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Abstract

Cavity optomechanics is a field that investigates the interaction between photons and
phonons in optomechanical cavities, offering insights into fundamental physics and potential
applications in quantum technologies.

This master thesis focuses on exploring the strong-coupling regime in a macroscopic system
operating at room temperature, utilizing a centimeter-scale quartz crystal enclosed within an
optical resonator capable of sustaining high-frequency bulk acoustic waves at approximately
12.5 GHz. The Brillouin optomechanical interactions couple the light to the mechanical
system and, when the phenomenon is in resonance with the optical cavity modes, enable the
transferring of energy between them, i.e., optomechanically induced amplification (OMIA)
and transparency (OMIT).

Operating at room temperature presents several advantages, including the ability to thermally
tune the cavity resonances and employ high-power optical beams (~ 100 mW). These
conditions enable the achievement of the strong-coupling regime with an effective photon
coupling rate in the MHz range. In this regime, the confinement and intrinsic losses of the
optical and acoustic modes are overcome by the light coupled from the optical pump and
create hybrid optoacoustic modes.

The results of this work serve as essential prerequisites for investigating Brillouin interactions
at cryogenic temperatures and enabling the development of hybrid quantum technologies,
such as quantum memories and microwave-to-optical transducers.
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Introduction 1

In recent years, Quantum Mechanics has transitioned from a purely fundamental science
into the technological realm. The development of advanced quantum setups that exploit
new principles to enhance the performances and widen the application range raises new
requirements to extend the systems’ quantum coherence and develop practical devices for
industrial and commercial applications. Quantum transducers enter the scene as a tool to
integrate different platforms and overcome the respective limits. They can coherently transfer
quantum information between systems, thus incorporating operations usually relegated to
specific platforms into the same infrastructure, significantly expanding their capabilities.

A clear cooperation example is the network of quantum computers that can receive, process,
and transmit information encoded into quantum states [1]. The quantum internet is essential
for more secure communication and cloud quantum computing. However, the integration
between the diverse physical platforms is still challenging. Quantum computers have quickly
developed into several physical platforms with diverse requirements and incompatible
operation environments [2]. The most common semiconductor qubits require cryogenic
temperatures and microwave control signals [3, 4], which contrast with laser-operated
trapped-ions quantum computers [5] or even room-temperature photonic circuits [6]. On
the other hand, quantum communication systems rely on optical devices exploiting the
already-deployed optical fiber network to implement quantum key distribution applications
by exchanging photons between distant parties [7, 8]. Microwave-to-optical transducers
are thus critical technology because they convert light quanta into electrical signals, usable
in most of the solid-state quantum information processing systems [9-11]. They enable
connecting different processing nodes [12] and establishing long-distance hybrid quantum
networks [13], in addition to providing another substantial piece, i.e., quantum memories
with long decoherence time [14, 15].

Other than the technological empowering, Quantum Mechanics has developed after the
second quantum revolution towards investigating the macroscopic world. From the initial
wave-particle dualism experiments with electrons and photons, the aim has always been
to understand the limits of the theory and the boundary between a microscopic quantum
system and a macroscopic classical one [16]. Most quantum experiments rely on photons,
atoms, or nanoscale structures to test quantum properties and manipulate quantum states,
demonstrating quantum entanglement [17], quantum teleportation [18], etc. Nevertheless,
more experiments have proved that the larger the system, the shorter the decoherence time
before the disappearance of quantum effects because of the increased difficulty in minimizing
the interactions with the external environment. Still, the presence of a precise boundary
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between quantum and classic frameworks is unclear, and more advanced technologies are
needed to improve our measurements and provide a conclusive answer.

In this environment, optomechanics has bloomed as a promising way to address many
technological challenges in implementing efficient quantum transducers and explore the
limits of the current quantum theory [19]. Optomechanics describes the interaction
between the optical field and the quantized mechanical motion, i.e., in terms of photons
and phonons. The optomechanical coupling enables energy transfer between the modes
in the two subsystems and requires a coupled description of the optomechanical oscillator.
Within this concept, many successful designs have been proposed and implemented using a
variety of supports from membranes [11, 20] to phononic-crystal resonators [21] relying on
different physical interactions and with diverse advantages and limits [22] to increase the
optomechanical coupling strength and the quality factor x frequency product (Qf) [23].
In several applications, the Qf product is the key figure of merit because it displays the
coherence degree of the acoustic modes, i.e., the higher the phonon frequency and the cavity
quality factor, the lower the interactions with the environment and the longer the phonon
lifetime.

This thesis characterizes a room-temperature high-frequency bulk optomechanical setup,
aiming at the strong-coupling regime [19]. The setup comprises a centimeter-scale quartz
crystal placed inside an optical cavity to enhance the optomechanical coupling strength. The
quartz lattice supports 12.5-GHz phonons that have higher frequency compared to the more
common membrane systems, and the crystal’s macroscopic nature allows the propagation
of bulk acoustic waves (BAW) in the material. The optomechanical interaction is based on
Brillouin scattering, where the counter-propagating optical modes generate time-dependent
electrostriction in the material, equivalent to a propagating BAW. Although working at room
temperature prevents cooling down the phonons to the ground state, i.e., the mode thermal
occupancy is smaller than one, we can still characterize several peculiar behaviors, e.g., the
strong-coupling regime.

In the strong-coupling regime, the interaction rate (or coupling strength) between light
and mechanical motion surpasses both the dissipation rates of the optical and mechanical
components and can be achieved by increasing the laser power, i.e., the number of photons
circulating inside the optical cavity suitable to interact. In general, achieving strong coupling
in optomechanical devices within micro- and nano-mechanical systems [24, 25] is not
straightforward due to practical limits on the circulating number of photons, which limit the
cavity-enhanced coupling rate [26, 27]. Instead, the use of high-frequency optomechanical
platforms and high-finesse optical cavities can lead to high @ f products and lower thermal
decoherence that is advantageous for operating at cryogenic temperatures while remaining
in the ground state [28]. In fact, cryogenic temperatures increase the phonon lifetime,
transforming the crystal into a BAW resonator [29, 30], essential for transferring and
memorizing quantum states into the mechanical modes [11, 14].

The results of this project first demonstrate Brillouin lasing and strong coupling at room
temperature for this optomechanical system [31]. If phonon lasing has already been shown at
low temperatures [32], Brillouin lasing involving acoustic linewidth broader than the optical
one has never been presented for macroscopic quartz crystals. Examples of strong coupling
in an optomechanical system have been displayed in cryogenic systems with kHz mechanical
linewidths and, thus, less demanding power constraints [28], and a room temperature with
a fused-silica optomechanical platform [33].

The structure of this manuscript comprises three parts: a theoretical introduction of the
formalism developed to study the optomechanical response, an analysis of the measurement
setup and the optical cavity, and a discussion of the main results. In Chapter 2, we introduce
the optomechanics theory, focusing on the Quantum Mechanics description of an optoacoustic
device. The following Chapter 3 presents a characterization of the optical response of



the optomechanical cavity when a quartz crystal is inserted and the mechanical assembly
temperature dependence as a tool to tune the cavity length and the free spectral range
(FSR) to enhance the optomechanical coupling. Chapter 4 describes Brillouin scattering as
the source of optomechanical interaction, divided into Stokes and Anti-Stokes scattering,
which can be selectively suppressed in our cavity thanks to the non-uniform resonance
mode distribution. The theory concludes in Chapter 5 with a mathematical model of the
cavity spectral response, including the optomechanical interaction between the addressed
optical modes. In Chapter 6, we present the cavity design and the measurement setup,
jointly with a performance evaluation and the data analysis methods. Finally, Chapter 7
reports and discussion the results for the Optomechanical Induced Amplification (OMIA) and
Transparency (OMIT), demonstrating Brillouin lasing and strong coupling and noting an
estimate for the single-photon coupling rate.






Optomechanics 2

2.1 A general description of an optomechanical system

When we operate with an optical system, we often inquire about how laser light evolves after
interacting with solid matter. Optomechanics explores the interaction between light and
mechanical motion at the quantum level. It combines concepts from quantum optics and
condensed matter physics to investigate the fundamental physical phenomena that arise when
light and mechanical systems are coupled in a confined space such as an optomechanical cavity.
The interaction between light confined in a high-quality optical cavity and a mechanical
oscillator enables the manipulation and control of both the optical and mechanical degrees of
freedom, leading to intriguing phenomena and potential applications in quantum information
processing [15], precision measurement [34], and fundamental tests of quantum mechanics
[17, 18, 35]. In particular, optomechanics offers a unique platform to study quantum effects
at the macroscopic scale [35].

The fundamental elements of a typical cavity optomechanical system include an optical cavity,
a mechanical resonator, and a coupling mechanism between them [19]. The optical cavity,
formed by two highly reflective mirrors, allows light confinement within a small volume.
The mechanical resonator, on the other hand, can be any structure that exhibits mechanical
motion, such as a micro- or nanoscale cantilever, a vibrating membrane, or the atom vibration
in a crystal lattice, as the main focus of this work. Each system presents different mechanical
properties, allowing different phenomena and applications. We can consider very diverse
examples: the micromovements of optical mirrors due to radiation pressure to measure
external forces [36], the manipulation of nanoparticles through optical tweezers [37], the
cooldown of mechanical trampolines using laser cooling [26], or electrostrictive forces that
lead to acoustic waves inside materials [29]. However, we can always map the optomechanical
interaction at the base into the formalism of radiation pressure generated from the light
impinging on a mechanical element. In easy terms, coherent light exerts a force proportional
to its intensity, leading to a displacement or vibration of the mechanical component. This
back-action from the mechanical motion can then modify the properties of the light, creating
a feedback loop between the optical and mechanical systems (Figure 2.1).

We can thus model the behavior of a general optomechanical system by treating the optical
cavity as a resonator with discrete electromagnetic mode and the mechanical resonator as
a harmonic oscillator. Finally, the coupling between the optical and mechanical modes is
characterized by the optomechanical coupling strength, which quantifies the intensity of the
interaction. Moreover, we can apply the Quantum Mechanics framework to this description

5
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Ficure 2.1: Scheme of an optomechanical system. A laser beam impinges on an optical
cavity and transfers energy to the mode a. The photons propagating inside the cavity apply
radiation pressure on a movable mirror, generating mechanical oscillations . This movement
generates a close loop with the optical system because of a change in the cavity resonant
frequency, creating a coupled photon-phonon mode. Image adapted from [19].

to study the optomechanical system at the single photon and phonon level.

In the following sections, we deepen these concepts by reviewing the main parameters
of optical and mechanical resonators in Section 2.2 before describing the optomechanical
interaction using the coupled mode theory in Section 2.3. Finally, we introduce the Quantum
Mechanics formulation of the two-mode system through the interaction picture (Section 2.4).

2.2 Optical cavities and mechanical resonators

As we just described, the fundamental description of each optomechanical system lies in
two elementary elements, i.e., the optical cavity and the mechanical resonator. Despite the
intrinsic difference in the physical implementation between the two, their description follows
the same outline. In this section, we include only a summary of the main parameters to
introduce the notation used in the following, leaving a complete description of the topic to
any standard optics textbook or review paper [19].

2.2.1 Fabry-Pérot cavity

Optical resonators can assume different experimental realizations, but their properties can
be derived from the basic case of a Fabry-Perot resonator. We will thus focus on reporting
the mathematical description of a cavity pumped with a single monochromatic laser source.
A Fabry-Pérot resonator consisting of two highly reflective mirrors, separated by a distance
L. The phase-matching conditions of the propagating light create constructive interference
patterns between the two mirrors, leading to a series of resonances given by the angular
frequency
[

w; %j:'rf (2.1)
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Ficure 2.2: Scheme of the fundamental elements of a Fabry-Perot resonator. The optical
cavity comprises two mirrors M; and Ms, which define the cavity mode a and the respective
input-output interfaces. The input field is identified with a;ll), whereas af,t)t and ag‘:gt

represents the reflected and transmitted fields. Three different types of losses contribute to

the total decay rate of the cavity mode x: the light propagating through the two mirrors «!)

exrt
2 S
and mgx),,, and the intrinsic losses &jpn;.

with j the integer mode number. We also characterize the separation between the resonances
as the free spectral range (FSR) of the cavity

FSR = wj41 —wj =77 2.2)
Even in the ideal case where all the behavior is frequency-independent, we can identify
two contributions that limit the photon lifetime within the optical cavity. In fact, both the
light escaping from the mirrors k. (confinement of external losses) and the scattering or
absorption inside the cavity k,,,; (intrinsic or internal losses) sum up to the total cavity decay
rate K = Kint + kKext- We can finally define the optical finesse F as the average number of

round-trips before a photon leaves the cavity:

F= SR (2.3)
K
and the quality factor of the optical resonator,
Q=wr= if (2.4)

FSR

where 7 = k! is the photon lifetime.

A more precise analysis of the cavity losses identifies different sources for the intrinsic and
external contributions that are worth mentioning for further analysis. Within the confinement
losses, we identify the coupling efficiency of the input field to the cavity as the contribution
of the input mirror finite transparency, whereas the intrinsic ones can originate from the
energy dissipated within the cavity elements or the one coupled to other optical modes,
where the difference lies the scope of the phenomenon we are analyzing. As a pertinent
example, in an optomechanical system, the optical power coupled from the optical modes to
the mechanical system k,y; is usually described as couple efficiency because of its centrality
in the phenomenon description. However, in other optical systems, k,,; and other scattering
contributions are all parts of the intrinsic losses because we give a diverse system description.
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Finally, we define a cavity critically coupled when the input coupling losses kmt equal all the
other contributions denoted with kg, i.e., they are half the total losses

K = King + kool + ko, = ko + ki), = 2k,

ext ext ext*

(2.5)

A quantum mechanical description of the Fabry-Pérot cavity response underlies the
input-output theory framework, where the input and output modes are described by the
Quantum Mechanics operators a;,, and a,,; identifying the amplitude of the electromagnetic
fields. This abstract description is related to the previous model when we define the input
mode as the monochromatic light impinging the optical cavity and the output mode as the

reflected one 4'")., while the transmitted field &'*) is absorbed within the loss contribution

out? ext

ko. In the same way, we could also focus on the transmitted mode a by absorbing

out
the input port coupling coefficient k: t in the cavity internal losses. From this starting
point, it is easy to describe the time evolution of the field inside the optical cavity a
using the Heisenberg-Langevin equations of motions [38] and the previously described
loss contributions.

Q= —§a +iAa + gm)tam (2.6)
In (2.6), we identify the contribution from the external field coupling inside the cavity a;,
and the decay rate of the internal field /2. Furthermore, we can define the laser detuning
with respect to the central frequency of the cavity mode wy as A = wy — wy as the result
of employing the Heisenberg picture with a rotating frame at frequency wy, i.e., the laser
frequency.

To complete the description, we should include the definition of the input power P, as the
expectation of the number of photons (&jndm> multiplied by the energy of each photon 7wy,

Py = hw, (@), din) = hwrlain |, 2.7)
where « is the amplitude of the electromagnetic field. The transmitted field is defined as

Az()i)t = Qin =\ ’i((a?td (2.8)

while the output field reflected by the Fabry-Pérot resonator

a? — /P4 (2.9)

out ext

together with their corresponding powers

2
P(Eil = hwr, (@ E)i)tjr Sl)t> hwr, O‘gt)t = hwr, |®ip, — Hglm)ta (2.10)
2 2)t A (2 2 2 2
P2) = huor, @1a) = hor|al| = hops@al. (2.11)

Finally, we define the steady-state intracavity field as a function of the input mode a by

solving the motion equation:
\/ kD a,
Y Zeat i (2.12)
k/2—iA’ '

Its corresponding intracavity photon number N in the steady-state population is

a =

(1)

Kewt

Qijn in
e:rt |OZ ‘ (2 13)

= ATA: =
N=t@'a) =158 | T /it ar
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Ficure 2.3: The spectral response of a Fabry-Perot cavity is periodic in frequency and
displays the characteristic transmission windows in correspondence with the cavity mode
frequencies. The modes represent a build-up of power inside the cavity because of the
constructive interference of the electromagnetic waves, normalized to the input cavity power.
The separation between the transmission peaks is the FSR and depends on the geometry of
the optical cavity. Together with the linewidth « of the modes, it defines the cavity Finesse F,
i.e., the average number of rounds inside the cavity before the light can escape. Image from
[39].

A final remark should consider that this expression accounts only for the behavior of a single
resonance and thus is valid when the decay rate « is much smaller than the FSR, i.e., the
frequency response of the different modes does not overlap.

2.2.2 Mechanical resonator

Mechanical resonators are physical systems that exhibit vibrational motion at specific
frequencies. They can be realized in various forms, such as micro- and nanoscale structures,
where their mechanical vibrations are confined to specific modes. This property makes their
mathematical model similar to the one of an optical cavity where the photon number evolution
is substituted with phonon, i.e., the quantum of vibrational motion at a given frequency Q.
The difference compared to an optical system lies in the physical properties of this energy
propagation. Talking about vibration is equivalent to analyzing the displacement of single
atoms or larger structures, and we can thus formalize the behavior of the system through a
simple equation of motion of a harmonic oscillator of effective mass m.:

dz?(t)

dz(t
Meff— g + Mefl'm

dt

) + e Q2 2(t) = Fee(t) (2.14)

where Fe;:(t) denotes the sum of all forces acting on the mechanical oscillator and
comprises the radiation pressure, in addition to the intrinsic thermal Langevin force, when
describing the interaction in an optomechanical system. In the model, we again consider a
frequency-independent dumping rate T'y, related to the different energy dissipation types:
external, like viscous dumping and dumping losses, in particular when we study trampolines
and cantilevers, and internal, like thermoelastic dumping and material-induced losses (defect
atom states).

In analogy to expressing the intracavity field of an optical cavity in terms of the photon number
evolution, the displacement of a mechanical resonator can be defined both in terms of the
phonon number evolution b and mechanical displacement #. This allows for the quantization
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of mechanical motion and enables the study of quantum mechanical effects in these systems.
Using the same formalism as before and substituting the external force with a phonon mode
bin, we can express the phonon mode temporal evolutions as

X [ R N
b=—F"b+iQmb+ \/Tmbin, (2.15)

which leads to a steady state of the number of phonons. In the absence of external
contributions, the steady-state population Ny, = (b7b) corresponds to the thermal equilibrium
of the system, which can be approximated in the high-temperature limit as

Nyp = (2.16)

"

where kg is the Boltzmann constant and 7 is the environment temperature.

The relation between the phonon formalism and the mechanical oscillator equation lies in the
creation and annihilation operators of the phonon field that is derived from the quadrature
components of the mechanical displacement, i.e., the position # and the momentum p, in the
same way as the quadrature components of the electromagnetic field are obtained (Figure 2.4).
We can thus write

I = ZL’ZPF(ZA) —+ BT), ]3 = —imefomepF(E — ET) (217)

where zzpr is the zero-point fluctuation amplitude of the mechanical oscillator

h
N 2.18
TzPF = | | 2oy 1O ( )

WL (x)
()
A%

N AC

W, (x)
Y (x)

Y (x)
W (x)

X
—

"o
FIGURE 2.4: Representation of the energy distribution inside a mechanical resonator. The
wavefunction ¢z is confined within the structure and a finite-energy level structure appears.
The lowermost level represents the ground state, and the spatial distribution of the mode
¢o(z) defines the zero-point fluctuation of the system. Above this state are all the excited
states created by the absorption of phonons from the external environment until thermal
equilibrium is reached. Image from [40].
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As expected, we can also define the mechanical quality factor ) by accounting for all the
dumping contributions. Nevertheless, a mechanical vibration has a much lower frequency
compared to an optical system, and the number of coherent oscillations is thus highly
limited by thermal decoherence in room-temperature environments. For this reason, various
techniques, such as material engineering, device design optimization, and cryogenic cooling,
are employed to minimize these losses and enhance the quality factor of mechanical
resonators. In this experiment, we cannot create a mechanical cavity because, in addition to
the limited lifetime of the phonons, the propagation speed in the material and the length
of the crystal prevent a standing wave from forming. We are thus limited in the ability to
increase the strength of the interaction between the optical and mechanical modes, and
we can only rely on the cavity-enhanced photons population. Despite not being able to
create a mechanical resonator, we still have to match the correct frequency and direction
of propagation to couple power into and out of the mechanical modes, since the physical
constraints for the propagation of the acoustic wave must be complied with.

2.3 Coupled mode theory and optomechanical coupling

In an optomechanical system, the fundamental mechanism that couples the cavity radiation
field to the mechanical motion depends on the system’s specific mechanical structure. This
coupling can manifest in different ways, such as direct momentum transfer from radiation
pressure to movable objects, a dispersive frequency shift caused by a membrane within
the cavity, near-field effects due to entrapped particles in a laser beam, or strain-optical
effects that modulate the refractive index and lead to acoustic wave scattering. Regardless
of the physical interpretation of the force, the interaction between a radiation mode and a
vibrational mode can always be understood by considering the shift in the cavity resonance
frequency as a function of displacement and the intensity of the optical beam. This common
description (Figure 2.2) allows for a general framework to study optomechanical systems
using the coupled mode theory.

Both optical cavities and mechanical resonators can be described in terms of the time evolution
of photon (&) and phonon (b) numbers in their respective modes (Figure 2.5). With this
understanding, we can establish a common framework to describe the interaction between the
two systems. This approach, known as the coupled mode theory, recognizes that a probability
exists for the two systems to interact and exchange energy quanta.

Without losing in generality, we restrict our attention to one of the many optical modes wy,

mechanical oscillator  driven optical cavity

1_‘rn th Qm _A

FIGURE 2.5: Pictogram of a basic optomechanical system. On the left, a mechanical oscillator
b interacts with the environment to maintain thermal equilibrium. On the right, the optical
cavity a is excited through an external field and shows fluctuation da around its equilibrium.
The optomechanical interaction g,, between the two systems creates hybrid photon-phonon
modes and enables us to sense or control the mechanical side through the optical field. Image
adapted from [19].
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i.e., the one closest to resonance with the driving laser. Moreover, we also describe only
one of the many mechanical normal modes §2,,,. Starting from the Hamiltonian H, of the
uncoupled optical and mechanical modes without external fields (free-evolution Hamiltonian)
from (2.6) and (2.15)

. | (D o
Hy = mgfﬂa + hwodta + ih7bTb + Qb1 D, (2.19)
we can define the optical frequency shift per displacement as

G = —0wy/0x (2.20)

after acknowledging that the optical resonance frequency depends on the position of the
mechanical moving element (wo(z) = wo + xdwp/dx + ...). Furthermore, by using a first-order
expansion for the displacement, we have that the Hamiltonian becomes

N | N PN
Hy = mgafa + hlwo — G@)ala + ih=2"bTb + 7, bTh (2.21)

with % as in (2.17). Thus, the interaction part of the Hamiltonian can be written

Hine = —hgoata(b+bh), (2.22)
where
go = Grzpp (2.23)

is the vacuum optomechanical coupling strength, expressed as a frequency, and quantifies
the interaction between a single phonon and a single photon. The radiation-pressure force is
derived from the interaction Hamiltonian as

' _ weata = -2 ata. (2.24)

As we already described before, the full Hamiltonian should also include the dissipation
terms of the optical and mechanical modes, the fluctuation of the number of phonons due to
thermal influx, and the driving external optical field. In the same rotating frame following
the laser frequency, we can thus express the complete Hamiltonian as

. | NN IR PR
H= mgeﬁa — hAata + ithTb + W b'b — hgoaTa(b + b)), (2.25)

where A = wp — wy is the optical frequency detuning as before.

Even if this Hamiltonian provides a complete description of an optomechanical system, its
usage is limited by the non-linear terms in the interaction part that prevent an analytical (and
often even a numerical) solution for the optical and mechanical evolution. In the following
section, we employ the perturbation theory to linearize the interaction Hamiltonian and
simplify the modeling of the phenomenon.

2.4 Linearized Hamiltonian of the optomechanical interactions

The general interacting Hamiltonian reported in (2.22) represents all the possible energy
exchange contributions comprising the optomechanical interaction between an optical and
an acoustic mode. To extract information from this expression, we introduce the linearized
approximate description of cavity optomechanics that assumes the optomechanical response
is a perturbation of the optical mode, i.e., the optical mode has high power to not being
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depleted by the optomechanical interaction transferring of power. With this first assumption,
we can rewrite the optical cavity field as an average coherent amplitude o = (a) = (aa) and
a fluctuating term da

4 =a+da, (2.26)

thus rewriting the interaction Hamiltonian as

Hini = — hgo(a + 0a) (o + 6a) (b + bT)

R X PR U (2.27)
= — hgola|*(b+b') — hgo(a*da + adal)(b + bT) — hgodatsa(b + b')

The first term identified in (2.27) is proportional to |o|* and thus also to the average
radiation-pressure force F' = hG|a|” from (2.24) that shifts the optical mode resonance
frequency because of the mechanical displacement and can be omitted after compensating
for it. As anticipated in the previous section, the mechanical motion induces a shift of the
optical resonance frequency, which results in a change of circulating light intensity and,
therefore, of the radiation pressure force acting on the motion, creating a feedback loop
known as optomechanical “back-action”. The second term is —figo(o*dé + adat) (b + bt) and
corresponds to the linearized interacting Hamiltonian. When we rewrite the coherent field

intensity as a function of the cavity photon number N, we obtain
AU = _ng,. (54 + sat)(b+ bt (2.28)

where

Im = gO\/N (2.29)

is known as the effective optomechanical coupling strength and depends linearly on the
amplitude of the optical field inside the cavity. Finally, the third term o daféa can be
neglected if the fluctuations in the optical field are small enough. As an additional remark,
the linearized description is usually accurate even if the average photon number inside the
cavity is not large since the mechanical system can’t resolve the individual photons if the
decay rate « is sufficiently large.
A further analysis of the linearized interacting Hamiltonian can lead to splitting the description
of the optomechanical response into two separate terms. It brings particular significance to
this experiment because, as we will amply discuss in the following chapter, we can efficiently
suppress one of the two interactions thanks to the particular property of our system. The first
term is

Hps = —hg,,(dab" + da’h) (2.30)

and identifies a process in which a photon is absorbed(emitted) in exchange for an
emitted (absorbed) phonon, i.e., a beam-splitter interaction. On the other hand, the second
term is

Hranrs = —hgm(8ab + 6a'bh) (2.31)

and represents a two-mode squeezing since a photon and a phonon are created(annihilated)
at the same time.

In giving this description, one should remember there is a third mode involved in the
equations. In fact, the energy conservation principle implies that the energy before and
after the interaction is the same, i.e., since phonons and photons carry different amounts
of energy because of the different frequencies, the scattered photons must have higher or
lower energy from the incoming one, constituting a separate optical mode. In our case, we
are considering a linear cavity, and it has a frequency higher or lower than the first one, such
as the difference between the two optical mode energy corresponds to the mechanical one,
ie., w; —wg = +£0,,.

To conclude this description, we report the optomechanical equations of motion (this time
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also reporting the external field contributions) that are linearly coupled in the optical and
acoustic field operators

&—”&H’(A+ J0 @)&Jr kD an
2 TzpF

. 2 (2.32)
b= _7’% +iQmb + goa'a + /Tbin.



Optomechanical cavity 3

3.1 From an optical resonator to an optomechanical cavity

In the previous chapter, we discussed a general framework to describe an optomechanical
system, whereas, in the following two chapters, we start to focus on the actual physical system
we use to realize the optomechanical interaction, i.e., a centimeter-scale crystal enclosed
in an optical cavity. Before entering into the details of the optomechanical process arising
from the interaction between light and the quartz crystalline structure, which is the main
topic of the following chapter, we must develop a formalism to derive the optical response
of the system from the simplified model of a Fabry-Pérot cavity. When we work in the bulk
cavity optomechanics field, a macroscopic object is introduced in the optical system, and
even neglecting the mechanical interactions, we still have to expand the depiction of a trivial
two-mirror cavity.

In our experiment, the optomechanical system we analyze comprises a flat-flat z-cut quartz
crystal of Ly = 4mm placed inside a L = 10.23 mm flat-concave optical cavity with an offset
d ~ 1 mm as depicted in Figure 3.1. The two mirrors are shaped to confine the light inside

—L i Optical
W quartz T mirror
| Optical
—~~ cavity
mode
|

Ficure 3.1: Scheme of the optomechanical cavity. Starting from a Fabry-Perot cavity
composed of flat and curved mirrors with high reflectivity, we insert a flat-flat quartz crystal,
affecting the resonance cavity modes. The resulting system enables to study of the crystal
vibrational modes by coupling them to the optical field through Brillouin interactions. Image
adapted from [32].
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the resonator, and their high reflectivity enables a high-finesse optical cavity that enhances
the electromagnetic field. Before providing a complete analysis of the changes in the optical
response, one could intuitively understand that the optical spectrum must undergo some
changes because the light must transit in a material with a higher refractive index n, thus
increasing the optical length, slowing down the round-trip-time, and reducing the FSR of the
optical cavity.

A closer look could give more insight into the new cavity behavior: the difference between
the crystal and the surrounding refractive index is expected to usher some reflection at the
crystal surfaces, impacting the steady state of the propagating field. Even neglecting the
anisotropy of the crystal by using a polarized beam along one of the optical axes and the
increased absorption inside the quartz and assuming perfect alignment between the crystal
and the light direction of propagation, we still expect a considerable impact on the mode
spacing. The 4.36-% reflectivity of the quartz-vacuum interfaces form several low-finesse
cavities (see Figure 3.2) that are coupled between each other since the electromagnetic fields
overlap [41]. Moreover, the constructed and destructive interference between the cavity fields
will act differently at different frequencies, thus creating an asymmetric behavior among
the resonant mode. In fact, we can anticipate that the presence and position of the crystal
modulate the linewidth of the cavity modes and the spacing between them. The result is the
creation of a so-called asymmetric cavity.

In the next section, we formalize the description of the optomechanical cavity using the
scattering matrix approach. Despite being unable to give a complete closed-form relation,
the description of the input-output relations is enough to justify the results provided in the
final section of this chapter and numerically simulate the system response.

Uniform density of states in absence of crystal reflections

Nonuniform density of states in presence of crystal reflections

19e 4

wj Wil Wi+2

Ficure 3.2: The picture shows the main difference between an optical and an optomechanical
cavity. Adding a crystal inside, the simple Fabry-Perot cavity on top becomes a three-cavity
coupled system because of the crystal surface reflections. The uniform spectral response
transforms into a nonuniform density of modes. The main advantage is the ability to resonate
phenomena in the cavity, i.e., select the interaction Hamiltonian part under analysis and limit
the interaction to only two optical modes. In the case of Brillouin scattering, we can thus
suppress Stokes or Anti-Stokes scattering. Image adapted from [32].
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3.2 Transfer matrix of a multi-cavity system

Suppose we focus only on the optical response of our optomechanical cavity. In that case, we
can reduce the system complexity to a linear optical system composed of three optical cavities,
one between the first mirror and the crystal, one within the crystal faces, and one between
the crystal and the second mirror. One approach to deriving a comprehensive analysis of the
system is the coupled cavity theory [42]. This theory wants to decouple the different cavity
responses by considering all the possible light paths and analyzing them independently before
superimposing the solutions to get the global response. It allows obtaining a closed-form
analytical solution for the system, but the computations required for a three-cavity system
are not trivial. A second approach widely used to analyze complex optical systems is deriving
the system transfer matrix by analyzing the transmission matrix of each constituting element.
Deriving a numerical characterization of the system frequency response is thus reduced to
some matrix multiplication if we focus only on describing fields outside the optical cavity.

In deriving the transfer matrix of the asymmetric cavity, we assume plane wave propagation
and a one-dimensional model for the beam propagation, as in the simple Fabry-Pérot cavity
analysis. These assumptions lead to some limitations on the predictive ability of the model, as
we will analyze in Chapter 7. Nevertheless, they provide meaningful insides into the behavior
we aim for in our cavity. In the transfer matrix framework, we must define the input and

output field amplitudes (with a classical light model) as a&i’m, and a‘gh’f ) with the meaning
reported in Figure 3.3 [32].

Optical system
(1) etz 2)
A, A,
— A——
— —
1 2
ac(m)t agu)t

Ficure 3.3: Scheme of the optical system. We can identify the input and output modes at
the two ports ag,ll"z) and agtf ) and define the transfer matrix T which completely characterize

the system linear response.

The relation between the fields is given by the transfer matrix T as

(1) (2) (1) (1)
a‘fi‘f) =7 ). =1 S%%) G
Ain Qin So1  Sag

After analyzing the several elements of the cavity, we can identify two recurring relations

that are expressed through the propagation matrix T,

o0 L
A e
Torop = ( 0 ,}(e—w): d=n . 3.2)
that represents the phase delay ¢ and the absorption - of the electromagnetic field propagating
through a material with thickness L and refractive index n (dependent on the oscillation
frequency), and the interface matrix T’ s
if—1 r 1—n
Tf&f—‘z(—r 1)= iy

t=+1-—1r2 (3.3)
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which reports the phase and amplitude relation between the fields across an interface where r
is the surface reflectivity and ¢ is its transmissivity. We should remark that the transfer matrix
method allows us to use the complete relation of the dielectric mirrors without characterizing
the multilayer structure when placed in vacuum/air.

The total transmission matrix for our optical system consisting of the bulk crystal inside the
Fabry-Pérot optical cavity is then given by

T =T, 5 (mirrory) Tprop(vacuum) Ty r(quartz) Tp,op(quartz)-

Threy (quartz)T Tprop(vaccum) Ty p (mirrors)

_Z( L (e 0 N Zi (L g (et 0 (3.4)
ti \—m1 1 0 e )to\—1ro 1 0 ye %0

;Z —1 —rg) (€2 0 —i( =1 r

to To 1 0 6_i¢2 to \—T2 1/

Here the first and second mirror reflectivities r1 » = /R 2 and transmissivities t1 o = /11 2

are obtained from the mirror characteristics, and the propagation phase delays are ¢, =

nwLg/c, 1 = wd/c, and ¢o = w(L — L, — d)/c. The optical power reflected PSL% and

transmitted P?) from the optical cavity can then be calculated from the total transmission

out

matrix (3.4) and the input power P},P as

P _ ‘Tn

() _ Py, (3.5)
LT

m

2 2
P p® _ 1‘

wn out —
’ Tho

3.3 Simulation of the optical properties of an optomechanical cavity

When we compare the simulated results of this optomechanical cavity with the Fabry-Pérot
resonator, we can verify that the quartz crystal leads to significant modifications in the cavity’s
optical properties. Without the quartz crystal, the cavity modes are equally spaced based
on the cavity length, and the free spectral range (FSR) follows a well-known pattern (see
equation (2.2)). On the other hand, when the quartz crystal is inserted, the average spacing
between the optical modes becomes narrower due to the increased optical path length caused
by the crystal, and asymmetry in the mode spacing arises. In Figure 3.4, we report the
simulated reflectance spectrum.

As we can recognize in the Figure, the FSR undergoes a modulation depending on the mode
frequency, the cavity length, and the offset in the crystal position. When considering small
changes in the crystal position, these variations are periodic with a period equal to half
of the light wavelength (Figure 3.5). It results from the crystal surfaces passing through
the nodes and antinodes of the standing wave optical cavity modes. If an asymmetric FSR
is the most evident impact, we should underline that the mode linewidth and maximum
transmission (i.e., minimum reflection) undergo the same modulation. Figure 3.6 displays
the reflectance variations for some modes as a function of the crystal position inside the
cavity, while Figure 3.7 shows the mode linewidth that undergoes the same modulation. Even
in the ideal case of perfect alignment between the incoming beam and the standing wave
along the cavity’s central symmetry axis, a given mode can change its properties depending
on the crystal displacement or mirror distance. This aspect will have a crucial impact on
understanding the experimental results, where a slight misalignment of the entire structure
limits the performance of the whole system [30].

Another remarkable note is related to the different behavior of the resonances depending on
their frequency. In Figure 3.5, we can observe a diverse behavior for even and odd modes,
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Asymmetric cavity reflectance
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Ficure 3.4: Simulated spectral response of the three-cavity system. The reflectance is
aperiodic, with a difference in FSR between the modes and a different extinction ratio of the
modes themselves. This behavior results from the constructive and destructive interference
between the standing waves of the single cavity, leading to a modulation of the response.

where the amplitude and phase delay of the oscillations is different between the two. A
justification for this behavior is not trivial, but it is probably related to having three coupled
cavities between the two mirrors that could compensate for each other behavior. Once
again, this consideration will help us understand the experimental data (Section 7.1) and, in
particular, the effects of the crystal misalignment on the modes (Section 7.3).

Looking at the relation between the wavelength and the FSR (Figure 3.8), the difference
between even and odd modes is again evident. Moreover, we can recognize a pattern formed
by two sine waves of different amplitude, one modulating the odd modes and the other the

Asymmetric resonance spectrum

1554.2

1554.0

1553.8

1553.6

Resonance wavelength [nm]

1553.4

—1000 —500 500 1000

Crystal pnsit?on shift [nm]
Ficure 3.5: Simulation of the cavity resonant modes with different offsets in the crystal
position. The frequencies are modulated because of the phase-matching condition on the
crystal surface. Each mode has a different phase delay in the oscillation, but the period is
constant and corresponds to half of the light wavelength.
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Cavity reflectance variation
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Ficure 3.6: Simulation of the reflectance of 10 different modes. The maximum amount of
light coupled inside the cavity depends on the specific mode (e.g, dark blue vs yellow) while
the modulation of the peak height depends on the crystal position.

even ones. In the Figure, we can also notice how the crystal position affects the relative
distance between the cavity modes that in practice enable a fine-tuning of the FSR. Most
importantly, the variation speed depends on the position of the point on the modulating
waveform: the top and bottom fringes are more stable than the central rapid drift of the FSR,
enabling less altering, but better response stability [30]. If we analyze Figure 3.9 comparing
FSR and AFSR, defined as the difference between two consecutive FSRs

AFSR = FSR_:H_]_ - FSRJ = Wji2 + wi — 2T.Uj+]., (3.6)

Mode linewidth variation

16

- -
8] b

Mode linewidth k [MHz]
5

0.8

—200 —100 100 200

Crystal posit‘ijon shift [nm]
Figure 3.7: Simulation of the mode linewidth as a function of the crystal offset. The peak
height and width are related, so the same modulation affects both of them. When a peak is
high, it is also narrow, and vice versa. The minimum and maximum depend on the specific
cavity modes, however, the absolute minimum linewidth is related to the pure optical cavity
one, since the crystal can only increase the losses.
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FSR variation with crystal offset
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Ficure 3.8: Simulation of the FSR as a function of the crystal offset inside the cavity and
the resonance wavelength. The spectral response is modulated in frequency because of the
crystal reflectivity, with a periodic envelope around an average value that is slightly smaller
than the pure optical cavity one. The crystal position makes the pattern varies, with different
drift speed with different modes. This drift is periodic and corresponds to the oscillation of
the mode frequency reported in Figure 3.5.

we notice a double-elliptical pattern for the even and odd modes. The ellipse eccentricity
depends on the crystal offset inside the cavity [31], and its axis drifts with the laser frequency
(the phase delay on the crystal facets depends on the laser wavelength, thus the interference
with the reflected wave drifts with it). Having AFSR # 0 allows exciting a single mode pair
when stimulating the optomechanical response in the crystal (see Section 4.3).

AFSR vs FSR variation with crystal offset
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FiGgure 3.9: Simulation of the relation between consecutive FSRs as a function of the crystal
position inside the cavity. The points are distributed along two ellipses which rotate with
the frequency. The ellipticity depends on the macroscopic crystal position, with larger values
closer to the mirrors. On the other hand, the microscopic crystal shifts make the points move
along the ellipses.
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Ficure 3.10: Simulation of the cavity resonant frequencies when the cavity temperature
increases. Since the crystal and the cavity holder have different lengths and expansion
coefficients, the crystal dimension, its offset, and the cavity length undergo superimposed
changes. The picture shows the behavior over a typical operation range in the laboratory.

Finally, we should stress that the nanometric changes in the crystal position or cavity length
are not outside the ability of a standard optics laboratory. Precisely, the metal expansion and
contraction with temperature is more than enough to generate significant drifts in a room
temperature setup. The ability to tune the system is enabled once we provide a strategy to
modify and stabilize the temperature of the elements keeping the mirrors and the crystal in
position.

In Figure 3.10, we report the same analysis of 3.5, but taking into account the thermal
expansion coefficients of the quartz crystal and the brass cavity [43]. In fact, with the
temperature rising, the cavity length increases as well as the length of the crystal and its

Mode variation with temperature
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Ficure 3.11: Example of a mode drift with temperature. The macroscopic drift depends
on the cavity length variation because it is accumulated in frequency. At the same time, the
crystal position and expansion mainly impact the mode shape and the inversion of direction
on the left of the picture.
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FSR variation with temperature
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Ficure 3.12: Simulation of the impact of temperature on the FSR pattern. Slow drifting
points appear on the top and bottom of the modulation pattern, in accord with the sinusoidal
oscillations of the points. The dotted line represents the Brillouin frequency we aim at to
stimulate the optomechanical interaction. Regarding the points crossing the line, we show
that temperature stability and control are required to steady the cavity behavior.

offset with respect to the first cavity mirror. In Figure 3.11, we displayed the mode frequency
drift, dominated by the cavity length variation, together with the changes in its reflectance,
caused by the crystal shift as shown in 3.6.

At last, in Figure 3.12 and Figure 3.13 we report the FSR behavior as a function of the cavity
temperature. The same considerations as in the case of simple crystal position changes apply.

AFSR vs FSR variation with temperature
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Ficure 3.13: Simulation of the AFSR against FSR pattern as a function of the cavity
temperature. The temperature impact is the same as the crystal offset since the
phase-matching condition drifts with temperature while the macroscopic crystal position is
stable, assuming good equilibrium among the thermal stress forces, i.e., the alignment of the
crystal faces is not compromised.

23



3. OPTOMECHANICAL CAVITY

24

In addition to anticipating the comparison between simulation and experimental data, this
analysis wants to justify this setup’s utility in studying the optomechanical response of the
quartz crystal. In particular, the previous Chapter has clarified the requirements of having
multiple optical modes separated by the vibrational frequency allowed by the crystal and
a strategy to suppress part of the interaction to obtain recognizable Hamiltonians. In this
Chapter, we demonstrated how both conditions are met when placing a crystal inside an optical
cavity thanks to the modulation of the cavity’s FSR and the ability to tune the system through
temperature variations, thus providing a strong theoretical backing for the experiment.



Brillouin scattering 4

4.1 Light-matter interactions in a Quartz crystal

In the previous Chapter, we justify the choice of the experimental setup and how a macroscopic
optomechanical cavity can be used to study the interaction between an optical and an acoustic
mode. We will now focus on understanding how the acoustic wave can be generated inside a
crystal and can enable optomechanical interaction to transfer power between different optical
modes.

Starting from the material choice for the experiment, a quartz crystal is an arranged structure
of Silicon and Oxygen atoms according to a hexagonal lattice. The crystalline structure
has a refractive index n = 1.5276 @ T" = 298 K [44] and presents two optical axes, i.e.,
when the material is cut along the x-y plane (z-cut) and the light impinging orthogonally
to the crystal face, twp linearly polarized modes can be transmitted without perturbation.
On the other hand, the other incoming beams will be affected depending on the incoming
polarization, with a deviation in the optical path if the impinging angle is different from
zero. Nevertheless, quartz crystals are often used in optics because of their stability in
frequency (dn/dA = —9 ppm/nm) and temperature dn/dT = 10 ppm/K, and low absorption
v < 10 ppm/cm~! at optical wavelengths. Moreover, their birefringence An = 8.47 x 1073 is
usually neglected by operating along the crystal optical axis, as in this experiment.

In quantum optics, when discussing the optical properties of the different materials, we are
often interested in the capability of arising non-linear phenomena because they imply the
interaction between multiple quantum entities and thus enable, for example, the creation of
entangled and squeezed light. Quartz crystals do not show remarkable high-order dielectric
coefficients and can still favor Raman and Brillouin scattering. Raman scattering describes
the properties of the atomic nuclei of absorbing and re-emitting photons at different energies
after going through a transition of the bounded electrons to a different energy level. Brillouin
scattering involves an acoustic wave propagating through the crystalline structure and an
organized displacement of the lattice atoms.

Pristine quartz crystals are employed for their optomechanical properties because a precise
lattice structure without defects and impurities enables the long propagation of vibration
across the material and, when the system is cooled down to cryogenic temperature, can
constitute a mechanical cavity with small linewidth (I",,, /27 = 100 kHz [32]). Furthermore,
the acoustic modes are considered at high-frequency in the optomechanics field with bulk
acoustic waves at about 2, /27 = 12.44 GHz, allowing them to easily reach ground state
for the mechanical oscillator at 7' = 100mK and involve a large motional mass of about
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meyrs =~ 20 11g, increasing the interest for fundamental physics experiments.

In the rest of the chapter, we will focus on the Brillouin interaction, starting with a
phenomenological description of Stokes and Anti-stokes scattering to conclude by formalizing
the interaction in the framework of Optomechanics we introduced in Chapter 2.

4.2 Brillouin interactions: Stokes and Anti-Stokes scattering

Among the energy-transfer mechanisms in quartz crystals, Brillouin scattering is the prominent
optomechanical interaction (Figure 4.1). From a classic optics point of view, Brillouin
scattering is a three-wave mixing interaction arising from the inelastic scattering of light from
elastic waves, i.e., bulk acoustic waves. Brillouin scattering occurs due to electrostriction,
a phenomenon where materials become denser under the influence of an electric field
[45]. More in detail, the coupling between the optical field and the local displacement
of the dielectric medium occurs through a Brillouin-like optomechanical process when
the time-modulated electrostrictive optical force distribution, produced by the interference
between distinct modes of the Fabry-Pérot cavity, matches the elastic profile (and frequency)
of a bulk acoustic phonon mode. By creating a time-modulated photoelastic grating, these
acoustic waves mediate energy transfer between distinct longitudinal modes of the optical
cavity.

From the given definition, the requirement of exciting at least two optical modes which

—[—

quartz

UL

Standing-wave

Fast-decaying optical modes

acoustic modes

(wj-1,kj-1)

FiGURE 4.1: The picture shows the optical and acoustic modes inside the optomechanical
cavity. The phase-matching conditions for acoustic modes generate standing waves between
the two mirrors. When considering the reflection from the crystal too, the waves can
show different intensities in the different regions because of constructive and destructive
interference with the reflected fields. On the other hand, the phonon modes have a lifetime
smaller than round-trip-time inside the crystal, preventing the creation of an acoustic cavity.
The acoustic modes have fast decay rates and the phase-matching conditions are loosened.
The interaction between the modes is allowed when energy and momentum conservation is
guaranteed, and the overlapping integral between the modes is non-zero. Image adapted
from [32].
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spatially overlap within the crystal is evident. Moreover, energy and momentum conservation
determines the set of phonon modes (,,, ¢,,) that can mediate resonant coupling between
adjacent optical modes (wj, Ej) and (wj41, Eﬁl) of the Fabry-Pérot cavity. When working at
room temperature, we cannot create an acoustic cavity within the crystal because of the quick
decoherence of the lattice vibrations (exp(—I'y,L,) < 1). The result is that these conditions
are easily met, i.e., the linewidth of the cavity resonances can be much smaller than the
mechanical linewidth of the optomechanical interaction. Moreover, assuming propagation of
the optical beam orthogonal to the z-cut facet, the conservation of energy and momentum
‘EN.?‘H- = hwj +_’th (4 1)
kj1(wip1) = kj(wj) = @m(m) .

is satisfied when the frequency spacing between adjacent optical resonances matches the
Brillouin frequency (FSR = €;,,), i-e., the acoustic wave frequency.

Considering these requirements, the Brillouin frequency €2,,, can be calculated as a function
of the propagation speed of light v, and sound v, in the material [46]

_ 2"’-)pt"'a/i"o

Q. =
m 1+ vg/v0

R 2wpUq [V, (4.2)

where wp, = w; = w41 is the frequency of the laser pump, and the plus-sign takes into
account the different directions of propagation of the acoustic waves compared to the optical
ones as the given approximation is valid with v, > v,. The speed of sound in the longitudinal
direction is v, = \/c33/p, where p = 2650 kg/m? is the density, and c33 = 106.1 x 10° Nm 2
is the relevant elastic constant. The speed of light in a given material, v0 = ¢/n where the
refractive index n depends both on the pump wavelength A &~ 1550 nm and the temperature,
and it is found using the Sellmeier formula [47]. The Brillouin frequency for crystalline z-cut
quartz is estimated at €2,;, = 12.47 GHz.

Stokes scattering - optomechanical heating Anti-Stokes scattering - optomechanical cooling
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FIGURE 4.2: Energy and momentum conservation diagram for Stokes and Anti-Stokes
processes. In Stokes scattering, a high-energy photon interacts in the material, releasing
a new phonon that propagates across the lattice structure and a lower-energy photon. In
Anti-Stokes scattering, a photon and a phonon interact together and emit a new higher energy
photon. The two interactions are known as optomechanical heating and cooling because they
impact the number of phonons in the system, thus changing its thermal equilibrium.

Since two conditions can define Brillouin interactions, two different processes involving the
three waves can arise, i.e., Stokes and Anti-stokes scattering. In a Stokes process, a photon
from the incident laser pump field at frequency wy, is converted into a lower frequency
Stokes photon at frequency wg and an acoustic phonon at frequency €, in the inelastic
scattering process, where w;, = wg + {,,,, shown in Figure Figure 4.2 (left). On the other
hand, a photon from the laser field can also absorb the energy of an acoustic phonon and
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Ficure 4.3: The dispersion relations between the optical and acoustic modes imply that the
scattered field is always back-propagating with respect to the pump mode. On the other hand,
the generated Stokes phonons differ from the ones that can be absorbed through Anti-Stokes
scattering because of the different directions of propagation. We should also notice that
the momentum of the interacting phonons g+ and ¢~ is slightly different because of the
dependence on N;; + 1 and Ny, respectively. Image from [31].

produce a higher frequency anti-Stokes photon at frequency was = wp + Qm, as shown in
Figure Figure 4.2 (right). To grant momentum conservation, the two interactions generate
respectively forward- and backward-propagating phonon waves known as forward and
backward Brillouin scattering. Figure 4.3 pictures the dispersion relation of the different
waves, and it provides a graphical explanation for the difference between the Stokes ¢+ and
Anti-stokes g~ momentum at the same frequency Q.

An additional remark should include the phase-matching conditions between the generated
waves: only if the pump wave coherently excites the crystal, the resulting photons will be
able to constructively interfere with each other in the interaction region and generate a
propagating scattered wave [45, 48]. It is indeed the case inside an optical cavity, where the
pump mode is in a steady state because of resonance with the cavity modes.

4.3 Optomechanical description in the scattering picture

If, in the previous section, we have described the Brillouin scattering and its interpretation
through optical and acoustic waves, we are still missing the theoretical link with an
optomechanical interaction. An intuitive explanation could recall that Brillouin scattering
implies the energy exchange between an optical and an acoustic wave, thus complying
with the definition of optomechanical interaction. Nevertheless, a more precise analysis of
the results shown in Chapter 5 can draw a complete picture of both interpretations of the
phenomenon.

We have shown that we can distinguish the two-mode squeezing and the beam-splitter
interactions by suppressing part of the linearized optomechanics interaction Hamiltonian.
These two processes are equivalent to Stokes and Anti-stokes scattering, respectively, once
described as single energy quantum transfer (Figure 4.4). In fact, the decay of a single
high-energy photon into an entangled state between a photon and a phonon clearly describes
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FIGURE 4.4: The diagram displays the Stokes (A) and Anti-Stokes (B) interactions, remarking
on the role of the mechanical and optical modes. When we neglect the pumping laser that
could have a higher or lower frequency compared to the optical cavity mode, the power is
always scattered into the cavity mode. The difference lies in the narrowing or spreading
of the mechanical state distribution because of the creation or absorption of phonons at a
precise frequency. Image from [19].

Stokes scattering, and its interaction Hamiltonian
Hs = —hgo(ahasb + apalb) (4.3)

is equivalent to the probabilistic generation of a two-mode squeezed state (2.31), where
the probability is given by the strength of the optomechanical interaction gg. In the same
way, Anti-stokes scattering relies on the probabilistic absorption of a phonon, together with a
photon, to create a higher energy photon and constitute a beam splitter interaction when
neglecting the pump mode providing energy for the transition

Has = —hgo(@}aasb' + dydl sb). 4.4)

The parallelism is also evident after recalling that the acoustic waves in a system are directly
proportional to its temperature, thus the creation of phonon through Stokes scattering heats
the mechanical system while the absorption through Anti-stokes scattering cools the system
down. When recalling that the two optomechanical interactions are indeed named laser
heating and laser cooling because of their effect on the amplitude of the displacement of the
mechanical oscillator, the equivalence is once again confirmed.

Furthermore, we can calculate the optomechanical single-photon coupling rate go of the
Brillouin interaction. The derivation actually requires introducing the quantization of the
electromagnetic and acoustic fields and taking into account both the mode overlap of the
Gaussian beams inside the crystal and the phase-matching condition because of the standing
optical modes nodes and antinodes. The complete derivation can be found in the literature
articles [32], while here we report only the upper limit for go (noting that it assumes an
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acoustic cavity being formed inside the crystal) as

wn®pi3 h L,
go/2m ~ Qnﬁffc QmpAL, (L) ’ 4.5)

where n.ry ~ n = 15276 is the effective refractive index for the optical mode,
p = 2650kg/m? is the material density, p;3 = 0.27 is elasto-optic constant along the optical
axis, A ~ m(72nm)? is the interaction area constrained by the optical mode waist, L, = 4 mm
is the crystal length, and L = 10.23 mm is the cavity length. We have also assumed the
frequency of the two optical modes to be the same w; = w;;1 = w = 193.4 THz to obtain a
maximum single-photon coupling rate of gq /27 ~ 12.98 Hz.

In conclusion, in these introductory chapters, we discussed the theory behind the
optomechanical interactions and its equivalence with the Brillouin Stokes and Anti-stokes
scattering happening in quartz crystal, showing its feasibility as an optomechanics platform.
Moreover, we explain how the interactions can be stimulated independently in a macroscopic
optomechanical cavity thanks to the modulation in the FSR when placing a crystal inside the
cavity, and we are now ready to describe the experiment and its goal.




Bulk cavity optoacoustics 5

5.1 High-frequency optomechanics: resolved-sideband regime

The topic of this project could be said to be within the "bulk cavity optomechanics" because
of the macroscopic nature of the optomechanical system compared to the more commonly
used membranes and trampolines. The "cavity" feature arises from using the resonant modes
of an optical cavity to enhance the optomechanical interactions in the quartz crystal. Another
classification could be discerned from the nature of the interaction given the topic name of
"Brillouin optoacoustics" since the lattice vibrations generated by Brillouin-scattered phonons
lead to bulk acoustic waves propagating in the crystal. Finally, another characterization of
the system under analysis is the property of allowing "high-frequency phonons". In fact,
"high-frequency optomechanics" denominates a specific subfield focused on studying the
optomechanical interactions within the limits of the resolved-sideband regime.

In contrast with the Doppler regime, i.e., the unresolved-sideband regime, in which the
frequency of the mechanical modes is several orders of magnitudes smaller than the optical
linewidth (Q,, < k), thus limiting the cooling rate of the optomechanical interaction because
of quantum back-action [19, 49], the resolved-sideband regime presents a mechanical

ya 1

Wy w ’ w 0 w
N, =k 40> 1 Nin=k2[1602< 1

FiGURE 5.1: Comparison between unresolved (a) and resolved (b) sideband regime. In the
first case, the stimulation of the sideband also transfers energy into the principal mode,
preventing the cooling of the system into the mechanical ground state. In the second
case, the separation between the sidebands allows exciting only the Anti-Stokes interaction,
thus decreasing the phonon number and cooling the system below the single-phonon level
Npin < 1. We also noticed that we could have high-order sidebands, but their strength is
usually too low to be used. Image from [49].

Y
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frequency much larger than the cavity decay rate (£, > &), as shown in Figure 5.1. In
this regime, the optomechanical scattering generates a series of sideband peaks spaced at
multiples of the mechanical frequency (only the first order is usually considered, in particular
with a low optomechanical coupling rate) that are separated from the pumping mode peak.
In this experiment, the advantage is evident: we not only can analyze the frequency response
of these modes independently of the main one by filtering the spectral response, but we also
can make both pumping and scattered beams in resonance with the cavity modes, increasing
the number of photons in the pump that are available for the transition. The latter aspect is
crucial for the experiment because it allows the system to reach the incredibly high effective
coupling rate and reach the strong-coupling regime, i.e., the coupling rate overcomes the
optical and mechanical losses inside the cavity, as it will largely explain at the end of this
chapter.

In the following sections, we will formalize the Hamiltonian description of the optomechanical
interaction in our system to derive a theoretical model of the variation in the optical response
in terms of light intensity reflected from and transmitted through the cavity. Then, we will
analyze the effects of power for the Stokes and the Anti-stokes interaction, defining and
characterizing the Brillouin lasing and the strong-coupling regime.

5.2 Optomechanically Induced Amplification (OMIA) and Transparency
(OMIT)

The optomechanical response of the system affects the optical properties of the cavity, leading
to a change in reflectivity when the Brillouin frequency matches the difference between
the two cavity modes. As we discussed before, the transfer of energy between the optical
modes through the acoustic wave arises in a change of the reflected and transmitted power.
In particular, in the case of a strong control laser in resonance with a cavity mode (pump
mode), we can perturb the response of a weak probe in an adjacent resonance (signal mode),
impacting the transmittance of the optical cavity. It is the so-called optomechanically induced
amplification and transparency (Figure 5.2).
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Ficure 5.2: Optomechanically Induced Amplification (OMIA) and Transparency (OMIT).
When analyzing the transmission of the signal mode, mechanical resonances impact the
transmission of the optical mode because of the scattering of photons from the pump, which
interferes constructively or destructively with the probing mode. If the system is at cryogenic
temperatures and an acoustic cavity is formed, the mechanical linewidth can be much smaller
than the optical one, leading to an amplification or absorption window in the cavity response.
Image adapted from [32].
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When the frequency of the probe mode is lower than the pump one, the power transfer is
carried out through Stokes scattering, thus amplifying the amount of power inside the cavity
and overcoming the mode decay. It means that, despite most of the light being transmitted
through the optical cavity because in resonance with the cavity modes, part of the light is still
reflected as if the reflectance of the cavity is increased and its amount is comparable to the
incident intensity leading to a visible change in the spectral response. In the same way, when
the probe mode has a higher frequency than the pump, it is depleted because of Anti-stokes
interaction. In fact, the scattered photons are phase-coherent with the probe fields and
destructively interfere with them, leading to a cancellation of the intracavity field. As a result,
we no longer have a reflected light from the cavity that can interfere with the impinging one,
transforming the cavity response as the one encountered out of resonance, i.e., the light
appears to be transmitted through the cavity as the cavity resonance is made transparent.
From an optomechanical point of view, the physical origin of both the amplification and the
transparency windows underlies the beating between the probe field and the pumping laser
that, when coherent, induces a time-varying radiation pressure force. When the mechanical
oscillation frequency is met, the mechanical oscillator is driven resonantly, creating sidebands
in the intracavity field that interfere constructively or destructively with the probe signal.
Even if amplification and transparency can be described with the same set of equations in
the theoretical discussion, the dumping of the mechanical oscillator in the Stokes scattering
will be reduced by increasing the pump power. This aspect leads to an intrinsic limit for a
coherent response before parametric oscillatory instability occurs, i.e., the noise is coherently
amplified by the mechanical motion overcoming the lasing threshold.

5.3 Optomechanical cavity spectral response model

In trying to characterize the optomechanical response of our system, we should start by
detailing the unidimensional transfer matrix model presented in Chapter 3. To have a
more accurate description of the experimental results, we need to take into account another
fundamental element. Whereas the modes a&i’g) and a‘gh’f )in (3.1) represent the input and
output modes of the cavity, those do not, in general, describe the input and output modes of
our transmission optics. Even if the difference in polarization alignment can be overlooked
and the complete modeling of the misalignment of the incoming beam is an overreaching

approach, we can still account for the mode mismatch through additional losses between the

Optical cavity
(1) (1) quartz A (2 ~(2
€in Q;n & G‘En) ez('n.)
Tl M1 5 Mz T
A(1 ~(1) ~(2 A(2
€out ot agu)t egu)t
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FIGURE 5.3: The scheme identifies the input a;,,”’ and output a,,;; ' modes from the optical
cavity. These modes directly couple inside the cavity with the steady-state field 4. However, if
we consider the mode-matching conditions, we must take into account the difference between

them and the free-space optical modes éﬁ;"m and é‘g}f) that can be collected and measured

through the two interface matrices T and Ts, i.e., coupling loss terms.
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free-space optical modes and the cavity inputs and outputs [30]. Without loss of generality,
we can thus define a real scattering matrix modeling the coupling coefficients between the
modes. When we keep the denomination "1" for the port of the impinging laser and "2" for

the one after the cavity, we deﬁne external modes é ? and efjj )| the input cavity modes
( the output cavity modes a al2) ag reported in Figure 5.3. We also keep the same name

out
for the optical pump &, and signal G, and mechanical b modes inside the cavity.
We can thus define the scattering matrix 77 and 7% as

(1 1 1 1
Y _ (& [ s
A(l) 1] (1) 1 [CO RN Y
Gip out S21 S22 (5.1)
~(2) A(z) 2 (2 '
‘) -7 Mo =% B
Qi Aout Sa1° S22
where we assume <é§i)> =0, i.e., no optical field coupled from the second port, and 5512’2) =0,

i.e., no further reflection of the output beams, to simplify the analysis. The normalized
reflection R;(A) and transmission 75(A) optical spectra are then given as in (3.5) by

('b>

@>

51T 5 (1)> 5(2)7T 5 (2)>

. < out out . < out out
BB = Cormy 0= oy

wm m m m

(5.2)

with A = w — wy the detuning of the optical signal compared to the resonance frequency wy.
Recalling the Hamiltonians (2.25)(2.28) displayed in Chapter 2 and adapting them to take
into account the several fields interacting with the cavity (Figure 5.4), we can rewrite the
optomechanical Hamiltonian as

H=h (z% - wp) ilay, + h (2% - ws) alas +h (ZF; + Qm> bb

—ligm (@b + apaldt + aba.bt + ayald) (5.3)

il Kl 0 (@he ™ et i g ol (ale T 4 agett),
where we use the plane-wave approximation for the classical fields outside the optical cavity
ae~ 't Moreover, within the undepleted pump approximation, the dynamics of the mode at
frequency w, are not influenced by the optomechanical coupling, and its Langevin equation
of motion is

Py . K ~ —iw
ap = — <zwp + Ep) ap + éi)t paﬁ)p et 5.4

where k,, = fié?m + K025 /{iz)t . 1s the loss rate at the first cavity mirror and x ., is the loss
rate inside the cavity for the optlcal mode x = p, s. At the same time, we can adapt (2.12) to

rewrite the steady state solution for mode a,

n @

; ’iemt.pain P i
ap = /Nye "rt = | L —— = e~ "wp! 5.5
P p Kp/2+ 1A, ’ (5.5)
where N, = |ozp|2 = (a,) is the pump laser intra-cavity photon number for mode, and

A, = wp — wo p is the pump detuning.

Following the same procedure presented in Section 2.4 and using the rotating frame of the
pump laser, we can linearize the effective Hamiltonian respectively into two expressions for
Stokes and Anti-stokes (with the only difference lying in the different use of the creation and
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FIGURE 5.4: The scheme represents the several quantities impacting the OMIT response of
the system. We usually assume driving the pump laser on resonance w, = wy o, thus the main
two parameters are A, which represents the difference between the cavity mode frequencies
and the Brillouin frequency (2,,,, and § which is the detuning or the probing signal from the
Brillouin frequency. Image adapted from [32].

annihilation operators)

Hs = —hsbl,bm — h(6 — Ay)0d}as — hgm (asbm + albh,) +ihy/ k() jaly)(ad — ) 56
5.
Has = —Fob by — 1(6 — Ag)datas — Agm (albm + asbl) + ifi/ k'L, .alY (6l — &)

ext s in,s

where 6 = w, —wp — O and Ay = we 0 — wp — i, and the cavity field-enhanced coupling

rate gm = goy/ Np.

The Langevin linearized equations of motions are derived as

PRCY N

e:l:ts in,s

A Kg ., . A7
Gg = —Esa +i(6 — Ag)a+ igmb) +

; | . (5.7)
b= —?’"‘b +i6b + igma™
and the photon and phonon steady-state population is expressed as
b, = —9m A
— 36
o M (5.8)
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where the notation (f) remarks that the construction operation is used for the Stokes response
while the annihilation one is for the Anti-stokes, in addition to the different F sign.
Finally, we can write the complete expression for the output optical fields *fj}t . and *fj}t o at

the two ports using (2.8)(2.9)
(1)

A1 A(1 [ a 1 Kext,
.Em.)t & En).g - E’.x)t sas - En).g 1- % R s g2 (59)
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where the difference between OMIA and OMIT is in the sign F. For the external optical fields,
we can report the transmittance and reflectance as the normalized reflected and transmitted
power of the signal mode from (5.1)

2

1) 1)@ (oh)ts((s) 1)
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In the equations, we define the optomechanical cooperativity C' as the expression
C = 4¢3 /(ksTy). (5.13)

In the resolved-sideband regime, the cooperative depends on the optical and mechanical
linewidths and represents ta normalized metric for the strength of the optomechanical
interaction. In fact, cooperativity of 1 is required to change the transmission of 50 %,
respectively, for OMIT or OMIA when the system is on resonance.

5.4 OMIA: Brillouin lasing

When considering the Stokes process, the power transfer from the pump to the probing
mode leads to the parametric amplification of the latter. The continuous build-up of power
can erupt into sustained oscillations when the scattered power overcomes the cavity losses,
i.e., Brillouin lasing begins. In a Stokes process, the beating between the laser pump and
the acoustic wave tends to reinforce the Stokes field, while the beating between the laser
pump and the Stokes wave reinforces the acoustic wave. Under the right conditions, the two
processes can generate positive feedback such that the Brillouin gain exceeds the round-trip
losses and amplifies the signal exponentially.

This explanation based on a classical interpretation of the phenomenon agrees with the
Quantum Mechanics derivation we obtained in the previous section. If we look at the
expression of OMIA/OMIT transmitted field in resonance, we can see that the effective
linewidth of the mode under analysis I'. s is given by a combination between the original
mechanical linewidth and the optomechanical interaction as

492
I‘leff = F(OMIA,OMIT) =I'nF I—‘opt =TmF —, (5.14)

S
When the power increases, this expression is no longer constrained to a positive value
for Stokes interaction, remarking a sudden change in behavior as we overcome the lasing
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threshold. In fact, a negative peak linewidth is meaningless, but a negative decay rate
represents an exponential increase in the mode energy. The lasing threshold is overcome
when C' > 1 and can be given in terms of intra-cavity photon number as

| P
> (5.15)
" 4gg
or in external power, once taken into account the coupling efficiency
Ks/2)? Tk
h= (rs/2) 5 s ——5—. (5.16)
1) 1) 445
exrt,s|°21

We should notice that since the lifetime of the phonons is much shorten than the photons
(T',, > k) because we are unable at room temperature to form an acoustic cavity, we are
thus discussing optical Brillouin lasing that results from stimulated optical amplification. In
contrast, in "mechanical lasing" or "phonons lasing" the phonons go through an instability
process through a self-induced optomechanical oscillator, i.e., build-up of acoustic waves
inside the cavity. In fact, in the absence of a mechanical cavity, the exponential increase
of the optical field above lasing threshold interacts with the phonons through Anti-stokes
scattering, preventing an accumulation of the mechanical mode.

Finally, we should notice that the derived expressions refer to an undepleted-pump regime.
However, this condition cannot be met after lasing because the amount of scattered power is
no longer negligible with respect to the pump intensity.

5.5 OMIT: strong-coupling regime and mode hybridization

If Brillouin lasing can be hard to characterize because of the exponential nature of the
phenomenon, thus involving large amounts of power that make the system unstable, the
opposite stands for the strong-coupling regime. Increasing the pump power while analyzing
the OMIT response introduces different Quantum Mechanics effects broadly studied in the
latest years in the literature because of their usage in quantum information processing.
Strong coupling is a specific condition where the interaction between the optical field and the
mechanical vibrations becomes higher than the intrinsic decay rates of both the optical and
mechanical modes. In particular, the efficient and coherent energy exchange between the
two leads to the formation of collected excited states known as photon-phonon hybrid states.
In addition to enhancing the sensitivity of equally optical and mechanical property changes
[36], the strong-coupling regime enables the creation and manipulation of non-classical states
of light and mechanical oscillators [50, 51]. Implementing quantum transducers to convert
quantum information between optical and mechanical degrees of freedom and quantum logic
gates to manipulate it leads to great interest in researching optomechanical systems.

The strong-coupling regime is reached by increasing the coupling strength through the
build-up of power in the pump mode, and its mathematical formulation follows the equations
given in Section 2.4. Starting from the Langevin equation of motions in the case of
optomechanically induced transmitted reported in (5.7), we can formulate the free-evolution

Hamiltonian (i.e., without stimulation from the input field dg}l)) in matrix form

<<<b>>) L (ms/zjg:m A, i Qm) <<<b>) 1)

where we assume the difference between the optical modes close to the Brillouin frequency,
i.e.,, A; ~ 0. We can thus solve for the complex eigenvalues of this non-Hermitian matrix,
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obtaining

As Fm s _As .]-_‘m_ s 2 ?
wsi:Qm_7—z‘%i\/ggL+( “(2 ”)/> (5.18)

When we analyze the eigenfrequencies of the system when stimulating the Brillouin interaction
FSR = Q,,, i.e., A; = 0, we get

Fm 5 1_‘Tn - Ivs ?

and we can define two conditions: when g,, < (I'y, — ks)/4, the two solutions have the
same real part that corresponds to the frequency of the optomechanical response peak but
different linewidths because of the imaginary part’s effect on the decay rate; whereas when
9gm > (U — Ks)/4 the two solutions have different real part Q,,, + ¢ and Q,, — ¢ hinting the
presence of two absorption peaks with separation, i.e., the normal-mode splitting regime

9 =9 2 Iy — ks 2 -

with the approximation valid when increasing the power. In particular, the position of the
peaks is related to the spectral response of the system, making the mode splitting identifies a
hybridization of the eigensolutions, i.e., the response is no longer dominated by the optical
system, but by the whole optomechanical interaction thus involving the dynamics of hybrid
photon-phonon modes with the eigenmodes as symmetric and antisymmetric superpositions
of light and mechanics, associated to the new annihilation operators (é, & b)/v/2.

With the increase of power, the two peaks keep the same linewidth equal to the average
between optical and mechanical linewidth (T',,, + x)/2 while the separation between the

frequency w/y

1.0
detuning —As/Qmn

FIGURE 5.5: When the optomechanical interaction is strong enough, the optical response
hybridizes and two peaks appear in the spectrum and keep separating as the pump power
increases. When we enter the strong-coupling regime g,,, = (I's, + 5)/2, the two peaks are
resolved, and we observe avoid crossing in the detuning plot. Image from [19].
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peaks grows linearly with g,, « \/P;, . As for Brillouin lasing, the strong-coupling regime
is defined as the overcoming of the effective damping rate of the optical-mechanical hybrid
modes g¢,, 2 (I'y, + 55)/2 [33] and corresponds to a total separation between the two
peaks (they are completely resolved). The corresponding power threshold for the number of
intra-cavity photons is

(D + 5)°
N, > —" 5.21
p > ig ( )
and for the input external power
S 2 2 Fm S 2
_ R/, (Tt o) (5.22)
(CORNCY 495
’ie;ct,p Sa1

Under this regime, the two peaks never overlap even with detuning different from 0, giving
the name of "avoid crossing" to the phenomenon (Figure 5.5).

Finally, we should mention that a "stronger" regime exists when the mutual coupling
rate overcomes the thermal decoherence of the hybrid modes, and it corresponds to
9m > {LmNin, kst Within the Brillouin optomechanics field, it is only achievable at
cryogenic temperature when the average number of thermal phonons Ny, is lower than
1, i.e., the mechanical oscillation is in the ground state. This "quantum-coherent" regime
enables quantum-state transfer between the cavity field and the acoustic mode, and thus it is
a precondition for many quantum protocols.

This chapter concludes the theoretical analysis required for analyzing and discussing the
experimental results and, in particular, provides a mathematical model for the system spectral
response that accounts for the optomechanical one and its relation with the external fields
that we can experimentally measure. The proposed model still contains several assumptions
on the stability and alignment of the system. Nevertheless, it can predict the results to an
adequate degree.
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6.1 Optomechanical cavity design for temperature tuning and stability

The cavity design focuses on the requirements described in Chapter 3 to match the Brillouin
frequency of the quartz crystal with the cavity resonant modes. In this section, we explore
the characteristics of the optomechanical cavity, remarking on the design choices to improve
the cavity stability to temperature variation, a fundamental requirement for matching the
cavity modes with the crystal Brillouin frequency, and performing detuning measurements.

In Figure 6.1, we display the cavity model and its support, whereas Figure 6.2 contains some
pictures of the assembled cavity in the laboratory. The system comprises several elements

FicuRE 6.1: SolidWorks model of the optomechanical cavity and its support. Brass spacers
place the mirrors 10.23-mm apart, while a bottom v-grove aligns them on the x-y plane. The
crystal is positioned in the center at 1 mm from the front mirror. The remaining parts of the
brass holder help thermalize the structure and constrain the thermal expansion of the cavity
pieces along the z-direction.
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FIGURE 6.2: Photos representing some steps of the cavity assembly. On the left, we notice
the v-groove that aligns all the components, with the front mirror and the crystal holder on
top. The crystal lies on another groove to remain in the center of the cavity. In the center, the
second mirror and the needed spacers are added. We can also notice some Indium scraps
on the sides, which improve the thermal conductivity from the top to the bottom of the
cavity holder. On the right, we have the entire cavity with the Peltier cell, heat sink, and
temperature sensor above.

that can be grouped into optical elements, i.e., the ones that form the optomechanical cavity,
and assembly elements that constitute the structure and are responsible for the alignment
and temperature control.

Starting from the former, we should mention the 4-mm long z-cut flat-faceted quartz crystal
produced by Shalom EO [52]. The crystal is placed in the center of the cavity thanks to
v-grooved support at 1 mm from the first cavity mirror. The optimization of the crystal
position and its length has already been analyzed in [31] to increase the spreading of the
FSR variations and stimulate only Anti-Stokes scattering (see Section 3.3). The crystal is kept
in position using a thermal paste that improves the thermal contact with the support.

The first cavity mirror is produced by LayerTec [53], has a radius of curvature (RoC) of
500 mm and a transmissivity of 500 ppm. The second mirror has been custom coated by
LaserOptik [54] because of the high curvature radius (RoC = 20mm) and reflectivity
(T = 40 ppm). Both silica mirrors have a diameter of 0.5 inch. As we can see in Figure 6.2,
the x-y alignment of the mirrors is obtained through another v-grooved brass piece, while the
distance between the mirrors is guaranteed by filling the space with holed cylinders. The
selection of mirror features acts to create an optically stable cavity. The distance between the
mirrors of about 10 mm is required to match the Brillouin frequency of the crystal, and it
constrains the mirror curvature. The cavity stability factor g < 1 is necessary to have stable
cavity mode, i.e., a steady-state solution for the system with light trapped inside the cavity
and exiting only through the mirrors and not the lateral surfaces. The stability parameter
depends on the mode frequency, the cavity length, and the mirror curvature radii to focus
the light inside the cavity and not have diverging modes that can escape the confinement.
Caring about these features implies knowing the distribution of the beam waist inside the
cavity that the incoming beam needs to improve the coupling coefficient.

Finally, we focus on the brass structure that encloses the optical elements. We have already
presented how the v-grooves can help align the optical elements. We should add some
remarks about the temperature expansion of the cavity. Firstly, all the elements touching the
mirrors should have cylindrical symmetry to reduce the lateral stress when they expand.
This feature cannot be easily achieved for the crystal holder, since the crystal itself needs
to be placed in the cavity center. Nevertheless, using a holed cylinder allows uniform
pressure over the entire circumference of the mirrors. A non-uniform pressure leads to
material stress inside the mirrors, deforming the propagating beam and to misalignment
due to the microscopic tilt (= mrad) of the elements. The second aspect is related to the
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thermal stability of the system. A good thermal contact improves the control through an
external heat source, while a spatially symmetric heat transfer minimizes the temperature
gradient inside the elements, a cause of mechanical deformation and misalignment. In our
design, we place a Peltier cell on top of the cavity to maximize contact with the external
environment, i.e., improve heat dissipation while cooling the system. The heating/cooling
element is in thermal contact first with the top and then with the sides of the cavity to
provide heat transfer to the optical elements only through the bottom. Not having the
cavity top directly touching the optical elements favors a uniform temperature distribution,
increases the holder’s thermal mass, and restrains the pressure on the mirrors and spacers,
which is detrimental to the cavity alignment. An increase in the thermal mass is crucial when
increasing the laser power. The central power-dissipation element is the crystal because of its
higher optical losses. We thus have a heat flux from the crystal to the rest of the cavity that
needs to be absorbed or counteracted to keep the temperature stable. Failing in this aspect
is the principal limit to the maximum power we can employ because the high instability
of the cavity resonance frequencies prevents a steady lock and a constant pumping power
to study the optomechanical response (see Section 6.3). A final remark should be that the
initial uniform pressure requirements must be guaranteed after a temperature change. This
is another primary limiting factor for the performances because we require a movement
along the central symmetry axis of the cavity, but we must suppress later shift and tilting. A
uniform pressure through the front and back panels helps to keep the mirrors in position
despite the different expansion coefficients of brass and quartz, while the central v-groove
should constrain the crystal movements. Section 7.2 contains a deeper analysis of the
temperature-related behavior of the cavity through the optical response measurements.

6.2 Measurement setup description and characterization

After introducing the cavity features in the previous section, we proceed to describe the
measurement setup and the acquisition procedure. During the following description, we also
report the device calibration and their performances to demonstrate the reliability of the
results provided in the next Chapter.

The experimental setup relies on unbalanced heterodyne detection to analyze the spectral
response of the laser sidebands that constitute the signal mode in the Section 5.3 model
through the beating with the local oscillator, which distinguishes which one we are measuring.
In Figure 6.3, we have a schematic representation of the setup, picturing the operation on
the light spectrum and the devices we employed. Describing the detected signals through the
undergoing modification steps allows us to interpret the collected data and demonstrate
the relation with the logical model we presented in the previous Chapter. Moreover, in
Figure 6.4, we report the realization of the scheme on the optical table together with the
external devices used to control the acquisition process and the setup itself,

Starting from the tunable laser on the top left of the Figure, we have the expected spectral
distribution of the emitted light around a tunable frequency w,,. The Toptica laser [55] can
be tuned over a > 50-nm range with an emission linewidth §\ < 10kHz. Together with the
locking system, it provides the pump optical mode and the local oscillator for heterodyne
detection. The precise laser frequency is tuned with an integrated piezoelectric module that
keeps the laser frequency locked with the cavity resonance. Following the pump mode on the
top path, we encounter an electro-optic modulator (EOM) [56] that creates the signal mode
ws = wp £ ) by stimulating symmetric sidebands from the optical signal. The modulation
frequency (2 is controlled by an AnaPico frequency synthesizer [57] and is swept around

the Brillouin frequency 2,,, to characterize the spectral response of the cavity signal mode.

The modulated signal is thus amplified to control the power of the pump mode, i.e., the
strength of the optomechanical interaction. For this step, we employ an NKT photonics
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Ficure 6.3: Scheme of the acquisition setup, including the main processing step of the
optical (red and blue) and electrical (green) signals. The input laser is split into a local
oscillator which is later offset by 80 MHz and the main beam. From the latter, we create two
sidebands of frequency Q2 before amplifying the signal and coupling it into free space. In the
blue box, we can see the light coupled to the optomechanical cavity and reflected into the
fiber. Here, a heterodyne detector mixes the Stokes and Anti-Stokes sidebands with the local
oscillator and down-converts the signal to 920 MHz and 1080 MHz. The sideband frequency
sweep and the temporal sampling of the spectrum analyzer recreate the spectral response
of the cavity at different temperatures. Finally, we collect the pump beam transmitted and
reflected signal to lock the laser with the cavity resonance.

amplifier [58], which reaches more than 300 mW of output power with ~ 7mW as input.
The amplifier bandwidth is wide enough to impact both pump and signal mode and keep
the ratio constant, thanks to a flat spectral response in the interested frequency range (see
Figure 7.2). After being tuned in frequency and power, the light enters a circulator before a
fiber polarization controller and a free-space coupler. These steps are required to extract the
reflected signal from the free-space cavity to be sent to the measurement branch without
affecting its polarization.

The free-space elements are the core of the setup. Here are two lenses with focal lengths
f1 = —100mm and fy = 150 mm that control the mode-matching of the light to the cavity
modes. After the lenses, two mirrors control the impinging angle and position of the beam
to match the optical axis of the cavity. Finally, a half-wave plate (HWP) transforms the
linear polarization (required by the mirrors) to excite only one crystal axis. The positions
of the mirrors and the lenses are tuned by looking at the reflected and transmitted power
of the pure optical cavity first and the complete optomechanical one later. The HWP is
calibrated using the same spectrum by suppressing one of the two polarization peaks.
Employing a polarization plate on a converging beam is not ideal because of the deformation
on the wavefront. Nevertheless, the focal length is high enough to prevent detrimental
effects, and we measured no significant differences in the response. A practical remark is
that the two polarization peaks have very similar resonant frequencies if the crystal cut
is correct, and both can be used to study the Brillouin response with minimal differences.
After the optical cavity already discussed in detail, we have another lens that focuses the
light on a free-space photodetector. This detector, jointly with the one we will discuss later,
provides the transmitted and reflected from the optomechanical cavity to the laser locking
apparatus. Finally, we should remark on the presence of the Peltier cell and the high-resolution
(6T = 1 mK) temperature controller [59] that monitors and stabilizes the cavity temperature.
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FIGURE 6.4: Experimental setup comprises the optical table circuit and the several
measurement devices introduced in the acquisition scheme. On top, we have the spectrum
analyzer and the frequency synthesizer. On the optical table, we have the laser and the
locking system. On the bottom, we have the laser amplifier and the temperature controller.
The optomechanical cavity is in the bottom-right corner of the optical table.
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Ficure 6.5: Amplifier response at 1550 nm. With fixed input laser power (= 7mW), we
control the output signal by increasing the amplifier input current. The gain g becomes
positive at 0.76 A and can reach 50 without damaging the other optical components.

Talking about the local oscillator branch, we report the role of the acoustic-optic modulator
and the polarization controller. The latter’s function is easily explained through the
requirement of matching the polarization of the reflected beam from the free-space setup.
It is calibrated by maximizing the spectrum analyzer signal corresponding to the beating
between the local oscillator and the considered sideband. On the other hand, the former is
craftier to describe without first introducing the final part of the setup. The Gooch&Housego
modulator [60] shifts the local oscillator frequency wro of AQ/2w = 80 MHz to decouple
the Stokes and Anti-Stokes spectra after the down-conversion of the detected high-frequency
electrical signal. The frequency A(Q is generated with a fixed voltage-to-frequency converter.
The final section of the setup, which is in the bottom left of the pictogram, comprises the
detection of the reflected signal power for the locking system and the heterodyne detection
scheme. The local oscillator wzo and the reflected pump wy, and sidebands wy, + € are
merged with a fiber coupler before being detected through a high-frequency photodiode
(BW = 20GHz) [61]. The electrical signal is then mixed [62] with an electrical local
oscillator at Q; = Q — 27 - 1 GHz from the frequency synthesizer, creating a low-frequency
signal that can be detected with a spectrum analyzer [63]. Thanks to the effect of the shifting
AQ, the two sidebands are converted into two signals at 980 MHz and 1020 MHz, and thus,
they can be measured separately.

Before discussing the dynamic performance of the setup in the next chapter, we want to
report two calibration curves. Figure 6.5 shows the relation between the free-space optical
power impinging on the optical cavity and the amplifier current. The other Figure 6.6
displays the relation between the previous free-space power and the measured power
of the Anti-Stokes sideband with the spectrum analyzer. The two plots demonstrate
that we can reach the interested power without saturating the acquisition chain or
introducing power-related artifacts of deformation on the signals. These data will allow
a better pump power estimation by looking at the reflected and transmitted light from
the cavity, i.e., without relying on a free-space measurement performed before taking the data.
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FIGURE 6.6: Trans-characteristic between the input power, measured in free-space before the
optomechanical cavity, and the reflected sideband power estimated by the spectrum analyzer
after heterodyne detection. The unitary relation between the two quantities in log-scale
guarantees a linear behavior for the amplifier, optical components, and acquisition chain up
to 300 mW.

6.3 Cavity locking and system stability over time

In the analysis of the cavity design, we presented different factors concurring with the
temperature changes in the cavity, which directly or indirectly impact the resonance
frequency. The discussion is now extended to the overall system stability during an acquisition
at a given power when considering the laser locking module responsible for tracking the
cavity resonance and maintaining the light inside the pump cavity mode.

The cavity lock relies on the transmitted or reflected signal from the low-band (BW = 100 kHz)
photodetectors. Here, a PID controller monitors the detected power and changes the voltage
applied to a piezoelectric component to tune the laser cavity length and resonance frequency
accordingly. The limits on the performance of this system lie in the sampling speed of the
lock module and the bandwidth of the detectors. In particular, the device cannot lock laser
linewidths below 1 MHz because the scanning rate would be too low to provide a meaningful
gradient around the central maximum/minimum, preventing a stable and consistent lock of
the system. In the same way, when the peak frequency varies too quickly, the device will not
track the changes and will "lose the lock".

In the typical operation of the device, this second condition rarely occurs. However, this is
the opposite of our setup because of the high powers involved. The state changing from the
laser unlocked to the laser locked causes a sudden change inside the cavity because a large
amount of power starts dissipating in the crystal. Even assuming perfect alignment and only
longitudinal expansion, the energy coming from the crystal will increase the temperature
of the entire cavity by about 0.5 K at 300 mW before the temperature controller can start
counteracting the change. Moreover, the Peltier cell power is limited and is unable to recover
the previous condition of the system within a reasonable amount of time (e.g., 30 min). This
behavior is critical and hard to prevent. A valid strategy includes two steps. Firstly, we
want to set the controller at a lower temperature so that the FSR after the drift matches
the Brillouin frequency range. Of course, we need to guarantee that the alignment before
and after the temperature change is the same, and this is far from trivial because even if
simulating a higher temperature of the system is not the same as having a heat flux from the
crystal irradiating towards the other elements. Moreover, a lock-related sudden change is
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FiGURE 6.7: Example of analysis of lock signals using reflection (left) and transmission (right)
signals. In green and blue, we have the voltage distribution of the background with and
without laser power impinging the cavity. In red, we report the statistical distribution while
locking the system on the reflected signal. The exponential statistics show the quality of the
lock, with most of the instantaneous samples of the reflected signal close to the peak apex at
0.266 V. The transmitted signal distribution is typically more unstable because of the light
passing through the cavity.

way faster than any temperature ramp we can simulate with the Peltier, so the impact on the
alignment is unpredictable.

The other strategy involves a gradual laser power increase with the system locked. It reduces
the cavity frequency drifting speed and prevents sudden changes in the cavity state. However,
it is still tricky to implement, primarily because the laser locking parameters are diverse at
different powers, and an error causes the loss of the lock and requires starting again from
lower powers, after waiting for the cavity temperature to stabilize. If the lock is lost while
measuring, we must restart the procedure. A slight modification of this step that we found
viable is using a "poor lock", i.e., locking the laser far from the resonance peak with improved
tracking capabilities and lower impact on the crystal temperature. After reaching the desired
power, we can slowly improve the lock, thus increasing the light coupled to the cavity.

An additional remark regards the Stokes measurements. When we want to characterize the
system lasing, we also rapidly increase power. However, it is a power transfer from the pump
to the signal mode, keeping the overall energy inside the cavity constant. This measurement
is critical for another aspect related to the depletion of the pump. If too much power is
removed, the peak high will decrease, and if the lock cannot track it, we need to restart the
acquisition.

Still related to the lock performance, we must discuss the power stability over time. Three
aspects determine the amount of power coupled in the cavity: the amplifier, the locking
system, and the interference pattern. The laser and the amplifier contribute to a slow drift
in the cavity input power, mainly due to the long time required to stabilize the internal
processes, and they can easily be minimized by waiting enough time after each power
change. On the other hand, the lock system determines the instantaneous power, so a
detailed characterization of its performance is due. When we lock the laser, we will have
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FiGURE 6.8: Analysis of the lock signals to estimate the light power impinging on the optical
cavity for the cavity mode at 1553.83 nm. In red, we report the height of the interference
pattern, which is a measure of the reflected power when we are out of resonance with the
cavity mode. In green and blue, we have the transmitted and reflected signal when the laser
is locked. They are used in the analysis to estimate the intracavity photon number because
they measure the power that couples into the optomechanical cavity. Increasing the power,
the power variance increases because of the lock instabilities.
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FIGURE 6.9: Same analysis of Figure 6.8 carried out for the mode at 1553.93 nm. The coupled
power is lower because the mode relative height is only ~ 50 %, compared to ~ 80 % of the
previous example.

a specific power distribution depending on the "lock quality". We define a perfect lock as
the condition with a constant power corresponding to the resonant peak apex. We can now
evaluate different performances in terms of distance between the average power and the
apex one and stability as distribution width around the average value. In Figure 6.7, we
report a sample analysis of a good lock quality. In this case, we have a relative height of
the peak before of 81.2%, and after the locking, the average power is ~ 79.6 % showing a
relative decrease of 1 - 3% with fluctuation of 0.5 % on the short term (1s). The OMIA and
OMIT measurements we will exhibit in the following chapter shows similar performances
for all power range, and if we consider also the long-term stability (10 min), we have a
change of less than 3% for high power P, > 200mW and < 2% for lower ones. This
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information is summarized in Figure 6.8 and Figure 6.9, where we report an analysis of the
relation between the measured power from the reflection and transmission detectors and the
free-space one collected before starting the acquisition. In these plots, we characterize the
modes employed in the OMIA and OMIT measurements (see Section 7.1). Moreover, we
also display the corresponding condition when we lock the laser and acquire the data. We
can thus improve the estimation of power impinging on the cavity by considering the actual
power interacting when the system is locked. The decrease is in part related to the height of
the chosen mode (see Section 2.2) and in part to the lock stability. The error bars correspond
to the variance of the values over the measurement time.

Finally, we should discuss the interference pattern. The power impinging on the cavity is
modulated by an interference pattern caused by multiple reflections between the free-space
coupling lens and the first cavity mirror. The impact of the interference is typically a constant
factor already integrated into the previous estimation of the impinging power, and it is
regarded as part of the background in the measurements. However, when we perform a
detuning measurement, we move the peak position over the interference pattern, which drifts
because of changes in the first mirror position with temperature. These effects could be taken
into account in the data analysis. Still, we will regard them as an additional noise source for
the laser power because their impact is negligible compared to the lock-related one.

6.4 Data acquisition and analysis

In the previous sections, we have described and characterized the measurement setup and its
performance under temperature variations because they are requirements not only to tune the
system to the Brillouin frequency but also for the "detuning measurements" procedure. In this
section, we will detail the data acquisition process, the optimization of some measurement
parameters, and some related aspects of the data analysis.

As described in Section 5.3, we want to study the optomechanical response of the system
at different powers to characterize the strong-coupling regime. From the model, there are
two parameters we can tune, in addition to the pump power, i.e., the detuning of the cavity
modes FSR from the Brillouin frequency A; = FSR — Q,,, = w50 — wp,0 — Oy, and the offset
between the generated sideband 2 and the Brillouin frequency 6 = Q — Q,, = ws —wp — Q.
The cavity temperature controls the former (see Section 3.3) while the frequency synthesizer
sets the latter.

A single acquisition of the spectral response corresponds to a temporal sweep of the generated
frequency (2 over the considered interval. We can control the number of steps, their duration,
and the difference between them through the acquisition software. The frequency of the
generated sideband is synchronized with the frequency of the down-conversion mixer to
always have the Stokes and Anti-Stokes sidebands at 980 MHz and 1020 MHz. This step
is critical for the spectrum analyzer measurement because instead of scanning the whole
sideband for each frequency step, the device generates a fixed beating signal at one of the
two frequencies and performs a single power measurement over a small bandwidth. The
advantage is a substantial increase in the acquisition speed because each measurement
point requires as low as 1 ms. Several parameters of the spectrum analyzer, the frequency
synthesizer, and the sideband generator can be optimized to reduce the noise in the data.
Some examples include the power of the sidebands, the precise beating frequency of the
spectrum analyzer, the measurement time, etc... The parameter optimization relies on
multiple acquisitions of the background interference pattern and a comparison of the excess
noise, i.e., the difference between the average variance of the data and the variance of the
average 02 = > 07 — 52. The difference is evaluated in two cases, the raw data and the
filtered ones. It is worth mentioning that the filter minimum bandwidth is chosen to prevent
any deformation of the signal features, so we want to reduce the excess noise within this
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FIGURE 6.10: Optimization of the spectrum analyzer bandwidth at 100 mW. The blue (red)
line shows the excess noise in the background acquisitions before (after) the filtering process.
Increasing the bandwidth, we obtain more accurate samples even with the lock frequency
fluctuations. However, the high-frequency noise also increases, creating a power-dependent
minimum around 1.6 - 1.7 MHz.

bandwidth since it is the one we cannot filter out. Moreover, data at different powers must
be considered since the system behaves differently. In Figure 6.10, we report the analysis for
the measurement bandwidth for P;, = 100mW. When we increase the bandwidth, we will
reduce the excess noise because the sampling region will easily include the sideband peak,
even if it fluctuates because of the system’s instabilities. However, when the bandwidth is too
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FiGURE 6.11: Optimization of the spectrum analyzer sample number at 100 mW. The blue
(red) line shows the excess noise in the background acquisitions before (after) the filtering
process. When we sample out of sync with the frequency sweeping, the noise increases
because we are not waiting for the setting time of the amplifier and the optomechanical
cavity. However, slowing down the frequency synthesizer sweeping rate will increase the
measurement time and the system temperature fluctuations.
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Ficure 6.12: Example of data filtering for P;, = 100mW. In blue, we have the raw data
from the spectrum analyzer. In red, we have the result of the data post-processing after
applying a Gaussian filter with ¢ = 7.5 and a median filter with kernel = 4.
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Ficure 6.13: Example of data filtering for P;;, = 250 mW, with the same parameters as in
Figure 6.12. At high powers, the number of negative spikes rapidly increases because of the
lock instabilities. Nevertheless, the median filter can easily remove all the artifacts.

large, we will collect more background noise, thus increasing the variance. An optimal value
has been found for the high-power measurements at = 1.65 MHz. In Figure 6.11, we have
another example where we compare the ratio between the spectrum analyzer’s sampling
points and the frequency steps of the frequency generator. Increasing the spectrum analyzer
points will increase the acquisition time and improve the resolution of the response because
the minimum sampling time is fixed at 1 ms. On the other hand, we need to guarantee that
the cavity is stable over the acquisition time. About the laser sweeping points, we notice we
should conserve a synchronization with the previous one to present the spectrum analyzer to
sample the response during the settling time of the system. When this condition is not met,
the noise will significantly increase, as shown in the plot. The chosen configuration comprises
1500 measurement points over 1.5s and 3000 frequency steps of 20 kHz. The number of steps
is doubled to the number of sampling points to reduce the variation in the cavity state.
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After discussing the single acquisition of the spectral response, we should address the complete
characterization of the optomechanical cavity with a given power. The aim is to perform
a "detuning measurement", which involves gradually changing the cavity’s FSR by heating
or cooling the system. The so-called out-of-resonance measurements help with the model
parameter estimation since they allow decoupling the variables, e.g., the detuning A, while
increasing the dataset dimension. The limits of this approach have already been mentioned.
The temperature changes must be slow enough to have a stable system during each acquisition,
and we need to guarantee constant pumping power in the cavity and a steady lock. A typical
detuning measurement takes ~ 10 min, which increases up to 1 h when considering the setup
time for the lock at high powers. Multiple detuning measurements form a dataset, which is
analyzed together and fitted with the theoretical model to provide the best estimation for the
parameters.

The post-processing of the data and the fitting algorithm are implemented with a Python
script. The raw data are processed by removing the background interference pattern and
filtering the data. Subtracting the interference collected before the system response using a
different temperature is equivalent to normalizing the data with the signal mode impinging
power. The resulting reflectivity data is filtered with two methods: a median filter is applied
to remove the negative spikes on the trace, and a Gaussian filter reduces the white noise. The
result of the filtering process can be shown in Figure 6.12 and Figure 6.13 for 100 mW and
250 mW, respectively. In the pictures, we observe a significant increase in the number of spikes
because they are probably caused by instabilities in the sideband frequency. When the power
increases, the lock variations are faster, thus the synchronization between the generated
sideband and the local oscillator frequency worsens. The result is the spectrum analyzer
sampling outside the sideband peak and measuring only background noise. The number of
spikes can be reduced by increasing the measurement bandwidth, with the disadvantages
already discussed. Nevertheless, a median filter can easily remove them without impacting
the quality of the filtered data.

The cavity reflectivity can be fitted with the model in (5.11) after removing the parameters
which cannot be directly estimated

s/2
Ry(Q) =[1-A—— fis/ — 6.1)
T Q= O = D) F ro il
In this adapted model, the background subtraction allows us to assume 5512)5;11) + sgll) =1
while the normalization factor A = sgé)sgll)ns /2/ ,@g)m consider the coupling coefficients

which cannot be estimated independently. Regarding the latter coefficients, we could use the
optical response of the system (2.10) and the analysis we reported in Figure 6.8 to identify
the ratio between the external coupling coefficient and the cavity linewidth. In resonance,

we have 9
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As an example, for the pump mode in the OMIT response, we obtain ngi)t /ks = 0.45 that is
close to the critical coupling condition we aimed for.

A meaningful remark about the fitting algorithm regards the choice of fitting the entire
dataset. We have experimented with several strategies because of the model overfitting
tendency and the instability of some parameters. As an example, if we want to estimate the
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optical response of the system, we cannot use the data near the Brillouin frequency because
of the high correlation between optical x; and mechanical T',,, linewidth in determining the
width of the peak. The typical solution is independently fitting the optical response further
from the Brillouin response and using the estimated parameters to add constraints to the
model. This process assumes that the parameters are constant between the two ranges, and
it is difficult to guarantee in our cavity. Since each mode has a different linewidth, we need
to change the temperature to acquire the optical data, and misalignment of the cavity (see
Section 7.3) occurs, in addition to the different interference pattern region and input power,
leading to an inaccurate estimate. Increasing the frequency range to improve the estimation
is difficult because of the intrinsic drift in the mode shape we have already analyzed in our
simulation. Finally, it is challenging to estimate independently A and «, because a slight
change in the normalization factor leads to significantly different linewidths, affecting the
fitting of the mechanical response. The same is true for the normalization factor A, the
coupling strength g¢,,, and the mechanical linewidth I',,, when we want to estimate the
height of the peaks.

The intuitive reasoning behind the choice of fitting the entire dataset together can be
summarized into two points: firstly, we want to decouple g¢,,, and I',,, using data at different
power, then we decouple A by adding 10 - 20 % of data further from the Brillouin response;
at the same time, now A depends also on the mechanical data so that the pure optical
response can estimate k; more accurately. Among the disadvantages of this approach is the
high computational power required to solve the optimization problem involving > 600k
points and > 500 parameters. Moreover, the parameters common to all the measurements
have extremely low gradients, i.e., low convergence speed, thus requiring > 1000 iterations
of the error minimization algorithm. A valid solution to improve the performance and reduce
the computation time of 5 - 10 times relies on having good initial guesses for the parameters,
which can be estimated after independently fitting the measurements at different power with
some fixed parameters.

In this Chapter, we discussed several aspects of the setup implementation and measurement
procedure, which we will rely on for discussing the experimental results in the next Chapter.
In particular, the analysis wants to remark on the limits of the experimental setup and the
consistency and calibration measurements we performed to demonstrate the accuracy of our
results.



Results presentation and discussion 7

7.1 Optical spectrum and mode characterization

In this Chapter, we present the main results, comprising the optomechanical parameters
of the system and a phenomenological description of the cavity behavior, which could help
in a design improvement and implementation of the experiment at cryogenic temperature.
We start in this Section by introducing some preliminary results about the optical response
of the cavity with and without the crystal inside. We then move to the characterization of
the temperature behavior (Section 7.2-7.3) and the actual OMIA and OMIT measurements
(Section 7.4-7.5).

The alignment of the pure optical cavity relies on minimizing the high-order modes, thus
exciting only the fundamental one. The alignment quality depends on the tilt and offset of
the incoming beam controlled by the mirrors and the alignment of the mirrors themselves.
The goal is to have a horizontal cavity by placing the mirrors vertically inside the groove so
that gravity introduces no asymmetries in the pressure while heating and cooling the brass
holder. For the mirrors and lenses, we want to maximize the visibility of the cavity modes
in reflection and remove all the additional peaks caused by the coupling into high-order

-1000 -1000 -1000

-2000 -2000 -2000

-2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000

FIGURE 7.1: Beam profiler scans of (from left to right) fundamental, first, and second order
Hermite-Gauss modes of the optical cavity without the quartz crystal, collected by measuring
the transmitted light. The third plot has a different normalization factor. The fundamental
mode is Gaussian, and its coupling efficiency can be optimized through the impinging beam
alignment, reducing at the same time the height of the high-order peaks.
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Ficure 7.2: Laser wavelength scan of 3nm around 1553.5 nm at 23.7 °C with P;;, = 100mW.
In blue (green), there is the reflected (transmitted) signal from the optomechanical cavity.
We can notice, the envelope of the amplifier spectral response, the interference pattern
from the free-space optics, the high-order modes, and the fundamental mode. The peak
height and FSR are modulated by the phase-matching conditions inside the cavity and the
misalignment-related "mode shifts".

modes. In Figure 7.1, we display an example of some modes that resonate at different
frequencies and so can be excited independently by locking the laser on the reflection peak.
The pictures measure the x-y distribution of the transmitted light through the cavity using a
beam profiler and represent the spatial distribution of the cavity modes. On the left, we have
the Gaussian-shaped fundamental mode; in the center, and on the right, we have the first-
and second-order modes (the intensity of the third mode has a different normalization factor
compared to the others) with two and three lobes. We should notice the slight asymmetry
of the fundamental mode with a broader spread along the x-axis is a cue of a misalignment
of the mirrors along the same direction. In fact, even if the laser is perfectly aligned with
the cavity axis, a tilt in the back mirror impacts the shape of the fundamental mode, with
the reflected light slightly off the axis the more it bounces inside the cavity. On the other
hand, this misalignment is extremely small, since we cannot resolve the multiple spots in the
transmitted field, and it is related to an asymmetric pressure applied by the cavity panels
and the mechanical tolerances of the brass components.

In Figure 7.2, we report a 4-nm frequency scan of the cavity at I = 1.43 A (P;, = 100mW)
after adding the quartz crystal inside. The cavity reflected (blue) and transmitted (green)
power show several features we already anticipated. Firstly, the amplification spectrum of
the Raman amplifier causes a large envelope in the reflected light intensity. This modulation
does not impact the system dynamics if the different amplification factor is compensated
through the input current. Secondly, we have the interference pattern related to the multiple
reflections between the first cavity mirror and the free-space optics. We can reduce the
visibility of the interference by anti-reflection coating on the fiber tip and the lenses. Finally,
we find the fundamental cavity modes separated by the asymmetric FSR and several small
high-order misalignment peaks. When the cavity is well-aligned, the intensity modulation
of the cavity modes is consistent with the simulations in Section 3.3. We should mention a
difference in stability between the reflected and transmitted signals. As we can observe in the
plot, when the mode height reduces in reflection, we easily completely lose the transmitted
signal because of the increased sensitivity to misalignment due to the dependence on the
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FiGURE 7.3: Experimental data (left) and mode fitting (right) of the spectral response of the
cavity modes at 1553.83 nm (top) and 1553.93 nm (bottom) with P;;, = 100 mW. During the

measurement, the cavity is locked on the other mode, as for measuring the OMIT and OMIA.

The detuning A, follows from a drift in the cavity temperature.

coupling coefficients of both mirrors instead of just the input one. Moreover, out-of-axis light
will not be focused on the detector plane, thus reducing the measured light intensity:

In this Section, we also report the reflectivity spectrum of two cavity modes (7.3) around
1553.8 nm and 1553.9 nm. These are the chosen resonances for collecting the OMIA and OMIT
responses because of their suitable FSR, but mainly because they are stable with temperature
variations. In Section 7.3, we will discuss the detrimental effects of cavity misalignment to
explain the difficulty of finding "good" cavity modes to exploit. Even with good alignments
of all the components, the drift of the optical linewidth is wider than expected for most of
the modes because of the so-called "mode-shifts", i.e., changes in the spatial distribution
of the fundamental cavity modes. In the Figure, we also report the dynamics of the two
modes 50 - 100 MHz apart from the Brillouin response, with the system at ~ 0.3 K from the
calibration temperature. The estimated linewidth «, and normalization factor are reported
in Table 7.1.

TasLE 7.1: Fit results considering only the optical response of the system in Figure 7.3.

Mode A [nm] OMIA role OMIT role k./27 [MHz] A
1553.83 Signal pump 2.838 £ 0.002 —0.5790 & 0.0005
1553.93 pump Signal 3.578 = 0.002 —0.2641 + 0.0001
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7.2 Temperature-induced drift of the cavity modes

After introducing the optomechanical modes features, we should discuss their dynamics
with temperature. In the theoretical simulation of an ideal and perfectly aligned cavity, we
have already discussed how the cavity modes drift because of the thermal expansion of the
cavity holder. In this short Section, we are presenting the macroscopic changes in the cavity
spectrum with an increase in the temperature controller set point.

Starting from the reflected and transmitted signals in Figure 7.2, we can collect data at
different temperatures after waiting 10 min for the system to stabilize and plot the FSR and its
variation AFSR for the different cavity modes (Figure 7.4 and Figure 7.5). Within the Figures,
the FSRs varies with different drift speed without an underlying pattern. Compared to the
simulations (Figure 3.12) where the variation speed is consistent with a sinusoidal wave,
these results show that the elements cannot expand freely because of the increasing pressure
applied by the lateral panels. Other causes comprise poor thermal conductivity among the
different elements, which prevents a homogenous stress distribution or misalignment of the
system, affecting the phase-matching condition on the mirror’s and crystal’s surfaces. Another
problematic aspect is related to the non-constant laser power during the sweeping because of
the amplifier spectral response, which could cause an increase in the cavity temperature
during the measurement. Despite the limitations, the data show a tuning capability for the
cavity FSR with several modes crossing the Brillouin frequency line (dotted line in the plot).
In Figure 7.5, we report the AFSR vs FSR diagram, which can be compared with the expected
results in Figure 3.13. As for the previous plot, we can still observe the effects of temperature
as a drift in the points despite several non-ideal behaviors. In fact, when we look at a given
mode drift, we can observe a non-monotonic motion with temperature, in contrast with
the simulations. Moreover, since this effect is not common to all the modes of the same
acquisition, it is probably not correlated to a wrong estimated cavity temperature. A more
accurate explanation includes the crystal misalignment and links the phenomenon with the
"mode shifts" we introduced earlier. Since the processing algorithm considers the distance

FSR variation with temperature
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FiGuRE 7.4: Example of FSR analysis from experimental data collected with laser wavelength
scans around 1553.5 nm at different temperatures between 23.7°C and 25.3 °C. The dotted
line represents the Brillouin frequency €2, of the quartz crystal. Compared to the simulated
results in Figure 3.12, we have a chaotic behavior of the points, with drifting speed and
direction depending on the specific mode. The cause is a non-ideal thermal expansion of the
cavity due to the optical elements’ misalignment.
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FiGUre 7.5: Example of AFSR vs FSR diagram from experimental data collected with laser
wavelength scans around 1553.5 nm at different temperatures between 23.7 °C and 25.3°C.
The dotted line represents the Brillouin frequency 0, of the quartz crystal. When comparing
the plot with the simulations in Figure 3.13, the point trajectories can no longer be easily
predicted because of the superposition of multiple effects not included in the 1D model.

between the highest peaks in each FSR frequency range, when multiple peaks are present
with slightly different frequencies and their heights vary with the temperature, other scans
can utilize other peaks, causing jumps in the monotonic behavior of the modes. We can
anticipate the content of Figure 7.7 to demonstrate that multiple jumps can happen over a
1-K range, increasing the difficulty in comparing experimental and simulated results. The
comparison can be improved by increasing the wavelength resolution above the current
0.5 pm and reducing the temperature step between each measurement.

7.3 Effects of the crystal misalignment on the cavity modes

In the previous Section, we introduce some distortions in the optical spectrum related to a
possible system misalignment. The following content deepens the discussion to pinpoint the
most probable cause.

Returning to the beam profiler measurements, we can discuss the quality of the cavity
alignment by monitoring the x-y mode shape and its variation with temperature. Taking as
an example the images in Figure 7.6, we can clearly distinguish between the left and the
other pictures. On the left, the mode area is highly increased because the standing wave
inside the cavity does not overlap when reflected by the mirrors. After each reflection, the
bean is tilted and no longer propagates parallel to the cavity symmetry axis. We can identify
several consequences of this dynamic based on the previous analysis of the cavity and the
theoretical background. Firstly, a non-orthogonal propagation inside the crystal implies a
shift in the Brillouin frequency because of the different propagation speed (4.2). In addition
to not matching the optical axis of the crystal, the mode area increases, thus reducing the
single photon coupling rate because of a lower overlapping integral (4.5). Secondly, the
cavity temperature stability quickly worsens because the main thermal expansion is no
longer along the light propagation direction. It is equivalent to shifting the concave surface
of the mirror in the x-y plane, which strongly impacts the reflection angle and, thus, the
spatial distribution of the mode and the coupling efficiency of the incoming light inside the
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FIGURE 7.6: Beam profiler scans of the cavity modes with the quartz crystal, collected by
measuring the transmitted light. On the left, the image shows the case of severe misalignment
of the crystal and the mirrors. In the center and on the right, we report the mode transition
as a change in the first-reflection spot compared to the zero-order one (below vs. above),
induced by a 0.1 K temperature change.

cavity. Finally, even if we could neglect the stability and reliability problems caused by an
out-of-axis fundamental mode, we still have a detrimental effect in acquiring the detuning
measurements, i.e., the "mode shift".

When we focus on the remaining two pictures in Figure 7.6, we recognize a particular effect
on the mode intensity distribution. The two pictures are collected from a well-aligned cavity
and a mode with > 0.8 relative peak height at two temperatures ~ 0.1 K apart. Despite the
shape of the mode being close to Gaussian, which is a cue of good alignment between the
mirrors and the crystal and in-axis beam propagating, we can still observe a change in the
higher energy spot from the top in the center image to the bottom in the rightmost one. This
change is what we identify as a mode shift or a mode transition. Both the pictures correspond
to fundamental modes of the cavity, which can be excited with comparable efficiency from
the incoming beam. With a misaligned cavity, the subsequent reflections spread further apart,
influence the cavity mode shape, and reduce by several magnitudes the mode matching with
the impinging light. Then, when the alignment is good, the spots are close to overlapping,
and the spatial distribution is stable with temperature increments. However, the effect of
temperature variation changes the phase-matching conditions, making the cavity mode
transition from one to the other. The phenomenon is consistent and reproducible, present at
different temperatures and affecting all the modes with different degrees.

In Figure 7.7, we can better understand the impact on the spectral response by analyzing the
temperature-related drift of a cavity mode. From the simulations, in particular Figure 3.11,
we can see how several degrees in temperature difference are needed to impact the
peak height, consistent with the nanometric-scale variations of the cavity length over this
range. However, the reported plot contains two fast transitions within 1 K with different
characteristics. The one on the right (orange) only temporarily decreases the coupling
strength inside the cavity, while on the left (blue), the peak splits, and we transition
from coupling to the rightmost to exciting on the leftmost one. This behavior is not
polarization-related and can easily comprise the appearance of several peaks separated by
several linewidths when the cavity alignment degrades.

The mode shifts have two critical effects on the measurements, the first related to the power
stability and the second to the mode frequency and locking. Starting from the power stability,
we can clearly recognize that having a decrease in power in either the pump or the signal
mode prevents a characterization of the optomechanical response. On one side, a transition
in the pump can either change the coupling strength g, or even lose the lock when the
transmission peak disappears (for this reason, we chose to lock in reflect most of the time).
On the other, the signal mode experiences power-independent transitions, which can be
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Ficure 7.7: Example of a mode frequency drift with temperature between 22.8°C and
23.7 °C. The peak height is modulated with its wavelength, with a larger sensitivity for the
transmitted signal, compared to the reflected one. Centered on the orange peak, we observe a
mode shift between modes with similar frequencies, which reduces the height by 50 % (80 %
in transmission). The purple-blue-green region shows instead the mode transition when the
frequencies are different, the transmitted peak disappearing below the noise threshold.

mistaken for mode splitting or impact the clarity of the plots with additional peaks and
normalization factors modulated by the mode height. In addition, the temperature where
the mode shift happens differs for each mode, often alternating between two consecutive
resonances and preventing two stable ones over the required frequency range. Moreover,
searching for the cavity modes with higher coupling rates is more challenging due to the
rapid changes in the cavity modes, requiring a high-resolution sampling in temperature and
frequency to identify the modes separated by the correct FSR and stable over a wide enough
range around that interval.

Regarding the second aspect, a sudden change in the dominant mode frequency leads to an
automatic loss of the lock when the mode affects the pump mode. It reduces the temperature
range in which we can take stable measurements, or even it prevents the acquisition of
entire portions of the spectrum. When we change the locking mode, the previous FSR varies
by several MHz and could skip the range of the mechanical response. In addition, when
working at high powers, we can no longer start from a different temperature to compensate
for the mode drift happening when locking the laser (see Section 6.3), or the shift itself is as
broad as to include a transition, preventing to even locking the laser in the interested region.
Finally, unexpected behaviors can happen when the two frequencies are close. We have
documented cases of bistable locking with the two modes at different heights, exchanging
the lock from one to the other when the temperature increases because the higher mode
sends more power inside the cavity before drifting and losing the locking in favor of the
smaller one. Other cases include multiple locking points within the same peak, which help
stabilize the lock trapping the power within the two levels or preventing locking a single one
causing a broadening of the excited frequency, a decrease of the relative coupled power below
0.5, and a significant increase in the sideband noise (equivalent to the variation caused by
high powers). We should remark that the excitation at the same time of multiple peaks is not
a problem per se in studying the Brillouin response because both constitute photon sources
with the right frequency and momentum; the meaningful aspect is to have a stable coupled
power. The opposite consideration is valid for the signal mode because the two modes have

61



7. RESULTS PRESENTATION AND DISCUSSION

62

slightly different frequencies, thus broadening the optical linewidth and increasing the power
requirements to reach the strong-coupling regime. If the peaks are further apart, the mode
splitting is affected, with multiple modes, which earlier were not resolved, appearing and
separating at different detuning.

To conclude the analysis, we want to report the main factors responsible for the mode shifts
as far as our understanding goes. Because of the speed of the variations, the transitions must
be caused by misalignment among the cavity elements. The tilt in the impinging beam and
its polarization do not impact the behavior, and they can be optimized for each configuration
without making the transition reduce or disappear. It is worth noting that it is the opposite; if
the system does not require a continuous optimization of the impinging beam, the cavity
modes have the same spatial distribution, and the frequency difference between the peaks is
reduced. Looking at the alignment of the two mirrors is not a problem because the analysis
of the pure optical cavity does not show the mode shift effect when increasing or decreasing
the temperature. It is also straightforward from Figure 7.1, where the fundamental Gaussian
mode is spotless, or at least more explicit than any acquisition involving the cavity with the
crystal.

After excluding the main other elements, it is easy to guess that the misalignment-causing
agent is the crystal itself. A tilt in the crystal compared to the optical axis of the cavity
(Figure 7.8) leads to non-zero refractive angles for the impinging beam, which can affect the
spatial shape of the cavity modes. The changed phase-matching conditions for constructive
and destructive interference are greatly affected and cannot be compensated by the mirrors.
If we try to improve the cavity alignment by steering the mirrors, we will destroy the
temperature stability. For the reason explained earlier, the modes will spread out from the
optical axis and can no longer be compensated. Moreover, the correction is only effective at
specific frequencies, thus worsening the coupling efficiency of the overall spectrum. The
mechanical tolerances of the brass pieces are most probably the cause of the crystal tilt. In
particular, a non-parallel front and back surfaces, a non-orthogonal groove with respect to
them, or some defects inside the groove can impair the correct positioning of the crystal with
extreme results in the cavity alignment. It is worth noticing that, during the project, several
efforts have been carried out to understand and improve the cavity configuration, with the
presented results relying on a manual correction of the crystal tilt using the best-machined
brass holder.

FIGURE 7.8: Pictogram of the multiple reflections arising when the crystal is tilted. The
fundamental cavity mode is deformed in the spatial distribution and made more unstable to
temperature changes.
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7.4 OMIA and Brillouin lasing

In the previous sections, we widely discuss the features of the optomechanical cavity, focusing

on describing the optical response of the system and its temperature

dependence. In these

two Sections, we will present the project’s main results, collected after optimizing the cavity

alignment and system configuration (see Chapter 6).

TaBLE 7.2: Fit results for the OMIA dataset. The table above reports

the estimated photon

number as explained in Section 6.3, and the power-dependent parameters, i.e., coupling
strength gp,,. The table below shows the parameters common to all the measurements, i.e.,
normalization factor A, optical x, and mechanical T',,, linewidth, and Brillouin frequency {,,,.

The single acquisition detuning A, is omitted.

Pin [mW] Ny [10°] gm/2m [MHz]

5.27 6.144+0.29  0.60 & 0.02
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1505  163.7+2.0 X
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FiGure 7.9: Power dependence of the optomechanical coupling rate estimated through the
OMIA database fitting. The orange region represents the Brillouin lasing above the threshold
C = 1. Note: the lasing threshold has been estimated using the mechanical linewidth from

the OMIT fitting because of the meaningless value obtained from the

OMIA fitting.
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FIGURE 7.11: OMIA detuning measurements at 24.7mW and 50.2mW. On the left, we have
the filtered experimental data with detuning obtained from the fitting. On the right, we
display the model prediction. Below the lasing threshold, the peak height increases near the
Brillouin frequency, creating two dips that spread apart with increasing power.

The Optomechanical Induced Amplification (OMIA) involves the two cavity modes presented
in Table 7.1 and different power between 5mW and 150 mW. For our cavity, studying the
Stokes scattering is less demanding than the Anti-Stokes response because of the lower
power requirements to affect the optical response, i.e., the Brillouin lasing threshold is lower
than the strong-coupling one. Applying the acquisition process and the fitting procedure
in Section 6.4, we can estimate the optomechanical parameters as reported in Table 7.2.
The mechanical linewidth estimation is imprecise because the spectral response is affected
by the depletion of the pump mode. In Figure 7.9, we use I',,, /2 = 7.130 MHz obtained
through the OMIT analysis to calculate the lasing threshold g, /27 = 2.324 + 0.002 MHz.
The estimate go/2m = 8.3 & 0.6 Hz is also impaired, even if still compatible with the OMIT
results (see Section 7.5). Moreover, we could not fit the measurement at 150 mW with the
current model because the emission peak is more than three times smaller than the predicted
value.

In Figure 7.10, we display the in-resonance response of the optomechanical cavity at different
powers. We can observe a decrease in the effective linewidth (5.14) up to 50 mW before
splitting in the dip and the appearance of an emission peak at 75 mW. Increasing the power,
we start transferring a significant amount of power from the pump mode to the signal mode,
breaking the undepleted assumption for the model. When we try to fit the high-power signals
(C > 1) with (6.1), we notice a divergent behavior for (2 ., A, ) when the denominator
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FiGURE 7.12: OMIA detuning measurements at 75.8 mW and 100.7mW. On the left, we
have the filtered experimental data with detuning obtained from the fitting. On the right, we
display the model prediction. The spectral response transforms from below (top image) to
above (bottom one) the lasing threshold, originating an emission peak while transferring
power from the pump mode. The peak then splits with increasing power. Note: the model
estimated plot in the bottom right is clipped to exclude the diverging peaks.

of the fraction goes to zero

Qoo = £ FT”‘\/O —1,

Fm+ﬁ2
2

This behavior is a limit of the model and does not appear in the experimental data, preventing
an accurate estimation of the parameters when the power increases. Nevertheless, it affects
only the OMIA measurements because of the different sign in front of the optomechanical
coefficient in the case of OMIT, which prevents the fraction from diverging. The experimental
data still show a peak but a finite height because the reduction of the pump mode intensity
leads to a decrease in the optomechanical coupling strength that limits the maximum power.
The scanning rate and the sampling time could also affect the value because the system
transitory analysis must be included. It is worth noting that depleting the pump causes
additional problems with the lock system (see Section 6.3), thus increasing the challenge of
acquiring this data with enough detuning resolution. In particular, we should notice that
Brillouin lasing tends to increase the cavity temperature, thus producing a frequency drift

(7.1)
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that is hard to counteract efficiently. The result is the ability to scan the resonance only along
one direction and with limited detuning resolution.

In Figure 7.11 and Figure 7.12, we report the detuning measurements corrected at different
powers and the corresponding estimation through the model. In Figure 7.11, we are below
the lasing threshold and notice an evident reduction of the mode linewidth with the shrinking
of the blue trace. Then, in Figure 7.12, we observe a conversion from absorption to emission,
with the top figures collected near the lasing threshold and the bottom one above it. The
theoretical result in the latter has been clipped to exclude the diverging point and match the
experimental data. In analyzing this measurement, we should notice that the emission peak
comprises two separated apexes: it is the effect of having a mode shift in the signal mode
with two frequencies differing by ~ 0.5 MHz < x,. The two modes have the same Brillouin
frequency, but they resonate with different detuning, thus impacting the quality of the fitting
even at lower power with artifacts characteristics of the interference between pulses. We are
confident in the two peaks’ nature because of the lock behavior when measuring the OMIT
response, even if the two peaks are not resolved in the laser scan. We should remark that
since the resonance frequency of the two is different, they will introduce a phase modulation
in the response, observable through the local minima and maxima near the center and the
side of the main peak. The results can be improved by taking into account the additional
optical modes and the depletion of the pump mode, but it is not the focus of this project.

7.5 OMIT and strong-coupling regime

The second configuration we characterized is the Anti-Stokes scattering, where we swap the
role of the pump and the signal modes. The Optomechanically Induced Transparency (OMIT)
is collected for several powers between 25 mW and 300 mW to obtain the plot in Figure 7.13.
We performed the same analysis and fit as before and summarized the estimated
parameters in Table 7.3. We can also define the cooperativity threshold (C = 1)
(5.13), that is the Brillouin lasing threshold (5.15) and (5.16), for the coupling strength
gm/2m = 2.476 £ 0.002 MHz, cavity photon number N,, = 1.055 £ 0.002x 10!, and the input
power P;, = 51.53 + 0.08 mW. The strong-coupling regime (5.21) (5.22) is then achieved
for g, /2m = 5.284 £+ 0.006 MHz, N, = 4.81 £ 0.01 x 1011, or P;, = 238.7 £ 0.5mW. We
should report that we could not use the measurement at 25 mW in the minimization
procedure because it seems to have a different normalization factor. It is probably related
to some stability problems during the data collection because, at such low powers, the
temperature gradient from the crystal toward the cavity holder is yet to be formed, thus
the cavity alignment differs. The values reported in the table are obtained by fixing the
parameters shared with the other powers and optimizing for A and g,,. For this reason, we
will not employ them in the following analysis.

Finally, we can estimate the single-photon coupling rate by fitting the optomechanical
coupling rate after calibrating the effecting input power for the system (see Section 6.2) and
obtain go/2m = 7.76 £ 0.05 Hz, accounting for the uncertainty of the fit estimate and of the
data points. This result accords with the maximum estimated value of 12.98 Hz in the more
favorable case of acoustic cavity formation. The difference between the two is also consistent
with previous results [30, 32] measured at cryogenic temperatures. In Figure 7.14, we
display the fitting results, with particular attention to the optical and mechanical linewidth
estimate, other than the strong-coupling regime and the cooperativity threshold. We should
remark the reported intracavity photon number N includes the locking effect and the pump
mode estimate presented in Section 7.1. The effect is a scaling factor that improves the
estimate of the single-phonon coupling rate go.
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7.5. OMIT and strong-coupling regime

TaBLE 7.3: Fit results for the OMIT dataset. The table above reports the estimated photon
number as explained in Section 6.3, and the power-dependent parameters, i.e., coupling
strength g,,,, and normalization factor A. The table below shows the parameters common to
all the measurements, i.e., optical x, and mechanical T';,, linewidth, and Brillouin frequency
Q. The single acquisition detuning A, is omitted. Compared to the OMIA results, in this
analysis, we used a different normalization factor for the first dataset at 24.7TmW, fitted
independently after estimating the shared parameters.

P;y, [mW] Np [10°] gm /27 [MHz] A
22.7 55.03 £0.39 1.978 £0.007 —0.1914 + 0.0001
50.2 98.4+26  2.450 £ 0.004
75.8 165.0£2.6 3.122 4+ 0.003

100.7 2242+ 3.7 3.597 + 0.003
150.5 338.1+71 4.180 £ 0.004

200.2 398.14+6.9 4.937 £0.004 —0.2663 = 0.0002
250.3 550.8 £ 15.1 5.686 4 0.004
277.8 584.54+9.6 5.743 £ 0.005
301.0 635.7 £ 17.7 6.148 4+ 0.007
kg/2m [MHz] Iy, /27 [MHz] Qp /27w [GHz]

3.438 £0.003 7.123 +0.008 12.429643 + 0.000002
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FiGURE 7.14: Power dependence of the optomechanical coupling rate estimated through the
OMIA database fitting. The pink region corresponds with the strong-coupling regime. We
also reported the optical and mechanical linewidth, and the C' = 1 threshold, estimated from
the fit results. Considering the coupling strength at different powers, we can estimate the
single-photon coupling rate gy. Note: the estimation of gy does not use the first data point
because it has not been fit together with the others.
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FiGUure 7.15: OMIT detuning measurements at 50.2mW and 100.7mW. On the left, we
have the filtered experimental data with detuning obtained from the fitting. On the right, we
display the model prediction. When the power increases, a splitting in the resonance peak
appears in correspondence with the Brillouin frequency.

To conclude this description, we report the detuning measurement and their corresponding
fittings, which allowed the estimation of the parameters in Figure 7.15, Figure 7.16, and
Figure 7.17. In the first set of images, we can observe the mode splitting appear, with the top
figure showing the two minima at P;,, = 50mW and, at the bottom, the peak separation
taking shape at 100mW. The first image corresponds to the condition C' = 1, while the
second has a coupling strength comparable to the mechanical linewidth T'y,,. Increasing the
power at 150mW and 200mW (Figure 7.16), the modes spread further apart but remain
within the weak-coupling regime. Finally, the peaks are resolved in the last set of figures,
where the splitting is wider than double the hybrid-mode linewidth. We have avoided
crossing in the detuning plots. For these measurements, locking noise and temperature
instability limit the maximum achievable power. When we try to send more than 250 mW of
power, the Peltier cell is no longer able to keep the temperature stable; the noise in the data
is increased because of the out-of-peak sampling (see Section 6.3), and the lock is difficult to
reach and maintain. As an example, at 300 mW, only 10 - 15 % of the spectra are consistent
and can be used.
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FIGURE 7.16: OMIT detuning measurements at 150.5mW and 200.2mW. On the left, we
have the filtered experimental data with detuning obtained from the fitting. On the right, we
display the model prediction. The split distance at the Brillouin frequency increases with g,,
and the pump power, spreading apart the two dips.

7.6 Limits of the setup and possible improvements

In presenting the experimental setup, the acquisition and analysis methods, and the final
results, we have already introduced several limitations to the performances, which were
analyzed and overcome during the project development. This Section will conclude the
discussion, summarizing the main aspects and proposing strategies to solve the remaining
issues. We can divide the analysis into two topics, the optomechanical cavity, and the
measurement setup.

Starting the discussion with our cavity design limits, we recall the limiting aspects for the
detuning measurements. On one side, we have non-uniform temperature distribution caused
by the high power dissipated in the central crystal. On the other, we have the mechanical
tolerances of the cavity holder, preventing an optimum alignment. The temperature stability
is impaired by the insufficient power of the Peltier cell, the physical distance between the
cooling source and the optical elements, and the position of the temperature sensor too far
from the cavity core. The consequent temperature fluctuations are the primary source of
cavity response instability and prevent adequate control with high laser powers. Still, the
current setup can characterize the strong-coupling regime we aimed at. The remaining
issue is the temperature drifting velocity, which prevents collecting enough data in a single
temperature sweep because the fast temperature increase in the cavity core cannot be
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FiGURE 7.17: OMIT detuning measurements at 250.3mW and 277.8 mW. On the left, we
have the filtered experimental data with detuning obtained from the fitting. On the right, we
display the model prediction. After overcoming the strong-coupling threshold, we observe an
avoided crossing, with the two resonance peaks resolved at the Brillouin frequency.

counteracted by the Peltier cell. Moreover, extending the dataset to multiple measurements
with the same power cannot guarantee the same power condition, increasing the uncertainty
of the estimated values. Moreover, the viable improvements imply a redesign of the cavity.
Related to cavity stability, the second main issue regards its misalignment. The current
mechanical elements do not provide sufficient precision in the crystal and mirror positioning,
making the mode shift phenomenon arise. These rapid changes in the resonant modes caused
by impaired thermal expansion have been widely studied and can cause a critical failure of
the whole experiment. Impacting both the pumping power and the signal mode spectral
response, they required looking through hundreds of modes and tens of realignments,
searching for a suitable mode pair. An improved crystal holder has been developed, but its
tolerances were too high, and new pieces have been machined but have not been tested yet
because of delays in the design and manufacturing process. Moreover, the current horizontal
design is vulnerable to misalignment compared to a vertical cavity, where gravity helps keep
the optics aligned.

Discussing the more general measurement setup, the cavity lock system is the principal
limiting factor. If the temperature stability degrades the spectral response data quality and
the misalignment slows the search for suitable modes, the lock affects their characterization.
The current locking system is very close to its limits and cannot lock the best cavity modes at
high powers because the linewidth is smaller than the device threshold (1 MHz). Increasing
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the mode power has a different effect depending on the specific mode and its closeness
to the frequency transition regions, so it is hard to predict in advance. A change in the
locking system, preferring a PDH locking system developed for high-finesse cavities [64],
is compulsory to improve the performance and reduce the challenge in tuning the locking
parameters to obtain most of the time a lock with power fluctuations >10 %.

Other minor issues include the vibrations propagating from the devices placed on the optical
table, which concur with the unstable cavity temperature to the lock instability. Better
synchronization between the frequency synthesizer and the spectrum analyzer can reduce the
data noise and failed samples. Regarding the data analysis, we can notice that the principal
uncertainty source is the optical power estimation because both the drift in the amplifier
output power and fluctuation in the lock point prevent a stable value throughout the entire
detuning measurement. Integrating the reflected and transmitted power sampling into the
acquisition script can improve the estimates, having the instantaneous power measurements
for each spectrum. Finally, we should remark that future improvements also involve the test
of TeO, crystals, which have a higher single-photon coupling rate, and thus require lower
powers to enter the strong-coupling regime.
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In this thesis, we presented the experimental characterization of a macroscopic
optomechanical cavity comprising two high-reflectivity mirrors and a cm-scale quartz crystal
to study the optomechanical response arising from Brillouin scattering at room temperature.
From the optomechanics and quantum optics theory, we derive a mathematical model for
the spectral response of our cavity, including the coupling coefficients between the external
fields and the cavity modes and the optomechanical interactions within the crystal leading
to energy transfer between the cavity resonances. In addition to defining reflectivity and
transmissivity leading to the definition of Optomechanically Induced Amplification (OMIA)
and Transmission (OMIT) phenomena, we simulate the temperature-related behavior
of the cavity mode to confirm the tuning feature of the design. Finally, we provide a
phenomenological description of the misalignment effects and the cavity instabilities as limits
to the performances of our measurement setup.

In discussing the results, we demonstrate both Brillouin lasing and strong-coupling regimes
at 1553.8num and 7" = 23.7°C. In the Stokes scattering measurements, we present the
shrinking of the hybrid photon-phonon mode linewidth until reaching unitary cooperativity
and lasing for g, /27 ~ 2.3 MHz and P;,, ~ 75 mW. In the Anti-Stokes scattering data, we
characterize the mode splitting due to the optomechanical hybridization with a formation of
two peaks that move apart when increasing the pumping power. The unitary cooperativity
threshold is g,, /27 = 2.476 MHz (P}, = 51.53mW) while we enter strong-coupling with
an optomechanical coupling strength ¢,,/2r = 5.284 MHz and optical pumping power
P;,, = 238.7mW. Finally, we estimate the single-photon rate as go/27 = 7.76 + 0.05 Hz and
the Quartz Brillouin frequency §2,,, /27 = 12.4296 GHz, values compatible with the theoretical
predictions. The data have been presented through detuning measurements, which scan
the optomechanical interaction over a frequency range around 2,,, to demonstrate avoided
crossing of the modes in the strong-coupling regime. We should remark that the detuning is
not power dependent, since the external temperature control allows increasing the laser
power and compensating the additional heat introduced into the system from the absorbed
light. It allows in-resonance excitation of the pump mode with a consequent increase of the
intracavity photon number, thus reaching the strong-coupling regime at room temperature in
a GHz-frequency system.

The performance limits lie in the cavity instabilities at high power which prevent a stable
frequency lock to the resonance mode and in the cavity misalignment which reduces its
quality factor from ~ 12000 to = 3500 and increases the strong coupling threshold. Improving
the crystal alignment and the constraints for the thermal expansion can improve the setup
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reliability and is a fundamental requirement for the following experiments. The objective
of the project has been met with the complete characterization of the optomechanical
response and the strong-coupling regime. Future developments include testing different
high-frequency crystalline materials, e.g., TeO2 (€2, = 11.7 GHz) and KPT (£2,,, = 17 GHz)
by removing or adding spacers between the two mirrors.

Several strategies and skills have been improved and will support the development of a
cryogenic temperature experiment aiming at coherent long-living phonon modes ('), < xs)
at ground state operation (7" < 100mK). The creation of a phonon cavity with a high Q f
product enables fundamental physics testing with heavy (m. ~ pg) bulk acoustic waves
and hybrid quantum technology development, e.g., coherent state transfer between optical
and acoustic modes, storage of quantum information, and generation of non-classical light
though the optomechanical interaction.
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