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Abstract 
Background: Differential diagnosis of dementia syndromes is difficult. Treatments are 

available for Alzheimer’s dementia (AD), but effects do not translate to other dementia 

syndromes. Therefore, early differential diagnosis is necessary to administer appropriate 

interventions and to boost drug development and research of therapeutic strategies that may 

lower patient and care-giver burden. The focus of the current study is to disentangle the clinical 

picture of frontotemporal dementia (FTD) from AD spectrum disorders. Findings could support 

an early, cheap, and more accurate diagnosis.  

Methods: K-means clustering, an unsupervised machine learning algorithm, was used on 

neuropsychological data from neurologic patients of the FTLD consortium databank. The 

analysis was performed twice, once including only neuropsychological test scores and a second 

time combining the neuropsychological variables with questionnaire scores assessing 

behavioral changes. In total n = 484 and n = 469 participants were included in the analysis with 

and without questionnaires, respectively. Participants included were either healthy controls 

with no family relation to patients in the dataset, or patients diagnosed with one of the following 

dementia disorders: AD, a behavioral variant of FTD (bvFTD), or one of three possible primary 

progressive aphasia (PPA) syndromes - a semantic variant (svPPA), a non-fluent variant 

(nfvPPA) or a logopenic variant (lvPPA). 

Results: Agreement of results from the various analyses performed was relatively high. 

Homogeneous clusters of diagnostic groups emerged. Homogeneity seemed higher for bvFTD 

and svPPA than for the other patient groups. NfvPPA and lvPPA patients were particularly 

likely to cluster together. Exploring neuropsychological patterns of cluster results demonstrated 

high variability between patients of the same diagnostic groups, which could partly be explained 

by differences in disease severity. Tests that might prove particularly relevant to distinguish 

diagnostic subgroups are the FTLD-CDR sub-scores, the repeat and point task as well as 

questionnaires assessing apathy.  

Conclusion: K-means clustering proved to be a useful technique to explore various diagnostic 

syndromes that show overlapping clinical pictures. This study helped to formulate specific 

hypotheses based on the observation of patterns in multidimensional data. Disease severity 

showed to impact k-means clustering results considerably and should therefore be accounted 

for in future studies. Future studies will need to test the formulated hypotheses and inspect the 

meaning of impure clusters.  

Keywords: k-means clustering, frontotemporal dementia, primary progressive aphasia, 

Alzheimer’s dementia, differential diagnosis, neuropsychological tests 
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1 Introduction 
Based on the WHO, dementia affects around 55 million people worldwide and with an 

aging population this number is predicted to double in the upcoming 30 years (Dementia, 2021).  

Dementia is a syndrome characterized by cognitive decline that can be very heterogeneous 

depending on the underlying cause, the most common being Alzheimer’s Disease (AD). 

Frontotemporal Dementia (FTD) is thought to be the second most common early-onset 

dementia after AD and the third most common dementia following AD and Lewy Body 

Dementia (Bang et al., 2015; Hogan et al., 2016) but exact estimates of its prevalence vary 

across studies (J. J. Young et al., 2018). Despite its clinical and pathological heterogeneity, it 

is now recognized to contain three main variants: behavioral variant FTD (bvFTD; in older 

studies sometimes referred to as FTD) and two primary progressive aphasias (PPA), semantic 

variant PPA (svPPA) and non-fluent variant PPA (nfvPPA) (for a review see e.g. Bang et al., 

2015; Olney et al., 2017). Related FTD syndromes include FTD with motor neuron disease, 

progressive supranuclear palsy (PSP) and corticobasal degeneration (CBS) (Elahi & Miller, 

2017).  

The first description of a patient with FTD was made by Arnold Pick in 1892 (Arnold 

Pick, 1892). The patient showed left anterior temporal atrophy and would today be considered 

for a diagnosis with svPPA (Olney et al., 2017). Mesulam in 1982 described two subtypes of a 

slowly progressive aphasia, a fluent and a non-fluent variant and sought to differentiate them 

from AD pathology. Later he grouped his observations under the term PPA (M. M. Mesulam, 

2001). The first clinical diagnostic criteria were established in 1994 (Neary et al., 1994) and 

lead to the formulation of consensus criteria in 1998 (Neary et al., 1998). The current diagnostic 

guidelines in place for bvFTD and the PPAs, were formulated by Rascovsky et al. (2011) and 

Gorno-Tempini et al. (2011), respectively. Both guidelines keep a similar structure allowing 

the clinician to diagnose according to the evidence at hand. Thus, a diagnosis can be expressed 

hierarchically, depending on certainty levels. In that way, for bvFTD based on observation of 

cognitive and behavioral symptoms alone a diagnosis of “possible bvFTD” may be given. 

Further converging evidence from neuroimaging allows for a diagnosis of “probable bvFTD”. 

Lastly, based on additional histopathologic or genetic evidence, a clinician can give the 

diagnosis of “bvFTD with definite pathology”. Similarly, a diagnosis of one of the PPA variants 

can be given as “clinical”, “imaging-supported” or, as diagnosis “with definite pathology”. This 

distinction is in accordance with the gold standard for diagnosis of specific dementia subtypes 

depending on pathology examined via autopsy postmortem (or rarely via biopsy) (Elahi & 

Miller, 2017). Alternatively, a definite diagnosis may be given based on genetic testing, as 
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known gene mutations associated with FTD pathology are thought to have complete penetrance 

(Lanata & Miller, 2016; Onyike & Diehl-Schmid, 2013).  

The neurodegenerative process underlying FTD is frontotemporal lobar degeneration 

(FTLD) and leads to neuronal dysfunction and later atrophy in frontal and anterior temporal 

lobes with heterogeneity across patients (Piguet et al., 2011). Histopathologically, 

neurodegeneration in most FTD cases can be attributed to intracellular tau, TDP-43 or FUS 

aggregates (Bürger et al., 2017; Elahi & Miller, 2017; van der Ende & van Swieten, 2021) but 

differs markedly also between FTD variants. BvFTD shows similar prevalence of tau and TDP 

aggregates, nfvPPA is associated mainly with tau and svPPA instead with TDP aggregates 

(Piguet et al., 2011). However, a significant proportion of nfvPPA patients has also shown AD 

pathology (Grossman, 2010). Several gene mutations have been associated to a FTD diagnosis 

later in life (for a review see Deleon & Miller, 2018). Family history of a FTD or other 

neurodegenerative disease is found in 20-50% of FTD patients (Deleon & Miller, 2018; Elahi 

& Miller, 2017; Rosso et al., 2003). Yet, most cases are thought to be sporadic with autosomal 

dominant heritability accounting for approximately 10% of cases with higher heritability of 

bvFTD and lower heritability of svPPA (Goldman et al., 2005).   

Generally, FTD is considered an early-onset dementia meaning that most commonly 

symptoms start before age 65 (Ratnavalli et al., 2002). Particularly bvFTD shows an early onset 

of the disease (Coyle-Gilchrist et al., 2016).  BvFTD is also the most common accounting for 

60% of FTD cases (Hogan et al., 2016; Johnson et al., 2005; Onyike & Diehl-Schmid, 2013).  

1.1 FTD and PPA Variants  
The syndromes associated with the three core variants of FTD are heterogeneous 

(Beeldman et al., 2018) and the clinical phenotype depends on type and location of underlying 

pathology. Initially, bvFTD is associated with behavioral and the PPAs with core language 

impairments. With increasing disease duration, the neurodegenerative process progresses to 

include more areas, deficits becoming less specific and often overlapping between FTD variants 

and with other neurodegenerative diseases, particularly with AD and logopenic variant PPA 

(lvPPA), considered an atypical AD variant (Bürger et al., 2017; Coyle-Gilchrist et al., 2016).  

1.1.1 BvFTD  

Core changes associated with bvFTD are related to behavior and personality involving 

most commonly apathy and disinhibition but also mental rigidity and loss of empathy (Bang et 

al., 2015; Rabinovici & Miller, 2010; Rascovsky et al., 2011; William W. Seeley et al., 2008). 

Disinhibition is observed as socially inappropriate such as aggressive or even criminal behavior. 

Apathy is associated to significant impairment in basic and instrumental activities of daily 
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living (Peet et al., 2021; Piguet et al., 2011). With progression of the disease, dietary changes, 

most commonly overeating, and decreased hygiene are observed (Bang et al., 2015). Missing 

insight, particularly prevalent in bvFTD puts the safety of individuals at risk (DeLozier & 

Davalos, 2016; Rabinovici & Miller, 2010). The described clinical picture of bvFTD makes 

clear why caregiver burden is high and increased also in comparison to AD (Ljubenkov & 

Boxer, 2021; Piguet et al., 2011; Riedijk et al., 2006). Uncertainty in diagnosis and prognosis 

of the disease may further add to the caregiver burden.  

Especially in the early stages of the disease neuropsychological assessments may not 

show any impairments (Devineni & Onyike, 2015; Rabinovici & Miller, 2010) and behavioral 

observations may be more informative than formal cognitive testing (Kertesz et al., 2003; 

Warren et al., 2013). Current diagnostic criteria do not require impaired cognitive functioning 

for a clinical diagnosis (Rascovsky et al., 2011). Instead, the neuropsychological profile 

described in the diagnostic criteria is a supportive but not necessary feature for diagnosis. In 

comparison to previous guidelines by Neary et al. (1998) current guidelines have been shown 

to be more sensitive especially to early stages of the disease. This is probably due to a greater 

flexibility in how criteria for a diagnosis can be fulfilled (Rascovsky et al., 2011; Rascovsky & 

Grossman, 2013), thus better reflecting the clinical heterogeneity of bvFTD.  

The neuropsychological profile including executive dysfunction in combination with 

relatively intact episodic memory and visuo-spatial skills has been criticized and calls for 

revision of these guidelines have been expressed (Michael Hornberger & Piguet, 2012; Piguet 

et al., 2011). Piguet et al. (2011) criticizes the focus on executive dysfunction for diagnosis as 

well as the expectation of relatively intact episodic memory function. Disturbances in executive 

function are indeed associated with (Deuschl et al., 2016; Kramer et al., 2003; Schroeter et al., 

2014; Walker et al., 2005) but not thought to be specific for bvFTD (Foran et al., 2021; 

Overbeek et al., 2020; Reul et al., 2017; Schroeter et al., 2018). Inconsistent findings are 

common. This could be due on the one hand to the inherent complexity of executive functioning 

involving a variety of cognitive processes. On the other hand specific tests for executive 

functioning may differ in sensitivity and ecological validity (Rascovsky & Grossman, 2013). 

In AD executive functions were found to be at least as impaired as in bvFTD (Foran et al., 2021; 

Reul et al., 2017). To accommodate for these findings executive functioning may be assessed 

combining different measures (Rascovsky & Grossman, 2013). Additionally, it has been 

suggested that the number of errors such as perseverations, intrusions or rule violations, could 

be more informative than the total scores on neuropsychological tests of executive function 

(Kamath et al., 2019; Kramer et al., 2003).  
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More recent literature has shifted from a focus of executive function deficits to the study 

of social and emotional functions in bvFTD for its delineation from other disorders. This may 

be performed using informant-based ratings or using newer formal testing (Kamath et al., 2019; 

Rankin, 2021). Indeed, a meta-analysis on the cognitive profile of bvFTD found the largest 

effect sizes for social cognition impairment (Beeldman et al., 2018). Additionally, one study 

found the Ekman 60 faces test to be the only one out of a group of tests assessing a variety of 

cognitive functions, able to differentiate bvFTD from both psychiatric and neurodegenerative 

patients (Gossink et al., 2018). Using the same test, another study found impairment in most of 

bvFTD patients, but difference with AD was insignificant (Reul et al., 2017). These contrasting 

findings may be the result of grouping very different neurodegenerative disorders in the first 

study. Using a modified version of the Reading the Mind in the Eyes Tests (RMET), thought 

to assess mentalizing ability, Schroeter et al. (2018) showed that social cognition tests may be 

more predictive of bvFTD than executive function tests and suggest inclusion of social 

cognition deficits in the diagnostic criteria of bvFTD. Additionally, this study showed the 

advantage of using informant-based ratings of patient’s behavior compared to 

neuropsychological testing in bvFTD. A review suggests usefulness of social cognition 

assessments to differentiate bvFTD from AD and the other FTLD variants (Rankin, 2021).  

In contrast to the neuropsychological profile described in the current guidelines for 

bvFTD diagnosis  claiming relatively spared memory function, pooled evidence presented in a 

review finds memory deficits in a significant proportion of patients (Michael Hornberger & 

Piguet, 2012). Compared to controls, one third to half of bvFTD patients may show impairment 

in memory function (Reul et al., 2017) and in some the extent of memory deficits may be 

comparable to the severity observed in AD patients (Ahmed et al., 2021; Graham, 2005; M. 

Hornberger et al., 2010). Memory deficits are usually secondary to other deficits such as 

behavioral changes or executive dysfunctions (Michael Hornberger & Piguet, 2012) and in most 

bvFTD patients they are less pervasive than in AD which could explain why it has been 

overlooked for a long time. Further, clinical heterogeneity and possible inclusion of non-

neurodegenerative cases (i.e. phenocopy) could be a reason for inconsistencies across studies 

(Michael Hornberger & Piguet, 2012).  

Two main hypotheses have been proposed to explain the memory dysfunctions in 

bvFTD. Some suggest that memory deficits may be the result of executive dysfunctions leading 

to retrieval problems. Accordingly, in a meta-analysis Kamath et al. (2019) finds impairment 

to be more pronounced for delayed than immediate recall and recognition tasks. Additionally, 

impairments in autobiographical memory seem to correlate with impairments in executive 
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function in bvFTD (Michael Hornberger & Piguet, 2012). In AD instead memory problems are 

thought to be hippocampal-dependent and more related to encoding rather than retrieval. The 

second hypothesis suggests an involvement of hippocampal pathology in bvFTD. This is 

supported by neuroimaging studies finding pathology to extend to hippocampal regions in some 

patients (Beeldman et al., 2018; Gordon et al., 2016; Reul et al., 2017). Both explanations are 

not mutually exclusive but may instead provide insight into the breadth of the clinical spectrum 

and underlying pathology. Concluding from the presented findings, episodic memory should 

not be used as an exclusion criterion for bvFTD diagnosis and might not be useful in a 

differential diagnosis with AD (Diehl et al., 2005; Michael Hornberger & Piguet, 2012).  

With progression of the disease language deficits may arise in bvFTD compared to 

healthy controls. Coyle-Gilchrist et al. (2016) for example found impaired language function in 

up to 70% of patients. Most consistently impairments are found on tests of semantic or 

phonologic fluency (Bürger et al., 2017; Sitek et al., 2015), which could be the result of 

neurodegenerative progression into language areas, or instead result from impaired executive 

functioning. Additionally, impaired naming has been reported (Bang et al., 2015; Kamath et al., 

2020). However, in general it is important to keep in mind that the usefulness of 

neuropsychological tests especially in early disease stages is limited and behavioral assessments 

such as informant-based questionnaires or newer developed performance tests may be more 

informative (Schroeter et al., 2018).  

BvFTD is sometimes referred to as frontal variant of FTD in accordance with the 

neurodegenerative process being most prominent in bilateral frontal and prefrontal regions 

extending to the anterior temporal regions (Gordon et al., 2016; Pan et al., 2012; Rabinovici & 

Miller, 2010; Rascovsky et al., 2011). Impaired functioning of the salience network (Moguilner 

et al., 2021) including frontal lobe, anterior cingulate cortex, insula, amygdala, medial thalamus 

and ventral striatum, has been found in bvFTD and was related to behavioral symptoms 

(Rankin, 2021) and clinical deficits in social cognition such as mentalizing and emotion 

recognition (Gordon et al., 2016). Pooling results from magnetic resonance imaging (MRI) and 

positron emission tomography (PET) studies, a meta-analysis on the three variants of FTD, 

suggests a triple dissociation in areas underlying the clinical syndromes. For bvFTD, seven 

clusters including frontomedian areas, thalamus, left superior frontal sulcus and right anterior 

insula showed significant changes (i.e. atrophy and hypometabolism) compared to controls 

(Schroeter et al., 2007). Similar results were found in a second, later meta-analysis (Schroeter 

et al., 2014). Drawing from functional neuroimaging studies in healthy controls, the authors 

state that impaired functioning in these areas might explain the pattern of symptoms observed 



EXPLORING FTD WITH K-MEANS CLUSTERING   13 
 

in bvFTD, namely changes in executive and social functioning, apathy, disinhibition, and a loss 

of empathy. Findings did not however support the involvement of areas related to mentalizing 

abilities (Schroeter et al., 2014). On the neural level, the neurodegenerative process in bvFTD 

may be particularly focused on von Economo neurons found in anterior cingulate, insular and 

orbitofrontal regions (William W. Seeley et al., 2008). Interestingly, these neurons were 

previously related to social cognition, lending further support to the conception of bvFTD 

symptoms relating to behavioral and socioemotional changes (E.-J. Kim et al., 2012; William 

W. Seeley et al., 2006).   

1.1.2 PPA  

The PPAs  are characterized by main changes in language function (Deuschl et al., 2016; 

Elahi & Miller, 2017; Neary et al., 1998). A diagnosis of PPA requires language difficulties to 

be progressive over time and changes in language function to be the most prominent cause for 

impairments in activities of daily living (Gorno-Tempini et al., 2011). After a generic diagnosis 

of PPA, further evidence may support a specification as one of three possible variants of PPA: 

nfvPPA and svPPA pertaining to the FTD spectrum or lvPPA considered as atypical form of 

AD (M.-M. Mesulam et al., 2021). Some patients may not be easily classified in one of the 

three variants (Gil-Navarro et al., 2013; Grossman, 2010; Harris et al., 2013; Leyton et al., 

2014; Utianski et al., 2019) and literature has suggested existence of more variants and mixed 

pathology (M. M. Mesulam, 2001).  

1.1.2.1 NfvPPA.  Core symptoms of nfvPPA are effortful speech or agrammatism with 

some patients showing or with progression developing both deficits (Gil-Navarro et al., 2013; 

Leyton et al., 2014). Characteristic speech apraxia leads to slowed speech production rate and 

omission of words is described as telegraphic style. Apraxia may extend also to other, non-

speech movements of mouth and face in some patients (Marshall et al., 2018). With progression, 

patients may develop complete mutism (Grossman, 2010). Compared to bvFTD, svPPA and 

AD, patients with nfvPPA are only rarely affected by loss of insight (DeLozier & Davalos, 

2016) and thus suffer from their difficulties, commonly resulting in frustration (Marshall et al., 

2018) and mild depression (Sitek et al., 2015). Over time, decreased motivation and apathy may 

emerge (Grossman, 2010). 

The most useful neuropsychological tests involve reading and repetition tasks as well as 

confrontation naming. Phonologic or articulatory errors, omissions and simplifications are 

commonly observed and are more pronounced with increasing stimulus complexity and length 

(Macoir et al., 2021). For the assessment of grammar, spontaneous speech or picture description 

tasks may be useful (Gorno-Tempini et al., 2011; M. Henry & Grasso, 2018). While in early 
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stages of the syndrome, patients may rely on preserved written abilities, dysgraphia commonly 

develops over time (Bürger et al., 2017; Marshall et al., 2018). Comprehension and semantic 

knowledge are usually spared.  

Neuroimaging findings suggest primary degeneration in left fronto-insular and temporal 

areas including inferior frontal and superior temporal gyrus (Dave et al., 2020; Gordon et al., 

2016; Gorno-Tempini et al., 2011; Ruksenaite et al., 2021). A meta-analysis found all abnormal 

clusters from MRI and PET imaging compared to controls to be located in the left hemisphere 

(Schroeter et al., 2007). Degeneration in this peri-sylvian network may be visible on  structural 

neuroimaging as enlargement of the left Sylvian fissure (Grossman, 2010; Marshall et al., 

2018). An impaired link between language and motor networks may disturb generation of motor 

output and explain the symptoms observed (Ruksenaite et al., 2021; William W. Seeley et al., 

2009). With progression, neurodegeneration spreads to more anterior and pre-frontal regions as 

well as to parietal regions including the basal ganglia (Gordon et al., 2016; Schroeter et al., 

2007). 

1.1.2.2 SvPPA.  In svPPA loss of semantic knowledge results in core problems in 

confrontation naming (i.e. anomia) and word comprehension (Gil-Navarro et al., 2013; Gorno-

Tempini et al., 2011; Kramer et al., 2003; M. M. Mesulam, 2001). Deficits are more pronounced 

for less common words (M. Henry & Grasso, 2018). Speech is fluid but becomes progressively 

empty in content, reducing to platitudes. During reading, patients may make regularization 

errors in pronunciation due to loss of associated meaning (Macoir et al., 2021). With disease 

progression, loss of semantic knowledge extends to non-verbal domains and may develop to 

object agnosia and prosopagnosia (Bang et al., 2015; Rabinovici & Miller, 2010; Ruksenaite et 

al., 2021). Prosopagnosia may be particularly common in a right-hemisphere dominant variant 

of svPPA (Sitek et al., 2015). Non-language and behavioral symptoms of svPPA may be similar 

to those observed in bvFTD (Rabinovici & Miller, 2010; Ruksenaite et al., 2021) and insight 

may be reduced (DeLozier & Davalos, 2016).  

Neurodegeneration in svPPA usually develops in one hemisphere, most commonly the 

dominant one, and spreads to the contralateral one over time. SvPPA is also referred to as 

temporal variant with pathology most pronounced in anterior temporal regions including rhinal, 

hippocampal and temporal pole regions that are part of the semantic network (Gordon et al., 

2016; Ruksenaite et al., 2021). Involvement of the amygdala and subcallosal area may explain 

deficits in socioemotional processing (Schroeter et al., 2007). Over time, degeneration 

progresses to more anterior and posterior regions and to the contralateral hemisphere.  

1.1.2.3 LvPPA.  Diagnostic criteria for lvPPA require deficits in word retrieval during 
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spontaneous speech and impaired sentence repetition (Gorno-Tempini et al., 2011). Disturbed 

phonemic processing influences speech production. This is reflected in phonological errors in 

both spontaneous speech and structured tasks of repetition or naming. Difficulties in repetition 

may be intensified by phonological short-term memory deficits, with greater impairments for 

longer sentences (Gil-Navarro et al., 2013). Phonological dyslexia and dysgraphia are present 

for both words and nonwords (M. Henry & Grasso, 2018; Macoir et al., 2021). Generally, 

comprehension and semantic knowledge are spared but impaired phonemic processing may 

impede parsing of speech sounds into meaning leading to deficits in understanding degraded 

speech (Ruksenaite et al., 2021).  

Originally only two variants of PPA were recognized: semantic and non-fluent variants 

referred to as semantic dementia and progressive non-fluent aphasia, respectively (Mesulam, 

2001). LvPPA is clinically most similar to nfvPPA but differs in underlying pathology. While 

nfvPPA is most associated with tau-aggregates, lvPPA shows AD pathology, i.e. tau and 

amyloid deposition (Deuschl et al., 2016). PET scans to detect amyloid pathology are usually 

positive and analysis of cerebrospinal fluid (CSF) shows heightened tau and reduced amyloid 

levels (Grossman, 2010; Henry & Gorno-Tempini, 2010). Neurodegeneration in lvPPA shows 

a more posterior profile with involvement of the parietal lobes. This is in accordance with major 

language deficits and other non-verbal deficits observed such as limb apraxia and dyscalculia 

(M. L. Henry & Gorno-Tempini, 2010). A key area affected by lvPPA pathology may be the 

temporo-parietal junction (TPJ) (Leyton et al., 2014; Rohrer et al., 2013) involved in auditory 

phonemic transformations and phonological short-term memory (Gil-Navarro et al., 2013). 

Over time, pathology spreads to the contralateral side but rate of atrophy remains higher for the 

left hemisphere compared to the right one, intensifying asymmetry with progression (Rohrer et 

al., 2013).  

1.2 Distinction of the Three PPA Variants with Neuropsychological Assessments 
In contrast to bvFTD, in PPA cognitive abnormalities usually predominate over 

behavioral ones facilitating a clinical diagnosis using common neuropsychological tests 

(Devineni & Onyike, 2015). The primary deficit being language, the use of various language 

assessments is well established and required for differentiation of the three syndromes. 

Especially the assessment of confrontation naming, using for example the Boston naming test, 

may be useful in differentiating svPPA from the other two variants although anomia is common 

in all PPA variants (Gil-Navarro et al., 2013). A combination of a lexical-semantic and a 

syntactical test may further differentiate the three variants with nfvPPA showing primary 

impairment in the test of syntax in accordance with agrammatism and svPPA showing impaired 
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lexical-semantic processing. Performance in patients with lvPPA was relatively spared in both 

tasks (M. Mesulam et al., 2009). A repeat and point task showed particularly informative for 

the distinction of svPPA and the two other variants (Seckin et al., 2022). Based solely on clinical 

features, the distinction between nfvPPA and lvPPA may be the most challenging of the three 

(Leyton et al., 2014).   

Although, not the primary deficit, memory is commonly impaired in the PPAs. 

Interestingly, findings of memory dysfunction were already observed in part of the earliest cases 

described by Pick (A. Pick, 1901, 1904; Arnold Pick, 1892) and a systematic 

clinicopathological study by Constantinidis et al. (1974 as cited in Michael Hornberger & 

Piguet, 2012) found a majority of patients with Pick’s disease to present with memory deficits. 

Those patients showed atrophy in the medial temporal lobe including the hippocampus and a 

significant correlation between extent of atrophy and clinical impairment. Another group 

showed more prefrontal atrophy which was related to memory deficits particularly in the correct 

ordering of past events. Further, behavioral deficits similar to those observed in bvFTD may 

arise, most commonly in svPPA but also in the other variants (Bang et al., 2015; Coyle-Gilchrist 

et al., 2016). Thus, although main deficits are language-related, the syndromes are not restricted 

to language symptoms but instead encompass a variety of symptoms and current diagnostic 

criteria may not capture their diversity (Ruksenaite et al., 2021).  

1.3 Correct Diagnosis is Difficult 
Several factors make correct and early diagnosis of FTD and its variants complicated 

and years may pass by until correct diagnosis is reached (Beber & Chaves, 2013; Coyle-

Gilchrist et al., 2016; van Vliet et al., 2013). Neurodegenerative dementia syndromes are 

characterized by an insidious onset, making changes hard to recognize for close others (Convery 

et al., 2019; Warren et al., 2013). Additionally, early onset dementias may pose a particular 

diagnostic challenge due to their heterogeneity, scarcity and low familiarity in the society 

(Devineni & Onyike, 2015; Rossor et al., 2010).  

FTD syndromes and even more so PPA variants are relatively rare (Hogan et al., 2016; 

Ratnavalli et al., 2002) leading several authors to suggest possible underdiagnosis (Bertoux et 

al., 2012; Knopman & Roberts, 2011; Marshall et al., 2018; Rascovsky et al., 2011; J. J. Young 

et al., 2018). However, a risk for high number of false positive diagnoses has also been reported 

for bvFTD (Shinagawa et al., 2014) and the doubt for possible overdiagnosis of PPA in recent 

years has been expressed (M.-M. Mesulam et al., 2021). While late diagnosis may prevent 

patients from receiving early treatment or therapeutical intervention, false positive diagnoses 

cause harm to the individual and their surrounding and need to be avoided (van Vliet et al., 
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2013).  

The PPA variants compared to bvFTD may be easier to diagnose as deficits are primarily 

cognitive rather than behavioral (Devineni & Onyike, 2015). However, significant 

heterogeneity within each FTD variant (Beber & Chaves, 2013; Beeldman et al., 2018; Gordon 

et al., 2016; Harris et al., 2013; Piguet et al., 2011; A. L. Young et al., 2018) and considerable 

overlap between variants (e.g. Bang et al., 2015) complicate correct differentiation. In part 

responsible for the heterogeneity could be the rarity of studies with pathologically confirmed 

cases (e.g. Foran et al., 2021; Muñoz-Neira et al., 2019; van’t Hooft et al., 2021) making patient 

groups less homogeneous and possibly contaminated with misdiagnoses of other 

neurodegenerative or non-neurodegenerative diseases (M. Hornberger et al., 2010; Valente et 

al., 2019). With progressive neurodegeneration greater overlap in the clinical pictures of 

different syndromes is observed which further complicates accurate differentiation (Dave et al., 

2020; H. J. Rosen et al., 2000).  

Within FTD syndromes, overlap between svPPA and bvFTD is particularly prominent 

(Coyle-Gilchrist et al., 2016; Kamath et al., 2019). Specifically, right-sided dominant svPPA 

has been associated with behavioral symptoms typical of bvFTD (Marshall et al., 2018; W. W. 

Seeley et al., 2005). Additionally, existing diagnoses may not be sufficient to explain pathologic 

and clinical characteristics observed in all patients. This may be particularly true for the PPAs 

(Grossman, 2010; Kamath et al., 2020). Instead, mixed pathologies and comorbidities make a 

clear delineation between disorders difficult (M.-M. Mesulam et al., 2021; W. W. Seeley et al., 

2005). Newer suggestions include the description of individuals on a multidimensional 

spectrum rather than within a specified diagnostic category. This has been proposed for FTD 

syndromes (Murley et al., 2020) and for PPA variants (Ingram et al., 2020) and may have 

benefits for therapeutical interventions (Ingram et al., 2020; Murley et al., 2020).  

The most common misdiagnosis of FTD syndromes is AD or an atypical AD variant 

such as lvPPA (Ahmed et al., 2021; Beber & Chaves, 2013; Bürger et al., 2017; Seo et al., 

2018). Risk for misdiagnosis is particularly high for late-onset FTD while early onset AD may 

be at risk for misdiagnosis as FTD. Thus, although the separation of early and late onset 

dementia relies on an arbitrary cut-off at 65 years (Devineni & Onyike, 2015; Rossor et al., 

2010), the recognition of bvFTD and AD as early and late-onset dementias respectively may 

influence diagnostic tendencies. Additionally early onset AD may more commonly show 

atypical, non-amnestic symptoms including executive and language deficits (Tellechea et al., 

2018) and personality changes (Josh D. Woolley et al., 2011). The challenge of accurate 

differential diagnosis is that finding significant group differences is not sufficient. Instead, large 
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effect sizes and low percent overlap are required for a test to be sensitive and specific for one 

diagnosis over another (Hutchinson & Mathias, 2007). In a meta-analytic study by Hutchinson 

& Mathias (2007) all cognitive measures that showed a significant difference between AD and 

FTD groups, showed overlap ranging from 32-48%. Overlap in cognitive deficits with AD was 

also reported separately for the PPAs (Kramer et al., 2003; Lecerf et al., 2020) and for bvFTD 

(Baborie et al., 2012; Buhl et al., 2013; Musa et al., 2020; Peet et al., 2021; Reul et al., 2017; 

Walker et al., 2005). Additionally, nfvPPA and lvPPA are at a particularly high risk of being 

confounded due to similarity in clinical phenotypes (Bürger et al., 2017; M.-M. Mesulam et al., 

2021).  

Overlap has also been reported for pathology underlying the different syndromes. 

Rabinovici & Miller (2010) state that 10-30% of patients with an FTD diagnosis may show AD 

pathology at autopsy. With increasing age the presence of AD pathology alongside FTD 

pathology becomes more likely and patients with amyloid-positive PET scans were found in all 

three FTD variants (Gordon et al., 2016). Additionally, amyloid-negative lvPPA patients were 

reported and have been linked to the presence of TDP-43 aggregates typical of FTLD pathology 

(Matias-Guiu et al., 2019).  

1.4 Misdiagnosis With Primary Psychiatric Disorders is Common 
A considerable proportion of patients with neurodegenerative diseases is first diagnosed 

with a primary psychiatric disorder. This is particularly true for FTD (Josh D. Woolley et al., 

2011) and has the adverse effect of delaying duration until correct diagnosis is reached (Rosness 

et al., 2008). Differential diagnosis is difficult due to patients commonly showing psychiatric 

symptoms. In fact, psychiatric symptoms are now considered a hallmark of dementia (Collins 

et al., 2020; Desmarais et al., 2020; Gambogi et al., 2019; Mulder-Heijstra et al., 2021). In a 

systematic review on the prevalence of apathy, depression and anxiety, Collins et al. (2020) 

found apathy to be most common in bvFTD in accordance with diagnostic criteria (Rascovsky 

et al., 2011). Instead, more than 70% of patients with lvPPA and svPPA showed anxiety and 

depression, respectively. Prevalence of psychiatric symptoms in nfvPPA was more variable but 

up to half of the patients showed depression.  

People with primary psychiatric disorders on their side are not preserved from cognitive 

changes (Overbeek et al., 2020). Generally, cognitive deficits are greater in dementia 

syndromes than in primary psychiatric disorders (Gambogi et al., 2019). However, during mood 

episodes patients with bipolar disorder showed greater deficits compared to patients with 

bvFTD (Simjanoski et al., 2021). Bipolar disorder, schizoaffective disorder and schizophrenia 

have all been related to impaired verbal memory, verbal fluency and executive function of 
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different severities (Baez et al., 2019; Ducharme et al., 2020; Gambogi et al., 2019).  

A complex relationship between dementias and primary psychiatric disorders has been 

reported in the literature (Desmarais et al., 2020) with an increased risk for dementia following 

a diagnosis of psychiatric diseases. For example patients with bipolar disorder showed an 

increased risk for a dementia syndrome later in life (Roman Meller et al., 2021; Simjanoski et 

al., 2021), a specific link was found for depression and FTD (Kuring et al., 2018) and patients 

with PTSD were associated with a greater prevalence of svPPA (Bonanni et al., 2018). One 

hypothesis for the observed relationship suggests that psychiatric diseases may pose an 

endogenous or reactive risk for the development of a dementia by producing changes in 

inflammatory processes or lifestyle, respectively (Gambogi et al., 2019; Kuring et al., 2018). 

Another hypothesis suggests that psychiatric symptoms may represent a prodromal stage of a 

neurodegenerative disease (Caixeta & Caixeta, 2011; Roman Meller et al., 2021; Josh D. 

Woolley et al., 2011). Further, some authors have hypothesized that cognitive decline, similar 

to the known dementias, may represent a late stage of psychiatric disorders (Gambogi et al., 

2019). Possibly, psychiatric disorders may thus be associated with disorder-specific dementia 

syndromes. These hypotheses are not mutually exclusive (Josh D. Woolley et al., 2011). One 

reason for the complex interplay between FTD syndromes and psychiatric disorders, could be 

common genetic risk factors involved in both as was reported for example for psychotic and 

bipolar syndromes (for bvFTD: Ducharme et al., 2020; Lanata & Miller, 2016; for FTD: Roman 

Meller et al., 2021).  

Symptomatic overlap with primary psychiatric disorders is particularly prominent in 

bvFTD (Peet et al., 2021). In the early stages of bvFTD patients may not show cognitive 

symptoms and neuropsychiatric symptoms such as apathy, disinhibition and compulsions are 

not just common (Ducharme et al., 2020) but also part of the diagnostic criteria for bvFTD 

(Rascovsky et al., 2011). In combination with a younger age of symptom onset these behavioral 

changes make a referral to a psychiatrist rather than a neurologist common (Lanata & Miller, 

2016). BvFTD being a relatively rare disease compared to psychiatric disorders, symptoms of 

bvFTD may then be misinterpreted as pertaining to a psychiatric disorder, most commonly 

major depressive disorder, bipolar disorder or schizophrenia (Gambogi et al., 2019; Lanata & 

Miller, 2016; Josh D. Woolley et al., 2011; Joshua D. Woolley et al., 2007). In a retrospective 

study by Josh D. Woolley et al. (2011) for example, half of the patients with a diagnosis of 

bvFTD had first received a psychiatric diagnosis. Further, bvFTD patients with a specific gene 

mutation (C9orf72 gene expansion) are reported to show high prevalence of psychotic 

symptoms and are at risk of being misdiagnosed with schizophrenia (Lanata & Miller, 2016).  
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Psychiatric symptoms are common also in PPAs  and were already noted in the case 

report by Mesulam (1982). Misdiagnosis with a primary psychiatric disorder may be especially 

prevalent in (right-sided dominant) svPPA (W. W. Seeley et al., 2005). Single cases have been 

reported that may suggest that PPA has a prodromal stage of psychiatric symptoms (Caixeta & 

Caixeta, 2011). However, psychiatric symptoms in PPAs are more common with progression 

rather than at onset of the disease and most studies therefore focus on the emergence of 

psychiatric symptoms following diagnosis of PPA (Mulder-Heijstra et al., 2021).  

Studies investigating the overlap between psychiatric disorders and FTD are difficult 

and often rely on small cohorts (Modirrousta et al., 2013). Further consortium studies may be 

necessary to elucidate their link and facilitate clear diagnosis and appropriate treatment. A 

differential diagnosis may be helped by longitudinal observation with a progressive decline in 

cognitive function suggesting a neurodegenerative disease. The analysis of neurofilament light 

chain (NfL) levels in blood serum or CSF shows promising differentiation between FTD and 

primary psychiatric disorders (Ducharme et al., 2020; Vijverberg et al., 2017). A battery of 

social and emotional cognition assessments was suggested to perform well in differentiating 

bvFTD from major depressive disorder (Bertoux et al., 2012). Another study found use of 

verbal function tests, particularly those including semantic components, to be helpful for 

differentiation of bvFTD with primary psychiatric disorders (Overbeek et al., 2020).  

1.5 Combining Multimodal Evidence 
Differential diagnosis may be aided with the use of neuroimaging techniques, the 

analysis of biofluids and genetic testing in cases of known family history. Multimodality may 

be key for an accurate diagnosis. In clinical practice the use of neuropsychological assessments, 

patient- and informant-based history taking in combination with volumetric MRI are most 

common to diagnose a patient with FTD (Dev et al., 2021; Piguet et al., 2011). The diagnostic 

criteria include evidence from volumetric imaging, acquired by MRI or computed tomography 

(CT), or functional imaging, by PET or single-photon emission CT (SPECT) for higher 

confidence in the diagnosis (Gorno-Tempini et al., 2011; Rascovsky et al., 2011).  

1.5.1 Neuroimaging  

Neuroimaging may aid to exclude non-neurodegenerative causes of dementia (Warren 

et al., 2013) or differentiate FTD from other neurodegenerative syndromes, most commonly 

forms of AD. Compared to MRI, the use of PET may aid earlier diagnosis as metabolic changes 

may closely correspond to but have the advantage of preceding atrophy (Schroeter et al., 2007; 

Yeo et al., 2013). Specifically, the use of FDG-PET has shown good discriminability between 

FTD and AD (Dev et al., 2021; Foster et al., 2007) and might be particularly informative in 
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bvFTD as neuropsychological assessments may be of limited help (Guillén et al., 2020). In the 

search of “metabolic signatures” associated with different dementia syndromes, Dave et al. 

(2020) also finds large overlap between syndromes complicating their delineation. If ambiguity 

persists between a diagnosis of AD and FTD syndromes, amyloid PET scans may help shed a 

light on the underlying pathology. As seen previously, this is of particular interest for 

differentiating bvFTD from AD and nfvPPA from lvPPA due to the difficulty of distinguishing 

them clinically (Gordon et al., 2016). Newer developments in research also highlight the 

potential use of tau-PET (Hall et al., 2017) but its clinical utility still needs to be shown 

(Ruksenaite et al., 2021). Electroencephalography (EEG), a cheap imaging technique that could 

be easily applicable in clinics, has so far not proven useful for FTD (Livinț Popa et al., 2021; 

Micanovic & Pal, 2014). Other research has investigated the added value of diffusion tensor 

imaging (DTI). This may be interesting for early diagnosis as white matter changes are thought 

to precede grey matter changes (Gordon et al., 2016). To sum up, it is important to keep in mind 

the clinical context of these applications. While use of FDG-PET in clinics is increasing, it is 

not the primary imaging method also due to costs and invasiveness. More sophisticated methods 

such as (resting state) functional MRI, arterial spin labelling and DTI remain completely 

reserved to the use in the research setting (Dev et al., 2021; Elahi & Miller, 2017; Vernooij et 

al., 2019).  

1.5.2 Fluid Biomarker 

For AD the analysis of CSF to determine amyloid-beta, phosphorylated-tau and total tau 

levels is an established biomarker predictive of the disease (Deuschl et al., 2016). Its use for 

differential diagnosis of FTD and AD however may be limited as it cannot confirm or rule out 

FTD and amyloid pathology is also involved in healthy aging. So far, no FTD-specific fluid-

biomarker exists in clinical practice (Denk et al., 2018; van der Ende & van Swieten, 2021). 

One promising candidate is NfL, that may be detected in the CSF or, less invasively in the blood 

and shows possible use for differentiation of FTD from primary psychiatric and other 

neurodegenerative diseases (Bridel et al., 2019; van der Ende & van Swieten, 2021). One study 

suggests that serum NfL levels could indicate disease intensity, meaning that it is associated 

with faster disease progression and correlates significantly with rate of frontal lobe atrophy 

(Rohrer et al., 2016). In two studies Steinacker et al. (2017, 2018) investigates the use of serum 

NfL as a marker of disease progression in the PPA variants and bvFTD, respectively. In bvFTD, 

NfL serum concentrations correlated significantly with brain atrophy and functional 

impairment, as assessed by the clinical dementia rating scale (CDR), FTLD-CDR and mini-

mental state examination (MMSE). Similar results were found for the PPAs but correlation with 
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functional impairment were limited to the CDR only. However, serum NfL concentrations were 

able to distinguish lvPPA from nfvPPA and svPPA with a similar performance as other CSF 

marker.  

Despite the difficulties faced in the diagnosis of dementia syndromes it is important to 

keep in mind the importance of continuing to search for more accurate criteria and possible 

biomarkers. An early and accurate diagnosis is crucial for appropriate and early interventions 

to the patient and caregivers (Romero & Wenz, 2002), powers clinical trials and allows for 

prediction about disease progression (Gordon et al., 2016; M. L. Henry & Gorno-Tempini, 

2010). So far, no disease-modifying treatment is available for FTD. Pharmacological treatments 

aimed at reducing cognitive and behavioral symptoms are only rarely tested specifically for 

FTD and instead may be based on evidence from other diseases such as AD. Positive effects 

from drugs observed in AD may however not be reflected when used by FTD patients and in 

some cases even worsen the course of FTD (J. J. Young et al., 2018). A review on available 

pharmaceutical treatments, development of new treatments as well as the hurdles in the research 

of treatments for FTD highlights the potential of targeting tau pathology (Panza et al., 2020).  

To summarize, no in vivo gold standard for the (differential) diagnosis of FTD exists. 

Diverse techniques, neuropsychological tests or interviews, structural or functional 

neuroimaging as well as the analysis of biofluids can inform clinical decisions. No single 

method outperforms the others while the use of multiple and sophisticated methods may not be 

feasible in clinical practice due to time and cost constraints but also due to invasiveness. 

Considering patient history, symptomatology and, if available, informant reports, a specific 

clinical question may be formulated that may help deciding which technique could be most 

appropriate. Combining the evidence from multiple modalities is necessary to ensure a 

sufficiently confident diagnosis but clinical feasibility forces research to find time- and cost-

efficient answers. One large potential comes from the use of machine learning (ML) techniques 

allowing for computer-aided diagnoses or prognoses. Especially, in the case of FTD, where 

heterogeneity between cases of the same syndrome and overlap with other disorders is a big 

problem, ML could aid in finding patterns within data rather than looking for single predictive 

tests.  

1.6 Applications of ML for Medical Questions 
ML, one of the major branches of artificial intelligence, is concerned with learning 

specific patterns in data with a major goal of making predictions on unseen data (Kononenko, 

2001; Shailaja et al., 2018; Wiens & Shenoy, 2018). Being inherently multivariate, ML tries to 

find complex relationships between many, sometimes hundred or thousand covariates (Wiens 
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& Shenoy, 2018). Ideally, by describing the data or allowing for accurate predictions, it 

uncovers new relationships and knowledge (Yanase & Triantaphyllou, 2019). Common 

problems investigated include computer vision and language processing in written or spoken 

form (Qayyum et al., 2021; Wiens & Shenoy, 2018). Possible applications of ML are diverse 

and include the financing and security sector but also the healthcare sector (Shailaja et al., 

2018).  

Most interesting for the current study are the applications of ML on the lowest level of 

the healthcare sector, that is supporting healthcare providers, usually doctors, in diagnostic and 

treatment decisions (Shahid et al., 2019). The tasks in which ML can support clinicians, include 

prognosis, diagnosis, treatment and in the clinical workflow (Qayyum et al., 2021). For 

example, prognosis includes predictions on whether a patient is at risk for a specific disorder or 

disease (Callahan & Shah, 2017; Deo, 2015; Koutsouleris et al., 2009). Such screening may 

allow for prevention and earlier treatment (Wiens & Shenoy, 2018).  

ML techniques can be categorized in supervised, unsupervised, semi-supervised and 

reinforcement learning methods with the first two being most common for applications in brain 

disorders. Common supervised learning algorithms applied to clinical problems include 

decision trees, support vector machines (SVM) and artificial neural networks (Christodoulou et 

al., 2019). They are trained on labelled data, whether the label is a group or a continuous score 

(Qayyum et al., 2021). Thus, in supervised learning the outcome to be predicted is known 

(Callahan & Shah, 2017; Deo, 2015; Shailaja et al., 2018). Instead in unsupervised learning, 

the data does not contain labels that need to be matched by predictions but algorithms group 

data by similarity defined by a specific criterion. Common unsupervised learning techniques 

are clustering methods (e.g., hierarchical clustering or k-means clustering) or dimensionality 

reduction techniques such as principal component analysis. Unsupervised learning studies are 

used to detect outliers or subgroups (Bhardwaj et al., 2017; Qayyum et al., 2021). It is a way to 

investigate disease heterogeneity using a data-driven approach (Habes et al., 2020) and 

compared to supervised learning models they are less hypothesis-driven as they do not assume 

specific classes in the data (Feczko et al., 2019).  

1.6.1 Advantages of ML Applications in Healthcare 

With the emergence of electronic health records and continuous data acquisition via 

wearable devices, medical research has access to large amounts of data from various modalities 

(Callahan & Shah, 2017; Qayyum et al., 2021). Further, an increasing number of consortia and 

multi-centric studies allows for acquisition of data from larger cohorts and often over a long 

term (e.g., Lei et al., 2019; Otto et al., 2011; Postema et al., 2019). This offers new possibilities 
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especially for the investigation of rare conditions in which sample sizes for classic case-control 

studies are rather small. However, despite the great advantage of increasing data-availability, 

this data may be unstructured (Bhardwaj et al., 2017) and noisy (Kononenko, 2001) and with 

its high dimensionality not suitable for classic statistical analysis. Exemplifying this, the 

analysis of neuroimaging data is often performed by voxel-wise comparison using voxel-based 

morphometry (VBM) which assumes independence of voxels (Khvostikov et al., 2018). 

Instead, most brain disorders are thought to be network-level disorders. With its multivariate 

approach, ML techniques can handle large, complex data sets and provide new solutions for the 

analysis of such data to understand the heterogeneity underlying many disorders (Koutsouleris 

et al., 2009; Orrù et al., 2012; Yanase & Triantaphyllou, 2019). Additionally, algorithms can 

be continuously updated when new data is acquired (Bhardwaj et al., 2017). 

Medical decisions are made on the level of the individual. Group-level statistics may 

not be appropriate for such decisions. A study by Scarpazza et al. (2013) demonstrates that 

comparing single patients to a control group is not appropriate as it is prone to false positives 

due to individual heterogeneity, even when strict criteria are applied. Such studies assume the 

single case to represent a “typical” patient which is rarely true. Instead, ML techniques make 

predictions on the level of the individual (Lei et al., 2019; Orrù et al., 2012) and may offer new 

opportunities towards the goal of a patient-centered medical care (Bhardwaj et al., 2017; Deo, 

2015; Shahid et al., 2019). This in turn may allow for earlier and better treatment as well as for 

the development of new treatments targeting specific subgroups of patients (Deo, 2015). 

Further advantages of ML applications are reduced costs and diffusion of expert 

knowledge. Reduced costs are ensured by more efficient administration of time and resources 

(Shailaja et al., 2018). This could be especially useful for low- and middle-income countries 

(Musa et al., 2020). Diffusion of expertise can be enacted by allowing the use of these expert 

systems to health care professionals that may be less trained or less aware of possible 

differential diagnoses and treatment options. Additionally, they may help in working conditions 

in which fatigue, stress and distraction may otherwise lead to error prone decisions by health 

professionals (Yanase & Triantaphyllou, 2019). However, it is necessary to stress that these 

decision-support systems should never be used blindly. The goal of clinical ML applications is 

to support decisions rather than to  establish full automation (Deo, 2015; Qayyum et al., 2021; 

Topol, 2019; Yanase & Triantaphyllou, 2019). An increasing reliance on ML comes with 

increasing risks for security (Qayyum et al., 2021) and ethical problems, such as whom to be 

held accountable in the case of a mistake (Grote & Berens, 2020; Vayena et al., 2018) and 

possible biases with algorithms performing better for some societal groups than others (I. Y. 
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Chen et al., 2021). To avoid these concerns, it is important that clinical experts are involved in 

the development of decision-support systems and that decisions made are maximally 

transparent meaning that the reasons underlying predictions can be retraced (Ahmad et al., 

2018; Kononenko, 2001; Wiens & Shenoy, 2018). This so called explainability may generally 

decrease with increasing model complexity and is one reason for simple models to be favored.  

1.6.2 Points of Caution 

While one strength of ML models is that they are able to find complex relationships 

between great number of variables, maximizing simplicity of the models is a main goal (Deo, 

2015; Kononenko, 2001). Additional to ensuring explainability, simplicity also reduces the time 

and costs needed for acquisition of the data. Some types of data such as genetic, functional 

imaging or pathologic data may be used in research but are not readily available in the clinical 

field due to costs, limited time or invasiveness (Dev et al., 2021). Thus, a trade-off between 

precision and simplicity exists to ensure usefulness in practice. To be suitable for clinical 

applications a decision-support system needs to offer added value for diagnostic precision, 

exceeding current diagnostic accuracies, while at the same time maximizing simplicity. This 

may be helped by feature selection finding the best subset of variables (Deo, 2015; Yanase & 

Triantaphyllou, 2019) and regularization algorithms which penalize more complex models (P.-

H. C. Chen et al., 2019; Wiens & Shenoy, 2018).  

One problem that may be faced when establishing decision support-systems using 

supervised learning techniques, is that the quality of their predictions is highly dependent on 

label quality (P.-H. C. Chen et al., 2019; Qayyum et al., 2021; Wiens & Shenoy, 2018). Taking 

the example of FTD, in which accurate diagnosis is difficult, there may be uncertainty in the 

diagnoses of patients within a dataset. Predictions made by a ML algorithm trained on this 

dataset can then be only as good as the diagnostic labels in the dataset it trained on.  

1.6.3 Use of ML Techniques for Research About FTD   

The last decade has seen a great interest in the application of ML techniques for FTD 

patient cohorts. Most commonly these studies use supervised learning algorithms such as SVM 

(e.g., Bron et al., 2014; Kloppel et al., 2008; Meyer et al., 2017). Some studies use a variety of 

ML algorithms to compare their ability to correctly predict the class that participants belong to 

(e.g., Ficiarà et al., 2021; Garcia‐Gutierrez et al., 2022; Lage et al., 2020). Most studies make 

use of volumetric data from MRI (e.g., Chagué et al., 2020; Harper et al., 2016; Ma et al., 2021) 

while some use other neuroimaging tools (e.g., Arterial Spin Labelling: Bron et al., 2014, 2017; 

resting-state fMRI: Bouts et al., 2018; Donnelly-Kehoe et al., 2019; Feis et al., 2019; Moguilner 

et al., 2021; Premi et al., 2016; QEEG: Garn et al., 2017; MEG: Shaw et al., 2021; PET or 
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SPECT: Abdi et al., 2012; Horn et al., 2009; Xia et al., 2014), cognitive assessments (e.g., Cope 

et al., 2017; Garcia‐Gutierrez et al., 2022; Zimmerer et al., 2020), data from biofluid samples 

(e.g., Ficiarà et al., 2021; Lin et al., 2020), eye tracking data (e.g., Lage et al., 2020; Primativo 

et al., 2017) or transcranial magnetic stimulation (e.g., Benussi et al., 2020). Some studies also 

investigate the added value of multimodal classifiers combining neuroimaging with 

neuropsychological data (e.g., Dottori et al., 2017; Wang et al., 2016; Zhutovsky et al., 2019). 

Multi-centric studies are common and are able to demonstrate the robustness of the developed 

algorithms for classification (e.g., Bachli et al., 2020; Benussi et al., 2020; Young et al., 2018). 

To evaluate the performance of the developed classifiers, most studies report performance 

metrics without any direct comparison. However, some studies compare the classification 

accuracy of the ML algorithm with the performance of radiologists (e.g., Chagué et al., 2020; 

Harper et al., 2016; Horn et al., 2009). A group of studies focuses on cohorts with a known 

genetic risk for developing FTD. For example two longitudinal studies have investigated the 

prognostic value of MRI for predicting symptom onset in participants carrying a mutation 

associated with FTD (Feis, Bouts, de Vos, et al., 2019; Jiskoot et al., 2019).  

Studies using unsupervised algorithms commonly use clustering to investigate natural 

grouping of patients and its correspondence with the diagnostic classes. For example based on 

FDG-PET data,  patients with a diagnosis of PPA grouped in five clusters (Matias-Guiu et al., 

2019). In a different study, four clusters emerged from a cohort of lvPPA and nfvPPA, based 

on a language assessment and the presence of amyloid pathology on a PET scan (Leyton et al., 

2014). Clustering of bvFTD patients also indicated the possibility of several subtypes (Bruun 

et al., 2019; Ranasinghe et al., 2016; Whitwell et al., 2009). As multimodal studies are relatively 

rare the possible correspondence of the clusters found across different studies remains to be 

investigated (Habes et al., 2020).  

Limitations of the existing studies applying ML techniques on FTD patient cohorts. 

While most studies suggest an implementation of these classifiers in clinical practice, some of 

the methods used are not readily available to clinicians. Additionally, only few studies evaluate 

multiclass predictions (e.g., Kim et al., 2019; Klöppel et al., 2018; Torso et al., 2020; Zimmerer 

et al., 2020). Multiclass predictions are more similar to decisions made by clinicians than binary 

predictions and are thus more relevant when trying to maximize usability in the clinical context. 

Further, many studies do not differentiate between FTD subgroups. Instead they group bvFTD, 

svPPA and nfvPPA together under the umbrella term FTD in order to separate them from AD, 

dementia with Lewy bodies, Parkinson’s disease dementia or Vascular Dementia (e.g., Bruun 

et al., 2018; Garn et al., 2017; Lin et al., 2020).  
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1.7 The Current Study  
The current study makes use of k-means clustering, an unsupervised learning algorithm, 

in order to explore data of five patient groups belonging to the spectrum of FTD (i.e., bvFTD, 

svPPA, nfvPPA) or AD and the related disorder lvPPA. The analysis includes behavioral and 

cognitive data only. This means variables analyzed stem either from results of 

neuropsychological assessments or from questionnaires filled-in by the patient or a relevant 

informant. The main goal of the current study is reaching a better understanding of the 

characteristic cognitive and behavioral symptoms of the different patient groups. Such an 

exploratory analysis may inform differential diagnosis between these groups which persists to 

be difficult still today. Possibly a better understanding of the differences may allow for a 

refinement of diagnostic criteria. Diagnostic precision is relevant to psychological and social 

well-being of both patients and caregivers (Musa et al., 2020; Weder et al., 2007). Additionally, 

it is necessary for precision of research investigating therapeutic strategies and possible drug 

treatments. Using only neuropsychological data ensures a high clinical applicability as it is 

comparatively neither cost nor time intense. Likely, the combination of neuropsychological 

with neuroimaging and pathological data would outperform diagnostic decisions based on 

neuropsychological data alone. However, we believe that in a first step it is necessary to 

investigate only neuropsychological data as its potential contribution is not yet well understood. 

As presented earlier, rather than focusing on group differences, which may have small effect 

sizes and do not always reflect diagnosis on the individual level, ML may allow for a better 

understanding of the heterogeneity within patient groups and possibly unveil patterns in the 

data not previously known. Application of clustering algorithms for dementia syndromes is still 

relatively new but has been increasing in recent years. The most common clustering algorithm 

used in these studies is hierarchical clustering (review on clustering applied to AD see Alashwal 

et al., 2019; e.g., Machulda et al., 2013; Matias-Guiu et al., 2018). Analysis of PPA in these 

studies commonly focuses on data from language assessments (e.g., Fan et al., 2020; Knibb et 

al., 2006; Leyton et al., 2014) while for bvFTD data from various neuroimaging techniques is 

used (e.g., MRI: Cerami et al., 2016; FDG-PET: Josephs et al., 2009). Thus, an analysis of a 

breadth of neuropsychological data using k-means clustering may yield new insights for each 

one of the patient groups as well as for their distinction. K-means clustering groups data points 

in a way to reduce total Euclidean distance (Hennig et al., 2015).  

Exploration of the data in this study follows two major goals: In a first step, we inspect 

whether and how clusters correspond to diagnostic groups in the data. Subsequently, we inspect 

clusters more closely to understand their differences on neuropsychological test scores, called 
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cluster centers. Why do participants of different diagnostic groups cluster apart or together and 

how does this compare to current diagnostic standards?  Based on previous research using 

clustering methods on patients from the FTD spectrum, one may hypothesize that svPPA is 

more likely to cluster separately than nfvPPA and lvPPA. Additionally, both for PPAs and 

bvFTD more than a single cluster may be needed per diagnostic group. To our knowledge, no 

single study has investigated clustering approaches with all five diagnostic groups included in 

the current study. For interpretation of the results a particular focus will be put on the 

exploration of the following comparisons as they are thought to be the most difficult to 

differentially diagnose: 1. bvFTD and AD, 2. The three PPA variants and 3. svPPA and bvFTD.  

2 Methods 
2.1 Patient Data 

Patient data was provided by the German Consortium for frontotemporal lobar 

degeneration (FTLD consortium study) (Otto et al., 2011) collected from 13 clinics or research 

centers. From the n = 1036 participants originally in the dataset, n = 254 were excluded for not 

having a diagnosis (n = 2), having a diagnosis that was not relevant for the current study (n = 

66 CBS, n = 91 PSP, n = 1 FTLD phenocopy), being assigned to an unspecific group (n = 9 

other neurological disorder, n = 7 diagnosed with bvFTD without specification, n = 22 

diagnosed with bvFTD and specification Neurodegenerative Disease, n = 18 other healthy 

controls), carrying gene alterations related to FTLD but being asymptomatic at the moment of 

assessment (n = 3), being related to diagnosed patients in the dataset (n = 20 family member of 

patient with positive genetic test, n = 14 family member of patient without genetic test), not 

having information on their gender (n = 1). In total n = 782 patients remained for further analysis 

(n = 69 healthy controls, n = 132 AD, n = 292 bvFTD, n = 97 svPPA, n = 118 nfvPPA, n = 74 

lvPPA). Next, patients with more than 20% of missing variables were removed. The analysis 

was performed twice, once including and once excluding questionnaire scores. A total of n = 

469 and n = 462 participants remained for the analysis with and without questionnaires, 

respectively. The size of each diagnostic group varied highly with bvFTD patients forming the 

largest group (n = 171 and n = 173 in the analysis with and without questionnaires respectively) 

and lvPPA patients forming the smallest group (n = 47 and n = 48 in the analysis with and 

without questionnaires respectively). Tables 1 and 2 summarize demographic scores of the six 

participant groups for the cohort in the analysis excluding and including questionnaires, 

respectively. BvFTD and PPA patients met standard diagnostic criteria as stated by Rascovsky 

et al. (2011) and Gorno-Tempini et al. (2011), respectively. Participants provided written 

informed consent. Participants were not compensated for their participation in the study. The 



EXPLORING FTD WITH K-MEANS CLUSTERING   29 
 

study was approved by the ethics committees of all contributing Universities and was in 

accordance with the latest version of the Declaration of Helsinki (ethics committee Leipzig ID 

137-11-18042011).  
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Table 1 
Demographics Table Excluding Questionnaires 

Group N 
% of 
Total 

% Clinical 
Diagnosis 

% 
Imaging-
Supported 
Diagnosis 

% 
Diagnosis 

With 
Definite 

Pathology 

% Gender Age 
Years of 

Education 
FTLD-CDR 

Score 

Age at 
Symptom 

Onset 
Disease 

Duration 

Male Female Mean SD Mean SD Mean SD Mean SD Mean SD 
Healthy 
Controls 49 10.4 - - - 44.9 55.1 64.5 9.3 15 3.1 0.1 0.3 - - - - 
Alzheimer 74 15.8 - - - 54.1 45.9 66.1 9.7 13.5 3.3 5.8 3.4 63.1 10 2.8 2.8 
bvFTD 171 36.5 34.5 57.3 8.2 62.6 37.4 62.3 9.3 13.5 3 6.8 3.9 58.8 10.5 3.4 3.8 
svPPA 52 11.1 17.3 78.8 3.8 46.2 53.8 62.9 7.9 14.7 3.2 4.9 2.4 60.3 7.9 2.6 1.9 
nfvPPA 76 16.2 43.4 55.3 1.3 48.7 51.3 68.9 8.3 13.1 3.3 4.2 2.4 67 8.6 1.9 1.2 
lvPPA 47 10 38.3 48.9 12.8 48.9 51.1 68.7 6.1 13.3 3.5 4.7 2.8 64.9 6.5 4 4 
Total 469 100 34.4 59 6.7 53.9 46.1 64.9 9.2 13.7 3.2 5.1 3.7 61.9 9.9 3 3.2 

Table 2 
Demographics Table Including Questionnaires 

Group N 
% of 
Total 

% Clinical 
Diagnosis 

% 
Imaging-
Supported 
Diagnosis 

% 
Diagnosis 

With 
Definite 

Pathology 

% Gender Age 
Years of 

Education 
FTLD-CDR 

Score 

Age at 
Symptom 

Onset 
Disease 

Duration 

Male Female Mean SD Mean SD Mean SD Mean SD Mean SD 
Healthy 
Controls 

49 10.6 - - - 44.9 55.1 64.5 9.3 15.0 3.1 0.1 0.3 - - - - 

Alzheimer 70 15.2 - - - 52.9 47.1 66.4 9.7 13.4 3.4 5.7 3.3 63.5 9.9 2.8 2.8 
bvFTD 173 37.4 36.4 55.5 8.1 62.4 37.6 62.3 9.5 13.4 2.9 6.9 4.0 58.8 10.4 3.4 3.5 
svPPA 50 10.8 20.0 78.0 2.0 46.0 54.0 63.2 7.9 14.6 3.3 4.8 2.4 60.5 7.9 2.6 1.9 
nfvPPA 72 15.6 45.8 52.8 1.4 47.2 52.8 68.7 8.6 13.1 3.4 4.2 2.5 66.6 8.9 2.0 1.3 
lvPPA 48 10.4 37.5 50.0 12.5 47.9 52.1 68.4 6.2 13.3 3.4 4.7 2.8 64.7 6.6 4.0 3.9 
Total 462 100 36.2 57.4 6.4 53.5 46.5 64.9 9.2 13.6 3.2 5.1 3.7 61.8 9.8 3.0 3.1 
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2.2 Neuropsychological Test Scores   

Demographic variables included for further analysis were participants’ age and years of 

education. The neuropsychological test scores used can broadly be attributed to the six 

neurocognitive domains defined in the DSM-5 (American Psychiatric Association, 2013). They 

will be described in the following and are summarized in Tables 3 and 4. Further, Tables 6 and 

7 summarize the mean scores of participant groups on all variables included in the analysis. 

2.2.1 Clinical Dementia Rating (CDR) (Morris, 1993) and FTLD-CDR Scales (Knopman 

et al., 2008) 

The CDR consists of six dimensions that are rated by a clinician based on a semi-

structured interview with the patient and an informant. It is a measure of dementia severity. 

Originally, it was developed for the assessment in patients with AD and contains the dimensions 

Memory, Orientation, Judgment and Problem Solving, Community Affairs, Home and Hobbies 

and Personal Care. For the assessment in FTD the adaptation by Knopman et al. (2008) added 

the two dimensions Language and Behavior, comportment & personality resulting in a total of 

eight dimensions. Following a semi-structured interview, the clinician rates each dimension on 

a five point scale ranging across 0, 0.5, 1, 2, 3 corresponding to no, questionable, mild, moderate 

or severe impairment, respectively. A global score of the CDR is derived from the subscores of 

a patient. Memory is used as primary category which scores are adjusted depending on all other 

secondary categories following the rules described by Morris (1993) to yield the global score.    

Additionally, the sum of boxes created by simply summing across all subscores is 

commonly used as a measure of severity. For the sum of boxes, no difference is made between 

domains and can thus vary between 0 and 18 or 0 and 24 for the CDR and FTLD-CDR, 

respectively. The current study made use of all subscores, and both sum of boxes. The global 

score was not assessed. 

2.2.2 CERAD-NAB Plus Battery (Fillenbaum et al., 2008; Moms et al., 1989) 

 The CERAD battery is a screening tool originally constructed for AD and consists of a 

variety of neuropsychological subtests. 

Two tests of verbal fluency assess semantic (Isaacs & Kennie, 1973) and phonological 

(Thurstone, 1973) fluency. In the semantic fluency test, participants are required to name as 

many words as possible falling into a specified category. In the current study, the category was 

"animals". For the phonological fluency assessment, participants need to name as many words 

as possible starting with a specified letter. In the current study, the s-version was used. Proper 

nouns are not allowed. Both tests are limited in time to one minute. For this study, only the total 

number of correct words of each test was used for analysis. The semantic and phonological 
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fluency tests form the first and last tests of the CERAD battery, respectively. 

The second test included in the battery is the modified Boston Naming Test (BNT) 

(Kaplan et al., 1978). It consists of 15 drawings of objects that need to be named by participants. 

The pictures were selected so that five pictures correspond to each, high, medium and low 

frequency occurrence in the English language. Only the total score of correctly identified 

pictures was used for the analysis.   

The next part of the CERAD battery is the MMSE (Folstein et al., 1975). This test is the 

most commonly used screening tool for dementia both in research and the clinical setting 

(Arevalo-Rodriguez et al., 2021). It consists of short test items assessing orientation, learning 

and memory, language, attention, and calculation and requires less than 30 min for completion. 

It has been criticized to overestimate cognitive impairment in case memory or language 

impairment are present and to not be sensitive to mild cognitive impairment (Tombaugh & 

McIntyre, 1992). 

Next, a list consisting of ten words (Atkinson & Shiffrin, 1971; Mohs et al., 1986) is 

read by the participant and immediate recall is assessed. This is repeated three times with the 

same words presented in varying order to assess whether the participant can increase the number 

of words memorized with repetition. After a delay period, recall of the words is assessed. 

Additionally, recognition is tested by presenting 20 words including the ten memorized ones. 

The participant’s task is to determine the words read previously and reject the new ones. For 

analysis total scores of first, second, and third immediate recall as well as total immediate and 

delayed recall are used. Additionally, a measure of savings is calculated by dividing the number 

of words recalled after the delay period by the number of the third immediate recall. Intrusions 

are counted. Discriminability is calculated as measure of recognition performance by summing 

the number of correctly identified and the number of correctly rejected words and dividing it 

by the maximum score of 20. 

A measure of constructional praxis (W. G. Rosen et al., 1984) assesses visuospatial 

construction and memory performance. The participant is sequentially presented with four 

figures and asked to copy them as good as possible. The figures selected are in increasing 

difficulty, consisting of a circle, a rhombus, two overlapping rectangles and finally a cube. 

Visuospatial memory is assessed by letting participants draw the figures from memory 

following a delay period. Both copy and recall are assessed on a list of criteria with maximum 

summed points of the figures corresponding to eleven. For recall ability, savings is assessed by 

calculating the ratio of summed score for the recall divided by the total score from the copy 

task. 
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Finally, the Trail Making Test (TMT) (Reitan, 1958) consists of two versions, A and B. 

Version A is thought to measure attention and processing speed. Version B additionally is used 

as a measure of cognitive flexibility meaning the ability to maintain two tasks in mind and 

flexibly switch between them. Switching ability is part of executive functioning. In version A 

participants are presented with a sheet of paper on which the numbers from one to 25 are 

distributed across the page. Participants are required to draw a line connecting all numbers 

starting from one and continuing sequentially with the next higher number to end at 25. In 

version B both numbers ranging from one to 13 and letters ranging from A to L are arranged 

on a sheet of paper. Participants need to draw a line combining all numbers and letters while 

constantly switching between both sequences, starting with the number one and ending with 

13. In both versions time is assessed, and participants are told to perform the task as quickly 

and as correctly as possible. The test is stopped after a maximum of 180 seconds and 300 

seconds for versions A and B, respectively. Additional measures are the sum of errors 

committed and the ratio of time needed for version B and A. The ratio is thought to indicate the 

switching cost. 

2.2.3 Modified Stroop Task (Stroop, 1935) 

The Stroop task consists of three subtests. The first two subtests are thought to measure 

processing speed and attention. The first subtest is the color naming test in which participants 

are presented with lines of red, green and blue color patches. Participants are requested to name 

the color. In the second subtest, the word reading test, participants are presented with color 

words that they need to read out loud. The third subtest, the color-word interference test, is used 

as a measure of selective attention, considered an executive function. In this test, participants 

are presented with color words printed in a color that does not correspond to the meaning of the 

word. Participants are required to name the color in which words are printed. It is based on the 

Stroop effect describing the observation made by Stroop (1935) that highly trained tasks are 

performed automatically. It is thought, that reading is highly automatic and that in case color 

of the ink and color word do not correspond, the automatic reading creates an interference. For 

participants to give the correct response without an extensive delay, they must inhibit the 

automatic reading process. In all subtests, the participant is given 45 seconds to name or read 

as many items as possible. For analysis the total score of each subtest as well as the total number 

of errors made is assessed. 

2.2.4 Wechsler Memory Scale Revised (WMS-R) (Wechsler, 1987) 

Two tests of the WMS-R were used in the current study: the digit span and the visual 

memory span, similar to the block tapping test (e.g., Matias-Guiu et al., 2020). Both tests are 
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similar in structure. They assess memory and working memory function by testing the 

maximum number of items that can be recalled. In the digit span task verbal memory is 

assessed. The clinician reads a sequence of digits. Once finished, the participant is requested to 

repeat the digits. In the visual memory span task instead, blocks are assembled that the 

experimenter taps in a predetermined sequence. The observing participant is requested to 

retrace the blocks tapped by the experimenter. In the forward version of both tasks, participants 

are required to repeat or retrace the sequences in the same order as presented. In the backward 

version instead, participants are required to inverse the order, starting from the last number 

heart or the last block that was tapped by the clinician. The clinician starts with a small span of 

two or three items (depending on the specific subtest). If at least one of two tasks from the same 

span length are correctly repeated by the participant, the clinician increases the length by one 

item. The task is stopped when the participant fails twice to correctly repeat the sequence of a 

specific length. One point is given for each correctly repeated sequence. The scores for each 

one of the versions, digit span forward and backward and visual memory span forward and 

backward, can vary between zero and twelve.  

2.2.5 Cookie Theft Task (Goodglass & Kaplan, 1972) 

The cookie theft task is part of the Boston Diagnostic Aphasia Examination. The 

instructions are simple: The participant is shown a drawing depicting a scene and is asked to 

describe it.  The picture shows a mother and her two children in the kitchen. The mother is 

washing the dishes while behind her the son stands on a stool to grab a cookie from a jar. The 

stool on which the son is standing is about to fall. His sister is on the ground next to him raising 

her hand to take a cookie from her brother. The mother is standing in a puddle created by the 

overflowing sink. She does not seem to notice neither the water she is standing in, nor the 

children behind her. There is a window from which one can view outside. The task is used as a 

measure of spontaneous speech and can be analyzed for various language characteristics, such 

as grammar and fluency (e.g., Ash et al., 2017). In the current study, only a quantitative score 

assessing the content was used. Number of specified items mentioned in the participants story 

are counted reaching a possible maximum score of 20. 

2.2.6 Repeat and Point Test German Adaptation (Heitkamp et al., 2010) 

The repeat and point test is used to assess word comprehension and repetition ability. 

Ten words pronounced by the clinician need to be repeated by participants. Additionally, they 

are presented with seven images that are semantically and partly perceptually similar. From 

these images the one corresponding to the repeated word needs to be identified and pointed at. 

Each correct repeating or pointing yields one point. Thus, a maximum of ten points on each the 
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Repeat and Point part can be reached. This test was previously shown to separate between the 

different PPA variants (Hodges et al., 2008; Seckin et al., 2022). Specifically, patients with 

svPPA were more impaired on the pointing part, while nfvPPA was related to greater 

impairment on the repetition part of the test. No difference was found between both tasks for 

participants diagnosed with lvPPA (Seckin et al., 2022).  

2.2.7 Aachen Aphasia Test (AAT) (Willmes et al., 1983) 

The AAT was developed to assess aphasic disorders in German speaking participants. 

The two subtests used in the current study were the Token Test and the Written Language Test. 

The Token Test assesses general language function and can be used to distinguish aphasic from 

non-aphasic disorders but not to differentiate between different aphasic disorders. Participants 

are presented with squares and circles of different sizes and colors. The clinician gives an 

instruction of what needs to be done with an item of a specified shape, color, and size. For each 

task that participants fulfill correctly at the first trial, they receive two points. If they 

successfully perform at the second trial, they get one point. The maximum points reachable is 

50.  

The Written Language test of the AAT consists of three parts with each being tested on 

ten items of different complexities. Items may be single- or multi-syllable words, compound 

nouns or whole sentences. The first task is to read written items out loud. The second task is to 

assemble heard words using displayed letters. The third task is to write a word from dictated 

letters. Each item is scored on a four-point scale from 0-3. Thus, the total score can vary 

between zero and 90.  

2.2.8 Hamasch Five Point Test (H5PT) (Regard et al., 1982) 

 The H5PT is used to assess cognitive fluency, considered an executive function. A sheet 

of paper is filled with squares and five points arranged inside each square in the position of the 

five on a die. Participants need to draw lines connecting points in a way to create a new pattern 

in each square. Patterns can be created by connecting minimum two dots. Participants are given 

three minutes to create as many new patterns as possible. The variables assessed are the total 

number of squares filled with patterns, the total number of unique patterns and the ratio of the 

two.  

2.2.9 Cognitive Estimation Task (Shallice & Evans, 1978) updated version (MacPherson et 

al., 2014) 

 In the cognitive estimation task participants are confronted with questions concerning 

speed, length, area, number and weight. Participants are requested to estimate the answer and 

increasing points are given depending on how far participants’ estimates deviate from a defined 
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range around the correct answer. The first version was developed by Shallice & Evans (1978) 

and a newer version with questions adapted to changed lifestyles was constructed by 

MacPherson et al. (2014). It was used in the current study as a part of various executive function 

assessments.  

2.2.10 Reading the Mind in the Eyes Test (RMET) Revised Version (Baron-Cohen et al., 

2001)  

The RMET is thought to assess social cognition. Participants are shown pictures of eyes 

depicting diverse facial expressions corresponding to specified emotions. Participants are asked 

to identify the fitting emotion out of a selection of emotion words. In total 20 picture-word pairs 

are used, 10 taken from female and 10 from male faces. Each correctly selected emotion yields 

one point. The current study used only the sum of points for analysis. The RMET has previously 

been used in a cohort of bvFTD patients and was suggested to yield better distinction of bvFTD 

from healthy controls than executive function assessments (Schroeter et al., 2018).  

2.2.11 Three Clap Test (TCT) (Dubois et al., 1995) 

 The TCT is used to assess the applause sign. The clinician claps three times and the 

participant is asked to do the same. Clapping three times results in zero points. With higher 

number of claps higher scores are reached indicating motor perseverations. This was repeated 

twice, and the total of both trials was used for further analysis. Motor perseverations are 

particularly common in the related FTD syndromes PSP, CBS and FTD with ALS. The motor 

sign may however also be observed in patients with bvFTD and PPA (Schönecker et al., 2019). 

It is not expected to differ between patient groups included in the current study.  

Table 3 

Screening tools included and respective variables used for analysis  

Screening tool Variables used for analysis 
(FTLD-)CDR FTLD-CDR Sum of boxes 
 CDR Sum of boxes 
 Memory 
 Orientation 
 Judgment and Problem Solving 
 Community Affairs 
 Home and Hobbies 
 Personal Care 
 Behavior, Comportment and Personality 
 Language 
MMSE CERAD MMSE total score 

 

Table 4 

Tests used to assess neuropsychological function across the six neurocognitive domains defined 
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by the DSM-5 (American Psychiatric Association, 2013; Sachdev et al., 2014) 

Neurocognitive domain Neuropsychological variables used for analysis 
Complex attention CERAD TMT A  

Stroop Task - color naming 
Stroop Task - word reading 

Perceptual-motor function CERAD Visuo-constructional praxis copy 
Language CERAD Boston Naming Test 

Repeat and point test – Point 
Repeat and point test – Repeat 
CERAD semantic fluency  
CERAD phonemic fluency 
Cookie theft task 
AAT Token Test 
AAT Written Language Test 

Learning and memory CERAD word list immediate recall 1 
CERAD word list immediate recall 1 
CERAD word list immediate recall 1 
CERAD word list delayed recall 
CERAD word list discriminability  
WMS-R digit span forward 
WMS-R visual memory span forward 
CERAD savings visuo-constructional praxis 

Social cognition RMET 
Executive function CERAD TMT B 

CERAD TMT error scores 
CERAD TMT ratio B/A 
WMS-R digit span backward  
WMS-R visual memory span backward  
Stroop color-word interference  
H5PT total  
H5PT total correct 
H5PT percent correct 
Cognitive estimation 

 

2.3 Behavioral Questionnaire Scores 
Questionnaires assessing participants deviation from normal behavior are described in 

the following section. Scores included in the analysis are summarized in Table 5. 

2.3.1 Apathy Evaluation Scale (AES) (Marin et al., 1991) 

 The AES consists of 18 items to assess the presence of apathic symptoms. Ratings are 

provided both via a self-version by the patient and via an informant-version by the clinician or 

a person close to the patient. Each item is rated on a four-point scale spanning from zero to 

three. Reachable scores thus vary between zero and 54 with higher scores indicating greater 

presence of apathic symptoms. Apathy is one of the most common behavioral symptoms in 

neurodegenerative disorders and was found to be the most common neuropsychiatric symptom 

both in AD and FTD syndromes in a systematic review (Collins et al., 2020). Apathy is 
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characterized by low levels of motivation or drive and emotional indifference (Massimo et al., 

2018). Examples of items of the AES ask whether the patient is interested in new experiences, 

has friends, or shows initiative.  

2.3.2 Bayer Activities of Daily Living Scale (B.ADL) (Hindmarch et al., 1998) 

The B.ADL was developed as an instrument to assess severity of functional impairment 

in patients with mild cognitive impairment or dementia. It indicates how independent a patient 

is in the performance of his*her daily activities. It consists of 25 items that are filled in by the 

patient and an informant of the patient. The items span general screening questions about 

whether the patient is able to take care of him*herself or his*her daily activities, as well as 

questions about abilities to perform specific tasks and questions referring to cognitive functions 

required for appropriate completion of daily tasks. Each item is rated on a ten-point scale with 

the extremes never (0) and always (10) as well as the possibility to indicate whether an item is 

not applicable, or the answer is unknown to the informant. To evaluate results, the average of 

all answered items is taken (i.e., not including the not applicable or unknown items). Final 

scores thus vary between zero and ten with a higher score indicating a greater impact of the 

dementia on daily life functioning and greater help required.  

2.3.3 Frontal Systems Behavior Scale (FrSBe) (Grace & Malloy, 2001) 

 The FrSBe assesses behavioral change related to damage of frontal circuits. Three 

subscales assess levels of apathy, executive dysfunction and disinhibition associated with 

anterior cingulate cortex, dorsolateral prefrontal cortex and orbitofrontal circuits respectively. 

The questionnaire consists of 24 items administered to the patient and to an informant. Each 

item describing a behavior is rated across both frequency and distress caused by the behavior 

to the patient and to the informant. Items are rated on a five-point scale. On the frequency scale 

answers range from almost never (1) to almost always (5). On the distress scale, possible 

answers range from not at all distressing (1) to extremely distressing or very severe (5). The 

apathy subscale contains items similar to the items included in the AES asking for reduced drive 

and emotional blunting. The executive dysfunction subscale includes items about the patient’s 

ability to monitor the own behavior, distractibility or working memory. Items on the 

disinhibition subscale ask for inappropriate behaviors such as sexual or aggressive behaviors 

and impulsiveness. As items on the distress scale do not correspond between the self- and the 

informant- version referring to distress felt by the patient or by the informant, respectively, this 

study included only the frequency of observed behaviors. For the analysis sum scores for each 

one of the three subscales was used and may vary between 24 and 120.  

2.3.4 Short Form Geriatric Depression Scale (GDS) (Yesavage et al., 1982) 
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 The GDS is used as a screening tool for depressive symptoms in the aging population. 

The original version still in use today is a long form containing 30 items. A shorter version 

consisting of 15 items is commonly used with patients who have limited attention or resilience 

due to dementia or other physical or cognitive illness. This short version was used in our study. 

Items are yes or no questions that are answered by the patient. The number of answers provided 

that indicate presence of a depressive symptom is counted. Sum scores are evaluated as follows:  

 0-4: no depression  

 5-8: mild depression 

 9-11: moderate depression  

 12-15: severe depression 

It has also been suggested for use to track change of depressive symptoms over time (Ishihara 

& Terada, 2001).  

Table 5  

Questionnaire scores used for assessment of behavioral and psychiatric changes 

Questionnaire Variables used for analysis 
AES AES total score 
B.ADL B.ADL total score 
FrSBe Executive dysfunction frequency 
 Disinhibition frequency  
 Apathy frequency  
GDS GDS total score 
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Table 6 

Group Differences Across all Variables Included (Without Questionnaires) 

Variables 
Healthy Controls 

(N = 49) 
Alzheimer 
(N = 74) 

bvFTD 
(N = 171) 

svPPA 
(N = 52) 

nfvPPA 
(N = 76) 

lvPPA 
(N = 47) 

Age 64.5 (9.3) 66.1 (9.7) 62.3 (9.3) 62.9 (7.9) 68.9 (8.3) 68.7 (6.1) 
Years of Education 15.0 (3.1) 13.5 (3.3) 13.5 (3.0) 14.7 (3.2) 13.1 (3.3) 13.3 (3.5) 
CDR Sum of Boxes 0.1 (0.2) 4.8 (2.9) 5.0 (3.1) 2.8 (1.7) 2.2 (1.8) 2.8 (2.3) 
FTLD-CDR Sum of Boxes 0.1 (0.3) 5.8 (3.4) 6.8 (3.9) 4.9 (2.4) 4.2 (2.4) 4.7 (2.8) 
CDR: Memory 0.1 (0.2) 1.4 (0.7) 0.8 (0.5) 0.8 (0.4) 0.5 (0.4) 0.9 (0.6) 
CDR: Orientation 0.0 (0.1) 0.7 (0.8) 0.4 (0.5) 0.1 (0.3) 0.2 (0.4) 0.4 (0.5) 
CDR: Judgment, PBS 0.0 (0.0) 1.0 (0.7) 1.1 (0.7) 0.6 (0.6) 0.5 (0.5) 0.6 (0.6) 
CDR: Community Affairs 0.0 (0.1) 0.8 (0.6) 1.0 (0.7) 0.6 (0.4) 0.5 (0.4) 0.6 (0.6) 
CDR: Home & Hobbies 0.0 (0.0) 0.8 (0.6) 1.0 (0.7) 0.5 (0.4) 0.4 (0.4) 0.5 (0.5) 
CDR: Personal Care 0.0 (0.0) 0.2 (0.4) 0.6 (0.7) 0.1 (0.3) 0.1 (0.2) 0.1 (0.2) 
FTLD-CDR: Behavior 0.0 (0.1) 0.4 (0.4) 1.3 (0.7) 0.6 (0.6) 0.3 (0.4) 0.2 (0.4) 
FTLD-CDR: Language 0.0 (0.0) 0.6 (0.7) 0.5 (0.6) 1.4 (0.6) 1.6 (0.8) 1.7 (0.7) 
CERAD: Semantic Fluency 26.5 (5.6) 12.2 (5.7) 12.8 (6.2) 9.0 (4.5) 11.0 (6.5) 10.7 (5.3) 
CERAD: BNT 14.9 (0.2) 12.4 (2.7) 13.2 (2.3) 6.5 (3.2) 12.1 (3.2) 10.9 (3.6) 
CERAD: MMSE 29.2 (0.9) 22.9 (4.8) 25.4 (3.5) 23.8 (4.5) 24.7 (5.1) 22.3 (6.0) 
CERAD: Total Wordlist 22.6 (3.1) 11.4 (4.5) 15.2 (4.6) 14.5 (6.2) 15.1 (5.9) 12.0 (6.5) 
CERAD: Wordlist 1 5.8 (1.4) 2.7 (1.6) 3.8 (1.7) 3.4 (1.8) 3.7 (1.9) 2.7 (2.1) 
CERAD: Wordlist 2 7.8 (1.3) 4.1 (1.7) 5.3 (1.7) 5.2 (2.4) 5.2 (2.2) 4.2 (2.2) 
CERAD: Wordlist 3 9.0 (1.0) 4.6 (1.9) 6.1 (1.9) 5.9 (2.5) 6.1 (2.2) 5.1 (2.7) 
CERAD: Wordlist Recall 8.1 (1.8) 2.4 (2.2) 4.4 (2.3) 3.8 (3.1) 5.1 (2.5) 4.1 (2.7) 
CERAD: Wordlist Savings 89.8 (17.3) 46.8 (37.9) 69.3 (28.9) 53.3 (36.6) 82.2 (30.0) 76.8 (39.9) 
CERAD: Wordlist Recognition 99.2 (2.1) 84.4 (12.8) 88.7 (14.8) 83.4 (13.5) 91.7 (13.4) 91.4 (10.3) 
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Variables 
Healthy Controls 

(N = 49) 
Alzheimer 
(N = 74) 

bvFTD 
(N = 171) 

svPPA 
(N = 52) 

nfvPPA 
(N = 76) 

lvPPA 
(N = 47) 

CERAD: Wordlist Intrusions 0.3 (0.6) 2.8 (4.6) 1.6 (2.1) 1.7 (3.1) 0.9 (1.3) 1.1 (1.8) 
CERAD: Figure Copy 10.8 (0.7) 9.3 (2.1) 9.6 (1.8) 10.4 (1.3) 9.8 (1.8) 9.9 (1.3) 
CERAD: Figure Recall 9.7 (1.8) 3.5 (3.0) 6.0 (3.6) 6.8 (3.3) 7.6 (3.2) 6.0 (3.3) 
CERAD: Figure Savings 89.9 (16.3) 36.2 (29.6) 61.1 (33.7) 65.5 (29.1) 75.8 (28.6) 59.1 (30.5) 
CERAD: Phonemic Fluency 17.8 (4.3) 8.5 (4.4) 7.3 (4.5) 7.5 (3.8) 4.5 (3.7) 6.1 (3.4) 
CERAD: TMT A 37.6 (12.3) 86.9 (44.6) 73.6 (37.9) 54.6 (24.6) 85.8 (43.7) 78.0 (43.0) 
CERAD: TMT B 79.9 (32.3) 215.2 (75.9) 177.5 (81.8) 132.9 (67.1) 211.8 (78.4) 205.7 (78.0) 
CERAD: TMT B/A 2.2 (0.6) 3.1 (1.1) 2.9 (1.3) 2.7 (1.4) 2.9 (0.9) 3.4 (1.1) 
CERAD: TMT Errors 0.6 (1.0) 1.7 (2.6) 2.2 (2.3) 0.4 (0.8) 2.7 (2.7) 1.3 (1.4) 
WMS-R: Digit Span Fw 8.7 (1.7) 5.8 (2.2) 6.2 (1.8) 6.5 (2.2) 4.5 (1.9) 3.8 (2.2) 
WMS-R: Digit Span Bw 7.1 (2.2) 4.1 (1.8) 4.1 (1.7) 5.2 (1.7) 3.5 (1.6) 3.3 (1.8) 
WMS-R: Visual Span Fw 8.0 (2.0) 5.3 (2.0) 5.9 (2.2) 7.8 (1.9) 6.2 (1.8) 5.6 (1.7) 
WMS-R: Visual Span BW 7.3 (1.9) 4.2 (1.8) 5.1 (2.2) 6.9 (1.8) 5.1 (2.3) 4.9 (1.9) 
Cookie Theft Task 14.7 (2.8) 10.9 (3.5) 9.8 (3.5) 8.8 (3.7) 9.4 (3.9) 9.7 (3.4) 
AAT: Token Test 0.6 (1.1) 6.7 (7.0) 5.8 (6.9) 8.4 (10.4) 10.8 (9.5) 10.6 (9.0) 
AAT: Written Language 89.7 (0.7) 84.7 (6.3) 84.3 (10.5) 84.7 (6.0) 78.7 (15.5) 79.2 (13.0) 
Repeat 9.9 (0.3) 9.5 (1.2) 9.8 (0.7) 9.5 (0.9) 8.2 (2.5) 8.3 (2.2) 
Point 9.9 (0.4) 8.7 (1.5) 8.7 (1.6) 6.6 (2.4) 9.0 (1.2) 8.6 (1.7) 
Stroop: Color Naming 72.8 (11.1) 43.7 (15.0) 45.9 (17.1) 50.4 (19.0) 31.6 (14.1) 34.8 (14.5) 
Stroop: Word Reading 98.2 (10.2) 59.9 (18.4) 65.3 (21.4) 76.1 (21.8) 46.1 (18.3) 57.3 (18.7) 
Stroop: Interference 41.2 (10.2) 17.1 (8.4) 20.5 (11.8) 27.6 (11.9) 16.1 (10.6) 14.3 (11.2) 
Stroop: Error 0.4 (1.0) 2.6 (3.6) 3.0 (8.1) 2.7 (7.9) 1.6 (4.1) 2.5 (4.4) 
H5PT: Total Correct 32.0 (8.0) 15.6 (6.3) 16.3 (10.0) 20.7 (8.4) 17.4 (8.3) 18.6 (8.2) 
H5PT: Total 35.1 (7.9) 20.7 (9.6) 25.1 (13.8) 25.6 (10.2) 23.8 (10.5) 24.9 (13.3) 
H5PT: Percent Correct 91.2 (12.6) 79.5 (18.4) 68.4 (27.2) 82.2 (20.6) 77.2 (22.4) 81.1 (19.8) 
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Variables 
Healthy Controls 

(N = 49) 
Alzheimer 
(N = 74) 

bvFTD 
(N = 171) 

svPPA 
(N = 52) 

nfvPPA 
(N = 76) 

lvPPA 
(N = 47) 

Cognitive Estimation 12.7 (2.1) 8.8 (3.1) 9.4 (3.2) 9.2 (3.1) 9.4 (3.1) 9.5 (3.2) 
Applause Sign 0.1 (0.3) 0.1 (0.4) 0.3 (0.9) 0.3 (0.7) 0.5 (1.3) 0.1 (0.5) 
RMET 16.5 (2.7) 12.5 (3.6) 10.9 (3.7) 10.1 (2.6) 10.6 (2.7) 11.6 (3.8) 

Table 7 

Group Differences Across all Variables Included (With Questionnaires) 

Variables 
Healthy Controls 

(N = 49) 
Alzheimer 
(N = 70) 

bvFTD 
(N = 173) 

svPPA 
(N = 50) 

nfvPPA 
(N = 72) 

lvPPA 
(N = 48) 

Age 64.5 (9.3) 66.4 (9.7) 62.3 (9.5) 63.2 (7.9) 68.7 (8.6) 68.4 (6.2) 
Years of Education 15.0 (3.1) 13.4 (3.4) 13.4 (2.9) 14.6 (3.3) 13.1 (3.4) 13.3 (3.4) 
CDR Sum of Boxes 0.1 (0.2) 4.7 (2.8) 5.1 (3.2) 2.8 (1.7) 2.2 (1.8) 2.8 (2.3) 
FTLD-CDR Sum of Boxes 0.1 (0.3) 5.7 (3.3) 6.9 (4.0) 4.8 (2.4) 4.2 (2.5) 4.7 (2.8) 
CDR: Memory 0.1 (0.2) 1.4 (0.7) 0.8 (0.6) 0.8 (0.4) 0.5 (0.5) 0.9 (0.6) 
CDR: Orientation 0.0 (0.1) 0.7 (0.8) 0.5 (0.5) 0.2 (0.3) 0.2 (0.4) 0.4 (0.5) 
CDR: Judgment, PBS 0.0 (0.0) 1.0 (0.6) 1.2 (0.7) 0.6 (0.6) 0.5 (0.5) 0.6 (0.6) 
CDR: Community Affairs 0.0 (0.1) 0.8 (0.6) 1.0 (0.7) 0.6 (0.4) 0.5 (0.4) 0.6 (0.6) 
CDR: Home & Hobbies 0.0 (0.0) 0.8 (0.6) 1.0 (0.7) 0.5 (0.4) 0.4 (0.4) 0.5 (0.5) 
CDR: Personal Care 0.0 (0.0) 0.2 (0.4) 0.6 (0.7) 0.1 (0.3) 0.1 (0.3) 0.1 (0.2) 
FTLD-CDR: Behavior 0.0 (0.1) 0.3 (0.4) 1.3 (0.7) 0.6 (0.6) 0.3 (0.4) 0.2 (0.4) 
FTLD-CDR: Language 0.0 (0.0) 0.6 (0.7) 0.5 (0.6) 1.4 (0.6) 1.6 (0.7) 1.7 (0.7) 
CERAD: Semantic Fluency 26.5 (5.6) 12.2 (5.7) 12.8 (6.2) 8.9 (4.5) 11.4 (6.6) 10.8 (5.3) 
CERAD: BNT 14.9 (0.2) 12.3 (2.8) 13.1 (2.4) 6.4 (3.1) 12.1 (3.2) 10.9 (3.5) 
CERAD: MMSE 29.2 (0.9) 22.9 (5.1) 25.3 (3.7) 23.7 (4.6) 24.9 (5.2) 22.2 (6.0) 
CERAD: Total Wordlist 22.6 (3.1) 11.4 (4.7) 15.2 (4.5) 14.3 (5.8) 15.4 (6.0) 12.0 (6.5) 
CERAD: Wordlist 1 5.8 (1.4) 2.7 (1.6) 3.8 (1.6) 3.3 (1.6) 3.8 (1.9) 2.7 (2.0) 
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Variables 
Healthy Controls 

(N = 49) 
Alzheimer 
(N = 70) 

bvFTD 
(N = 173) 

svPPA 
(N = 50) 

nfvPPA 
(N = 72) 

lvPPA 
(N = 48) 

CERAD: Wordlist 2 7.8 (1.3) 4.1 (1.8) 5.3 (1.6) 5.2 (2.3) 5.3 (2.3) 4.2 (2.2) 
CERAD: Wordlist 3 9.0 (1.0) 4.7 (1.9) 6.1 (1.9) 5.9 (2.4) 6.2 (2.3) 5.1 (2.7) 
CERAD: Wordlist Recall 8.1 (1.8) 2.4 (2.2) 4.4 (2.2) 3.6 (3.0) 5.1 (2.6) 4.1 (2.7) 
CERAD: Wordlist Savings 89.8 (17.3) 46.0 (38.2) 70.0 (28.8) 52.5 (36.4) 82.3 (30.8) 76.5 (39.5) 
CERAD: Wordlist Recognition 99.2 (2.1) 84.0 (13.0) 88.7 (14.7) 82.3 (14.0) 92.4 (12.1) 91.5 (10.2) 
CERAD: Wordlist Intrusions 0.3 (0.6) 2.8 (4.7) 1.6 (2.1) 1.8 (3.1) 0.8 (1.3) 1.1 (1.7) 
CERAD: Figure Copy 10.8 (0.7) 9.4 (1.9) 9.5 (1.8) 10.3 (1.3) 9.8 (1.8) 9.8 (1.4) 
CERAD: Figure Recall 9.7 (1.8) 3.7 (3.0) 6.0 (3.6) 6.8 (3.3) 7.7 (3.1) 5.9 (3.2) 
CERAD: Figure Savings 89.9 (16.3) 37.3 (29.6) 60.6 (34.1) 64.9 (29.5) 77.0 (28.0) 59.4 (30.2) 
CERAD: Phonemic Fluency 17.8 (4.3) 8.6 (4.4) 7.3 (4.5) 7.3 (3.7) 4.8 (3.8) 6.1 (3.4) 
CERAD: TMT A 37.6 (12.3) 88.8 (46.0) 74.6 (39.5) 52.6 (20.9) 81.3 (40.7) 77.3 (42.8) 
CERAD: TMT B 79.9 (32.3) 213.5 (75.7) 177.9 (82.0) 136.8 (72.0) 211.7 (78.4) 208.5 (78.5) 
CERAD: TMT B/A 2.2 (0.6) 3.1 (1.1) 3.0 (1.3) 2.8 (1.4) 3.0 (1.0) 3.5 (1.2) 
CERAD: TMT Errors 0.6 (1.0) 1.7 (2.6) 2.2 (2.3) 0.4 (0.8) 2.6 (2.5) 1.3 (1.4) 
WMS-R: Digit Span Fw 8.7 (1.7) 5.7 (2.3) 6.1 (1.8) 6.5 (2.2) 4.5 (1.9) 3.8 (2.2) 
WMS-R: Digit Span Bw 7.1 (2.2) 4.1 (1.8) 4.0 (1.7) 5.1 (1.7) 3.6 (1.6) 3.2 (1.8) 
WMS-R: Visual Span Fw 8.0 (2.0) 5.4 (2.0) 5.9 (2.2) 7.8 (1.9) 6.4 (1.6) 5.5 (1.7) 
WMS-R: Visual Span BW 7.3 (1.9) 4.2 (1.8) 5.1 (2.3) 6.9 (1.8) 5.1 (2.4) 4.8 (1.9) 
Cookie Theft Task 14.7 (2.8) 10.9 (3.5) 9.9 (3.5) 8.7 (3.8) 9.6 (3.8) 9.7 (3.3) 
AAT: Token Test 0.6 (1.1) 6.9 (7.7) 6.0 (7.3) 8.9 (11.2) 10.4 (9.0) 11.0 (9.3) 
AAT: Written Language 89.7 (0.7) 84.3 (8.5) 83.9 (10.8) 84.5 (6.1) 79.9 (14.5) 79.4 (12.9) 
Repeat 9.9 (0.3) 9.4 (1.3) 9.7 (0.9) 9.5 (1.0) 8.4 (2.1) 8.3 (2.2) 
Point 9.9 (0.4) 8.7 (1.6) 8.7 (1.6) 6.5 (2.5) 9.1 (1.2) 8.6 (1.7) 
Stroop: Color Naming 72.8 (11.1) 44.0 (14.9) 45.8 (17.0) 49.8 (18.5) 31.5 (14.2) 34.5 (14.5) 
Stroop: Word Reading 98.2 (10.2) 59.8 (19.0) 65.4 (21.4) 75.2 (22.2) 45.8 (18.2) 57.6 (18.6) 
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Variables 
Healthy Controls 

(N = 49) 
Alzheimer 
(N = 70) 

bvFTD 
(N = 173) 

svPPA 
(N = 50) 

nfvPPA 
(N = 72) 

lvPPA 
(N = 48) 

Stroop: Interference 41.2 (10.2) 17.2 (8.5) 20.6 (11.7) 27.4 (12.1) 16.0 (10.5) 14.0 (11.2) 
Stroop: Error 0.4 (1.0) 2.7 (3.7) 3.0 (8.0) 2.9 (8.0) 1.6 (4.1) 2.4 (4.3) 
H5PT: Total Correct 32.0 (8.0) 15.6 (6.3) 16.4 (10.2) 20.5 (8.4) 17.9 (8.3) 18.5 (8.1) 
H5PT: Total 35.1 (7.9) 20.3 (9.5) 25.2 (13.9) 25.4 (10.3) 23.3 (9.5) 24.8 (13.2) 
H5PT: Percent Correct 91.2 (12.6) 80.6 (17.6) 68.0 (26.8) 82.5 (20.9) 79.2 (20.4) 80.8 (19.6) 
Cognitive Estimation 12.7 (2.1) 8.9 (3.1) 9.4 (3.2) 9.1 (3.0) 9.4 (3.1) 9.5 (3.2) 
Applause Sign 0.1 (0.3) 0.1 (0.4) 0.3 (1.0) 0.3 (0.7) 0.4 (1.1) 0.1 (0.5) 
RMET 16.5 (2.7) 12.4 (3.7) 10.9 (3.8) 10.0 (2.7) 10.6 (2.8) 11.7 (3.7) 
AES 7.4 (4.8) 20.1 (12.1) 34.6 (9.7) 17.7 (9.0) 16.7 (10.3) 15.9 (10.3) 
B-ADL 1.5 (0.5) 4.2 (2.3) 5.1 (2.4) 3.7 (2.1) 3.3 (1.9) 3.6 (2.1) 
FrSBe: Executive Dysfunction 13.8 (4.1) 21.5 (8.1) 26.6 (6.7) 18.5 (7.2) 15.0 (6.1) 18.4 (6.8) 
FrSBe: Disinhibition 14.3 (3.5) 12.8 (5.0) 17.5 (6.3) 14.2 (5.4) 10.6 (3.5) 12.7 (4.0) 
FrSBe: Apathy 11.7 (3.7) 18.0 (8.5) 27.8 (7.2) 17.5 (6.3) 16.7 (6.6) 16.3 (6.9) 
GDR 1.6 (1.8) 3.6 (2.5) 3.5 (3.1) 4.9 (3.6) 3.5 (2.6) 4.5 (3.0) 
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2.4 Missing Data 
Due to high levels of missing data, several steps were taken to prepare the data for the 

k-means clustering analysis. Exploration of the pattern of missingness across variables and 

diagnostic groups indicated that patients had particularly high levels of missingness in the self-

rating parts of the three questionnaires (i.e., Apathy Scale, B.ADL, FrSBe) while healthy 

controls had particularly high levels of missingness in the informant-rating parts of the same 

questionnaires (Figure 1). The pattern observed in the patient groups may be explained by 

patients being too affected to comprehend and provide appropriate answers to the 

questionnaires. For healthy controls instead a high number of missingness in the informant 

version of the questionnaire scores may be explained by informants not being systematically 

recruited for control participants. To accommodate for this observation, we decided to minimize 

missingness by including only the informant-based scores for the patient groups while including 

only the self-rating scores for healthy controls. This decision was supported by the observation 

from previous studies, that informant-based questionnaires may be more indicative of 

behavioral changes of the patients than self-ratings (e.g. Schroeter et al., 2018). In the case of 

control participants, no behavioral abnormalities are expected and thus informant- and self-

ratings are not thought to differ meaningfully. We opted for this procedure rather than simply 

excluding questionnaire scores, as the information contained in the questionnaires might have 

an added value, especially in the differential diagnosis of bvFTD, whose clinical picture is 

thought to be characterized primarily by behavioral rather than cognitive changes. However, 

validity of this method may be questioned. Additionally, missingness observed in the current 

dataset might reflect difficulties to collect questionnaire data in the clinical setting. For these 

reasons, we decided to perform the analysis twice: once including and once excluding 

questionnaire scores to compare results and to estimate the usefulness of questionnaire data for 

differential diagnosis.  
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Figure 1 

Percentage of Data Present Across all Variables, Split by Participant Group  

 



EXPLORING FTD WITH K-MEANS CLUSTERING         47 
 

Figure 2 

Number of Participants with Specified Percentage of Missingness (top: Count, bottom: Density) 
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Table 8 

Number and Percentage of Missing Values for Each one of the Variables Included 

 Excluding Questionnaires Including Questionnaires 
Variable Patients Healthy Controls Total Patients Healthy Controls Total 

Participant 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Age 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Gender 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Years of Education 14 (3.33%) 2 (4.08%) 16 (3.41%) 17 (4.12%) 2 (4.08%) 19 (4.11%) 
Group 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Diagnostic Specification 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
CDR Sum of Boxes 2 (0.48%) 0 (0%) 2 (0.43%) 10 (2.42%) 0 (0%) 10 (2.16%) 
FTLD-CDR Sum of Boxes 5 (1.19%) 0 (0%) 5 (1.07%) 13 (3.15%) 0 (0%) 13 (2.81%) 
CDR: Memory 0 (0%) 0 (0%) 0 (0%) 9 (2.18%) 0 (0%) 9 (1.95%) 
CDR: Orientation 0 (0%) 0 (0%) 0 (0%) 9 (2.18%) 0 (0%) 9 (1.95%) 
CDR: Judgment, PBS 2 (0.48%) 0 (0%) 2 (0.43%) 10 (2.42%) 0 (0%) 10 (2.16%) 
CDR: Community Affairs 1 (0.24%) 0 (0%) 1 (0.21%) 9 (2.18%) 0 (0%) 9 (1.95%) 
CDR: Home & Hobbies 1 (0.24%) 0 (0%) 1 (0.21%) 9 (2.18%) 0 (0%) 9 (1.95%) 
CDR: Personal Care 1 (0.24%) 0 (0%) 1 (0.21%) 9 (2.18%) 0 (0%) 9 (1.95%) 
FTLD-CDR: Behavior 2 (0.48%) 0 (0%) 2 (0.43%) 11 (2.66%) 0 (0%) 11 (2.38%) 
FTLD-CDR: Language 3 (0.71%) 0 (0%) 3 (0.64%) 12 (2.91%) 0 (0%) 12 (2.6%) 
CERAD: Semantic Fluency 5 (1.19%) 0 (0%) 5 (1.07%) 5 (1.21%) 0 (0%) 5 (1.08%) 
CERAD: BNT 1 (0.24%) 0 (0%) 1 (0.21%) 1 (0.24%) 0 (0%) 1 (0.22%) 
CERAD: MMSE 1 (0.24%) 0 (0%) 1 (0.21%) 1 (0.24%) 0 (0%) 1 (0.22%) 
CERAD: Total Wordlist 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
CERAD: Wordlist 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
CERAD: Wordlist 2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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 Excluding Questionnaires Including Questionnaires 
Variable Patients Healthy Controls Total Patients Healthy Controls Total 

CERAD: Wordlist 3 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
CERAD: Wordlist Recall 2 (0.48%) 0 (0%) 2 (0.43%) 1 (0.24%) 0 (0%) 1 (0.22%) 
CERAD: Wordlist Savings 8 (1.9%) 0 (0%) 8 (1.71%) 7 (1.69%) 0 (0%) 7 (1.52%) 
CERAD: Wordlist Recognition 3 (0.71%) 0 (0%) 3 (0.64%) 2 (0.48%) 0 (0%) 2 (0.43%) 
CERAD: Wordlist Intrusions 2 (0.48%) 0 (0%) 2 (0.43%) 1 (0.24%) 0 (0%) 1 (0.22%) 
CERAD: Figure Copy 1 (0.24%) 0 (0%) 1 (0.21%) 0 (0%) 0 (0%) 0 (0%) 
CERAD: Figure Recall 3 (0.71%) 0 (0%) 3 (0.64%) 3 (0.73%) 0 (0%) 3 (0.65%) 
CERAD: Figure Savings 3 (0.71%) 0 (0%) 3 (0.64%) 3 (0.73%) 0 (0%) 3 (0.65%) 
CERAD: Phonemic Fluency 15 (3.57%) 0 (0%) 15 (3.2%) 13 (3.15%) 0 (0%) 13 (2.81%) 
CERAD: TMT A 15 (3.57%) 0 (0%) 15 (3.2%) 11 (2.66%) 0 (0%) 11 (2.38%) 
CERAD: TMT B 106 (25.24%) 0 (0%) 106 (22.6%) 98 (23.73%) 0 (0%) 98 (21.21%) 
CERAD: TMT B/A 104 (24.76%) 0 (0%) 104 (22.17%) 96 (23.24%) 0 (0%) 96 (20.78%) 
CERAD: TMT Errors 119 (28.33%) 0 (0%) 119 (25.37%) 109 (26.39%) 0 (0%) 109 (23.59%) 
WMS-R: Digit Span Fw 3 (0.71%) 0 (0%) 3 (0.64%) 3 (0.73%) 0 (0%) 3 (0.65%) 
WMS-R: Digit Span Bw 6 (1.43%) 0 (0%) 6 (1.28%) 6 (1.45%) 0 (0%) 6 (1.3%) 
WMS-R: Visual Span Fw 17 (4.05%) 0 (0%) 17 (3.62%) 17 (4.12%) 0 (0%) 17 (3.68%) 
WMS-R: Visual Span BW 24 (5.71%) 0 (0%) 24 (5.12%) 24 (5.81%) 0 (0%) 24 (5.19%) 
Cookie Theft Task 62 (14.76%) 14 (28.57%) 76 (16.2%) 57 (13.8%) 14 (28.57%) 71 (15.37%) 
AAT: Token Test 30 (7.14%) 1 (2.04%) 31 (6.61%) 26 (6.3%) 1 (2.04%) 27 (5.84%) 
AAT: Written Language 40 (9.52%) 1 (2.04%) 41 (8.74%) 33 (7.99%) 1 (2.04%) 34 (7.36%) 
Repeat 20 (4.76%) 2 (4.08%) 22 (4.69%) 16 (3.87%) 2 (4.08%) 18 (3.9%) 
Point 19 (4.52%) 2 (4.08%) 21 (4.48%) 16 (3.87%) 2 (4.08%) 18 (3.9%) 
Stroop: Color Naming 36 (8.57%) 1 (2.04%) 37 (7.89%) 29 (7.02%) 1 (2.04%) 30 (6.49%) 
Stroop: Word Reading 35 (8.33%) 3 (6.12%) 38 (8.1%) 28 (6.78%) 3 (6.12%) 31 (6.71%) 
Stroop: Interference 70 (16.67%) 1 (2.04%) 71 (15.14%) 64 (15.5%) 1 (2.04%) 65 (14.07%) 
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 Excluding Questionnaires Including Questionnaires 
Variable Patients Healthy Controls Total Patients Healthy Controls Total 

Stroop: Error 70 (16.67%) 1 (2.04%) 71 (15.14%) 64 (15.5%) 1 (2.04%) 65 (14.07%) 
H5PT: Total Correct 14 (3.33%) 0 (0%) 14 (2.99%) 14 (3.39%) 0 (0%) 14 (3.03%) 
H5PT: Total 15 (3.57%) 0 (0%) 15 (3.2%) 15 (3.63%) 0 (0%) 15 (3.25%) 
H5PT: Percent Correct 14 (3.33%) 0 (0%) 14 (2.99%) 14 (3.39%) 0 (0%) 14 (3.03%) 
Cognitive Estimation 34 (8.1%) 0 (0%) 34 (7.25%) 32 (7.75%) 0 (0%) 32 (6.93%) 
Applause Sign 34 (8.1%) 0 (0%) 34 (7.25%) 33 (7.99%) 0 (0%) 33 (7.14%) 
RMET 66 (15.71%) 1 (2.04%) 67 (14.29%) 58 (14.04%) 1 (2.04%) 59 (12.77%) 
AES - - - 91 (22.03%) 13 (26.53%) 104 (22.51%) 
B-ADL - - - 88 (21.31%) 13 (26.53%) 101 (21.86%) 
FrSBe: Executive Dysfunction - - - 94 (22.76%) 10 (20.41%) 104 (22.51%) 
FrSBe: Disinhibition - - - 92 (22.28%) 10 (20.41%) 102 (22.08%) 
FrSBe: Apathy - - - 84 (20.34%) 8 (16.33%) 92 (19.91%) 
GDR - - - 103 (24.94%) 15 (30.61%) 118 (25.54%) 
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Next, participants who exceeded the threshold of 20% missingness in the variables 

relevant for analysis were excluded. In accordance with the current standard in research, 

missing data in the remaining participants was imputed (Austin et al., 2021; Hayati Rezvan et 

al., 2015; Madley-Dowd et al., 2019). Imputation was performed using multiple imputation by 

chained equations (MICE) (Buuren & Groothuis-Oudshoorn, 2011; Raghunathan et al., 2001). 

In comparison to single imputation, multiple imputation does not replace each missing value 

with a single but with multiple, commonly five or more, values (van Buuren, 2018). This creates 

several datasets on which analysis is then performed before results are combined in a last step. 

Compared to single imputation this procedure avoids underestimating standard errors (Enders, 

2010). While single imputation treats imputed and non-imputed data equally, the level of 

uncertainty stemming from the imputation of missing data can be explored when applying 

multiple imputation. As analysis is performed on each imputed dataset, one can inspect how 

much the results from the repeated analysis diverge. Results that vary highly across imputations 

should be interpreted with care. Especially in the case in which data is not missing completely 

at random (MCAR) (Rubin, 1976) and proportion of missing data exceeds few percent points 

(usually a threshold of 5-10%), multiple imputation is considered a powerful way for dealing 

with missing data (Enders, 2010; Schafer & Graham, 2002; van Buuren, 2018).  

2.5 Procedure 
2.5.1 Statistical Analysis 

Statistical analysis was performed entirely using RStudio (RStudio Team, 2020) version 

4.2.0. Analysis was restricted to the first visit of participants, in accordance with a goal of a 

diagnosis at the earliest time point possible. Diagnostic groups were inspected on differences 

in demographic variables. For the subsequent analysis, only the two numerical demographic 

variables age and years of education were included. Each neuropsychological variable was 

checked for implausible values and in total 9 datapoints were detected to fall outside the defined 

range of the respective variable and thus coded as missing value (i.e., “NA”). This small amount 

of data points not interpretable within the range of the different variables can most probably be 

explained by typing errors.  

2.5.2 Multiple Imputation 

Multiple imputation was performed using the mice package (Buuren & Groothuis-

Oudshoorn, 2011) for multiple imputation by chained equations. In case both sub- and total 

scores were present in the data, sub-scores were imputed, and total scores derived from the 

imputations post hoc. To avoid circularity of the imputation process and subsequent clustering 

analysis, the diagnostic grouping variable was not included for imputation of other variables. 
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Imputation was performed m = 10 times and for a maximum of maxit = 100 iterations. To 

ensure that results of imputation would yield realistic values within the ranges of the variables 

used, paired mean matching was defined as imputation method. Visual checks of the imputation 

were performed (see Appendix 1 – Data Preparation). First, convergence was ensured by 

inspecting mean and standard deviation across datasets and iterations as described by van 

Buuren (2018). Next density distributions of the original and the imputed data were inspected 

2.5.3 Clustering Analysis   

Prior to the k-means clustering analysis, the following variables were reversed in order 

for higher scores to consistently indicate better performance and thereby facilitate interpretation 

of clustering results: CDR score, FTLD-CDR total and sub-scores, number of intrusions when 

recalling a word list, time needed for the TMT versions A and B as well as their ratio and the 

number of errors made, results on the Token Test, the applause sign, cognitive estimation test, 

the number of errors on the Stroop task and all questionnaire scores (i.e., Apathy scale, B.ADL, 

FrSBe, Depression Scale). In a next step the scores were rescaled to vary between -1 and 1 to 

avoid range effects across variables (e.g., Brigadoi et al., 2017). K-means clustering was 

implemented using the kmeans function from the stats package (R Core Team, 2021). To 

explore the data flexibly, the analysis was performed multiple times with the cluster size 

varying from k = 2 to k = 9. The groups included in the analysis were a) all groups (i.e., healthy 

controls, bvFTD, nfvPPA, svPPA, lvPPA, AD), b) only the patient groups, c) bvFTD and PPAs, 

d) only PPAs and e) bvFTD and AD. The analysis was performed on each one of the 10 imputed 

datasets. Results from the 10 datasets were inspected on similarity using Cramer’s V. 

Additionally, proportion of ambiguous clustering (PAC) was assessed as suggested by 

Șenbabaoğlu et al. (2015) to determine stability of the clustering results. PAC was calculated 

with lower bound of consensus indices set to 0.1 and upper bound set to 0.9. When comparing 

clustering results across the ten imputations, PAC expresses the proportion of participant pairs 

for whom less than nine out of the ten analyses agreed on whether the two participants cluster 

together or apart (Șenbabaoğlu et al., 2015). In a next step the results were combined using 

majority_voting() from the diceR package (Chiu & Talhouk, 2021). This simple method for 

consensus clustering evaluates correspondence of cluster labels across different runs of the 

analysis before assigning to each participant the cluster that it was most often attributed to. 

Results were evaluated first looking at whether clusters separated between different diagnostic 

groups and how this changed with increasing number of clusters. Next results were inspected 

more in detail by looking at neuropsychological test performance to possibly identify the pattern 

underlying the observed clustering. The complete code and results can be found in the 
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Appendix. 

Based on the exploratory nature of the clustering analysis, results will be summarized 

in a purely descriptive way as was performed in previous studies (e.g., Maruta et al., 2015; 

Scheltens et al., 2016). This will help generation of new hypotheses that can be tested in more 

rigorous future studies. Results will be presented for each one of the patient comparisons 

separately. Due to the exhaustiveness of analyses performed the focus is on consistent findings 

observed across cluster sizes and comparisons.  

3 Results 
3.1 General Quality Checks  

In most cases Cramer’s V varied between 0.7 and 1 for pairs of datasets (Figure 3). Only 

in rare cases it dropped below 0.7 for single datasets. Generally, Cramer’s V decreased with 

increasing number of clusters but remained high even for the maximum number of clusters 

which was set to k = 9 (Table 8). An additional index, PAC, supported the idea that clustering 

results were relatively stable across imputed datasets (Table 10 and 11, Figure 4). In most cases 

PAC ranged from 0.06 to 0.26. Analysis c) with PPA and bvFTD patients resulted in 

particularly bad results on this index ranging from 0.13 to 0.37. With three clusters (k = 3) a 

PAC of 0.37 indicated that nearly 40% of participants can be considered as ambiguously 

clustered. Interpretation of the results from this analysis should thus be taken with care. Except 

for this specific case, we concluded that clustering results across imputations were sufficiently 

stable for further analysis. Interestingly, in some cases Cramer’s V was lowest for intermediate 

numbers of clusters. Similarly, PAC was usually higher (indicating lower stability) for 

intermediate cluster sizes. One possible explanation could be that a higher number of clusters 

may be more fitting to the data. 

Table 8 

Cramer’s V across all analyses performed (Split by Amount of Clusters) 

Amount of 
clusters (k) 

Mean (sd) 

2 0.96 (0.03) 
3 0.9 (0.11) 
4 0.92 (0.05) 
5 0.86 (0.09) 
6 0.86 (0.1) 
7 0.87 (0.09) 
8 0.86 (0.09) 
9 0.86 (0.08) 

Table 9 
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Cramer’s V across all analyses performed (Split by Groups Compared) 

Groups included Mean (sd) 
All Groups 0.9 (0.07) 

All Patient Groups 0.86 (0.11) 
PPA and bvFTD 0.88 (0.09) 

PPA 0.89 (0.08) 
AD and bvFTD 0.88 (0.1) 

Figure 3 

Density Distribution Cramer’s V 

 
Table 10 

PAC across all analyses performed (Split by Amount of Clusters) 

Amount of 
clusters (k) 

Mean (sd) 

2 0.08 (0.04)  
3 0.17 (0.1)   
4 0.14 (0.05)  
5 0.22 (0.08)  
6 0.17 (0.07)  
7 0.15 (0.05)  
8 0.14 (0.04)  
9 0.12 (0.03) 

Table 11 

PAC across all analyses performed (Split by Groups Compared) 

Groups included Mean (sd) 
All Groups 0.12 (0.05) 

All Patient Groups 0.17 (0.08) 
PPA and bvFTD 0.17 (0.09) 

PPA 0.13 (0.05) 
AD and bvFTD 0.15 (0.07) 

Figure 4 

Density Distribution PAC 
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3.2 Consensus Clustering 
For clarity, results in the following section will be exemplified with clusters referred to 

using the nomenclature Cjk with j indicating the cluster number and the subscript k referring to 

the clustering parameter k (i.e., amount of clusters defined for the analysis).  

3.2.1 All Groups 

3.2.1.1 Diagnostic Groups.  The first analysis was done including all groups of interest (i.e.,  

healthy controls, AD, bvFTD, nfvPPA, lvPPA, svPPA). When inspecting the diagnosis of 

patients in each cluster, it becomes apparent that healthy controls cluster together but not 

separately from the patient groups (Figure 5 and 6). With increasing number of clusters, the 

homogeneity of the cluster containing the healthy controls increases. However, even at the 

maximum number of clusters (k = 9) it does not surpass 75% (C99 consists of n = 46 healthy 

controls, n = 6 bvFTD, n = 5 nfvPPA, n = 3 svPPA and n = 1 lvPPA patients). With the number 

of clusters being set to k = 4, a cluster emerges (C34) that, to a great majority (81%) consists of 

bvFTD patients, the remaining being AD patients (19%). The participants that make up this 

cluster continue to form a separate cluster also for the analysis with a greater number of k (i.e., 

k = 5 – 9). Taking a closer look at the analysis with cluster size set to k = 9, it seems that several 

clusters show some degree of homogeneity in the diagnostic groups that they include. Apart 

from a cluster containing mainly healthy controls (C99), and a cluster with mainly bvFTD 

patients (C89) described earlier, an additional cluster contains mainly bvFTD patients (C59: 

92% bvFTD patients) and one cluster contains mainly svPPA patients (C69: 71% svPPA 

patients). The cluster grouping most AD patients also contains a great proportion of bvFTD 

patients (C19: 60% AD and 31% bvFTD patients). Additionally, lvPPA and nfvPPA seem to 

cluster together. They do not separate well from other patient groups but most lvPPA and 

nfvPPA patients are distributed in clusters C29 and C39. Although very mixed, it may be noted 

that one cluster that contains mainly bvFTD patients also contains a considerable proportion of 

svPPA patients in the dataset (C49: 22% of svPPA patients). At least three clusters remain very 

mixed (C19, C29, C79).  
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Including questionnaire scores (Figure 6) in the analysis does not seem to greatly affect 

the cluster results. However, one observation is that bvFTD patients seem to cluster more easily 

apart from other patient groups when questionnaire scores are included. For example, at cluster 

size set to k = 3, a relatively homogeneous cluster containing mainly bvFTD patients emerges 

(C33 with 72% bvFTD patients) which is not observed in the analysis without questionnaire 

scores. Additionally, at k = 5 two relatively homogeneous clusters emerge compared to one in 

the analysis without questionnaire scores (C25 and C55 with 82% and 80% bvFTD patients, 

respectively). Interestingly, cluster results seem to be more homogeneous for svPPA in the 

analysis without compared to the analysis with questionnaire scores.  
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Figure 5 

Visualizing Clusters by their Composition of Patient Groups (Including all Groups, Without Questionnaires) 
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Figure 6 

Visualizing Clusters by their Composition of Patient Groups (Including all Groups, With Questionnaires) 
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3.2.1.2 Neuropsychological Profile.  Next, cluster centers were inspected. Results were 

similar with and without questionnaires. A special focus was put on those clusters that showed 

a relatively great homogeneity in the diagnostic groups they comprised. With the smallest 

number of clusters (k = 2 – 3 and k = 2 without and with questionnaire scores, respectively), 

results suggest clusters to differ mainly with respect to disease severity. This interpretation is 

based on the observation that clusters show consistently better or worse performance on nearly 

all scores included. In part clustering results of analyses with a greater amount of clusters could 

also be explained by differences in severity. For example, consistent differences can be 

observed between clusters at k = 4 (Figure 7) without questionnaires (e.g., C24 seems less 

impaired than C14 which seems less impaired than C34). Further, when there was more than 

one cluster that consisted predominantly of the same patient group, these clusters seemed to 

differ by severity. For example, in the analysis without questionnaire scores, C59 and C89 

predominantly consisted of bvFTD patients and mean neuropsychological scores of C89 are 

uniformly lower than the ones of C59 (Figure 8). Despite this general observation that clustering 

results may in part be explained by differences in severity, neuropsychological patterns could 

also be observed.  

For bvFTD, one cluster that emerged in the analysis without questionnaire scores (e.g., 

C34) yielded particularly low scores on all sub-scores of the FTLD-CDR except Language 

compared to the other clusters.  

To differentiate the three PPA variants, results from the clustering analysis may be of 

particular use to separate svPPA patients from the other two PPA variants. Results did not 

support distinction of nfvPPA and lvPPA as these continuously clustered together even at k = 

9. Particularly the repeat and point test may prove relevant to distinguish svPPA from the two 

other PPA variants. This distinction becomes most apparent when comparing C39 and C69 in 

the analysis with questionnaire scores consisting of mainly lvPPA/ nfvPPA patients and svPPA 

patients, respectively. While the svPPA cluster (C69) scores lower on the point task than the 

nfvPPA/ lvPPA cluster (C39), both groups seem to perform similarly on the repeat task. 

Additionally, the svPPA cluster seemed to perform particularly badly on the BNT, the test of 

verbal but not phonemic fluency and the Cookie Theft Test. Interestingly, while performing 

better on most other scores, the lvPPA/ nfvPPA cluster shows greater impairment than the 

svPPA cluster on tests involving number processing, i.e., TMT versions A and B as well as 

digits forward and backwards tests and the block span assessing visuospatial memory.  

Inspecting clusters C19, C59 and C89 to explore possible differences between an AD-

dominant and two bvFTD-dominant clusters indicates that both bvFTD clusters score lower on 
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most FTLD-CDR scores and this is particularly pronounced for the sub-score Behavior, 

comportment, & personality while it is not true for the sub-scores Memory, Orientation and 

Language. Interestingly, memory tests do not seem to differentiate between the AD cluster 

(C19) and the more severely affected bvFTD cluster (C89). Similarly, executive functions do 

not seem to differentiate between the two patient groups.  

Inspecting results from the analysis including questionnaire scores suggests that 

questionnaires may aid the separation of a group of bvFTD patients that seem relatively high 

functioning. They may be characterized by little impairment on most variables with isolated 

low scores on the Apathy Scale and FrSBe questionnaire (e.g., C33, C44, C25, C55). 

Additionally, these clusters present with low scores on the FTLD-CDR sub-score behavior, 

comportment, & personality.  
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Figure 7 

Radar Plot Summarizing Cluster Centers (all Groups, Without Questionnaires, k = 4), Bar Plot Indicating Composition of Clusters 
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Figure 8 

Radar Plot Summarizing Cluster Centers (all Groups, Without Questionnaires, k = 9), Bar Plot Indicating Composition of Clusters 
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3.2.2 Only Patient Groups 

3.2.2.1 Diagnostic Groups. Overall, the analysis with all patient groups, excluding 

healthy controls yields similar results as the analysis with all groups. However, in comparison 

to the previous analysis, bvFTD patients seem to separate more easily yielding a very 

homogeneous cluster at k = 7 - 9 (e.g., C77: 92% bvFTD patients in the analysis without 

questionnaires). Like the previous analysis, this homogeneous clustering of bvFTD patients 

seems to be further facilitated when including questionnaire scores (Figure 10). The number of 

bvFTD patients contained in very homogeneous clusters in the analysis without questionnaires 

is highest for k = 7 reaching 48% (i.e., 82 out of 171 bvFTD patients in C17 or C77). When 

including questionnaire scores, homogeneous bvFTD clusters emerge at k = 3 and percentage 

of homogeneously clustered bvFTD patients increases with increasing number of clusters 

reaching a peak at k = 6 with 83% of bvFTD patients contained in one of the three homogeneous 

bvFTD clusters (i.e., 143 out of 173 bvFTD patients in C26, C46 or C56). An additional 

observation is a cluster that emerges in the analysis without questionnaire scores (Figure 9). 

This cluster (C19) contains only one bvFTD patient while the other patient groups contribute to 

this cluster to a similar percentage (between 18% and 30%). In the light of bvFTD forming the 

largest group, this cluster is surprising.  
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Figure 9 

Visualizing Clusters by their Composition of Patient Groups (Including Only Patient Groups, Without Questionnaires) 
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Figure 10 

Visualizing Clusters by their Composition of Patient Groups (Including only Patient Groups, With Questionnaires) 
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3.2.2.2 Neuropsychological Profile. Description of cluster results will be exemplified 

in this section by clusters from the analysis including questionnaires. Comparing the 

neuropsychological features of the clusters which mostly contain bvFTD patients, indicates that 

their main difference lies in disease severity with some clusters scoring consistently worse on 

nearly all variables. Apparent is that each one of the homogeneous bvFTD clusters scores low 

on the Apathy Scale and the FrSBe sub-scores, even when highly proficient in all other domains 

assessed (i.e., C14, C35, C46, C77, C48, C49). Additionally, simple neuropsychological tests such 

as the BNT and the repeat part of the repeat and point test show similarly high performance 

across bvFTD clusters and thus do not seem affected by disease severity. For the remaining 

variables, scores of the different bvFTD clusters remain in parallel. A consistent finding for 

homogeneous bvFTD clusters is that these clusters reached lower scores on the Behavior, 

comportment, & personality than on the Language domain of the FTLD-CDR. The opposite 

was observed for the remaining clusters. A further observation made in the analysis with and 

without questionnaires is the emergence of a cluster containing all patient groups but only very 

few bvFTD patients. This cluster (i.e., C19 and C59 in the analysis without and with 

questionnaires, respectively) is characterized by low scores across nearly all 

neuropsychological assessments while showing comparatively preserved scores on the FTLD-

CDR and the questionnaire scores. BvFTD patients seem to show the opposite pattern, namely 

low scores on behavioral assessments with relatively preserved neuropsychological scores.   

Similarly, comparing neuropsychological scores of the clusters that primarily consist of 

lvPPA/ nfvPPA patients suggests differences due to disease severity. Parallelism is maintained 

across variables except for FTLD-CDR Behavior, comportment, & personality and for FrSBe 

Executive dysfunction and Apathy which remain good independent of severity (e.g., C39, C99).  

Comparing the lvPPA/ nfvPPA clusters (i.e., C39, C99) with the svPPA cluster (i.e., C19) 

suggests that svPPA patients score particularly low on the Point compared to the Repeat part 

of the repeat and point task. On the FTLD-CDR sub-score Behavior, comportment, & 

personality the svPPA cluster seems to score lower than all lvPPA/ nfvPPA clusters. 

Additionally, patients in the svPPA cluster seem to perform better than patients in the lvPPA/ 

nfvPPA clusters on parts of the Stroop and the digits and block tapping tasks.  

The comparison of the bvFTD clusters (i.e., C29, C49, C69) with the svPPA cluster (i.e., 

C19, C59) suggests differences between the patient groups on the FTLD-CDR. Results from the 

svPPA cluster are worse on the Language domain and better on the Behavior, comportment, & 

personality domain. Except for lower results on the BNT in the svPPA cluster, results on other 

language assessments were mixed. The two executive function variables block tapping 
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backward, and TMT error scores were better in the svPPA cluster than the bvFTD clusters. 

Larger differences were observed on the Apathy Scale and the FrSBe on which the svPPA 

cluster showed smaller behavioral impairment as reported by a companion compared to all 

bvFTD clusters. 

Evaluation of the AD cluster (i.e., C89) in comparison to the bvFTD clusters (i.e., C29, 

C49, C69) suggests patients in the AD cluster to score lower than all bvFTD clusters only on the 

variables assessing memory of unstructured verbal information after a delay period (CERAD 

wordlist recall and word savings). The bvFTD clusters instead show lower scores on the Apathy 

Scale and all sub-scores of the FrSBe as well as on the FTLD-CDR sub-scores Personal care 

and Behavior, comportment, & personality.
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Figure 11 

Radar Plot Summarizing Cluster Centers (Only Patient Groups, With Questionnaires, k = 9), Bar Plot Indicating Composition of Clusters 
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3.2.3 PPA and BvFTD  

3.2.3.1 Diagnostic Groups. Superficially, the analysis with PPA and bvFTD patient 

subgroups shows that with increasing number of clusters first bvFTD and PPA patients cluster 

apart and then svPPA patients form separate clusters from nfvPPA/ lvPPA patients (e.g., C15, 

C55 contain mainly all three groups of PPA patients compared to C35, C45 containing mainly 

bvFTD patients in the analysis without questionnaires). In the analysis without questionnaire 

scores (Figure 12) the separation of bvFTD patients in separate clusters is incomplete with 

several clusters consisting to a similar proportion of bvFTD and PPA patients (e.g., C25 consists 

of 57% bvFTD and 43% PPA patients). Clustering results become more homogeneous when 

including questionnaire scores (Figure 13). With questionnaires at k = 3 a clear bvFTD cluster 

emerges (C33) and at k = 4 there are two bvFTD (C24, C34) and two PPA clusters (C14, C44). 

At k greater than four, percentage of bvFTD patients clustering separately from PPA subgroups 

surpasses 70% and is highest for the analysis with five clusters reaching 87%. At the maximum 

number of clusters (k = 8 and k = 9), there does not seem to be a meaningful difference between 

clustering results with and without questionnaires.  

Interestingly, across both analyses some clusters persist that despite consisting mainly 

of bvFTD patients also have a considerable proportion of PPA patients (e.g., analysis without 

questionnaires: C19, C69; analysis with questionnaires: C49, C99). Inspection of these clusters 

may suggest that some bvFTD patients are more similar to svPPA or to nfvPPA/ lvPPA patients, 

as they seem to cluster either with one or the other patient group. Additionally, both when 

including or excluding questionnaires, a majority of svPPA patients cluster together and 

separately from lvPPA/ nfvPPA patients, while lvPPA and nfvPPA patients do not seem to 

cluster apart. Further, except for the analysis with questionnaire scores at k = 9, in all other 

analyses at least one cluster persists that contains all three PPA groups to a similar proportion.  

Generally, similarity in cluster structure emerging in the analysis with and without 

questionnaire scores is observed. For example some clusters may be attributed to bvFTD (e.g., 

without questionnaire scores C68, C78, C59, C89, C99; with questionnaire scores C18, C78, C88, 

C19, C29, C59, C89), svPPA (e.g., without questionnaire scores C18, C79; with questionnaire 

scores: C48, C69, C99), lvPPA/ nfvPPA (e.g., without questionnaire scores C58, C88, C39, C49; 

with questionnaire scores C28, C38, C39, C49, C79) , mixed PPA (e.g., without questionnaire 

scores C18, C29; with questionnaire scores C58). Other mixed clusters are less comparable 

across the two analyses such as a cluster of mixed bvFTD and svPPA patients in the analysis 

without questionnaire scores (e.g., C28, C19).  
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Figure 12 

Visualizing Clusters by their Composition of Patient Groups (Including PPA and bvFTD, Without Questionnaires) 
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Figure 13 

Visualizing Clusters by their Composition of Patient Groups (Including PPA and bvFTD, With Questionnaires) 
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3.2.3.2 Neuropsychological Profile.  Comparing the different clusters which mainly 

consist of lvPPA/ nfvPPA patients (i.e., without questionnaire scores C39, C49; with 

questionnaire scores C39, C49) suggests that the two clusters differ in severity. Compared to the 

other clusters, patients in the lvPPA/ nfvPPA clusters reach better scores on the FrSBe 

Executive Dysfunction subscale. Comparing these clusters to the svPPA clusters (i.e., without 

questionnaire scores C79; with questionnaire scores C69, C99), svPPA patients seem to score 

lower on the point task, the BNT and the delayed memory task of word list recall and 

recognition but neither for immediate word list recall nor for figure recall. SvPPA clusters 

scored relatively better on some executive function, non-verbal memory, and processing speed 

scores such as Stroop, digit and block tapping span tasks.  

The bvFTD clusters (i.e., without questionnaire scores C59, C89, C99; with questionnaire 

scores C19, C29, C59, C89) seem to differ in severity. In the analysis without questionnaires one 

cluster (i.e., C59) shows relatively preserved delayed memory recall both for words and figures. 

Possibly this indicates a subgroup of bvFTD patients who show relatively preserved memory 

function. In comparison to the svPPA clusters, the bvFTD clusters have better scores on the 

BNT and FTLD-CDR Language sub-score and lower mean scores on the variables of the 

Apathy Scale and FrSBe as well as the FTLD-CDR sub-scores Orientation and Personal care.  
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Figure 14 

Radar Plot Summarizing Cluster Centers (PPA and bvFTD, Without Questionnaires, k = 9), Bar Plot Indicating Composition of Clusters 
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Figure 15 

Radar Plot Summarizing Cluster Centers (PPA and bvFTD, With Questionnaires, k = 9), Bar Plot Indicating Composition of Clusters 
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3.2.4 PPA 

3.2.4.1 Diagnostic Groups.  Similar to the previous analysis, excluding bvFTD patients 

suggests separation of svPPA patients and mixed lvPPA/ nfvPPA patients in different clusters. 

Inclusion of questionnaire scores does not seem to impact clustering results in a meaningful 

way (Figure 17). Further, despite most clusters showing a predominance of either svPPA or 

lvPPA/ nfvPPA patients, even at the maximum number of clusters (k = 9) a mixed cluster 

persists consisting of a similar proportion of all three PPA variants (e.g., without questionnaires 

C19, C99).  
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Figure 16 

Visualizing Clusters by their Composition of Patient Groups (Including PPA, Without Questionnaires) 
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Figure 17 

Visualizing Clusters by their Composition of Patient Groups (Including PPA, With Questionnaires) 
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3.2.4.2 Neuropsychological Profile.  Examples are provided from the analysis without 

questionnaire scores (Figures 18 and 19). Overall, comparing the svPPA clusters (e.g., C15, 

C45; C59, C69, C79) supports the idea that patients were clustered based on disease severity. 

Interestingly different clusters show highly similar results on some variables such as the repeat 

task, a figure copying task, the error score on the TMT and the block tapping task. In case 

clustering results indeed correspond to severity, cognitive function for these tests may be well 

preserved even in more severe forms of svPPA. Additionally, when the number of clusters was 

set higher (i.e., k = 7-9), one cluster that may correspond to intermediate severity (i.e., C28, 

C69) compared to the other two svPPA clusters shows the smallest impairment of svPPA 

clusters across FTLD-CDR sub-scores. This may suggest existence of a svPPA subgroup with 

relatively spared behavioral symptoms. Support for this idea comes from a corresponding 

cluster in the analysis with questionnaires (i.e., C48, C99) which shows comparatively high 

scores on the questionnaires. However, these clusters are less homogeneous including up to 

26% of participants with a diagnosis of nfvPPA or lvPPA. Patients with nfvPPA or lvPPA may 

show lower behavioral impairment and drive the observed difference.  

In a similar way the comparison of the mixed nfvPPA/ lvPPA clusters (e.g., C14, C34; 

C25, C35, C55) suggests clustering by disease severity. Scores on some variables are similar 

across clusters but this finding is inconsistent and varies when increasing the number of clusters.  

Focusing on the contrast between nfvPPA/ lvPPA and svPPA clusters the only 

consistent difference is that patients in the svPPA clusters perform better on various variables 

from the TMT, especially on the error score and the block tapping and digit span tasks. 

Additionally, results corroborate the previous finding that svPPA clusters show a large drop in 

performance from the repeat to the point part of the repeat and point test and that this is not the 

case for nfvPPA/ lvPPA clusters. 
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Figure 18 

Radar Plot Summarizing Cluster Centers (PPA, Without Questionnaires, k = 5), Bar Plot Indicating Composition of Clusters 
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Figure 19 

Radar Plot Summarizing Cluster Centers (PPA, Without Questionnaires, k = 9), Bar Plot Indicating Composition of Clusters 
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3.2.5 BvFTD and AD 

3.2.5.1 Diagnostic Groups. The last analysis performed included only bvFTD and AD 

patients. Two types of clusters emerged. Several clusters consist nearly exclusively of bvFTD 

patients. The remaining clusters contain mainly AD patients but also a large proportion of 

bvFTD patients. This does not change even when increasing the number of clusters in the 

analysis to k = 9. Thus, a majority of bvFTD patients can be separated neatly from AD patients 

while a smaller proportion instead does not separate from AD patients. The maximum 

homogeneity yielded for AD clusters is a cluster which contains 74% AD patients. Therefore, 

all AD clusters have at least one quarter of patients diagnosed with bvFTD. Including 

questionnaire scores suggests a slight improvement of results both for k = 3 and k = 7-9. In the 

analysis with questionnaires, maximum homogeneity of AD clusters reaches 78% and 85% at 

cluster sizes k = 8 and k = 9 respectively. In general results seem comparable in the analysis 

including and excluding questionnaire scores (Figure 21).  
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Figure 20 

Visualizing Clusters by their Composition of Patient Groups (Including AD and bvFTD, Without Questionnaires) 
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Figure 21 

Visualizing Clusters by their Composition of Patient Groups (Including AD and bvFTD, With Questionnaires) 
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3.2.5.2 Neuropsychological Profile.  Inspecting clusters which consist mainly of 

bvFTD patients suggests that the analysis with lower number of clusters (e.g., k = 3 - 5) is based 

on disease severity with clusters yielding scores on the different variables that remain 

approximately in parallel (e.g., without questionnaire scores C14, C34, C44; with questionnaire 

scores C14, C24, C44). Few exceptions of this are observed on the proportion of words recalled 

after a delay compared to immediate recall (i.e., savings words), the ratio of time needed on the 

TMT version B and version A. When including questionnaire scores, the FrSBe Executive 

Dysfunction scores and Depression Scale were either similar across clusters or did not 

correspond to the order of severity as observed on the other variables. With a greater number 

of clusters (e.g., k = 7-9) clustering results were inconsistent. However, results may suggest 

existence of bvFTD subgroups with different neuropsychological pattern. One subgroup may 

show greater behavioral impairment as indicated by particularly low FTLD-CDR and 

questionnaire sub-scores while another subgroup may be characterized by greater attention, 

language and executive impairments (i.e., without questionnaires C46, C66, C17, C37, C39, C69; 

with questionnaires C18, C78, C19, C69). 

Inspection of AD clusters partly supports that clusters differ with respect to disease 

severity. However, similar mean scores across clusters are observed on several variables (e.g., 

FrSBe Personal care, FrSBe Behavior, comportment, & personality, word discriminability, 

figure recall, TMT B/A, TMT error score, block tapping forward). Parallelity of AD clusters is 

not maintained for other variables such as the number of intrusions and the scores for recalling 

figures copied (e.g., without questionnaire scores C36, C56, C47, C57, C18, C48; with 

questionnaire scores C67, C77, C58, C68, C59, C79).  

Comparing clusters that are composed mainly of bvFTD or mainly of AD patients shows 

that the clusters containing most AD patients score better on the Behavior, comportment, & 

personality score of the FTLD-CDR (e.g., without questionnaire scores C24, C15, C35, C36, 

C56). Considered alone, memory scores do not seem to differentiate AD from bvFTD clusters. 

However, in comparison to scores on other neuropsychological variables, AD clusters seem 

relatively more impacted on the memory scores compared to the bvFTD clusters. AD clusters 

mimic the most severely affected bvFTD cluster on memory scores while being more similar 

to intermediate bvFTD clusters on other variables. Including questionnaires shows that bvFTD 

clusters have low scores on the Apathy scale and the FrSBe subscales even when they do not 

demonstrate large impairment on other variables (e.g., C45, C46). A general pattern is observed 

on the FTLD-CDR with patients from bvFTD clusters consistently scoring lower on the 

Behavior, comportment, & personality scale compared to the Language.  
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Figure 22 

Radar Plot Summarizing Cluster Centers (AD and bvFTD, Without Questionnaires, k = 4), Bar Plot Indicating Composition of Clusters 
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Figure 23 

Radar Plot Summarizing Cluster Centers (AD and bvFTD, With Questionnaires, k = 8), Bar Plot Indicating Composition of Clusters 
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4 Discussion 
The present study used an unsupervised ML algorithm to analyze neuropsychological 

data from patients with FTD. Comparison groups included in the study were healthy controls 

for validation purposes and patients with AD or the atypical AD variant lvPPA. Differential 

diagnosis of these patient groups is difficult, and misdiagnoses are common (Rascovsky & 

Grossman, 2013). To date, diagnostic certainty can be reached only via pathological 

confirmation post-mortem (Deuschl et al., 2016) and there is no gold-standard for diagnosis 

prior to death (Arevalo-Rodriguez et al., 2021). However, diagnostic decisions highly influence 

the treatment options considered by doctors. No cure exists neither for AD nor for FTD (Farouk 

& Rady, 2020; Panza et al., 2020). Pharmacological treatments have proven useful to reduce 

progression or to minimize specific symptoms for AD but not for FTD (Deuschl et al., 2016). 

When drugs approved for AD were administered to FTD patients, no consistent effects were 

found and treatment with Donepezil, a common drug for treating AD (Deuschl et al., 2016), 

was associated with worsening of neuropsychiatric symptoms (Ljubenkov & Boxer, 2021). The 

goal of the current analysis was to investigate the heterogeneity within diagnostic groups as 

well as differences between them. These differences may inform future clinical decisions and 

support the search for effective therapeutic strategies (Musa et al., 2020).  

Various studies investigate the applications ML algorithms can find as decision support 

systems in the medical context (Álvarez et al., 2019; Cohen et al., 2021; de Bruijne, 2016). In 

contrast to supervised learning which is trained to find a pattern linking input variables and 

class labels in the data, unsupervised learning is independent of labelling. In the case of 

dementia, where diagnostic uncertainty persists, it may be a main advantage to investigate 

patterns in the data without being restricted by existing labels. Rather than simply minimizing 

the error of classification in comparison to the current diagnostic standard, this exploratory 

approach may help to find new patterns and put current diagnostic procedures into question in 

the search of more clinically relevant diagnostic standards (Escudero et al., 2011; Farouk & 

Rady, 2020). Restricting the analysis to behavioral data allows for implementation of findings 

in a clinical setting with sparse resources. This study was exploratory in nature and conclusions 

need to be interpreted with care and tested more rigorously in future studies.  

4.1 Summary of Results 
To gain insight into the structure of the data, the analysis was performed repeatedly 

varying a) the patient groups included, b) whether, additionally to demographic and 

neuropsychological test scores, the analysis also included questionnaire scores, and c) the 

number of clusters defined (i.e., varying from k = 2 to k = 9 for each analysis). Several 
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observations proved consistent across these different analyses. Firstly, coherence between 

patients’ diagnosis and the cluster results of our analyses was partly shown, especially for 

bvFTD and the distinction of svPPA and the two other PPA variants. This suggests that there 

is a correspondence between grouping of participants when using only behavioral data and their 

diagnosis. Unsupervised clustering can thus characterize the patients on cognitive functioning 

and support the current diagnoses without being trained on diagnostic labels (Escudero et al., 

2011).  

Second, the inclusion of questionnaire scores may be useful particularly, if not 

singularly to distinguish bvFTD from other patient groups. Questionnaire scores that seem of 

special relevance are the FrSBe and the Apathy Scale. Interestingly, when including only 

bvFTD and AD patients, clustering results seem very similar in both, the analyses with and the 

analyses without questionnaire scores. Thus, in the current analyses these scores do not seem 

to influence separation between AD and bvFTD meaningfully. Questionnaire scores may 

instead be of particular use to separate bvFTD from PPA and this may be even more valid at 

low levels of disease severity when cognitive functioning in bvFTD is largely intact. Usefulness 

of the other two questionnaire scores included (i.e., B.ADL and Depression Scale) as well as 

usefulness for differential diagnoses between non-bvFTD patients seems limited.  

Thirdly, by varying both the patient groups included and the number of clusters defined 

(i.e., parameter k) in the analysis we observed that increasing the number of clusters in the k-

means clustering analysis has an effect of “zooming in” to the data structure. This allows to 

understand the grouping of different participants independent of diagnosis but also to assess 

which patient groups separate more easily from the remaining participants based on the data 

used. By inspecting cluster centers, one may then infer the factors influencing the separation of 

different clusters. The zooming effect may be of special value, when including a greater number 

of diagnostic groups. When including healthy control participants, we observed that all healthy 

control subjects grouped together. However, in opposition to what might have been expected, 

they did not separate well from other patient groups. Instead, they were clustered with 

participants from all other patient groups who were characterized by very low cognitive 

symptoms. By increasing the number of clusters in the analysis, healthy controls progressively 

separated better from patient groups, forming a more homogeneous cluster. In a similar way, 

some patterns that are observed when including fewer patient groups can already be observed 

when increasing the number of clusters in the analysis with all patients. For example, in the 

analysis without questionnaire scores, defining k = 9, one cluster of mixed lvPPA/ nfvPPA 

patients (i.e., C59) and one cluster of mainly svPPA patients (i.e., C69) emerges. This 
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observation that svPPA patients cluster separately from the other two PPA groups is replicated 

when including only PPA patients. One conclusion from this observation could be that k-means 

clustering is very suitable for analyzing data from various patient groups at once. Despite such 

analyses having high clinical relevance, including patient groups from various etiologies in 

unsupervised learning is not common and to our knowledge the current study was the first one 

to jointly investigate AD, bvFTD and PPA in this way. The emergence of large-scale 

consortium data may facilitate such research in the coming years.  

Fourth, heterogeneity observed between patients was large. This was noted between but 

also within diagnostic groups and made separation of diagnostic groups fuzzy. Clusters 

containing patients from more than one diagnostic group were observed in every analysis 

performed. Additionally, focusing on mean scores of homogeneous clusters containing 

primarily patients from one diagnostic group, showed that patients with the same diagnosis may 

yield very different scores on neuropsychological assessments. Results on most cognitive tests 

did not support the existence of disorder-specific impairments. Instead, additional to the 

disorder, disease severity was most probably a main driving factor for differences in 

performance between participants. At low number of clusters (k = 2 and k = 3) cluster centers 

did not show patterns specific to variables or cognitive domains assessed but instead could be 

characterized by low, intermediate, or high scores on virtually all variables. In these cases, 

disease severity may have been the main factor driving clustering results. When the number of 

clusters was set higher, patterns other than disease severity could be observed.  

Based on the patterns observed some hypotheses can be formulated concerning 

cognitive function across diagnostic groups. These need to be tested in future studies to 

investigate whether they may indeed facilitate distinction of patient groups.  

a) Differentiation of svPPA and nfvPPA/ lvPPA based on the repeat and point task: 

Not a single score but instead a drop of performance from the repeat to the point task 

may be indicative of svPPA symptomatology. This was recently suggested by 

several studies (M. Henry & Grasso, 2018; Seckin et al., 2022).  

b) Differentiation of bvFTD and PPA based on companion-reported behavior and 

cognitive assessments: Results suggest that bvFTD is characterized by low scores 

on the companion-rated versions of the Apathy Scale and the sub-scores of the 

FrSBe Scale.  Based on our findings, this may be true independent of disease 

severity. Relatively low scores on the questionnaires despite preserved cognitive 

functioning as assessed by formal neuropsychological testing, may distinguish 

bvFTD from PPA even at low levels of disease severity. Current diagnostic criteria 
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for bvFTD include the presence of apathy and disinhibition as behavioral symptoms 

indicative of bvFTD (Rascovsky et al., 2011). Based on the current study, both the 

Apathy Scale and the FrSBe seem appropriate to assess the presence of these 

symptoms.  

c) Executive problems in bvFTD are not well-reflected using neuropsychological 

assessments: In the current study, bvFTD was related to lower scores on the FrSBe 

Executive Dysfunction scale while neuropsychological assessments of executive 

function yielded inconsistent results. As mentioned previously the inclusion of a 

summed executive error index may help to detect executive problems in bvFTD 

(Kamath et al., 2019; Kramer et al., 2003). Classically four distinct cognitive 

abilities -  working memory, inhibition, set shifting and fluency – are considered 

executive functions and are required for goal-oriented behavior (Rabinovici et al., 

2015). Possibly, patients with bvFTD do not necessarily show executive problems 

in formal neuropsychological tests of executive function. However, the effects of 

changed executive functioning may become apparent for close others when 

observing the patient in their daily life. Behavioral rather than cognitive measures 

may therefore be more appropriate to assess dysexecutive symptoms. For clarity, 

diagnostic criteria may be adapted to include dysexecutive behavior rather than a 

neuropsychological profile characterized by executive deficits.  

d) The usefulness of social cognition assessments for distinction of AD and FTD 

patient groups is limited: Despite previous studies suggesting social cognition to 

differentiate bvFTD from healthy controls (Schroeter et al., 2018) and other 

neurodegenerative or psychiatric diagnoses (Ducharme et al., 2020; Gossink et al., 

2018) the current study does not find supporting evidence. Current results should 

however be interpreted with care, as social cognition is a complex construct 

involving various cognitive functions (Dodich et al., 2021). Additionally, in the 

current study it was assessed with a single variable, namely the RMET, which had 

a relatively high percentage of missingness (i.e.,13-14% in both analyses). A 

previous meta-analysis did not find significant differences in performance on social 

cognition tasks between FTD groups but this study did not include neither AD nor 

lvPPA (Kamath et al., 2019). Further studies may focus on alternative tests of social 

cognition such as the Social Cognition and Emotional Assessment (SEA) combining 

five subtests (Bertoux et al., 2012), the ultimatum game (Hinterbuchinger et al., 

2018), various social cognition tasks presented by Rankin (2021) for the study of 
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social cognition in FTD or spontaneous social behavior (Rankin et al., 2008).  

e) Greater memory deficits relative to general cognitive impairment may be specific to 

AD: The results from our analysis suggest that memory impairments in bvFTD 

patients may well be as pronounced as in AD. However, it may be possible to 

dissociate the two disorders by evaluating memory relative to general cognitive 

functioning as assessed by the (FTLD-) CDR. Our results suggest a dissociation 

between AD and bvFTD. BvFTD patients show relatively preserved memory and 

(FTLD-) CDR scores or high impairment on both dimensions. AD instead seems to 

be relatively more impaired on memory functions. AD clusters in our study 

mimicked better performing bvFTD clusters for the (FTLD-) CDR scores while 

mimicking more impaired bvFTD clusters for memory scores. Results from this 

study need to be interpreted with care as AD patients did not form highly 

homogeneous clusters. Most AD clusters contained around 20%-30% of patients 

with a diagnosis other than AD, which may have distorted findings on the 

neuropsychological cluster centers. Future studies may investigate possible within-

participant contrasts to express memory-dysfunction with relation to general 

cognitive functioning. A retrieval-specific memory dysfunction in bvFTD compared 

to AD as previously suggested (Ahmed et al., 2021; Musa et al., 2020) was not 

supported by the current study. This is consistent with results reported in a study by 

Glosser et al. (2002), in which patients with bvFTD did not show to profit from cues 

at recall to a greater extent than patients with AD.  

f) Contrasting FTLD-CDR scores of Language and Behavior, comportment, & 

personality may be useful to screen for bvFTD but not for PPA variants: Comparing 

FTLD-CDR sub-scores bvFTD clusters seemed to consistently show a drop in mean 

scores from the Language to the Behavior, comportment, & personality sub-score. 

For other patient groups FTLD-CDR scores were more mixed. We hypothesize that 

a difference score of these two FTLD-CDR sub-scores may be sensitive to bvFTD 

and useful as a screening tool.  

g) Involvement of non-language deficits in PPA is highly heterogeneous: The hallmark 

of PPA is a language deficit and diagnostic criteria for being considered with a 

diagnosis of PPA include language as the main, most pronounced and most 

debilitating of the symptoms in the initial phase of the syndrome (Gorno-Tempini et 

al., 2011). Results from the current analysis suggest that cognitive involvement in 

the PPA variants is larger than may be expected. Impairment in PPA being specific 
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to language function is not supported based on our results from formal 

neuropsychological testing. This was found despite data in the current study being 

restricted to patient’s first visit and average delay since symptom onset for PPA 

patients being less than three years. Language deficits may have influenced results 

on tests of other cognitive domains such as reduced scores on the verbal learning 

task in svPPA but this does not explain the entirety of results.  

One consistent finding of the current study was that separation of svPPA and 

nfvPPA/ lvPPA clusters seemed, except for differences on the repeat and point task, 

mainly driven by differences on assessments of processing speed, short term and 

working memory. Studies investigating neuropsychological impairment in the PPA 

variants suggest lvPPA to show the greatest cognitive deficits of the three variants 

and that they show faster progression of cognitive decline (Kamath et al., 2020). A 

meta-analysis found greater impairment of lvPPA on measures of attention and 

mathematical skills compared to both nfvPPA and svPPA, on memory assessments 

compared to nfvPPA and on executive functioning, processing speed and 

visuospatial skills compared to svPPA (Kamath et al., 2020).  

Several studies suggest working memory impairment in lvPPA and nfvPPA 

(Grossman, 2010; Harris et al., 2019; Libon et al., 2007; Ruksenaite et al., 2021). 

Specifically, the difference of verbal and visuospatial working memory impairment 

in these patient groups as assessed by the digit span and the visuospatial span tasks 

has been investigated repeatedly. LvPPA is consistently shown to be impaired on 

verbal memory span tasks (Foxe et al., 2020; Foxe et al., 2013; Gorno-Tempini et 

al., 2008; Meyer et al., 2015). Concerning impairment on visuospatial span tasks 

results are less consistent. While some studies do find patients with lvPPA to be 

impaired on assessments of visuospatial memory span (Foxe et al., 2020; Foxe, 

Cheung, et al., 2021), other studies do not support this (Foxe et al., 2013; Gorno-

Tempini et al., 2008). The latter explain the difference of verbal and visuospatial 

memory deficits by an impairment specific to phonological processing in lvPPA. 

Patients with nfvPPA seem more impaired on tasks assessing verbal memory (Foxe 

et al., 2020; Foxe, Cheung, et al., 2021; Kamath et al., 2020) while svPPA patients 

are shown to be spared from impairment on both types of tasks (Foxe et al., 2020; 

Foxe, Cheung, et al., 2021).  

Interestingly, previous studies have focused on these tests to discern lvPPA 

from the other two variants. The current study does not support the distinction of 
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lvPPA and nfvPPA based on neuropsychological assessments. Findings however are 

in accordance with previous studies that find patients with svPPA to be spared on 

both verbal and visuospatial memory span tasks compared to the other two PPA 

groups. Additionally, visuospatial memory function assessed by figure copying and 

delayed recall tasks have been suggested for differentiation of the three variants 

(Marshall et al., 2018; Watson et al., 2018). This was not supported by our findings. 

Further, studies have suggested behavioral changes to be typical of svPPA 

(Grossman, 2010; Harris et al., 2019; Ruksenaite et al., 2021). This could not be 

consistently observed in the current study.  Future studies may include variables 

assessing apraxia (Harris et al., 2019) and mathematical skills (Kamath et al., 2020) 

which have both been related to differences between the PPA variants.  

h) Hierarchical diagnostic procedure: A particularly high score on the Language item 

of the FTLD-CDR, indicating high levels of impairment, may be sensitive to PPA. 

Formal, quantitative neuropsychological testing of language deficits may instead be 

useful and required to distinguish the different PPA variants, particularly svPPA 

from nfvPPA/ lvPPA. These combined findings may suggest that the diagnostic 

procedure could profit from a hierarchical framework. In a first step, general 

language function could distinguish PPA from other patient groups. In a second step, 

more specific neuropsychological testing would then be required for diagnostic 

precision.  

4.2 Limitations of the Current Study  
For appropriate interpretation of the current results, several limitations need to be 

considered. There are some methodological decisions made that may have influenced the 

results. The common approach in k-means clustering analysis is to evaluate the number of 

clusters for the analysis based on a defined criterion such as the maximization of the Silhouette 

(e.g., Khedairia & Khadir, 2022) or Dunn index (Șenbabaoğlu et al., 2015) or the minimization 

of the Davies-Bouldin index (Matias-Guiu et al., 2018), to name few internal criteria available. 

We repeated the k-means clustering analysis by systematically varying the number of clusters 

between two and nine. This approach may be criticized, as internal validation of the number of 

clusters defined was not performed. In contrast to previous studies, the current study did not 

aim to find the “true” number of clusters in the data. The goal was not to find possible subgroups 

in the included patient groups. Instead, we intended to explore data structure. By evaluating 

results on a number of cluster analyses, we were able to formulate hypotheses that were 

observed independently of specific number of clusters. 
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Results from previous studies may show inconsistencies due to differences in clustering 

algorithm, number of clusters inspected, and clinical subgroups included. Systematically 

varying both patient groups included in the analysis and the number of clusters defined, creates 

replications of findings independent of the exact parameters. However, based on previous 

studies, one may argue that the maximum number of clusters set to nine is not sufficient to 

adequately inspect clustering of patients in the analysis with multiple diagnostic groups. 

Previous unsupervised clustering studies suggest the existence of several subgroups for bvFTD 

(Cerami et al., 2016; Ranasinghe et al., 2016; Whitwell et al., 2009), lvPPA (Machulda et al., 

2013; Owens et al., 2018), nfvPPA (Matias-Guiu et al., 2019) and AD (Alexander et al., 2021; 

Scheltens et al., 2016; van der Vlies et al., 2009). SvPPA instead may be characterized by a 

single cluster without further segregation into subgroups (Matias-Guiu et al., 2018, 2019). In 

conclusion, repeating the analysis with higher number of clusters may be useful when including 

all participant or all patient groups. With less patient groups, this may not provide additional 

information, instead complicating interpretability of results.  

 For simplicity reasons, gender was not included as demographic variable in the analysis. 

K-means clustering is operationalized to minimize clustering error, most commonly assessed 

via the sum of the squared Euclidean distance. This measure is numeric and does not easily 

allow for integration of categorical variables in the analysis (Likas et al., 2003). Corresponding 

algorithms which allow for the inclusion of categorical data, such as k-modes clustering may 

be used (Huang, 1998). Recent studies suggest gender-specific differences in dementia 

syndromes on both clinical symptoms and extent of brain atrophy, so called sexual dimorphism. 

This was shown for PPA (Rogalski et al., 2007; Sebastian et al., 2018), bvFTD (Illán‐Gala et 

al., 2021) and AD (Gamberger et al., 2016).  Although results for bvFTD and PPA patients are 

not conclusive, and further studies are required to establish the relationship between gender and 

dementia phenotypes, these studies suggest that gender as an influencing factor should at least 

not be completely discarded. Future studies should thus consider this knowledge and include 

gender as additional factor for the analysis. Alternatively, future studies may perform the 

analysis for each gender separately. While investigating the effect of gender on dementia 

syndromes, this may additionally allow replication of results in two independent cohorts.  

 Criticism may be expressed concerning the dataset used. Large differences in the sample 

size of participant outcome groups may be problematic for two reasons. Firstly, it may have 

influenced clustering results observed (Fränti & Sieranoja, 2018). The computational aspects 

of k-means clustering which aim to minimize clustering error have the effect that spherical 

clusters with similar cluster sizes are favored. This is also referred to as the “uniform effect” 
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(Hui Xiong et al., 2009; Mittal et al., 2019; Zhou & Yang, 2020). In accordance with bvFTD 

forming the largest and lvPPA forming the smallest participant group, the observation that 

bvFTD and lvPPA clusters present as most and least homogeneous, respectively, could be an 

artifact of differences in group size. However, clustering results remain similar also when 

including only patients diagnosed with PPA. PPA groups are much more similar in size. To 

ensure that results are independent of group size, replication of the results may be performed 

by resampling the groups to balance them for group sizes. Second, the analysis may not reflect 

well the prevalence of diagnostic groups, thus questioning the validity of results for 

implementation in a clinical setting. While the data was acquired from clinics over many years 

as they were encountering diverse patients, the inconsistency of group size to population 

prevalence may particularly be true with regards to the two control groups in the dataset, namely 

AD which is much more prevalent than its proportion of the current study and healthy controls, 

which may not present in neurologic clinics.  

 Further criticism may concern the high amount of missingness in the current dataset and 

the way missing data was addressed in the analysis. Compared to single-center prospective 

studies, retrospective consortium studies use data from many participants assessed on many 

variables and often followed longitudinally. This is particularly valuable for rare disorders, such 

as PPA, for which prospective studies are usually restricted by a small sample size. ML 

algorithms are optimal for analyzing such highly dimensional data (e.g., Parums, 2021). Multi-

centric collaboration however comes at the cost of less clean and less complete data due to the 

involvement of a multitude of parties with varying interests and differences in available 

resources (e.g., García-Laencina et al., 2010). To apply the k-means clustering algorithm, it is 

required to deal with the missing data prior to analysis. We decided to combine two approaches 

to deal with missing data. First, participants who had more than 20% missingness on the 

variables used for the analysis were excluded. This approach is referred to as list-wise deletion 

or complete-case analysis (Molenberghs et al., 2014). Missing data on the remaining 

participants was imputed using multiple imputation (Campion & Rubin, 1987). As there is not 

a single best way to treat missing data, this approach may be criticized. We argue however, that 

the chosen approach represents a reasonable trade-off to accommodate the limitations of both 

methods by themselves. List-wise deletion leads to a selection bias in cases where data is not 

missing completely at random or concerns only a very small percentage (Basagaña et al., 2013; 

Enders, 2010). Additionally, for the dataset used, list-wise deletion would imply that only 

specified variables could be used as virtually none of the participants had complete data. The 

advantage of applying unsupervised learning algorithms lies in its ability to be suitable for 
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highly dimensional data and not having to decide a priori about the relevance of specific 

variables. Imputing data for participants who have missing values on most variables is at the 

risk of considerable amount of additional noise. Information from other variables may not be 

sufficient to accurately impute the missing values, meaning that the assumption of ignorability 

may not be met (van Buuren, 2018). Multiple imputation is thought to be well suited to deal 

with missing data in the clinical setting (e.g., Hayati Rezvan et al., 2015; Tran et al., 2017). One 

major advantage is that noise introduced by the process of imputation is reflected in the 

variation of results. Maruta et al. (2015), prior to applying diverse clustering algorithms to 

clinical data from patients diagnosed with PPA, used a similar two step approach to address 

missing data. Instead of applying list-wise deletion for participants with a large proportion of 

missingness, they removed variables exceeding 30% missingness and imputed remaining 

values using the mean or mode value. In our study, questionnaires showed the largest proportion 

of missingness. In favor of inclusion of questionnaire scores assessing behavioral change we 

decided against this method and chose list-wise deletion instead. Imputation using multiple 

imputation rather than single imputation poses less risk to produce spurious effects caused by 

biased parameter estimates or underestimated standard errors (Enders, 2010). Overall, we 

consider the missing data and imputation method chosen a limitation of the study but with 

respect to the goal of the study and the current standard adopted in research for dealing with 

missing data, we argue that the selected approach was reasonably adequate.  

Finally, limitations referring to the clustering results found should be noted. Clusters in 

all comparisons emerged that remained mixed and were difficult to interpret. The segregation 

of patients diagnosed with AD and nfvPPA or lvPPA seemed particularly fuzzy. AD patients 

mixed with all other patient groups to a similar extent. NfvPPA and lvPPA patients grouped 

together but separately from the other groups. Prior studies may suggest certain diagnostic 

groups to be more difficult to separate based on neuropsychological data only. Similar cognitive 

symptoms are expected for AD and bvFTD (e.g., Musa et al., 2020) as well as for nfvPPA and 

lvPPA patients (e.g., Bürger et al., 2017; Tippett, 2020). In these cases, data from other 

modalities may be required to observe data-driven separation of patient groups. This prior 

knowledge does not explain however clusters that contained patients from all or most diagnostic 

groups. In these cases, inspection of cluster centers did not help interpreting the results. It may 

demonstrate the heterogeneity of cognitive symptoms observed for patients of the same 

diagnostic group. Additionally, it is conceivable that these clusters contain misdiagnoses. 

Pathological data existed only for a small minority of participants included in the study and thus 

diagnoses were not definite. Future studies may investigate these mixed clusters more closely 
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to understand whether additional, multimodal data could help the distinction of these patients 

and their respective diagnoses. Pathological data such as amyloid-marker as indicated by 

positive amyloid-PET may be useful to distinguish AD and its atypical variant lvPPA from the 

FTD spectrum disorders (Deuschl et al., 2016). LvPPA is a relatively new diagnostic category 

and not yet well understood. Some studies question the existence of lvPPA as separate 

diagnostic group (Maruta et al., 2015; Sajjadi et al., 2012). Pathological markers in lvPPA 

remain ambiguous and overlap in pathology underlying AD and FTD syndromes was shown 

(Elahi & Miller, 2017). Despite lvPPA belonging to the atypical AD variants, not all patients 

diagnosed with lvPPA show AD typical pathology (Matias-Guiu et al., 2019). Lastly, these 

findings may also be in accordance with a debate that dementia syndromes need to be 

conceptualized on a spectrum, with possible overlaps between them. Single, deterministic 

diagnoses may not be adequate to characterize dementia syndromes which instead may be 

mixed or evolve over time. This has been suggested by several studies for PPA (Gil-Navarro et 

al., 2013; Sajjadi et al., 2012; Wicklund et al., 2014) and AD (e.g., Price et al., 2015). To 

conclude, interpretation of mixed clusters observed is ambiguous and may be caused by 

methodological limitations, noisy data or instead may reflect limitations of current diagnostic 

standards. This remains to be investigated in future studies.  

4.3 Future Studies  
Future studies are necessary to answer open questions, replicate the results and prove 

the clinical relevance of the current findings. Building on our results, we point to possible 

targets for future studies and make suggestions to improve the analysis performed. Hypotheses 

pointed out previously need to be tested in more rigorous studies. Instead of focusing on 

significant differences between patient groups, these studies should assess the number of 

participants that can be attributed to the correct diagnostic group using specific tests. This is 

common for supervised ML studies but also regression analyses. Patient-centered prediction is 

an important goal, particularly in the case of high within-group heterogeneity as was observed 

in our study. One interesting finding is the possible use of FTLD-CDR sub-scores to distinguish 

diagnostic groups. While the FTLD-CDR total scores are commonly used to assess or control 

for severity, we found indications that the FTLD-CDR sub-scores may be used to distinguish 

patients with PPA from the other groups. We performed a preliminary analysis by creating a 

difference score between the Language sub-score and the average of the remaining FTLD-CDR 

sub-scores. A simple logistic regression resulted in a specificity and sensitivity around 0.90 to 

distinguish PPA from non-PPA groups. The threshold for separation was -0.36. This may 

highlight the possible use of a hierarchical framework for diagnosis. In a first step, PPAs may 
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be separated from the remaining groups and in a second step using for example the repeat and 

point test, verbal and visuospatial memory assessments patients with svPPA may be 

distinguished from the two other PPA variants. Based on the current study it is difficult to 

differentiate lvPPA and nfvPPA and pathological or neuroimaging data may be necessary. 

Similarly, performing a logistic regression on a difference score between the Behavior, 

comportment, & personality sub-score and the Language sub-scores to distinguish bvFTD 

patients from all other groups yields a sensitivity score of 0.73 and a specificity score of 0.96 

at a threshold of 0.25.  

Generally, replications are necessary to prove robustness of results across different 

samples. Such studies may include cohorts from other cultures (Bachli et al., 2020), apply 

different clustering methods or use other neuropsychological and behavioral assessments. For 

example, in the current study tests examining executive functions did not seem to have a strong 

influence on clustering results. Error scores commonly showed floor effects and a combined 

error score may prove more useful (Kamath et al., 2019; Kramer et al., 2003). Social functioning 

was assessed in the current study using the RMET only. In contrast to previous studies (Gossink 

et al., 2018) for possible differentiation of bvFTD, the current study did not find impairment on 

social functioning to be specific for bvFTD. As for executive functioning, social functioning is 

a complex construct, and a single assessment may not reflect social functioning impairment. 

Future studies need to investigate the usefulness of other social function tasks (Dodich et al., 

2021). Further, for the distinction of svPPA from the other two PPA variants, visuospatial 

memory tasks have been suggested to prove useful (D. Foxe, Irish, et al., 2021). Visuospatial 

memory function was assessed in our study using the visual memory span and a figure drawing 

task. Greater impairment in lvPPA/ nfvPPA compared to svPPA was partly supported but needs 

further investigation. One finding that could be of interest is that nfvPPA/ lvPPA seemed to 

exhibit worse performance on TMT and the Stroop task. This may be related to fluency and 

processing speed and requires further investigation. Additionally, impairments on the TMT and 

digit span task may be related to differences in number processing. Support for greater 

impairment of number processing in lvPPA/ nfvPPA compared to svPPA may come from a 

study by Hardy et al. (2018) assessing processing of degraded speech output of number or place 

words. Further, lvPPA specifically has been related to difficulties with calculation (Kamath et 

al., 2020; Rohrer et al., 2010). These need to be investigated in future studies. Additionally, 

exploration of differences between patient groups of the same cluster exceeded the scope of the 

current research. This may be a focus of future studies and provide fine-grained insight into the 

clinical phenotypes. Are there differences between diagnostic groups in joint clusters that the 
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algorithm did not pick-up on? 

 Further, robustness of results needs to be investigated by evaluating results with respect 

to correspondence to clustering results from other modalities. Is there a relationship between 

clustering results found from behavioral and cognitive data and clustering results from 

neuroimaging or pathological data? Coherence between different modalities would strengthen 

the findings and the use of neuropsychological data as a cheaper and less invasive method.  

 Once selected tests have repeatedly shown usefulness for distinction of different patient 

groups, clinical applicability needs to be tested. To facilitate applicability, the number of 

variables should be reduced to a minimum. Additionally, the emergence of longitudinal data, 

within the FTLD consortium or other patient cohorts may provide validation for the findings 

and their relevance for diagnosis. Findings from longitudinal data support progression of 

behavioral symptoms to differ in bvFTD and svPPA (O’Connor et al., 2016). Additionally, 

differences in temporal progression of cognitive impairment was found for AD and FTD (Libon 

et al., 2009; Xie et al., 2010). The current study focuses only on patients first assessment. 

Possible correspondence of greater disease severity as observed in our study with temporal 

progression of the syndromes remains to be shown.  

4.3.1 Heterogeneity and severity  

One major finding was that a large proportion of clustering results may be explained by 

differences in overall disease severity. This was particularly true for low numbers of clusters 

(i.e., k = 2 or k = 3) or when more than one cluster contained a majority of participants from 

the same diagnostic group. This information needs to be integrated into future studies.  

Commonly, CDR, MMSE or both are used to assess clinical or cognitive disease 

severity (Cerami et al., 2016; Rogalski et al., 2007; Themistocleous et al., 2021). For the use in 

patient cohorts belonging to the FTD spectrum, the FTLD-CDR scale was developed by adding 

two sub-scores evaluating language and behavioral impairment to the CDR scale. Based on the 

findings of the current study, bvFTD patients seem to score relatively highly on the MMSE 

while patients with PPA or AD score comparatively high on the (FTLD-) CDR score. This 

corresponds to the conceptualization of bvFTD patients showing greater behavioral than 

cognitive changes while the PPAs and AD are associated mainly with cognitive symptoms. The 

MMSE was also suspected to overestimate severity in PPA patients due to reliance on language 

function (Henry & Grasso, 2018; Osher et al., 2008). MMSE and CDR scale do not seem to 

have a high agreement (Juva et al., 2009).  

As severity may be a driving factor for the large heterogeneity between patients of the 

same diagnostic groups, it is necessary that future studies include measures of severity, 
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optimally of both cognitive and behavioral symptoms. Additional to the use of the MMSE and 

the CDR score, a global z-score may be indicative of severity (Machulda et al., 2013). Previous 

studies have shown that demographic differences such as duration since onset of the symptoms 

is not a good proxy for disease severity (Fan et al., 2020; Kamath et al., 2020; Machulda et al., 

2013). In contrast to the current study, we advise that severity scores get incorporated in the 

statistical analysis. Accounting for differences in severity within the analysis would have two 

major advantages. Firstly, it may reduce heterogeneity within patient groups thereby facilitating 

differential diagnosis. For example, as our results suggest, the hallmark of AD being memory 

impairment may not be particularly apparent when not first controlling for disease severity. 

Secondly, it may enhance current understanding of the syndromes across different severities. 

The simplest way to incorporate severity in the analysis would be by stratification. A more 

complex model was proposed by Young et al. (2018), called by the authors Subtype and Stage 

Inference (SuStaIn) using clustering and progression modelling of neuroimaging data from 

mutation-carriers related to AD and FTD.  Additionally, the inclusion of longitudinal data could 

provide information about the existence of possible subtypes, or whether instead greater 

severity corresponds to a later stage of the same subtype. Some studies have suggested the 

existence of different cognitive profiles (O’Connor et al., 2017; Ramanan et al., 2020) or 

patterns of severity (Machulda et al., 2013; Ziegler et al., 2020) within the same disorder. This 

could not be supported by the current study but requires further investigation.  

4.3.1.1 Preliminary Results of a Clustering Analysis Stratifying Participants Based on 

Disease Severity  

We propose a new data-driven approach that may result in patient stratification by 

severity to allow for more detailed exploration of patient phenotypes. Stratification based on 

specific cut-offs on the MMSE, FTLD-CDR or a global z-score may be rather arbitrary. Instead, 

we propose a data-driven two-step clustering approach. We made use of the observation drawn 

from the current study that the major factor influencing clustering results may have been disease 

severity. In a first step we used the k-means clustering algorithm to group participants by 

disease severity. In a second step the resulting clusters were further analyzed repeating k-means 

clustering. In this way participants from various diagnostic groups may be compared across 

similar disease severities. This approach may be relevant in case the sample to be analyzed does 

show large variations in disease severity. Further, it is based on the hypothesis that k-means 

clustering results will be highly influenced by differences in severity if those exist. In these 

cases, the approach may adapt flexibly to the variables of interest and does not require an 

explicit measure to approximate disease severity. This method does not aim to be a clinically 
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relevant measure of severity. Instead, it aims to make exploration of participant subgroups more 

straightforward by being focused on participants with similar severities. We performed a 

preliminary analysis using the proposed method.  

 Results were similar to the previous analysis: No clear AD clusters emerged and lvPPA 

and nfvPPA patients did not seem to separate in coherent ways. This further analysis proved 

relevant however for the segregation of svPPA and the two other PPA variants as well as for 

the segregation of PPA and bvFTD from other patient subgroups. Patterns that were previously 

observed could be replicated and observed in a more consistent and understandable way. 

Increasing the number of clusters to more than six in this second run analysis did not seem to 

add informative value.  

 Concerning the separation of bvFTD from the remaining groups, relevance of 

behavioral questionnaires and FTLD-CDR sub-scores could be replicated. The possible contrast 

between a relatively high Language and relatively low Behavior, comportment, & personality 

sub-score may be specific to bvFTD. One observation that was not made previously is the 

possible usefulness of the H5PT. BvFTD showed a tendency for a smaller percentage of correct 

figures drawn, than the other patient groups. Considering that bvFTD patients did not seem to 

have lower total scores on the H5PT suggests that participants with bvFTD had problems 

keeping track of the figures already drawn and made repetition errors. This indicates an 

executive impairment reflected also in a heightened error on the TMT. As suggested previously, 

possible executive impairment of patients with bvFTD may be best characterized using an 

overall error score (Kamath et al., 2019; Kramer et al., 2003).  

 Only clusters of patients with PPA showed bad performance on language and verbal 

memory despite preserved FTLD-CDR scores. In most cases this was mirrored by a low 

Language sub-score on the FTLD-CDR compared to the other sub-scores. Verbal memory but 

not figural memory was impaired both while learning and during recall.  

When compared to all other patient groups AD clusters seemed to show greater 

impairment on measures of delayed recall than on immediate learning of a verbal task. This 

was not however observed when only AD and bvFTD were compared and it is in contrast to 

literature describing hippocampal-dependent memory deficits in AD to be characterized by both 

encoding and retrieval problems (Ahmed et al., 2021; Hutchinson & Mathias, 2007). Memory 

impairments of AD were reflected by low scores on both verbal and figural tasks. Language 

specific assessments seemed relatively preserved in AD. Particularly the Cookie theft task may 

be useful to differentiate AD from PPAs.  

 To differentiate svPPA from nfvPPA and lvPPA language assessments may not be the 
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most valuable. Instead, a consistent pattern showed lower scores of nfvPPA/ lvPPA clusters on 

assessments involving processing speed such as the TMT and the Stroop task. The difference 

on the TMT may be particularly pronounced for the version B. Additionally, differences were 

observed on both tasks of the WMS-R, the digit span and the visual memory span. Further, 

greater behavioral changes in svPPA compared to nfvPPA/ lvPPA clusters were suggested by 

results from the questionnaires. This was not observed in the previous analysis but is consistent 

with literature suggesting behavioral changes in svPPA to be similar to seen inpatients with 

bvFTD (Grossman, 2010; Harris et al., 2019; Ruksenaite et al., 2021) As previously mentioned, 

a clear distinction may be made between svPPA and nfvPPA/ lvPPA clusters based on the 

repeat and point task. While patients with svPPA seemed to reach considerably fewer points on 

the point than on the repeat task, patients in nfvPPA/ lvPPA showed similar impairment across 

both parts or in some cases showed the opposite pattern of greater impairment on the repeat 

than on the point part. Further tendencies observed, although less consistent, were greater 

deficits on the verbal memory assessments, the BNT, and the RMET in svPPA. This pattern 

may be explained by loss of semantics. Rather than reflecting deficits in social functioning, we 

hypothesize that deficits observed on the RMET may be explained by difficulties understanding 

the meaning of emotion words. Further, compared to nfvPPA/ lvPPA clusters greater 

impairments on the percent of correct figures of the H5PT was partly observed in svPPA. This 

may be in accordance with previous studies suggesting executive impairment in participants 

with svPPA (Kamath et al., 2020). However, on other measures of executive dysfunction such 

as the TMT version B or the Stroop, nfvPPA/ lvPPA clusters showed greater impairment.  

Additionally, the analyses all together may suggest relevance to the FTLD-CDR sub-

scores. In fact, despite rather broad and unspecific they seem to reflect well the overall pattern 

of domains impaired such as Language being highly impaired in the PPAs, Memory partly more 

impaired in AD and behavioral changes in bvFTD reflected by low Behavior, comportment & 

personality. As a measure of severity the FTLD-CDR score may be useful within but not 

necessarily between patient groups as patients with bvFTD may score comparatively low.  

Results from this cluster analysis make clear that impairments on single variables are 

not indicative of a specific disorder. Instead, the goal should be to establish specific within 

participant patterns or contrasts to distinguish the disorders. In accordance with current 

diagnostic procedures a hierarchical framework may first separate PPA from non-PPA 

syndromes depending on the presence of language impairments before in a next step 

distinguishing bvFTD and AD or instead svPPA from nfvPPA/ lvPPA. The current study does 

not allow for conclusions concerning the distinction of nfvPPA and lvPPA. Further, it needs to 
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be investigated how different disease severities observed in the current study relate to 

progression of the studied syndromes. Specific impairments may be more straightforward to 

interpret in the case of preserved FTLD-CDR scores. In cases of increased disease severity 

instead it may be difficult to discern specific patterns of heightened impairments in some 

compared to other domains.  

4.3.2 ML Applications for Differential Diagnosis 

 Chekroud et al. (2021) summarizes the main advantages of ML applications compared 

to classical statistical methods as being threefold.  First, prediction is performed on the level of 

the individual. Second, ML methods can easily integrate the information from a large number 

of variables as well as their combined effects, even when effects of single variables contribute 

only marginally. Third, ML methods may find more complex patterns in the data, that are not 

linear. For implementation in the clinical setting, it is necessary for tools developed to maximize 

explanatory power while at the same time remaining comparatively simple. Studies have shown 

that simpler algorithms increase patient and clinician trust due to greater transparency (Grote 

& Berens, 2020; Holzinger et al., 2022; Vayena et al., 2018). Additionally, while research may 

investigate characteristics of specific patient groups using highly sophisticated methods such 

as resting-state or functional MRI, this is not common in clinical settings. Instead, access to 

neuroimaging is relatively limited and expensive. While it should be stressed that access to 

neuroimaging methods is important for accurate diagnosis we here also want to stress that the 

possible usefulness of neuropsychological data has not yet been exploited to its fullest.  

The use of ML techniques may come to full potential with the development of 

continuously larger consortium studies. Consortium studies have the advantage of exploring 

patient’s characteristics on a breadth of variables and to include many patients from different 

centers. A recent study demonstrated the need for relatively large sample sizes especially of test 

data for supervised ML techniques. With small samples a high risk of overestimating 

classification performance was noted (Flint et al., 2021).  Additional to the emergence of 

consortium studies, the sharing of open-source models could facilitate development and 

application of ML tools for implementation in the clinics. Open-source models could spur 

quality and applicability by being tested on independent datasets without the need to share the 

sensible patient data (Flint et al., 2021). Lastly, “ensembling” techniques may allow to yield 

more robust results by combining predictions from a variety of analyses on the same data 

(Chekroud et al., 2021). In our study, ensembling was used to handle the missing data. More 

commonly, ensemble techniques are used to combine results from different algorithms or using 

different hyperparameter specifications.  
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The use of unsupervised ML techniques in previous studies of FTD spectrum disorders 

has focused on two main goals: diagnostic segregation and subgroup discovery. Diagnostic 

segregation commonly focused on few groups and included either aphasic or bvFTD patients 

but not both together. Studies aiming at subgroup discovery instead investigate single 

diagnostic groups to find subgroups with different cognitive phenotypes (O’Connor et al., 2017; 

Owens et al., 2018) or atrophy patterns (Bruun et al., 2019; Whitwell et al., 2009). Other 

applications of unsupervised clustering in the clinical setting are to aid preprocessing or 

compression of imaging data. A classifier may then be trained on the clustered rather than the 

raw data (Li & Liu, 2018; Sampath & Saradha, 2014). Our study may indicate that the use of 

k-means clustering could be broader than previously expected. It seems suitable for exploration 

of data including several diagnostic groups. In this study, six different groups, including healthy 

controls participants, were included. We observed relatively stable results with increasing 

number of clusters, across different comparisons of patient groups and despite high levels of 

missing data. Specifically, many results observed when comparing few diagnostic groups were 

already seen when more groups were included in the analysis.  

The use of ML is of particular interest in cases where uncertainty persists. From this 

perspective differential diagnosis, as was investigated in the current study may be the most 

pressing issue to be explored using ML techniques. In contrast, distinction from healthy controls 

is less uncertain and may provide little additional information. Further, the investigation for 

subgroups within existing diagnostic groups may be of little clinical use to date. However, this 

type of research may prove relevant in the future by yielding new information about the 

observed heterogeneity within diagnostic groups. One question that persists is whether clear 

split diagnostic groups exist in the FTD and AD spectrum. Existence of overlap may however 

not necessarily be problematic for the application of k-means clustering. In fact, a study by 

Fränti & Sieranoja (2018) suggests that overlap between groups in the data may allow for better 

clustering results. In case of overlap the k-means clustering algorithm may be less likely to 

stabilize on a local minimum and instead more flexibly alter between clustering solutions in the 

search of a global minimum. Even in the most extreme case where no regions of increased 

density or separation between groups exists but instead phenotypes from dementia syndromes 

exist on a spectrum, k-means clustering may allow to simplify the data for exploration. In this 

case grouping may not claim added-value for diagnosis. However, by clustering participants 

that lie nearby on the dimensions assessed, interpretation of highly dimensional data may be 

facilitated.  

4.4 Further Considerations  
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One key aspect of clustering used for data exploration is the visualization of results. 

Interpretation of results is performed by a human observer and thus the information gained from 

a clustering analysis may be highly dependent on appropriateness and novelty of the 

visualization used (von Luxburg et al., 2012). Additionally, some authors have suggested that 

clustering can only be evaluated with respect to its goal and that no “natural” kinds (von 

Luxburg et al., 2012) or “true” clusters (Hennig, 2015) to be uncovered exist. In this way, the 

various existing internal or external validation methods for clustering may all be insufficient 

and validation of resulting clusters depends on the specific goal. Combined, these two aspects 

indicate that clustering despite having the potential of being independent of labels, will be 

biased by the goal pursued and the expectations of the researcher. In our study, the goal of the 

clustering algorithm was differential diagnosis between FTD and AD spectrum syndromes. 

Thus, visualization was highly focused on the groups that existed in the data. Validation of the 

clustering results instead needs to prove by usefulness in future diagnosis or specification for 

treatment options.  

 At this point one may question the utility of the diagnostic procedure all together. 

Philosophically, categories are a human construct and no “true” grouping exists (Hennig, 2015). 

Categorization may still be useful to navigate the world by simplifying it in meaningful ways. 

Diagnostic utility may be particularly high in case it carries information about treatment advice. 

In the case of FTD where no clear conclusions about treatment follow a diagnosis, utility may 

lie in homogenizing patient groups to research possible treatments (Elahi & Miller, 2017). As 

such diagnostic precision may always present a trade-off between simplifying the clinical 

picture of a patient while taking into account as many details to be maximally meaningful for 

treatment. This makes multimodality of the diagnostic process including pathology, atrophy 

and behavioral changes important. Rather than a description of reality, diagnoses may be seen 

as aiming at the most useful simplification of reality. It is thus important for researchers 

investigating patient cohorts and for clinicians working on the level of the individual patients, 

to regularly put diagnoses into question. It is important to recognize the large heterogeneity 

within diagnostic groups and the overlap between diagnostic groups. Diagnosis may be 

malleable and should be adapted when more evidence is acquired. Similarly, changes in 

available treatments may also affect the usefulness of patient segregation. For example, it may 

be useful to distinguish patients diagnosed with bvFTD that could profit from a treatment with 

Donepezil, a drug commonly used for AD patients (Deuschl et al., 2016), and those in whom 

Donepezil may lead to worsening of symptoms. A distinction of AD and bvFTD may in that 

case be less meaningful. This is particularly true for FTD where the pathological process 
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influencing the emergence of the FTD phenotypes is not well understood. Another aspect that 

should not be underestimated is the effect a diagnosis can have for patients and caregivers. On 

the one hand, they may resolve patients’ and caregivers’ questions and uncertainties, thereby 

improving quality of life (Musa et al., 2020; Weder et al., 2007). On the other hand, diagnoses, 

particularly if inaccurate, carry potential for social stigma (Sachdev et al., 2014; van Vliet et 

al., 2013).  

5 Conclusions 
 To summarize, using an unsupervised clustering approach we found homogeneous 

grouping of patients with svPPA and bvFTD while grouping of the remaining patient groups 

included was more mixed. LvPPA and nfvPPA did not seem separable based on the variables 

included in the study. Overlap in neuropsychological and behavioral impairment between 

diagnostic groups was large. High levels of heterogeneity within diagnostic groups were found 

and partly related to differences in disease severity. A new data-driven method to stratify 

patients based on severity prior to further analysis was proposed and its usefulness may be 

probed in the future. Further, specific hypotheses to be tested in future studies were posited. 

Companion-rated questionnaires assessing apathy, executive dysfunction and disinhibition 

seemed particularly useful in the distinction of bvFTD. Semantic impairment in svPPA was 

shown by low scores on both language and memory tests. NfvPPA and lvPPA patients instead 

showed impairment in processing speed and short term and working memory assessments. We 

maintain the relevance of neuropsychological and behavioral variables in the distinction of the 

groups included in the current study. It is important that future studies keep a patient-centered 

approach. By being independent from data labelling, k-means clustering may prove particularly 

useful to analyze data from highly heterogeneous or unclassifiable patients.  

 

 
  

 

 

 
 
 
 
 
 
 
 
  



EXPLORING FTD WITH K-MEANS CLUSTERING  107 
 

References 
Abdi, H., Williams, L. J., Beaton, D., Posamentier, M. T., Harris, T. S., Krishnan, A., & Devous, 

M. D. S. (2012). Analysis of regional cerebral blood flow data to discriminate among 

Alzheimer’s  disease, frontotemporal dementia, and elderly controls: a multi-block 

barycentric discriminant analysis (MUBADA) methodology. Journal of Alzheimer’s 

Disease : JAD, 31 Suppl 3(0 3), S189-201. https://doi.org/10.3233/JAD-2012-112111 

Ahmad, M. A., Eckert, C., & Teredesai, A. (2018). Interpretable Machine Learning in 

Healthcare. Proceedings of the 2018 ACM International Conference on Bioinformatics, 

Computational Biology, and Health Informatics, 21, 559–560. 

https://doi.org/10.1145/3233547.3233667 

Ahmed, R. M., Hodges, J. R., & Piguet, O. (2021). Behavioural Variant Frontotemporal 

Dementia: Recent Advances in the Diagnosis and Understanding of the Disorder (pp. 1–

15). https://doi.org/10.1007/978-3-030-51140-1_1 

Alashwal, H., El Halaby, M., Crouse, J. J., Abdalla, A., & Moustafa, A. A. (2019). The 

Application of Unsupervised Clustering Methods to Alzheimer’s Disease. Frontiers in 

Computational Neuroscience, 13(May), 1–9. https://doi.org/10.3389/fncom.2019.00031 

Alexander, N., Alexander, D. C., Barkhof, F., & Denaxas, S. (2021). Identifying and evaluating 

clinical subtypes of Alzheimer’s disease in care electronic health records using 

unsupervised machine learning. BMC Medical Informatics and Decision Making, 21(1), 

343. https://doi.org/10.1186/s12911-021-01693-6 

Álvarez, J. D., Matias-Guiu, J. A., Cabrera-Martín, M. N., Risco-Martín, J. L., & Ayala, J. L. 

(2019). An application of machine learning with feature selection to improve diagnosis 

and classification of neurodegenerative disorders. BMC Bioinformatics, 20(1), 491. 

https://doi.org/10.1186/s12859-019-3027-7 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental 

disorders (5th ed.). 

Arevalo-Rodriguez, I., Smailagic, N., Roqué-Figuls, M., Ciapponi, A., Sanchez-Perez, E., 

Giannakou, A., Pedraza, O. L., Bonfill Cosp, X., & Cullum, S. (2021). Mini-Mental State 

Examination (MMSE) for the early detection of dementia in people with mild cognitive 

impairment (MCI). Cochrane Database of Systematic Reviews, 2021(7), CD010783. 

https://doi.org/10.1002/14651858.CD010783.pub3 

Ash, S., Jester, C., York, C., Kofman, O. L., Langey, R., Halpin, A., Firn, K., Dominguez Perez, 

S., Chahine, L., Spindler, M., Dahodwala, N., Irwin, D. J., McMillan, C., Weintraub, D., 

& Grossman, M. (2017). Longitudinal decline in speech production in Parkinson’s disease 



EXPLORING FTD WITH K-MEANS CLUSTERING  108 
 

spectrum disorders. Brain and Language, 171, 42–51. 

https://doi.org/10.1016/j.bandl.2017.05.001 

Atkinson, R. C., & Shiffrin, R. M. (1971). The Control of Short-Term Memory. Scientific 

American, 225(2), 82–91. 

Austin, P. C., White, I. R., Lee, D. S., & van Buuren, S. (2021). Missing Data in Clinical 

Research: A Tutorial on Multiple Imputation. Canadian Journal of Cardiology, 37(9), 

1322–1331. https://doi.org/10.1016/j.cjca.2020.11.010 

Baborie, A., Griffiths, T. D., Jaros, E., Momeni, P., McKeith, I. G., Burn, D. J., Keir, G., Larner, 

A. J., Mann, D. M., & Perry, R. (2012). Frontotemporal Dementia in Elderly Individuals. 

Archives of Neurology, 69(8), 1052. https://doi.org/10.1001/archneurol.2011.3323 

Bachli, M. B., Sedeño, L., Ochab, J. K., Piguet, O., Kumfor, F., Reyes, P., Torralva, T., Roca, 

M., Cardona, J. F., Campo, C. G., Herrera, E., Slachevsky, A., Matallana, D., Manes, F., 

García, A. M., Ibáñez, A., & Chialvo, D. R. (2020). Evaluating the reliability of 

neurocognitive biomarkers of neurodegenerative diseases across countries: A machine 

learning approach. NeuroImage, 208(October 2019), 116456. 

https://doi.org/10.1016/j.neuroimage.2019.116456 

Baez, S., Pinasco, C., Roca, M., Ferrari, J., Couto, B., García-Cordero, I., Ibañez, A., Cruz, F., 

Reyes, P., Matallana, D., Manes, F., Cetcovich, M., & Torralva, T. (2019). Brain structural 

correlates of executive and social cognition profiles in behavioral variant frontotemporal 

dementia and elderly bipolar disorder. Neuropsychologia, 126, 159–169. 

https://doi.org/10.1016/j.neuropsychologia.2017.02.012 

Bang, J., Spina, S., & Miller, B. L. (2015). Non-Alzheimer’s dementia 1 Frontotemporal 

dementia. The Lancet, 386(10004), 1672–1682. http://dx.doi.org/10.1016/S0140-

6736(15)00461-4 

Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the 

Mind in the Eyes” Test Revised Version: A Study with Normal Adults, and Adults with 

Asperger Syndrome or High-functioning Autism. Journal of Child Psychology and 

Psychiatry, 42(2), S0021963001006643. https://doi.org/10.1017/S0021963001006643 

Basagaña, X., Barrera-Gómez, J., Benet, M., Antó, J. M., & Garcia-Aymerich, J. (2013). A 

Framework for Multiple Imputation in Cluster Analysis. American Journal of 

Epidemiology, 177(7), 718–725. https://doi.org/10.1093/aje/kws289 

Beber, B. C., & Chaves, M. L. F. (2013). Evaluation of patients with behavioral and cognitive 

complaints: Misdiagnosis in frontotemporal dementia and Alzheimer’s disease. Dementia 

& Neuropsychologia, 7(1), 60–65. https://doi.org/10.1590/S1980-57642013DN70100010 



EXPLORING FTD WITH K-MEANS CLUSTERING  109 
 

Beeldman, E., Raaphorst, J., Klein Twennaar, M., Govaarts, R., Pijnenburg, Y. A. L., de Haan, 

R. J., de Visser, M., & Schmand, B. A. (2018). The cognitive profile of behavioural variant 

FTD and its similarities with ALS: a systematic review and meta-analysis. Journal of 

Neurology, Neurosurgery & Psychiatry, 89(9), 995–1002. https://doi.org/10.1136/jnnp-

2017-317459 

Benussi, A., Grassi, M., Palluzzi, F., Koch, G., Di Lazzaro, V., Nardone, R., Cantoni, V., 

Dell’Era, V., Premi, E., Martorana, A., di Lorenzo, F., Bonnì, S., Ranieri, F., Capone, F., 

Musumeci, G., Cotelli, M. S., Padovani, A., & Borroni, B. (2020). Classification Accuracy 

of Transcranial Magnetic Stimulation for the Diagnosis of  Neurodegenerative Dementias. 

Annals of Neurology, 87(3), 394–404. https://doi.org/10.1002/ana.25677 

Bertoux, M., Delavest, M., de Souza, L. C., Funkiewiez, A., Lépine, J.-P., Fossati, P., Dubois, 

B., & Sarazin, M. (2012). Social Cognition and Emotional Assessment differentiates 

frontotemporal dementia from depression. Journal of Neurology, Neurosurgery & 

Psychiatry, 83(4), 411–416. https://doi.org/10.1136/jnnp-2011-301849 

Bhardwaj, R., Nambiar, A. R., & Dutta, D. (2017). A Study of Machine Learning in Healthcare. 

2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), 

2, 236–241. https://doi.org/10.1109/COMPSAC.2017.164 

Bonanni, L., Franciotti, R., Martinotti, G., Vellante, F., Flacco, M. E., Di Giannantonio, M., 

Thomas, A., & Onofrj, M. (2018). Post Traumatic Stress Disorder Heralding the Onset of 

Semantic Frontotemporal Dementia. Journal of Alzheimer’s Disease, 63(1), 203–215. 

https://doi.org/10.3233/JAD-171134 

Bouts, M. J. R. J. R. J., Möller, C., Hafkemeijer, A., van Swieten, J. C., Dopper, E., van der 

Flier, W. M., Vrenken, H., Wink, A. M., Pijnenburg, Y. A. L. L., Scheltens, P., Barkhof, 

F., Schouten, T. M., de Vos, F., Feis, R. A., van der Grond, J., de Rooij, M., & Rombouts, 

S. A. R. B. R. B. (2018). Single Subject Classification of Alzheimer’s Disease and 

Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and 

Resting-State Functional Magnetic Resonance Imaging. Journal of Alzheimer’s Disease, 

62(4), 1827–1839. https://doi.org/10.3233/JAD-170893 

Bridel, C., van Wieringen, W. N., Zetterberg, H., Tijms, B. M., Teunissen, C. E., Alvarez-

Cermeño, J. C., Andreasson, U., Axelsson, M., Bäckström, D. C., Bartos, A., Bjerke, M., 

Blennow, K., Boxer, A., Brundin, L., Burman, J., Christensen, T., Fialová, L., Forsgren, 

L., Frederiksen, J. L., … Wild, E. J. (2019). Diagnostic Value of Cerebrospinal Fluid 

Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. 

JAMA Neurology, 76(9), 1035–1048. https://doi.org/10.1001/jamaneurol.2019.1534 



EXPLORING FTD WITH K-MEANS CLUSTERING  110 
 

Brigadoi, S., Cutini, S., Meconi, F., Castellaro, M., Sessa, P., Marangon, M., Bertoldo, A., 

Jolicœur, P., & Dell’Acqua, R. (2017). On the Role of the Inferior Intraparietal Sulcus in 

Visual Working Memory for Lateralized Single-feature Objects. Journal of Cognitive 

Neuroscience, 29(2), 337–351. https://doi.org/10.1162/jocn_a_01042 

Bron, E. E., Smits, M., Papma, J. M., Steketee, R. M. E., Meijboom, R., de Groot, M., van 

Swieten, J. C., Niessen, W. J., & Klein, S. (2017). Multiparametric computer-aided 

differential diagnosis of Alzheimer’s disease and  frontotemporal dementia using 

structural and advanced MRI. European Radiology, 27(8), 3372–3382. 

https://doi.org/10.1007/s00330-016-4691-x 

Bron, E. E., Steketee, R. M. E., Houston, G. C., Oliver, R. A., Achterberg, H. C., Loog, M., van 

Swieten, J. C., Hammers, A., Niessen, W. J., Smits, M., & Klein, S. (2014). Diagnostic 

classification of arterial spin labeling and structural MRI in presenile  early stage dementia. 

Human Brain Mapping, 35(9), 4916–4931. https://doi.org/10.1002/hbm.22522 

Bruun, M., Koikkalainen, J., Rhodius-Meester, H. F. M., Baroni, M., Gjerum, L., van Gils, M., 

Soininen, H., Remes, A. M., Hartikainen, P., Waldemar, G., Mecocci, P., Barkhof, F., 

Pijnenburg, Y., van der Flier, W. M., Hasselbalch, S. G., Lötjönen, J., & Frederiksen, K. 

S. (2019). Detecting frontotemporal dementia syndromes using MRI biomarkers. 

NeuroImage: Clinical, 22(November 2018), 101711. 

https://doi.org/10.1016/j.nicl.2019.101711 

Bruun, M., Rhodius‐Meester, H. F. M., Koikkalainen, J., Baroni, M., Gjerum, L., Lemstra, A. 

W., Barkhof, F., Remes, A. M., Urhemaa, T., Tolonen, A., Rueckert, D., Gils, M., 

Frederiksen, K. S., Waldemar, G., Scheltens, P., Mecocci, P., Soininen, H., Lötjönen, J., 

Hasselbalch, S. G., & Flier, W. M. (2018). Evaluating combinations of diagnostic tests to 

discriminate different dementia types. Alzheimer’s & Dementia: Diagnosis, Assessment & 

Disease Monitoring, 10(1), 509–518. https://doi.org/10.1016/j.dadm.2018.07.003 

Buhl, C., Stokholm, J., & Gade, A. (2013). Clinical Utility of Short Social Cognitive Tests in 

Early Differentiation of Behavioral Variant Frontotemporal Dementia from Alzheimer’s 

Disease. Dementia and Geriatric Cognitive Disorders Extra, 3(1), 376–385. 

https://doi.org/10.1159/000355123 

Bürger, K., Arzberger, T., Stephan, J., Levin, J., & Edbauer, D. (2017). Pathomechanismen und 

klinische Aspekte der frontotemporalen Lobärdegeneration. Der Nervenarzt, 88(2), 163–

172. https://doi.org/10.1007/s00115-016-0259-x 

Buuren, S. van, & Groothuis-Oudshoorn, K. (2011). mice : Multivariate Imputation by Chained 

Equations in R. Journal of Statistical Software, 45(3), 1–67. 



EXPLORING FTD WITH K-MEANS CLUSTERING  111 
 

https://doi.org/10.18637/jss.v045.i03 

Caixeta, L., & Caixeta, M. (2011). Primary progressive aphasia beginning with a psychiatric 

disorder. Clinics, 66(8), 1505–1508. https://doi.org/10.1590/S1807-59322011000800035 

Callahan, A., & Shah, N. H. (2017). Machine Learning in Healthcare. In Key Advances in 

Clinical Informatics (pp. 279–291). Elsevier. https://doi.org/10.1016/B978-0-12-809523-

2.00019-4 

Campion, W. M., & Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. In 

D. B. Rubin (Ed.), Journal of Marketing Research (Vol. 26, Issue 4). John Wiley & Sons, 

Inc. https://doi.org/10.1002/9780470316696 

Cerami, C., Dodich, A., Lettieri, G., Iannaccone, S., Magnani, G., Marcone, A., Gianolli, L., 

Cappa, S. F., & Perani, D. (2016). Different FDG-PET metabolic patterns at single-subject 

level in the behavioral variant of fronto-temporal dementia. Cortex, 83, 101–112. 

https://doi.org/10.1016/j.cortex.2016.07.008 

Chagué, P., Marro, B., Fadili, S., Houot, M., Morin, A., Samper-González, J., Beunon, P., 

Arrivé, L., Dormont, D., Dubois, B., Teichmann, M., Epelbaum, S., & Colliot, O. (2020). 

Radiological classification of dementia from anatomical MRI assisted by machine  

learning-derived maps. Journal of Neuroradiology = Journal de Neuroradiologie. 

https://doi.org/10.1016/j.neurad.2020.04.004 

Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., Cohen, Z., 

Belgrave, D., DeRubeis, R., Iniesta, R., Dwyer, D., & Choi, K. (2021). The promise of 

machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20(2), 

154–170. https://doi.org/10.1002/wps.20882 

Chen, I. Y., Pierson, E., Rose, S., Joshi, S., Ferryman, K., & Ghassemi, M. (2021). Ethical 

Machine Learning in Healthcare. Annual Review of Biomedical Data Science, 4(1), 123–

144. https://doi.org/10.1146/annurev-biodatasci-092820-114757 

Chen, P.-H. C., Liu, Y., & Peng, L. (2019). How to develop machine learning models for 

healthcare. Nature Materials, 18(5), 410–414. https://doi.org/10.1038/s41563-019-0345-

0 

Chiu, D., & Talhouk, A. (2021). diceR: Diverse Cluster Ensemble in R (1.1.0). https://cran.r-

project.org/package=diceR 

Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B. 

(2019). A systematic review shows no performance benefit of machine learning over 

logistic regression for clinical prediction models. Journal of Clinical Epidemiology, 110, 

12–22. https://doi.org/10.1016/j.jclinepi.2019.02.004 



EXPLORING FTD WITH K-MEANS CLUSTERING  112 
 

Cohen, J. P., Cao, T., Viviano, J. D., Huang, C.-W., Fralick, M., Ghassemi, M., Mamdani, M., 

Greiner, R., & Bengio, Y. (2021). Problems in the deployment of machine-learned models 

in health care. Canadian Medical Association Journal, 193(35), E1391–E1394. 

https://doi.org/10.1503/cmaj.202066 

Collins, J. D., Henley, S. M. D., & Suárez-González, A. (2020). A systematic review of the 

prevalence of depression, anxiety, and apathy in frontotemporal dementia, atypical and 

young-onset Alzheimer’s disease, and inherited dementia. International Psychogeriatrics, 

1–20. https://doi.org/10.1017/S1041610220001118 

Constantinidis, J., Richard, J., & Tissot, R. (1974). Pick’s Disease. European Neurology, 11(4), 

208–217. https://doi.org/10.1159/000114320 

Convery, R., Mead, S., & Rohrer, J. D. (2019). Review: Clinical, genetic and neuroimaging 

features of frontotemporal dementia. Neuropathology and Applied Neurobiology, 45(1), 

6–18. https://doi.org/10.1111/nan.12535 

Cope, T. E., Wilson, B., Robson, H., Drinkall, R., Dean, L., Grube, M., Jones, P. S., Patterson, 

K., Griffiths, T. D., Rowe, J. B., & Petkov, C. I. (2017). Artificial grammar learning in 

vascular and progressive non-fluent aphasias. Neuropsychologia, 104, 201–213. 

https://doi.org/10.1016/j.neuropsychologia.2017.08.022 

Coyle-Gilchrist, I. T. S., Dick, K. M., Patterson, K., Vázquez Rodríquez, P., Wehmann, E., 

Wilcox, A., Lansdall, C. J., Dawson, K. E., Wiggins, J., Mead, S., Brayne, C., & Rowe, J. 

B. (2016). Prevalence, characteristics, and survival of frontotemporal lobar degeneration 

syndromes. Neurology, 86(18), 1736–1743. 

https://doi.org/10.1212/WNL.0000000000002638 

Dave, A., Hansen, N., Downey, R., & Johnson, C. (2020). FDG-PET Imaging of Dementia and 

Neurodegenerative Disease. Seminars in Ultrasound, CT and MRI, 41(6), 562–571. 

https://doi.org/10.1053/j.sult.2020.08.010 

de Bruijne, M. (2016). Machine learning approaches in medical image analysis: From detection 

to diagnosis. Medical Image Analysis, 33(October), 94–97. 

https://doi.org/10.1016/j.media.2016.06.032 

Deleon, J., & Miller, B. L. (2018). Frontotemporal dementia. In Handbook of Clinical 

Neurology (1st ed., Vol. 148, pp. 409–430). Elsevier B.V. https://doi.org/10.1016/B978-

0-444-64076-5.00027-2 

DeLozier, S. J., & Davalos, D. (2016). A Systematic Review of Metacognitive Differences 

Between Alzheimer’s Disease and  Frontotemporal Dementia. American Journal of 

Alzheimer’s Disease and Other Dementias, 31(5), 381–388. 



EXPLORING FTD WITH K-MEANS CLUSTERING  113 
 

https://doi.org/10.1177/1533317515618899 

Dementia. (2021). https://www.who.int/news-room/fact-sheets/detail/dementia 

Denk, J., Oberhauser, F., Kornhuber, J., Wiltfang, J., Fassbender, K., Schroeter, M. L., Volk, 

A. E., Diehl-Schmid, J., Prudlo, J., Danek, A., Landwehrmeyer, B., Lauer, M., Otto, M., 

& Jahn, H. (2018). Specific serum and CSF microRNA profiles distinguish sporadic 

behavioural variant of frontotemporal dementia compared with Alzheimer patients and 

cognitively healthy controls. PLOS ONE, 13(5), e0197329. 

https://doi.org/10.1371/journal.pone.0197329 

Deo, R. C. (2015). Machine Learning in Medicine. Circulation, 132(20), 1920–1930. 

https://doi.org/10.1161/CIRCULATIONAHA.115.001593 

Desmarais, P., Weidman, D., Wassef, A., Bruneau, M.-A. A., Friedland, J., Bajsarowicz, P., 

Thibodeau, M.-P. P., Herrmann, N., & Nguyen, Q. D. (2020). The Interplay Between Post-

traumatic Stress Disorder and Dementia: A Systematic Review. American Journal of 

Geriatric Psychiatry, 28(1), 48–60. https://doi.org/10.1016/j.jagp.2019.08.006 

Deuschl, G., Maier, W., Jessen, F., & Spottke, A. (2016). S3-Leitlinie Demenzen. Deutsche 

Gesellschaft Für Neurologie, Hrsg. Leitlinien Für Diagnostik Und Therapie in Der 

Neurologie. www.dgn.org/leitlinien 

Dev, S. I., Dickerson, B. C., & Touroutoglou, A. (2021). Neuroimaging in Frontotemporal 

Lobar Degeneration: Research and Clinical Utility (pp. 93–112). 

https://doi.org/10.1007/978-3-030-51140-1_7 

Devineni, B., & Onyike, C. U. (2015). Young-Onset Dementia Epidemiology Applied to 

Neuropsychiatry Practice. Psychiatric Clinics of North America, 38(2), 233–248. 

https://doi.org/10.1016/j.psc.2015.02.003 

Diehl, J., Monsch, A. U., Aebi, C., Wagenpfeil, S., Krapp, S., Grimmer, T., Seeley, W., Förstl, 

H., & Kurz, A. (2005). Frontotemporal Dementia, Semantic Dementia, and Alzheimer’s 

Disease: The Contribution of Standard Neuropsychological Tests to Differential 

Diagnosis. Journal of Geriatric Psychiatry and Neurology, 18(1), 39–44. 

https://doi.org/10.1177/0891988704272309 

Dodich, A., Crespi, C., Santi, G. C., Cappa, S. F., & Cerami, C. (2021). Evaluation of 

Discriminative Detection Abilities of Social Cognition Measures for  the Diagnosis of the 

Behavioral Variant of Frontotemporal Dementia: a Systematic Review. Neuropsychology 

Review, 31(2), 251–266. https://doi.org/10.1007/s11065-020-09457-1 

Donnelly-Kehoe, P. A., Pascariello, G. O., García, A. M., Hodges, J. R., Miller, B., Rosen, H., 

Manes, F., Landin-Romero, R., Matallana, D., Serrano, C., Herrera, E., Reyes, P., 



EXPLORING FTD WITH K-MEANS CLUSTERING  114 
 

Santamaria-Garcia, H., Kumfor, F., Piguet, O., Ibanez, A., & Sedeño, L. (2019). Robust 

automated computational approach for classifying frontotemporal  neurodegeneration: 

Multimodal/multicenter neuroimaging. Alzheimer’s & Dementia (Amsterdam, 

Netherlands), 11, 588–598. https://doi.org/10.1016/j.dadm.2019.06.002 

Dottori, M., Sedeño, L., Martorell Caro, M., Alifano, F., Hesse, E., Mikulan, E., García, A. M., 

Ruiz-Tagle, A., Lillo, P., Slachevsky, A., Serrano, C., Fraiman, D., & Ibanez, A. (2017). 

Towards affordable biomarkers of frontotemporal dementia: A classification study via 

network’s information sharing. Scientific Reports, 7(1), 3822. 

https://doi.org/10.1038/s41598-017-04204-8 

Dubois, B., Defontaines, B., Deweer, B., Malapani, C., & Pillon, B. (1995). Cognitive and 

behavioral changes in patients with focal lesions of the basal ganglia. In Behavioral 

neurology of movement disorders. (pp. 29–41). Raven Press. 

Ducharme, S., Dols, A., Laforce, R., Devenney, E., Kumfor, F., van den Stock, J., Dallaire-

Théroux, C., Seelaar, H., Gossink, F., Vijverberg, E., Huey, E., Vandenbulcke, M., 

Masellis, M., Trieu, C., Onyike, C., Caramelli, P., de Souza, L. C., Santillo, A., Waldö, M. 

L., … Pijnenburg, Y. (2020). Recommendations to distinguish behavioural variant 

frontotemporal dementia from psychiatric disorders. Brain, 143(6), 1632–1650. 

https://doi.org/10.1093/brain/awaa018 

Elahi, F. M., & Miller, B. L. (2017). A clinicopathological approach to the diagnosis of 

dementia. Nature Reviews Neurology, 13(8), 457–476. 

https://doi.org/10.1038/nrneurol.2017.96 

Enders, C. K. (2010). Applied Missing Data Analysis. Guilford Press. 

Escudero, J., Zajicek, J. P., & Ifeachor, E. (2011). Early detection and characterization of 

Alzheimer’s disease in clinical scenarios using Bioprofile concepts and K-means. 2011 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, 6470–6473. https://doi.org/10.1109/IEMBS.2011.6091597 

Fan, J. M., Gorno-Tempini, M. L., Dronkers, N. F., Miller, B. L., Berger, M. S., & Chang, E. 

F. (2020). Data-Driven, Visual Framework for the Characterization of Aphasias Across 

Stroke, Post-resective, and Neurodegenerative Disorders Over Time. Frontiers in 

Neurology, 11(December), 1–10. https://doi.org/10.3389/fneur.2020.616764 

Farouk, Y., & Rady, S. (2020). Early Diagnosis of Alzheimer’s Disease using Unsupervised 

Clustering. International Journal of Intelligent Computing and Information Sciences, 

20(2), 112–124. https://doi.org/10.21608/ijicis.2021.51180.1044 

Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A. M., Nigg, J. T., & Fair, D. A. 



EXPLORING FTD WITH K-MEANS CLUSTERING  115 
 

(2019). The Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes. Trends 

in Cognitive Sciences, 23(7), 584–601. https://doi.org/10.1016/j.tics.2019.03.009 

Feis, R. A., Bouts, M. J. R. J., de Vos, F., Schouten, T. M., Panman, J. L., Jiskoot, L. C., Dopper, 

E. G. P., van der Grond, J., van Swieten, J. C., & Rombouts, S. A. R. B. (2019). A 

multimodal MRI-based classification signature emerges just prior to symptom onset  in 

frontotemporal dementia mutation carriers. Journal of Neurology, Neurosurgery, and 

Psychiatry, 90(11), 1207–1214. https://doi.org/10.1136/jnnp-2019-320774 

Feis, R. A., Bouts, M. J. R. J. R. J., Panman, J. L., Jiskoot, L. C., Dopper, E. G. P. P., Schouten, 

T. M., de Vos, F., van der Grond, J., van Swieten, J. C., & Rombouts, S. A. R. B. R. B. 

(2019). Single-subject classification of presymptomatic frontotemporal dementia mutation  

carriers using multimodal MRI. NeuroImage. Clinical, 20, 188–196. 

https://doi.org/10.1016/j.nicl.2018.07.014 

Ficiarà, E., Boschi, S., Ansari, S., D’Agata, F., Abollino, O., Caroppo, P., Di Fede, G., Indaco, 

A., Rainero, I., & Guiot, C. (2021). Machine Learning Profiling of Alzheimer’s Disease 

Patients Based on Current  Cerebrospinal Fluid Markers and Iron Content in Biofluids. 

Frontiers in Aging Neuroscience, 13, 607858. https://doi.org/10.3389/fnagi.2021.607858 

Fillenbaum, G. G., Belle, G. Van, Morris, J. C., Mohs, R. C., Mirra, S. S., Davis, P. C., Tariot, 

P. N., Silverman, J. M., Clark, C. M., Welsh-bohmer, K. A., & Heyman, A. (2008). 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): The first twenty 

years. Alzheimer’s & Dementia, 4, 96–109. https://doi.org/10.1016/j.jalz.2007.08.005 

Flint, C., Cearns, M., Opel, N., Redlich, R., Mehler, D. M. A., Emden, D., Winter, N. R., 

Leenings, R., Eickhoff, S. B., Kircher, T., Krug, A., Nenadic, I., Arolt, V., Clark, S., 

Baune, B. T., Jiang, X., Dannlowski, U., & Hahn, T. (2021). Systematic misestimation of 

machine learning performance in neuroimaging studies of depression. 

Neuropsychopharmacology, 46(8), 1510–1517. https://doi.org/10.1038/s41386-021-

01020-7 

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical 

method for grading the cognitive state of patients for the clinician. Journal of Psychiatric 

Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6 

Foran, A., Mathias, J., & Bowden, S. (2021). Effectiveness of sorting tests for detecting 

cognitive decline in older adults with dementia and other common neurodegenerative 

disorders: A meta-analysis. Neuroscience & Biobehavioral Reviews, 120(October 2020), 

442–454. https://doi.org/10.1016/j.neubiorev.2020.10.013 

Foster, N. L., Heidebrink, J. L., Clark, C. M., Jagust, W. J., Arnold, S. E., Barbas, N. R., 



EXPLORING FTD WITH K-MEANS CLUSTERING  116 
 

DeCarli, C. S., Scott Turner, R., Koeppe, R. A., Higdon, R., & Minoshima, S. (2007). 

FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s 

disease. Brain, 130(10), 2616–2635. https://doi.org/10.1093/brain/awm177 

Foxe, D., Cheung, S. C., Cordato, N. J., Burrell, J. R., Ahmed, R. M., Taylor-Rubin, C., Irish, 

M., & Piguet, O. (2021). Verbal Short-Term Memory Disturbance in the Primary 

Progressive Aphasias: Challenges and Distinctions in a Clinical Setting. Brain Sciences, 

11(8), 1060. https://doi.org/10.3390/brainsci11081060 

Foxe, D., Irish, M., Hodges, J. R., & Piguet, O. (2013). Verbal and Visuospatial Span in 

Logopenic Progressive Aphasia and Alzheimer’s Disease. Journal of the International 

Neuropsychological Society, 19(3), 247–253. 

https://doi.org/10.1017/S1355617712001269 

Foxe, D., Irish, M., D’Mello, M., Barhon, L., Burrell, J. R., Kessels, R. P. C., & Piguet, O. 

(2021). The Box Task: A novel tool to differentiate the primary progressive aphasias. 

European Journal of Neurology, 28(12), 3945–3954. https://doi.org/10.1111/ene.15035 

Foxe, D., Irish, M., Roquet, D., Scharfenberg, A., Bradshaw, N., Hodges, J. R., Burrell, J. R., 

& Piguet, O. (2020). Visuospatial short-term and working memory disturbance in the 

primary progressive aphasias: Neuroanatomical and clinical implications. Cortex, 132, 

223–237. https://doi.org/10.1016/j.cortex.2020.08.018 

Fränti, P., & Sieranoja, S. (2018). K-means properties on six clustering benchmark datasets. 

Applied Intelligence, 48(12), 4743–4759. https://doi.org/10.1007/s10489-018-1238-7 

Fraser, K. C., Meltzer, J. A., Graham, N. L., Leonard, C., Hirst, G., Black, S. E., & Rochon, E. 

(2014). Automated classification of primary progressive aphasia subtypes from narrative  

speech transcripts. Cortex; a Journal Devoted to the Study of the Nervous System and 

Behavior, 55, 43–60. https://doi.org/10.1016/j.cortex.2012.12.006 

Gamberger, D., Ženko, B., Mitelpunkt, A., Shachar, N., & Lavrač, N. (2016). Clusters of male 

and female Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. Brain Informatics, 3(3), 169–179. 

https://doi.org/10.1007/s40708-016-0035-5 

Gambogi, L. B., Guimarães, H. C., De Souza, L. C., & Caramelli, P. (2019). Behavioral variant 

frontotemporal dementia in patients with previous severe mental illness: a systematic and 

critical review. Arquivos de Neuro-Psiquiatria, 77(9), 654–668. 

https://doi.org/10.1590/0004-282x20190107 

García-Laencina, P. J., Sancho-Gómez, J.-L., & Figueiras-Vidal, A. R. (2010). Pattern 

classification with missing data: a review. Neural Computing and Applications, 19(2), 



EXPLORING FTD WITH K-MEANS CLUSTERING  117 
 

263–282. https://doi.org/10.1007/s00521-009-0295-6 

Garcia‐Gutierrez, F., Delgado‐Alvarez, A., Delgado‐Alonso, C., Díaz‐Álvarez, J., Pytel, V., 

Valles‐Salgado, M., Gil, M. J., Hernández‐Lorenzo, L., Matías‐Guiu, J., Ayala, J. L., & 

Matias‐Guiu, J. A. (2022). Diagnosis of Alzheimer’s disease and behavioural variant 

frontotemporal dementia with machine learning‐aided neuropsychological assessment 

using feature engineering and genetic algorithms. International Journal of Geriatric 

Psychiatry, 37(2), 1–13. https://doi.org/10.1002/gps.5667 

Garn, H., Coronel, C., Waser, M., Caravias, G., & Ransmayr, G. (2017). Differential diagnosis 

between patients with probable Alzheimer’s disease,  Parkinson’s disease dementia, or 

dementia with Lewy bodies and frontotemporal dementia, behavioral variant, using 

quantitative electroencephalographic features. Journal of Neural Transmission (Vienna, 

Austria : 1996), 124(5), 569–581. https://doi.org/10.1007/s00702-017-1699-6 

Garrard, P., Rentoumi, V., Gesierich, B., Miller, B., & Gorno-Tempini, M. L. (2014). Machine 

learning approaches to diagnosis and laterality effects in semantic dementia  discourse. 

Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 55, 122–129. 

https://doi.org/10.1016/j.cortex.2013.05.008 

Gil-Navarro, S., Lladó, A., Rami, L., Castellví, M., Bosch, B., Bargalló, N., Lomeña, F., Reñé, 

R., Montagut, N., Antonell, A., Molinuevo, J. L., & Sánchez-Valle, R. (2013). 

Neuroimaging and Biochemical Markers in the Three Variants of Primary Progressive 

Aphasia. Dementia and Geriatric Cognitive Disorders, 35(1–2), 106–117. 

https://doi.org/10.1159/000346289 

Glosser, G., Gallo, J. L., Clark, C. M., & Grossman, M. (2002). Memory encoding and retrieval 

in frontotemporal dementia and Alzheimer’s disease. Neuropsychology, 16(2), 190–196. 

https://doi.org/10.1037/0894-4105.16.2.190 

Goldman, J. S., Farmer, J. M., Wood, E. M., Johnson, J. K., Boxer, A., Neuhaus, J., Lomen-

Hoerth, C., Wilhelmsen, K. C., Lee, V. M. Y., Grossman, M., & Miller, B. L. (2005). 

Comparison of family histories in FTLD subtypes and related tauopathies. Neurology, 

65(11), 1817–1819. https://doi.org/10.1212/01.wnl.0000187068.92184.63 

Goodglass, H., & Kaplan, E. (1972). The assessment of aphasia and related disorders. Lea & 

Febiger. 

Gordon, E., Rohrer, J. D., & Fox, N. C. (2016). Advances in neuroimaging in frontotemporal 

dementia. Journal of Neurochemistry, 138, 193–210. https://doi.org/10.1111/jnc.13656 

Gorno-Tempini, M. L., Brambati, S. M., Ginex, V., Ogar, J., Dronkers, N. F., Marcone, A., 

Perani, D., Garibotto, V., Cappa, S. F., & Miller, B. L. (2008). The logopenic/phonological 



EXPLORING FTD WITH K-MEANS CLUSTERING  118 
 

variant of primary progressive aphasia. Neurology, 71(16), 1227–1234. 

https://doi.org/10.1212/01.wnl.0000320506.79811.da 

Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., 

Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., 

Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, 

J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive 

aphasia and its variants. Neurology, 76(11), 1006–1014. 

https://doi.org/10.1212/WNL.0b013e31821103e6 

Gossink, F., Schouws, S., Krudop, W., Scheltens, P., Stek, M., Pijnenburg, Y., & Dols, A. 

(2018). Social Cognition Differentiates Behavioral Variant Frontotemporal Dementia 

From Other Neurodegenerative Diseases and Psychiatric Disorders. The American Journal 

of Geriatric Psychiatry, 26(5), 569–579. https://doi.org/10.1016/j.jagp.2017.12.008 

Grace, J., & Malloy, P. H. (2001). Frontal systems behavior scale (FrSBe): Professional manual. 

Psychological Assessment Resources (PAR). 

Graham, A. (2005). Pathologically proven frontotemporal dementia presenting with severe 

amnesia. Brain, 128(3), 597–605. https://doi.org/10.1093/brain/awh348 

Grossman, M. (2010). Primary progressive aphasia: clinicopathological correlations. Nature 

Reviews Neurology, 6(2), 88–97. https://doi.org/10.1038/nrneurol.2009.216 

Grote, T., & Berens, P. (2020). On the ethics of algorithmic decision-making in healthcare. 

Journal of Medical Ethics, 46(3), 205–211. https://doi.org/10.1136/medethics-2019-

105586 

Guillén, E. F., Rosales, J. J., Lisei, D., Grisanti, F., Riverol, M., & Arbizu, J. (2020). Current 

role of 18F-FDG-PET in the differential diagnosis of the main forms of dementia. Clinical 

and Translational Imaging, 8(3), 127–140. https://doi.org/10.1007/s40336-020-00366-0 

Habes, M., Grothe, M. J., Tunc, B., McMillan, C., Wolk, D. A., & Davatzikos, C. (2020). 

Disentangling Heterogeneity in Alzheimer’s Disease and Related Dementias Using Data-

Driven Methods. Biological Psychiatry, 88(1), 70–82. 

https://doi.org/10.1016/j.biopsych.2020.01.016 

Hall, B., Mak, E., Cervenka, S., Aigbirhio, F. I., Rowe, J. B., & O’Brien, J. T. (2017). In vivo 

tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a 

systematic review of clinical findings. Ageing Research Reviews, 36, 50–63. 

https://doi.org/10.1016/j.arr.2017.03.002 

Hardy, C. J. D., Marshall, C. R., Bond, R. L., Russell, L. L., Dick, K., Ariti, C., Thomas, D. L., 

Ross, S. J., Agustus, J. L., Crutch, S. J., Rohrer, J. D., Bamiou, D.-E., & Warren, J. D. 



EXPLORING FTD WITH K-MEANS CLUSTERING  119 
 

(2018). Retained capacity for perceptual learning of degraded speech in primary 

progressive aphasia and Alzheimer’s disease. Alzheimer’s Research & Therapy, 10(1), 70. 

https://doi.org/10.1186/s13195-018-0399-2 

Harper, L., Fumagalli, G. G., Barkhof, F., Scheltens, P., O’Brien, J. T., Bouwman, F., Burton, 

E. J., Rohrer, J. D., Fox, N. C., Ridgway, G. R., & Schott, J. M. (2016). MRI visual rating 

scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. 

Brain : A Journal of Neurology, 139(Pt 4), 1211–1225. 

https://doi.org/10.1093/brain/aww005 

Harris, J. M., Gall, C., Thompson, J. C., Richardson, A. M. T., Neary, D., du Plessis, D., Pal, 

P., Mann, D. M. A., Snowden, J. S., & Jones, M. (2013). Classification and pathology of 

primary progressive aphasia. Neurology, 81(21), 1832–1839. 

https://doi.org/10.1212/01.wnl.0000436070.28137.7b 

Harris, J. M., Saxon, J. A., Jones, M., Snowden, J. S., & Thompson, J. C. (2019). 

Neuropsychological differentiation of progressive aphasic disorders. Journal of 

Neuropsychology, 13(2), 214–239. https://doi.org/10.1111/jnp.12149 

Hayati Rezvan, P., Lee, K. J., & Simpson, J. A. (2015). The rise of multiple imputation: a review 

of the reporting and implementation of the method in medical research. BMC Medical 

Research Methodology, 15(1), 30. https://doi.org/10.1186/s12874-015-0022-1 

Heitkamp, N., Leiss, E., & Danek, A. (2010). Repeat & Point German Adaptation of a tool for 

differentiating semantic dementia and primary progressive aphasia. Klinische 

Neurophysiologie, 41(01). 

Hennig, C. (2015). What are the true clusters? Pattern Recognition Letters, 64, 53–62. 

https://doi.org/10.1016/j.patrec.2015.04.009 

Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.). (2015). Handbook of Cluster Analysis 

(1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b19706 

Henry, M., & Grasso, S. (2018). Assessment of Individuals with Primary Progressive Aphasia. 

Seminars in Speech and Language, 39(03), 231–241. https://doi.org/10.1055/s-0038-

1660782 

Henry, M., & Gorno-Tempini, M. L. (2010). The logopenic variant of primary progressive 

aphasia. Current Opinion in Neurology, 23(6), 633–637. 

https://doi.org/10.1097/WCO.0b013e32833fb93e 

Hindmarch, I., Lehfeld, H., de Jongh, P., & Erzigkeit, H. (1998). The Bayer Activities of Daily 

Living Scale (B-ADL). Dementia and Geriatric Cognitive Disorders, 9(2), 20–26. 

https://doi.org/10.1159/000051195 



EXPLORING FTD WITH K-MEANS CLUSTERING  120 
 

Hinterbuchinger, B., Kaltenboeck, A., Baumgartner, J. S., Mossaheb, N., & Friedrich, F. 

(2018). Do patients with different psychiatric disorders show altered social decision-

making? A systematic review of ultimatum game experiments in clinical populations. 

Cognitive Neuropsychiatry, 23(3), 117–141. 

https://doi.org/10.1080/13546805.2018.1453791 

Hodges, J. R., Martinos, M., Woollams, A. M., Patterson, K., & Adlam, A.-L. R. (2008). Repeat 

and Point: Differentiating semantic dementia from progressive non-fluent aphasia. Cortex, 

44(9), 1265–1270. https://doi.org/10.1016/j.cortex.2007.08.018 

Hogan, D. B., Jetté, N., Fiest, K. M., Roberts, J. I., Pearson, D., Smith, E. E., Roach, P., Kirk, 

A., Pringsheim, T., & Maxwell, C. J. (2016). The Prevalence and Incidence of 

Frontotemporal Dementia: a Systematic Review. The Canadian Journal of Neurological 

Sciences. Le Journal Canadien Des Sciences  Neurologiques, 43 Suppl 1, S96–S109. 

https://doi.org/10.1017/cjn.2016.25 

Holzinger, A., Saranti, A., Molnar, C., Biecek, P., & Samek, W. (2022). Explainable AI 

Methods - A Brief Overview (pp. 13–38). https://doi.org/10.1007/978-3-031-04083-2_2 

Horn, J.-F., Habert, M.-O., Kas, A., Malek, Z., Maksud, P., Lacomblez, L., Giron, A., & Fertil, 

B. (2009). Differential automatic diagnosis between Alzheimer’s disease and 

frontotemporal dementia based on perfusion SPECT images. Artificial Intelligence in 

Medicine, 47(2), 147–158. https://doi.org/10.1016/j.artmed.2009.05.001 

Hornberger, M., Piguet, O., Graham, A. J., Nestor, P. J., & Hodges, J. R. (2010). How preserved 

is episodic memory in behavioral variant frontotemporal dementia? Neurology, 74(6), 

472–479. https://doi.org/10.1212/WNL.0b013e3181cef85d 

Hornberger, M., & Piguet, O. (2012). Episodic memory in frontotemporal dementia: a critical 

review. Brain, 135(3), 678–692. https://doi.org/10.1093/brain/aws011 

Huang, Z. (1998). Extensions to the k-Means Algorithm for Clustering Large Data Sets with 

Categorical Values. Data Mining and Knowledge Discovery 2, 283-304. Data Mining and 

Knowledge Discovery, 2(3), 283–304. 

https://www.researchgate.net/publication/220451944_Huang_Z_Extensions_to_the_k-

Means_Algorithm_for_Clustering_Large_Data_Sets_with_Categorical_Values_Data_Mi

ning_and_Knowledge_Discovery_2_283-304 

Hui Xiong, Junjie Wu, & Jian Chen. (2009). K-Means Clustering Versus Validation Measures: 

A Data-Distribution Perspective. IEEE Transactions on Systems, Man, and Cybernetics, 

Part B (Cybernetics), 39(2), 318–331. https://doi.org/10.1109/TSMCB.2008.2004559 

Hutchinson, A. D., & Mathias, J. L. (2007). Neuropsychological deficits in frontotemporal 



EXPLORING FTD WITH K-MEANS CLUSTERING  121 
 

dementia and Alzheimer’s disease: a meta-analytic review. 

https://doi.org/10.1136/jnnp.2006.100669 

Illán‐Gala, I., Casaletto, K. B., Borrego‐Écija, S., Arenaza‐Urquijo, E. M., Wolf, A., Cobigo, 

Y., Goh, S. Y. M., Staffaroni, A. M., Alcolea, D., Fortea, J., Blesa, R., Clarimon, J., Iulita, 

M. F., Brugulat‐Serrat, A., Lladó, A., Grinberg, L. T., Possin, K., Rankin, K. P., Kramer, 

J. H., … Rosen, H. J. (2021). Sex differences in the behavioral variant of frontotemporal 

dementia: A new window to executive and behavioral reserve. Alzheimer’s & Dementia, 

17(8), 1329–1341. https://doi.org/10.1002/alz.12299 

Ingram, R. U., Halai, A. D., Pobric, G., Sajjadi, S., Patterson, K., & Lambon Ralph, M. A. 

(2020). Graded, multidimensional intra- and intergroup variations in primary progressive 

aphasia and post-stroke aphasia. Brain, 143(10), 3121–3135. 

https://doi.org/10.1093/brain/awaa245 

Isaacs, B., & Kennie, A. T. (1973). The Set Test as an Aid to the Detection of Dementia in Old 

People. British Journal of Psychiatry, 123(575), 467–470. 

https://doi.org/10.1192/bjp.123.4.467 

Ishihara, T., & Terada, S. (2001). Geriatric Depression Scale (GDS). In Management of 

Dementia: Vol. 69 Suppl 8 (Issue 4, pp. 152–152). CRC Press. 

https://doi.org/10.3109/9780203213896-32 

Jiskoot, L. C., Panman, J. L., Meeter, L. H., Dopper, E. G. P., Donker Kaat, L., Franzen, S., van 

der Ende, E. L., van Minkelen, R., Rombouts, S. A. R. B., Papma, J. M., & van Swieten, 

J. C. (2019). Longitudinal multimodal MRI as prognostic and diagnostic biomarker in 

presymptomatic familial frontotemporal dementia. Brain, 142(1), 193–208. 

https://doi.org/10.1093/brain/awy288 

Johnson, J. K., Diehl, J., Mendez, M. F., Neuhaus, J., Shapira, J. S., Forman, M., Chute, D. J., 

Roberson, E. D., Pace-Savitsky, C., Neumann, M., Chow, T. W., Rosen, H. J., Forstl, H., 

Kurz, A., & Miller, B. L. (2005). Frontotemporal Lobar Degeneration. Archives of 

Neurology, 62(6), 87–114. https://doi.org/10.1001/archneur.62.6.925 

Josephs, K. A., Whitwell, J. L., Knopman, D. S., Boeve, B. F., Vemuri, P., Senjem, M. L., 

Parisi, J. E., Ivnik, R. J., Dickson, D. W., Petersen, R. C., & Jack, C. R. (2009). Two 

distinct subtypes of right temporal variant frontotemporal dementia. Neurology, 73(18), 

1443–1450. https://doi.org/10.1212/WNL.0b013e3181bf9945 

Juva, K., Sulkava, R., Erkinjuntti, T., Ylikoski, R., Valvanne, J., & Tilvis, R. (2009). Staging 

the severity of dementia: comparison of clinical (CDR, DSM-III-R), functional (ADL, 

IADL) and cognitive (MMSE) scales. Acta Neurologica Scandinavica, 90(4), 293–298. 



EXPLORING FTD WITH K-MEANS CLUSTERING  122 
 

https://doi.org/10.1111/j.1600-0404.1994.tb02724.x 

Kamath, V., Chaney, G.-A. S., DeRight, J., & Onyike, C. U. (2019). A meta-analysis of 

neuropsychological, social cognitive, and olfactory functioning in the behavioral and 

language variants of frontotemporal dementia. Psychological Medicine, 49(16), 2669–

2680. https://doi.org/10.1017/S0033291718003604 

Kamath, V., Sutherland, E. R., & Chaney, G.-A. (2020). A Meta-Analysis of 

Neuropsychological Functioning in the Logopenic Variant of Primary Progressive 

Aphasia: Comparison with the Semantic and Non-Fluent Variants. Journal of the 

International Neuropsychological Society, 26(3), 322–330. 

https://doi.org/10.1017/S1355617719001115 

Kaplan, E., Goodglass, H., & Weintraub, S. (1978). The Boston Naming Test. Veterans 

Administration Medical Center. 

Kertesz, A., Davidson, W., McCabe, P., & Munoz, D. (2003). Behavioral Quantitation Is More 

Sensitive Than Cognitive Testing in Frontotemporal Dementia. Alzheimer Disease & 

Associated Disorders, 17(4), 223–229. https://doi.org/10.1097/00002093-200310000-

00005 

Khedairia, S., & Khadir, M. T. (2022). A multiple clustering combination approach based on 

iterative voting process. Journal of King Saud University - Computer and Information 

Sciences, 34(1), 1370–1380. https://doi.org/10.1016/j.jksuci.2019.09.013 

Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov, A., & Catheline, G. (2018). 3D CNN-

based classification using sMRI and MD-DTI images for Alzheimer disease studies. 

http://arxiv.org/abs/1801.05968 

Kim, E.-J., Sidhu, M., Gaus, S. E., Huang, E. J., Hof, P. R., Miller, B. L., DeArmond, S. J., & 

Seeley, W. W. (2012). Selective Frontoinsular von Economo Neuron and Fork Cell Loss 

in Early Behavioral Variant Frontotemporal Dementia. Cerebral Cortex, 22(2), 251–259. 

https://doi.org/10.1093/cercor/bhr004 

Kim, J. P., Kim, J., Park, Y. H., Park, S. B., Lee, J. S., Yoo, S., Kim, E.-J., Kim, H. J., Na, D. 

L., Brown, J. A., Lockhart, S. N., Seo, S. W., & Seong, J.-K. (2019). Machine learning 

based hierarchical classification of frontotemporal dementia and  Alzheimer’s disease. 

NeuroImage. Clinical, 23, 101811. https://doi.org/10.1016/j.nicl.2019.101811 

Klöppel, S., Kotschi, M., Peter, J., Egger, K., Hausner, L., Frölich, L., Förster, A., Heimbach, 

B., Normann, C., Vach, W., Urbach, H., & Abdulkadir, A. (2018). Separating 

Symptomatic Alzheimer’s Disease from Depression based on Structural MRI. Journal of 

Alzheimer’s Disease : JAD, 63(1), 353–363. https://doi.org/10.3233/JAD-170964 



EXPLORING FTD WITH K-MEANS CLUSTERING  123 
 

Kloppel, S., Stonnington, C. M., Barnes, J., Chen, F., Chu, C., Good, C. D., Mader, I., Mitchell, 

L. A., Patel, A. C., Roberts, C. C., Fox, N. C., Jack, C. R., Ashburner, J., & Frackowiak, 

R. S. J. (2008). Accuracy of dementia diagnosis--a direct comparison between radiologists 

and a computerized method. Brain, 131(11), 2969–2974. 

https://doi.org/10.1093/brain/awn239 

Knibb, J. A., Xuereb, J. H., Patterson, K., & Hodges, J. R. (2006). Clinical and pathological 

characterization of progressive aphasia. Annals of Neurology, 59(1), 156–165. 

https://doi.org/10.1002/ana.20700 

Knopman, D. S., Kramer, J. H., Boeve, B. F., Caselli, R. J., Graff-Radford, N. R., Mendez, M. 

F., Miller, B. L., & Mercaldo, N. (2008). Development of methodology for conducting 

clinical trials in frontotemporal lobar degeneration. Brain, 131(11), 2957–2968. 

https://doi.org/10.1093/brain/awn234 

Knopman, D. S., & Roberts, R. O. (2011). Estimating the Number of Persons with 

Frontotemporal Lobar Degeneration in the US Population. Journal of Molecular 

Neuroscience, 45(3), 330–335. https://doi.org/10.1007/s12031-011-9538-y 

Kononenko, I. (2001). Machine learning for medical diagnosis: history, state of the art and 

perspective. Artificial Intelligence in Medicine, 23(1), 89–109. 

https://doi.org/10.1016/S0933-3657(01)00077-X 

Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, 

J., Schmitt, G., Zetzsche, T., Decker, P., Reiser, M., Möller, H.-J., & Gaser, C. (2009). 

Use of Neuroanatomical Pattern Classification to Identify Subjects in At-Risk Mental 

States of Psychosis and Predict Disease Transition. Archives of General Psychiatry, 66(7), 

700. https://doi.org/10.1001/archgenpsychiatry.2009.62 

Kramer, J. H., Jurik, J., Sha, S. J., Rankin, K. P., Rosen, H. J., Johnson, J. K., & Miller, B. L. 

(2003). Distinctive Neuropsychological Patterns in Frontotemporal Dementia, Semantic 

Dementia, And Alzheimer Disease. Cognitive and Behavioral Neurology, 16(4), 211–218. 

https://doi.org/10.1097/00146965-200312000-00002 

Kuring, J. K., Mathias, J. L., & Ward, L. (2018). Prevalence of Depression, Anxiety and PTSD 

in People with Dementia: a Systematic  Review and Meta-Analysis. Neuropsychology 

Review, 28(4), 393–416. https://doi.org/10.1007/s11065-018-9396-2 

Lage, C., López-García, S., Bejanin, A., Kazimierczak, M., Aracil-Bolaños, I., Calvo-Córdoba, 

A., Pozueta, A., García-Martínez, M., Fernández-Rodríguez, A., Bravo-González, M., 

Jiménez-Bonilla, J., Banzo, I., Irure-Ventura, J., Pegueroles, J., Illán-Gala, I., Fortea, J., 

Rodríguez-Rodríguez, E., Lleó-Bisa, A., García-Cena, C. E., & Sánchez-Juan, P. (2020). 



EXPLORING FTD WITH K-MEANS CLUSTERING  124 
 

Distinctive Oculomotor Behaviors in Alzheimer’s Disease and Frontotemporal Dementia. 

Frontiers in Aging Neuroscience, 12, 603790. https://doi.org/10.3389/fnagi.2020.603790 

Lanata, S. C., & Miller, B. L. (2016). The behavioural variant frontotemporal dementia 

(bvFTD) syndrome in psychiatry. Journal of Neurology, Neurosurgery & Psychiatry, 

87(5), 501–511. https://doi.org/10.1136/jnnp-2015-310697 

Lecerf, S., Leroy, M., Lebouvier, T., Lebert, F., Deramecourt, V., Maurage, C. A., & Pasquier, 

F. (2020). Alzheimer’s disease phenotypes misdiagnosed with frontotemporal lobar 

degeneration: A retrospective neuropathologic study. Alzheimer’s & Dementia, 16(S2), 

39692. https://doi.org/10.1002/alz.039692 

Lei, D., Pinaya, W. H. L., van Amelsvoort, T., Marcelis, M., Donohoe, G., Mothersill, D. O., 

Corvin, A., Gill, M., Vieira, S., Huang, X., Lui, S., Scarpazza, C., Young, J., Arango, C., 

Bullmore, E., Qiyong, G., McGuire, P., & Mechelli, A. (2019). Detecting schizophrenia 

at the level of the individual: relative diagnostic value of whole-brain images, connectome-

wide functional connectivity and graph-based metrics. Psychological Medicine, 1–10. 

https://doi.org/10.1017/S0033291719001934 

Leyton, C. E., Ballard, K. J., Piguet, O., & Hodges, J. R. (2014). Phonologic errors as a clinical 

marker of the logopenic variant of PPA. Neurology, 82(18), 1620–1627. 

https://doi.org/10.1212/WNL.0000000000000387 

Li, F., & Liu, M. (2018). Alzheimer’s disease diagnosis based on multiple cluster dense 

convolutional networks. Computerized Medical Imaging and Graphics, 70, 101–110. 

https://doi.org/10.1016/j.compmedimag.2018.09.009 

Libon, D. J., Xie, S. X., Moore, P., Farmer, J., Antani, S., McCawley, G., Cross, K., & 

Grossman, M. (2007). Patterns of neuropsychological impairment in frontotemporal 

dementia. Neurology, 68(5), 369–375. 

https://doi.org/10.1212/01.wnl.0000252820.81313.9b 

Libon, D. J., Xie, S. X., Wang, X., Massimo, L., Moore, P., Vesely, L., Khan, A., Chatterjee, 

A., Coslett, H. B., Hurtig, H. I., Liang, T. W., & Grossman, M. (2009). 

Neuropsychological Decline in Frontotemporal Lobar Degeneration: A Longitudinal 

Analysis. Neuropsychology, 23(3), 337–346. https://doi.org/10.1037/a0014995 

Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. 

Pattern Recognition, 36(2), 451–461. https://doi.org/10.1016/S0031-3203(02)00060-2 

Lin, C.-H., Chiu, S.-I., Chen, T.-F., Jang, J.-S. R., & Chiu, M.-J. (2020). Classifications of 

Neurodegenerative Disorders Using a Multiplex Blood  Biomarkers-Based Machine 

Learning Model. International Journal of Molecular Sciences, 21(18). 



EXPLORING FTD WITH K-MEANS CLUSTERING  125 
 

https://doi.org/10.3390/ijms21186914 

Livinț Popa, L., Dragoș, H.-M. M., Strilciuc,  Ștefan, Pantelemon, C., Mureșanu, I., Dina, C., 

Văcăraș, V., & Mureșanu, D. (2021). Added Value of QEEG for the Differential Diagnosis 

of Common Forms of Dementia. Clinical EEG and Neuroscience, 52(3), 201–210. 

https://doi.org/10.1177/1550059420971122 

Ljubenkov, P. A., & Boxer, A. L. (2021). FTLD Treatment: Current Practice and Future 

Possibilities (pp. 297–310). https://doi.org/10.1007/978-3-030-51140-1_18 

Ma, D., Lu, D., Popuri, K., & Beg, M. F. (2021). Differential Diagnosis of Frontotemporal 

Dementia and Alzheimer’s Disease using Generative Adversarial Network. ArXiv 

Preprint, 1–9. https://doi.org/https://doi.org/10.48550/arXiv.2109.05627 

Machulda, M. M., Whitwell, J. L., Duffy, J. R., Strand, E. A., Dean, P. M., Senjem, M. L., Jack, 

C. R., & Josephs, K. A. (2013). Identification of an atypical variant of logopenic 

progressive aphasia. Brain and Language, 127(2), 139–144. 

https://doi.org/10.1016/j.bandl.2013.02.007 

Macoir, J., Légaré, A., & Lavoie, M. (2021). Contribution of the Cognitive Approach to 

Language Assessment to the Differential Diagnosis of Primary Progressive Aphasia. Brain 

Sciences, 11(6), 815. https://doi.org/10.3390/brainsci11060815 

MacPherson, S. E., Wagner, G. P., Murphy, P., Bozzali, M., Cipolotti, L., & Shallice, T. (2014). 

Bringing the Cognitive Estimation Task into the 21st Century: Normative Data on Two 

New Parallel Forms. PLoS ONE, 9(3), e92554. 

https://doi.org/10.1371/journal.pone.0092554 

Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data 

should not be used to guide decisions on multiple imputation. Journal of Clinical 

Epidemiology, 110, 63–73. https://doi.org/10.1016/j.jclinepi.2019.02.016 

Marin, R. S., Biedrzycki, R. C., & Firinciogullari, S. (1991). Reliability and validity of the 

apathy evaluation scale. Psychiatry Research, 38(2), 143–162. 

https://doi.org/10.1016/0165-1781(91)90040-V 

Marshall, C. R., Hardy, C. J. D., Volkmer, A., Russell, L. L., Bond, R. L., Fletcher, P. D., Clark, 

C. N., Mummery, C. J., Schott, J. M., Rossor, M. N., Fox, N. C., Crutch, S. J., Rohrer, J. 

D., & Warren, J. D. (2018). Primary progressive aphasia: a clinical approach. Journal of 

Neurology, 265(6), 1474–1490. https://doi.org/10.1007/s00415-018-8762-6 

Maruta, C., Pereira, T., Madeira, S. C., De Mendonça, A., & Guerreiro, M. (2015). 

Classification of primary progressive aphasia: Do unsupervised data mining methods 

support a logopenic variant? Amyotrophic Lateral Sclerosis and Frontotemporal 



EXPLORING FTD WITH K-MEANS CLUSTERING  126 
 

Degeneration, 16(3–4), 147–159. https://doi.org/10.3109/21678421.2015.1026266 

Massimo, L., Kales, H. C., & Kolanowski, A. (2018). State of the Science: Apathy As a Model 

for Investigating Behavioral and Psychological Symptoms in Dementia. Journal of the 

American Geriatrics Society, 66(Suppl 1), S4–S12. https://doi.org/10.1111/jgs.15343 

Matias-Guiu, J. A., Díaz-Álvarez, J., Ayala, J. L., Risco-Martín, J. L., Moreno-Ramos, T., Pytel, 

V., Matias-Guiu, J., Carreras, J. L., & Cabrera-Martín, M. N. (2018). Clustering Analysis 

of FDG-PET Imaging in Primary Progressive Aphasia. Frontiers in Aging Neuroscience, 

10, 230. https://doi.org/10.3389/fnagi.2018.00230 

Matias-Guiu, J. A., Díaz-Alvarez, J., Cuetos, F., Cabrera-Martín, M. N., Segovia-Ríos, I., Pytel, 

V., Moreno-Ramos, T., Carreras, J. L., Matías-Guiu, J., & Ayala, J. L. (2019). Machine 

learning in the clinical and language characterisation of primary progressive aphasia 

variants. Cortex, 119, 312–323. 

https://doi.org/https://doi.org/10.1016/j.cortex.2019.05.007 

Matias-Guiu, J. A., Suárez-Coalla, P., Pytel, V., Cabrera-Martín, M. N., Moreno-Ramos, T., 

Delgado-Alonso, C., Delgado-Álvarez, A., Matías-Guiu, J., & Cuetos, F. (2020). Reading 

prosody in the non-fluent and logopenic variants of primary progressive aphasia. Cortex, 

132, 63–78. https://doi.org/10.1016/j.cortex.2020.08.013 

Mesulam, M.-M. (1982). Slowly progressive aphasia without generalized dementia. Annals of 

Neurology, 11(6), 592–598. https://doi.org/10.1002/ana.410110607 

Mesulam, M.-M., Coventry, C., Bigio, E. H., Geula, C., Thompson, C., Bonakdarpour, B., 

Gefen, T., Rogalski, E. J., & Weintraub, S. (2021). Nosology of Primary Progressive 

Aphasia and the Neuropathology of Language (pp. 33–49). https://doi.org/10.1007/978-3-

030-51140-1_3 

Mesulam, M. M. (2001). Primary progressive aphasia. Annals of Neurology, 49(4), 425–432. 

https://doi.org/10.4414/sanp.2020.03101 

Mesulam, M., Wieneke, C., Rogalski, E., Cobia, D., Thompson, C., & Weintraub, S. (2009). 

Quantitative Template for Subtyping Primary Progressive Aphasia. Archives of 

Neurology, 66(12), 1545–1551. https://doi.org/10.1001/archneurol.2009.288 

Meyer, A. M., Snider, S. F., Campbell, R. E., & Friedman, R. B. (2015). Phonological short-

term memory in logopenic variant primary progressive aphasia and mild Alzheimer’s 

disease. Cortex, 71, 183–189. https://doi.org/10.1016/j.cortex.2015.07.003 

Meyer, S., Mueller, K., Stuke, K., Bisenius, S., Diehl-Schmid, J., Jessen, F., Kassubek, J., 

Kornhuber, J., Ludolph, A. C., Prudlo, J., Schneider, A., Schuemberg, K., Yakushev, I., 

Otto, M., & Schroeter, M. L. (2017). Predicting behavioral variant frontotemporal 



EXPLORING FTD WITH K-MEANS CLUSTERING  127 
 

dementia with pattern classification in multi-center structural MRI data. NeuroImage: 

Clinical, 14, 656–662. https://doi.org/10.1016/j.nicl.2017.02.001 

Micanovic, C., & Pal, S. (2014). The diagnostic utility of EEG in early-onset dementia: a 

systematic review of the literature with narrative analysis. Journal of Neural Transmission, 

121(1), 59–69. https://doi.org/10.1007/s00702-013-1070-5 

Mittal, M., Goyal, L. M., Hemanth, D. J., & Sethi, J. K. (2019). Clustering approaches for high-

dimensional databases: A review. Wiley Interdisciplinary Reviews: Data Mining and 

Knowledge Discovery, 9(3), 1–14. https://doi.org/10.1002/widm.1300 

Modirrousta, M., Price, B. H., & Dickerson, B. C. (2013). Neuropsychiatric symptoms in 

primary progressive aphasia: phenomenology, pathophysiology, and approach to 

assessment and treatment. Neurodegenerative Disease Management, 3(2), 133–146. 

https://doi.org/10.2217/nmt.13.6 

Moguilner, S., García, A. M., Mikulan, E., Hesse, E., García-Cordero, I., Melloni, M., Cervetto, 

S., Serrano, C., Herrera, E., Reyes, P., Matallana, D., Manes, F., Ibáñez, A., & Sedeño, L. 

(2018). Weighted Symbolic Dependence Metric (wSDM) for fMRI resting-state 

connectivity: A  multicentric validation for frontotemporal dementia. Scientific Reports, 

8(1), 11181. https://doi.org/10.1038/s41598-018-29538-9 

Moguilner, S., García, A. M., Perl, Y. S., Tagliazucchi, E., Piguet, O., Kumfor, F., Reyes, P., 

Matallana, D., Sedeño, L., & Ibáñez, A. (2021). Dynamic brain fluctuations outperform 

connectivity measures and mirror  pathophysiological profiles across dementia subtypes: 

A multicenter study. NeuroImage, 225, 117522. 

https://doi.org/10.1016/j.neuroimage.2020.117522 

Mohs, R. C., Kim, Y., Johns, C. A., Dunn, D. D., & Davis, K. L. (1986). Assessing changes in 

Alzheimer’s disease: Memory and language. In Handbook for clinical memory assessment 

of older adults. (pp. 149–155). American Psychological Association. 

https://doi.org/10.1037/10057-012 

Molenberghs, G., Fitzmaurice, G., Kenward, M. G., Tsiatis, A., & Verbeke, G. (2014). 

Handbooks of Modern Statistical Methods Handbook of Missing Data Methodology. 

Moms, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., Mellits, 

E. D., & Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD). Part I. Clinical and neuropsychological assesment of Alzheimer’s disease. 

Neurology, 39(9), 1159–1159. https://doi.org/10.1212/WNL.39.9.1159 

Morris, J. C. (1993). The Clinical Dementia Rating (CDR) Current version and scoring rules. 

Neurology, 43(11), 2412.2-2412-a. https://doi.org/10.1212/WNL.43.11.2412-a 



EXPLORING FTD WITH K-MEANS CLUSTERING  128 
 

Mulder-Heijstra, M. M. P., Jokel, R. R., Chertkow, H. H., Conn, D. D. K., & Mah, L. L. (2021). 

Primary Progressive Aphasia Presenting With Neuropsychiatric Symptoms. Journal of 

Geriatric Psychiatry and Neurology, 089198872110361. 

https://doi.org/10.1177/08919887211036189 

Muñoz-Neira, C., Tedde, A., Coulthard, E., Thai, N. J., & Pennington, C. (2019). Neural 

correlates of altered insight in frontotemporal dementia: a systematic  review. 

NeuroImage. Clinical, 24, 102066. https://doi.org/10.1016/j.nicl.2019.102066 

Murley, A. G., Coyle-Gilchrist, I., Rouse, M. A., Jones, P. S., Li, W., Wiggins, J., Lansdall, C., 

Rodríguez, P. V., Wilcox, A., Tsvetanov, K. A., Patterson, K., Lambon Ralph, M. A., & 

Rowe, J. B. (2020). Redefining the multidimensional clinical phenotypes of 

frontotemporal lobar degeneration syndromes. Brain, 143(5), 1555–1571. 

https://doi.org/10.1093/brain/awaa097 

Musa, G., Slachevsky, A., Muñoz-Neira, C., Méndez-Orellana, C., Villagra, R., González-

Billault, C., Ibáñez, A., Hornberger, M., & Lillo, P. (2020). Alzheimer’s Disease or 

Behavioral Variant Frontotemporal Dementia? Review of Key Points Toward an Accurate 

Clinical and Neuropsychological Diagnosis. Journal of Alzheimer’s Disease, 73(3), 833–

848. https://doi.org/10.3233/JAD-190924 

Neary, D., Brun, A., Englund, B., Gustafson, L., Passant, U., Mann, D. M. A., & Snowden, J. 

S. (1994). Clinical and neuropathological criteria for frontotemporal dementia. The Lund 

and Manchester Groups. Journal of Neurology, Neurosurgery & Psychiatry, 57(4), 416–

418. https://doi.org/10.1136/jnnp.57.4.416 

Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., 

Kertesz, A., Robert, P. H., Albert, M., Boone, K., Miller, B. L., Cummings, J., & Benson, 

D. F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic 

criteria. Neurology, 51(6), 1546–1554. https://doi.org/10.1212/WNL.51.6.1546 

O’Connor, C. M., Clemson, L., Hornberger, M., Leyton, C. E., Hodges, J. R., Piguet, O., & 

Mioshi, E. (2016). Longitudinal change in everyday function and behavioral symptoms in 

frontotemporal dementia. Neurology: Clinical Practice, 6(5), 419–428. 

https://doi.org/10.1212/CPJ.0000000000000264 

O’Connor, C. M., Landin-Romero, R., Clemson, L., Kaizik, C., Daveson, N., Hodges, J. R., 

Hsieh, S., Piguet, O., & Mioshi, E. (2017). Behavioral-variant frontotemporal dementia. 

Neurology, 89(6), 570–577. https://doi.org/10.1212/WNL.0000000000004215 

Olney, N. T., Spina, S., & Miller, B. L. (2017). Frontotemporal Dementia. Neurologic Clinics, 

35(2), 339–374. https://doi.org/10.1016/j.ncl.2017.01.008 



EXPLORING FTD WITH K-MEANS CLUSTERING  129 
 

Onyike, C. U., & Diehl-Schmid, J. (2013). The epidemiology of frontotemporal dementia. 

International Review of Psychiatry, 25(2), 130–137. 

https://doi.org/10.3109/09540261.2013.776523 

Orrù, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using 

Support Vector Machine to identify imaging biomarkers of neurological and psychiatric 

disease: A critical review. Neuroscience and Biobehavioral Reviews, 36(4), 1140–1152. 

https://doi.org/10.1016/j.neubiorev.2012.01.004 

Osher, J. E., Wicklund, A. H., Rademaker, A., Johnson, N., & Weintraub, S. (2008). The Mini-

Mental State Examination in Behavioral Variant Frontotemporal Dementia and Primary 

Progressive Aphasia. American Journal of Alzheimer’s Disease & Other Dementiasr, 

22(6), 468–473. https://doi.org/10.1177/1533317507307173 

Otto, M., Ludolph, A. C., Landwehrmeyer, B., Förstl, H., Diehl-Schmid, J., Neumann, M., 

Kretzschmar, H. A., Schroeter, M., Kornhuber, J., & Danek, A. (2011). Konsortium zur 

Erforschung der frontotemporalen Lobärdegeneration. Der Nervenarzt, 82(8), 1002–1005. 

https://doi.org/10.1007/s00115-011-3261-3 

Overbeek, J. M., Korten, N., Gossink, F., Fieldhouse, J., van de Beek, M., Reus, L., Dols, A., 

Pijnenburg, Y., & Schouws, S. (2020). The Value of Neuropsychological Assessment in 

the Differentiation Between Behavioral Variant Frontotemporal Dementia and Late-Onset 

Psychiatric Disorders. The Journal of Clinical Psychiatry, 81(1), 1–8. 

https://doi.org/10.4088/JCP.19m12811 

Owens, T. E., Machulda, M. M., Duffy, J. R., Strand, E. A., Clark, H. M., Boland, S., Martin, 

P. R., Lowe, V. J., Jack, C. R., Whitwell, J. L., & Josephs, K. A. (2018). Patterns of 

Neuropsychological Dysfunction and Cortical Volume Changes in Logopenic Aphasia. 

Journal of Alzheimer’s Disease, 66(3), 1015–1025. https://doi.org/10.3233/JAD-171175 

Pan, P. L., Song, W., Yang, J., Huang, R., Chen, K., Gong, Q. Y., Zhong, J. G., Shi, H. C., & 

Shang, H. F. (2012). Gray Matter Atrophy in Behavioral Variant Frontotemporal 

Dementia: A Meta-Analysis of Voxel-Based Morphometry Studies. Dementia and 

Geriatric Cognitive Disorders, 33(2–3), 141–148. https://doi.org/10.1159/000338176 

Panza, F., Lozupone, M., Seripa, D., Daniele, A., Watling, M., Giannelli, G., & Imbimbo, B. P. 

(2020). Development of disease-modifying drugs for frontotemporal dementia spectrum 

disorders. Nature Reviews Neurology, 16(4), 213–228. https://doi.org/10.1038/s41582-

020-0330-x 

Parums, D. V. (2021). Editorial: The National COVID Cohort Collaborative Consortium 

Combines Population Data with Machine Learning to Evaluate and Predict Risk Factors 



EXPLORING FTD WITH K-MEANS CLUSTERING  130 
 

for the Severity of COVID-19. Medical Science Monitor, 27, e934171. 

https://doi.org/10.12659/MSM.934171 

Peet, B. T., Castro-Suarez, S., & Miller, B. L. (2021). The Neuropsychiatric Features of 

Behavioral Variant Frontotemporal Dementia (pp. 17–31). https://doi.org/10.1007/978-3-

030-51140-1_2 

Pick, A. (1901). Senile hirnatrophie als grundlage von Herderscheinungen. Wiener Klinische 

Wochenschrift, 14, 16–17. 

Pick, A. (1904). Zur Symptomatologie der linksseitigen Schläfenlappenatrophie. Monatschrift 

Für Psychiatrie Und Neurologie, 16, 378–388. 

Pick, Arnold. (1892). Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prag Med 

Wochenschr, 17, 165–167. 

Piguet, O., Hornberger, M., Mioshi, E., & Hodges, J. R. (2011). Behavioural-variant 

frontotemporal dementia: diagnosis, clinical staging, and management. The Lancet 

Neurology, 10(2), 162–172. https://doi.org/10.1016/S1474-4422(10)70299-4 

Poonam, K., Guha, R., & Chakrabarti, P. P. (2021). Artificial intelligence methods based 

hierarchical classification of frontotemporal dementia to improve diagnostic 

predictability. 

Postema, M. C., Rooij, D. van, Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Filho, 

G. B., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Martino, A. Di, Dinstein, I., Duran, 

F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., … Francks, C. (2019). 

Altered structural brain asymmetry in autism spectrum disorder: large-scale analysis via 

the ENIGMA Consortium. https://doi.org/10.1101/570655 

Premi, E., Cauda, F., Costa, T., Diano, M., Gazzina, S., Gualeni, V., Alberici, A., Archetti, S., 

Magoni, M., Gasparotti, R., Padovani, A., & Borroni, B. (2016). Looking for 

Neuroimaging Markers in Frontotemporal Lobar Degeneration Clinical  Trials: A Multi-

Voxel Pattern Analysis Study in Granulin Disease. Journal of Alzheimer’s Disease : JAD, 

51(1), 249–262. https://doi.org/10.3233/JAD-150340 

Price, C. C., Tanner, J. J., Schmalfuss, I. M., Brumback, B., Heilman, K. M., & Libon, D. J. 

(2015). Dissociating Statistically-Determined Alzheimer’s Disease/Vascular Dementia 

Neuropsychological Syndromes Using White and Gray Neuroradiological Parameters. 

Journal of Alzheimer’s Disease, 48(3), 833–847. https://doi.org/10.3233/JAD-150407 

Primativo, S., Clark, C., Yong, K. X. X., Firth, N. C., Nicholas, J., Alexander, D., Warren, J. 

D., Rohrer, J. D., & Crutch, S. J. (2017). Eyetracking metrics reveal impaired spatial 

anticipation in behavioural variant  frontotemporal dementia. Neuropsychologia, 106, 



EXPLORING FTD WITH K-MEANS CLUSTERING  131 
 

328–340. https://doi.org/10.1016/j.neuropsychologia.2017.10.014 

Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2021). Secure and Robust Machine 

Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering, 14, 156–

180. https://doi.org/10.1109/RBME.2020.3013489 

R Core Team. (2021). R: A language and environment for statistical computing. 

Rabinovici, G. D., & Miller, B. L. (2010). Frontotemporal Lobar Degeneration. CNS Drugs, 

24(5), 375–398. https://doi.org/10.2165/11533100-000000000-00000 

Rabinovici, G. D., Stephens, M. L., & Possin, K. L. (2015). Executive Dysfunction. 

CONTINUUM: Lifelong Learning in Neurology, 21(3), 646–659. 

https://doi.org/10.1212/01.CON.0000466658.05156.54 

Raghunathan, T., Lepkowski, J., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate 

technique for multiply imputing missing values using a sequence of regression models. 

Survey Methodology, 27(1), 85–96. 

Ramanan, S., Roquet, D., Goldberg, Z., Hodges, J. R., Piguet, O., Irish, M., & Lambon Ralph, 

M. A. (2020). Establishing two principal dimensions of cognitive variation in logopenic 

progressive aphasia. Brain Communications. https://doi.org/10.1093/braincomms/fcaa125 

Ranasinghe, K. G., Rankin, K. P., Pressman, P. S., Perry, D. C., Lobach, I. V., Seeley, W. W., 

Coppola, G., Karydas, A. M., Grinberg, L. T., Shany-Ur, T., Lee, S. E., Rabinovici, G. D., 

Rosen, H. J., Gorno-Tempini, M. L., Boxer, A. L., Miller, Z. A., Chiong, W., DeMay, M., 

Kramer, J. H., … Miller, B. L. (2016). Distinct Subtypes of Behavioral Variant 

Frontotemporal Dementia Based on Patterns of Network Degeneration. JAMA Neurology, 

73(9), 1078. https://doi.org/10.1001/jamaneurol.2016.2016 

Rankin, K. P. (2021). Measuring Behavior and Social Cognition in FTLD (pp. 51–65). 

https://doi.org/10.1007/978-3-030-51140-1_4 

Rankin, K. P., Santos-Modesitt, W., Kramer, J. H., Pavlic, D., Beckman, V., & Miller, B. L. 

(2008). Spontaneous Social Behaviors Discriminate Behavioral Dementias From 

Psychiatric Disorders and Other Dementias. The Journal of Clinical Psychiatry, 69(1), 60–

73. https://doi.org/10.4088/JCP.v69n0109 

Rascovsky, K., & Grossman, M. (2013). Clinical diagnostic criteria and classification 

controversies in frontotemporal lobar degeneration. International Review of Psychiatry, 

25(2), 145–158. https://doi.org/10.3109/09540261.2013.763341 

Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., van 

Swieten, J. C., Seelaar, H., Dopper, E. G. P., Onyike, C. U., Hillis, A. E., Josephs, K. A., 

Boeve, B. F., Kertesz, A., Seeley, W. W., Rankin, K. P., Johnson, J. K., Gorno-Tempini, 



EXPLORING FTD WITH K-MEANS CLUSTERING  132 
 

M.-L., Rosen, H., … Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the 

behavioural variant of frontotemporal dementia. Brain, 134(9), 2456–2477. 

https://doi.org/10.1093/brain/awr179 

Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. R. (2002). The prevalence of 

frontotemporal dementia. Neurology, 58(11), 1615–1621. 

https://doi.org/10.1212/WNL.58.11.1615 

Regard, M., Strauss, E., & Knapp, P. (1982). Children’s production on verbal and non-verbal 

fluency tasks. Perceptual and Motor Skills, 55(3 Pt 1), 839–844. 

https://doi.org/10.2466/pms.1982.55.3.839 

Reitan, R. M. (1958). Validity of the Trail Making Test as an Indicator of Organic Brain 

Damage. Perceptual and Motor Skills, 8(3), 271–276. 

https://doi.org/10.2466/pms.1958.8.3.271 

Reul, S., Lohmann, H., Wiendl, H., Duning, T., & Johnen, A. (2017). Can cognitive assessment 

really discriminate early stages of Alzheimer’s and behavioural variant frontotemporal 

dementia at initial clinical presentation? Alzheimer’s Research & Therapy, 9(1), 61. 

https://doi.org/10.1186/s13195-017-0287-1 

Riedijk, S. R., De Vugt, M. E., Duivenvoorden, H. J., Niermeijer, M. F., van Swieten, J. C., 

Verhey, F. R. J., & Tibben, A. (2006). Caregiver Burden, Health-Related Quality of Life 

and Coping in Dementia Caregivers: A Comparison of Frontotemporal Dementia and 

Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders, 22(5–6), 405–412. 

https://doi.org/10.1159/000095750 

Rogalski, E., Rademaker, A., & Weintraub, S. (2007). Primary Progressive Aphasia: 

Relationship Between Gender and Severity of Language Impairment. Cognitive and 

Behavioral Neurology, 20(1), 38–43. https://doi.org/10.1097/WNN.0b013e31802e3bae 

Rohrer, J. D., Caso, F., Mahoney, C., Henry, M., Rosen, H. J., Rabinovici, G., Rossor, M. N., 

Miller, B., Warren, J. D., Fox, N. C., Ridgway, G. R., & Gorno-Tempini, M. L. (2013). 

Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive 

aphasia. Brain and Language, 127(2), 121–126. 

https://doi.org/10.1016/j.bandl.2012.12.008 

Rohrer, J. D., Ridgway, G. R., Crutch, S. J., Hailstone, J., Goll, J. C., Clarkson, M. J., Mead, 

S., Beck, J., Mummery, C., Ourselin, S., Warrington, E. K., Rossor, M. N., & Warren, J. 

D. (2010). Progressive logopenic/phonological aphasia: Erosion of the language network. 

NeuroImage, 49(1), 984–993. https://doi.org/10.1016/j.neuroimage.2009.08.002 

Rohrer, J. D., Woollacott, I. O. C., Dick, K. M., Brotherhood, E., Gordon, E., Fellows, A., 



EXPLORING FTD WITH K-MEANS CLUSTERING  133 
 

Toombs, J., Druyeh, R., Cardoso, M. J., Ourselin, S., Nicholas, J. M., Norgren, N., Mead, 

S., Andreasson, U., Blennow, K., Schott, J. M., Fox, N. C., Warren, J. D., & Zetterberg, 

H. (2016). Serum neurofilament light chain protein is a measure of disease intensity in 

frontotemporal dementia. Neurology, 87(13), 1329–1336. 

https://doi.org/10.1212/WNL.0000000000003154 

Roman Meller, M., Patel, S., Duarte, D., Kapczinski, F., de Azevedo Cardoso, T., Meller, M. 

R., Patel, S., Duarte, D., Kapczinski, F., & Cardoso, T. de A. (2021). Bipolar disorder and 

frontotemporal dementia: A systematic review. Acta Psychiatrica Scandinavica, 144(5), 

433–447. https://doi.org/10.1111/acps.13362 

Romero, B., & Wenz, M. (2002). Konzept und Wirksamkeit eines Behandlungsprogrammes für 

Demenzkranke und deren Angehörige. 35, 118–128. 

Rosen, H. J., Lengenfelder, J., & Miller, B. (2000). FRONTOTEMPORAL DEMENTIA. 

Neurologic Clinics, 18(4), 979–992. https://doi.org/10.1016/S0733-8619(05)70235-8 

Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. 

American Journal of Psychiatry, 141(11), 1356–1364. 

https://doi.org/10.1176/ajp.141.11.1356 

Rosness, T. A., Haugen, P. K., Passant, U., & Engedal, K. (2008). Frontotemporal dementia--a 

clinically complex diagnosis. International Journal of Geriatric Psychiatry, 23(8), 837–

842. https://doi.org/10.1002/gps.1992 

Rosso, S. M., Kaat, L. D., Baks, T., Joosse, M., de Koning, I., Pijnenburg, Y., Jong, D. de, 

Dooijes, D., Kamphorst, W., Ravid, R., Niermeijer, M. F., Verheij, F., Kremer, H. P., 

Scheltens, P., Duijn, C. M. van, Heutink, P., & van Swieten, J. C. (2003). Frontotemporal 

dementia in The Netherlands: patient characteristics and prevalence estimates from a 

population-based study. Brain, 126(9), 2016–2022. https://doi.org/10.1093/brain/awg204 

Rossor, M. N., Fox, N. C., Mummery, C. J., Schott, J. M., & Warren, J. D. (2010). The diagnosis 

of young-onset dementia. The Lancet Neurology, 9(8), 793–806. 

https://doi.org/10.1016/S1474-4422(10)70159-9 

RStudio Team. (2020). RStudio: Integrated Development for R. In RStudio, PBC. 

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. 

https://doi.org/10.1093/biomet/63.3.581 

Ruksenaite, J., Volkmer, A., Jiang, J., Johnson, J. C., Marshall, C. R., Warren, J. D., & Hardy, 

C. J. (2021). Primary Progressive Aphasia: Toward a Pathophysiological Synthesis. 

Current Neurology and Neuroscience Reports, 21(3), 7. https://doi.org/10.1007/s11910-

021-01097-z 



EXPLORING FTD WITH K-MEANS CLUSTERING  134 
 

Sachdev, P. S., Blacker, D., Blazer, D. G., Ganguli, M., Jeste, D. V., Paulsen, J. S., & Petersen, 

R. C. (2014). Classifying neurocognitive disorders: the DSM-5 approach. Nature Reviews 

Neurology, 10(11), 634–642. https://doi.org/10.1038/nrneurol.2014.181 

Sajjadi, S. A., Patterson, K., Arnold, R. J., Watson, P. C., & Nestor, P. J. (2012). Primary 

progressive aphasia: A tale of two syndromes and the rest. Neurology, 78(21), 1670–1677. 

https://doi.org/10.1212/WNL.0b013e3182574f79 

Sampath, R., & Saradha, A. (2014). Classification of Alzheimer’s Disease Stages Exploiting an 

ANFIS Classifier. Internatinal Journal of Applied Engineering Research, 9(22), 16979–

16990. http://www.ripublication.com 

Scarpazza, C., Sartori, G., De Simone, M. S., & Mechelli, A. (2013). When the single matters 

more than the group: Very high false positive rates in single case Voxel Based 

Morphometry. NeuroImage, 70, 175–188. 

https://doi.org/10.1016/j.neuroimage.2012.12.045 

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. 

Psychological Methods, 7(2), 147–177. https://doi.org/10.1037/1082-989X.7.2.147 

Scheltens, N. M. E., Galindo-Garre, F., Pijnenburg, Y. A. L., van der Vlies, A. E., Smits, L. L., 

Koene, T., Teunissen, C. E., Barkhof, F., Wattjes, M. P., Scheltens, P., & van der Flier, 

W. M. (2016). The identification of cognitive subtypes in Alzheimer’s disease dementia 

using latent class analysis. Journal of Neurology, Neurosurgery & Psychiatry, 87(3), 235–

243. https://doi.org/10.1136/jnnp-2014-309582 

Schönecker, S., Hell, F., Bötzel, K., Wlasich, E., Ackl, N., Süßmair, C., Otto, M., Anderl-

Straub, S., Ludolph, A., Kassubek, J., Huppertz, H. J., Diehl-Schmid, J., Riedl, L., 

Roßmeier, C., Fassbender, K., Lyros, E., Kornhuber, J., Oberstein, T. J., Fliessbach, K., 

… Danek, A. (2019). The applause sign in frontotemporal lobar degeneration and related 

conditions. Journal of Neurology, 266(2), 330–338. https://doi.org/10.1007/s00415-018-

9134-y 

Schroeter, M. L., Laird, A. R., Chwiesko, C., Deuschl, C., Schneider, E., Bzdok, D., Eickhoff, 

S. B., & Neumann, J. (2014). Conceptualizing neuropsychiatric diseases with multimodal 

data-driven meta-analyses – The case of behavioral variant frontotemporal dementia. 

Cortex, 57, 22–37. https://doi.org/10.1016/j.cortex.2014.02.022 

Schroeter, M. L., Pawelke, S., Bisenius, S., Kynast, J., Schuemberg, K., Polyakova, M., Anderl-

Straub, S., Danek, A., Fassbender, K., Jahn, H., Jessen, F., Kornhuber, J., Lauer, M., 

Prudlo, J., Schneider, A., Uttner, I., Thöne-Otto, A., Otto, M., & Diehl-Schmid, J. (2018). 

A Modified Reading the Mind in the Eyes Test Predicts Behavioral Variant 



EXPLORING FTD WITH K-MEANS CLUSTERING  135 
 

Frontotemporal Dementia Better Than Executive Function Tests. Frontiers in Aging 

Neuroscience, 10(JAN), 1–11. https://doi.org/10.3389/fnagi.2018.00011 

Schroeter, M. L., Raczka, K., Neumann, J., & Yves von Cramon, D. (2007). Towards a 

nosology for frontotemporal lobar degenerations—A meta-analysis involving 267 

subjects. NeuroImage, 36(3), 497–510. https://doi.org/10.1016/j.neuroimage.2007.03.024 

Sebastian, R., Thompson, C. B., Wang, N.-Y., Wright, A., Meyer, A., Friedman, R. B., Hillis, 

A. E., & Tippett, D. C. (2018). Patterns of decline in naming and semantic knowledge in 

primary progressive aphasia. Aphasiology, 32(9), 1010–1030. 

https://doi.org/10.1080/02687038.2018.1490388 

Seckin, M., Ricard, I., Raiser, T., Heitkamp, N., Ebert, A., Prix, C., Levin, J., Diehl-Schmid, J., 

Riedl, L., Roßmeier, C., Hoen, N., Schroeter, M. L., Marschhauser, A., Obrig, H., Benke, 

T., Kornhuber, J., Fliessbach, K., Schneider, A., Wiltfang, J., … Danek, A. (2022). Utility 

of the Repeat and Point Test for Subtyping Patients With Primary Progressive Aphasia. 

Alzheimer Disease & Associated Disorders, Publish Ah(00), 1–8. 

https://doi.org/10.1097/wad.0000000000000482 

Seeley, W. W., Bauer, A. M., Miller, B. L., Gorno-Tempini, M. L., Kramer, J. H., Weiner, M., 

& Rosen, H. J. (2005). The natural history of temporal variant frontotemporal dementia. 

Neurology, 64(8), 1384–1390. https://doi.org/10.1212/01.WNL.0000158425.46019.5C 

Seeley, William W., Carlin, D. A., Allman, J. M., Macedo, M. N., Bush, C., Miller, B. L., & 

DeArmond, S. J. (2006). Early frontotemporal dementia targets neurons unique to apes 

and humans. Annals of Neurology, 60(6), 660–667. https://doi.org/10.1002/ana.21055 

Seeley, William W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). 

Neurodegenerative Diseases Target Large-Scale Human Brain Networks. Neuron, 62(1), 

42–52. https://doi.org/10.1016/j.neuron.2009.03.024 

Seeley, William W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M., Miller, B. L., & 

Gorno-Tempini, M. L. (2008). Frontal Paralimbic Network Atrophy in Very Mild 

Behavioral Variant Frontotemporal Dementia. Archives of Neurology, 65(2), 249–255. 

https://doi.org/10.1001/archneurol.2007.38 

Șenbabaoğlu, Y., Michailidis, G., & Li, J. Z. (2015). Critical limitations of consensus clustering 

in class discovery. Scientific Reports, 4(1), 6207. https://doi.org/10.1038/srep06207 

Shahid, N., Rappon, T., & Berta, W. (2019). Applications of artificial neural networks in health 

care organizational decision-making: A scoping review. PLOS ONE, 14(2), e0212356. 

https://doi.org/10.1371/journal.pone.0212356 

Shailaja, K., Seetharamulu, B., & Jabbar, M. A. (2018). Machine Learning in Healthcare: A 



EXPLORING FTD WITH K-MEANS CLUSTERING  136 
 

Review. 2018 Second International Conference on Electronics, Communication and 

Aerospace Technology (ICECA), 25(2), 910–914. 

https://doi.org/10.1109/ICECA.2018.8474918 

Shallice, T., & Evans, M. E. (1978). The Involvement of the Frontal Lobes in Cognitive 

Estimation. Cortex, 14(2), 294–303. https://doi.org/10.1016/S0010-9452(78)80055-0 

Shaw, A. D., Hughes, L. E., Moran, R., Coyle-Gilchrist, I., Rittman, T., & Rowe, J. B. (2021). 

In Vivo Assay of Cortical Microcircuitry in Frontotemporal Dementia: A Platform for  

Experimental Medicine Studies. Cerebral Cortex (New York, N.Y. : 1991), 31(3), 1837–

1847. https://doi.org/10.1093/cercor/bhz024 

Shinagawa, S., Nakajima, S., Plitman, E., Graff-Guerrero, A., Mimura, M., Nakayama, K., & 

Miller, B. L. (2014). Psychosis in frontotemporal dementia. Journal of Alzheimer’s 

Disease : JAD, 42(2), 485–499. https://doi.org/10.3233/JAD-140312 

Simjanoski, M., McIntyre, A., Kapczinski, F., & Azevedo, T. de. (2021). Cognitive impairment 

in bipolar disorder in comparison to mild cognitive impairment and dementia: a systematic 

review. Trends in Psychiatry and Psychotherapy. https://doi.org/10.47626/2237-6089-

2021-0300 

Sitek, E. J., Barczak, A., & Harciarek, M. (2015). Neuropsychological Assessment and 

Differential Diagnosis in Young-Onset Dementias. Psychiatric Clinics of North America, 

38(2), 265–279. https://doi.org/10.1016/j.psc.2015.01.003 

Steinacker, P., Anderl-Straub, S., Diehl-Schmid, J., Semler, E., Uttner, I., von Arnim, C. A. F., 

Barthel, H., Danek, A., Fassbender, K., Fliessbach, K., Foerstl, H., Grimmer, T., Huppertz, 

H.-J., Jahn, H., Kassubek, J., Kornhuber, J., Landwehrmeyer, B., Lauer, M., Maler, J. M., 

… Otto, M. (2018). Serum neurofilament light chain in behavioral variant frontotemporal 

dementia. Neurology, 91(15), e1390–e1401. 

https://doi.org/10.1212/WNL.0000000000006318 

Steinacker, P., Semler, E., Anderl-Straub, S., Diehl-Schmid, J., Schroeter, M. L., Uttner, I., 

Foerstl, H., Landwehrmeyer, B., von Arnim, C. A. F., Kassubek, J., Oeckl, P., Huppertz, 

H.-J., Fassbender, K., Fliessbach, K., Prudlo, J., Roßmeier, C., Kornhuber, J., Schneider, 

A., Volk, A. E., … Otto, M. (2017). Neurofilament as a blood marker for diagnosis and 

monitoring of primary progressive aphasias. Neurology, 88(10), 961–969. 

https://doi.org/10.1212/WNL.0000000000003688 

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental 

Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651 

Tellechea, P., Pujol, N., Esteve-Belloch, P., Echeveste, B., García-Eulate, M. R., Arbizu, J., & 



EXPLORING FTD WITH K-MEANS CLUSTERING  137 
 

Riverol, M. (2018). Early- and late-onset Alzheimer disease: Are they the same entity? 

Neurología (English Edition), 33(4), 244–253. 

https://doi.org/10.1016/j.nrleng.2015.08.009 

Themistocleous, C., Ficek, B., Webster, K., den Ouden, D.-B., Hillis, A. E., & Tsapkini, K. 

(2021). Automatic Subtyping of Individuals with Primary Progressive Aphasia. Journal of 

Alzheimer’s Disease, 79(3), 1185–1194. https://doi.org/10.3233/JAD-201101 

Thurstone, L. L. (1973). Primary Mental Abilities. In The Measurement of Intelligence (pp. 

131–136). Springer Netherlands. https://doi.org/10.1007/978-94-011-6129-9_8 

Tippett, D. C. (2020). Classification of primary progressive aphasia: challenges and 

complexities. F1000Research, 9, 64. https://doi.org/10.12688/f1000research.21184.1 

Tombaugh, T. N., & McIntyre, N. J. (1992). The Mini-Mental State Examination: A 

Comprehensive Review. Journal of the American Geriatrics Society, 40(9), 922–935. 

https://doi.org/10.1111/j.1532-5415.1992.tb01992.x 

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial 

intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7 

Torso, M., Bozzali, M., Cercignani, M., Jenkinson, M., & Chance, S. A. (2020). Using diffusion 

tensor imaging to detect cortical changes in fronto-temporal  dementia subtypes. Scientific 

Reports, 10(1), 11237. https://doi.org/10.1038/s41598-020-68118-8 

Tran, C. T., Zhang, M., Andreae, P., & Xue, B. (2017). Multiple imputation and genetic 

programming for classification with incomplete data. Proceedings of the Genetic and 

Evolutionary Computation Conference, 521–528. 

https://doi.org/10.1145/3071178.3071181 

Utianski, R. L., Botha, H., Martin, P. R., Schwarz, C. G., Duffy, J. R., Clark, H. M., Machulda, 

M. M., Butts, A. M., Lowe, V. J., Jack, C. R., Senjem, M. L., Spychalla, A. J., Whitwell, 

J. L., & Josephs, K. A. (2019). Clinical and neuroimaging characteristics of clinically 

unclassifiable primary progressive aphasia. Brain and Language, 197(September 2011), 

104676. https://doi.org/10.1016/j.bandl.2019.104676 

Valente, E. S., Caramelli, P., Gambogi, L. B., Mariano, L. I., Guimarães, H. C., Teixeira, A. L., 

& de Souza, L. C. (2019). Phenocopy syndrome of behavioral variant frontotemporal 

dementia: a systematic  review. Alzheimer’s Research & Therapy, 11(1), 30. 

https://doi.org/10.1186/s13195-019-0483-2 

van’t Hooft, J. J., Pijnenburg, Y. A. L., Sikkes, S. A. M., Scheltens, P., Spikman, J. M., Jaschke, 

A. C., Warren, J. D., & Tijms, B. M. (2021). Frontotemporal dementia, music perception 

and social cognition share neurobiological circuits: A meta-analysis. Brain and Cognition, 



EXPLORING FTD WITH K-MEANS CLUSTERING  138 
 

148, 105660. https://doi.org/10.1016/j.bandc.2020.105660 

van Buuren, S. (2018). Flexible Imputation of Missing Data, Second Edition. Chapman and 

Hall/CRC. https://doi.org/10.1201/9780429492259 

van der Ende, E. L., & van Swieten, J. C. (2021). Fluid Biomarkers of Frontotemporal Lobar 

Degeneration (pp. 123–139). https://doi.org/10.1007/978-3-030-51140-1_9 

van der Vlies, A. E., Verwey, N. A., Bouwman, F. H., Blankenstein, M. A., Klein, M., 

Scheltens, P., & van der Flier, W. M. (2009). CSF biomarkers in relationship to cognitive 

profiles in Alzheimer disease. Neurology, 72(12), 1056–1061. 

https://doi.org/10.1212/01.wnl.0000345014.48839.71 

van Vliet, D., de Vugt, M. E., Bakker, C., Pijnenburg, Y. A. L., Vernooij-Dassen, M. J. F. J., 

Koopmans, R. T. C. M., & Verhey, F. R. J. (2013). Time to diagnosis in young-onset 

dementia as compared with late-onset dementia. Psychological Medicine, 43(2), 423–432. 

https://doi.org/10.1017/S0033291712001122 

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing 

ethical challenges. PLOS Medicine, 15(11), e1002689. 

https://doi.org/10.1371/journal.pmed.1002689 

Vernooij, M. W., Pizzini, F. B., Schmidt, R., Smits, M., Yousry, T. A., Bargallo, N., Frisoni, 

G. B., Haller, S., & Barkhof, F. (2019). Dementia imaging in clinical practice: a European-

wide survey of 193 centres and conclusions by the ESNR working group. Neuroradiology, 

61(6), 633–642. https://doi.org/10.1007/s00234-019-02188-y 

Vijverberg, E. G. B., Dols, A., Krudop, W. A., Del Campo Milan, M., Kerssens, C. J., Gossink, 

F., Prins, N. D., Stek, M. L., Scheltens, P., Teunissen, C. E., & Pijnenburg, Y. A. L. (2017). 

Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant 

frontotemporal dementia from primary psychiatric disorders. Alzheimer’s & Dementia: 

Diagnosis, Assessment & Disease Monitoring, 7(1), 99–106. 

https://doi.org/10.1016/j.dadm.2017.01.009 

von Luxburg, U., Williamson, R. C., & Guyon, I. (2012). Clustering: Science or Art? JMLR: 

Workshop and Conference Proceedings, 27, 6579. 

Walker, A. J., Meares, S., Sachdev, P. S., & Brodaty, H. (2005). The differentiation of mild 

frontotemporal dementia from Alzheimer’s disease and healthy aging by 

neuropsychological tests. International Psychogeriatrics, 17(1), 57–68. 

https://doi.org/10.1017/S1041610204000778 

Wang, J., Redmond, S. J., Bertoux, M., Hodges, J. R., & Hornberger, M. (2016). A Comparison 

of Magnetic Resonance Imaging and Neuropsychological Examination in the Diagnostic 



EXPLORING FTD WITH K-MEANS CLUSTERING  139 
 

Distinction of Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia. 

Frontiers in Aging Neuroscience, 8(JUN), 1–10. https://doi.org/10.3389/fnagi.2016.00119 

Warren, J. D., Rohrer, J. D., & Rossor, M. N. (2013). Frontotemporal dementia. BMJ (Online), 

347(7920), 1–9. https://doi.org/10.1136/bmj.f4827 

Watson, C. L., Possin, K., Allen, I. E., Hubbard, H. I., Meyer, M., Welch, A. E., Rabinovici, G. 

D., Rosen, H., Rankin, K. P., Miller, Z., Santos-Santos, M. A., Kramer, J. H., Miller, B. 

L., & Gorno-Tempini, M. L. (2018). Visuospatial Functioning in the Primary Progressive 

Aphasias. Journal of the International Neuropsychological Society, 24(3), 259–268. 

https://doi.org/10.1017/S1355617717000984 

Weakley, A., Williams, J. A., Schmitter-Edgecombe, M., & Cook, D. J. (2015). 

Neuropsychological test selection for cognitive impairment classification: A machine 

learning approach. Journal of Clinical and Experimental Neuropsychology, 37(9), 899–

916. https://doi.org/10.1080/13803395.2015.1067290 

Wechsler, D. A. (1987). Manual for the Wechsler Memory Scale-Revised. New York: 

Psychological Corporation. 

Weder, N. D., Aziz, R., Wilkins, K., & Tampi, R. R. (2007). Frontotemporal Dementias: A 

Review. Annals of General Psychiatry, 6(1), 15. https://doi.org/10.1186/1744-859X-6-15 

Whitwell, J. L., Przybelski, S. A., Weigand, S. D., Ivnik, R. J., Vemuri, P., Gunter, J. L., 

Senjem, M. L., Shiung, M. M., Boeve, B. F., Knopman, D. S., Parisi, J. E., Dickson, D. 

W., Petersen, R. C., Jack, C. R., & Josephs, K. A. (2009). Distinct anatomical subtypes of 

the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain, 

132(11), 2932–2946. https://doi.org/10.1093/brain/awp232 

Wicklund, M. R., Duffy, J. R., Strand, E. A., Machulda, M. M., Whitwell, J. L., & Josephs, K. 

A. (2014). Quantitative application of the primary progressive aphasia consensus criteria. 

Neurology, 82(13), 1119–1126. https://doi.org/10.1212/WNL.0000000000000261 

Wiens, J., & Shenoy, E. S. (2018). Machine Learning for Healthcare: On the Verge of a Major 

Shift in Healthcare Epidemiology. Clinical Infectious Diseases, 66(1), 149–153. 

https://doi.org/10.1093/cid/cix731 

Willmes, K., Poeck, K., Weniger, D., & Huber, W. (1983). Facet theory applied to the 

construction and validation of the Aachen Aphasia Test. Brain and Language, 18(2), 259–

276. https://doi.org/10.1016/0093-934X(83)90020-2 

Woolley, Josh D., Khan, B. K., Murthy, N. K., Miller, B. L., & Rankin, K. P. (2011). The 

Diagnostic Challenge of Psychiatric Symptoms in Neurodegenerative Disease. The 

Journal of Clinical Psychiatry, 72(02), 126–133. 



EXPLORING FTD WITH K-MEANS CLUSTERING  140 
 

https://doi.org/10.4088/JCP.10m06382oli 

Woolley, Joshua D., Wilson, M. R., Hung, E., Gorno-Tempini, M. L., Miller, B. L., & Shim, J. 

(2007). Frontotemporal dementia and mania. American Journal of Psychiatry, 164(12), 

1811–1816. https://doi.org/10.1176/appi.ajp.2007.07061001 

Xia, Y., Lu, S., Wen, L., Eberl, S., Fulham, M., & Feng, D. D. (2014). Automated identification 

of dementia using FDG-PET imaging. BioMed Research International, 2014, 421743. 

https://doi.org/10.1155/2014/421743 

Xie, S. X., Libon, D. J., Wang, X., Massimo, L., Moore, P., Vesely, L., Khan, A., Chatterjee, 

A., Coslett, H. B., Hurtig, H. I., Liang, T. W., & Grossman, M. (2010). Longitudinal 

patterns of semantic and episodic memory in frontotemporal lobar degeneration and 

Alzheimers disease. Journal of the International Neuropsychological Society, 16(2), 278–

286. https://doi.org/10.1017/S1355617709991317 

Yanase, J., & Triantaphyllou, E. (2019). A systematic survey of computer-aided diagnosis in 

medicine: Past and present developments. Expert Systems with Applications, 138(July), 

112821. https://doi.org/10.1016/j.eswa.2019.112821 

Yeo, J. M., Lim, X., Khan, Z., & Pal, S. (2013). Systematic review of the diagnostic utility of 

SPECT imaging in dementia. European Archives of Psychiatry and Clinical Neuroscience, 

263(7), 539–552. https://doi.org/10.1007/s00406-013-0426-z 

Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. 

(1982). Development and validation of a geriatric depression screening scale: A 

preliminary report. Journal of Psychiatric Research, 17(1), 37–49. 

https://doi.org/10.1016/0022-3956(82)90033-4 

Young, A. L., Marinescu, R. V, Oxtoby, N. P., Bocchetta, M., Yong, K., Firth, N. C., Cash, D. 

M., Thomas, D. L., Dick, K. M., Cardoso, J., van Swieten, J., Borroni, B., Galimberti, D., 

Masellis, M., Tartaglia, M. C., Rowe, J. B., Graff, C., Tagliavini, F., Frisoni, G. B., … 

Alexander, D. C. (2018). Uncovering the heterogeneity and temporal complexity of 

neurodegenerative diseases with Subtype and Stage Inference. Nature Communications, 

9(1), 4273. https://doi.org/10.1038/s41467-018-05892-0 

Young, J. J., Lavakumar, M., Tampi, D., Balachandran, S., & Tampi, R. R. (2018). 

Frontotemporal dementia: latest evidence and clinical implications. Therapeutic Advances 

in Psychopharmacology, 8(1), 33–48. https://doi.org/10.1177/2045125317739818 

Zhou, K., & Yang, S. (2020). Effect of cluster size distribution on clustering: a comparative 

study of k-means and fuzzy c-means clustering. Pattern Analysis and Applications, 23(1), 

455–466. https://doi.org/10.1007/s10044-019-00783-6 



EXPLORING FTD WITH K-MEANS CLUSTERING  141 
 

Zhutovsky, P., Vijverberg, E. G. B., Bruin, W. B., Thomas, R. M., Wattjes, M. P., Pijnenburg, 

Y. A. L., van Wingen, G. A., & Dols, A. (2019). Individual Prediction of Behavioral 

Variant Frontotemporal Dementia Development  Using Multivariate Pattern Analysis of 

Magnetic Resonance Imaging Data. Journal of Alzheimer’s Disease : JAD, 68(3), 1229–

1241. https://doi.org/10.3233/JAD-181004 

Ziegler, S., Maier, C., & Reichenbach, A. (2020). Stratification of patients with Alzheimer’s 

disease based on longitudinal neuropsychological tests. 2020 IEEE International 

Conference on Healthcare Informatics (ICHI), 1–7. 

https://doi.org/10.1109/ICHI48887.2020.9374343 

Zimmerer, V. C., Hardy, C. J. D. D., Eastman, J., Dutta, S., Varnet, L., Bond, R. L., Russell, 

L., Rohrer, J. D., Warren, J. D., & Varley, R. A. (2020). Automated profiling of 

spontaneous speech in primary progressive aphasia and behavioral-variant frontotemporal 

dementia: An approach based on usage-frequency. Cortex, 133, 103–119. 

https://doi.org/10.1016/j.cortex.2020.08.027 

 

  



EXPLORING FTD WITH K-MEANS CLUSTERING  142 
 

Appendix 
The complete code of the analysis can be found in the following github repository: 

https://github.com/MSontgerath/Masterthesis_FTLD_Clustering 

All results of the analysis can be downloaded until 29th September 2022 from the following 

link:  https://we.tl/t-yv7p0Pet6Q. In case this link should not be active anymore, please send an 

e-mail to the following e-mail address for further information: 

marie.soentgerath@studenti.unipd.it.  

https://github.com/MSontgerath/Masterthesis_FTLD_Clustering
https://we.tl/t-yv7p0Pet6Q
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