensity, and cross-section data, yield the following estimates:

o for the (n,p) channel, a geometric efficiency of 37% and a quasi-free coinci-
dence rate of ~ 3.3 events per minute are expected;

o for the (n,«) channel, a geometric efficiency of 39% and a coincidence rate of
~ 3.4 events per minute are anticipated.

Double Sided Silicon Strip Detectors

The DSSSD (Double-Sided Silicon Strip Detector) belongs to the broad category
of semiconductor radiation detectors. A semiconductor detector, as illustrated in
Fig. 4.8, is essentially a reverse-biased p — n junction. In such a configuration,
the depletion layer surrounding the junction—devoid of intrinsic charge carriers—
serves as the active detection volume. When radiation interacts with the detector,

it excites electrons from the valence band to the conduction band, resulting in
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Figure 4.7: Photo of the experimental apparatus in the TUDA reaction chamber with the detectors
mounted.

the formation of electron-hole pairs. These charge carriers are subsequently driven
toward the electrodes by the electric field present within the junction. As they move,
they induce a current on the electrodes, which can be quantified at any moment

using Ramo’s theorem, ultimately producing the detectable signal.

The DSSSDs employed in this setup feature 16 or 32 orthogonal strips on each
side depending on the belonging to group A or B, providing fine granularity. The
strips on the front side are oriented perpendicularly to those on the back side. As
we can easily see in Fig. 4.8, the strips on the front are along the radial direction.
Each strip is 51.2 mm long, with a width of 3.1 mm (B detectors) or 1.5 mm (A
detectors), with an inter-strip spacing of 40 ym. This arrangement creates a pixel
structure with an angular resolution of approximately 1.4° for detectors A and 0.3°

for detectors B.

PAD
The PAD detector consists of a DSSSD described above, with the difference that all

the strips are short-circuited at the entrance of the preamplification stage, so that
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Figure 4.8: Conceptual drawing of a semiconductor detector (left panel) and a photo of the
DSSSDs mounted in the experiment (right panel).

only one signal in output from the detector is read.

4.2.3 ELECTRONIC CHAIN

In this paragraph the electronics readout employed for the treatment of the signals

collected by the different detectors are briefly presented.

Preamplifiers

It is used a set of 16-channel custom low-noise charge sensitive preamplifiers “mesytec
MPR-16", which are specially designed for single or double sided multistrip silicon
detectors. The detector front and back sides are connected to the electronic boards
with cables. The cable ends with a finger that plugs directly into the connector on
the preamplifier board. The outputs of the preamplifiers are then connected to the

electronic modules outside for further processing.

MEGAMPs

The 16 differential output signals from the preamplifier boards of the DSSSD and
SSSSD modules and PADs are processed by a specialized amplifier module known
as MEGAMP. This module extracts key information such as energy, timing, and
pulse shape analysis. The MEGAMP is a single NIM-standard module housing 16

channels, each divided into sections dedicated to energy and timing processing.
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Figure 4.9: Photo of the preamplifiers “mesytec MPR-16" used in the experiment.

The energy section features a spectroscopy amplifier designed to accept differen-
tial input signals. Each amplifier incorporates not only a spectroscopy amplifier but
also a timing filter and a constant fraction discriminator (CFD). Each MEGAMP
produces an OR signal from all the strips of the detector it serves. These signals are
then combined by taking the OR of the OR signals (using FIFO modules) for all
the front strips of the A detectors and similarly for the B detectors. The outputs
from these combined signals are then fed into a coincidence module, where it is
applied an AND operation with a coincidence window set to 200 ns. This AND
signal serves as the “free” trigger for the data acquisition system. We also record

this free trigger on a scaler to measure the total number of valid events detected.

The free trigger is then sent to an I/O register, which generates a signal with a
duration equivalent to the conversion and readout time of the ADCs. This signal
is used to generate the gate for the ADCs and is also counted. By comparing the
total number of gates with the total number of free triggers, we can determine the
number of missed events, or the system’s dead time. If another free trigger arrives
during the active conversion and readout period, it will not generate a gate, and
thus the ADCs will not record the event, highlighting the dead time in our system.
Fig. 4.10 illustrates the MEGAMP module and the block diagram for a single

channel.

ADC
The ADC digitizes the linear analog signals coming out from the MEGAMP modules.
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Figure 4.10: MEGAMP (left) and block diagram of a single channel of the MEGAMP (right).

The ADC card consists of 8 analog differential signal receivers and 8 12-bit ADC-
chip converters that sample the input signal with a 50 MHz frequency. With the
arrival of an external trigger, the control logic starts the conversion sequence. After
a programmable delay time the hold signals are sent to the MEGAMP modules in
order to capture the maximum of a Gaussian peak. At this point, the ADC card
generates the logic signal to bring out in sequence the amplitudes captured by the
hold circuit and acquires them by means of an ADC-chip with a sampling rate of
50 MHz.

4.2.4 VACUUM SYSTEM

In order to do the experiment, the TUDA reaction chamber has to be put under vac-
uum. The vacuum is realized through different vacuum pumps. The first pumping
stage (primary pump) is performed by a rotary vane pump: the working principle
of a rotary pump consist of a cylindrically-bored housing with a suction inlet on

one side and a discharge outlet on the other side. A rotor (smaller in diameter
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than the cylinder) is driven at a rotating speed around 1000 rpm about an axis
that is placed above the center line of the cylinder to provide minimum clearance
between the rotor and cylinder at the top and maximum clearance at the bottom.
At the outlet there is an exhaust valve that opens up only when the compressed gas
reaches a pressure above the environment atmospheric pressure. Suitable vacuum
oils are used to guarantee lubrication of the moving vanes and the sealing between

the volumes [31].

The second pumping stage (secondary pump) is a turbo-molecular pump (TMP).
The TMP is a bladed turbine that compresses gases by momentum transfer from
the rapidly rotating blades of the rotor disks to the gas molecules. The rotation
speed of the rotor is typically comprised between 20000 and 70000 rounds per
minute. The rotor impulse is transmitted to the particles by the superposition
of the thermal velocity of colliding particles with the velocity component of the
moving rotor surface. The casual motion of the particles is changed to a directed

motion, yielding the pumping process [31].

The third and last pumping stage is the cryogenic pump for reaching the high
vacuum region. It removes gas molecules by cooling surfaces to extremely low
temperatures (below 20 K), causing gases to condense or adsorb. Condensable gases
freeze onto the surfaces, while non-condensable gases like hydrogen and helium are

trapped by adsorption onto cold, porous materials.

4.3 DATA ANALYSIS

As observed so far, it is clear that the correct functioning of the experimental appa-
ratus is crucial for accurately determining the cross-section of the nuclear reactions
under investigation. For this reason, it is essential to perform calibration tests
before the experiment to ensure that the entire setup operates flawlessly. In partic-
ular, the procedures, the ROOT C++ macros developed to analyze the data and
the results, giving a clear overview of the logical and computational processes that

were necessary to reach the final result will be explained in this section extensively.
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Figure 4.11: Photo of the vacuum pumps used in the laboratory: from top to bottom, left to right,
there are the TMP, the cryogenic pump and the rotary vane pump.

4.3.1 ENERGY CALIBRATION

Energy calibration is a fundamental step in the accurate interpretation of data
collected. The procedure ensures that the energy spectra obtained from detectors
are precisely aligned with known reference points, allowing for the reliable extraction

of kinematic properties and reaction observables.

In the context of the experiment, calibration was performed independently for
each horizontal and vertical strip of the telescopes (both DSSSDs and SSSSDs, while
PADs are not calibrated). The methodology involved for DSSSDs using multiple
well-characterized sources and reactions as calibration benchmarks, including:

o a four-peak alpha source emitting particles with well-defined energies for de-
tectors A: 3.182 MeV (18Gd), 4.620 MeV and 4.687 MeV (?*°Th), 5.805 MeV
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(*Cm);

o a different three-peak alpha source for detectors B: 5.157 MeV (**Pu), 5.486
MeV (?'Am) and 5.805 MeV (4 Cm) (see Fig. 4.12);

o elastic scattering processes induced by '2C at 1.4712 MeV/u, 2.45 MeV /u
and 3.4966 MeV /u on a target of °"Au with a thickness of 90 pg/cm?: these
reactions provided high-energy calibration points essential for extending the
linearity of the calibration curve.

It has to be specified that all the calibration runs for the DSSSDs need to be done
without the SSSSDs mounted, in order to have a more precise measurement on the
real positions of the peaks. In total, an amount of 6 (detectors B) or 7 (detectors

A) calibration points were obtained.

The SSSSD detectors, being only 20 pum thick, require dedicated calibration runs.
Ideally, the calibration particle should stop within the SSSSD itself to achieve max-
imum precision. For this reason, the calibration of the AE detectors was performed
using 3 points: one from the alpha peak of the (14¥Gd) source at 3.182 MeV, another
from the elastic scattering of 12C on a %7Au target at 1.4712 MeV /u, and the last
from the scattering of the 2Al beam on the same 7 Au target at an energy of 38.38
MeV (1.474 MeV /u).

For each strip, the data points were fitted using a linear relationship between the

channel number Eg, and real energy E(MeV):
EMeV)=m - Ey+q (4.1)

where m and ¢ are the slope and intercept derived from the linear fit. The Full
Width at Half Maximum (FWHM) energy resolution was then calculated using the
relation:

FWHM = 2+/2in(2)mo, (4.2)

where o, represents the width of the peak in channel units. A typical resolution of
31 keV for 5.157 MeV « particles was achieved for the DSSSD modules.

The expected energies for the calibration points obtained from elastic scattering

measurements were estimated using a macro for the simulation of such processes
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Figure 4.12: Typical spectra of the alpha sources used for the calibration in one strip of the detec-
tor A (above) and the detector B (below). All peaks are extremely distinguishable.
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Figure 4.13: Range as a function of energy for the nucleus of 2C in a range of 197 Au.

(for the explanation see in appendix “Macros”). In order to have reliable results
it was necessary to subtract the energy lost by the beam as it passed through half
the target thickness, assuming the reaction occurred at the mid-target position. In
order to do so, some energy loss calculations using the LISE++ software [36] were
done. The same procedure had to be implemented to account for the energy losses
of the outgoing particles after the reaction: nuclei lose energy in the other half of
the target and in the dead layer of aluminum in front of every detector. The latter
correction was also applied to the « particles. In order to do so, we determined the
parameters of the curve governing the energy loss of different nuclei in the target
element by approximating it with a parabola (R = aFE? + bE + c), where E is the
energy of the particle and R is the range of such particle in a specific material. As
shown in Fig. 4.13, this approximation is satisfactory within the energy range of
interest. Once the range was found, the thickness of half the target was added.
Subsequently, to retrieve the original energy accounting for the energy loss, the

formula was inverted using the expression:

b+ /b? —4da(c— R)
N 2a

E

(4.3)
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Figure 4.14: Typical calibration plot for a generic strip in the experiment. In particular, this is the
calibration for the strip BLB[15].

The resulting effective particle energy was calculated as:
EOH = Edct + AEtar + AEdead (44)

where Fg. is the energy revealed in the detector, AF},, represents the energy lost
in half the target thickness and AFge.q is the energy lost in the dead layer of

aluminum.

To validate the accuracy of the calibration, the kinematic loci for the 2C+197Au
reaction were analyzed. Specifically, E-6),, 2D-correlation plots were generated for
all the telescopes. These plots prominently displayed an intense line corresponding
to elastic scattering events, which was confronted with the one of the simulation,
as seen in Fig. 4.15.

The calibration data is instead presented in Fig. 4.14.
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4.3.2 AFEF — E IDENTIFICATION METHOD

The AE — E identification technique used in the experiment is a pivotal method for
particle identification, leveraging the principles of energy loss in matter as described
by the Bethe-Bloch formula. This approach employs a telescope configuration, con-
sisting in this case of two silicon detectors: one 20 pum thick SSSSD and a DSSSD.
It is possible to do the same thing also with the telescopes in the A group using
respectively the DSSSD and the PAD detectors. The SSSSD measures the energy
lost (AE) by particles traversing it, while the DSSSD captures the residual energy
(Ees), enabling the determination of both the charge (Z) and possibly, mass (in

case of good energy resolution) (A) of the incoming particles [33].

In practice, the AE — E correlation plots are generated by plotting the energy lost
in the SSSSD against the energy deposited in the DSSSD. This creates a distinctive
set of hyperbolic curves, with each curve corresponding to a unique isotopic species.

The location of a particle within these plots is governed by the stopping power

dE
dx’?

non-relativistic approximation, we have [33]:

which depends on its atomic and mass numbers as well as its velocity. In the

dFE MZ? M
where C'} and Cy are appropriate constants. For a finite thickness we have:
dE  MZ?
AFE = Ax— 4.6
Y X TE (4.6)

A useful representation is provided by the Fig. 4.16. In this figure, an additional
phenomenon known as the “Punching-Through Energy” can also be observed. This
occurs when the detector’s thickness is insufficient to completely stop the incom-
ing particle, leading to a progressive decrease in the energy deposited in both the
first and second detectors. This phenomenon is primarily due to the fact that
the stopping power of the material, neglecting relativistic effects, decreases as the
kinetic energy of the charged particle increases. This produces the characteristic

banana-shaped pattern on the plot.
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Figure 4.16: Schematic representation of the operating principle of a telescope and the visualization
of the punching-trough energy concept.

Using this type of analysis, it is possible to clearly distinguish the reaction prod-
ucts and the presence of specific isotopes because the curves do not intersect. Reac-
tion elements with lower atomic numbers (A) are located in the bottom-left portion
of the graph. However, in cases of low energy resolution, experimental data points
may overlap along the curves, making it effectively impossible to determine which

curve they belong to.

In our experiment, the AF — E technique primarily serves to determine the atomic
number (Z) of the heavy fragment produced. The main challenge lies in the fact that
for the 20 pm-thick silicon detectors, the thickness is not uniform. Manufacturing
defects are relatively common and can add or subtract several micrometers from
the nominal thickness. In order to address this issue, it is necessary to perform a
mapping of the SSSSD detectors used (see Fig. 4.17), allowing the energy recorded

by the detectors to be corrected with a geometric factor of the form:

20
AFEcow = AFget - | —— 4.7

ot (Axpx) (.7)
where AFEjge; is the value of the energy read by the SSSSD, Az, is the thickness of
the SSSSD corresponding to the DSSSD pixel behind and AFE.,,, is the corrected
value of the energy. This correction, as can easily be seen, considers only the geom-
etry of the detector, assuming that the particle’s stopping power remains constant.

While this assumption is not generally true, in the specific case of this experiment
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it is sufficient to enable the element separation.
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Figure 4.17: Mapping of the thickness of the SSSSD detectors used in the experiment. From top to
bottom, left to right: DEBU, DEBD, DEBR and DEBL. The numbers are the thicknesses in um and
the colors differentiate thicker pixels (in red) from thinner ones (in green).

In order to verify the accuracy of the thicknesses and test the validity of the as-
sumption that the stopping power is constant, an elastic scattering run on *7Au was
conducted using a beam composed of 26 Al and 2Mg. The kinematic region covered
by the B telescopes is at such small angles that no appreciable energy variation as
a function of the polar angle is expected according to the Rutherford cross-section.
For brevity, only the data from the DEBU and the DEBL detector, which exhibit
respectively the poorest and the best performance among the detectors considered,
are reported here. For each pixel, the two peaks generated by the different ele-
ments were fitted with Gaussian curves, and their centroids were recorded (see Fig.
4.18). As shown, there is agreement between the behavior of the thicknesses and

the positions of the peaks.

If the stopping power were constant, the ratio between the peak positions and the
thicknesses for each pixel would be nearly identical across the detector. However,

Fig. 4.19 shows the percentage deviations of this ratio from the mean. Differences
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Figure 4.18: Position of the the centroids of the peaks for the pixels of detector DEBU (above) and
DEBL (below) because of the elastic scattering of 26Al and 2°Mg on 97Au. We can see that there is
agreement between

of up to £10% are observed, a clear indication that the stopping power is not
constant but varies with the energy of the particle. Specifically, as will be discussed
in Subsec. 4.3.4, it is necessary to divide the DEBU detector into three regions to
clearly separate the elements with different Z, as indicated by the black lines in the
figure. In Fig. 4.20, the same analysis is shown for DEBL.

As mentioned earlier, the AF identification technique was also used for the A tele-
scopes. In this case, no correction was necessary, as variations of a few micrometers
in a 1000 pm thickness are much less significant (a maximum impact of approxi-
mately 0.6%, compared to 30% in the previous case). However, the downside of
using thicker AF layers is the introduction of an energy threshold for the particles
detected by the A telescopes. For protons, for instance, the minimum detectable
energy is Fnpi, ~ 12.25 MeV.
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Figure 4.19: Percentage difference from the mean of the ratios between peak positions and thick-
nesses. It can be observed that DEBU has been divided into three areas to facilitate data analysis.

4.3.3 ELASTIC SCATTERING ON 97Au

After the calibration and the calculation of the corrections on the SSSSD detectors,
the functionality of the entire experimental apparatus was verified with a run of
elastic scattering of the 2Al beam at 3.5 MeV /u on a 7 Au target with a thickness
of 90 pg/cm?. This run provided the opportunity to work with the beam intended
for the final experiment. Specifically, the focus was on understanding whether the
energy calibrations were correct and on verifying the functionality of the AF — F
identification technique for elastic scattering. In order to simplify the data analysis
process, it was decided to handle the B telescopes separately in case any of them
did not function correctly. Below are the 2D E — 0 plot in Fig. 4.21 for a generic
telescope B and the AF — E matrices for each detector B in Fig. 4.22, corrected

with the appropriate geometric factor.

As can be clearly seen from the plotted matrices, there is evidently another
contribution to the beam besides 2°Al. This appears in Fig. 4.21 as a line at
higher energies and in Fig. 4.22 as an additional point. Specifically, from the
latter figure, it is evident that the contribution of this additional nucleus to the
beam is even greater than that of 2Al. The fact that this contribution appears at
higher energies, despite the beam being mono-energetic, is a clear indication that
the energy reconstruction performed by the data analysis software overestimates

the actual energy.
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Figure 4.20: Same thing for the detector DEBL: in this case there is no need to subdivide the de-
tector, because the variations are less consistent with respect to the DEBU detector.

Since energy loss scales with Z2, as shown in Eq. 4.6, it can be easily deduced
that the contaminant is a nucleus with a lower Z but the same A as 26Al. The
AFE — E matrices provide further evidence of this: since the beamline selects a fixed
magnetic rigidity (mwv/q), it can therefore be stated that the contaminant is Mg,

A question that might arise is whether such beam contamination could pose any
issues for the measurement of the cross section intended in the experiment. As
already discussed in Subsec. 4.1.2; in the case of the metastable excited state of
2 A]™ contamination does not present a significant challenge because a coincidence
is imposed between two particles whose energies fall within the expected ranges
for QF processes. Assuming that the light particle is detected by the A telescopes
and the heavy fragment by the B telescopes, Fig. 4.23 shows these ranges for
both reactions of interest. Subsequently, the third particle is reconstructed using
energy and momentum conservation, and an additional condition is imposed on
the Q-value of the reaction, which must align with the expected value. Therefore,
the contaminants certainly pose a challenge in the data analysis, but they do not

compromise the validity of the experiment.
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Figure 4.21: Spectrum of E-f),, for the elastic scattering of 26Al on *7Au. The black line are the
data from the simulation. As we can see, there is clearly another contribution to the particle beam.

4.3.4 SCATTERING ON CDy

After verifying the proper functioning of the experimental setup, the experimental
runs were carried out: the 2Al beam, at an energy of 3.5 MeV /u, was directed onto
the CD, target, that had a thickness of 116 pg/cm?. However, it must be noted
that this beam, in addition to being contaminated, was interrupted shortly after
the experiment began, effectively making it impossible to complete the experiment
satisfactorily and with adequate statistics for the three-body QF processes.

Regarding the data analysis, the first step was to examine the AF — E matrices
of the B telescopes to identify the heavy fragment (see Figs. 4.24 and 4.25). In
particular, it became evident that the BU telescope needed to be divided into three
sections to allow for better selection. As shown in the images, the curve associated
with Z = 12 was selected, although all nuclear species of interest (Al, Mg and Na)
are clearly visible.

It is worth noting that, at this point of the analysis, we cannot be sure that we
are going to select only Mg nuclei. However, this will not be a problem because,
in the data analysis, it is possible to impose much more stringent conditions: only
events in coincidence between the two types of telescopes are considered and, in

addition, it is possible to impose a condition on the overall Q-value.
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Figure 4.22: AE — E matrices for the elastic scattering of 26Al on 97Au at 3.5 MeV/u. From top
to bottom we have: telescope BU, BD, BL and BR. We can see in every plot the two spots of the
elastic scattering for the two contributions of the beam, namely 26Al (above) and 2Mg (below).
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Figure 4.23: Left panel: energy ranges of protons and 2°Mg nuclei from the 2H(26Al9%, p’Mg)p
reaction at 3.5 MeV/u and for the 1°-7.1° (*Mg) — 9.4°-79.1° (p) angular intervals. The red band is
the quasi-free kinematics. Right panel: same as left panel, for the 2H(?6Al9%, a?*Na)p reaction.

Once we are sure to have isotopes of Mg in the B telescopes, it is possible to use
the DSSSD-PAD pair as a AE — E system to also identify the light fragment. How-
ever, as previously mentioned in Subsec. 4.3.2, this imposes an energy threshold
on the selected protons, with E;, ~ 12.25 MeV. Moreover, since the PADs are not
calibrated, the energy information for the protons comes solely from the DSSSDs.
Using LISE+4+, energy losses in the silicon thicknesses of the two detectors were
simulated, and a fifth-degree polynomial was used to approximate the relation be-
tween the energy deposited in the AE detector (DSSSD) and the initial energy of
the proton (see Fig. 4.26). We were careful to operate within the energy range

where this approximation is valid. The cuts on the protons are shown in Fig. 4.27.

Once the selection is made, there is certainty of finding a magnesium isotope in
coincidence with a proton. If the beam were composed of pure 26Al, there would be
a limited set of reactions falling into this coincidence scenario. However, since the
beam is contaminated with 2°Mg, the £/ — 6 spectrum for both the B telescopes and
the A telescopes appears rather cluttered, with multiple types of possible reactions,
as shown in Figs. 4.28 and 4.29. As an example, in this figure, which displays
a typical spectrum with the applied graphical cuts, the results of the simulation
for the two-body reaction 26Mg9*(d, p)>"Mg?® are shown in red. All this processes
need to be studied further, in order to isolate all the processes of interest in the

experiment.
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Conclusions

The goal of this thesis was to pave the way for the proper analysis of the experi-
mental data from a second run of the experiment conducted in July 2024. For this
reason, the thesis work focused primarily on ensuring that the experimental setup
operated correctly, developing programs and macros to facilitate data analysis, and
creating simulations not only for the calibration runs but also for the measurement

runs.

Particular attention was given to calibrations using elastic scattering and to the
performance of the SSSSD detectors, which, due to their design, are particularly
challenging to handle during data analysis. This is especially true when working
with nuclei with A = 26, as in this experiment, since they lose a significant amount
of energy in thin layers of silicon. Additionally, the detectors were tested for their
performance with the actual experimental data, with a preliminary selection of the
reaction carried out. However, further analyses will need to be conducted in the

future, possibly using data from the new experiment.

Obtaining reliable results in terms of both energy and angular measurements with
a complex experimental setup like NEFASTA is extremely challenging. This setup
involves large-area detectors placed very close to the target and others at angles
near the beam axis. Accurately reproducing nuclear reactions through Monte Carlo

simulations and continuously comparing them with experimental data requires a
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multi-parametric approach that considers various uncertainties, not only those in-
herent to the detectors but also those associated with the beam, as discussed. All
these preliminary tests are crucial for identifying three-body QF processes, as these
impose very stringent kinematic conditions. For this reason, highly accurate an-
gular and energy calibrations are essential. In the case of a contaminated beam,
background signals must be carefully eliminated by identifying all peripheral reac-
tions. Nonetheless, the results obtained in this thesis are encouraging and suggest

that the applied methodology is on the right track.
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Macro for the fitting of the spectra

/ *

Macros

Macro to fit histograms and parameters writing

void FitSpectrum (string inputfile ,

*/

string telescope

// Libraries required for program execution

#include "TThread.h”
#include <Riostream .h>
#include <math.h>
#include "TROOT.h”
#include "TFile.h”
#include "TTree.h”
#include 7"TCanvas.h”
#include 7TColor.h”
#include "THI1.h”
#include "TH2.h”
#include "TCutG.h”
#include "TF1.h”
#include "TStyle.h”

string

coordinate ,

using namespace std;

TCanvas *cl = new TCanvas(”cl”,”spectrum” ,;10,10,600,600);

2%

inputfile = ,
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void FitSpectrumA (string string detector = , Int_t st
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string name = ;

name = Form ("%s_%d”, detector.c_str(), strip);

TFile xf=new TFile(inputfile.c_ str());
THIF +hl=(THI1Fx*)f—>Get(name.c str());

cl—cd ();

h1—Draw () ;

//cl—>SetLogy ();
hl1—SetTitle (name.c_str ());
hl1—SetName (name.c_str());

cl—Update ();

// ricerca picchi

TSpectrum *s = new TSpectrum (4);

Int t nPeaks;

Double t xxPeaks;

Int_t sigma = 1; // threshold on sigma
Double t minratio = 0.00001; // minimum ratio between peak a

nPeaks = s—>Search (hl sigma 6 ””
xPeaks = s—>GetPositionX ();
for (int p = 0; p < nPeaks; p++) {

cout << "Peak #”7 << p << 7 @ channel,” << xPeaks|[p] <<

,minratio );

// peak sorting
int a, i, j;
double array_size = 4;
double aray[4] = { xPeaks[0], xPeaks[1], xPeaks[2], xPeaks[3]};
for (i = 0; 1 < 4; i++)
{

for (j =i+ 1; j < 4; j++)
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if (aray[i] > aray[j])

{
a = arayl[i];
aray [1] = aray[j];
aray [j] = a;

}

2 7

cout << ”7Ordine: " << aray [0] << 7,7 << aray[l] << 7,7 << aray[2] <
const int index[5]={1,2,3,4};

xPeaks[0]=aray [0];
xPeaks[1]=aray [1];
xPeaks [2]=aray [2];
xPeaks[3]=aray [3];
// 4 Gauss

TF1 *total = new TF1("total”,” [0]*exp(—0.5x%x(((x—[1])/[2])*x*2))..
TF1 sfinal = new TF1(”final”,”[9]*exp(—0.5%x(((x—[10])/[11])*%2))",

// range Gauss factors
Double t nl[2] = {10., 20000.}, //{10., 2000.},
n2[2] = {10., 20000.}, //{100000., 500000.},
n3[2] = {10., 20000.},
nd [2] = {10., 20000.}; //{10., 200.},

// range Gauss centroids
Double_t ml[2] = {xPeaks[0] — 3., xPeaks|[0] + 3.},
m2[2] = {xPeaks[1] — 3., xPeaks[1] + 3.},
m3[2] = {xPeaks[2] — 3., xPeaks[2] + 3.},
m4[2] = {xPeaks[3] — 3., xPeaks[3] + 3.};

// range widths
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Double_t wl[2] = {0.1,3.},
w2[2] = {0.1.,3.},
w3[2] = {0.1,3.},
wd[2] = {0.1,3.};

// initial wvalues
Double_t par[] = {400., xPeaks[0], 1.5,
90., xPeaks[1], 1.5, //3000¢
250., xPeaks[2], 1.2};
Double t parf[] = {240., xPeaks[3], 1.3};

//total —>SetParNames(”facl”,”m1”,7s1”,” fac2”,"m2”,7s27, 7 fac3”,”
total —>SetParameters(par); // set initial parameters

final —>SetParameters(parf);

// set range factors

total —>SetParLimits (0,nl1[0] ,nl[1]);
total —>SetParLimits (3,n2[0] ,n2[1]);
total =>SetParLimits (6 ,n3[0] ,n3[1]);
final =—>SetParLimits (9,n4[0] ,n4[1]);
// set range centroids
total—SetParLimits (1,ml[0] ,ml[1]);
total —SetParLimits (4 ,m2[0] ,m2[1]);
total —SetParLimits (7 ,m3[0] ,m3[1]);
final —>SetParLimits (10,m4[0] ,m4[1]);
// set range widths

total =>SetParLimits (2,wl[0] ,wl[1]);
total =—>SetParLimits (5,w2[0] ,w2[1]);
total —>SetParLimits (8 ,w3[0] ,w3[1]);
final —>SetParLimits (11 ,w4[0] ,w4[1]);

h1->Fit (total ,"R”);
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hl1—Fit (final ,”R”);
h1—GetXaxis()—>SetRangeUser (xPeaks[0] —30, xPeaks[3]+10);
// set range fit

// 1st gauss

Double_t factorl = total—>GetParameter (0);
Double t meanl = total—>GetParameter (1);
Double_t ermeanl = total—>GetParError (1
2
(

)i
Double_t sigmal = total—>GetParameter (2);
Double t ersigmal = total—>GetParError(2);
// 2nd gauss
Double_t factor2 = total—>GetParameter (3);
Double_t mean2 = total —>GetParameter (4);
Double_t ermean2 = total—>GetParError (4);
Double_t sigma2 = total—>GetParameter (5);

(

Double_t ersigma2 = total—>GetParError

// 3rd gauss
Double_t factor3 = total—>GetParameter (6);
Double_t mean3 = total —>GetParameter (7);
Double t ermean3 = total—>GetParError (7
8
(

I

)
Double_t sigma3 = total —>GetParameter (8);
8);

Double t ersigma3 = total—>GetParError

// 4th gauss
Double t factord = final —>GetParameter (9);

Double t meand = final —>GetParameter (10);

Double t ermean4 = final —>GetParError (10);
Double_t sigma4 = final —>GetParameter (11);
Double_t ersigmad4 = final—>GetParError (11);

TF1 gl = new TF1(”gl”,”gaus”, xPeaks[0] —30, xPeaks[2]4+10);

gl—>SetParameters (factorl ,meanl  sigmal);
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TF1 g2 = new TF1(7g2”,”gaus”, xPeaks[0] —30, xPeaks[2]4+10);
g2—>SetParameters (factor2 ,mean2,sigma?2);

TF1 %g3 = new TF1(”g3”,”gaus”, xPeaks[0] —30, xPeaks[2]+10);
g3—>SetParameters (factor3 ,mean3,sigma3);

TF1 xg4 = new TF1(7g4”,”gaus”, xPeaks[3]—10, xPeaks[3]+10);
gd—>SetParameters(factor4d ,meand, sigmad4 );

// plot fit and each gauss
gl—SetLineColor (2);
g2—>SetLineColor (3);
g3—>SetLineColor (4);
g4—>SetLineColor (5)

I

gl—>Draw ( "LSAME” ) ;
g2—>Draw ( ”LSAME” )3
g3—>Draw ( "LSAME" ) ;
g4—>Draw ( "LSAME” ) ;

cout<<endl;

cout << "factorl,” << factorl << 7 meanl” << meanl << 7 +— 7
cout << 7"factor2,” << factor2 << 7, mean2 ” << mean2 << 7 +— 7
cout << 7"factor3d ” << factor3 << 7, mean3 ” << mean3d << 7 +— 7
cout << 7"factord ” << factor4d << 7 meand ’ << meand << 7 4+—_7

A A A A

string fileoutput= "Fit CalibrazioneA .txt”;

ofstream fout (fileoutput ,ios ::app);

fout << name.c_str() << "\t” << meanl << "\t”7 << sigmal << "\t”
<< "\t7 << mean3d << "\t7 << sigma3d << "\t”7 << meand << "\t”7 << sigma4d <

fout.close ();

// save histogram € fits as image
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//string filename =77,
//filename=Form (7 Fit_ Calibrazione/Fit_Calibrazione_%s.png”,name
//cl —> Print(filename.c_str());

Macro for the calibration

#define Calibrazione cxx
#include 7" Calibrazione.h”
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>

using namespace std;

void Calibrazione :: Loop ()

{

//
//
//
//
//
//
//
//

//
//
//
//
//
//

In a ROOT session , you can do:
root> .L Calibrazione.C
root> Calibrazione t
root> t.GetEntry (12); // /opt/homebrew/Cellar/root/6.30.06/shar

root> t.Show(); // Show wvalues of entry 12
root> t.Show(16); // Read and show wvalues of entry 16
root> t.Loop(); // Loop on all entries

This is the loop skeleton where:

jentry is the global entry number in the chain

ientry is the entry number in the current Tree
Note that the argument to GetEntry must be:

jentry for TChain:: GetEntry

tentry for TTree:: GetEntry and TBranch:: GetEntry
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//

// To read only selected branches, Insert statements like:
// METHODI :
// fChain—>SetBranchStatus ("+x”,0); // disable all branches
// fChain—>SetBranchStatus (”branchname ”,1); // activate branchname
// METHOD2: replace line
// fChain—>GetEntry (jentry ); //read all branches
//by b_branchname—>GetEntry(ientry ); //read only this branch
if (fChain = 0) return;

cout << 7"Inizio programma” << endl;

// from deg to rad
double dtr=TMath::Pi()/180.;

Double t EAUF[32]={0.};
Double_t EAUB[32]={0.};
Double_t EARF([32]={0.};
Double t EARB[32]={0.};
Double t EADF[32]={0.};
Double_t EADB[32]={0.};
Double_t EALF[32]={0.};
Double t EALB[32]={0.};
Double t EBUF[16]={0.};
Double t EBUB[16]={0.};
Double_t EBRF[16]={0.};
Double_t EBRB[16]={0.};
Double t EBDF[16]={0.};
Double t EBDB[16]={0.};
Double t EBLF[16]={0.};
Double_t EBLB[16]={0.};
Double t EDEBU[16]={0.};
Double t EDEBR[16]={0.};
Double t EDEBD[16]={0.};



Double_t EDEBL[16]={0.};
Double t EPADAU ;
Double t EPADAR;
Double t EPADAD:;
Double t EPADAL:;

cout << "Fatto, variabili” << endl;

TFile sfout = new TFile(”Cal AlAu.root”

TTree sxcal = new TTree(”cal”,
cal—Branch ("AUF[32]”, AUF,
cal—Branch ("AUB[32]”, AUB,
cal—Branch ("ARF[32]”, ARF,
cal—Branch ("ARB[32]”, ARB,
cal—Branch (”ADF[32]”, ADF,
cal—>Branch (”ADB[32]”, ADB,
cal—Branch ("ALF[32]”, ALF,
cal—Branch (”ALB[32]”, ALB
cal—Branch (”"BUF[16]”, BUF,
cal—Branch (”BUB[16]”, BUB,
cal—>Branch (”"BRF[16]”, BRF,
cal—Branch ("BRB[16]”, BRB,
cal—Branch (”"BDF[16]”, BDF,
cal—Branch (”BDB[16]”, BDB,
cal—>Branch (”BLF[16]”, BLF,
cal—>Branch ("BLB[16]”, BLB,
cal—Branch ("DEBU[16]”, DEBU,
cal—=Branch ("DEBR[16]”, DEBR,
cal—>Branch ("DEBD[16]”, DEBD,
cal—Branch ("DEBL[16]”, DEBL,
cal—Branch ("PADAU” , &PADAU,
cal—=Branch ("PADAR” , &PADAR,
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cal—Branch ("PADAD” , &PADAD, "PADAD/1”);
cal—Branch ("PADAL” , &PADAL, "PADAL/I”);
cal—>Branch(’EAUF[32] " EAUF, “EAUF[32]/D”):
cal—Branch ("EAUB[32]”, EAUB, "EAUB[32]/D”);
cal—Branch ("EARF[32]”, EARF, ”EARF[?)Q] /D" );
cal—Branch ("EARB[32]”, EARB, EARB[32]/D”);
cal —>Branch ("EADF[32]”, EADF, ”EADF[32] /D)
cal—Branch (”"EADB[32]”, EADB, "EADB[32]/D”);
cal—>Branch ("EALF[32]”, EALF, 7”EALF[32]/D”);
cal—Branch ("EALB[32]”, EALB, 7EALB[32]/D”);
cal—>Branch ("EBUF[16]”, EBUF, “EBUF[16]/D”);
cal—Branch (”"EBUB[16]”, EBUB, "EBUB[16]/D”);
cal—>Branch ("EBRF[16]”, EBRF, “EBRF[16]/D");
cal—Branch ("EBRB[16]”, EBRB, ”EBRB[16]/D”);
cal—>Branch ("EBDF[16]”, EBDF, “EBDF[16]/D”);
cal —>Branch ("EBDB[16]”, EBDB, ”“EBDB[16]/D”);
cal—>Branch ("EBLF[16]”, EBLF, “EBLF[16]/D");
cal—Branch (”EBLB[16]”, EBLB, "EBLB[16]/D”);
cal—>Branch ("EDEBU[16]”, EDEBU, “EDEBU[16]/D
cal—>Branch ("EDEBR[16]”, EDEBR, “EDEBR[16]/
cal—Branch (”"EDEBD[16]”, EDEBD, "EDEBD[16]/
cal—>Branch ("EDEBL[16]”, EDEBL, “EDEBL[16]/
cal—Branch ("EPADAU” | &EPADAU, 7“EPADAU/D”);
cal—Branch ( "EPAD , &EPADAR, "EPADAR/D”);
cal—Branch ("EPADAD” , &EPADAD, "EPADAD/D”);
cal—Branch ("EPADAL” , &EPADAL, "EPADAL/D”);
Double t aAUF[32]={0.0115274,

0.010981,

0.0115176,

0.0110471,

0.0115869,

0.0114873,

0.0113984,

82



0114811,
0109884,
0113954,
0109492,
0115039,
0112403,
0113335,
0113684,
0111654,
012326,
0132192,
0126489,
0127198,
0124802,
0127598,
012279,
0127125,
0128091,
012579,
0127847,
0122413,
0123339,
0126696,
0128399,
0.0120028};
Double t aAUB[32]={0.012483,
0.0125703,
0126812,
0121618,
0124592,
0126301,
0125831,
0126722,
0125171,
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0127109,
0130884,
0124671,
0128213,
012551,
012245,
0120239,
0124727,
0127139,
0129414 ,
0129225,
0125501,
0129135,
0127153,
0126626,
0130492,
0127551,
0130573,
0126905,
0126579,
0128304
0133837,
0.0130483};
Double_t aARF[32]={0.0121854,
0.0117948,
0120147,
012159,
0121852,
0125556,
0120987,
0116765,
012081,
0119018,
0121347,
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0118932,
0118621,
0120771,
0119265,
0119152,
0112438,
0112214,
0112077,
01135,
0109951,
0113081,
0110785,
0112389,
0110379,
0109549,
0109805,
0112803,
0110328,
0109357,
.01086,
0.01108};
Double 't aARB[32]={0.0143021,
0.0141841,
0146543,
0145763,
0145187,
0148639,
0140622,
0139907,
0142217,
.01407,
0143716,
0148498,
.0142066

O O O O O O O O O O o o o o o o o o oo
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0144416,
0145849 ,
0141547,
0141888,
0136669,
014338,
0141449,
0141978,
0143124,
0140109,
0143293,
0139833,
0137897,
0137386,
0140827,
0135951,
0141145,
0140793,
0.0146489}:
Double_t aADF[32]={0.0122618,
0.0123808 ,
0120334,
012398,
0116183,
0122043,
0116211,
012315,
0119648,
0127805,
0117553,
0120235,
0117547,
0120622,
0121014,

O O O O O O O O O O O o o o o o oo
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015401,
0126033,
0128621,
0127505,
0125882,
0129944,
0123672,
0130706,
0127841,
0127117,
0127387,
0130614,
0126201,
0125674,
0130913,
0126774,
0.0126251};
Double t aADB[32]={0.0143232,
0.0144758,
0139906,
0139668,
0140302,
0143175,
0146242,
0143568,
0140432,
0141056,
0143376,
0146495,
0144044,
0138756,
0145469,
0145033,
0136692,
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.0141038,
0147115,
.0140591,
0144198,
0139518,
0139253,
0143486,
0141972,
0144822,
0144457,
0141341,
.0141903,
0144822,
0142458,
0.0141376};
Double_t aALF[32]={0.0128129,
0.013199,

012678,
0131958,
0128781,
.0124941,
0129559,
0130342,
0128458,
0127154,
0128187,
0131682,
0129088,
0134389,
0123475,
0126942,
0115599,
0119896,
0117028,
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0121914,
0114099,
012065,
0116655,
0117746,
0118878,
0117245,
0116766,
0115827,
0115431,
01155,
0119428,
0.011728};
Double_t aALB[32]={0.0129628,
0.0132428
013117,
.0129393,
0128522,
0127804,
0129603,
.0130896 ,
0125684,
012762,
0131746,
0127763,
0127157,
0126398,
0131284,
0129232,
.0135509,
0134115,
017929,
0137692,
0135291,
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0137417,
013824,
0136173,
.0134608,
0139798,
0137209,
0132925,
013546,
0137666,
.0140399,
0.013348};
Double t aBUF[16]=1{0.0207348 ,
0.0207259,
0214091,
0207975,
.0209048,
0206204
0213685,
.0206959,
0205417,
.0214025,
.0203927,
0208821,
0204867,
0203911,
0195435,
0.0206569};
Double_t aBUB[16]={0.0207315,
0.0205954,
0.0213147,
0.0210858,
0.0209326,
0.0206849,
0.0214561 ,

O O O O O O o o o o
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0205664 |
0211276,
.0209919,
.0209447,
.0209236,
.0204937,
0201183,
.0210434,
0.0207127};
Double_t aBRF[16]={0.0180338,
0.0168083,
0158976,
016727,
0302121,
0158803,
0163144
0167399,
0221444,
0163715,
0157923,
0160132,
0165953,
0163604,
0161051,
0.0163557};
Double t aBRB[16]={0.0163823,
0.0166862,
0164173,
0169143,
0168192,
0165582,
0164878,
0164264,
0161023,

O O O O O O O o o o o o o O O O O O O o O
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0162877,
015802,
0167168,
.0161106,
.0163709,
0166225,
0.016886};
Double t aBDF[16]={0.0175414,
0.016988,
0161564 ,
0169526,
0167839,
0173363,
0172459,
0169173,
.0170003,
0169162,
0165039,
0172065,
0171215,
0173378,
0165221,
0.0168373};
Double_t aBDB[16]={0.0161119,
0.0159483,
016122,
0158342,
016177,
.0159989,
0153391,
0156443,
0156167,
0158555,
0153191,

o O O O o O
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0.0155332,
0.0154921 ,
0.0156717,
0.015953,
0.0158682};
Double_t aBLF[16]={0.0216909,
0.0206012,
0219189,
0212882,
0217689,
0205925,
0210124 ,
0210214,
0210223,
020534,
0220538,
.0200918,
.0221048,
.0207436,
021707,
0.0207367};
Double 't aBLB[16]={0.0213882,
0.019989,
0205982,
0201601,
0211843,
0207537,
0209914,
0207769,
.0201556,
.0204513,
0199352,
0202692,
0211464,

O O O O O O O o o o o o o
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0.0206616
0.021019,
0.0206924};
//Double__t aDEBU[16]={1., 1., 1.,
Double_t aDEBU[16]={0.01751020052,
0.0190507999,
01789313417,
.01659914854,
01538575846,
01660411921,
01956950389,
01669213751,
01663784197,
01657853788,
01648466951 ,
01649532966,
01970052542 ,
0163458964,
.023259473,
0.01737951971};
Double_t aDEBR[16]={0.01699227173,
0.01922859558,
.01929161019,
01757429172,
01718919668,
01727900643,
01726871934,
.01840365098,
01863257057,
01770576133,
0176681309,
.01854505404 ,
01871413643,
01889156492,

O O O O O O O o o o o o o
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0.01775451713,
0.01890181712};
Double_t aDEBD[16]={0.01746301737,
0.01646662074 ,
01733790984,
01729456138,
0176089114,
01800022339,
01720842632,
01809458661 ,
01677852232,
01658194538,
0196410265,
01861791946,
0189869229,
01660555217,
01882006653,
0.01731957766};
Double_t aDEBL[16]={0.01784068733,
0.01745241371,
01751401757,
01868882781,
01725309553,
01779389193,
01741889506,
01717549907,
01829926828,
0172825225,
01826052424,
01809581721,
01752469161,
01887935747,
01762822402,
.01728213339};

O O O O O O O O o o o o o
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Double_t aPADAU=1.;
Double t aPADAR=1.;
Double_t aPADAD=1.;
Double t aPADAL=1.;

Double t bAUF[32]={—1.30359,
—1.59693,
—1.41077,
—1.44621,
—1.42383,
—1.40914,
—1.40793,
—1.31909,
—1.34432,
—1.12736,
—1.43376,
—1.02854,
—1.53252,
—1.15989,
—1.82108,
—1.65981,
—1.50449,
—2.00652,
—1.9729,
—1.37907,
—1.51099,
—1.90727,
—1.68551,
—1.54489,
—1.44401,
—1.81054,
—1.62426,
—1.25518,
—1.67636,
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—1.48319,
~1.53111,
—1.20798};
Double t bAUB[32]={ —0.838676 ,
—1.22288,
—0.793775,
—1.12357,
—1.30028,
—1.08329,
—1.03725,
—1.15169,
—1.04293,
—0.93311,
—1.25067,
—1.0489,
—0.924085,
—0.802963,
—1.21425,
—0.972056,
—1.2353,
—1.364,
—1.35631,
—1.24405,
—1.40619,
—1.22807,
—1.19983,
—1.30325,
—1.45861,
~1.13244,
—1.41911,
—1.31678,
—1.07606,
—1.04434,
—1.57985,
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—1.49561};
Double t bARF[32]={—0.720277,

—0.791525,
—0.749622,
—0.924137,
—0.715488,
—0.526329,
—0.582755,
—1.12052,

—0.909766,
—0.691523,
—0.916585,
—0.819426,
—0.606293,
—0.654577,
—1.35158,

—0.750895,
—0.626762,
—0.811408,
—0.554127,
—0.614592,
—0.919797,
—0.532556,
—0.848954,
—0.659268,
—0.806736,
—0.898733,
—0.607672,
—0.669598,
—0.856331,
—0.809864,
—0.398237,
—0.669066};

Double t bARB([32]={—1.10027,
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—0.79936,
—0.947672,
—0.881303,
—0.825697,
—0.945892
—1.06807,
—1.02863,
—0.863877,
—0.821463,
—0.918465,
—0.875341,
—0.897115,
—0.948606,
—1.0476,
~0.950321,
~1.20031,
—0.925015,
—1.12142,
—1.08375,
~1.0864,
—0.975564,
—1.07049,
~1.20791,
—1.09994,
—1.06745,
~1.10944,
—1.21496,
~1.01455,
~0.875292,
—1.01204,
—1.04516};
Double_t bADF[32]={—0.904248,

~1.16954,
—1.14411,
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—0.856516,
—0.725056,
—0.796668,
—1.12417,
—1.39763,
—1.33274,
—1.53993,
—1.0795,
—1.22519,
—1.12939,
—1.44413,
—1.25687,
—1.84734,
—1.11645,
—1.37743,
—1.06373,
—1.42091,
—1.56566,
—1.18363,
—1.27746,
—1.13916,
—1.24576,
—1.26311,
—1.30389,
—1.6326,
—1.06389,
—1.07564,
—1.27887,
—1.56769};

Double t bADB[32]={ —1.48962,
—1.55606,
—1.28522,
—1.32968,
—1.27494,
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—1.64484,
—1.45574,
—1.23969,
—1.60001,
—1.66853,
—1.56943,
—1.47959,
—1.69897,
—1.60066,
—1.57009,
—1.66279,
—1.33894,
—1.40142,
—1.79776,
—1.43549,
~1.6904,
—1.66736,
~2.26254,
—1.38679,
—1.37727,
—1.35673,
—1.85385,
—1.34244,
~1.59002,
—1.35967,
—1.54606,
—1.73892};
Double_t bALF[32]={—1.47994,

—1.59375,
—1.58978,
—1.29873,
—1.57659,
—1.26655,
—1.49491,
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—1.39585,
—1.2812,
—1.35483,
—1.68872,
—1.44458,
—1.67196,
—1.31886,
—1.12266,
—1.53567,
—1.59273,
—1.63423,
—1.41356,
—1.16381,
—1.33169,
—1.49389,
—1.45463,
—1.48567,
—1.20203,
~1.10772,
—1.17791,
—1.34138,
—1.48689,
—1.55389,
—1.95645,
—1.27391};
Double_t bALB[32]={ —1.4291,

—1.19263,
—1.33693,
—1.16765,
—1.03758,
—1.17575,
—1.17763,
—1.27785,
—1.3804,
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—1.37239,
~1.31601,
—1.30989,
—1.51021,
—1.38279,
—1.51847,
—1.39165,
—1.49777,
—1.20593,
—1.78065,
—1.69509,
—1.83649,
—1.44959,
~1.38811,
~1.21419,
—1.54547,
—1.33227,
—1.69902,
—1.3877,
—1.81288,
—1.44479,
—1.54879,
—1.43615};
Double_t bBUF[16]={—1.30429,

—1.46246,
—1.60049,
—1.49051,
—1.47451,
—2.13685,
—1.6758,
—1.57106,
—2.00073,
~1.67226,
—1.84048,
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—1.87778,
—1.98452,
—2.12846,
—1.87743,
—1.66726};

Double t bBUB[16]={ —2.07949,
—1.98395,
—2.03066,
—2.05891,
—1.92563,
—1.61902,
—2.1923,
—1.90906,
—1.77777,
—1.77435,
—1.83193,
—1.6567,
—2.18525,
—1.60198,
—1.92518,
—1.64115};

Double t bBRF[16]={—1.95319,
—1.68728,
—1.4093,
—1.70275,
—5.99409,
—2.27466,
—1.88011,
—2.19754,
—2.80473,
—1.81546,
—1.68358,
—1.75323,
—1.76367,
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—2.03861,
—9.14991,
~1.80261};
Double t bBRB[16]={ —1.73652,
~1.90824,
~9.33374,
—1.96733,
—2.07375,
—2.15533,
—2.10696,
~9.11741,
—2.03448,
—2.13297,
—9.47,
—1.99295,
—2.24959,
—1.81819,
—9.7752,
—2.16838};
Double_t bBDF[16]={—1.61637,

~2.19954,
—1.6699,
—1.97947,
~1.72261,
—2.51974,
~9.30281,
~9.14864,
—9.5036,
—2.00098,
—2.30356,
—2.35025,
—92.11687,
—2.24067,
—1.77997,
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~1.79537};
Double_t bBDB[16]={—2.35945,
~1.70732,
—2.49918,
—1.97216,
—1.99517,
—2.09743,
—2.15462,
—2.39472,
—2.26315,
—1.95269,
—1.78978,
—1.83823,
~1.94514,
—2.18325,
—2.32696,
~2.16091};
Double_t bBLF[16]={—2.12543,
—1.73569,
—1.87858,
—2.09517,
~9.31802,
—2.40165,
—2.03515,
—1.73018,
—1.73962,
—2.14935,
~9.45234,
—1.86502,
—2.58643,
—1.65797,
~9.4212,
~1.98785);
Double t bBLB[16]={ —1.75979 ,
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90321,
53265,
20847,
.08042,
.61968,
45218,
.8253,
192403,
31164,
19872,
67163,
19096,
193257,
.03873,
—2.12293};
//Double__t
Double t
—2.000943388,
—1.795050962,
.31813676,
.033197743,
.353081357,
15277497,
.398647499,
.385450445,
347855117,
418091956,
.22654064 ,
283914303,
.318588822,
.102511561,

—1.581642463};
bDEBR[16]={ —1.508061071,

Double t
—2.034099206,

bDEBU[16]={0. ,
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—2.092950715,
—1.633552228,
—1.517754568,
—1.572935562,
—1.611890981,
—1.852299083,
—1.914374895,
—1.694243879,
—1.712817137,
—1.930514707,
—1.827906426,
—2.012278626,
—0.912944674,
—1.926738174};

Double_t bDEBD|[16]={ —0.7584953484,
—1.413820644,
—1.523735915,
~1.560061599,
—1.732828135,
—1.80928959,
—~1.605686325,
—1.665246865,
—1.393490578,
—1.406962529,
—2.179975403,
—2.00423207,
—1.947677587,
—1.350406616,
—2.071049979,
—1.538241979};

Double_t bDEBL[16]={—1.551725008,
—1.590421409,
—1.531080931,
—1.796785549
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—1.396170258,
—1.6379469,
—1.57830175,
—1.569351492,
—1.783820478,
—1.440541279,
—1.657066612,
—1.741278948,
—1.586254432,
—1.896492448,
—1.555020316,
—1.586018008};

Double t bPADAU=0.;
Double t bPADAR=0.
Double t bPADAD=0.;
Double_t bPADAL=0.;

cout << "Fatto output” << endl;
Long64_t nentries = fChain—>GetEntriesFast ();

Long64 t nbytes = 0, nb = 0;

for (Long64 t jentry=0; jentry<nentries;jentry++) {
Long64_t ientry = LoadTree(jentry);
if (ientry < 0) break;
nb = fChain—>GetEntry (jentry ); nbytes 4= nb;
// if (Cut(ientry) < 0) continue;

if ((AUF[1] >100 && AUF[1] <5000) && (AUF[2]>100 && AUF[2] <5000) &&
for (int i=0; i<32; i++){

EAUF[ﬂ:ﬁAUF[]*AUF[ﬂ+bAUF[ih
UB[i]=aAUB[i]|+AUB[i]+bAUB[i ];
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EARF|[i]=aARF[i|*ARF[i]+bARF[i |;
EARB| i|=aARB|[i|*ARB[i]+bARB[i |;
FEADF|[ i|=aADF[i|*ADF[i]+bADF[i |;
EADB| i]=aADB[ i |*ADB|[ i]+bADB| i |;
EALF[i|=aALF[i]|*ALF[i]+bALF[i];
EALB[i|=aALB[1i]|*ALB[i]+bALB[i];

}

for (int i=0; i<16; i++){
EBUF [ i |=aBUF [ i | *BUF | i] +bBUF[ i | ;
EBUB| i|=aBUB| i | *BUB| i]+bBUB| i | ;
EBRF| i]=aBRF [ i | +BRF[ i]+bBRF[ i |
EBRB]i]=aBRB[i|*BRB[i]+bBRB]i |;
EBDF | i |=aBDF [ i | *BDF| i | +bBDF[ i | ;
EBDB| i]=aBDB[i|«BDB[i]+bBDB]|1 |;
EBLF|[ i]=aBLF [ i ]*BLF[i]+bBLF[i];
EBLB|i]=aBLB|i]*BLB[i]+bBLB|i |;

}

for (int i=0; i<16; i++){
EDEBU| i]=aDEBU[ i | *DEBU[ i |[+bDEBU| i | ;

[ [1] [1]
EDEBR/| i]=aDEBR| i | *DEBR| i | +bDEBR/ i | ;
EDEBD| i ]=aDEBD [ i ] *DEBD] i]+bDEBD| i | ;
EDEBL| i ]=aDEBL] i ] * DEBL | i | +bDEBL i | ;

EPADAU=aPADAU*PADAU+HPADAU ;
EPADAR=aPADAR*PADARAHPADAR;
EPADAD=aPADAD*PADAD+HPADAD;
EPADAI=aPADAL*PADAIA+bPADAL;

if (jentry%100000==0)
cout << "Fatto calibrazione x100000” << endl;
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cal >Fill ();

}

cal—>Write ();
fout—Write ();

fout—Close ();

Macro for the analysis of the experimental runs

#define Analisi_ cxx
#include 7 Analisi.h”
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TGeoManager.h>
#include <TGeometry.h>
#include <TNode.h>
#include <TGeoVolume.h>
#include <TGeoMatrix.h>
#include <TGeoMedium.h>
#include <TGeoMaterial . h>
#include <TGeoNode.h>
#include <TMaterial . h>
#include <TMixture.h>
#include <TShape.h>
#include <TString.h>
#include <Riostream .h>
#include <TFile.h>
#include <TMath.h>
#include <TLorentzVector.h>
#include <TSystem.h>
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#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdlib .h>
<TROOT. h>
<TGenPhaseSpace . h>
<TStyle.h>
"TGeoPatternFinder . h”
"TSystem.h”
<TGeoNavigator.h>
<iostream >
<cstdlib >
<fstream >

<cmath>
"TApplication.h”
"TF1.h”
"TGraph.h”
"TGraphErrors.h”
"TH1.h”

"TLegend .h”
"TLegendEntry.h”
"TColor.h”
<TRandom3 . h>
<time.h>
"TTree.h”

<random>

void Analisi:: Loop()

{

// In a ROOT session , you can do:
// root> .L Analisi.C
// root> Analisi t

//

root> t.GetEntry(12); // Fill t data members with entry number

// root> t.Show(); // Show wvalues of entry 12
// root> t.Show(16); // Read and show wvalues of entry 16
// root> t.Loop(); // Loop on all entries

//
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// This is the loop skeleton where:

// jentry is the global entry number in the chain
// tentry is the entry number in the current Tree
// Note that the argument to GetEntry must be:

// jentry for TChain:: GetEntry

// tentry for TTree:: GetEntry and TBranch:: GetEntry
//

// To read only selected branches, Insert statements like:
// METHODI:
// fChain—>SetBranchStatus ("+x”,0); // disable all branches
// fChain—>SetBranchStatus ("branchname ”,1); // activate branchname
// METHOD2: replace line
// fChain—>GetEntry (jentry ); //read all branches
//by b_branchname—>GetEntry (ientry ); //read only this branch
if (fChain = 0) return;
Long64 t nentries = fChain—>GetEntriesFast ();
TApplication theApp(”App”, NULL, NULL);
gStyle—>SetPalette (1);
gSystem—>Load ("1libPhysics.so”);
gSystem—>Load ("1libGeom .so” );

TGeoManager #sc = new TGeoManager(”scattcham”,”Scattering Chamber”)

TGeoMaterial xmatVacuum = new TGeoMaterial (”"Vacuum” ,0,0,0);
TGeoMaterial smatSi = new TGeoMaterial (”Si” ;28.086,14,2.321);

TGeoMedium #Vacuum = new TGeoMedium (”Vacuum” ,1, matVacuum );
TGeoMedium *Si = new TGeoMedium (”Root, Material” 2 , matSi);
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TGeoVolume *top = sc—>MakeSphere (”TOP” ;Vacuum,0.,100.,0.,180.,0.,3¢€
sc—>SetTopVolume (top );

TGeoVolume #psd = sc—>MakeBox(”PSD” ,Si ,2.5,0.05,2.5);

// from deg to rad
double dtr=TMath::Pi()/180.;

// close geometry

// this is detector AR
double thetaAR=56xdtr ;
double phiAR=45xdtr ;
double distAR=6.00;
double pxAR=distARx*sin (thetaAR )« cos (phiAR);
double pyAR=dist AR« sin (thetaAR )% sin (phiAR );
double pzAR=dist AR*cos (thetaAR);
TVector3 vAR(pxAR,pyAR,pzAR); //position of det. AR wrt chamber
TGeoRotation xrotAR = new TGeoRotation(”’rotAR”,—45,34,0);
TGeoCombiTrans *posAR = new TGeoCombiTrans (pxAR,pyAR,pzAR,rotAR

// this is detector AU
double thetaAU=34xdtr;
double  phiAU=(45+90)«dtr ;
double distAU=6.02;
double pxAU=distAUxsin (thetaAU)xcos (phiAU );
double pyAU=distAUxsin (thetaAU )*sin (phiAU);
double pzAU=dist AUxcos (thetaAU );
TVector3 vAU(pxAU,pyAU,pzAU); //position of det. AU wrt chamber
TGeoRotation *rotAU = new TGeoRotation(”rotAU” ;45,56 ,0);
TGeoCombiTrans *posAU = new TGeoCombiTrans (pxAU,pyAU,pzAU, rotAU
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//this is detector AL
double thetaAL=56xdtr;
double  phiAL=(45+180)*dtr ;
double distAL=6;
double pxAL=dist ALxsin (thetaAL)x cos (phiAL);
double pyAlL=distALx*sin (thetaAL)*sin (phiAL);
double pzAL=distALxcos (thetaAL );
TVector3 vAL(pxAL,pyAL,pzAL); //position of det. AL wrt chamber
TGeoRotation *rotAL = new TGeoRotation(”rotAL” 6 —45,—34,0);
TGeoCombiTrans *posAL = new TGeoCombiTrans (pxAL,pyAL,pzAL,rotAL

// this is detector AD
double thetaAD=34xdtr;
double  phiAD=(45+270)xdtr ;
double distAD=6.02;
double pxAD=dist ADx*sin (thetaAD )x cos (phiAD );
double pyAD=dist ADxsin (thetaAD )% sin (phiAD );
double pzAD=dist AD xcos (thetaAD );
TVector3 vAD(pxAD,pyAD,pzAD); //position of det. AD wrt chamber
TGeoRotation xrotAD = new TGeoRotation(”rotAD” 45, —56,0);
TGeoCombiTrans *posAD = new TGeoCombiTrans (pxAD,pyAD,pzAD, rotAD

// far geometry

// this is detector BR
double thetaBR=5xdtr;
double phiBR=45xdtr ;
double distBR=69.14;
double pxBR=distBR*sin (thetaBR )*cos (phiBR);
double pyBR=distBRx*sin (thetaBR )« sin (phiBR);
double pzBR=distBR*cos (thetaBR );
TVector3 vBR(pxBR,pyBR,pzBR); //position of det. Bl wrt chamber
TGeoRotation xrotBR = new TGeoRotation(”’rotBR”,—45,-90,0);
TGeoCombiTrans *posBR = new TGeoCombiTrans(pxBR,pyBR,pzBR,rotBR
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// this is detector BU
double thetaBU=4xdtr;
double  phiBU=(45+90)xdtr ;
double distBU=71.06;
double pxBU=distBUx*sin (thetaBU )xcos (phiBU );
double pyBU=distBUxsin (thetaBU )* sin (phiBU );
double pzBU=distBUxcos (thetaBU );
TVector3 vBU(pxBU,pyBU,pzBU); //position of det. BU wrt chamber
TGeoRotation *rotBU = new TGeoRotation(”rotBU” 45, —90,0);
TGeoCombiTrans *posBU = new TGeoCombiTrans(pxBU,pyBU,pzBU,rotBU

// this is detector BL
double thetaBL=b5xdtr;
double  phiBL=(45+180)*dtr ;
double distBL=69.14;
double pxBL=distBLx*sin (thetaBL)x*cos (phiBL);
double pyBL=distBLx*sin (thetaBL ) sin (phiBL );
double pzBL=distBLx*cos (thetaBL );
TVector3 vBL(pxBL,pyBL,pzBL); //position of det. B3 wrt chamber
TGeoRotation xrotBL = new TGeoRotation(”rotBL” —45,90,0);
TGeoCombiTrans *posBL = new TGeoCombiTrans (pxBL,pyBL,pzBL,rotBL

// this is detector BD
double thetaBD=4xdtr;
double  phiBD=(45+270)xdtr ;
double distBD=71.06;
double pxBD=distBD*sin (thetaBD ) cos (phiBD );
double pyBD=distBDx*sin (thetaBD )« sin (phiBD );
double pzBD=distBDx*cos (thetaBD );
TVector3 vBD(pxBD,pyBD,pzBD); //position of det. BD wrt chamber
TGeoRotation *rotBD = new TGeoRotation(”rotBD” ;45,90,0);
TGeoCombiTrans xposBD = new TGeoCombiTrans(pxBD,pyBD,pzBD,rotBD
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// detector placing in space
top—>AddNode (psd,1,posAR);
top—>AddNode (psd ,2 ,posAU );
( );
( )

top—>AddNode (psd ,3 , posAL
top—>AddNode (psd ,3 ,posAD

9

Y

top—>AddNode
top—>AddNode
top—>AddNode
top—>AddNode

psd ,5 ,posBR ) ;
psd ,6 ,posBU
psd ,7 ,posBL
psd ,8 ,posBD

Y

A~~~ —~

)
);
)
)

Y

gGeoManager—>CloseGeometry ();
top—>SetLineColor (kRed);
gGeoManager—>SetTopVisible ();

// get the nodeid of each detector

gGeoManager—>SetCurrentPoint (pxAR,pyAR,pzAR);
gGeoManager—FindNode () ;

TGeoNode xnodeAR = gGeoManager—>GetCurrentNode ();
Int_t idAR = gGeoManager—>GetCurrentNodeld ();
cout << "AR,,” << idAR << endl;

gGeoManager—>SetCurrentPoint (pxAU, pyAU, pzAU ) ;
gGeoManager—FindNode ();

TGeoNode xnodeAU = gGeoManager—>GetCurrentNode ();
Int_t idAU = gGeoManager—>GetCurrentNodeld ();
cout << "AU,” << idAU << endl;

gGeoManager—SetCurrentPoint (pxAL, pyAL, pzAL);
gGeoManager—FindNode ();
TGeoNode #xnodeAL = gGeoManager—>GetCurrentNode ();
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Int_t idAL = gGeoManager—>GetCurrentNodeld ();
cout << "AL,” << idAL << endl;

gGeoManager—>SetCurrentPoint (pxAD,pyAD, pzAD);
gGeoManager—FindNode ();

TGeoNode xnodeAD = gGeoManager—>GetCurrentNode ();
Int_t idAD = gGeoManager—>GetCurrentNodeld ();
cout << "AD,” << idAD << endl;

gGeoManager—>SetCurrentPoint (pxBR,pyBR, pzBR ) ;
gGeoManager—FindNode ();

TGeoNode x*nodeBR = gGeoManager—>GetCurrentNode ();
Int_t idBR = gGeoManager—>GetCurrentNodeld ();
cout << "BR,,)” << idBR << endl;

gGeoManager—>SetCurrentPoint (pxBU, pyBU, pzBU ) ;
gGeoManager—FindNode () ;

TGeoNode *nodeBU = gGeoManager—GetCurrentNode ();
Int_t idBU = gGeoManager—>GetCurrentNodeld ();
cout << "BU,,” << idBU << endl;

gGeoManager—>SetCurrentPoint (pxBL, pyBL, pzBL ) ;
gGeoManager—FindNode () ;

TGeoNode xnodeBL = gGeoManager—>GetCurrentNode ();
Int_t idBL = gGeoManager—>GetCurrentNodeld ();
cout << "BL.,” << idBL << endl;

gGeoManager—>SetCurrentPoint (pxBD,pyBD, pzBD );
gGeoManager—FindNode ();

TGeoNode *nodeBD = gGeoManager—>GetCurrentNode ();
Int_t idBD = gGeoManager—GetCurrentNodeld ();
cout << "BD,,” << idBD << endl;

//first number row, second column
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const double th DEBU[16][16]={

{16.8355, 17.4152, 17.4207, 17.5226, 17.0615, 16.4657, 15.8059,
(17.8539, 18.3921, 18.5543, 18.6432, 18.184, 17.5717, 16.9762,

{18.8957, 19.2933, 19.5802, 19.609, 19.3661, 18.8681, 18.1912,

{19.8096, 20.3598, 20.4522, 20.2866, 20.2274, 19.9146, 19.4917,
{20.3465, 20.9535, 21.2307, 21.3698, 20.9806, 20.6734, 20.4166,
{20.9323, 21.5843, 21.9137, 22.1127, 21.962, 21.573, 21.3558, 2
{21.4189, 22.0779, 22.4413, 22.9147, 22.7344, 22.4886, 22.009,

{21.7016, 22.4091, 22.9388, 23.3139, 23.5723, 23.4886, 23.2946,
{21.9029, 22.64, 23.2509, 23.7255, 23.9626, 24.1791, 24.1602, 2
{22.2914, 22.9631, 23.7111, 24.2519, 24.4882, 24.5904, 24.4666,
{22.9004, 23.7912, 24.2023, 25.2043, 25.6985, 25.5602, 24.6164,
{23.3642, 24.1574, 25.1092, 25.6177, 25.8727, 26.0889, 25.8156,
{23.6308, 24.2732, 25.3137, 25.7428, 26.0542, 26.2195, 26.2864,
{23.8492, 24.1572, 25.4114, 25.7922, 25.9352, 26.3613, 26.2402,
{23.7429, 24.1911, 25.3686, 25.5215, 25.4714, 25.9228, 25.9117,
{23.4244, 23.9922, 24.2641, 24.4101, 24.9568, 24.7542, 24.515,

}s

const double th DEBD|[16][16]={

{14.4941, 18.3351, 19.6828, 21.0938, 21.7032, 22.2515, 22.6902,
{14.6477, 18.3396, 19.6221, 21.0726, 21.8033, 22.4206, 22.9041,
{15.9383, 17.9312, 19.6007, 20.7885, 21.7093, 22.4745, 23.1102,
{15.0283, 17.1452, 19.4815, 20.7232, 21.7086, 22.6729, 23.5403,
{13.4174, 17.4117, 19.1239, 20.7651, 21.9353, 22.7082, 23.5158,
{15.5718, 17.5992, 19.3462, 20.7369, 21.751, 22.676, 23.6406, 2
{15.6704, 17.706, 19.212, 20.7206, 21.5426, 22.5959, 23.5042, 2
{16.7699, 17.6095, 19.2773, 20.4236, 21.7354, 22.4518, 23.3482,
{16.8524, 17.8622, 19.2762, 20.615, 21.5382, 22.4047, 23.1349,

{16.7224, 17.402, 18.9013, 20.1395, 21.1542, 21.9601, 22.8653,

{16.4633, 17.6481, 18.6517, 19.76, 20.9292, 21.5441, 22.7127, 2
{17.0506, 17.8376, 18.1266, 19.4419, 20.1678, 21.4061, 22.4775,
{17.0179, 17.7934, 18.1989, 18.7063, 19.6557, 20.8636, 22.1805,
{17.244, 17.0534, 18.0528, 18.1494, 19.0309, 20.2261, 21.4724,
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{17.5033, 17.3318, 17.9342, 17.6954, 18.2199, 19.4704, 20.3737,
{17.067, 17.3049, 17.2381, 17.1949, 16.8947, 18.1626, 19.1598,

b

const double th DEBL[16][16]={
{18.2872, 18.326, 18.2684, 18.8629, 19.1834, 19.392, 19.5484, 1
{18.084, 18.3608, 18.5317, 19.0441, 19.3511, 19.6805, 19.9723,
{17.8571, 18.1875, 18.6135, 18.8866, 19.1686, 19.7395, 20.1687,
{17.5936, 18.1625, 18.5276, 18.7853, 19.008, 19.7492, 20.3789,
{17.5313, 18.0035, 18.3132, 18.7618, 19.0212, 19.6513, 20.2157,
{17.6635, 18.0054, 18.1731, 18.5524, 18.8691, 19.6166, 20.2678,
{17.8525, 18.0302, 18.0702, 18.5636, 18.6317, 19.3139, 20.018,
{17.9663, 18.22, 18.2942, 18.4287, 18.7581, 18.9287, 19.6142, 1
{18.2226, 18.5667, 18.5903, 18.4697, 18.4882, 18.6088, 19.0003,
{18.7023, 18.8463, 18.7733, 18.6061, 18.4227, 18.3368, 18.5463,
{19.01, 19.3469, 19.0297, 18.9183, 18.703, 18.3756, 18.2771, 1¢&
{19.2978, 19.5147, 19.4044, 19.2333, 18.8427, 18.6972, 18.2759,
{19.5169, 19.7136, 19.555, 19.3565, 19.1646, 18.7989, 18.3427,
{19.8079, 19.6612, 19.6341, 19.4776, 19.0845, 18.8684, 18.2242,
{19.6921, 19.5627, 19.5975, 19.3174, 18.8124, 18.4662, 17.6742,
{19.0341, 19.2973, 19.0336, 18.8173, 18.2515, 17.9841, 17.1646,

}s

const double th DEBR[16][16]={
{16.2715, 16.7138, 16.8561, 17.1471, 17.089, 16.8454, 16.9712,
{16.3279, 16.9896, 17.2626, 17.5676, 17.5123, 17.4959, 17.8851,
{16.7678, 17.1346, 17.6024, 17.9091, 18.1093, 18.4656, 18.9724,
{17.0407, 17.6229, 18.1702, 18.7534, 19.3304, 20.19, 21.8212, 2
{17.536, 18.2733, 19.1518, 20.0839, 20.8547, 21.9255, 22.6881,
{16.1721, 19.2803, 20.3134, 21.2355, 22.0373, 22.9279, 23.5256,
{18.5311, 19.6534, 20.8703, 22.0761, 22.8935, 23.5401, 23.8636,
{18.566, 19.8732, 21.3085, 22.5585, 23.5421, 23.8558, 23.9873,
{18.7272, 20.1654, 21.5497, 22.6641, 23.4586, 23.8576, 23.8247,
{19.0103, 20.2545, 21.5462, 22.6161, 23.3167, 23.6131, 23.6851,
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{19.402, 20.4257, 21.4847, 22.6224, 23.3105, 23.4646, 23.5561,
{19.3947, 20.199, 21.2128, 22.3631, 22.867, 23.3079, 23.377, 23
{19.0131, 19.7925, 20.7143, 21.7502, 22.3813, 22.7748, 23.1017,
{18.7143, 19.1258, 20.2253, 21.1852, 21.6638, 22.4222, 22.7063,
{18.0196, 18.5344, 19.6848, 20.5953, 21.0135, 21.7185, 22.0799,
{17.4869, 18.0613, 18.8173, 19.8276, 20.3525, 20.949, 21.1661,

const double corr DEBL[16][16]={

{—0.72, —0.884, —0.5824, —0.2934, —0.0325, 0.0887,
—0.3084, —1.0102, —1.3223, —1.6811, —1.707, —1.6284,
—1.3349, —0.4509, 0.2189, 0.4166},

{—1.1654, —1.2729, —1.2169, —1.0785, —0.8692, —0.895,
—~1.5036, —2.0401, —2.3492, —2.5349, —2.3848, —2.0368,
—1.5892, —0.7693, —0.0467, 0.339},

{—1.1325, —1.2397, —1.4175, —1.4845, —1.4553, —1.727,
~2.5307, —3.0802, —3.2329, —3.1821, —2.7612, —2.035,
—1.437, —0.5841, 0.4606, 1.5049},

{—0.8274, —1.1648, —1.446, —1.6752, —1.8709, —2.2452,
—3.0203, —3.569, —3.7285, —3.5985, —2.8824, —1.8449,
—1.2727, —0.4618, 0.6155, 1.8597},

{—0.0716, —0.8131, —1.3571, —1.6903, —1.9297, —2.2088,
—2.9788, —3.5601, —3.825, —3.767, —2.8542, —1.778, —1.302,
—0.4097, 0.7385, 1.8},

{0.8933, —0.1277, —1.0032, —1.4382, —1.5766, —1.7552,
—2.6643, —3.496, —3.8975, —3.69, —2.6208, —1.5683, —0.9536,
0.0345, 0.8349, 1.6911},

{1.9071, 0.7772, —0.3768, —0.8999, —0.9948, —1.1276,
—2.0247, —3.1167, —3.4809, —3.2652, —2.087, —1.2368,
—0.8835, 0.2959, 0.7646, 1.4394},

{2.8775, 1.808, 0.7602, 0.0662, —0.2762, —0.2047,
—0.861, —1.9066, —2.5124, —2.3617, —1.1739, —0.7293,
—0.7212, —0.1358, 0.3843, 1.1808},
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{3.8204, 2.8635, 2.0707, 1.2255, 0.5244, 0.7774,

0.5209, —0.3304, —1.0884, —1.1063, —0.2567, —0.524, —0.752,
—0.6188, —0.2224, 0.5601},

{4.2877, 3.4503, 2.712, 1.9704, 1.408, 1.4871, 1.4173,
0.8471, 0.144, 0.0482, 0.1971, —0.4376, —1.2208, —1.2271,
—0.9225, —0.1182},

{4.0378, 3.6189, 4.9384, 2.3553, 2.3063, 2.3402,
2.4432, 1.8558, 1.0489, 0.5615, 0.133, —0.7234, —1.7976,
—1.8655, —1.5737, —0.8017},

{3.2491, 3.3017, 2.5635, 2.3185, 2.6916, 2.8978,
2.9493, 2.3187, 1.5472, 0.5999, —0.3869, —1.363, —2.3125,
—2.5723, —2.0423, —1.4616},

{3.3821, 3.0223, 2.4606, 2.3033, 2.3196, 2.6255,
2.7728, 2.391, 1.9141, 0.5863, —0.7128, —1.8087, —2.6053,
—2.9611, —2.6291, —2.0151},

{3.8753, 3.006, 2.216, 1.9576, 1.8153, 2.3698, 2.9988,
3.086, 2.3478, 1.1815, —0.2921, —1.6394, —2.4823, —2.9585,
—2.638, —2.217},

{4.3285, 3.342, 2.3545, 1.5965, 2.0478, 3.1393, 3.84,
4.0501, 3.3384, 2.4869, 0.693, —0.9193, —1.8947, —2.3551,
—2.0729, —1.7962},

{4.7579, 3.671, 3.0264, 2.7591, 3.3841, 4.3248, 4.0365,
4.7451, 3.8451, 3.1528, 1.8911, 0.3383, —0.6777, —1.2355,
—1.0854, —0.3547},

i

const double corr DEBU[16][16]={

(12.0685, 11.6946, 11.6272, 12.3607, 13.2566, 13.8348,
13.8797, 13.1972, 12.4256, 11.5298, 10.3593, 9.5169,
8.4284, 8.2337, 8.4924, 9.2955},

{11.2728, 11.0867, 10.4678, 10.8739, 11.8567, 12.1878,
11.6924, 10.8685, 9.9292, 9.0396, 7.9229, 6.9347, 6.1872,
5.9483, 6.4159, 7.2725},
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{10.5, 10.0809, 9.4275, 9.1344, 9.4305, 9.5042, 9.0089,
8.1757, 7.2522, 6.3117, 5.0184, 4.0352, 3.677, 3.8586,
4.401, 5.4243},

{9.7302, 8.831, 7.796, 6.9775, 6.8616, 6.7724, 6.1939,
5.4416, 4.6105, 3.7667, 2.7399, 2.3071, 2.1994, 1.801,
2.118, 3.2638},

{9.1808, 7.7423, 6.1211, 4.8781, 4.312, 4.1755, 3.7862,
3.0172, 2.0596, 1.3595, 1.2165, 0.6163, —0.0313, 0.1533,
0.8869, 2.2619},

{8.2719, 6.4538, 4.6811, 3.1852, 2.3014, 1.9605,

1.6702, 0.9207, 0.015, —0.1079, —0.6941, —1.6339, —1.8516,
—1.2131, —0.2854, 1.2858},

{7.0965, 5.1544, 3.4116, 1.8793, 0.8401, 0.1884,
—0.3864, —0.9531, —1.3863, —2.1254, —3.2366, —3.6434,
—3.5789, —2.6405, —1.4063, 0.2815},

{6.0869, 4.2214, 2.5492, 0.9569, —0.2023, —1.1488,
—2.2794, —2.4623, —3.528, —5.4701, —5.5032, —4.9857,
—4.6066, —3.682, —2.2095, —0.5763},

{5.2616, 3.4424, 1.7068, —0.0448, —1.281, —2.4156,
—3.4642, —3.7958, —5.9984, —7.6703, —7.2616, —6.7626,
—6.1145, —4.6619, —2.8684, —1.2342},

{4.5779, 2.9315, 1.2414, —0.6069, —2.1581, —3.6953,
—4.5726, —5.5051, —7.1037, —7.9779, —8.4523, —8.4518,
—7.683, —6.2435, —4.1738, —2.2002},

{3.7688, 2.3602, 0.8756, —0.9751, —2.916, —4.678,
~5.9381, —7.6551, —8.5139, —9.1386, —9.7002, —9.4998,
—8.5532, —7.3497, —5.7659, —3.6707},

{3.5995, 1.9612, 0.4197, —1.4645, —3.5921, —5.3591,
—6.9381, —8.8855, —10.2329, —10.9414, —10.8555, —10.1966,
—9.4093, —8.2642, —6.6517, —4.7846},

{3.8201, 1.8094, 0.0864, —1.7952, —3.9106, —5.6378,
~7.458, —9.2364, —10.4189, —11.1506, —11.0396, —10.2794,
—9.5207, —8.4939, —6.9644, —5.1888},

{4.1128, 2.0003, 0.1356, —1.8068, —3.7587, —5.4932,
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—-7.6334, —8.9907, —10.0143, —10.525, —10.287, —9.5591,

—9.0271, —8.4025, —6.8585, —5.3456},

{4.2244, 2.0233, 0.1684, —1.4278, —2.8647, —4.3376,
—6.6836, —8.2914, —8.977, —8.9668, —8.6714, —8.2479,
—7.9113, —7.2604, —6.2573, —4.8},

{4.3892, 2.2822, 0.481, —0.9217, —1.4536, —2.5867,
~5.0737, —6.5098, —6.7585, —6.8774, —6.7872, —6.8819,
—6.5204, —5.4192, —4.4571, —3.3678},

i

const double corr_ DEBD[16][16]={

{1.7707, 0.0911, —1.4534, —2.3925, —3.1232, —3.725,
—3.1009, —2.4963, —1.853, —0.8099, 0.2999, 1.4525, 3.0428,
5.564, 8.5535, 11.0052},

{0.3265, —1.4346, —3.1101, —4.3422, —4.8732, —5.1707,
—4.441, —3.5279, —2.3669, —1.374, —0.2714, 1.1577, 3.0067,
5.5562, 8.4072, 10.8152},

{—0.9425, —2.6298, —4.5124, —6.0304, —6.6202, —6.7934,
—6.0526, —4.9261, —3.4448, —2.1346, —0.9077, 0.8402,
3.0719, 5.7878, 8.7086, 11.4598},

{—1.5858, —3.363, —5.3376, —7.1075, —7.7369, —8.0594,
—7.3773, —6.2136, —4.6122, —2.9646, —1.2765, 0.8243,
3.3162, 6.2869, 9.4984, 12.3676},

{—1.6556, —3.4804, —5.5639, —7.6217, —8.5637, —9.0054,
—8.1966, —6.837, —5.2384, —3.3436, —1.2066, 0.836, 3.4049,
6.6562, 10.0323, 12.9924},

{—1.472, —3.2933, —5.3734, —7.707, —9.1487, —9.5968,
—8.6448, —7.1305, —5.3635, —3.3506, —1.0443, 0.9276,
3.4912, 6.7498, 10.001, 12.6193},

{—1.0251, —2.8682, —5.0448, —7.4297, —9.1812, —9.932,
—8.8876, —7.0731, —5.2526, —3.1935, —1.0119, 1.1306,
3.6048, 6.6304, 9.6506, 11.7805},

{—0.3122, —2.0512, —4.49, —6.8208, —8.6924, —9.5885,
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—8.6474, —7.1748, —5.1279, —=3.0576, —0.9047, 1.2855,
3.6634, 6.5583, 9.4219, 11.1998},

{—0.1898, —1.6395, —4.0622, —6.4776, —7.9733, —8.9103,
—8.6441, —7.7894, —5.3006, —2.5645, —0.5, 1.4137, 3.5782,
6.5838, 9.5487, 10.8057},

{—0.4058, —1.1529, —3.2668, —5.7482, —7.3827, —8.5748,
—8.2404, —7.3061, —5.0866, —1.9855, 0.477, 2.3815, 4.2853,
6.9831, 9.7537, 10.6889},

{—0.3825, —0.8159, —2.3471, —4.6941, —6.8725, —8.4535,
—7.8209, —6.8325, —4.5999, —1.491, 1.33, 3.4061, 5.4484,
7.7636, 9.772, 10.4401},

{0.1719, —0.5275, —2.0724, —4.052, —6.0173, —7.61,
—6.8928, —5.7739, —3.8701, —1.0915, 1.9343, 4.412, 6.5743,
8.4687, 9.9597, 10.0859},

{0.3597, —0.6314, —2.1509, —3.735, —5.2806, —6.2962,
—5.611, —4.5373, —2.5693, 0.1868, 2.9974, 5.7225, 7.8483,
8.9391, 9.848, 9.8676},

{0.4839, —0.6961, —2.1515, —3.3807, —4.3067, —4.8603,
—4.0037, —2.541, —0.5676, 2.0373, 4.7529, 7.1274, 8.8929,
0.4273, 9.8265, 9.4547},

{0.6332, —0.7049, —1.7716, —2.5125, —3.0903, —3.2598,
—1.8823, —0.262, 2.0724, 4.6513, 7.1382, 9.025, 9.9166,
10.2275, 10.2158, 9.5413},

{1.2706, 0.2957, —0.7614, —1.7102, —1.3591, —0.7797,

0.4416, 2.1282, 4.5397, 7.0931, 9.2858, 10.7025, 11.2008,
11.3966, 10.9127, 10.2384},

}s

Double t valuef=0;
Double_t valueb=0;
Int_t j,jj;

Int_t nevent=0;
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Double t EAr=0,EA=0,TA=0,PA=0,TAd=0,PAd=0; // energia ricostr., en

Double_t EBr=0,EB=0,TB=0,PB=0,TBd=0,PBd=0; // energia ricostr., er

Double_t Q=0,ES=0,TS=0,PS=0,TSd=0,PSd=0,e12=0,e13=0,e23=0,ecm=0,tcm
// qualore , energia, theta, phy spettatore e in degrees

Int t xhitA=0,yhitA=0,xhitB=0,yhitB=0; // strip colpita

Double_t posxA=0,posyA=0,posxB=0,posyB=0; // posizione randomizza

Double t pl1=0,p2=0;

Double_t DEA1=0,EA1=0,DEA2=0;

Double t DEB1=0,EB1=0,DEB2=0;

Double_t CDEB=0.;

Double_t CDEBU[16]={0.};

Double_t CDEBD[16]={0.};

Double t CDEBL[16]|={0.};

Double t CDEBR[16]={0.};

Double_t u=931.49410242;

// unita’ di massa (rif. 12C) in MeV/c

Double t
zp=13;

mp=25.97602 /% 25.982592929x/; Double_t

// massa proiettile

Double t
zt=1;

mt=2.01355/%2.01410177785%/; Double_t

// massa target

Double t

m2=25.97776 /+25.982592929x/,

// massa prima part. uscente 26Mg

Double t

ml=1.00728 /+1.00782503207*/;

// massa seconda part. uscente pl
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Double_t m3=/+1.00728+/1.00782503207;

// massa terza part. uscente p2

Double_t mx=/%1.00866%/1.00866491574;

// massa part. trasferita n

Double_t mNa=/%25.97602%/22.98374;
// massa 23Na

Double_t mHe=/%25.97602x/4.00151;
// massa 4He

Double t mAu=196.92379;
// massa 197Au

Double t rm=mp,/mt ;

// Q della reazione
Double_t q3=u* (mp+mt—ml—-m2-m3) ;
cout << "q3:.7 << q3 << endl;

Double t gn=u * (mp+mt—mI—mNa—m3 ) ;

W

cout << "qn:.7 << qn << endl;

// (Momentum, Energy units are Gev/C, GeV)

Double_t masses[3] = { uxml, uxm2, u*xm3 } ;

Double_t deg=180./TMath:: Pi();
Double t radius=100.;

Double_t step=0.3125; //strip width in cm
Double t stepA=0.3125/2; //strip width in cm for 32 strip detectors

// thickness half—target (in um)
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// Double_t thickness=0.023302781; // for 0018, 0019
// Double_t thickness=0.023043861; // for 0020

// Double__t thickness=1.4524146/2; // for CD2
Double_t thickness=0.046605562/2; // for 0008, 0009

// energy loss

Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t

E1=0;

E2=0;

E3=0;

Ereal=0;

Eapp=0;

R1=0;

R2=0;

R3=0;
aMgCD=0.00296283;
bMgCD=0.566994;
cMgCD=4.85825;
apCD=10.8609;
bpCD=67.4126;
cpCD=—-159.25;
aMgAl=0.000972343;
bMgAl=0.269383;
cMgAl=2.98099;
apAl=3.8405;
bpAl=32.9213;
cpAl=—72.6179;
aAlAu=0.000148004;
bAlAu=0.0956982;
cAlAu=1.99091;
aAlA1=0.000929501;
bAIA1=0.232333;
cAlA1=3.08366;

Int t mA=0;
Int t mB=0;
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Int_t mA1B1=0;

Int t mA2B1=0;

Int_t mA1B2=0;

Int t mA2B2=0;

Int_t mAOB0=0;

Int_t mAOB1=0;

Int_t mA1B0=0;

Int t mAD=0;

Int_t mAU=0;

Int t mAR=0;

Int t mAL=0;

Int t mBD=0;

Int_t mBU=0;

Int_t mBR=0;

Int_t mBL=0;

Double t aA=—-0.000868214;
Double_t bA=0.0402821;
Double t cA= —0.758212;
Double t dA=7.39883;
Double t eA=-—38.7164;
Double_t fA=102.426;

//4—momenta

TLorentzVector ppl; //pl j—momentum in GeV/c
TLorentzVector pp2; //26Mg j—momentum in GeV/c
TLorentzVector pp3; //prot.2 j—momentum in GeV/c

//vector momenta (parte spaziale del 4—momentum)
TVector3d pppl;
TVector3d ppp2;
TVector3 ppp3;

Int _t nnevent=0;
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long sec;

time( Esec );

TRandom3x* ran = new TRandom3((unsigned)sec);
*/

TRandom3% r3 = new TRandom3();

TFile xfout = new TFile(”An CD2 BD.root”, "RECREATE”);

TTree xhl = new TTree(”h1”, ”"hl1”);

hl1—Branch ("EAUF[32]”, EAUF, "EAUF[32]/D”);
hl-—>Branch ("EAUB[32]”, EAUB, “EAUB[32]/D”);
hl1—Branch (”EARF[32]”, EARF, 7EARF[32]/D”);
hl1—Branch ("EARB[32]”, EARB, "EARB[32]/D”);
hl1—Branch ("EADF[32]”, EADF, 7EADF[32]/D”);
hl-—>Branch ("EADB[32]”, EADB, ”EADB[32]/D”);
h1-—>Branch ("EALF[32]”, EALF, “EALF[32]/D”);
hl->Branch ("EALB[32]”, EALB, “EALB[32]/D”);
hl—>Branch (’EBUF[16]”, EBUF, “EBUF[16]/D”);
hl1—Branch (”EBUB[16]”, EBUB, "EBUB[16]/D”);
h1—>Branch ("EBRF[16]”, EBRF, ”EBRF[16]/D”);
hl-—>Branch ("EBRB[16]”, EBRB, “EBRB[16]/D”);
hl->Branch (’EBDF[16]”, EBDF, “EBDF[16]/D”);
hl1—Branch (”EBDB[16]”, EBDB, "EBDB[16]/D”);
h1—>Branch ("EBLF[16]”, EBLF, ”EBLF[16]/D”);
hl->Branch ("EBLB[16]”, EBLB, 7“EBLB[16]/D”);
hl—>Branch (’EDEBU[16]”, EDEBU, “EDEBU[16]/D”);
hl—>Branch (’EDEBR[16]”, EDEBR, "EDEBR[16]/D”);
h1->Branch ("EDEBD[16]”, EDEBD, “EDEBD[16]/D");
hl—>Branch ("EDEBL[16]”, EDEBL, “EDEBL[16]/D");
h1-—>Branch ("CDEB”, &CDEB, “CDEB/D”);
h1—>Branch (’CDEBU”, CDEBU, "CDEBU[16]/D”);
hl1—Branch ("CDEBR”, CDEBR, "CDEBR[16]/D");
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h1—>Branch ("CDEBD” , CDEBD, “CDEBD[16]/D”);
hl->Branch (’CDEBL”, CDEBL, ”"CDEBL[16]/D”);
h1—Branch ("EPADAU” , &EPADAU, "EPADAU/D”);
h1—Branch ("EPADAR” , &EPADAR, "EPADAR/D”);
hl1—Branch ("EPADAD” , &EPADAD, "EPADAD/D”);
hl->Branch ("EPADAL” , &EPADAL, "EPADAL/D” );

2

h1—Branch
h1—Branch
h1—Branch
h1—Branch
h1—Branch

("nevent”, &nevent, "nevent/I1”);
("EA” | &EA, "EA/D”);
(”EAr”, &EAr, "EAr/D”); //7r” for reconstructed
("TAd” , &TAd, "TAd/D”); //7d” for degrees
("PAd”, &PAd, "PAd/D”);
hl->Branch ("EB”, &EB, 7EB/D”);
hl1—Branch (”EBr”, &EBr, "EBr/D”);
hl1—Branch (”TBd”, &TBd, "TBd/D”);
h1—Branch (”PBd”, &PBd, "PBd/D”);
hl-—>Branch ("ES”, &ES, 7ES/D”);
h1—Branch (”TS d” , &T'Sd, ”TSd/D”);
hl1—Branch (”PSd”, &PSd, "PSd/D”);
hl1—Branch ("Q", &Q, "Q/D");
hl1—Branch(7el2”, &el2, 7el2/D");
(
(
(
(
(
(
(
(
(

)
hl1—Branch(”el3”, &el3, "el3/D”);
hl1—Branch(7e23”, &e23, "e23/D”);
hl—Branch(”ecm” , &ecm, "ecm/D”);
hl1—Branch (”tcm”, &tem, "tem/D”);
hl1—Branch (”ps”, &ps, "ps/D”); // in MeV/c
hl1—Branch (”"romx”, &romx, “romx/D”);
hl1—Branch (”romy” , &romy, “romy/D”);
hl1—Branch ("mA” , &mA, "mA/1”);

hl1—Branch ("mB”, &mB, "mB/I1");

//interesting histograms
THI1F sxhe=new THIF(”he”,”histogram  calibrated” ,8000,1,80);
TH2F s«hptp=new TH2F(”hptp”,”th—ph positions” ;3600,—180,180,900,0,9(
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// theta and energy of the detected particles
TH2F *h2_e t_a = new TH2F(”h2_e_ t_a” 6 ”en—th positions”, 900,0,90,

Long64 t nbytes = 0, nb = 0;
for (Long64_t jentry=0; jentry<nentries; jentry-++) {
Long64 t ientry = LoadTree(jentry);
if (ientry < 0) break;
nb = fChain—>GetEntry (jentry ); nbytes 4= nb;
J/ if (Cut(ientry) < 0) continue;

// Double_t rp = ran—>Rndm();

// energia e impulso del proiettile

Double t ep=(90.92919—-0.1914); //elastico su oro
// Double_t ep=(90.92919 —(1.4824/2)); //CD2
Double_t pp=sqrt (2.xuxmpxep );

TLorentzVector target (0.0, 0.0, 0.0, uxmt);
TLorentzVector beam (0.0, 0.0, pp, usxmptep);
TLorentzVector W = beam + target;

mA=0;
mB=0;

9

for (j=0; j<32; j++){
valuef = EAUF[]];
if (valuef>2 && valuef <120){
for (jj=0; jj <32; ji++)1
valueb = EAUBJ[jj |;
if (valuef>valueb —0.5 && valuef<valueb+0.5){
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mAU++;

Eapp = (valuef+valueb)/2;

Ereal = aAxEappxEappxEapp*Eapp*Eapp+bAxEapp*Eappx
// FEAr = (valuef+valueb )/2;

xhitA = j;

yhitA = jj;

posxA=(xhitA —16)*stepA+stepA /2+r3—Uniform(—stepA
//negative position closer to beam axis
posyA=(yhitA —16)«stepA+stepA /2+r3—>Uniform(—stepA
//megative position bottom of the chamber

Double_t avdAUr[3]={posxA ,0.,posyA };
Double_t avdAU[3]={0.,0.,0.};

//we go back to the real position in the space
rotAU—>LocalToMaster (avdAUr ,avdAU ) ;

//this is the wvector from det.Al center to appar
TVectord vdAUa(avdAU[0] ,avdAU[1] ,avdAU [2]);

//apparent trajectory of 12C
TVector3d vbinAU=vAU+vdAUa;
TVector3 ubinAU=vbinAU. Unit ();
TA=vbinAU. Theta ();

PA=vbinAU . Phi ();

TAd=(vbinAU. Theta ())* deg;
PAd=(vbinAU.Phi())xdeg;

//energy losses
Rl=apAlxErealxEreal+bpAlxEreal+cpAl+0.8;

El=(—bpAl+sqrt (bpAlxbpAl—4xapAl*(cpAl—R1)))/(2x*a

R2=(apCDx*E1%E14bpCD*E1+4+cpCD)+(thickness /cos (TA))
E2=(—bpCD+sqrt (bpCDxbpCD—4xapCD* (¢cpCD—R2))) /(2*a

133



EAr=E2; //energy after reaction
// Double_t EA=EAr/1000.;

/*
Ri=aAlAl*Eapp*FEapp+bAlAl+Eapp+cAIAL+0.8;
E1=(—bAlAl+sqrt (bAIAl«bAIAl —f*xaAlAl+(cAlAI-R1)))/(

R2=(aAlAuxE1+E1+bAlAuxEl+cAlAu)+(thickness/cos (TA)
E2=(—bAlAu+sqrt (bAIAuxbAlAu—f*xaAlAu+(cAlAu—R2)))/(
FEAr=E2; //energy after reaction

*/

pl=sqrt (2«xmlxuxEAr); //alpha momentum in GeV/c

TVector3 vpl=pl*ubinAU; //alpha momentum (vector

ppl.SetPx(vpl(0));
ppl.SetPy (vpl(1));
ppl.SetPz(vpl(2));
ppl.SetE (uxml+EAr);
mA++;

//filling histograms
he—>Fill (EAr);

hptp—>Fill (PA+deg, TAxdeg);

h2 e t a—>Fill (TAxdeg, EAr);
h1-—>Fill ();
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for (j=0; j<32; j++){
valuef = EADF[]];
if (valuef>2 && valuef <120){
for (jj=0; jj<32; jj++)1
valueb = EADB[jj |;
if (valuef>valueb —0.5 && valuef<valueb+0.5){
mMAD++;
Eapp = (valuef+valueb)/2;
Ereal = aAxEappxEappxEapp*Eapp*Eapp+tbAxEapp*Eapp
// EAr = (valuef+valueb)/2;
xhitA = j;
yhitA = jj;
posxA=(xhitA —16)*stepA+stepA /2+1r3—>Uniform(—step.
//mnegative position closer to beam axis
posyA=(yhitA —16)xstepA+stepA /24+r3—>Uniform(—step.
//negative position bottom of the chamber

Double_t avdADr[3]={posxA ,0.,posyA };
Double t avdAD[3]|={0.,0..,0.};

//we go back to the real position in the space
rotAD—LocalToMaster (avdADr ,avdAD ) ;

//this is the wvector from det.Al center to appar
TVector3d vdADa(avdAD[0] ,avdAD[1] ,avdAD[2]);

//apparent trajectory of 12C
TVector3d vbinAD=vAD+vdADa;
TVector3d ubinAD=vbinAD. Unit ();
TA=vbinAD . Theta ();

PA=vbinAD . Phi();

TAd=(vbinAD. Theta ())x*deg;
PAd=(vbinAD . Phi())xdeg;
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//energy losses
Rl=apAlxErealxEreal+bpAlxEreal+cpAl+0.8;

El=(—bpAl+sqrt (bpAlxbpAl—4sapAlx(cpAl-R1)))/(2+*a

R2=(apCD*E1*E1+bpCD*E14+cpCD)+(thickness /cos (TA))
E2=(—bpCD+sqrt (bpCDxbpCD—4xapCDx* (cpCD—R2)) )/ (2*a
EAr=E2; //energy after reaction

// Double_t EA=EAr/1000.;

/ x
Ri=aAlAl*FEapp+FEapp+bAlAl+FEapp+cAIAlL+0.8;
E1=(—bAlAl+sqrt (bAIAl*bAIAl —fxaAlAl+(cAlAI-R1)))/(

R2=(aAlAu+E1+E1+bAlAu*E1+cAlAu)+(thickness/cos (TA)
E2=(—bAlAu+sqrt (bAlAuxbAlAu—4*aAlAux(cAlAu—R2)))/(
FAr=E2; //energy after reaction

*/

pl=sqrt (2«xmlxuxEAr); //alpha momentum in GeV/c

TVector3 vpl=plsubinAD; //alpha momentum (vector

I

)
);
)

ppl.SetPx(vpl (0
ppl.SetPy (vpl (1
ppl.SetPz(vpl (2

)
)
)
ppl.SetE (uxml+EA

);
mA++;

//filling histograms
he—>Fill (EAr);

hptp—Fill (PA+deg, TAxdeg);
h2 e t a—>Fill (TAxdeg, EAr);
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h1-—>Fill ();

for (j=0; j<32; j++){
valuef = EARF[]];
if (valuef>2 && valuef <120){
for (jj=0; jj <32 jj++){
valueb = EARB]Jjj |;
if (valuef>valueb —0.5 && valuef<valueb+0.5){
mARA++;
Eapp = (valuef+valueb)/2;
Ereal = aAxEappxEappxEapp*Eapp*Eapp+bAxEapp*Eapp
// FEAr = (valuef+valueb )/2;
xhitA = j;
yhitA = jj;
posxA=(xhitA —16)*stepA+stepA/2+1r3—>Uniform(—step.
//negative position closer to beam axis
posyA=(yhitA —16)«stepA+stepA /24+r3—>Uniform(—step.
//megative position bottom of the chamber

Double_t avdARr[3]={posxA ,0.,posyA };
Double_t avdAR[3]={0.,0.,0.};

//we go back to the real position in the space
rotAR—LocalToMaster (avdARr ,avdAR ) ;

//this is the wvector from det.Al center to appar
TVector3d vdARa(avdAR[0] ,avdAR[1] ,avdAR[2]);

//apparent trajectory of 12C
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TVector3d vbinAR=vAR+vdARa;
TVector3 ubinAR=vbinAR . Unit ();
TA=vbinAR . Theta ();

PA=vbinAR . Phi();

TAd=(vbinAR . Theta ())x*deg;
PAd=(vbinAR . Phi())*deg;

//energy losses
Rl=apAl«xErealxEreal+bpAlxEreal+cpAl+0.8;

El=(—bpAl+sqrt (bpAlxbpAl—4xapAl*(cpAl—R1)))/(2x*a

R2=(apCD*E1+E14bpCD+E14cpCD)+(thickness /cos (TA))
E2=(—bpCD+sqrt (bpCDxbpCD—4xapCD# (cpCD—R2)))/(2*a
EAr=E2; //energy after reaction

// Double_t EA=EAr/1000.;

/*
Ri=aAlAl*Eapp*FEapp+bAlAl+Eapp+cAIAL+0.8;
E1=(—bAlAl+sqrt (bAIAl«bAIAl —4*aAlAl+(cAlAI-R1)))/(

R2=(aAlAuxE1+E1+bAlAuxEl+cAlAu)+(thickness/cos (TA)
E2=(—bAlAu+sqrt (bAlAuxbAlAu—*aAlAux(cAlAu—R2)))/(
FEAr=E2; //energy after reaction

*/
pl=sqrt (2«xmlxuxEAr); //alpha momentum in GeV/c

TVector3 vpl=pl*ubinAR; //alpha momentum (vector

Y

)
);
)

ppl.SetPx(vpl(0)
ppl.SetPy (vpl (1)
ppl.SetPz(vpl(2));
ppl.SetE (uxml+EAr);
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mA++;

//filling histograms
he—>Fill (EAr);

hptp—>Fill (PA+deg, TAxdeg);

h2 e t a—>Fill (TAxdeg, EAr);
h1-—>Fill ();

for (j=0; j<32; j++){
valuef = EALF[j |;
if (valuef>2 && valuef <120){
for (jj=0; jj<32; jj++)1
valueb = EALB]Jjj |;
if (valuef>valueb —0.5 && valuef<valueb+0.5){
mALA+;
Eapp = (valuef+valueb)/2;
Ereal = aAxEappxEappxEapp*Eapp*Eapp+bAxEapp*Eapp
// FEAr = (valuef+valueb )/2;
xhitA = j;
yhitA = jj;
posxA=(xhitA —16)*stepA+stepA /2+1r3—>Uniform(—step.
//negative position closer to beam axis
posyA=(yhitA —16)*stepA+stepA /2+1r3—>Uniform(—step.
//mnegative position bottom of the chamber

Double_t avdALr[3]={posxA ,0.,posyA };
Double t avdAL[3]={0.,0.,0.};
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//we go back to the real position in the space
rotAL—>LocalToMaster (avdALr ,avdAL);

//this is the wvector from det.Al center to appar
TVector3d vdALa(avdAL[0] ,avdAL[1] ,avdAL[2]);

//apparent trajectory of 12C
TVector3d vbinAL=vAl+vdALa;
TVector3 ubinAL=vbinAL. Unit ();
TA=vbinAL. Theta ();

PA=vbinAL. Phi ();

TAd=(vbinAL. Theta ())x*deg;
PAd=(vbinAL.Phi())xdeg;

//energy losses
Rl=apAlxErealxEreal+bpAlxEreal+cpAl+0.8;

El=(—bpAl+sqrt (bpAlxbpAl—4xapAl*(cpAl—R1)))/(2x*a

R2=(apCD*E1%E14bpCD*E1+4+cpCD)+(thickness /cos (TA))
E2=(—bpCD+sqrt (bpCDxbpCD—4%apCD# (¢cpCD—R2))) /(2*a
EAr=E2; //energy after reaction

// Double_t FEA=EAr/1000.;

/*
Ri=aAlAl*FEapp+FEapp+bAlAl+FEapp+cAIAl+0.8;
E1=(—bAlAl+sqrt (bAIAlxbAIAl—fxaAlAl*(cAIAI-R1)))/(

R2=(aAlAuxE1+E1+bAlAuxEl+cAlAu)+(thickness/cos (TA)
E2=(—bAlAu+sqrt (bAlAuxbAlAu—4*aAlAux(cAlAu—R2)))/(
FEAr=E2; //energy after reaction

*/
pl=sqrt (2«xmlxuxEAr); //alpha momentum in GeV/c

140



TVector3 vpl=plsubinAL; //alpha momentum (vector

Y

)
);
)

ppl.SetPx(vpl (0)
ppl.SetPy(vpl (1)
ppl.SetPz(vpl(2));
ppl.SetE (uxml+EAr);
mA++;

//filling histograms
he—>Fill (EA);

hptp—Fill (PA+deg, TAxdeg);

h2 e t a—>Fill (TAxdeg, EAr);
h1—Fill ();

/*
for (j=4; j<16; j++){
valuef = EBUF[j];
if (valuef>2 66 valuef <120){
for (jj=56: jj<16; jj++){
valueb = EBUB[jj/;
if (valuef>valueb —0.5 €6 valuef<valueb+0.5 66 mB==0){
mBU++;
FEapp = (valuef+valueb )/2;
//EBr = (valuef+valueb )/2;
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zhitB = j;

yhitB = jj;

poszB=(zhitB —8)*step+step /24+r3—>Uniform(—step /2,
//negative position closer to beam axis
posyB=(yhitB —8)xstep+step /24+1r3—>Uniform(—step /2,
//negative position bottom of the chamber

Double_t avdBUr[3]={poszB,0.,posyB};
Double_t avdBU[3]={0.,0.,0.};

//we go back to the real position in the space
rotBU—>LocalToMaster (avdBUr, avdBU );

//this is the wvector from det.Al center to appar
TVector3 vdBUa(avdBU[0] ,avdBU[1] ,avdBU[2]);

//apparent trajectory of 12C
TVector3 vbinBU=vBU+vdBUa;
TVector3 ubinBU=vbinBU. Unit ();
TB=vbinBU. Theta ();

PB=vbinBU. Phi ();

TBd=(vbinBU. Theta () )+ deg ;
PBd=(vbinBU. Phi())+*deg;

Double t EDE=0.;
Int_t jjj=—1;

if (j!=0 €& EDEBU[15—j —1]>20){
EDE=EDEBU[15—j —1];
Jig=j—1;

}

if(j!=15 €6 EDEBU[15—j+1]>20){
EDE=EDEBU[15—j +1];
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Jij=j+1;

if (EDEBU[15—j]>20){
EDE=EDEBU[15—j | ;
JJi=J;

//energy losses
Ri=aMgAl*EappxEapp+bMgAl+Eapp+cMgAl+1.6;

E1=((—-bMgAl+sqrt (bMgAlxbMgAl—4.xaMgAlx(cMgAl—-R1)

R2=aMgAlxE1xE1+bMgAl+E14+cMgAl+0.8;
E2=(—bMgAl+sqrt (bMgAl«bMgAl—4.xaMgAlx(cMgAl—R2) )

R3=(aMgCD+E2+E2+bMgCD* E24+cMgCD)+(thickness /cos (1
E3=(—bMgCD+sqrt (bMgCD+bMgCD—4 . xaMgCDx (cMgCD—R3 ) )
EBr=ES3; //energy after reaction

// Double t EB=EBr/1000.;

Ri=aAlAl*FEapp*FEapp+bAlAl+FEapp+cAIAl+1.6;
E1=((—bAlAl+sqrt (bAIAl+bAIAl —4.xaAlAlx(cAlAl-R1)))

R2=a AlAl*F1+E1+bAlAl+FE1+cAlAl+0.8;
E2=(—bAlAl+sqrt (bAIAI*xbAIAl —4.xaAlAlx(cAIAI-R2)))/

R3=(aAlAu+E2+E2+bAlAu*E24+cAlAu)+(thickness/cos (TB)
E3=(—bAlAu+sqrt (bAIAuxbAlAu —4.xaAlAux(cAlAu—R3)) )/
EBr=E3; //energy after reaction

EB=EDFE+Fapp ;

for(int p=0; p<16; p++){
CDEBU/[p]=0.;

/
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CDEB=0. ;

//double corr=20./th DEBU[j][jj];
CDEBU[ j |=EDE;
CDEB=EDE=* (20./th DEBU[jj][15—3j]);

p2=sqrt (2+xm2xu*xEBr); //alpha momentum in GeV/c
TVector3 vp2=p2xubinBU; //alpha momentum (vector

pp2.SetPx(vp2(0));
pp2.SetPy(vp2(1));
pp2.SetPz(vp2(2));
pp2.SetE (u+m2+EBr);

mB++;

//filling histograms
he—>Fill (EBr);

hptp—>Fill (PBxdeg, TBxdeg);

h2 e t a—>F1ill (TBxdeg, EBr);
h1—>Fill ();

/
*/
for (j=0; j<16; j++){
valuef = EBDF[j |;
if (valuef>2 && valuef <120){
for (jj=0; jj <16; jj++){
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valueb = EBDBJjj |;

if (valuef>valueb —0.5 && valuef<valueb+0.5 && mB==0){
mBD++;
Eapp = (valuef+valueb)/2;
// EBr = (valuef+valueb)/2;
xhitB = j;
yhitB = jj;
posxB=(xhitB —8)xstep+step /2+r3—Uniform(—step /2,
//mnegative position closer to beam axis
posyB=(yhitB —8)xstep+step/2+r3—>Uniform(—step /2,
//negative position bottom of the chamber

Double_t avdBDr[3]={posxB,0.,posyB };
Double_t avdBD[3]={0.,0.,0.};

//we go back to the real position in the space
rotBD—LocalToMaster (avdBDr ,avdBD ) ;

//this is the wvector from det.Al center to appar
TVector3d vdBDa(avdBD [0] ,avdBD[1] ,avdBD [2]);

//apparent trajectory of 12C
TVector3d vbinBD=vBD+vdBDa;
TVector3 ubinBD=vbinBD . Unit ();
TB=vbinBD . Theta ();

PB=vbinBD . Phi ();

TBd=(vbinBD . Theta ())* deg;
PBd=(vbinBD . Phi () deg ;

Double t EDE=0.;
Int_t jjj=—1;

if (j!=0 && EDEBD[15—j —1]>20){
EDE=EDEBD[15—j —1];
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Jii=i -5

if (j!=15 && EDEBD[15—j+1]>20){
EDE=EDEBD[15—j +1];
jii=i+1;

if (EDEBD[15—j]>20){
EDE=EDEBD[15—j ] ;
Jii=i;

//energy losses
R1=aMgAlxEapp*Eapp+bMgAlxEapp+cMgAl+1.6;

El=((—bMgAl+sqrt (bMgAlxbMgAl—4xaMgAl* (cMgAl-R1))

R2=aMgAl«E1*E1+bMgAl«E14+cMgAl+0.8;
E2=(—bMgAl+sqrt (bMgAlxbMgAl—4xaMgAlx (cMgAl-R2)))

R3=(aMgCDxE2+E24+bMgCD*E2+cMgCD)+(thickness /cos (T
E3=(—bMgCD+sqrt (bMgCD+bMgCD—4xaMgCD* (cMgCD—R3) ) )
EBr=E3; //energy after reaction

// Double_t EB=EBr/1000.;

Ri=aAlAl*Eapp*FEapp+bAlAl+Eapp+cAIAl+1.6;
E1=((—bAlAl+sqrt (bAIAlI+*bAIAl —4.xaAlAlx(cAlAl-R1)))

R2=aAlAl+FE1+FE1+bAIAl*xE1+cAlAl+0.8;
E2=(—bAlAl+sqrt (bAIAI+bAIAl —}.xaAlAl*(cAlAI-R2)))/

R3=(aAlAuxE2+E2+bAlAu*E24+cAlAu)+(thickness/cos (TB)
E3=(—bAlAu+sqrt (bAlAuxbAlAu—4.xaAlAux(cAlAu—RS3)) )/
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EBr=E3; //energy after reaction
*/
EB=EDE+Eapp;
for (int p=0; p<16; p++){
CDEBD[p]=0.;

}
CDEB=0.:

CDEBD| j |=EDE;
CDEB=EDEx (20.0/th_ DEBD[jj][15—j]);

p2=sqrt (2«m2«uxEBr); //alpha momentum in GeV/c

TVector3 vp2=p2xubinBD:; //alpha momentum (vector

Y

)
);
)

pp2.SetPx (vp2 (0)
pp2.SetPy(vp2(1)
pp2.SetPz(vp2(2));
pp2. SetE (uxm2+EBr);
mB++;

//filling histograms
he—>Fill (EBr);

hptp—Fill (PBxdeg, TBxdeg);

h2 e t a—>Fill (TBxdeg, EBr);
h1—>Fill ();
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for (j=0; j<16; j++){
valuef = EBRF[j];
if (valuef>2 68 valuef <120){
for (jj=0; jj<16; ji++){
valueb = EBRB[jj];
if (valuef>valueb —0.5 66 valuef<valueb+0.5 €6 mB==0){
mBR++;
Fapp = (valuef+valueb )/2;
//EBr = (valuef+valueb)/2;
zhitB = j;
yhitB = jj;
posxB=(zhitB —8)*step+step /24+r3—>Uniform(—step /2,
//mnegative position closer to beam axis
posyB=(yhitB —8)*step+step /24+r3—>Uniform(—step /2,
//negative position bottom of the chamber

Double_t avdBRr[3]={poszB,0.,posyB};
Double_t avdBR[3]={0.,0.,0.};

//we go back to the real position in the space
rotBR—>LocalToMaster (avdBRr, avdBR );

//this is the wvector from det.Al center to appar
TVector3 vdBRa(avdBR [0],avdBR[1],avdBR[2]);

//apparent trajectory of 12C
TVector3 vbinBR=vBR+vdBRa;
TVector3 ubinBR=vbinBR . Unit (),
TB=vbinBR . Theta ();

PB=vbinBR . Phi();

TBd=(vbinBR . Theta ())* deg;
PBd=(vbinBR . Phi())*deg;
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Double_t EDE=0;
Int t jjj=—1;

if (j!=0 &€ EDEBR[15—j—1]>20){
EDE=EDEBR[15—j —1];
Jjjj=j—1;

if(jl=15 &€ EDEBR[15—j+1]>20){
EDE=EDEBR[15—j +1];
Jjjj=j+1;

if (EDEBR[15—j]>20){
EDE=EDEBR[15—j | ;
JII=J;

}

//energy losses
Ri=aMgAl*Eapp «Eapp+bMgAl+Eapp+cMgAl+1.6;

E1=((-bMgAl+sqrt (bMgAlxbMgAl—4+aMgAlx(cMgAl—-R1))

R2=aMgAl*xFE1+E1+bMgAl*El+cMgAl+0.8;
E2=(—bMgAl+sqrt (bMgAlxbMgAl—j+aMgAlx(cMgAl—R2)))

R3=(aMqgCD+E2+ E2+bMgCD* E24+cMgCD)+(thickness /cos (1
E3=(—bMgCD+s qrt (bMgCDxbMgCD—4xaMgCD * (cMgCD—R3 ) ) )
EBr=E3; //energy after reaction

// Double_t EB=EBr/1000.;

Ri=aAlAl*Eapp*FEapp+bAlAl+Eapp+cAlIAl+1.6;
E1=((—bAlAl+sqrt (bAIAl+bAIAl—f+aAlAl+(cAlAI-R1)))/

R2=aAlAl+FE1+FE1+bAIAlxE1+cAlAl+0.8;
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E2=(—bAlAl+sqrt (bAIAI+bAIAl—fxaAlAl+(cAlAI-R2)))/(

R3=(aAlAuxE2+E24+bAlAuxE2+cAlAu)+(thickness/cos (TB)
E3=(—bAlAu+sqrt (bAlAuxbAIAu—4*aAlAux(cAlAu—R3)))/(
EBr=E3; //energy after reaction

EB=EDFE+Fapp

for(int p=0; p<16; p++){
CDEBR/[p]=0;
/
CDEB=0. ;

CDEBR| j |=EDE;
CDEB=EDEx (20.0/th. DEBR[jj][15—]);

p2=sqrt (2+xm2xu*xEBr); //alpha momentum in GeV/c
TVector3 vp2=p2*ubinBR; //alpha momentum (vector
pp2.SetPx(vp2(0));

pp2.SetPy(vp2(1));

pp2.SetPz(vp2(2));

pp2. SetE (u+m2+EBr);

mB++;

//filling histograms
he—>Fill (EBr);

hptp—>Fill (PBxdeg, TBxdeg);
h2 e t a—>Fill (TB+deg, EBr);

hi—>Fill ();
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}

for (j=0; j<16; j++){
valuef = EBLF[j];
if (valuef>2 68 valuef <120){
for (jj=0; jj<16; ji++){
valueb = EBLB[jj];
if (valuef>valueb —0.5 €6 valuef<valueb+0.5 €6 mB==0){
mBL++;
Fapp = (valuef+valueb)/2;
//EBr = (valuef+valueb)/2;
zhitB = j;
yhitB = jj;
posxB=(zhitB —8)*step+step /24+r3—>Uniform(—step /2,
//mnegative position closer to beam axis
posyB=(yhitB —8)*step+step /24+r3—>Uniform(—step /2,
//negative position bottom of the chamber

Double_t avdBLr[3]={poszB,0.,posyB};
Double_t avdBL[3]={0.,0.,0.};

//we go back to the real position in the space
rotBL—>LocalToMaster (avdBLr, avdBL );

//this is the wector from det.Al center to appar
TVector3 vdBLa(avdBL [0],avdBL[1],avdBL[2]);

//apparent trajectory of 12C
TVector3 vbinBL=vBL+vdBLa;
TVector3 ubinBL=vbinBL. Unit();
TB=vbinBL . Theta ();
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PB=vbinBL . Phi ();
TBd=(vbinBL. Theta ())*deg;
PBd=(vbinBL . Phi())+*deg;

Double_t EDE=0;
Int_t jjj=—1;

if (j!=0 &€ EDEBL[15—j—1]>20){
EDE=EDEBL[15—j —1];
jij=j—1;

if(jl=15 €6 EDEBL[15—j+1]>20){
EDE=EDEBL[15—j +1];
Jjij=j+1;

if (EDEBL[15—j]>20){
EDE=EDEBL[15—j | ;
JII=J;

}

//energy losses

Ri=aMgAl+Eapp* Eapp+bMgAlxEapp+cMgAl+1.6;
FEl1=((—bMgAl+sqrt (bMgAlxbMgAl—4+xaMgAl*(cMgAl-R1))

R2=aMgAl*xFE1+E1+bMgAl*El1+cMgAl+0.8;
E2=(—bMgAl+sqrt (bMgAlxbMgAl—j+aMgAlx(cMgAl—R2)))

R3=(aMgCD+E2+E2+bMgCD* E24+cMgCD)+(thickness /cos (1
E3=(—bMgCD+s qrt (bMgCD+bMgCD—4+aMgCD* (cMgCD—R3) ) )

EBr=ES3; //energy after reaction
// Double_t EB=EBr/1000.;
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Ri=aAlAl*Eapp*FEapp+bAlAl+Eapp+cAIAl+1.6;
E1=((—bAlAl+sqrt (bAIAl+bAIAl—f+aAlAl*(cAlAI-R1)))/

R2=aAlAl+FE1+FE1+bAIAl*xE1+cAlAl+0.8;
E2=(—bAlAl+sqrt (bAIAI+bAIAl—fxaAlAl+(cAlAI-R2)))/(

R3=(aAlAuxE2+E2+bAlAuxE2+cAlAu)+(thickness/cos (TB)
ES3=(—bAlAu+sqrt (bAIAuxbAlAu—4f*aAlAux(cAlAu—R3)))/(
EBr=E3; //energy after reaction

EB=EDFE+Fapp
for(int p=0; p<16; p++){
CDEBL[p]=0;
}
CDEB=0. ;

CDEBL| j ]=EDE:
CDEB=EDEx (20.0/th_DEBL[jj][15—j]);

p2=sqrt (2+xm2xu*EBr); //alpha momentum in GeV/c
TVector3 vp2=p2+ubinBL; //alpha momentum (vector
pp2.SetPx(vp2(0));

pp2.SetPy(vp2(1));

pp2.SetPz(vp2(2));

pp2. SetE (u+m2+EBr);

mB++;

//filling histograms
he—>Fill (EBr);

hptp—>Fill (PBxdeg, TBxdeg);
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h2 e t a—>Fill (TBxdeg, EBr);
hi—>Fill ();

nevent+-+;

if (mA==1 && mB==1){
//calculation of the relative energies (including resolution)

TLorentzVector pl2=ppl+4pp2;

pp3=beam+target —ppl—pp2;
ppp3=pp3. Vect ();
ES=(ppp3.Mag2())/(2*m3*u);
TSd=(ppp3 . Theta ())* deg;
PSd=(ppp3.Phi())xdeg;

Q=EAr+EBr+ES—ep ;

romx=(ppp3.Mag2())/(2*u);
romy=ep—EAr—EBr;

pppl=ppl.Vect ();
ppp2=pp2. Vect ();

//calculation of theta_cm (including resolution)
TVector3 vO0b = pow (usmp, —1)x*(beam.Vect ());
TVector3 vlb = pow(usml,—1)*pppl; //pl speed
TVector3 v2b = pow(usxm2,—1)xppp2; //26Mg speed
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TVector3 v3b = pow(u*xm3,—1)*xppp3; //p2 speed

// calculated from pl (p2 spectator)
TVector3 k30b=—(m3/mx)*v3b—vO0b;
TVector3d kl2b= vlb—v2b;

tcm= (k30b.Angle(k12b))xdeg;

// if p2 is spectator, then:
Double t scp2;
if (cos(ppp3.Phi())>0)
scp2=1;
else if (cos(ppp3.Phi())<0)
scp2=—1.;
else
scp2=0.;
ps=(ppp3.Mag())*scp2; //MeV/c

mA1B1++;

if (nevent%1000000==0)

cout << "Fatti 1M eventi” << endl;
if (mA==2 && mB==1){

mA2B1++;

¥

if (mA==1 && mB==2){
mA1B2++;

¥

if (mA==2 && mB==2){
mA2B2++;
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h
if (mA==0 && mB==0){

mAOBO++;

}

if (mA==0 && mB==1){
mAOB1++;

}

if (mA==1 && mB==0){
mAOB1++;

}

cout << "EventiomA=1e mB=1:," << mAlBl << endl;
cout << "Eventi mA=2 e mB=1: " << mA2Bl1 << endl;
cout << "Eventi mA=1_e mB=2: "7 << mAlB2 << endl;
cout << "Eventi mA=2 e mB=2:," << mA2B2 << endl;
cout << "Eventi mA=0,e mB=1:," << mAOBl << endl;
cout << 7"Eventi mA=1 e mB=0: " << mAlB0 << endl;
cout << "Eventi mA=0_e mB=0: " << mA0B0 << endl;
cout << "Somma: " << mAI1Bl4+mA1BMHmA1B2+mAOB1+mA2B1+mA2B2+mA0B0 << end

cout << "Eventi_in AU: "7 << mAU << endl;
cout << "Eventi in AD: "7 << mAD << endl;
cout << "Eventi_in AL: 7 << mAL << endl;
cout << "Eventi_in_AR: "7 << mAR << endl;
cout << "Eventi_in BU:_ 7 << mBU << endl;
cout << "Eventi_in BD:_” << mBD << endl;
cout << "Eventi_in BR:,” << mBR << endl;
cout << "Eventi_in BL: "7 << mBL << endl;

cout << "number of events =, << nevent <<endl;
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hl1—>Write ();
fout—Write ();

fout—Close ();

Macro for the simulation of the experimental runs

#include <TGeoManager.h>
#include <TGeometry.h>
#include <TNode.h>
#include <TGeoVolume.h>
#include <TGeoMatrix.h>
#include <TGeoMedium.h>
#include <TGeoMaterial . h>
#include <TGeoNode.h>
#include <TMaterial.h>
#include <TMixture.h>
#include <TShape.h>
#include <TString.h>
#include <Riostream .h>
#include <TFile.h>
#include <TCanvas.h>
#include <TH2F.h>

#include <TMath.h>
#include <TLorentzVector.h>
#include <TSystem.h>
#include <stdlib .h>
#include <ITROOT.h>
#include <TGenPhaseSpace.h>
#include <TStyle.h>
#include "TGeoPatternFinder.h”
#include 7TSystem.h”
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#include

<TGeoNavigator .h>

#include <iostream>
#include <cstdlib>
#include <fstream>
#include <cmath>
#include "TApplication.h”
#include "TF1.h”
#include 7TGraph.h”
#include "TGraphErrors.h”
#include ”THI1.h”
#include "TLegend.h”
#include "TLegendEntry.h”
#include "TColor.h”
#include <TRandom3.h>
#include <time.h>
#include "TTree.h”
#include <random>

using namespace std;

double
double
double
double
double
double
double

func (double x){
am3=1.007825;
xm3=am3*931.;
gpsn=sqrt (2.25%x59.8)*xpow(sqrt (2.25)+sqrt (59.8),3);

gpsd=pow (2.25+2.xxxx /(2.%xm3) ,2)*pow (59.8+2.%xxx/(2.%xm3) ,2);
gps=gpsn/gpsd;
distp3=1.98286%gps;

return (distp3);

}

double
double

reso (double x){

1.0,

xr[6]={—0.5,0.1, 0.2, 0.5,
wd=0.02;
res0=0.25*wdxwd/(pow (x—xr [0] ,2)+0.25*wdxwd ) ;

1.5}
double
double
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double resl=0.25%wdxwd/(pow (x—xr[1],2)+0.25%xwd*wd);
double res2=0.25xwdsxwd/(pow (x—xr[2],2)+0.25%xwdswd);
double res3 =0.25xwdsxwd/(pow (x—xr [3],2)+0.25xwdswd);
double res4 =0.25xwdswd/(pow (x—xr [4],2)+0.25*wdswd ) ;
double res5=0.25xwdsxwd /(pow (x—xr [5],2)+0.25«wdswd);

double sumres=1.0xresO+1.0xresl+1.0xres2+4+1.0xres3+1.0xres4d+1.0xresh;

return (sumres );

}

void geometry_ and_physics. MgD () {

TApplication theApp(”App”, NULL, NULL);

gStyle—SetPalette (1);

gSystem—>Load (”1ibPhysics.so”);

gSystem—>Load ("1ibGeom .s0” );

TGeoManager *sc = new TGeoManager(”scattcham”,”Scattering Chamber” );

TGeoMaterial smatVacuum = new TGeoMaterial (”Vacuum” ;0,0 ,0);

TGeoMaterial *matSi = new TGeoMaterial (7Si” ;28.086,14,2.321);

TGeoMedium *Vacuum = new TGeoMedium (”Vacuum” ,1 , matVacuum ) ;
TGeoMedium *Si = new TGeoMedium (”Root Material” 2 , matSi);

TGeoVolume xtop = sc—>MakeSphere (”"TOP” ,Vacuum,0.,100.,0.,180.,0.,360.);
sc—>SetTopVolume (top );

TGeoVolume *psd = sc—>MakeBox(”PSD” ,Si ,2.5,0.05,2.5);

// from deg to rad
double dtr=TMath:: Pi()/180.;
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// close geometry

// this is detector Al

double thetal=56xdtr;

double phil=45xdtr ;

double distl1=6.00;

double pxl=distlx*sin (thetal)xcos(phil);

double pyl=distlx*sin(thetal)*sin (phil);

double pzl=distlx*cos(thetal);

TVector3 vAl(pxl,pyl,pzl); //position of det. Al wrt chamber center

TGeoRotation xrotl = new TGeoRotation(”"rotl”,—45,34,0);
TGeoCombiTrans *posl = new TGeoCombiTrans(px1,pyl,pzl, rotl);

// this is detector A2

double theta2=34xdtr;

double  phi2=(45+90)*dtr;

double dist2=6.02;

double px2=dist2x*sin (theta2)xcos(phi2);

double py2=dist2x*sin (theta2)xsin(phi2);

double pz2=dist2x*cos(theta2);

TVector3 vA2(px2,py2,pz2); //position of det. A2 wrt chamber center

TGeoRotation *xrot2 = new TGeoRotation(”rot2” ,45,56,0);
TGeoCombiTrans *pos2 = new TGeoCombiTrans(px2,py2,pz2,rot2);

//this is detector A3
double theta3=56xdtr;
double phi3=(45+180)dtr ;
double dist3=6;
double px3=dist3*sin (theta3)xcos(phi3);
double py3=dist3x*sin (theta3)*sin (phi3);
double pz3=dist3xcos(theta3d);
TVector3 vA3(px3,py3,pz3); //position of det. A3 wrt chamber center
TGeoRotation xrot3 = new TGeoRotation(”rot3”,—45,—34,0);
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TGeoCombiTrans *pos3 = new TGeoCombiTrans(px3,py3,pz3,rot3);

// this is detector A4

double theta4=34xdtr;

double  phi4=(45+270)xdtr;

double dist4=6.02;

double pxd=dist4*sin (thetad)xcos(phid);

double pyd=dist4d*sin (thetad )xsin (phid);

double pzd=distd*cos(thetad);

TVector3 vA4(px4,pyd,pzd); //position of det. AJ wrt chamber center

TGeoRotation xrot4d = new TGeoRotation(”"rot4”,45,—56,0);
TGeoCombiTrans *posd = new TGeoCombiTrans(px4,py4,pzd,rotd);

// far geometry

// this is detector Bl

double thetab=>5xdtr;

double phib5=45xdtr;

double distb=69.14;

double pxb=dist5*sin (thetab)*cos(phib);

double pyb=dist5*sin (thetab)xsin (phib);

double pzbh=dist5*cos(thetad);

TVector3 vB1(pxb,py5,pzb); //position of det. Bl wrt chamber center

TGeoRotation xrotbh = new TGeoRotation("rot5”,—45,90,0);
TGeoCombiTrans *posb = new TGeoCombiTrans(px5,py5,pzb,roth);

// this is detector B2
double thetab6=4xdtr;
double  phi6=(45+90)*dtr;
double dist6=71.06;
double px6=dist6*sin (theta6)xcos(phi6);
double py6=dist6x*sin (theta6)ssin (phi6);
double pz6=dist6*cos(thetab );
TVector3 vB2(px6,py6,pz6); //position of det. B2 wrt chamber center
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TGeoRotation *xrot6 = new TGeoRotation(”rot6” ,45,90,0);
TGeoCombiTrans *pos6 = new TGeoCombiTrans(px6,py6,pz6,rot6);

// this is detector B3

double theta7=>5xdtr;

double phi7=(45+180)*dtr ;

double dist7=69.14;

double px7=dist7x*sin (theta7)xcos(phi7);

double py7=dist7x*sin (theta7)*sin (phi7);

double pz7=dist7x*cos (theta7);

TVector3 vB3(px7,py7,pz7); //position of det. B3 wrt chamber center

TGeoRotation xrot7 = new TGeoRotation(”rot7”,—45,—90,0);
TGeoCombiTrans *pos7 = new TGeoCombiTrans(px7,py7,pz7,r0t7);

// this is detector Bj

double theta8=4xdtr;

double  phi8=(45+270)*dtr;

double dist8=71.06;

double px8=dist8x*sin (theta8)xcos(phi8);

double py8=dist8x*sin (theta8)*sin (phi8);

double pz8=dist8x*cos(theta8);

TVector3 vB4(px8,py8,pz8); //position of det. B4 wrt chamber center

TGeoRotation *xrot8 = new TGeoRotation(”rot8”,45,—90,0);
TGeoCombiTrans *pos8 = new TGeoCombiTrans(px8,py8,pz8,rot8);

// detector placing in space

I

top—>AddNode(psd,1,posl
top—>AddNode (psd ,2,pos2
(
(

)
);
).
)

top—>AddNode(psd ,3 , pos3
top—>AddNode (psd ,3 , pos4

I

I

top—>AddNode(psd ,5,posH);
top—>AddNode (psd ,6 ,pos6 );
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top—>AddNode (psd ,7,posT7);
top—>AddNode(psd ,8 ,pos8);

gGeoManager—>CloseGeometry ();
top—>SetLineColor (kRed);
gGeoManager—>SetTopVisible ();

// get the nodeid of each detector

gGeoManager—SetCurrentPoint (px1,pyl,pzl);
gGeoManager—FindNode () ;

TGeoNode xnodeAl = gGeoManager—>GetCurrentNode ();
Int_t idA1l = gGeoManager—GetCurrentNodeld ();
cout << 7Al,” << idAl << endl;

gGeoManager—>SetCurrentPoint (px2,py2,pz2);
gGeoManager—FindNode ();

TGeoNode xnodeA2 = gGeoManager—GetCurrentNode ();
Int_t idA2 = gGeoManager—>GetCurrentNodeld ();
cout << 7A2,7 << idA2 << endl;

gGeoManager—>SetCurrentPoint (px3,py3,pz3);
gGeoManager—FindNode ();

TGeoNode xnodeA3 = gGeoManager—>GetCurrentNode ();
Int_t idA3 = gGeoManager—GetCurrentNodeld ();
cout << "A3,7 << idA3 << endl;

gGeoManager—>SetCurrentPoint (px4 ,py4 , pz4d );
gGeoManager—FindNode () ;

TGeoNode x*nodeA4d = gGeoManager—>GetCurrentNode ();
Int_t idA4 = gGeoManager—>GetCurrentNodeld ();
cout << "A4)7 << idA4 << endl;
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gGeoManager—>SetCurrentPoint (px5,pyb, pzb);
gGeoManager—FindNode ();

TGeoNode xnodeBl = gGeoManager—>GetCurrentNode ();
Int_t idB1 = gGeoManager—>GetCurrentNodeld ();
cout << "B1.,” << idB1 << endl;

gGeoManager—>SetCurrentPoint (px6 ,py6 , pz6 );
gGeoManager—FindNode () ;

TGeoNode x*nodeB2 = gGeoManager—GetCurrentNode ();
Int_t idB2 = gGeoManager—>GetCurrentNodeld ();
cout << "B2,7 << idB2 << endl;

gGeoManager—>SetCurrentPoint (px7,py7,pz7);
gGeoManager—FindNode ();

TGeoNode xnodeB3 = gGeoManager—>GetCurrentNode ();
Int_t idB3 = gGeoManager—>GetCurrentNodeld ();
cout << "B3.,” << idB3 << endl;

gGeoManager—SetCurrentPoint (px8,py8,pz8);
gGeoManager—>FindNode ();

TGeoNode *nodeB4 = gGeoManager—>GetCurrentNode ();
Int_t idB4 = gGeoManager—GetCurrentNodeld ();
cout << "B4,,” << idB4 << endl;

TCanvas *c0 = new TCanvas(”¢0”,7¢0”,0,0,800,800);
top—>Draw () ;
c0—>SaveAs(”geometry all A32.pdf”);

long sec;
time ( &sec );
TRandom3* ran = new TRandom3((unsigned)sec);
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Double_t u=931.49410242/1000.;
// unita’ di massa (rif. 12C) in GeV/c

// PH(26Al,p26Mg)p gs to gs

Double_t mp=25.97602;
// massa proiettile

Double t mt=2.01355;
// massa target

Double t ml=1.00728;

// massa prima part. uscente pl

Double t m2=26.97776;
// massa seconda part. uscente 27My

Double_t m3=1.00782503207;

// massa terza part. uscente p2

Double t mx=1.00866491574;

// massa part. trasferita n

// Q della reazione 20Mg+p——>26Mg+p gs to gs
Double_t q2=u%1000.* (mp+mt—ml—-m2);

// Double__t q3=u+1000. * (mp+mt—mi—m2—ms3 ) ;
// cout << 7q8: 7 << q8 << endl;
// (Momentum, FEnergy units are Gev/C, GeV)

Double_t masses [2] = { usxml, uxm2} ;
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Double_t deg=180./TMath:: Pi();
Double t radius=100.;

Int_t geve=0;

Int_t gevel=0;

Int_t geve2=0;

Double_t step=0.3125; //strip width in cm
Double_t stepA=0.3125/2; //strip width in cm for 32 strip detectors

// theta and phi in degrees
Double t Tpl;
Double t Ppl;
Double_t Tmg;
Double_t Pmg;

// detected energy including det. res. 0.5%
Double_t Epl;
Double t Emg;

//statistical weight
Double t WW;

Int_t m=0;

// this tells us which particle is undetected, so energies and angl
Int t undetected;

//relative energies including resolution effects
Double_t el2b; //pl1 — 26My

//cm energies
Double_t ecmlb; // calculated from pl (p2 spectator?)

Double t ecm2b; // calculated from p2 (pl spectator?)
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//theta cm
Double_t tecmlb; // calculated from pl (p2 spectator?)
Double_t tem2b; // calculated from p2 (pl spectator?)

//ps

Double_t pslb; // p2 spectator?
Double_t ps2b; // pl spectator?

// parameters with infinite

Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t
Double t

el2;

eld;

e23;

ecml ;
ecm?2 ;

psl;

ps2;

Q=—1;
Ql=—1;
romx=—20;
romy=—20;
epfake ;
Eplexp=—1;
Ep2exp=—1;
Emgexp=—1;

resolution

Double t Tplexp=—360;
Double_t Tp2exp=—360;
Double t Tmgexp=-—360;
Double t Pplexp=-—360;
Double t Pp2exp=-—360;
Double t Pmgexp=—360;
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TFile xfout = new TFile(”sim_3d_prova 27Mg pchannel A32.root”, "REC
TTree xsim = new TTree(”sim”, "sim”);

sim—>Branch (”undetected”, &undetected, “undetected/1”);
sim—>Branch ("WW’ | &W,  "WW/D” );

sim—>Branch ("Epl”, &Epl, "Epl/D”); //prot.1 energy in MeV
sim—>Branch (”Tpl” , &Tpl, "Tpl/D”); //prot.1 theta in deg
sim—>Branch ("Ppl”, &Ppl, "Ppl/D”); //prot.1 phi in deg

sim—>Branch ("Emg” , &Emg, "Emg/D”); //26Mg energy in MeV
sim—>Branch ("Tmg” , &Tmg, "Tmg/D”); //20Mg  theta in deg
sim—>Branch ("Pmg” , &Pmg, "Pmg/D”); //26Mg  phi in deg

// energies including resolution
sim—>Branch (”el2b”, &el2b, 7el2b/D”);
sim—>Branch (7ecml1b”, &ecmlb, "ecmlb/D”);
sim—>Branch (7ecm2b” | &ecm2b, "ecm2b/D”);

// theta cm including resolution
sim—>Branch (”tcm1b” | &temlb, "temlb/D”);
sim—>Branch ("tcm2b” | &tcm2b, "tcm2b/D”);

// ps including resolution
sim—>Branch (”"pslb”, &pslb, "pslb/D”);
sim—>Branch (”"ps2b”, &ps2b, "ps2b/D”);

QL &Q. Q/D7):

7

sim—>Branch

sim—>Branch ("romx” , &romx, “romx/D”);

"romy” |, &romy, “romy/D”);

"epfake”, &epfake, "epfake/D”);

77Q177’ &Ql’ 77Q1/D77 );

"Eplexp”, &Eplexp, "Eplexp/D”); //prot.1 energy in MeV

sim—>Branch
sim—>Branch
sim—>Branch

sim—>Branch

e N N N N N
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sim—>Branch ("Tplexp”, &Tplexp, "Tplexp/D”); //prot.1 theta
in deg

sim—>Branch (”Pplexp”, &Pplexp, "Pplexp/D”); //prot.1 phi
in deg

sim—>Branch ("Emgexp”, &Emgexp, "Emgexp/D”); //26Mg energy in MeV
sim—>Branch ("Tmgexp” , &Tmgexp, "Tmgexp/D”); //26My theta

in deg
sim—>Branch ( "Pmgexp” , &Pmgexp, "Pmgexp/D”); //26Mg phi

in deg

TFile xfhisto=new TFile("histo_sim_3d prova 27Mg pchannel A32.root”
// energies of the detected particles
TH2F *h2 e pl mg = new TH2F(”h2 e pl mg”,”h2 e pl mg”, 300,0,25,

300,60,95);

TH2F %h2 e p2 mg = new TH2F(”h2_e p2 mg”,”h2 e p2 mg”, 300,0,25,
300,60,95);

TH2F *h2_e pl p2 = new TH2F(”h2_e_ pl p2” ”h2_e pl_p2”, 300,0,25,
300,0 ,25);

// theta of the detected particles
TH2F %h2 t pl mg = new TH2F(”h2_t pl mg”,”h2 t pl mg”, 360,0,90,

360,1,7 );

TH2F *h2 t p2 mg = new TH2F(”h2_t p2 mg”,”h2_t_p2 mg”, 360,0,90,
360,1,7 );

TH2F %h2 t pl p2 = new TH2F(”h2 t pl p2”,7h2 t pl p2”, 360,0,90,
360,0,90);

// theta and phi of the detected particles

TH2F *h2_t_p pl = new TH2F(”h2_t_p pl”,”h2 t p pl”, 360,—180,180, 3
TH2F %h2 t p mg = new TH2F(”h2 t p mg”,”h2 t p mg”, 360,—180,180, 3
TH2F %h2 t p p2 = new TH2F(”h2 t p p2”,”h2 t p p2”, 360,—180,180, 3

//ecm theta_cm calculated from pl (p2 spectator?)
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TH2F %h2 e t ecm 1 = new TH2F(”h2 e t ecm 17 ,”h2 e t em 17, 90,0,180,
//ecm theta_cm calculated from p2 (pl spectator?)
TH2F *h2 e t cm_2 = new TH2F(”h2_e t ecm 27 ,”h2 e t cm_2”, 90,0,180,

//ecm ps calculated from pl (p2 spectator?)
TH2F *h2_ecm_ps 1 = new TH2F(”h2 _ecm_ps_1”,”7h2_ecm_ps 17, 100,—200.
//ecm ps calculated from p2 (pl spectator?)
TH2F *h2_ ecm_ps 2 = new TH2F(”h2 ecm_ps 2" ,7h2 ecm_ps 2”7, 100,—200.

//1D ecm spectra: from pl (p2 spectator?)
THIF xhl_ecm_1 = new THIF(”hl _ecm_17,”hl _ecm_17, 120,—1,2);
//1D ecm spectra: from p2 (pl spectator?)
THIF *hl_ecm_ 2 = new THIF(”hl _ecm_ 27 ,”hl _ecm_ 27, 120,—1,2);

//control spectra calculated with infinite resolution

//ecm ps calculated from pl (p2 spectator?)

TH2F *h2 ecm_ps_ 1 i = new TH2F(”h2_ecm_ps_ 1 i” ”h2 _ecm_ps_ 1 i”
//ecm ps calculated from p2 (pl spectator?)

TH2F %h2 ecm_ ps 2 i = new TH2F(”h2 ecm ps 2 i”,7h2 ecm_ ps 2 i”, 100
//1D ecm spectra: from pl (p2 spectator?)

THIF *hl _ecm_ 1 i = new THIF(”hl _ecm 1 i” ,”hl_ecm_1 i”, 120,—1,2);
//1D ecm spectra: from p2 (pl spectator?)

THIF %hl ecm_ 2 i = new THIF(”hl _ecm_ 2 i”,7hl ecm_ 2 i”, 120,—1,2);

, 100

//multiple hit counter (two particles in the same detector) —> reje
Int_t nmulth=0;

//number of coincidences

Int_t ncoinc=0;
TGenPhaseSpace event ;
fout—cd ();
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Double_t ninc=5e06; //pps

cout << 7inizio” << endl;

for (int nfired=1; nfired<=ninc; nfired++) {
Double_t rp = ran—Rndm();

// energia e impulso del proiettile
epfake=((90.92919—(0.7394%2))+rp*(0.7394%2))/1000.;

Double_t epf=(90.92919—-0.7394)/1000.; //apparent beam energ
Double_t ep=epf; // added on 27 September 2024

Double_t pp=sqrt (2.xuxmpxep );

Double t ppf=sqrt (2.*xuxmp*epf);

TLorentzVector beamf (0.0, 0.0, ppf, usmptepf);
TLorentzVector target (0.0, 0.0, 0.0, usmt);
TLorentzVector beam (0.0, 0.0, pp, uxmptep);
TLorentzVector W = beam + target ;
event.SetDecay (W, 2, masses);

Double_t weight = event.Generate ();

WWeweight

TLorentzVector *pl = event.GetDecay (0); //protone 1
TLorentzVector xp2 = event.GetDecay (1); //26Myg

TVector3 ppl=pl—>Vect ();
TVector3 pp2=p2—>Vect ();
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TVector3 dirl=ppl.Unit();
TVector3 dir2=pp2.Unit ();

// dimensione del beam spot: diametro 0.2 cm
Double_t rx = ran—>Rndm();
Double_t ry = ran—Rndm();

Double_t postx=—0.14rx%0.2;
Double_t posty=—0.1+ry %0.2;
if (postxxpostx+posty*posty >=0.01)continue;

// particles tracking

Double_t xxl=dirl (0);

Double t yyl=dirl (1);

Double_t zzl=dirl (2);
gGeoManager—>SetCurrentPoint (postx , posty ,0);
gGeoManager—>SetCurrentDirection (xx1,yyl,zzl);
TGeoNode xcurrentl = gGeoManager—>GetCurrentNode ();
gGeoManager—FindNode () ;
gGeoManager—FindNextBoundary (radius );

Double t snextl = gGeoManager—>GetStep ();
TGeoNode xnewNodel = gGeoManager—>Step ();

Bool t istatel = gGeoManager—>IsStepEntering ();
Int_t idnodel = gGeoManager—>GetCurrentNodeld ();

TGeoNode xcurrentll = gGeoManager—>GetCurrentNode ();

const Double t xcpointl = gGeoManager—>GetCurrentPoint ();
TVector3 vhpl(cpointl [0],cpointl[1],cpointl [2]); //hit position
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Double_t xx2=dir2 (0);

Double_t yy2=dir2 (1);

Double_t zz2=dir2 (2);
gGeoManager—>SetCurrentPoint (postx , posty ,0);
gGeoManager—>SetCurrentDirection (xx2,yy2,2zz2);
TGeoNode xcurrent2 = gGeoManager—>GetCurrentNode ();
gGeoManager—FindNode ();
gGeoManager—FindNextBoundary (radius );

Double_t snext2 = gGeoManager—>GetStep ();
TGeoNode xnewNode2 = gGeoManager—>Step ();

Bool t istate2 = gGeoManager—>IsStepEntering ();
Int_t idnode2 = gGeoManager—>GetCurrentNodeld ();

TGeoNode xcurrent22 = gGeoManager—>GetCurrentNode ();
const Double_t #cpoint2 = gGeoManager—>GetCurrentPoint ();
TVector3 vhp2(cpoint2[0],cpoint2[1],cpoint2[2]); //hit position

//flagging undetected particles
Int_t lostlflag=0;
Int_t lost2flag=0;

//apparent direction of the particles from detection pizel
TVector3d vbinpl;
TVector3d vbinmg;

//4—momenta
TLorentzVector pbl; //pl j—momentum in GeV/c
TLorentzVector pb2; //26Mg 4—momentum in GeV/c

//vector momenta (parte spaziale del 4—momentum)
TVector3 ppbl;
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TVector3d ppb2;

// setting the coincidence level >=2: two particles hitting the
if(istatel 4 istate2 >1) {
ncoinc—4-+;

if (idnodel==idnode2)
{

nmulth++;
continue;

//searching for proton 1 apparent trajectory

if (idnodel=idA1) {
J/cout << "pl in Al7 << endl;
TVector3d vdAl=vhpl—vAl;
//vector from det. Al center to hit point

Double_t vvdA1[3]={vdA1(0),vdAl(1),vdA1(2)};
Double t vvdAlr[3]={0.,0.,0.};

J/cout << vdA1(0) << 7 7 << vdA1(1) << 7 7 << wdA1(2) <
//this is the transformation to planar configuration
rotl1—>MasterToLocal (vvdAl,vvdAlr);

//for Al, Bl +largeZ , B32 —largeZ

// F1 —largeX, F32 +largeX

TVector3d vdAlr(vvdAlr[0],vvdAlr[1],vvdAlr[2]);
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//cout << vdAlr(0) << 7 7 << vdAIr(1) << 7 7 << vdAlr(?2

Double_t detAlf=vvdAlr|[0];
Double_t detAlb=vvdAlr|[2];

Int ¢ ii,jj;

//search for the pixel f—>front, b—>back
for (ii=0; ii <32; ii4++){
if (detAlf>=—25+1iixstepA && detAlf<—2.5+(ii+1)xstep.
}
for (jj=0; jj <32; jj++){
if (detAlb<2.5—jj*stepA && detAlb>=2.5—(jj+1)*stepA)
¥
Double_t rxxs = ran—>Rndm();
Double_t ryys = ran—Rndm ();
Double t cfA1=—25+1ii*stepA+stepAxrxxs;
Double_t cbA1=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector Al
Double_t avdAlr[3]={cfAl, ,vvdAlr[1],6cbAl};
Double_t avdA1[3]={0.,0.,0.};

//we go back to the real position in the space
rotl1—>LocalToMaster (avdAlr  avdAl);

//this is the vector from det.Al center to apparent hit
TVector3d vdAla(avdAl[0],avdAl[1l],avdAl[2]);

J/cout << vdAla(0) << 7 7 << vdAla(1) << 7 7 << vdAla (2
//apparent trajectory of proton 1
TVector3d vbinAl=vAl+vdAla;

Tpl=(vbinAl.Theta())*deg;
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Ppl=(vbinAl.Phi())x*deg;
vbinpl=vbinAl;

}
else if (idnodel==idA2) {

//cout << "pl in A27 << endl;
TVector3d vdA2=vhpl—vA2;
//vector from det. A2 center to hit point

Double_t vvdA2[3]={vdA2(0),vdA2(1),vdA2(2)};
Double t vvdA2r[3]={0.,0.,0.};

J/cout << vdA2(0) << 7 7 << vdA2(1) << 7 7 << vdA2(2) <

//this is the transformation to planar configuration
rot2—>MasterToLocal (vvdA2 vvdA2r);
//for A2, Bl +largeZ , B32 —largeZ
// F1 —largeX , F32 +largeX

TVector3d vdA2r(vvdA2r[0],vvdA2r[1],vvdA2r[2]);
J/cout << vdA2r(0) << 7 7 << wdA2r(1) << 7 7 << vdA2r (2

Double_t detA2f=vvdA2r|[0];
Double_t detA2b=vvdA2r|[2];

Int_t ii,jj;

//search for the pizel f-—>front, b—>back
for (11=0; ii <32; ii4++){
if (detA2f>=—25+1iixstepA && detA2f<—2.5+(ii+1)xstep.
}
for (jj=0; jj <32; ji++)1
if (detA2b<2.5—jj*stepA && detA2b>=2.5—(jj+1)*stepA)
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}
Double t

Double t
Double t
Double t

//binned
Double t
Double t

rxxs = ran—>Rndm();
ryys = ran—>Rndm();
cfA2=—25+1i*stepA+stepA*rxxs;
cbA2=2.5—jj*stepA—stepAxryys;

(apparent—>a) position on detector A2
avdA2r[3]={cfA2,vvdA2r[1],cbA2};
avdA2[3]={0.,0.,0.};

//we go back to the real position in the space
rot2—LocalToMaster (avdA2r ,avdA2);

J/this is

TVector3

the wvector from det.A2 center to apparent hit
vdA2a(avdA2[0] ,avdA2[1] ,avdA2[2]);

J/cout << vdA2a(0) << 7 7 << vdA2a(1) << 7 7 << vdA2a (2

//apparent trajectory of proton 1

TVector3

vbinA2=vA24+vdA2a;

Tpl=(vbinA2.Theta ())*deg;
Ppl=(vbinA2.Phi())x*xdeg;
vbinpl=vbinA2;

}

else if (idnodel=idA3) {
//cout << "pl in A37 << endl;

TVector3
//vector

Double t
Double t

vdA3=vhpl—vA3;
from det. A3 center to hit point

vvdA3[3]|={vdA3(0),vdA3(1),vdA3(2)};
vvdA3r[3]={0.,0.,0.};

J/cout << vdA3(0) << 7 7 << vdA3(1) << 7 7 << vdA3(2) <
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//this is the transformation to planar configuration
rot3—>MasterToLocal (vvdA3,vvdA3r);
//for A3, Bl +largeZ , B32 —largeZ
// F1 +largeX, F32 —largeX

TVector3d vdA3r(vvdA3r[0],vvdA3r|[1],vvdA3r[2]);
J/cout << vdA3r(0) << 7 7 << wdA3r(1) << 7 7 << vdAS3r (2

Double_t detA3f=vvdA3r|[0];
Double t detA3b=vvdA3r[2];

Int_t ii,jj;

//search for the pizel f—>front, b—>back
for (ii=0; ii<32; ii4++){
if (detA3f<2.5—iixstepA && detA3f>=2.5—(1ii+1)*stepA)
}
for (jj=0; jj <32; jj++){
if (detA3b<2.5—jj*stepA && detA3b>=25—(jj+1)xstepA)
¥
Double_t rxxs = ran—>Rndm ();
Double_t ryys = ran—>Rndm ();
Double t c¢fA3=2.5—1iix*stepA—stepA*rxxs;
Double_t cbA3=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector A3
Double_t avdA3r[3]={cfA3,vvdA3r[1],cbA3};
Double_t avdA3[3]={0.,0.,0.};

//we go back to the real position in the space

rot3—>LocalToMaster (avdA3r ,avdA3);
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//this is the wvector from det.A3 center to apparent hit
TVector3d vdA3a(avdA3[0],avdA3[1],avdA3[2]);

J/cout << vdA3a(0) << 7 7 << vdA3a (1) << 7 7 << vdAS3a (2

//apparent trajectory of proton 1
TVector3d vbinA3=vA3+vdA3a;
Tpl=(vbinA3.Theta ())*deg;
Ppl=(vbinA3.Phi())x*deg;
vbinpl=vbinA3;

}
else if (idnodel=—=idA4) {

//cout << Tpl in A47 << endl;
TVector3d vdAd=vhpl—vA4;
//vector from det. AjJ center to hit point

Double_t vvdA4[3]={vdA4(0),vdA4(1),vdA4(2)};
Double t vvdA4r[3]={0.,0.,0.};

J/cout << vdA4(0) << 7 7 << vdA4 (1) << 7 7 << vdA4(2) <
//this is the transformation to planar configuration
rot4—>MasterToLocal (vvdA4,vvdAdr);

//for A4, Bl +largeZ , B32 —largeZ

// F1 +largeX , F32 —largeX

TVectord vdAdr(vvdA4r[0] ,vvdAdr|[1],vvdAdr[2]);

J/cout << vdA4r(0) << 7 7 << vdA4r(1) << 7 7 << vdA4r (2
Double_t detA4f=vvdA4r|[0];

Double_t detAdb=vvdAdr|[2];
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}

Int t ii,jj;

//search for the pizel f—>front, b—>back
for (11=0; ii <32; ii4++){
if(detAdf<2.5—1iix*stepA && detAdf>=25—(ii+1)*stepA)
}
for (jj=0; jj<32; ji++){
if (detAdb<2.5—jj*stepA && detAdb>=2.5—(jj+1)*stepA)
¥
Double_t rxxs = ran—>Rndm ();
Double_t ryys = ran—Rndm ();
Double t c¢fA4=2.5—1iix*stepA—stepA*rxxs;
Double_t cbA4=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector A4
Double t avdAdr[3]={cfA4 vvdA4r[1], 6 cbA4};
Double_t avdA4[3]={0.,0.,0.};

//we go back to the real position in the space
rot4d—>LocalToMaster (avdAdr ,avdA4 ) ;

//this is the wvector from det.A4 center to apparent hit
TVectord vdAda(avdA4[0],avdA4[1],avdA4[2]);

J//cout << vdAja(0) << 7 7 << vdA4a(1) << 7 7 << vdAja (2

//apparent trajectory of proton 1
TVector3d vbinAd=vA4+vdAda;
Tpl=(vbinA4.Theta ())*deg;
Ppl=(vbinA4.Phi())x*deg;
vbinpl=vbinA4;

else if (idnodel=—=idB1) {
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//cout << "pl in Bl7 << endl;
TVector3d vdBl=vhpl—vB1;
//vector from det. Bl center to hit point

Double_t vvdB1[3]={vdB1(0),vdB1(1),vdB1(2)};
Double t vvdBlr[3]={0.,0.,0.};

J//cout << vdB1(0) << 7 7 << wdB1(1) << 7 7 << wdB1(2) <

//this is the transformation to planar configuration
rot5—>MasterToLocal (vvdB1,vvdBl1r);
//for Bl, Bl +largeZ , B16 —largeZ
// F1 —largeX , F16 +largeX

TVector3d vdBlr(vvdBlr[0],vvdBlr|[1],vvdBlr[2]);
J//cout << vdBIr(0) << 7 7 << vwdBl1r(1) << 7 7 << vdBlIr(2

Double_t detBlf=vvdBlr|[0];
Double_t detBlb=vvdBlr|[2];

Int_t ii,jj;

//search for the pizel f—>front, b—>back
for (ii=0; ii <16; ii++){
if (detBlf>=—25+1iixstep && detBlf<—2.5+(ii+1)*step)
}
for (jj=0; jj<16; jj++)1
if (detBlb<2.5—jj*step && detBlb>=2.5—(jj+1)*step) b
¥
Double_t rxxs = ran—Rndm ();
Double_t ryys = ran—Rndm ();
Double t c¢fB1=—25+4iixstep+step*rxxs;
Double t cbB1=2.5—jj*step—step*ryys;
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//binned (apparent—>a) position on detector BI
Double_t avdBlr[3]={cfB1,vvdBlr[1],cbB1};
Double t avdB1[3]={0.,0.,0.};

//we go back to the real position in the space
rot5—>LocalToMaster (avdBl1r ,avdB1);

//this is the wvector from det.Bl center to apparent hit
TVector3d vdBla(avdB1[0],avdB1[1],avdB1[2]);

//cout << vdBla(0) << 7 7 << wdBla(1) << 7 7 << wvdBla (2

//apparent trajectory of proton 1
TVector3d vbinBl=vBl14+vdBla;
Tpl=(vbinB1. Theta ())*deg;
Ppl=(vbinB1.Phi())x*deg;
vbinpl=vbinB1;

}
else if (idnodel=—=idB2) {

//cout << "pl in B27 << endl;
TVector3d vdB2=vhpl—vB2;
//vector from det. B2 center to hit point

Double_t vvdB2[3]={vdB2(0),vdB2(1),vdB2(2)};
Double_t vvdB2r[3]={0.,0.,0.};

//cout << vdB2(0) << 7 7 << vdB2(1) << 7 7 << wdB2(2) <
//this is the transformation to planar configuration
rot6—>MasterToLocal (vvdB2,vvdB2r);

//for B2, Bl +largeZ , B16 —largeZ

// F1 —largeX , F16 +largeX
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TVector3d vdB2r(vvdB2r[0],vvdB2r|[1],vvdB2r[2]);
J/cout << vdB2r(0) << 7 7 << vdB2r (1) << 7 7 << vdB2r (2

Double_t detB2f=vvdB2r[0];
Double_t detB2b=vvdB2r[2];

Int_t ii,jj;

//search for the pizel f—>front, b—>back
for (ii=0; ii <16; ii++){
if(detB2f>=—25+1iixstep && detB2f<—2.5+(ii+1)xstep)
¥
for (jj=0; jj<16; jj++){
if (detB2b<2.5—jj*step && detB2b>=2.5—(jj+1)*step) b
}
Double_t rxxs = ran—Rndm();
Double_t ryys = ran—Rndm ();
Double t c¢fB2=—25+4+iixstep+step*rxxs;
Double t cbB2=2.5—jj*step—stepx*ryys;

//binned (apparent—>a) position on detector B2
Double_t avdB2r[3]={cfB2,vvdB2r[1],cbB2};
Double t avdB2[3]={0.,0.,0.};

//we go back to the real position in the space
rot6 —>LocalToMaster (avdB2r ,avdB2);

//this is the wvector from det.B2 center to apparent hit
TVector3d vdB2a(avdB2[0],avdB2[1],avdB2[2]);

//cout << vdB2a(0) << 7 7 << wdB2a(1) << 7 7 << vdB2a (2
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}

//apparent trajectory of proton 1
TVector3d vbinB2=vB2+vdB2a;
Tpl=(vbinB2. Theta ())*deg;
Ppl=(vbinB2.Phi())x*deg;
vbinpl=vbinB2;

else if (idnodel=—=idB3) {

//cout << "pl in B37 << endl;
TVector3d vdB3=vhpl—vB3;
//vector from det. B3 center to hit point

Double_t vvdB3[3]={vdB3(0),vdB3(1),vdB3(2)};
Double_t vvdB3r[3]={0.,0.,0.};

//cout << vdB3(0) << 7 7 << vdB3(1) << 7 7 << wdB3(2) <
//this is the transformation to planar configuration
rot7—>MasterToLocal (vvdB3,vvdB3r);

//for B3, Bl +largeZ , B16 —largeZ

// F1 +largeX, F16 —largeX

TVector3d vdB3r(vvdB3r[0],vvdB3r|[1],vvdB3r[2]);

J//cout << vdB3r(0) << 7 7 << vdB3r(1) << 7 7 << vdB3r (2

Double_t detB3f=vvdB3r[0];
Double_t detB3b=vvdB3r|[2];

Int_t ii,jj;
//search for the pizel f—>front, b—>back
for (ii=0; ii <16; ii++){

if (detB3f<2.5—iixstep && detB3f>=25—(ii+1)xstep) h
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}

for (jj=0; jj<16; jj++){
if (detB3b<2.5—jj*step && detB3b>=2.5—(jj+1)*step) b

}
Double t

Double t
Double t
Double t

//binned
Double t
Double t

rxxs = ran—>Rndm () ;
ryys = ran—>Rndm () ;
cfB3=2.5—iixstep—step*rxxs;
cbB3=2.5—jjxstep—step*ryys;

(apparent—>a) position on detector B3
avdB3r[3]={cfB3,vvdB3r[1],cbB3};
avdB3[3]={0..,0.,0.};

//we go back to the real position in the space
rot7—>LocalToMaster (avdB3r,avdB3);

//this is

TVector3

the wvector from det.B3 center to apparent hit
vdB3a(avdB3[0] ,avdB3[1] ,avdB3[2]);

//cout << vdB3a(0) << 7 7 << wdB3a(1) << 7 7 << vdBS&a (2

//apparent trajectory of proton 1

TVector3

vbinB3=vB3+vdB3a;

Tpl=(vbinB3 . Theta ())*deg;
Ppl=(vbinB3.Phi())x*deg;
vbinpl=vbinB3;

}

else if (idnodel==idB4) {
//cout << "pl in B} << endl;

TVector3

vdB4=vhpl—vB4;

//vector from det. B} center to hit point

Double t

vvdB4[3]|={vdB4(0) ,vdB4 (1) ,vdB4(2)};
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Double_t vvdB4r[3]={0.,0.,0.};
J//cout << vdB4(0) << 7 7 << vdBj (1) << 7 7 << wdB4(2) <

//this is the transformation to planar configuration
rot8 —MasterToLocal (vvdB4 , vvdB4r ) ;
//for B4, Bl +largeZ , B16 —largeZ
// F1 +largeX, F16 —largeX

TVector3d vdB4r(vvdB4r [0] ,vvdB4r [1],vvdB4r [2]);
//cout << vdB4r(0) << 7 7 << wdB4r (1) << 7 7 << vdBjr (2

Double_t detB4f=vvdB4r|[0];
Double_t detB4b=vvdB4r|[2];

Int_t ii,jj;

//search for the pizel f—>front, b—>back
for (ii=0; ii<16; ii++){
if (detB4f<2.5—iixstep && detB4f>=25—(ii+1)xstep) h
}
for (jj=0; jj <16; jj++){
if (detB4b<2.5—jj*step && detB4b>=2.5—(jj+1)*step) b
}
Double_t rxxs = ran—>Rndm ();
Double t ryys = ran—>Rndm();
Double t c¢fB4=25—1iixstep—step*rxxs;
Double_t chB4=2.5—jj*step—stepx*ryys;

//binned (apparent—>a) position on detector B4

Double_t avdB4r[3]|={cfB4 ,vvdB4r[1], cbB4};
Double_t avdB4[3]={0.,0.,0.};
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//we go back to the real position in the space
rot8 —LocalToMaster (avdB4r ,avdB4 ) ;

//this is the wector from det.Bj center to apparent hit
TVector3 vdB4a(avdB4[0] ,avdB4[1],avdB4[2]);

J//cout << vdB4a(0) << 7 7 << wdBja(1) << 7 7 << vdB4a (2

//apparent trajectory of proton 1
TVector3d vbinB4=vB4+vdB4a;
Tpl=(vbinB4 . Theta ())*deg;
Ppl=(vbinB4.Phi())x*deg;
vbinpl=vbinB4;

}

else(
//cout << "pl lost in space” << endl;
lostlflag=1;

}

//searching for 26Mg apparent trajectory

if

(idnode2==idA1){
J//cout << 726Mg in Al”7 << endl;
TVector3d vdAlx=vhp2—vAl;
//vector from det. Al center to hit point

Double t vvdAlx[3]={vdAlx(0),vdAlx(1),vdAlx(2)};
Double_t vvdAlxr[3]={0.,0.,0.};

J/cout << vdAlz(0) << 7 7 << vdAlx(1) << 7 7 << vdAlzx (2

//this is the transformation to planar configuration
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rotl1—>MasterToLocal (vvdAlx,vvdAlxr);
//for Al, Bl +largeZ , B32 —largeZ
// F1 —largeX, F32 +largeX

TVector3d vdAlxr(vvdAlxr[0],vvdAlxr[1l],vvdAlxr[2]);
J/cout << vdAlzr(0) << 7 7 << vdAlzr(1) << 7 7 << vdAla

Double_t detAlxf=vvdAlxr[0];
Double_t detAlxb=vvdAlxr[2];

Int t ii,jj;

//search for the pizel f—>front, b—>back
for (ii=0; ii <32; ii++){
if (detAlxf>=—25+1ixstepA && detAlxf<—2.54+(ii+1)*st
}
for (ji=0; jj <32; jj++){
if (detAlxb<2.5—jj*stepA && detAlxb>=2.5—(jj+1)*step.
}
Double_t rxxs = ran—>Rndm ();
Double t ryys = ran—>Rndm ();
Double t cfAlx=—2.5+1iixstepA+stepA*xrxxs;
Double t cbAlx=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector Al
Double_t avdAlxr[3]={cfAlx,vvdAlxr[1l],cbAlx};
Double_t avdAlx[3]={0.,0.,0.};

//we go back to the real position in the space
rotl1—LocalToMaster (avdAlxr,avdAlx);

//this is the wvector from det.Al center to apparent hit
TVector3d vdAlxa(avdAlx[0],avdAlx[1],avdAlx[2]);
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//cout << vdAlza(0) << 7 7 << vdAlza(1l) << 7 7 << vdAlx

//apparent trajectory of 26Mg
TVector3d vbinAlx=vAl4+vdAlxa;
Tmg=(vbinAlx. Theta())*deg;
Pmg=(vbinAlx.Phi())=*deg;

vbinmg=vbinAlx;

}
else if (idnode2=—=idA2) {

J//cout << 726Mg in A27 << endl;
TVector3d vdA2x=vhp2—vA2;
//vector from det. A2 center to hit point

Double t vvdA2x[3]={vdA2x(0),vdA2x(1),vdA2x(2)};
Double_t vvdA2xr[3]={0.,0.,0.};

J/cout << vdA2zx(0) << 7 7 << wdA2z(1) << 7 7 << vdA2x (2
//this is the transformation to planar configuration
rot2—>MasterToLocal (vvdA2x,vvdA2xr);

//for A2, Bl +largeZ ,6 B32 —largeZ

// F1 —largeX, F32 +largeX

TVector3d vdA2xr(vvdA2xr[0],vvdA2xr[1],vvdA2xr[2]);

//cout << vdA2zxr(0) << 7 7 << vdA2zr (1) << 7 7 << vdA2a

Double_t detA2xf=vvdA2xr[0];
Double t detA2xb=vvdA2xr[2];

Int ¢ ii,jj;
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//search for the pizel f—>front, b—>back
for (ii=0; ii<32; ii++){
if (detA2xf>=—25+1ixstepA && detA2xf<—2.5+(ii+1)x*ste
¥
for (jj=0; jj <32; ji++)1
if (detA2xb<2.5—jj*stepA && detA2xb>=25—(jj+1)*step.
}
Double_t rxxs = ran—Rndm();
Double_t ryys = ran—Rndm();
Double t cfA2x=—2.5+1iixstepA+stepA*xrxxs;
Double t cbA2x=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector A2
Double_t avdA2xr[3]={cfA2x,vvdA2xr|[1],cbA2x};
Double_t avdA2x[3]={0.,0.,0.};

//we go back to the real position in the space
rot2—>LocalToMaster (avdA2xr ,avdA2x);

//this is the wvector from det.A2 center to apparent hit
TVector3d vdA2xa(avdA2x[0],avdA2x[1],avdA2x[2]);

J/cout << vdA2za(0) << 7 7 << vdA2za (1) << 7 7 << vdA2a

//apparent trajectory of 26Mg
TVector3d vbinA2x=vA2+vdA2xa;
Tmg=(vbinA2x . Theta ())x*deg;
Pmg=(vbinA2x.Phi())=*deg;
vbinmg=vbinA2x;

}
else if (idnode2==idA3) {

//cout << "26Mg in A37 << endl;
TVector3d vdA3x=vhp2—vA3;
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//vector from det. A3 center to hit point

Double_t vvdA3x[3]={vdA3x(0),vdA3x(1),vdA3x(2)};
Double t vvdA3xr[3]={0.,0.,0.};

//cout << vdA3z(0) << 7 7 << wdA3z(1) << 7 7 << vdA3x (2

//this is the transformation to planar configuration
rot3—>MasterToLocal (vvdA3x,vvdA3xr);

//for A8, Bl +largeZ , B32 —largeZ

// F1 +largeX, F32 —largeX

TVector3d vdA3xr(vvdA3xr[0],vvdA3xr[1l],vvdA3xr[2]);
J//cout << vdA3zr(0) << 7 7 << vdASxr(1) << 7 7 << vdA3a

Double_t detA3xf=vvdA3xr[0];
Double_t detA3xb=vvdA3xr[2];

Int t ii,jj;

//search for the pizel f—>front, b—>back
for (1i=0; ii <32; ii++){
if(detA3xf<2.5—iixstepA && detA3xf>=25—(1ii+1)*step.
}
for (jj=0; jj<32; jj++){
if (detA3xb<2.5—jj*stepA && detA3xb>=2.5—(jj+1)xstep.
}
Double_t rxxs = ran—>Rndm ();
Double_t ryys = ran—Rndm();
Double_t cfA3x=2.5—ii*stepA—stepAxrxxs;
Double t cbA3x=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector A3
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Double_t avdA3xr[3]={cfA3x,vvdA3xr|[1],cbA3x};
Double_t avdA3x[3]={0.,0.,0.};

//we go back to the real position in the space
rot3—>LocalToMaster (avdA3xr,avdA3x);

//this is the wvector from det.A3 center to apparent hit
TVector3 vdA3xa(avdA3x[0],avdA3x[1],avdA3x[2]);

J/cout << vdAS3za(0) << 7 7 << vdAS3za (1) << 7 7 << vdA3a

//apparent trajectory of 26Mg
TVector3d vbinA3x=vA3+vdA3xa;
Tmg=(vbinA3x . Theta ())*deg;
Pmg=(vbinA3x.Phi())=*deg;
vbinmg=vbinA3x;

}
else if (idnode2==idA4) {

//cout << "26Mg in A}7 << endl;
TVector3d vdAdx=vhp2—vA4;
//vector from det. A4 center to hit point

Double_t vvdA4x[3]={vdA4x(0),vdAdx (1) ,vdA4x(2)};
Double_t vvdA4xr[3]={0.,0.,0.};

//cout << vdA4x(0) << 7 7 << wdAjz (1) << 7 7 << vdA4x (2
//this is the transformation to planar configuration
rot4d—>MasterToLocal (vvdA4x,vvdAdxr);

//for A4, Bl +largeZ , B32 —largeZ

// F1 +largeX, F32 —largeX

TVectord vdAdxr(vvdA4dxr[0],vvdAdxr[1],vvdAdxr[2]);
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J/cout << vdAjar(0) << 7 7 << vdA4ar(1) << 7 7 << vdAja

Double t detAdxf=vvdAdxr[0];
Double t detAdxb=vvdAdxr[2];

Int t ii,jj;

//search for the pizel f—>front, b—>back
for (ii=0; ii <32; ii++){
if(detAdxf<2.5—iixstepA && detAdxf>=25—(1ii+1)*step.
}
for (ji=0; jj <325 jj++)
if (detAdxb<2.5—jj*stepA && detAdxb>=2.5—(jj+1)xstep.
}
Double_t rxxs = ran—>Rndm ();
Double_t ryys = ran—Rndm();
Double_t cfA4x=2.5—1ii*stepA—stepAxrxxs;
Double t cbA4x=2.5—jj*stepA—stepAxryys;

//binned (apparent—>a) position on detector A4
Double t avdAdxr[3]={cfA4x ,vvdA4xr[1l],cbAdx};
Double t avdA4x[3]={0.,0.,0.};

//we go back to the real position in the space
rotd—>LocalToMaster (avdA4xr ,avdA4dx);

//this is the wvector from det.A} center to apparent hit
TVector3d vdAdxa(avdA4x[0],avdA4dx[1],avdAdx[2]);

//cout << vdAjza(0) << 7 7 << vdA4za(l) << 7 7 << vdAj4a

//apparent trajectory of 26Mg
TVector3d vbinAdx=vA4+vdAdxa;
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}

Tmg=(vbinA4x . Theta())*deg;
Pmg=(vbinA4x.Phi())=*deg;
vbinmg=vbinA4x;

else if (idnode2==idB1) {

//cout << "26Mg in Bl1” << endl;
TVector3d vdBlx=vhp2—vB1;
//vector from det. Bl center to hit point

Double_t vvdB1x[3]={vdB1x(0),vdBlx(1),vdBlx(2)};
Double t vvdBlxr[3]={0.,0.,0.};

//cout << vdBlz(0) << 7 7 << vdBlz (1) << 7 7 << vdBlxz (2

//this is the transformation to planar configuration
rotb—>MasterToLocal (vvdBlx,vvdBlxr);

//for Bl, Bl +largeZ 6 B16 —largeZ

// F1 —largeX, F16 +largeX

TVector3d vdBlxr(vvdBlxr[0],vvdBlxr[1],vvdBlxr[2]);
//cout << vdBlzr(0) << 7 7 << vdBlzr(1) << 7 7 << wvdBlIa

Double_t detBlxf=vvdBlxr[0];
Double_t detBlxb=vvdBlxr[2];

Int t ii,jj;

//search for the pixel f—>front, b—>back
for (ii=0; ii <16; ii4++){
if(detBlxf>=—25+1iixstep && detBlxf<—2.54+(ii+1)xste

}

for (jj=0; jj<16; jj++){
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if (detBlxb<2.5—jj*step && detBlxb>=2.5—(jj+1)*xstep)

}
Double t

Double t
Double t
Double t

//binned
Double t
Double t

rxxs = ran—>Rndm();
ryys = ran—>Rndm ();
cfBlx=—2.5+1ii*xstep+step*rxxs;
cbBlx=2.5—jjxstep—step*ryys;

(apparent—>a) position on detector BI1
avdBlxr[3]={cfBlx ,vvdBlxr[1],6cbBlx};
avdBlx [3]={0.,0.,0.};

//we go back to the real position in the space
rotb—>LocalToMaster (avdBlxr ,avdBlx);

//this s

TVector3

the wvector from det.Bl center to apparent hit
vdBlxa(avdB1x[0] ,avdBlx[1],avdBlx[2]);

//cout << vdBlza(0) << 7 7 << vdBlza(1) << 7 7 << vdBla

//apparent trajectory of 26Mg

TVector3

vbinBlx=vBl14+vdBlxa;

Tmg=(vbinBlx . Theta ())*deg;
Pmg=(vbinB1lx.Phi())x*deg;

vbinmg=vbinBlx;

}

else if (idnode2=—idB2) {
//cout << "26Mg in B2” << endl;

TVector3

//vector

Double t
Double t

vdB2x=vhp2—vB2;
from det. B2 center to hit point

vvdB2x[3]={vdB2x(0),vdB2x (1) ,vdB2x(2) };
vvdB2xr [3]={0.,0.,0.};
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//cout << vdB2z(0) << 7 7 << wvdB2x(1) << 7 7 << vdB2z (2

//this is the transformation to planar configuration
rot6—>MasterToLocal (vvdB2x,vvdB2xr);

//for B2, Bl +largeZ , B16 —largeZ

// F1 —largeX, F16 +largeX

TVector3d vdB2xr(vvdB2xr[0],vvdB2xr[1],vvdB2xr[2]);
//cout << vdB2zxr(0) << 7 7 << vdB2zxr (1) << 7 7 << vdB2a

Double t detB2xf=vvdB2xr[0];
Double_t detB2xb=vvdB2xr[2];

Int ¢ ii,jj;

//search for the pixel f—>front, b—>back
for (ii=0; ii <16; ii++){
if (detB2xf>=—25+1iixstep && detB2xf<—2.5+(ii+1)xste
}
for (ji=0; jj <16; jj++){
if (detB2xb<2.5—jjxstep && detB2xb>=2.5—(jj+1)xstep)
}
Double_t rxxs = ran—>Rndm ();
Double_t ryys = ran—Rndm ();
Double t c¢fB2x=—2.5+1iixstep+step*rxxs;
Double_t cbB2x=2.5—jj*step—step*ryys;

//binned (apparent—>a) position on detector B2
Double_t avdB2xr[3]={cfB2x,vvdB2xr[1],cbB2x};
Double_t avdB2x[3]={0.,0.,0.};

//we go back to the real position in the space
rot6 —LocalToMaster (avdB2xr ,avdB2x ) ;
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//this is the wvector from det.B2 center to apparent hit
TVector3d vdB2xa(avdB2x[0],avdB2x[1],avdB2x[2]);

//cout << vdB2za(0) << 7 7 << vdB2za(1) << 7 7 << vdB2a

//apparent trajectory of 26Mg
TVector3d vbinB2x=vB2+vdB2xa;
Tmg=(vbinB2x . Theta ())=* deg;
Pmg=(vbinB2x.Phi())x*deg;

vbinmg=vbinB2x ;

}
else if (idnode2=—idB3) {

//cout << 7"26Mg in B3” << endl;
TVector3d vdB3x=vhp2—vB3;
//vector from det. B3 center to hit point

Double_t vvdB3x[3]={vdB3x(0),vdB3x(1),vdB3x(2)};
Double t vvdB3xr[3]={0.,0.,0.};

//cout << vdB3z(0) << 7 7 << wdB3z(1) << 7 7 << vdB3z (2
//this is the transformation to planar configuration
rot7—>MasterToLocal (vvdB3x,vvdB3xr);

//for B3, Bl +largeZ , B16 —largeZ

// F1 +largeX, F16 —largeX

TVector3d vdB3xr(vvdB3xr[0],vvdB3xr[1],vvdB3xr[2]);

//cout << vdB3zr(0) << 7 7 << wdB3zr(1) << 7 7 << vdB3a

Double_t detB3xf=vvdB3xr[0];
Double t detB3xb=vvdB3xr[2];
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Int ¢ ii,jj;

//search for the pixel f—>front, b—>back
for (ii=0; ii <16; ii++){
if(detB3xf<2.5—iixstep && detB3xf>=25—(ii+1)*xstep)
}
for (jj=0; jj<16; jj++){
if (detB3xb<2.5—jj*step && detB3xb>=2.5—(jj+1)*xstep)
}
Double_t rxxs = ran—>Rndm();
Double t ryys = ran—Rndm();
Double t c¢fB3x=2.5—iixstep—step*rxxs;
Double t cbB3x=2.5—jjxstep—step*ryys;

//binned (apparent—>a) position on detector B3
Double_t avdB3xr[3]={cfB3x,vvdB3xr[1],cbB3x};
Double_t avdB3x[3]={0.,0.,0.};

//we go back to the real position in the space
rot7—>LocalToMaster (avdB3xr ,avdB3x ) ;

//this is the wvector from det.B3 center to apparent hit
TVector3d vdB3xa(avdB3x[0],avdB3x[1],avdB3x[2]);

//cout << vdB3za(0) << 7 7 << vdB3za (1) << 7 7 << vdB31

//apparent trajectory of 26Mg
TVector3d vbinB3x=vB3+vdB3xa;
Tmg=(vbinB3x. Theta ())x*deg;
Pmg=(vbinB3x.Phi())x*deg;

vbinmg=vbinB3x ;
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else if (idnode2=—idB4) {
//cout << "26Mg in Bj” << endl;
TVector3d vdB4x=vhp2—vB4;
//vector from det. B4 center to hit point

Double_t vvdB4x[3]={vdB4x(0),vdB4x (1) ,vdB4x(2)};
Double t vvdB4xr[3]={0.,0.,0.};

//cout << vdBjz(0) << 7 7 << wdB4xz(1) << 7 7 << vdBjz (2

//this is the transformation to planar configuration
rot8 —MasterToLocal (vvdB4x, vvdB4xr);

//for B4, Bl +largeZ , B16 —largeZ

// F1 +largeX, F16 —largeX

TVector3d vdB4xr(vvdB4xr[0],vvdB4xr[1],vvdB4dxr[2]);
//cout << vdBjzr(0) << 7 7 << vdB4zr(1) << 7 7 << vdB4a

Double_t detB4xf=vvdB4xr[0];
Double_t detB4xb=vvdB4xr[2];

Int t ii,jj;

//search for the pizel f—>front, b—>back
for (1i=0; ii <16; ii4++){
if(detBdxf<2.5—iixstep && detB4xf>=25—(ii+1)*xstep)
}
for (jj=0; jj <165 jj++){
if (detBdxb<2.5—jj*step && detB4dxb>=25—(jj+1)xstep)
¥
Double_t rxxs = ran—>Rndm ();
Double_t ryys = ran—Rndm ();
Double t c¢fB4x=2.5—1iixstep—step*rxxs;
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Double_t cbB4x=2.5—jj*step—step*ryys;

//binned (apparent—>a) position on detector B4
Double t avdB4xr[3]={cfB4x,vvdB4xr[1],cbB4x};
Double_t avdB4x[3]={0.,0.,0.};

//we go back to the real position in the space
rot8 —LocalToMaster (avdB4xr ,avdB4x ) ;

//this is the wvector from det.Bj center to apparent hit
TVector3d vdB4xa(avdB4x[0],avdB4x[1],avdB4x[2]);

//cout << vdB4za(0) << 7 7 << vdBjza(1l) << 7 7 << vdB4a

//apparent trajectory of 26Mg
TVector3d vbinB4x=vB4+vdB4xa;
Tmg=(vbinB4x . Theta ())*deg;
Pmg=(vbinB4x.Phi())x*deg;

vbinmg=vbinB4x ;

else{

J/cout << "26Mg lost in space” << endl;

lost2flag=1;

//cout << endl;

//associating the energy accounting for det. res.

std :: default _random_engine generator;
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if (lostlflag==0)

{

Double t el=(pl—>Energy()—uxml); //pl energy in GeV
Double_t mpl=ppl.Mag(); //pl1 momentum in GeV/c

Double_t rnnuml = ran—>Rndm();

generator.seed (rnnuml);

std :: normal_distribution <double> distributionl ( /*mean==
Double _t mpls = distributionl (generator);

Double_t dmpl=(mpls—mpl)/mpl; //variazione percentuale
TVector3d dirbl=vbinpl.Unit (); //apparent direction
TVector3 vpbl=mplsxdirbl; //pl momentum (vector) in GeV

pbl.SetPx (vpbl (
pbl.SetPy (vpbl (
pbl.SetPz(vpbl (
pbl.SetE (uxml+e
ppbl=pbl. Vect ();

Epl=el*(142+dmpl)*1000.; //detected energy of pl

142%dmpl ) );

fhisto—cd ();
h2 t p pl—Fill (Ppl,Tpl, weight );

if(lost2flag==0)

{

Double_t e2=(p2—>Energy()—u*xm2); //26Mg energy in GeV
Double_t mp2=pp2.Mag(); //26Mg momentum in GeV/c
Double_t rnnum2 = ran—>Rndm ();

generator.seed (rnnum?2);

std :: normal distribution<double> distribution2 (/*mean=+
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Double_t mp2s = distribution2 (generator);

Double_t dmp2=(mp2s—mp2)/mp2; //variazione percentuale
TVector3 dirb2=vbinmg. Unit (); //apparent direction
TVector3 vpb2=mp2sxdirb2; //26Mg momentum (vector) in C
pb2.SetPx (vpb2(0));
pb2.SetPy (vpb2 (1
pb2.SetPz (vpb2 (2
pb2.SetE (uxm2+e2
ppb2=pb2. Vect ();
Emg=e2x(14+2xdmp2)*1000.; //detected energy of 26Mg

’

142%dmp2));

fhisto—cd ();
h2 t p mg—=>Fill (Pmg,Tmg, weight );

//if particles are lost in space, I need to calculate angle

if(lostlflag==1)

{

pbl=beamf+target —pb2; //prot.1 J—momentum in GeV/c
Epl=(pbl.Energy()—u*ml)*1000.;
Tpl=(pbl.Theta())*deg;

Ppl=(pbl.Phi())*deg;

ppbl=pbl. Vect ();

if (lost2flag==1)

{

pb2=beamf+target —pbl; //prot.1 j—momentum in GeV/c
Emg=(pb2.Energy()—u*m2)*1000.;

202



Tmg=(pb2. Theta ())* deg;
Pmg=(pb2.Phi())*deg;
ppb2=pb2. Vect ();

// this wvariable tells which particle is lost: 1->pl, 2—>mg

if(lostlflag==1)

{

undetected=1;
¥
else if(lost2flag==1)
{

undetected =2;
¥
else
{

undetected =0;
¥

/ x

if(lostlflag==0 66 Ep1>12.25 66 lost2flag==0 &6 Tpl>10 &€ Tmy

M+,

Eplexp=FEpl;
Tplexp=Tpl;
Pplexp=Ppl;
Emgexp=FEmg;
Tmgexp=Tmg;
Pmgexp=Pmg;

*/
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fout—cd ();
sim—>Fill ();

if (nfired %50000==0) cout << "Fatti ;50000 ,eventi” << endl;

}

cout << "m: ;"7 << m << endl;
cout << 7"good events = "7 << geve << 7 umultihit =" << nmulth <<
fout—cd ();
sim—>Write () ;
fout—Write ();
fhisto—cd ();

TCanvas #cl = new TCanvas(”c¢l1”,”¢1”,100,0,800,1000);
cl—Divide (1,3);

cl—cd (1);

h2 t p_pl—>Draw(”colz”);

cl—=cd (2);

h2 t p mg—>Draw(”colz”);

cl—cd (3);

h2_t p_p2—>Draw(”colz”);

TCanvas #c2 = new TCanvas(”¢c2”,7¢2”,200,0,800,800);
c2—>Divide (2 ,2);

c2—cd (1);

h2 e p2 mg—>Draw(”colz”);
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c2—>cd (2);
h2_t_ p2 mg—>Draw(”colz”);

TCanvas *c3 = new TCanvas(”¢3”,7¢3” ,300,0,800,800);
c3—>Divide (2,2);

c3—>cd (1);

h2 e pl_p2-—>Draw(”colz”);

c3—>cd (2);

h2_t pl p2—>Draw(”"colz”);

TCanvas *c4 = new TCanvas(”c4”,7¢4” ,400,0,800,800);
c4d—>Divide (2,2);

cd—>cd (1);

h2 e pl mg—>Draw(”colz”);

cd—>cd (2);

h2 t pl mg—>Draw(”colz”);

TCanvas #cbh = new TCanvas(”chb”,”¢5”,500,0,800,800);
cb—>Divide (2 ,2);

ch—>cd (1);

h2 e t cm_1-—>Draw(”colz”);

cb—>cd (2);

h2 e t cm 2—>Draw(”colz”);

cb—>cd (3);

h2 _ecm_ps_1-—>Draw(”colz”);

ch—>cd (4);

h2 ecm_ps 2—>Draw(”colz”);

TCanvas *c6 = new TCanvas(”c¢6”,7¢6” ,600,0,800,800);
c6—>Divide (2,2);

c6—>cd (1);

h2 ecm_ps_ 1 _i—>Draw(”colz”);

c6—>cd (2);

h2 ecm_ ps 2 i—>Draw(”colz”);
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TCanvas *c7 = new TCanvas(”c¢7”,7¢7” ,700,0,800,800);
c7—>Divide (2,2);

c7—>cd (1);

hl ecm_1-—>Draw(”colz”);

c7—>cd (2);

hl_ecm_2—>Draw(”colz”);

c7—>cd (3);

hl ecm_ 1 i—>Draw(”colz”);

c7—>cd (4);

hl _ecm_2_i—>Draw(”colz”);

I

h2 t p pl—>Write (
h2_t p mg—>Write (
h2 t_p p2—>Write (
e
e

)

h2 e p2 mg—>Writ
h2 t p2 mg—>Writ
h2 e pl p2—>Write
h2 t pl p2—Write
h2 e pl mg—>Write
h2 t pl mg—>Write
h2 e t cm 1-—>Writ
h2 e t cm 2—>Write
h2 ecm ps 1-—>Write
h2 ecm_ps 2—>Write (
h2 ecm_ ps_ 1 i—>Write ();
h2 _ecm_ps_ 2 i—>Write ();
hl _ecm_1-—>Write ();

hl ecm_ 2—>Write ();

hl ecm 1 i—>Write ();
hl_ecm_ 2 i—>Write ();

I

)

)

)

)
)
);
()
()
()
()
();
()
e (
(
(

Y

I

)
)
)
)

Y

206



// theApp.Run();

207



