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Abstract

Hash functions, and cryptographic hash functions in particular, under-

pin the technologies on which modern life is built. Efficient databases,

the Internet, the World Wide Web, online payments and more, would

not be possible without the security and efficiency gains derived from

the use of these functions. In this thesis we will introduce the defi-

nitions of hash functions and cryptographic hash functions, comment

on the ideas that underlie and inspire these definitions and design

the probabilistic models in which they become rigorous mathematical

concepts. In Chapter 3, we will examine three cryptographic attacks

against specific hash functions, calculate the expected cost of execu-

tion and estimate the real-world security associated such functions.
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Chapter 1

Introduction

Hash functions are fundamental to the design and implementation of crypto-

graphic systems. Their role and the properties these functions must respect

change radically depending on the context in which they are to serve. This ex-

plains the loose nature of the following definition.

1.1 Hash Functions

Let A be a non-empty and finite set of ’letters’, called the ’alphabet’.

We call one of its letters the ’null letter’, denoting it by α0 ∈ A.

Let M be set of ’messages’ of unbounded but finite length, defined as follows:

M
.
= { (ai)i∈N ⊂ A

N | ∃N ∈ N, ai = α0 ∀i ≥ N }

In this context, any function h : M → A
n where n ∈ N, is called an hash func-

tion1.

The set A
n is the set of all ’words’ of fixed length n that can be written us-

ing the alphabet A. It is often called the digest set or hash-digest set, and the

image via h of m ∈ M is called the digest of m or hash-digest of m or simply, the

hash of m.

The constraint on the nature and length is motivated by the context in which

these functions are almost exclusively used, i.e. within computer software.

1In practice, it is often necessary to ensure that h(m) can be calculated efficiently even on
low-powered computers ∀m ∈ M. However, this property is not required when discussing hash
functions purely at a theoretical level.
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2 Chapter 1. Introduction

In fact, a computer only understands data that consists of a finite number of bits

(e.g. 16-bit, 32-bit...), which can always be mapped to the corresponding string

of 0s and 1s. Therefore, without loss of generality, we shall henceforth consider

A = {0, 1} and α0 = 0.

The setM has infinite countable cardinality. Therefore, in general, hash functions

are not injective. The definitions of the following section relax the concept of

injectivity somewhat, but they must be understood and motivated in an adver-

sarial context, which will be defined and discussed in Chapter 2.

In the future, it will be also useful to consider a family of finite subsets of M,

defined as:

MN
.
= { (ai)i∈N ⊂ A

N | ai = 0 ∀i ≥ N }, N ∈ N

MN ≡ A
N
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1.2 Types of Hash Functions

A hash function h : M → {0, 1}n is: [1]

• pre-image-resistant if given the hash k ∈ {0, 1}n, it is ’computationally

infeasible’ to determine any message m such that h(m) = k.

• second pre-image-resistant if given a message m it is ’computationally

infeasible’ to determine any other messagem∗ ̸= m such that h(m) = h(m∗)

• collision-resistant if it is ’computationally infeasible’ to determine two

different messages m1 ̸= m2 such that h(m1) = h(m2).

• cryptographic or secure if it is respects the three proprieties above.

First of all, we note that collision-resistance implies second pre-image-resistance

but does not imply pre-image resistance. Indeed, if h is not second pre-image-

resistant, then one can find a collision by ’randomly’ choosing m1, and then

finding m2 so that they share the same hash.

Secondly, the impossibility that would result from injectivity of finding m1 ̸= m2

such that h(m1) = h(m2) is relaxed by the ’practical impossibility’ of finding

such pre-images, since it is ’computationally infeasible’. This confirms the notion

that the last two properties relax the concept of injectivity. However, the precise

mathematical meaning of ’computationally infeasible’ in these definitions is not

explained, but will be in the following chapter.
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Chapter 2

Adversarial Context

In cryptography, an adversary (or attacker, rarely opponent, enemy) is a mali-

cious entity whose aim is to prevent the users of a cryptographic systems from

achieving their goal (e.g. privacy, integrity and availability of data). These ad-

versaries carry out a series of attacks, each of which has a cost. If the attack is

a cyber-attack (the only one we will consider), then the cost is computational.

Only in this context, the intuitive notions of ’computationally feasible/infeasi-

ble’ become rigorous mathematical concepts.

2.1 The Attack

Our discussion must begin by defining the attack that the hypothetical adversary

attempts to carry out successfully. It is not possible to make a general discussion

that does not a-priori and precisely define the type of attack, since, as we shall

see later in examples, some hash functions are resistant to some attacks and vul-

nerable to others.

The range of attacks that attempt to exploit weaknesses in hash functions is

extensive, and discussing each one is outside the scope of this paper. Nonethe-

less, we outline below the three attacks that correspond to the three properties

of hash functions as previously described.
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6 Chapter 2. Adversarial Context

Given the hash function h : M → {0, 1}n, which, according to Kerckhoffs’

principle [2], should always be assumed to be known to the adversary, we define

three types of attacks:

• pre-image-attack on h: The adversary knows a given hash k ∈ {0, 1}n
and tries to determine any message m such that h(m) = k.

• second pre-image-attack on h: The adversary knows a given message m

and tries to determine any other message m∗ ̸= m such that h(m) = h(m∗).

• A collision-attack on h: The adversary tries to determine two different

messages m1 ̸= m2 such that h(m1) = h(m2).

A (particularly inefficient) collision attack on h can be trivially designed from a

second pre-image attack on h in the following way: choose ’at random’ m ∈ M,

and then perform the second pre-image attack on h, given m.

2.2 Attacker Resources

The second thing we need in our construction is an estimate of the computational

resources and time available to a hypothetical adversary.

Let R ∈ N be the maximum computational power of the adversary we want

to defend against. This is the maximum number of computing cycles per second

that the adversary can use in his attack attempt (the unit of measurement can be,

for example, GHz/s). Depending on the importance of the cryptographic systems

and the type of attack, different values of R can be assumed. The same applies

to the maximum attack time, which we will call T ∈ N. T can be a constant,

depending on the cryptographic systems and/or the type of attack, or it can be

estimated from economic assessments (as they say, time is money).

The product R · T represents how many computational cycles the attacker can

perform to execute a given attack. Intuitively, if the successful execution of the

attack requires, ’on average’, more resources than R · T , then the attack is ’com-

putationally infeasible’. The precise meaning of the last sentence is explained in

the next section.
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2.3 The Expected Cost of Attack

Given a certain type of attack on h, it is always possible for the attacker to use

a trivial algorithm to perform it, i.e. trying ’at random’.

For example, in the case of a pre-image-attack on h, given k ∈ {0, 1}n, the at-

tacker can ’randomly’ choose a message m ∈ M. Such an algorithm has a low

cost and a non-zero probability of success, meaning a non-zero probability that

h(m) = k.

Even when considering only deterministic algorithms, the cost associated with

such an algorithm can be dependent on the specific value k.

Of course, given the specific attack on h and the attacker’s resources, the defini-

tion of pre-image resistance must be deterministic and independent of the specific

value of k. The hash function h is either pre-image resistant or not, and ideally

this should also be independent of the algorithm the attacker chooses to perform.

These considerations inspire the following three models, each dedicated to one

of the aforementioned types of attacks.

2.3.1 Probability Model

Let (Ω,P(Ω), P ) be a discrete probability space.

Let X : Ω → M be a random variable.

X induces a probability measure on M, which we shall call PX , defined as:

PX
.
= P ◦X−1 (2.1)

Let h : M → {0, 1}n, where n ∈ N, be the hash function under analysis.

The random variable h(X) induces a probability measure on {0, 1}n, which we

shall call Ph, defined as:

Ph
.
= P ◦ h(X)−1 (2.2)

2.3.2 Expected Cost of Pre-Image-Attack

Now consider the family A of all deterministic algorithms φ that can be used

to perform the pre-image-attack on h. Given k ∈ {0, 1}n, a computational cost is
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associated with each algorithm. The following cost function is thus well defined:

c : A × {0, 1}n −→ N ∪ {∞}
(φ, k) 7−→ c(φ, k)

(2.3)

The value c(φ, k), if finite, represents the number of computations that must be

performed using the φ algorithm to find any pre-image of k. On the other hand,

if this value is ∞, it means that the φ algorithm will never be able to find a

pre-image of k.

Finally, consider the random variable c(φ, h(X)) : ω 7→ c(φ, h(X(ω))).

We can calculate the expected value of c(φ, h(X)), and all we need is to know the

probability measure Ph.

EP [ c(φ, h(X)) ] = EPh
[ c(φ, I{0,1}n) ] (2.4)

In which I{0,1}n represents the identity function on the set {0, 1}n.

Figure 2.1: Representation of the probability model
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2.3.3 Extension to Non-Deterministic Algorithms

So far, we have only examined algorithms of a deterministic nature. This section

demonstrates the feasibility of expanding our framework to non-deterministic al-

gorithms. Given the same previous construction, we now define the source of

randomness of nondeterministic algorithms as follows.

Let (Ω̃,F , P̃ ) be a probability space.

Let Y : Ω̃ → [0, 1] ⊂ R be a random variable.

Now consider the family Ã of all non-deterministic algorithm φ̃ that can

be used to perform the pre-image attack on h.

When φ̃ is evaluated on y ∈ [0, 1], the result is an element φ̃(y) ∈ A that is, a

deterministic algorithm, whose cost can be calculated as shown above.

Now we define the product space:

(Λ,G , Q)
.
= (Ω× Ω̃, P(Ω)⊗ F , P ⊗ P̃ ) (2.5)

Consider now the random variable on Λ

c( φ̃(Y ), h(X) ) : λ = (ω, ω̃) 7−→ c( φ̃(Y (ω̃)), h(X(ω)) ) (2.6)

The expected value of this random variable can be calculated as follows.

EQ[ c( φ̃(Y ), h(X) ) ] =

∫

Ω̃

(

∑

Ω

c(φ̃(Y (ω̃)), h(X(ω)) · P ({ω})
)

· P̃ (dω̃) (2.7)

Due to Tonelli’s theorem, it is possible to swap the order of the integral and

the sum, obtaining

=
∑

Ω

(
∫

Ω̃

c(φ̃(Y (ω̃)), h(X(ω))) · P̃ (dω̃)
)

· P ({ω})

Thanks to this rewriting, it is easy to see that the following random variable on

Ω alone is well defined.

c̄( φ̃, h(X) )
.
=

∫

Ω̃

c(φ̃(Y (w̃)), h(X)) · P̃ (dw̃) (2.8)
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This random variable applied to ω ∈ Ω represents the cost, averaged over all

y ∈ [0, 1], of performing φ̃ with ω as the input.

Here, as in the previous section, it applies that the expected value of c̄(φ̃, h(X))

can be calculated knowing only the probability measure Ph.

EP [ c̄(φ̃, h(X)) ] = EPh
[ c̄(φ̃, I{0,1}n) ] (2.9)

Consequently, in this way we can extend the previous construction to non deter-

ministic algorithms.

Note: From now on, in order not to make the notation too cumbersome, we

will use A to denote the set of all algorithms, both deterministic and non-

deterministic, and we will use c(φ, k) to denote the cost of performing the

algorithm φ with k as input. If the φ algorithm is non-deterministic, then c(φ, k)

must be understood as the average cost of φ with input k, as discussed in detail

in this section.

Figure 2.2: Representation of the probability model extended to non deterministic algorithms
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Definition: φ-infeasible Pre-Image-Attack on h

Given the hash function h : M → {0, 1}n
Let R · T be the resources of the adversary. Let φ ∈ A be the algorithm choose

by the adversary for performing the pre-image-attack on h.

We say that the pre-image-attack on h is φ-infeasible or φ-computationally-

infeasible if

EPh
[ c(φ, I{0,1}n) ] ≥ R · T (2.10)

To render the definition independent by the choice of φ, it suffices for the above

inequality to be valid ∀φ ∈ A . This is also equivalent to requesting the following.

Definition: infeasible Pre-Image-Attack on h

Given the hash function h : M → {0, 1}n
Let R · T be the resources of the adversary.

We say that the pre-image-attack on h is infeasible or computationally in-

feasible, or equivalently that h is pre-image-resistant if

inf
φ∈A

EPh
[ c(φ, I{0,1}n) ] ≥ R · T (2.11)
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2.3.4 Expected Cost of Second Pre-Image-Attack

Consider the family A ′ of all algorithms ψ that can be used to perform the second

pre-image-attack on h. Given m ∈ M, a computational cost is associated with

each algorithm. The following function is thus well defined:

c′ : A
′ ×M −→ N ∪ {∞}
(ψ,m) 7−→ c′(ψ,m)

(2.12)

The value c′(ψ,m), if finite, represents the number of computations that must be

performed using the ψ algorithm to find any m∗ ̸= m such that h(m∗) = h(m).

On the other hand, if this value is ∞, it means that the ψ algorithm will never

be able to find such m∗.

Note: It is possible to construct an element φ′ ∈ A ′ based on φ ∈ A (an

algorithm for performing the pre-image attack on h) in the following way:

Definition of φ′

INPUT: m ∈ M

OUTPUT: m∗ ∈ M

EXECUTION:

1. computing h(m)

2. executing φ, with h(m) as the input

If Ch,m is the cost of computing h(m), then for φ and φ′ considered as above, we

have the following inequality.

c′(φ′,m) ≥ c(φ, h(m)) + Ch,m (2.13)

If the OUTPUT m∗ of φ′ is equal to m, then c′(φ′,m) = ∞.

The inequality is strict, only when c′(φ′,m) = ∞ and c(φ, h(m)) < ∞. In all

other cases, it is an equality.

Finally, consider the random variable c′(ψ,X) : ω 7→ c′(ψ,X(ω)).

We can calculate the expected value of c′(ψ,X), but this time the knowledge of

the probability measure PX is needed.

EP [ c
′(ψ,X) ] = EPX

[ c′(ψ, IM) ] (2.14)
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Definition: ψ-infeasible Second Pre-Image-Attack on h

Given the hash function h : M → {0, 1}n
Let R′ ·T ′ be the resources of the adversary. Let ψ ∈ A ′ be the algorithm choose

by the adversary for performing the second pre-image-attack on h.

We say that the second pre-image-attack on h is ψ-infeasible or ψ-computationally-

infeasible if

EPX
[ c′(ψ, IM) ] ≥ R′ · T ′ (2.15)

To render the definition independent by the choice of ψ, it suffices for the above

inequality to be valid ∀ψ ∈ A ′. This is also equivalent to requesting the following.

Definition: infeasible Second Pre-Image-Attack on h

Given the hash function h : M → {0, 1}n
Let R′ · T ′ be the resources of the adversary.

We say that the second pre-image-attack on h is infeasible or computationally

infeasible, or equivalently that h is second pre-image-resistant if

inf
ψ∈A ′

EPX
[ c′(ψ, IM) ] ≥ R′ · T ′ (2.16)

It is crucial to highlight that the dependence on the function h here is hidden,

but present in the composition of the set A ′.

Additionally, in practice it is never possible to know the probability measure

PX , but it is possible to estimate infψ∈A ′ EPX
[ c′(ψ, IM) ] knowing only the dis-

tribution Ph in the following way.

inf
ψ∈A ′

EPX
[ c′(ψ, IM) ] ≤ inf

φ′|φ∈A

EPX
[ c′(φ′, IM) ] (2.17)

This is true because, as shown, { φ′ | φ ∈ A } ⊆ A ′. Applying the definition of

expected value we get

inf
φ′|φ∈A

EPX
[ c′(φ′, IM) ] = inf

φ′|φ∈A

∑

m∈M
c′(φ′,m) · PX({m}) (2.18)



14 Chapter 2. Adversarial Context

Here we add an additional but in practice very reasonable assumption about

the hash function h and probability measure PX . Given the given the family of

subsets

Mh,N
.
= {m ∈ MN | ∃m∗ ̸= m, h(m) = h(m∗)} (2.19)

We request that1

∃N ∈ N | PX(Mh,N) = 1 (2.20)

Thanks to this assumption, it is now possible to apply the inequality (2.13) as an

equality. This is legitimate because there exist a φ′ algorithm whose cost is less

than infinity for every message m ∈ M (for example, the bruteforce algorithm

described in 3.1).

inf
ψ∈A ′

EPX
[ c′(ψ, IM) ] ≤ inf

φ′|φ∈A

∑

Mh,N

c′(φ′,m) · PX({m})

= inf
φ∈A

∑

Mh,N

c(φ, h(m)) · PX({m}) +
∑

Mh,N

Ch,m · PX({m})

Due to the assumption on the support of PX , Ch
.
=
∑

Mh,N
Ch,m · PX({m}) is

finite. Considering now the partition induced by h on the set Mh,N we have

inf
ψ∈A ′

EPX
[ c′(ψ, IM) ] ≤ inf

φ∈A

∑

k∈{0,1}n

∑

m∈h−1(k)

c(φ, h(m)) · PX({m}) + Ch

= inf
φ∈A

∑

k∈{0,1}n

∑

m∈h−1(k)

c(φ, k) · PX({m}) + Ch

= inf
φ∈A

∑

k∈{0,1}n
c(φ, k) ·

∑

m∈h−1(k)

PX({m}) + Ch

= inf
φ∈A

∑

k∈{0,1}n
c(φ, k) · Ph({k}) + Ch

= inf
φ∈A

EPh
[ c(φ, I{0,1}n) ] + Ch

To recapitulate, we have thus shown that the infimum of expected costs for a

second pre-image-attack is no greater than the infimum of expected costs for a

pre-image-attack, plus a constant.

inf
ψ∈A ′

EPX
[ c′(ψ, IM) ] ≤ inf

φ∈A

EPh
[ c(φ, I{0,1}n) ] + Ch (2.21)

1For practical applications, consider N ≫ n. For instance, n = 256, N = 1010
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2.3.5 Expected Cost of Collision-Attack

Consider the family A ′′ of all algorithms χ that can be used to perform the

collision-attack on h. This time, no additional information (e.g. m ∈ M as for

the second pre-image-attack) is required.

The following cost function is thus well defined:

c′′ : A
′′ −→ N ∪ {∞}
χ 7−→ c′′(χ)

The value c′′(χ), if finite, represents the number of computations that must be

performed using the χ algorithm to find a collision, i.e. to find m1 ̸= m2 such

that h(m1) = h(m2). On the other hand, if this value is ∞, it means that the χ

algorithm will never be able to find a collision.

Note: It is possible to construct an element ψ′ ∈ A ′′ based on ψ ∈ A ′ (an

algorithm for performing the second pre-image attack on h), in the following way:

Definition of ψ′

INPUT: none

OUTPUT: (m1,m2) ∈ M
2

EXECUTION:

1. randomly choosing m1, according to PX

2. executing ψ, with m1 as the input

Here we consider the cost of randomly choosing m1 to be zero. For ψ and ψ′

considered as above, we have the following equality.

c′′(ψ′) = EPX
[ c′(ψ, IM) ] (2.22)
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Definition: χ-infeasible Collision-Attack on h

Given the hash function h : M → {0, 1}n
Let R′′ ·T ′′ be the resources of the adversary. Let χ ∈ A ′′ be the algorithm choose

by the adversary for performing the collision-attack on h.

We say that the collision-attack on h is χ-infeasible or χ-computationally-

infeasible if

c′′(χ) ≥ R′′ · T ′′ (2.23)

To render the definition independent by the choice of χ, it suffices for the above

inequality to be valid ∀χ ∈ A ′′. This is also equivalent to requesting the following.

Definition: infeasible Collision-Attack on h

Given the hash function h : M → {0, 1}n
Let R′′ · T ′′ be the resources of the adversary.

We say that the collision-attack on h is infeasible or computationally in-

feasible, or equivalently that h is collision-resistant if

inf
χ∈A ′′

c′′(χ) ≥ R′′ · T ′′ (2.24)

Firstly, we note that the dependence on the function h here is hidden, but present

in the composition of the set A ′′. Secondly, we note that it is possible, using the

argument in (2.22), to prove that

inf
χ∈A ′′

c′′(χ) ≤ inf
ψ′|ψ∈A ′

c′′(ψ) = inf
ψ∈A ′

EPX
[ c′(ψ, IM) ] (2.25)

This result is not surprising, since we had already shown that collision-resistance

implies second pre-image-resistance in Chapter 1.
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We can therefore summarise the relationship between pre-image-resistance, sec-

ond pre-image-resistance and collision-resistance in the following inequality.

inf
χ∈A ′′

c′′(χ) ≤ inf
ψ∈A ′

EPX
[ c′(ψ,m) ] ≤ inf

φ∈A

EPh
[ c(φ, k) ] + Ch (2.26)

Recall that for the second inequality to hold, we must make an assumption on

the support of PX as seen in (2.20)

Figure 2.3: Representation of the sets of algorithms and transformations of algorithms
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Chapter 3

Examples of Cryptographic Hash

Functions and Attacks

Using the theoretical models from the previous chapter, in this chapter we will

go on to specify the hash function h and make assumptions about the probability

distribution Ph; this will allow us to calculate the expected computational cost

for certain algorithms used to perform the three types of attacks discussed earlier.

Finally, we will evaluate what real-world security guarantees the expected cost of

the attack.

3.1 Bruteforce Pre-Image-Attack on SHA1

In this example, the hash function under analysis is SHA1, a function designed

by the U.S. National Security Agency in 1995, replacing its predecessor SHA0,

introduced only two years earlier. [3] [4]

SHA1 is currently a U.S. Federal Information Processing Standard (FIPS). [5]

In the notation used so far, SHA1 is denoted by the function h:

h : M → {0, 1}160

For those more familiar with coding, we include the pseudocode of SHA1 below.

However, knowledge of it is not necessary for our discussion.
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Pseudocode for the SHA-1 algorithm follows:

Note 1: All variables are unsigned 32-bit quantities and wrap modulo 232 when calculating, except for
ml, the message length, which is a 64-bit quantity, and
hh, the message digest, which is a 160-bit quantity.

Note 2: All constants in this pseudo code are in big endian.
Within each word, the most significant byte is stored in the leftmost byte position

Initialize variables:

h0 = 0x67452301
h1 = 0xEFCDAB89
h2 = 0x98BADCFE
h3 = 0x10325476
h4 = 0xC3D2E1F0

ml = message length in bits (always a multiple of the number of bits in a character).

Pre-processing:
append the bit '1' to the message e.g. by adding 0x80 if message length is a multiple of 8 bits.
append 0 ≤ k < 512 bits '0', such that the resulting message length in bits
   is congruent to −64 ≡ 448 (mod 512)
append ml, the original message length in bits, as a 64-bit big-endian integer. 
   Thus, the total length is a multiple of 512 bits.

Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
    break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15

Message schedule: extend the sixteen 32-bit words into eighty 32-bit words:
for i from 16 to 79

Note 3: SHA-0 differs by not having this leftrotate.
        w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

Initialize hash value for this chunk:
    a = h0
    b = h1
    c = h2
    d = h3
    e = h4

Main loop:
for i from 0 to 79

if 0 ≤ i ≤ 19 then
            f = (b and c) or ((not b) and d)
            k = 0x5A827999

else if 20 ≤ i ≤ 39
            f = b xor c xor d
            k = 0x6ED9EBA1

else if 40 ≤ i ≤ 59
            f = (b and c) or (b and d) or (c and d) 
            k = 0x8F1BBCDC

else if 60 ≤ i ≤ 79
            f = b xor c xor d
            k = 0xCA62C1D6

        temp = (a leftrotate 5) + f + e + k + w[i]
        e = d
        d = c
        c = b leftrotate 30
        b = a
        a = temp

Add this chunk's hash to result so far:
    h0 = h0 + a
    h1 = h1 + b 
    h2 = h2 + c
    h3 = h3 + d
    h4 = h4 + e

Produce the final hash value (big-endian) as a 160-bit number:
hh = (h0 leftshift 128) or (h1 leftshift 96) or (h2 leftshift 64) or (h3 leftshift 32) or h4

▪

fi

▪ fi fi

fi fi

ff

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 

≤ ≤

≤ ≤

SHA-1 pseudocode
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The algorithm used by the hypothetical adversary in this example is the non-

deterministic bruteforce algorithm φ̃brute ∈ Ã , described below:

Definition of φ̃brute (bruteforce)

INPUT: k ∈ {0, 1}160
OUTPUT: m ∈ M

EXECUTION:

1. randomly choosing m, according to PX

2. computing h(m)

3. h(m) = k ?

(a) if YES, RETURN m

(b) if NO, go back to point 1.

The cost of running a single cycle of the algorithm φ is approximated by the

quantity Ch,m, which is the cost of computing h(m). In all generality this cost

depends on m ∈ M.

Assumptions

In order to calculate the expected cost of the φ algorithm, we make two assump-

tions about the distributions PX and Ph, respectively. The first, concerns the

support of the probability measure PX .

∃N ∈ N | PX(MN) = 1 (3.1)

In the SHA1 definition, the maximum message length is indeed limited to N =

264− 1. This limit is not theoretical but practical in nature, which is why we still

decided to present it as an assumption.

In this context, the average cost over all messages of running a single cycle of the

algorithm φ called Ch
.
=
∑

MN
Ch,m · PX({m}) is finite.

Secondly, we assume that the distribution Ph is the Uniform distribution over

the set {0, 1}160.
Ph ∼ U ({0, 1}160) (3.2)
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3.1.1 Expected Cost

Since the φ̃brute algorithm is non-deterministic, we must use the framework intro-

duced in 2.3.3. considering the product probability space:

(Λ,G , Q)
.
= (Ω× Ω̃, P(Ω)⊗ F , P ⊗ P̃ )

We model the message choices made by the φ̃brute algorithm in Step 1. as the the

sequence Y = (Y1, Y2, Y3, · · · ) of random variables on Ω̃, i.i.d. with common

distribution PX .

We use the random variable h(X) on Ω with distribution Ph to represent the

choice of k ∈ {0, 1}160.

Finally we assume that the family h(X), h(Y1), h(Y2), h(Y3), · · · to be i.i.d.

with common distribution Ph ∼ U ({0, 1}160).

Figure 3.1: Representation of the probability model for the bruteforce pre-image-attack

We now define the random variable S on Ω× Ω̃

S
.
= min{ n ∈ N | h(Yn) = h(X) }

S(ω, ω̃) = min{ n ∈ N | h(Yn(w̃)) = h(X(ω)) }
(3.3)
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S is the random variable representing the number of cycles that the φ̃brute

algorithm must perform before finding m ∈ M such that h(m) = k.

We will now prove that S follows a Geometric distribution of parameter

p
.
= 2−160.

Q(S =n+ 1) =

= Q(min{ m ∈ N | h(Ym) = h(X) } = n+ 1)

= Q(h(Yi) ̸= h(X) ∀i ≤ n, h(Yn+1) = h(X))

=
∑

k∈{0,1}160
Q(h(Yi) ̸= k ∀i ≤ n, h(Yn+1) = k | h(X) = k) ·Q({h(X) = k} × Ω̃)

=
∑

k∈{0,1}160
Q( h(Yi) ̸= k ∀i ≤ n, h(Yn+1) = k | h(X) = k) · P (h(X) = k)

In the steps above we have we conditioned on the event {ω ∈ Ω | h(X(ω)) = k}
and used the properties of the product probability Q = P ⊗ P̃ .

We now use the assumptions of independence and uniform distributions, which

implies that P (h(X) = k) = P̃ (h(Yi) = k) = p ∀i ∀k.

=
∑

k∈{0,1}160
Q( h(Yi) ̸= k ∀i ≤ n, h(Yn+1) = k | h(X) = k) · P (h(X) = k)

=
∑

k∈{0,1}160
Q( Ω× {h(Yi) ̸= k ∀i ≤ n, h(Yn+1) = k}) · P (h(X) = k)

=
∑

k∈{0,1}160
P̃ ( h(Yi) ̸= k ∀i ≤ n, h(Yn+1) = k) · P (h(X) = k)

=
∑

k∈{0,1}160
(1− p)n · p · p

= (1− p)n · p

(3.4)

Hence, S ∼ G (p). Thanks to the assumptions of independence and uniform dis-

tributions, and going over the same calculations, it is easy to see that S and h(X)

are independent.

Running one cycle of the algorithm has a message-dependent cost Ch,m
1. The

algorithm performs a number S(ω, ω̃) of cycles in which it calculates the hash of

1as we will see later, the SHA1 algorithm is based on the M-D construction 3.3.1, which
means that the cost Ch,m is basically linear in the length of the message m.
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the messages Y1(ω̃), Y2(ω̃), · · · YS(ω,ω̃)(ω̃). Therefore we write:

c(φ̃brute(Y (ω̃)), h(X(ω))) =

S(ω,ω̃)
∑

i=1

Ch,Yi(ω̃) (3.5)

Finally, we are ready to calculate the expected cost to perform φ̃brute.

EQ[ c(φ̃brute(Y ), h(X)) ] = EQ[
S
∑

i=1

Ch,Yi ]

=
∑

Ω

(

∫

Ω̃

S(ω,ω̃)
∑

i=1

Ch,Yi(ω̃) · P̃ (dω̃) ) · P ({ω})

=

∫

Ω̃

(
∑

Ω

S(ω,ω̃)
∑

i=1

Ch,Yi(ω̃) · P ({ω}) ) · P̃ (dω̃)

=

∫

Ω̃

(
∑

Ω

S(ω,ω̃)
∑

i=1

Ch,Yi(ω̃) ·Q({ω} × Ω̃) ) · P̃ (dω̃)

=

∫

Ω̃

(
∑

Ω

∞
∑

n=1

n
∑

i=1

Ch,Yi(ω̃) ·Q({ω} × Ω̃ | S = n) ·Q(S = n) ) · P̃ (dω̃)

(3.6)

In the last step we conditioned with respect to the event {S = n}. Before

proceeding, let us now simplify the following expression

Q({ω} × Ω̃ | S = n) =
Q({ω} × Ω̃ , S = n)

Q(S = n)

=
Q({ω} × {ω̃ | S(ω, ω̃) = n})

(1− p)n−1 · p

=
P ({ω}) · P̃ ({ω̃ | S(ω, ω̃) = n})

(1− p)n−1 · p
= P ({w})

(3.7)

The last step is true because, for every ω, the function Ω̃ ∋ ω̃ 7→ S(ω, ω̃) follows

a Geometric distribution, just like S.
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By applying this result to the calculation of the expected value we get.

EQ[ c(φ̃brute(Y ), h(X) ] =

∫

Ω̃

(
∑

Ω

∞
∑

n=1

n
∑

i=1

Ch,Yi(ω̃) · P ({ω}) ·Q(S = n)) · P̃ (dω̃)

=

∫

Ω̃

(
∞
∑

n=1

n
∑

i=1

Ch,Yi(ω̃) ·Q(S = n)) · P̃ (dω̃)

=
∞
∑

n=1

n
∑

i=1

(

∫

Ω̃

Ch,Yi(ω̃) · P̃ (dω̃)) ·Q(S = n)

=
∞
∑

n=1

n
∑

i=1

(
∑

MN

Ch,m · PX(m)) ·Q(S = n)

=
∞
∑

n=1

n
∑

i=1

Ch ·Q(S = n)

= Ch ·
∞
∑

n=1

n ·Q(S = n)

= Ch · EQ[ S ]

= Ch · 2160

(3.8)

3.1.2 Considerations

To get an idea of the size of the number 2160, take the Folding@home project as an

example. Folding@home (FAH or F@h) is a distributed computing project that

aims to help scientists develop new therapies for a range of diseases by simulating

protein dynamics. As interest in the project increased following the COVID-19

pandemic, the system reached a speed of about 2.43 exaflops on April 12, 2020,

becoming the world’s first exaflop computing system. [6].

The number 2160 ≃ 1048 is 30 orders of magnitude bigger than the record achieved

by Folding@home. For an adversary operating the computational power of F@h

at its maximum, it would take (on average) more than 1022 years to find a pre-

image. Therefore with our assumptions, we say that the pre-image-attack on

SHA1 is φ-computationally-infeasible.

To date, there is no known algorithm that significantly improves this attack.

Thus, SHA1 is still considered pre-image-resistant.
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3.2 Bruteforce Collision-Attack on SHA1

We will now examine a collision-attack on SHA1 using the χ̃brute ∈ Ã ′′ algorithm

with the same assumptions (3.1) and (3.2).

Definition of χ̃brute (bruteforce)

INPUT: Lh = Ø

OUTPUT: (m1,m2) ∈ M
2

EXECUTION:

1. randomly choosing m, according to PX

2. computing h(m)

3. h(m) = h(m∗) ∈ Lh ?

(a) if YES, RETURN (m,m∗)

(b) if NO,

i. APPEND h(m) to Lh

ii. Go back to point 1.

Again, we can approximate the cost of executing a single cycle of the χ̃brute

algorithm by the quantity Ch,m, which is the cost of computing h(m).

In all generality, this cost depends on m ∈ M, however, as before thanks to

the first assumption at (3.1) we have that the average cost over all messages

Ch =
∑

MN
Ch,m · PX({m}) is finite.

3.2.1 Expected Cost

We model the message choices made by the χ̃brute algorithm in Step 1. as the the

sequence Y = (Y1, Y2, Y3, · · · ) of random variables on Ω̃, i.i.d. with common

distribution PX .

The random variables h(Y1), h(Y2), h(Y3), · · · are therefore i.i.d. with com-

mon distribution Ph ∼ U ({0, 1}160).

We now define the random variable T on Ω̃ as

T
.
= min{ n ∈ N | h(Yn) ∈ { h(Y1), h(Y2), · · · h(Yn−1) } } (3.9)
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T is the random variable representing the number of cycles that the χ̃brute al-

gorithm must perform before finding a collision.

Calling M
.
= 2160, we note that 2 ≤ T ≤M + 1.

We will now proceed to calculate the distribution of T , which we note is an al-

ternative formulation of the birthday problem. For 2 ≤ n+1 ≤M+1 we have:

P̃ (T = n+ 1) = P̃ ( h(Yi) ̸= h(Yj) ∀i ̸= j ≤ n, ∃l : h(Yn+1) = h(Yl))

= n · P̃ ( h(Yi) ̸= h(Yj) ∀i ̸= j ≤ n, h(Yn+1) = h(Y1))
(3.10)

Exploiting again the fact that the random variables h(Yi) are i.i.d. we get

= n ·
∑

k

P̃ ( h(Yi) ̸= h(Yj) ∀i ̸= j ≤ n, h(Yn+1) = k | h(Y1) = k) · P̃ (h(Y1) = k)

= n ·
∑

k

P̃ ( h(Yi) ̸= h(Yj) ̸= k ∀ 2 ≤ i ̸= j ≤ n) · P̃ (h(Yn+1) = k) · P̃ (h(Y1) = k)

=
n

M2
·
∑

k

P̃ ( h(Yi) ̸= h(Yj) ̸= k ∀ 2 ≤ i ̸= j ≤ n)

(3.11)

To calculate P̃ ( h(Yi) ̸= h(Yj) ̸= k ∀ 2 ≤ i ̸= j ≤ n) we simply count the possible

cases and divide them by the total cases, as all distributions are uniform.

There is only one possibility for the value h(Y1) since it’s fixed (= k), for h(Y2)

there are M − 1 possibilities, for h(Y3) there are M − 2 possibilities and so on.

P ( h(Xi) ̸= h(Xj) ̸= k ∀ 2 ≤ i ̸= j ≤ n) =
1 · (M − 1) · (M − 2) · · · (M − n+ 1)

1 ·Mn−1

(3.12)

Finally, we can calculate the distribution of T :

P̃ (T = n+ 1) =
n

M2

∑

k

(M − 1) · (M − 2) · · · (M − n+ 1)

Mn−1

= n · (M − 1)!

(M − n)! · Mn
= n · M !

(M − n)! · Mn+1

(3.13)

Running one cycle of the algorithm has a message-dependent cost Ch,m. The

algorithm performs a number T (ω̃) of cycles in which it calculates the hash of
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the messages Y1(ω̃), Y2(ω̃), · · · YT (ω̃)(ω̃). Therefore we write:

c′′(χ̃brute(Y (ω̃))) =

T (ω̃)
∑

i=1

Ch,Yi(ω̃) (3.14)

We now have all the elements to calculate the expected value

EP̃ [ c
′′(χ̃brute(Y )) ] = EP̃ [

T
∑

i=1

Ch,Yi ]

=

∫

Ω̃

T (ω̃)
∑

i=1

Ch,Yi(ω̃) · P̃ (dω̃)

=

∫

Ω̃

M
∑

n=1

n+1
∑

i=1

Ch,Yi(ω̃) · P̃ (dω̃ | T = n+ 1) · P̃ (T = n+ 1)

(3.15)

In the last step we conditioned with respect to the event {T = n+ 1}.
Since the algorithm χbrute chooses only the numerable sequence of messages Y ,

we can here assume that the space (Ω̃,F , P̃ ) is also discrete. Without changing

the notation, we will now consider dω̃ to be a singleton. With this in mind, we

simplify the following expression before proceeding.

P̃ (dω̃ | T = n+ 1) = P̃ (T = n+ 1 | dω̃) · P̃ (dω̃)

P̃ (T = n+ 1)
(3.16)

In the equality, Bayes’ formula was applied. We now reason as follows:

• If dω̃ ∈ {T−1(n+ 1)} =⇒ P̃ (T = n+ 1 | dω̃) = 1

• If dω̃ /∈ {T−1(n+ 1)} =⇒ P̃ (T = n+ 1 | dω̃) = 0

Therefore we have

= P̃ (T = n+ 1 | dω̃) · P̃ (dω̃)

P̃ (T = n+ 1)

= EP̃ [ 1{T−1(n+1)}(dω̃) ] ·
P̃ (dω̃)

P̃ (T = n+ 1)

= (1 · P̃ (T = n+ 1) + 0 · P̃ (T ̸= n+ 1)) · P̃ (dω̃)

P̃ (T = n+ 1)

= P̃ (dω̃)

(3.17)
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Thanks to this simplification, we finally obtain the result.

EP̃ [ c
′′(χ̃brute(Y )) ] =

∫

Ω̃

M
∑

n=1

n+1
∑

i=1

Ch,Yi(ω̃) · P̃ (dω̃ | T = n+ 1) · P̃ (T = n+ 1)

=

∫

Ω̃

M
∑

n=1

n+1
∑

i=1

Ch,Yi(ω̃) · P̃ (dω̃) · P̃ (T = n+ 1)

=
M
∑

n=1

(
n+1
∑

i=1

∫

Ω̃

Ch,Yi(ω̃) · P̃ (dω̃)) · P̃ (T = n+ 1)

=
M
∑

n=1

(
n+1
∑

i=1

∑

MN

Ch,m · P̃X({m})) · P̃ (T = n+ 1)

= Ch ·
M
∑

n=1

(n+ 1) · P̃ (T = n+ 1)

= Ch ·
M
∑

n=1

(n+ 1)n ·M !

(M − n)! · Mn+1

= Ch · EP̃ [ T ]

(3.18)

The value EP̃ [ T ] =
∑M

n=1
(n+1)n·M !

(M−n)! · Mn+1 is in fact related to the well-known

Knuth function Q(M). [7]

Q(M) =
M
∑

n=1

M !

(M − n)! · Mn
(3.19)

The relationship binding the two is the following:

EP̃ [ T ] = 1 +Q(M) (3.20)

Thanks to the work of Ramanujan, Watson and Knuth [8], it is possible to show

that Q(M) has asymptotic expansion

Q(M) ∼
√

πM

2
− 1

3
+

1

12

√

π

2M
− 4

135M
· · · (3.21)

Which implies that the average cost EP̃ [ c
′′(χ̃brute(Y )) ] is

EP̃ [ c
′′(χ̃brute(Y )) ] ∼ Ch ·

√

πM

2
=

√

π

2
Ch · 280 (3.22)
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Approximate Method for the Expected Cost

It is interesting to consider the following approximate but much simpler method

for calculating EP̃ [ T ]. [10]

Consider the random variables Hi,j
.
= 1{h(Yi) = h(Yj)}, ∀ i ̸= j

It’s easy to see that

EP̃ [ Hi,j ] = P̃ ( h(Yi) = h(Yj) ) =
1

M
(3.23)

Consider the random variable H
.
=
∑K

i=1

∑K
j=i+1Hi,j

K for now is an unknown constant. By imposing conditions on K, we will indi-

rectly obtain an estimate of EP̃ [ T ]. Reasoning follows in this way:

If EP̃ [ H ] ≥ 1 it means that at least one of Hi,j is equal to 1, that is, there

∃ i ̸= j such that h(Yi) = h(Yj). Applying this condition we obtain that:

EP̃ [ H ] ≥ 1 ⇐⇒

EP̃ [
K
∑

i=1

K
∑

j=i+1

Hi,j ] ≥ 1 ⇐⇒
(

K

2

)

· EP̃ [ Hi,j ] ≥ 1 ⇐⇒

K(K − 1) ·M−1 ≥ 2 ⇐⇒
K2 −K − 2M ≥ 0 ⇐⇒
K ∼

√
2 ·

√
M =

√
2 · 280

(3.24)

This approximation differs by
√
2−
√

π
2√

π
2

≈ 12.84% from the previous one.
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3.2.2 Considerations

The cost of the algorithm as seen is in the order of
√

π
2
· 280 ≃ 1024 hash evalua-

tions. This number is only 6 orders of magnitude greater than the power of the

most powerful distributed computers like F@h, previously mentioned in (3.1.2).

Although such seems like a remote scenario, criminal organizations but especially

governments are or will soon be capable of deploying the resources necessary to

carry out attacks of this magnitude.

The situation is actually considerably worse, as there are much more efficient

algorithms than bruteforce to find a collision.

In fact, on February 23, 2017, the CWI (Centrum Wiskunde & Informatica) and

Google announced the SHAttered attack, in which they generated two differ-

ent PDF files with the same SHA-1 hash in about 263.1 SHA-1 evaluations. [9]

The existence of such algorithms is possible because the distribution Ph is not in

truth the Uniform distribution over the set {0, 1}160. Such is merely an approxi-

mation that does not hold in practice.
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3.3 Second Pre-Image-Attack on Merkle-Damg̊ard

Hash Functions

From what was proved in Chapter 2, equation (2.26) we already know that a

second pre-image-attack can have a lower expected cost compared to that of the

best pre-image-attack plus the cost of one hash evaluation (which is negligible in

practice).

Second pre-image attacks that significantly improve this upper bound are very

sophisticated and beyond the scope of this thesis.

However, it is interesting to analyse a prototype attack against one of the most

widely used class of hash functions, namely those based on the Merkle-Damg̊ard

construction. [11] [12] [13]

3.3.1 Merkle-Damg̊ard Construction

In cryptography, the Merkle-Damg̊ard construction is a method for constructing

hash functions from appropriate compression functions. This construction has

been used in the design of many popular hash algorithms, such as MD5, SHA-1

and SHA-2.

A compression function F is nothing more than a hash function that works

on exactly two inputs of fixed length.

F : {0, 1}k × {0, 1}l −→ {0, 1}n (3.25)

Hash function security definitions at (1.2) can be applied to compression func-

tions, so we can speak of pre-image-resistant, second pre-image-resistant and

collision-resistant compression functions (considering the domain as {0, 1}k+l).

The M-D construction requires that k = n, i.e. it implies that the output of

the compression function F can be a valid input for it.

In a sense, the M-D construction aims to extend the domain of the com-

pression function F to messages of arbitrary length, while maintaining (and in

some cases improving) the security properties of it.
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It can be proved that if the compression function F is collision-resistant, then so

will the hash function based on F that follows the M-D construction (if appro-

priate padding schemes are used, as we shall see). [12] [13]

From now on, we will denote the length of a message m ∈ M with the notation

|m| .= min{N ∈ N | m ∈ MN}. Instead, for m ∈ {0, 1}l, we say that the length

|m| .= l.

The M-D hash function hF : M −→ {0, 1}n is defined as follows:

1. Apply a padding function Pad to a given message m ∈ M.

2. Divide Pad(m) into blocks of length l.

This means Pad(m) = m1 || m2 || · · · || mK , such that |mj| = l ∀j.
Here || is is the binary operation of concatenating strings.

(e.g. ’11’ || ’00’ = ’1100’)

3. Calculate h1
.
= F (IV,m1), where IV is the Initialisation Vector specified

by the algorithm.

4. Calculate hi
.
= F (hi−1,mi) for i = 2, 3, · · · K

5. Return hF (m)
.
= G(hK), where G is called the Finalization Function.

(G can be the identity function G(x) = x).

Figure 3.2: Representation of the Merkle-Damg̊ard construction
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M-D Compliant Padding

At first glance, the importance of padding may be underestimated, and one might

think that any padding that makes the message length a multiple of l would work.

Far from it.

Take for example the padding function Pad0 which adds, at the end of the mes-

sage m, a number of ’0’s sufficient to make the length of Pad0(m) a multiple of l.

With this padding scheme, in the event that |m| is not already a multiple of l,

it is very easy to find a second pre-image, since m and m || ′0′ will produce the

same hash.

It is possible to give sufficient conditions for a padding scheme Pad to possess

to ensure that the M-D construction is secure: [14]

1. |Pad(m)| is a multiple of l ∀m ∈ M

2. Pad(m) = m || S(m), where S(m) is the suffix added to the message m.

3. If |m| = |m∗| =⇒ |Pad(m)| = |Pad(m∗)|

4. If |m| ≠ |m∗| =⇒ the last blocks of Pad(m) and Pad(m∗) are different.

If Pad conforms to point 1. to 4. we say that it is M-D compliant.

An example of an M-D compliant padding is the one used in the SHA1 (3.1),

called Length padding, which involves adding the length of m, represented as

a string, to S(m).

Pad0 is not M-D compliant since it does not respect property number 4. and

as we have already seen it leads to hash functions that are not second pre-image-

resistant, and therefore not collision-resistant either.

We will now demonstrate a more general result:

For every padding function Pad, that respects properties 1. to 3. but not 4., we

prove that the Merkle-Damg̊ard hash function hF is subject to a particular type

of second pre-image-attack that greatly improved the upper bound at (2.26).
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3.3.2 Long Message Second Pre-Image-Attack

A second pre-image-attack in all generality takes as input any message m ∈ M.

In this case, however, the attack is limited only to very long messages, hence

the name. We will express the length of these messages as the number of blocks

that compose them. For instance, a message m ∈ M that is 2R blocks long means

that |m| = 2R · l

Let hF : M −→ {0, 1}n be the hash function based on the Merkle-Damg̊ard

construction that uses compression function F and the padding scheme Pad.

Pad is defined as follows:

• Given m = m1 || m2 || · · · || mK−1 || mK

where |mi| = l ∀i ≤ K − 1 and |mK | ≤ l

• Let Pad(m)
.
= m1 || m2 || · · · || mK−1 || mK || S(mK)

where |mK || S(mK)| is a multiple of l.

In other words, the suffix S(m) = S(mK) added to the message only depends on

the last |m| − (K − 1) · l digits, here called mK .

The algorithm used by the adversary to perform the Long Message Second Pre-

Image-Attack is the non-deterministic algorithm ψ̃LM ∈ Ã ′, described below:

Definition of ψ̃LM

INPUT: m ∈ M such that |m| = (2R + 1) · l
OUTPUT: m∗ ∈ M

EXECUTION:

1. apply Pad(m) = m1 || m2 || · · · || m2R || m2R+1 || S(m2R+1)

2. compute Lm,R
.
= { h1 = F (IV,m1), h2 = F (h1,m2), ··· h2R = F (h2R−1,m2R) }

3. randomly choose mlink ∈ {0, 1}l, according to U ({0, 1}l)

4. F (IV,mlink) = hj ∈ L ?

(a) if YES, RETURN mlink || mj+1 || mj+2 || · · · || m2R

(b) if NO, go back to point 3.
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The cost of performing points 1. and 2. is essentially ChF ,m = 2R · CF .
The cost of performing one cycle of point 4. is CF which we can consider

constant since the length of the message is always l.

Figure 3.3: Representation of the long message attack performed by the ψ̃LM algorithm

3.3.3 Expected Cost

We model the choice of m = m1 || m2 || · · · || m2R || m2R+1 with the ran-

dom variable X(R) = X1 || X2 || · · · || X2R || X2R+1 on Ω, with distribution

PX(R)
.
= PX( • | M2R+1 \M2R).

We model the choices of mlink made by the ψ̃LM algorithm in Step 3. as the

the sequence Y = (Y1, Y2, Y3, · · · ) of random variables on Ω̃, i.i.d. with common

distribution PY1 ∼ U ({0, 1}l).

The random variables h1
.
= F (IV,X1), h2

.
= F (h1, X2), · · · h2R .

= F (h2R−1, X2R)

are assumed to be i.i.d. with common distribution PF ∼ U ({0, 1}n).
We call LX,R

.
= { h1, h2, · · · h2R }
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The random variables F1
.
= F (IV, Y1), F2

.
= F (IV, Y2), · · · are assumed to

be i.i.d. with common distribution PF ∼ U ({0, 1}n).

We now define the random variable U on Ω× Ω̃ as follows:

U
.
= min{ m ∈ N | Fm ∈ LX,R}

U(ω, ω̃) = min{ m ∈ N | Fm(w̃) ∈ LX(w),R }
(3.26)

As a consequence of the previous cost analysis, it is easy to see that the cost of

ψ̃LM is the following:

c′(ψ̃LM(Y (ω̃)), X(R)(ω)) = 2R · CF +

U(ω,ω̃)
∑

j=1

CF = (2R + U(ω, ω̃)) · CF (3.27)

Which implies that

EQ[ c
′(ψ̃LM(Y ), X(R)) ] = (2R + EQ[ U ]) · CF (3.28)

If we know the size of the list LX,R then it is easy to calculate the distribution

of U , since the random variables h1, h2, · · · , F1, F2, · · · are independent.

Henceforth, we will consider L ≤ 2R < 2n.

Q(U = m+ 1 | |LX,R| = L) = Q(min{m′ ∈ N | Fm′ ∈ LX,R} = m+ 1 | |LX,R| = L)

= Q(Fi /∈ LX,R ∀ i ≤ m, Fm+1 ∈ LX,R | |LX,R| = L)

= Q(F1 /∈ LX,R | |LX,R| = L)m ·Q(Fm+1 ∈ LX,R | |LX,R| = L)

=

(

1− L

2n

)m

· L
2n

(3.29)

From which it follows that under the condition |LX,R| = L, U is a Geometric

distribution of parameter L
2n
.

To proceed, we would now like to calculate the probability P (|LX,R| = L), which

again is an alternative formulation of the birthday problem. However, this

seems to be difficult. For this reason, we are going to use an approximation mo-

tivated by the next observation on the expected value of |LX,R|.
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We first rewrite |LX,R| using the indicator random variables

Hi
.
= 1{hi ̸= hj ∀j<i}, i = 2, 3, · · · 2R (3.30)

Now we note that:

|LX,R| = 1 +
2R
∑

i=2

Hi ≤ 2R (3.31)

Turning to the expected value, we have that:

EP [ |LX,R| ] = 1 +
2R
∑

i=2

EP [Hi]

= 1 +
2R
∑

i=2

P ({hi ̸= hj ∀j < i})

= 1 +
2R
∑

i=2

∑

k∈{0,1}n
P ({hi ̸= hj ∀j < i} | hi = k) · P (hi = k)

= 1 +
2R
∑

i=2

∑

k∈{0,1}n
P ({k ̸= hj ∀j < i}) · P (hi = k)

= 1 +
2R
∑

i=2

2n ·
(

2n − 1

2n

)i−1

· 2−n

=
2R−1
∑

i=0

(

2n − 1

2n

)i

=
1−

(

2n−1
2n

)2R

1−
(

2n−1
2n

)

= 2n

(

1−
(

1− 1

2n

)2R
)

> 2n
(

1− e−2R−n
)

(3.32)

We will now make the assumption that R ≤ n
2
. Under this condition, we have

2n
(

1− e−2R−n
)

= 2n
(

1− 1 + 2R−n − 1

2
· 22R−2n +O(23R−3n)

)

> 2n
(

2R−n − 1

2
· 22R−2n

)

= 2R − 1

2
· 22R−n ≥ 2R − 1

2

(3.33)
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What we have proved, is the following surprising result:

2R ≥ EP [ |LX,R| ] > 2R − 1

2
∀R ≤ n

2
(3.34)

For sufficiently large R, this implies that the probability measure P (|LX,R| = •)
concentrates nearly all the mass close to the value 2R.

Taking R > 50 (which implies n > 100), we can with good reason approximate

P (|LX,R| = •) ≈ δ2R (3.35)

Where δx0 is the Dirac delta function centered in x0.

Therefore, the expected value of U is:

EQ[ U ] =
∞
∑

m=0

(m+ 1) ·Q(U = m+ 1)

=
∞
∑

m=0

2R
∑

k=1

(m+ 1) ·Q(U = m+ 1 | |LX,R| = k) · P (|LX,R| = k)

≈
∞
∑

m=0

(m+ 1) · (Q(U = m+ 1 | |LX,R| = 2R)

=
∞
∑

m=0

(m+ 1)(1− 2R−n)m · 2R−n

= 2n−R

(3.36)

And finally, the expected cost is

EQ[ c
′(ψ̃LM(Y ), X(R)) ] = (2R + 2n−R) · CF

R=n
2===⇒ = CF · 2n

2
+1 ≪ ChF · 2n

(3.37)
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3.3.4 Considerations

This result is a great improvement over upper bound in (2.26), however, at the

moment it seems to depend on the suffix function S(m) = S(mK).

It is actually not difficult to generalize to S(m) = S(mK ,mK−1, · · ·,mK−J+1), in

which case the only thing that changes is the target list Lm,R which has a reduced

length of J compared to that of the message. It will suffice to use messages 2R+J

blocks long to have the same expected cost of 2R + 2n−R compression function

evaluations.

For an M-D compliant padding function such as length padding, the attack as it

is described would not work, because |m∗| < |m| and property number 4. implies

that the two suffixes will be different.

However, not without difficulty, it is possible to generalize the described attack

in a way to bypass length padding, resulting in an expected cost of

R · 2n/2+1 + 2n−R+1 ≪ 2n compression function evaluations. [15]

Applying these results to the SHA1 function (n = 160), and considering R = 64,

the cost for performing the attack is 64 · 281 + 297 ≃ 1029 compression function

evaluations. This number is 11 orders of magnitude greater than the power of

the most powerful distributed computers like F@h, previously mentioned in (3.1).

Because of this, and the fact that the attack applies only on extremely long

messages, SHA1 is still considered a second pre-image-resistant function, but this

may change in the future thanks to new developments and optimizations.

The work of John Kelsey and Bruce Schneier [15], combined with the work of

Joux [16] raise questions about the usefulness of the widely-used Merkle-Damg̊ard

construction.
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