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Abstract

In recent years, synthetic biology has seen significant advancements. It represents a novel research

area which combines engineering and biology proposing to create systems that do not exist in na-

ture, by either synthesizing novel organisms or inserting artificial genetic circuits into living cells.

Designing novel artificial genetic systems requires a suitable mathematical model enabling the

study, analysis and simulation of the biological system before implementing in vivo experiments.

Therefore, the first part of this thesis explores the wide range of possible modeling and simulation

techniques, highlighting their differences through well-known examples. It focuses especially on

realizing stochastic simulations of the genetic toggle switch, starting from its simplified determin-

istic description.

Among the current key challenges in synthetic biology emerges the co-existence of multiple popu-

lations, in order to distribute the workload and the different functionalities. While several strategies

exist to regulate the population sizes, different growth and division rates pose significant difficul-

ties. Therefore, an innovative alternative approach considers only one population made of two

phenotypically distinct subgroups, where each cell can change its phenotype under the control of

an external input. In the literature two controllers have been proposed able to balance the numbers

of these two subgroups, whose effectiveness has been validated using an Advanced Agent-Based

Cell Simulator. Our work evaluates their performance on a stochastic model, yielding novel and

different, yet at the same time promising and realistic, results. Further study is essential to refine the

model and better understand the two approaches; however, we believe this thesis already provides

a significant basis for the research in this area.
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Sommario

Negli ultimi anni, la biologia sintetica ha visto importanti progressi. Questa rappresenta una nuo-

va area di ricerca che combina l’ingegneria e la biologia, proponendo di creare sistemi che non

esistono in natura, sia sintetizzando nuovi organismi, sia inserendo circuiti genetici costruiti artifi-

cialmente in cellule già esistenti. La realizzazione di nuovi sistemi genetici artificiali richiede però

un modello matematico adeguato che ne permetta lo studio, l’analisi e la simulazione ancor prima

di implementare l’esperimento in vivo. Dunque, la prima parte di questa tesi esplora la vasta gamma

di possibili tecniche di modellazione e simulazione, evidenziandone le differenze attraverso esempi

comunemente noti. In particolare, la tesi si concentra sulla realizzazione di simulazioni stocastiche

dell’interruttore (toggle switch) genetico, a partire dalla sua descrizione deterministica semplificata.

Tra le principali attuali sfide nella biologia sintetica emerge quella riguardo alla coesistenza di più

popolazioni, che ha l’obiettivo di distribuire il carico di lavoro e le diverse funzionalità. Sebbene

esistano diverse strategie per controllare le dimensioni delle popolazioni, le velocità di crescita e

divisione diverse introducono ulteriori importanti difficoltà. Pertanto, un approccio alternativo e

innovativo è di considerare un’unica popolazione composta da due sottogruppi fenotipicamente di-

stinti, dove ogni cellula può cambiare il suo fenotipo sotto il controllo di un input esterno. Nella

letteratura sono stati proposti due controllori in grado di bilanciare i numeri di questi due sotto-

gruppi, la cui efficacia è stata validata utilizzando un Advanced Agent-Based Cell Simulator. Il

nostro lavoro valuta le performance su un modello stocastico, ottenendo risultati nuovi e differen-

ti, ma allo stesso tempo promettenti e realistici. Ulteriori studi sono necessari per perfezionare il

modello e comprendere meglio i due approcci; tuttavia, riteniamo che questa tesi fornisca già una

base significativa per la ricerca in questo campo.
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Chapter 1

Introduction

Synthetic biology is a recent fast developing field at the border between engineering and biol-

ogy. From engineering, it requires a suitable model and efficient simulations of biological systems,

while from biology, it demands a deep understanding of the system at hand and of the reactions

happening inside it. By combining these approaches, synthetic biology aims to engineer biological

systems with new or enhanced functionalities. In particular, this is achieved by embedding artificial

genetic circuits into living cells (such as bacteria, yeast or fungi) to modify the natural behavior of

the biological system, controlling either basic functionalities of the cell, either desired additional

productions of proteins or chemical compounds. This is achieved by acting on gene expression,

transcription and translation processes, or on molecular interactions [1, 2].

Synthetic biology is a broad interdisciplinary field involving not only engineering and biology, but

also chemistry, physics, medicine, philosophy, and many other subjects. Indeed, it can have vari-

ous applications, ranging from health treatments [3–5] to bioremediation [6], or from information

processing [7, 8] to production of biofuels and drugs [9]. Therefore, it has the potential for fu-

ture significant developments in crucial topics such as environmental sustainability, waste material

conversion in new forms of energy, pharmaceutical applications (for instance by providing ways to

restore antibiotic sensitivity in bacteria or treating a particular disease), and innovative industrial

solutions. As a result, synthetic biology will become an increasingly important and requested field

in the future.

1.1 Motivation and State of the Art

The novelty of synthetic biology lies on its buttom-up and modular approach. Indeed, it proposes

to start from elementary components such as genes, promoters, ribosomes, and proteins, designed

them as needed and finally assembly them to build genetic circuits realizing the desired function-

ality. Moreover, when addressing a problem, synthetic biology proposes to follow the so called
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Design-Build-Test-Learn (DBTL) cycle [10], in which biologists design and build the genetic cir-

cuits or the necessary biological components, then test them and analyze the results to learn from

them and design enhanced versions of the system. In this process the importance of having an

accurate model and simulation becomes clear, especially before building the biological system. In-

deed, it provides a proper analysis of the system and of the outcomes of proposed solutions before

starting the laboratories experiments. This approach not only allows to save time and money but

provides also a detailed knowledge of the system.

Therefore, the first part of the thesis focuses on the modeling, analysis and simulation techniques

present in the literature, including both complex but accurate models, and simple but determin-

istic frameworks. The model allows to study the effects of inserting a new genetic circuit into a

cell, ensuring its successful implementation. Indeed, it helps to determine whether the cell exhibits

metabolic burden, the circuit is truly effective, and if and how it is interacting with vital cell pro-

cesses. At the core of biological systems, determining its functionalities, there is gene expression,

which is governed by chemical reactions. Thus, the goal becomes to identify a proper mathematical

way to model them; the choice of the model will depend on the context and application, obtaining

models less or more suitable than others. The main difference between the various approaches

regard the consideration or disregard of the noise. This is fundamental to account for potential

different behaviors of identical cells, inevitable randomness of molecular collisions, or insufficient

and imprecise knowledge of parameters describing chemical reactions.

The most accurate description is the one taking into account all the species and reactions involved in

a certain process, together with their inherent randomness. This model is provided by the Chemical

Master Equation [11], describing the time evolution of the probability of having a certain number

of molecules at every time t. Although this is the most accurate description, it can become heavy

and complex, and thus very difficult to handle. Therefore, researchers have looked for alternative

approximated models. Among these, the Chemical Langevin Equation [12, 13] (or equivalently the

Fokker-Planck Equation [14, 15]) represents a middle ground between stochastic and deterministic

models, simplifying the Chemical Master Equation, but still accounting for the noise as gaussian

white noise. On the other hand, Chemical Kinetics or Reaction Rate Equations deterministically

describe the evolution of the molecules concentration.

The model is necessary to perform a detailed analysis and realize the simulations, which show out-

comes supposed to happen in a real scenario. This is then useful to prepare and correctly set up in

vivo experiments. Moreover, simulations can be very useful to ease the analysis especially when

the model is complex or not trivial to interpret, which often happens with the Chemical Master

Equation. Therefore, researchers have focused on this in particular, providing different techniques

to perform the simulations. The standard approach is the one proposed by D.T. Gillespie in [16],

8
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which applies the Monte Carlo theory to generate realizations of the Chemical Master Equation.

Different versions and new approaches have been proposed later by Gillespie himself and other

authors. Some of them proposed alternatives to determine the timing and type of reactions, others

optimized the algorithm to reduce its computational time [17, 18]. On the other hand, new tech-

niques have been proposed, among which there is the τ-leaping approximation [19], which still

implements the Chemical Master Equation, but is valid under specific hypotheses that allow some

reactions to be grouped together within a defined time interval, resulting in a simplified algorithm.

However, this arises new challenges, hence also in this case different versions are possible; some of

them account for a varying time interval [19–21], others for a realistic outcome (avoiding negative

numbers of molecules) [22–24]. Finally, for the Chemical Langevin Equation easier simulation

methods have been implemented. The most common one is the Euler-Maruyama [25], implement-

ing exactly a discretized version of the Chemical Langevin Equation. The table below summarizes

the possible modeling and corresponding simulation techniques.

Mathematical Model Simulation tool Main Characteristics

Chemical Master Equation

Gillespie’s SSA

τ-leaping approximation

Stochastic

Exact description

Chemical Langevin Equation Euler-Maruyama Algorithm
Stochastic

(gaussian white noise)

Fokker-Planck Equation Finite volume method
Stochastic

(gaussian white noise)

Reaction Rate Equation ODE’s solvers
Deterministic

Average description

Table 1.1: Summary table on modeling and simulation methods.

When engineering new circuits it is important to study and analyze them, but also to control their

effects on the host cells, in particular when circuits become more and more complex they can

lead to metabolic burden, or competition of common resources. To overcome these limitations a

common solution is to distribute the workload among multiple populations, so that each population

has a specific role and function. An explicative image is the reported below. Two enzymatic

reactions are shown, the first one transforms the substrate S in an intermediate I and the second one

transforms this into a product P. If both of them happen in the same cell, then they will compete

for common resources and if for example the first enzyme has preference over the second one, then

there would be an accumulation of the intermediate. Whereas if the reactions are distribute in two

different cells, these issues are solved.

9
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Figure 1.1: Divided and undivided metabolic labor in two steps enzymatic reaction [26].

This simple example shows the importance of employing more than one cell population, and hence

motivated biologists to consider co-cultures or small consortia where individual populations work

together to accomplish a desired output. Microbial consortia represent a rapidly advancing strat-

egy able to overcome limitations in efficiency and robustness that are often seen in monoculture

systems. There exists a wide range of applications involving these consortia, which spans from

industrial processes to mathematical analysis. For example, in [27] a synthetic ecosystem resem-

bling canonical predator–prey systems has been constructed using two Escherichia coli populations

which regulate each other’s gene expression and survival. Using this they were able to reproduce

extinction, coexistence and oscillatory dynamics typical of the predator and prey populations. Sim-

ilarly, in [28] oscillations in population levels are generated cultivating together two distinct cell

types. Or in [29] multiple logical functions are implemented using combinations of yeast strains.

Another particularly innovative application is in the field of Control Systems, it implements multi-

cellular feedback control, realizing typical electronic-based control devices using cell populations

and quorum sensing molecules to close the feedback loop. In particular, in [30] they made use of

two controller populations to activate or inactivate a third population endowed with a toggle switch;

while in [31] and [32] the different populations were used to create a modular P, PI, PD controller

in order to regulate the gene expression of a third population. On a different level, there are studies

employing microbial consortia to perform bioprocesses [26], or to enhance the production of com-

plex products and optimize metabolic processes across the system [33, 34].

Microbial consortia can be widely used in many other applications due to their ability to mit-

igate competition for cellular resources, reduce metabolic burdens, perform efficient and stable

task division, and promote compartmentalization. However, guaranteeing the stable co-existence

of multiple populations requires to regulate their relative sizes, preventing faster growing species

from eliminating the slower ones, as the Competitive Exclusion Principle predicts [35]. This prob-

lem has been defined in [36] as the Ratiometric Control Problem, having the goal of achieving

and maintaining at a certain desired ratio the sizes of the populations in the consortium, despite

differences in their growth rates, noise and perturbations. In the literature various solutions have

been proposed to regulate the numbers of competitive species controlling the growth and death

10
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rates [37–40], or in general to achieve a desired ration between the concentrations of two microbial

populations, while guaranteeing their survival and fast convergence dynamics [41–43]. However,

most of these control solutions require to insert additional genetic circuits into the cells, both for

establishing communication between the different populations, and both for embedding the entire

feedback into every cell to make it able to sense the relative size of all the populations and respond

appropriately. Therefore, an innovative and recent solution [44] has been introduced to solve these

problems, and additionally to avoid different growth rates typical of different cell populations. This

solution proposes indeed to consider a unique population of cells, dividing the labor among two

subgroups within this population. Each group will hence have a specific role, identified by a phe-

notype that can be changed in response to an external stimulus, such as light or injection of inducer

molecules (Fig.1.2). This is made possible by means of a bistable memory element, whose states

determine the group to which each cell belongs, determining the role assigned to it. Considering

one single population eliminates the risk of extinction of one of the subgroups, because cells can

switch phenotype to restore the lost group; moreover, this approach allows for online changing of

the desired steady-state ratio. Therefore, this represents a highly promising strategy, even though it

undoubtedly brings new challenges to accomplish, in particular an accurate model of the system is

necessary.

(a) One single population, where each cell can carry

out different roles(red or green), in response to ex-

ogenous stimuli.

(b) Phenotypic switching inside a cell [45].

aa

aa

Figure 1.2: Ratiometric control with single population.

1.2 Objectives and Main Results

Synthetic biology highly relies on the presence of a suitable model and appropriate simulation tech-

niques. Therefore the first objective of this thesis is to provide a comprehensive guide of the main

modeling and simulation methods presented in the literature, in order to state their major differ-

11



Chapter 1. Introduction

ences and validity assumptions. In particular, we focus on the importance of accounting for the

noise and on finding an efficient way to simulate the resulting stochastic model. Then we propose

to apply this study to the interesting case of ratiometric control problem using a single population

as discussed in [44]. In the paper, a deterministic model of the toggle switch is used, though we

believe that, especially in this case, considering the noise is essential. Therefore, the second pur-

pose of this work is to develop an efficient and reliable method for stochastically simulating and

analyzing the genetic toggle switch, and finally to test the proposed controllers on this new model.

Traditional deterministic approaches describe the system’s average behavior, which is valid when

there is a large number of molecules. However, even in such cases, these approaches fail to cap-

ture the full complexity and richness of the system. Stochastic models can therefore be neces-

sary also in simple cases to describe the variability of the system, as we found for birth-death or

compound formation processes. The thesis focuses on three simulation techniques: Gillespie’s

Stochastic Simulation Algorithm and τ-leaping approximation for the Chemical Master Equation,

and Euler-Maruyama method for the Chemical Langevin Equation. We show how the latter can

be more efficient than the others, though relying on stronger assumptions that may not always be

true. Indeed, to show its application we had to properly tune the parameters in order to satisfy the

mentioned hypothesis, however, this would not be feasible in real-world scenarios. For instance,

when we considered the genetic toggle switch, we found that this method was not applicable due to

low molecular numbers. Whereas, both Gillespie’s Stochastic Simulation Algorithm and τ-leaping

approximation have been used to simulate the system. However, they require more computational

time and τ-leaping can be challenging to implement due to some particular scenarios that one has

to take into account. Finally, we wish to emphasize that we developed and tested a method, usually

used with Reaction Rate Equations, to stochastically simulate a reduced model of the toggle switch.

This represents an innovative and powerful method, which could significantly change the approach

to biological stochastic simulations. Indeed, it allows to consider a simplified system bypassing the

problem of knowing precisely all the reactions and the corresponding parameters.

The difference between deterministic and stochastic frameworks is made evident by the stability

analysis we conducted on the toggle switch. In particular, when using the deterministic model it

is possible to perform a bifurcation analysis, that is a study of the quality, quantity and position

of the equilibria depending on a parameter, a virtual input in our case. We found that there exists

three possible cases, two in which the system is monostable with equilibrium in one or the other

stable state of the toggle switch, and one in which it is bistable. Chosen an input and the initial

conditions, then the deterministic model predicts that the system will end up in a precise point of

the phase space. Whereas, considering the noise, we found that this does not hold anymore, and it

is necessary to talk about areas in which it is probable to find the state, rather than exact equilibria.

The image below well shows it:

12
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Figure 1.3: Probabilistic analysis of toggle switch, for inputs providing bistability.(a) Initial condi-

tions.(b) Heat map of probability density function.

On the left, the initial conditions of the toggle switch are shown, all within the green region, for

which the deterministic solutions are ensured to remain there, converging to the equilibrium inside

it. Though, the image on the right shows the time that the simulations spend in each state; from it

we see that a significant part of the trajectories go out of the green region. This proves the impor-

tance of considering a stochastic model, but shows also its increased complexity. It is important

to highlight that the heat map on the right has been obtained in a precise way we developed in

order to return a easily readable interpretation of the simulations, which otherwise can be difficult

to comprehend in some cases.

Finally, we have used the model described to validate the relay controller proposed in [44] to solve

ratiometric control problem. We realized the simulations in a significantly different way, taking into

account the intrinsic noise of chemical reactions, but not a population and chemostat dynamics,

which was considered in the paper. However, this should only add noise to the results, without

significantly changing them. The images below show the comparison between the two approaches.
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Figure 1.4: Comparison of relay controller outcomes. (a) Result by BSim [44]. (b) Result on

stochastic model.
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Chapter 1. Introduction

These results show the difference between our approach and the one in [44], supporting the work of

our thesis. We found that the relay controller is able to equally balance the two population groups

with a similar trend to the one obtained in the paper, though, with a significant non zero steady

state error in our case. Based on the study conducted in this thesis, our result seems actually more

realistic because the relay controller applies alternating inputs making the system oscillate between

the two monostability regions. This reasonably causes cells to spend a significant time in the so-

called uncertain set, that is a set of states for which it is not possible to determine which group the

cells are in.

1.3 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 explores the main modeling and simulation techniques presented in the litera-

ture, performing a systematic analysis with the objective of providing a way to choose the

most suitable method depending on the application. Additionally it presents three applica-

tion examples, showing how to practically obtain the model and perform the simulations,

emphasizing the differences between the various methods.

• Chapter 3 introduces a novel method to perform stochastic simulations on a simplified model.

It focuses on the example of the genetic toggle switch, proving this approach by comparing

the simulation results with experimental data. This chapter also presents a detailed stability

analysis of the deterministic model of the toggle switch, providing the bifurcation diagram,

the nullclines analysis, and the vector field.

• Chapter 4 discusses Ratiometric Control Problem, an emerging challenge in synthetic bi-

ology. It focuses on the solution proposed by [44], validating it on the stochastic model

obtained in Chapter 3. Furthermore, this chapter provides a framework to stochastically un-

derstand the system, based on the probability distribution.
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Chapter 2

Modeling and Simulating Chemical

Reactions

Modeling is fundamental to study and understand the system’s behavior, but also to design a suit-

able controller using the simulations’ responses, before testing it on the real system.

Mathematical models are clearly approximations of a real system, they are based on assumptions

that can be more or less appropriate depending on the application, citing George E. P. Box: ”All

models are wrong, but some are useful” [46].

In particular, in the context of Systems Biology, the goal is to model chemical reactions happen-

ing inside cells, that are intrinsically noisy biochemical reactors; indeed, identical cells exposed to

the same environmental conditions can show significantly different behaviors [47]. This inherent

stochasticity can be due to various factors, such as: small number of molecules involved in fun-

damental cells’ processes (hence fluctuations in molecule numbers can have significant impacts),

random molecular collisions (that govern which reactions occur and in what order), variability in

cell division (because molecules are randomly partitioned between daughter cells), or multiple steps

complex processes (possibly producing consecutive layers of noise). Nevertheless, fluctuations are

not always undesirable, cells can exploit them for instance to introduce diversity into a population,

to guarantee adaptability in changing environment, or to successfully respond to sudden stresses

[47, 48]. However, the noise not only arises from the cell system, it is intrinsic to molecular inter-

actions since their occurrence depends on the random chance of two molecules being in the same

position and colliding with enough energy.

One of the goals of this thesis is to provide a guide of the main modeling techniques presented in

the literature, with the objective of identifying the most suitable approach depending on the appli-

cations and assumptions. It is then essential to understand when fluctuations can be neglected or

when they play a decisive role, finding the best way to include them in the model when necessary.

Furthermore, including noise in the model can also be seen as a way to account for its inevitable
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imprecision since kinetic parameters can only be estimated from experimental data through statis-

tical methods [49].

We chose to implement all the simulations in Matlab since it is widely accessible, can be used very

easily and allows a deep understanding of the algorithms, as everything is directly implemented

within it; whereas, when algorithms are already pre-implemented it is not really possible to cus-

tomize them.

On the other hand, using available software could ease the simulation realizations, and in some

cases allow to simulate more complete systems, accounting also for additional aspects like envi-

ronmental factors, daughter cells dynamics or spatial geometry. This is true for example for BSim

[50], although it does not implement stochastic models. Whereas, if one wants to include stochas-

ticity, then BNSim [51] or COPASI could be a valid option, even if they probably lack some realistic

environmental features [50].

The following tables summarize the main modeling and simulation methods, which will be de-

scribed in the next sections.

Mathematical Model Dependent variable Stochastic process

Chemical Master Equation Probability P(X(t) = x) Discrete

Chemical Langevin Equation Number of molecules X(t) Continuous

Fokker-Planck Equation Probability P(Y (t) = x) Continuous

Reaction Rate Equation Concentration of molecules y(t) Not stochastic

Table 2.1: Summary table on modeling methods.

Simulation tool Simulation speed Available software

Gillespie’s SSA

τ-leaping approximation

Slow if number of molecules

or reactions is high

Medium

BNSim [51], COPASI

[52–54]

Euler-Maruyama algorithm Medium BNSim [51]

Finite volume method Medium /

ODE’s solvers Fast BSim [50], COPASI [52–54]

Table 2.2: Summary table on simulation methods.
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Chapter 2. Modeling and Simulating Chemical Reactions

2.1 Theoretical background

The following section presents the fundamental background and the main modeling techniques dis-

cussed in the literature. As general reference works, the reader can consult [11], [55] and [13],

additional references will be given throughout the text.

Consider N different species or types of molecules Si in a well-stirred system and M types of

chemical reactions Rj that can occur between them. The assumption of a well-stirred environ-

ment implies that the molecules are uniformly spread in the space, hence one can look only at the

number of molecules, and not at their single dynamics, ignoring spatial information. Let X(t)

be the state variable whose components keep track of the number of molecules for each species,

νj the stoichiometric vector representing the state update caused by reaction R j, and aj(X(t))

the propensity function associated to each reaction such that the probability of R j taking place in

[t, t +dt) is given by a j(X(t))dt.

The expression of the propensity functions should make intuitive sense. In fact, they can be justified

rigorously from first principles, in particular, the following rules hold:

• Zero order: /0
c j−→ Sm −→ a j(X(t)) = c j.

• First order: Sm

c j−→ St or /0 −→ a j(X(t)) = c jXm(t).

• Second order: Sm +Sn

c j−→ St , with m ̸= n −→ a j(X(t)) = c jXm(t)Xn(t).

• Dimerization: Sm +Sm

c j−→ St −→ a j(X(t)) = c j
1
2

Xm(t) (Xm(t)−1) .

2.1.1 Chemical Master Equation

Collisions between molecules occur in a random manner, to take this stochasticity into account

the most accurate way is to consider the probability distribution at time t of the system being in a

certain state, i.e. having a certain number of molecules for each species.

The Chemical Master Equation (CME) describes the time evolution of this probability through dif-

ferential linear equations. In general, it represents a typical way to describe systems that can be

modeled as being in a probabilistic combination of states at any given time, and where switching

between states is determined by a transition rate matrix. It is indeed very common, for instance, in

quantum mechanics or thermodynamical systems because it can capture their probabilistic nature.

In a biological context, the CME plays a key role in modeling chemical reactions, especially when

the number of molecules is relatively low and the interest is at a microscopic level.

17



Chapter 2. Modeling and Simulating Chemical Reactions

Denote the probability of X(t) being in a particular state x at time t as P (x,t)= P(X(t) = x). To

write this probability at time t + dt with dt → 0, it is reasonable to assume that in dt at most one

reaction can take place. Observe that to be in state x at time t + dt, or the system is already there

at time t and no reaction occurs, or the system is in x−ν j at time t and the j− th reaction occurs

during the time interval. Based on this, recalling the law of total probability and using the definition

of the propensity function, one can write the expression of the probability as

P(x, t +dt) =

(

1−
M

∑
j=1

a j(x)dt

)

︸ ︷︷ ︸

Probability of remaining in x,
i.e., no reaction occurs

P(x, t)+
M

∑
j=1

a j(x−ν j)dt
︸ ︷︷ ︸

Probability of going
in x, being in x−ν j

P(x−ν j, t).

Rearranging it, and taking the limit for dt→ 0, we finally obtain the Chemical Master Equation:

dP(x, t)

dt
= lim

dt→0

P(x, t +dt)−P(x, t)

dt
=

M

∑
j=1

(

a j(x−ν j)P(x−ν j, t)−a j(x)P(x, t)
)

. (2.1)

The derivative
dP(x,t)

dt
can be seen as the sum of the elements related to the reactions bringing the

state from x−ν j to x, minus the sum of the ones representing the state moving away from x. Fol-

lowing this procedure, if one knows the reactions and their propensity functions, it is then easy to

write the CME.

Considering the vector P(t) = [P(0, t),P(1, t), ...,P(x, t), ...]T and writing the previous expression

for all the possible states in which X can be, one obtains the following linear system representing

the CME in a compact way:

Ṗ(t) = AP(t),

where the entries of A are the reaction rates as appearing in 2.1.A can be very huge since its dimen-

sion corresponds to the number of possible states of X , that is potentially infinite, and usually it is

very sparse since not all reactions involve all the species.

The CME equation represents the most accurate model to describe biological systems, taking into

account the probability of each reaction happening, but its dimension is a big limitation, making it

often difficult to handle, even if it is linear. Indeed, it is possible to find its explicit solution only

in very easy cases, such as death processes or reversible reactions [56]. Sometimes it is possible

to recognize a known probability distribution when the system is at steady state, as happens for

instance with birth-death processes [11]. However, in general it is not possible to get the explicit

expression of the probability distribution, one usually has to simulate its realizations, as will be

presented in the simulations part.
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Reference Example: Degradation process

Let us introduce a simple example to which we will refer throughout this section to show how to

obtain the different models in practice and how to simulate them. Later, other examples will also

be analyzed.

Consider the degradation process X
k−→ /0, the propensity function of this reaction depends on k and

on the number n of molecules of X , hence, it can be written as a(n) = k n. In this case the stoi-

chiometric vector is just equal to −1, since there is only one species and one reaction causing n to

decrease. Following what has been said earlier, the probability P(n, t) of having n molecules will

increase if we have n+ 1 molecules and a death reaction occurs, and will decrease if we have n

molecules and one dies. Let n0 be the initial number of molecules X , then the CME is given by:

dP(n, t)

dt
= k (n+1)P(n+1, t)− k nP(n, t), for n = 0,1, ...,n0.

By defining P(t) :=

[

P(0, t) P(1, t) . . . P(n0, t)

]T

, the CME can be written in a compact form:

dP(t)

dt
=





















0 k 0 0 · · · 0

0 −k 2k 0 · · · 0

0 0 −2k 3k 0 · · ·
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −(n0−1)k n0k

0 · · · 0 −n0k





















︸ ︷︷ ︸

A

P(t), (2.2)

that is a linear finite system. As we can see, the matrix A is very sparse and its dimension increases

with the number of molecules.

2.1.2 Chemical Langevin Equation

Let us introduce another modeling method, which will be simpler and lighter than the Chemical

Master Equation, though, not always suitable. This is based on the Langevin Equations, stochastic

differential equations composed by two parts, a deterministic one, and a stochastic one accounting

for the intrinsic fluctuations. It has been introduced to describe the Brownian motion [57] (random

motion of a small particle immersed in a fluid), and it can be used in general to approximate Markov

jump processes [12]. In the case of chemical reactions, the fluctuations in the number of a species
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can be seen as the irregular motion of a Brownian particle [57], hence, the Langevin Equations can

be employed to stochastically describe chemical reactions, approximating the CME. This will lead

to an easier and faster simulation method, as it will be shown later.

The assumptions under which the Chemical Langevin Equation (CLE) is valid are:

• There exists a time interval τ small enough such that the propensity functions do not signifi-

cantly change in it, i.e., relatively few reactions take place.

• The same τ is big enough so that a j(X(t))τ k 1, i.e., every reaction fires many more times

than once during τ .

The first assumption allows to freeze the system over each time interval τ , updating the state based

on the total number of each reaction fired during τ . If the propensity functions were exactly con-

stant, we could describe the number of the j−th reaction happening in τ with a Poisson distribution

of parameter a j(X(t))τ since this represents the probability of R j firing in τ .

If also the second assumption holds, then, by the Central Limit Theorem, the Poisson distribu-

tion can be approximated with a Gaussian one with mean and variance equal to a j(X(t))τ . In

particular, we can consider it to be true if the Poisson parameter is greater than 10-20 [58]. There-

fore, in practice the CLE becomes reliable when there is an high number of molecules and when

τ is appropriately chosen (by doing a trade-off). Having said this, one can proceed with writing

the equations, so that the state X(t) is updated every τ units of time according to the number of

reactions occurring, that is given by the normal distribution N
(
a j(X(t))τ, a j(X(t))τ

)
for each

reaction R j:

Y (t + τ) = Y (t)+
M

∑
j=1

ν j N
(
a j(X(t))τ, a j(X(t))τ

)
,

where we have used Y (t) to emphasize that now the state is a (random) real-valued vector; whereas,

with X(t) we were denoting a (random) integer-valued vector.

Recalling that a Gaussian distribution with mean µ and variance σ2 can be written as µ +σ Z j,

with Z j ∼N (0,1), the previous expression becomes:

Y (t + τ) = Y (t)+ τ
M

∑
j=1

ν j a j(Y (t))+
√

τ
M

∑
j=1

ν j

√

a j(Y (t))Z j, (2.3)

Note that actually the sign of ν j in the last term of the equation does not matter because of the

property of linear combination of independent Gaussian variables:

W = ∑
i

αi Zi ∼N

(

∑
i

αi µi, ∑
i

α2
i σ2

i

)

⇐⇒ Zi ∼N
(
µi, σ2

i

)
i.i.d.
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Finally, if we make τ → 0, the last expression can be seen as the discretization of

dY (t)

dt
=

M

∑
j=1

ν j a j(Y (t))+
M

∑
j=1

ν j

√

a j(Y (t))dZ j(t), (2.4)

that is what is properly called Chemical Langevin Equation in the continuous random variable

Y (t), with dZ j representing M independent temporally uncorrelated scalar Brownian motions.

In general, the Langevin Equations are composed by a drift term (the first one on the right side)

and a diffusion one (second on the right side), it is noteworthy that the presented CLE inferred the

forms of both the drift and diffusion terms from the premises underlying the CME [59].

The so-obtained model is now based on a nonlinear finite set of equations with dimension equal to

the number of species, not the number of possible states. This will ease the simulation part, though

we will have to be careful in satisfying the given assumptions.

Reference Example: Death/Degradation process

Consider again the reference example of the degradation process, recalling that a(n) = k n and

ν =−1, we can write the CLE as follows:

dY (t)

dt
=−kY (t)−

√

kY (t)dZ, dZ ∼N (0,1). (2.5)

2.1.3 Fokker-Planck Equation

The Fokker-Planck Equation (FPE) [14, 15] can be used to describe the evolution of the probabil-

ity density function of having a certain number of molecules at time t, when Brownian motion is

included. In particular, it is an exact description if the noise really acts as a Gaussian white noise.

In the context of biological systems, when the assumptions of the Chemical Langevin Equation

hold, the Fokker-Planck Equation can be derived from an approximation of the CME keeping the

first two terms of the Kramers-Moyal expansion [60], or from the CLE using the drift and diffusion

functions [61].

However, it is completely equivalent to the Chemical Langevin Equation and we have not encoun-

tered many papers using it to describe biological systems. Moreover, as it happened for the CME,

it would be difficult to interpret the Fokker-Planck Equation since the variable of interest is the

probability distribution and hence we should find a method to simulate it. For these reasons we

have decided to not delve into it, focusing on the other models presented in this thesis.
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2.1.4 Reaction Rate Equation

When the amount of molecules of each species is very large the fluctuating terms of the CLE can be

neglected, being left only with deterministic equations. To be more precise, one should talk about

both the number of molecules and the volume, formally we refer to it as the thermodynamic limit,

i.e., the limit for which the molecules and the volume tend to infinity, keeping the concentration

constant so that the reaction stays the same. Otherwise, if only the number of molecules increases

in a fixed volume, then one should also change the reaction rate coefficients because reactions be-

come more likely to happen.

Therefore, in the termodynamic limit we can look at the concentration and not at the number of

molecules. Usually the concentration is expressed as the number of moles or molecules over the

total volume Ω, hence, we can refer to it as y(t) = Y (t)
NA Ω

or y(t) = Y (t)
Ω

and study its evolution over

time. NA is the Avogadro number, used to obtain the number of moles corresponding to a certain

number of molecules; the choice of using the molar or molecular concentration is arbitrary. We

have seen that the former is often used, in general when taking the values from a paper or a doc-

ument, one should check which concentration definition has been used and then make the correct

scaling. Substituting Y (t) with the expression of the concentration in the CLE, and making the

number of molecules and volume tend to infinity, then one can observe that the deterministic part

of the CLE will grow as the volume, and the stochastic one as the square root of the volume, hence,

we can claim that the ODE part dominates [55].

To better understand the scaling of the coefficients we recall that the propensity functions are pro-

portional to the number of species Y (t), that can be expressed as Y (t) = y(t)Ω or Y (t) = y(t)ΩNA.

Thus, the propensity functions can be written in terms of the concentration y(t), remaining with a

factor Ωm or (ΩNA)
m, where m corresponds to the order of the reaction [11, 16]. If now we divide

the CLE by the volume or by the product of the Volume and the Avogadro number, and we neglect

the stochastic part, then, on the left side we remain with the derivative of the (molar or molecular)

concentration of molecules, and on the right side with the same drift term of the CLE, but with the

coefficients of the propensity functions multiplied by Ωm−1 or (ΩNA)
m−1. If we call c j the stochas-

tic reaction constants of the CME or CLE and k j the reaction rate constants of the RRE, then their

relationship can be expressed as c j =
k j

Ωm−1 or c j =
k j

(ΩNA)m−1 . From a theoretical point of view,

actually the difference between them is more complicated and relates to the conceptual differences

that exist between the stochastic and deterministic approaches, but from a practical point of view it

is sufficient to know that the RRE can be obtained from the CLE neglecting the noise and possibly

scaling the reaction coefficients.

Following this procedure, we finally obtain the Reaction Rate Equation (RRE):
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dy(t)

dt
=

M

∑
j=1

ν j a j(y(t)), (2.6)

where y(t) is a continuous real-valued vector representing the concentration of each molecule. We

have therefore obtained a set of nonlinear deterministic equations of dimension equal to the number

of species in the system. Normally, given the reaction rates, it is straightforward to write the RRE,

considering that each reaction in the system affects the rate of change of the species involved (the

derivative of their concentration) proportionally to the reaction rate and the concentration of the

reacting species. This is what is generally called Law of mass action.

Reference Example: Death/Degradation process

The RRE equation for the degradation process considered earlier can be easily obtained as:

dy(t)

dt
=−k y(t),

where the coefficient k is the same of the CME and CLE because the degradation process is a 1st

order reaction. Indeed, doing the procedure previously described, if one starts from the CLE in

(2.5) neglecting the noisy part, then substitutes Y (t) with y(t)Ω, and then divides the equation by

Ω, one obtains exactly the given model.

In this case, it is also possible to find the explicit solution y(t) = e−kt y(0), hence one clearly

understands why RRE are normally preferred: they are easy to derive, compact, deterministic, and

often explicitly solvable, though, this approximation is not always true. Indeed, with systems that

can be highly affected by noise, stochasticity is necessary to correctly describe them, giving the

possibility of focusing on single realizations, rather than on their average concentration.

Therefore, the RRE can be very useful and powerful, but one has to use it carefully. In particular, it

can be very interesting to compare their solution with the average solution of CME or CLE (when

RRE are valid of course) to see if the deterministic model can capture the trend of the real one. In

the following chapter the simulations of the models presented here will be shown to better compare

them and understand when one is more suitable than the other.

2.2 Simulation Methods

As anticipated, to study the system and its behavior, the model is an interesting and useful tool. In

some cases we can directly use it to gain some properties of the system, such as stability, steady

state, equilibria, ... . Though, when dealing, for instance, with the Chemical Master Equation,

that can be very huge and that describes the probability evolution, it often becomes difficult to

directly get information on the state, save for exceptional cases. Hence, the usual and easiest way
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to use the CME is actually to simulate it. A similar reasoning can be done also for the Chemical

Langevin Equation, therefore, in this chapter we will provide some methods to simulate the models

previously presented.

2.2.1 Stochastic Simulation Algorithm for CME

There exist different ways to simulate the Chemical Master Equation, the standard method has been

proposed by D.T. Gillespie in Exact Stochastic Simulation of Coupled Chemical Reactions, 1977

[16]. It is an exact method that numerically simulates the time evolution of a well-stirred chemi-

cally reacting system, fully accounting for the inherent randomness of such systems.

Later, Gillespie himself and other authors have proposed modified versions of it [17, 18], or new

simulation methods, among which the main ones are the τ-leaping [19] and the Hybrid [62, 63]

methods.

Gillespie’s Stochastic Simulation Algorithm (SSA) is fully equivalent to the Chemical Master

Equation, even though it never uses it explicitly and does not aim to numerically solve it. Instead,

it is a systematic, computer-oriented procedure in which Monte Carlo techniques are employed to

simulate the same Markov process that the master equation describes analytically. The goal is to

simulate the time evolution of the N species as a random-walk process, knowing only their initial

values Xi(0) and the shape and parameters’ values of the M propensity functions. In particular,

at every time t it computes, based on the current propensity functions, the time at which the next

reaction will occur and its index; then it updates the state according to the reaction fired.

Therefore, Gillespie’s SSA looks at the single reactions and updates the state every time a reaction

occurs. Although this represents the most accurate simulation method, it can become extremely

slow especially when reactions are fast and frequent or when the molecular populations increases,

and hence the time step for the next reaction becomes very small. We can indeed say that the SSA

has a computational cost that scales with the number of reaction occurrences, so, systems with one

or more “fast” reactions become costly and inefficient to simulate in this way. For this reason, other

techniques have been proposed, making small approximations, but getting faster algorithms; they

will be presented later in the chapter. However, one of the great advantages of the SSA, that makes

it so reliable, is that in this procedure the infinitesimal time increments dt are never approximated

by small but finite time steps, which can be a common source of computational inaccuracies and

instability in standard numerical methods for solving the deterministic reaction rate equations. This

will be especially advantageous when dealing with systems in which the molecular population lev-

els can change suddenly and sharply with time.

Returning to the algorithm, as reference we have mainly considered the paper of Gillespie [16]

where he explains it. Consider the so-called Reaction Probability Density Function P(τ, j), that is
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such that P(τ, j)dτ represents the probability that given the state at time t, the next reaction will

occur in the infinitesimal time interval (t + τ, t + τ + dτ), and will be an R j reaction. This can be

computed as the product of P0(τ) := Probability that no reaction occurs in the interval (t, t + τ)

given the state at time t and a j(X(t))dτ , that we know represents the probability of the j− th

reaction happening in the time interval (t + τ, t + τ +dτ).

To find the analytical expression of P0(τ), we can consider P0(τ +dτ) as follows.

P0(τ +dτ) = Probability of no reaction happening neither in [t, t + τ), neither in [t + τ, t + τ +dτ) =

= P0(τ)
(

1−Sum of probabilities of each reaction happening in [t + τ, t + τ +dτ)
)

=

= P0(τ)

(

1−
M

∑
j=1

a j(X(t))dτ

)

Bringing P0(τ) at the left of the expression and dividing everything by dτ → 0, one gets:

P0(τ +dτ)−P0(τ)

dτ
=

dP0(τ)

dτ
=−

( M

∑
j=1

a j(X(t))
)

︸ ︷︷ ︸

a0(X(t))g0

P0(τ)

This is a linear scalar stable ODE that has solution P0(τ) = e−a0(X(t))τ . Therefore, we can write the

Reaction Probability Density Function P(τ, j) as

P(τ, j)dτ = P0(τ)a j(X(t))dτ −→ P(τ, j) =







a j(X(t))e−a0(X(t))τ if 0f τ < ∞

0 otherwise
(2.7)

Notice that this probability is not the one described by the Chemical Master Equation, and differ-

ently from that one, it depends on all the reaction constants and the current numbers of molecules

of all reactant species. However, its expression is derived from the same hypothesis of the CME,

hence it can be used equivalently to the CME. The following figure, taken from [18], shows the

shape of this probability:

Figure 2.1: Schematic plot of the reaction probability density function P(τ, j). The shaded area is

by definition equal to P(τ, j)dτ , and the sum of the areas under all the M curves is equal to one[18].
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To derive the proper algorithm, let us write (2.7) as P(τ, j) =
a j(X(t))
a0(X(t)) a0(X(t))e−a(X(t))τ , then, from

here τ can be seen as an exponential random variable with mean (and standard deviation) 1
a0(X(t)) ,

and j as a statistically independent integer random variable with point probabilities
a j(X(t))
a0(X(t)) . Hence,

two random variables, j and τ , should be generated accordingly, respectively, to the probabilities

just mentioned. To do so, we can generate two random numbers r1 and r2 from a uniform distribu-

tion in the unit interval, and compute:

τ =
1

a0(X(t))
ln

(
1

r1

)

and j such that

j−1

∑
k=1

ak < r2 a0(X(t))f
j

∑
k=1

ak. (2.8)

This gives life to what is called Direct Method. Using this, we obtain the original version of the

SSA, that can be schematized by the following pseudocode:

Algorithm 1 SSA for CME

t f ← simulation length, V ← Stoichiometric matrix with ν j as columns

for all simulations do

Clear t,x

h← 1, t← 0, x← X(0)

while current time t(h)< t f do

a←
[

. . . a j . . .
]

, propensity functions, using current state x(h)

a0← sum of the propensity functions

acum← cumulative sum of a

r1,r2← random numbers from uniform distribution

τ ← 1
a0

ln
(

1
r1

)

j←min(find(acum g r2 a0))

t(h+1)← t(h)+ τ

x(h+1)← x(h)+V (:, j)

h← h+1

end while

end for

The SSA so derived is a rigorous and exact method to simulate the time evolution of the system

described through the CME, thus including the intrinsic fluctuations. The algorithm provides sin-

gle realizations of the probability distribution of the CME, hence it can be useful to seek for some

particular behavior. However, to get a statistically complete picture of the temporal evolution of the

system, we must actually carry out several independent realizations, each starting with the same ini-

tial set of molecules and proceeding for the same time. This approach can become very inefficient
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when the number of reactions or molecules is very high since each simulation will then require

a large amount of time to be run. It is also possible to change the ending condition of the while

loop to, for instance, exiting if a(X(t)) = 0, Xi(t)≶ specified bound, or h < prescribed number of

reactions allowed, or as the user needs.

Finally, we mention that in the literature there have been different proposals to modify the SSA

algorithm, between which one uses the First-reactions Method, or the Next-reactions Method, or

another one a generalization of both the Direct and First-reactions methods in place of the Direct

Method. Other solutions are based, for example, on reordering the propensity functions to reduce

the time spent by the algorithm; if the reader is interested, all these versions are mentioned in [17].

They can provide some interesting insights on the algorithm, though, they do not provide a signif-

icant improvement in the computational time with respect to the original SSA, hence we do not

refer to them in this thesis.

2.2.2 τ-leaping approximation for CME

We have seen how the SSA can become slow when reactions occur very close to each other, the

τ-leaping method is an alternative algorithm providing a faster way to simulate the CME, at the

cost of making some approximations. In particular, it divides the time interval into time steps of

size τ , groups all the reactions firing in each time step, and updates the state based on the number of

reactions that occurred in τ . This method is valid only under the leap condition, which means that

there exists τ sufficiently small so that the propensity functions are almost constant over each time

step. However, one can observe that when the SSA is slow, there will be probably many reactions

happening and the reactant population would be big, hence, in this situation we can group together

some reactions knowing that to have the propensity functions significantly changing we need a

very high number of reactions since the large dimension of the population makes small changes not

really visible.

The correct choice of τ is what determines the accuracy of the algorithm, and can represent an im-

portant difficulty in its implementation. It is possible to choose it by trial and error, or by imposing

some desired behaviors or tolerance thresholds on the variability of the propensity functions, or

it is also possible to change it as the simulation proceeds. The last approach is the one we have

implemented. However, from the Direct method of the SSA we know that there will be a reaction

that will occur within 1
a0(X(t)) ln

(
1
r1

)

g 1
a0(X(t)) , hence, in general it is true that the closer τ is to

1/a0(X(t)), the more precise the algorithm is, although choosing τ ∼ 1/a0(X(t)) would be ineffi-

cient from a velocity point of view. Therefore, normally a trade-off between speed and accuracy

is necessary. For example, in [19] they propose as general rule to use the τ-leaping method if
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τ > 2/a0(X(t)), this is what we will refer to in our implementation.

Let us recall that a j(X(t))τ represents the probability of the j− th reaction happening in τ , if this

is constant in the time interval, then we can claim that the number of reactions happening for each

j is given by a Poisson random variable P j

(
a j(X(t))τ

)
. Of course a j(X(t))τ in reality is not

exactly constant, hence, using the Poisson random variable, we get an approximation of the system

evolution, in which the state components are updated at each time step as

Xi(t + τ) = Xi(t)+
M

∑
j=1

P j

(
a j(X(t))τ

)
ν j(i), for i = 1, ...,N. (2.9)

This can also be written in a compact form for the whole state X(t) as

X(t + τ) = X(t)+
M

∑
j=1

P j

(
a j(X(t))τ

)
ν j,

or, defining V =

[

. . . ν j . . .

]

and P =

[

. . . P j

(
a j(X(t))τ

)
. . .

]

, one obtains:

X(t + τ) = X(t)+V ·PT ,

which exploits the matrix product between V and P to perform the sum.

The algorithm can be schematized in the following steps:

Algorithm 2 τ-leaping for CME

t f ← simulation length, τ ← time step satisfying leap condition

t←
[

0 . . . t f

]

, time vector with step amplitude τ

x← X(0)

V ← Stoichiometric matrix with ν j as columns

for all simulations do

for all time steps do ▷ A different exiting condition can be added

depending on the application

a←
[

. . . a j . . .
]

, propensity functions, using current state

P←
[

. . . P j

(
a j τ
)

. . .
]

, Poisson samples with mean a j τ

State at next step← current state +V ·PT

end for

end for
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The described algorithm is the easiest and probably most naive way to implement the τ-leaping

approximation, indeed, one should check the leap condition at every time step and decide how to

handle the possible negative values for the state. Moreover, since the value of the state is changing,

it would be more efficient to update τ as the algorithm proceeds.

Regarding the possibility of receiving a negative number of molecules, this could happen when a

degradation reaction fires too many times in τ . Actually, if this is the case, it means that the leaping

condition is not truly satisfied, because the propensity functions are evidently changing of a signif-

icant amount. Hence, the best approach would be to change τ , or to switch to the SSA when the

number of molecules is particularly low and also small changes are significant. It is also possible

to set the number of molecules to zero instead of the negative value, or to generate a new Poisson

sample, even though, the former solution could return a wrong algorithm if for instance it inhibits

a reaction that otherwise would happen, and the latter one could slow down the algorithm if a high

number of Poisson samples trials becomes necessary.

In the literature, there exist other proposed methods [22–24] to avoid getting negative number of

molecules. One idea [22, 23] is based on substituting the Poisson random variables with binomial

random variables. The other approach [24], instead, introduces what are called Critical Reactions,

i.e., reactions that could bring the state to a negative value, and uses them to modify the original

τ-leaping algorithm so that no more than one firing of a critical reaction can occur in a single

τ , which makes it impossible for any critical reaction to produce a negative species population

count. This represents a very powerful, robust and potentially more accurate implementation than

the original one since it can be reduced to the SSA if all reactions are considered critical, or to the

standard τ-leaping procedure if no reaction is treated as critical. If the reader is interested, all the

steps are well described on page 8 of [24], we do not report the detailed procedure here because

for simplicity we have decided to use Gillespie’s SSA if a negative number of molecules is returned.

As we were mentioning, it is also possible to change τ adaptively during the simulation. This

causes of course a complication in the algorithm, but on the other hand it allows to speed it up by

choosing every time the minimum τ satisfying the leap condition, when possible. Indeed, it may

happen that τ is equal to infinity if, for example, the number of molecules is too low; hence, it

would be necessary to switch to the SSA because the τ-leaping approximation cannot be applied.

However, the big advantage updating τ during the simulations is that only the real necessary steps

are performed, though, the step sizes and numbers will be different in every simulation, which does

not happen if τ is fixed. In this direction there have been many proposals; the first one was made by

Gillespie in [19], then he redefined it together with Petzold in [20], and finally Cao, Gillespie and

Petzold further improved it in [21]. However, the general idea was to introduce a control problem

to optimally choose the different values of τ during the algorithm based on a control parameter ε

that imposes a maximum variation in the propensity functions [19, 20]:
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|a j (X(t + τ))−a j (X(t)) | f ε a0 (X(t)) .

The method presented in [20] has been proven to be very efficient in selecting τ , although requiring

additional computational effort to compute it. Hence, in [21] they proposed a new τ selection pro-

cedure that approximates the condition in the previous method looking at the state changes rather

than at the propensity functions. This allows to still have a reliable algorithm, that will be easier to

implement and faster to execute, especially when there are many reactions and species. For these

reasons, in our work we have referred to this method.

Therefore, the inequality becomes:

∆τXi = Xi(t + τ)−Xi(t) =
M

∑
j=1

P j

(
a j(X(t))τ

)
ν j fmax{εi Xi(t), 1},

where εi is chosen differently for every species depending on the kind of reactions involving it, with

the objective of guaranteeing that the relative changes in the propensity functions are all bounded,

at least approximately, by ε . We ask the reader to refer to the paper for the detailed expression and

reasoning behind this method. Practically, to ensure this condition it is sufficient to choose τ at

every iteration such that:

τ = min
i=0,...,N

{
max{εixi,1}
|µ̂i(x)|

,
max{εixi,1}2

σ̂2
i (x)

}

,

with

µ̂i(x)≜ ∑
j=0,...,M

νi ja j(x) and σ̂2
i (x)≜ ∑

j=0,...,M

ν2
i ja j(x)

representing the mean and standard deviation of ∆τXi. Moreover, our design choice has been to

switch to Gillespie’s SSA whenever τ-leaping is not applicable, i.e. τ =∞, the number of molecules

becomes negative, or τ < 2
a0(X(t)) since it would not be more efficient than the SSA.

As we have seen, although the τ-leaping method seems appealing due to its ability to accelerate

the simulations, one should be careful in particular with selecting appropriate values for τ or ε ,

verifying the validity of the underlying assumptions, handling negative values, and determining if

and when to switch to the SSA. These design choices introduce complexity, making the algorithm

non-trivial to implement and often dependent on specific cases, whereas the SSA could be applied

in the same way regardless of the system involved.
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The following pseudocode shows our final implementation of the τ-leaping approximation, includ-

ing all the considerations previously discussed:

Algorithm 3 τ-leaping for CME, Version 2 with adaptive τ

t f ← simulation length

V ← Stoichiometric matrix with ν j as columns

ε ←
[

. . .εi . . .
]

, as defined in the paper [21]

for all simulations do

Clear t,x

h← 1, t← 0, x← X(0)

while current time t(h)< t f do ▷ A different exiting condition can be added

depending on the application

a←
[

. . . a j . . .
]

, propensity functions, using current state x(h)

a0← sum of the propensity functions

µ̂ ←V ·aT

σ̂2←V.2 ·a ▷ V.2 denotes the element-wise

square operation of V

τµ ←
[

. . . max{εi·xi(h),1}
µ̂i

. . .
]

τσ ←
[

. . . max{εi·xi(h),1}2

σ̂i
. . .
]

τ ←min{[τµ ,τσ ]} ▷ [ · , · ] denotes array concatenation

P←
[

. . . P j

(
a j τ
)

. . .
]

, Poisson samples with mean a j τ

if τ = ∞ or τ < 2
a0

or x(h)+V ·PT < 0 then

Use Gillespie’s SSA

else

x(h+1)← x(h)+V ·PT

t(h+1)← t(h)+ τ

end if

h← h+1

end while

end for

To conclude, we finally mention also an alternative way of applying the τ-leaping method, proposed

in [19]: the Estimated-Midpoint τ-leap method, taking inspiration from the Estimated-Midpoint

procedure used with the Euler method. In a few words, the difference is in the parameter of the

Poisson distribution, which in this case is computed using the propensity functions calculated in

X(t)+ λ̄/2, where λ̄ = τ ∑ j a j(X(t))ν j is the expected state change. Therefore, instead of com-

puting them in X(t), they propose doing it in the middle point between X(t) and X(t + τ). This
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method has been proven to work in the easiest example of the degradation process, but it required

further adjustments for more complex systems, hence, we do not see the necessity to implement it.

Finally, there exists a different method, the kα -leap method [19], where the leaping is based on a

predetermined number of firings of a specified reaction channel rather than on a predetermined time

when the firings of each reaction are added. This solution is basically equivalent to the τ-leaping

method, and actually it could be worse in very specific cases.

For these reasons, our simulations have been obtained by implementing the pseudoce described in

Algorithm 3.

2.2.3 Euler-Maruyama method for CLE

The Euler-Maruyama(E-M) [25] represents exactly the implementation of the discretized CLE in

(2.3) with time step τ . It is interesting to note that, following the procedure used to obtain the CLE,

the E-M method can be regarded as the τ-leaping one when the Poisson distribution is approximated

with a Gaussian one. We recall that this is possible if τ is large enough so that a j(X(t))τk 1, while

still satisfying the leaping condition. This implies that τ must be chosen such that in each time step

all the reaction channels fire many more times than once yet none of the propensity functions

changes appreciably. Then, the jump Markov process X(t) can be approximated by the continuous

Markov process Y (t) defined by the standard form of the chemical Langevin equation (2.4).

The algorithm implementing the E-M method can be obtained directly from the expression (2.3),

we report the pseudocode below.

Algorithm 4 Euler-Maruyama for CLE

t f ← simulation length, τ ← time step satisfying leap condition and a j(X(t))τ k 1

t←
[

0 . . . t f

]

with step amplitude τ

x← X(0)

V ← Stoichiometric matrix with ν j as columns

for all simulations do

for all time steps do ▷ A different exiting condition can be added

depending on the application

a←
[

. . . a j . . .
]

, propensity functions, using current state

Z←
[

. . . Z j . . .
]T

, Z j←N (0,1)

State at next step← current state +τ ·V ·aT +
√

τ ·V ·
[

. . .
√

a j ·Z j . . .
]T

end for

end for
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The so-described algorithm is very easy to implement, and can execute really fast, depending of

course on the choice of τ , that is probably the most demanding part, as we have seen for the τ-

leaping method. We recall that the Langevin equation (and hence the simulations obtained with the

E-M method) is valid when τ is small enough so that the propensity functions undergo a relatively

small change over [t, t +τ) and big enough so that the reaction channels fire many more times than

once in the same time interval; both assumptions are normally satisfied when there are abundant

molecular populations. In any case, finding the correct τ could not be trivial, we have seen that

there are various ways of selecting τ , some more naive and others more accurate adjusting it during

the run of the simulation. Unfortunately, in the case of the E-M method we have not found an

implementation with an adaptive τ , therefore, our choice has been to find the value of τ doing a

trade-off between all the requirements, and to switch to Gillespie’s SSA if one of the necessary

assumptions does not hold, if a negative number of molecules is returned, or if τ is so small that it

is not convenient to apply the E-M method.

To conclude we would like to mention that there exist also some other methods [64] that are not sim-

ulating the discretized Langevin equations, but that are numerically solving them, between which,

the Milstein scheme and the derivative-free Milstein scheme [65]. Moreover, in cases where there

are reactions particularly faster than others, it is possible to use a continuous approximation for

the fast reactions and a discrete Markov process for the slow ones. This gives life to a hybrid

framework [62, 63] which could be very powerful, even though we did not refer to it because the

E-M method represents the standard way to simulate the CLE. Actually, the Euler method could

also be performed by directly using the corresponding Matlab command, but this would not give

the possibility of controlling if the assumptions are satisfied or of handling negative results. An

example with this implementation will be shown later, but in general in this work we have used our

implementation of E-M, as described above. Finally, in the following page the reader can find some

examples where E-M gives reliable results, and hence is convenient to use, and others in which one

of the assumptions does not hold, thus it is better to refer to the τ-leaping method or the SSA.

2.2.4 Finite Volume Method for FPE

One of the methods to simulate the Fokker-Planck Equation is the so-called finite volume method

[60]. It is based on discretizing in space the FPE to obtain an approximation of it taking into

account the boundary conditions, then what is left can be solved by time integration. The solution

obtained in this way differs from the one of the CME mainly because of the derivation of the FPE

that consists in applying the Taylor expansion, but ignoring the terms of order three and higher.

There exist also other numerical methods [66, 67] to solve the FPE that are based on Monte Carlo

simulations, they can be referred to as finite difference and finite element methods. Though, as we

33



Chapter 2. Modeling and Simulating Chemical Reactions

mentioned before, we did not aim to delve into them because it is not a common used model from

what we could see. The CLE is instead usually preferred and used to simulate the FPE, since it is

equivalent to it. Following this idea, in this thesis we will only consider the CLE, and not the FPE.

2.2.5 ODEs solvers for RRE

The simplest way to model biological systems is through Reaction Rate Equations (2.6) using the

Law of mass action. Even though they can be very easy to derive and study, they obviously rep-

resent an approximation of the real system that is valid if the molecular numbers are particularly

high and the volume tends to infinity. Indeed, under these assumptions we can consider just the

concentration and neglect the stochasticity of the system. In any case, it is in principle impossible

to predict the exact molecular population levels unless we take into account the precise positions

and velocities of all the molecules in the system, which is unfeasible. Hence, every model will be

an approximation and an attempt to simulate the real system, becoming acceptable depending on

the applications and assumptions.

However, analytical solutions to the reaction-rate equations can be found only for rather simple

systems, so it is usually necessary to solve these equations numerically. This can be done by

exploiting, for example, the Matlab solver command ode45.

Once we obtain the deterministic behavior of the system, we can compare it with the average of

the stochastic simulations. We will see that RRE are an accurate model with very simple systems,

whereas, in other cases (for instance with bistability) the average molecular population levels will

not exactly satisfy any closed system of ODEs.

Reference Example: Degradation process

Let us consider the example of the degradation process that has already been used to derive the

different models; here we will show how to implement the simulation methods presented, and we

will compare their results. Along with only the simulating purpose, we have chosen the coefficient

k arbitrarily, not representing any real system. Below, the pseudo-reaction and the models we have

already derived are reported.

Degradation process: X
k−→ /0, a(n) = k n, ν =−1, k = 0.1s−1.

CME:
dP(n, t)

dt
= k (n+1)P(n+1, t)− k nP(n, t), for n = 0,1, ...,n0 = X(0).

CLE:
dY (t)

dt
=−kY (t)−

√

kY (t)dZ, dZ ∼N (0,1).

RRE:
dy(t)

dt
=−k y(t), with solution y(t) = e−kt y(0).

34



Chapter 2. Modeling and Simulating Chemical Reactions

We recall that the CME and the CLE look at the number of molecules, whereas the RRE at the their

concentration. When passing from one to the other, there can be a scaling in the coefficient if the

reaction order is greater than 1, hence in this case the coefficient k stays the same.

The following graphs show the results obtained with the different simulation methods presented in

the previous paragraph, starting always with the same initial condition X(0) = 100:
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Figure 2.2: 100 simulations of degradation pro-

cess by SSA, with k = 0.1s−1.
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Figure 2.3: 100 simulations of degradation pro-

cess by adaptive τ-leaping method, with k =
0.1s−1.
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Figure 2.4: 100 simulations of degradation

process by E-M method, with k = 0.1s−1 and

τ = 3.
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Figure 2.5: Comparison of RRE solution and

averages of the simulations obtained from SSA,

τ-leaping and E-M for the degradation process,

with k = 0.1s−1. Standard deviation from the

averages is shown with light colored bands.
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Fig. 2.2 has been obtained using Gillespie’s SSA in the standard way (by Direct method), Fig.

2.3 using τ-leaping approximation letting τ change adaptively according to the method described

in Algorithm 3, and Fig. 2.4 using E-M method with fixed value, chosen to satisfy the following

requirements:

• τ| the propensity functions do not change too much (leap condition).

In this case, their change is directly proportional to the one of the state. Qualitatively, looking

at the simulations, we assumed that a good value of τ could be 2−5, it should be smaller at

the beginning and larger in the end.

• a j(X(t))τ k 1 ∀ j to make the approximation of the Poisson r.v with the Gaussian r.v. valid.

Since the maximum value of a j(X(t)) is 10, for τ = 3 it holds: a(X(t))τ = 30 at the be-

ginning, but as time passes, the approximation is no longer valid. Indeed, in the end the

population is small and we know that the CLE is valid when the population is big.

• τ > 2/a0(X(t)) so that it is worth to use E-M method.

In the example the maximum value of a0(X(t)) is 100k = 10, when t = 0; hence, we have

to choose τ > 0.2 at the beginning, and larger as the simulation proceeds (since a0(X(t))

decreases).

We have chosen τ = 3 by trial and error doing a trade-off between all the constraints, knowing that

after a while one of the conditions will probably not be satisfied. We recall that this was necessary

because for the E-M method we could not find a version with adaptive τ , hence we had to choose a

fix value of τ , knowing that the assumptions will not always be satisfied. When this happens, both

in τ-leaping and E-M, we call Gillespie’s SSA. This is indeed clearly visible from the previous

plots in the parts where the steps are very small. Moreover, the SSA is called to avoid negative

numbers of molecules, as it has been explained in the previous section.

Finally, in Fig. 2.5 we have compared the RRE solution with the averages of the simulations, in-

cluding also their standard deviation with a light colored band around the mean. In terms of the

standard deviation and average, all the results are very similar; hence, the RRE is reliable to de-

scribe the degradation process on average. Indeed, the RRE is equivalent (except for the scaling

of the volume) to the evolution of the expected value < n(t) >= ∑
n0

n=0 nP(n, t) computed using

the CME, that in this particular case is possible to solve explicitly. On the other hand, τ-leaping

and E-M give slightly different results, probably because the population is not large enough to

have the assumptions satisfied. In any case, for the number of simulations considered, the SSA

still represents an efficient method to include stochasticity exactly and study single realizations. If,

instead, the number of simulations become very large one should probably consider τ-leaping or

E-M method to save some computational time, meanwhile allowing for some losses in accuracy.
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We have run 100 simulations and the time spent by the different algorithms is the following:

SSA: 1.1487 s, τ-leaping: 1.4348 s, E-M: 1.2621 s, RRE: 0.0628 s.

As we were mentioning, from this small number of simulations we cannot appreciate the velocity

of the τ-leaping or E-M algorithm, this should become significant when the number of simulations

is very high (∼ 10000 using adaptive τ [20]) or when the population is large. Whereas , it is already

evident why RRE is the most preferred, when applicable.

Moreover, it is worth noting that all algorithms return time and state vectors of different dimension

and scale, because of the presence of SSA or adaptive τ , hence, one has to be careful and stan-

dardize them if some operations need to be performed. For example, it was necessary to obtain the

average and standard deviation of the simulations; in particular, we have used Matlab interp1 to

have vectors ”equally spaced” and of the same dimension.

Finally, we have also tried to use Matlab to simulate the CLE, through the command simByEuler,

the resulting simulations are reported below.
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Figure 2.6: 100 simulations of degradation process by Matlab simByEuler, with k = 0.1s−1 and

τ = 3.

As one can see from the figure above, the number of molecules is sometime negative, and probably

there are moments in which the assumptions of the CLE are not satisfied, indeed in our implemen-

tation was necessary to use Gillespie’s SSA. Using Matlab to simulate the CLE represents a faster

and easier way, though, it does not allow to ”control” if we are satisfying all the requirements, or if

the number of molecules is negative. This is why throughout this thesis we will use our implemen-

tation of the E-M method.
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Comparison of different modeling and simulation methods

The following table summarizes the key features of each model and its corresponding simula-

tions, as discussed so far.

Table 2.3: Comparison between different model and simulation methods

MATHEMATICAL MODEL SIMULATION TOOL

Chemical Master Equation Gillespie SSA

Advantages:

• Exact stochastic linear model.

• Useful with low number of molecules.

Limitations:

• Describes the evolution of the proba-

bility distribution.

• Dimension equal to total number of

possible states.

• Usually difficult to handle.

Advantages:

• Equivalent to CME.

• Advantageous when molecular popu-

lation levels can change suddenly.

Limitations:

• Can be very slow when the number of

frequent reactions is high.

• Updates the state every time a reaction

occurs.

τ-leaping approximation

Advantages:

• Groups together more reactions.

• Can be fast if propensity functions do

not change significantly.

Limitations:

• Not always valid.

• Not trivial implementation.

• Necessity to handle negative numbers

of molecules.

If there exists τ such that the propensity functions do not significantly change in it

and a j(X(t))τ k 1, then:
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MATHEMATICAL MODEL SIMULATION TOOL

Chemical Langevin Equation E-M method

Advantages:

• SDE with a drift and a diffusion part.

• Dimension of the model equal to num-

ber of species.

• Describes evolution of the number of

molecules.

• There exist numerical methods to

solve it.

Limitations:

• Not always valid.

• The state is a real continuous r.v. (not

integer).

Advantages:

• Very fast if the number of simulations

or molecules is high.

Limitations:

• Difficult to choose the correct τ .

• Not versatile τ .

• Necessity to handle negative numbers

of molecules.

If the population and the volume tend to infinity, then:

Reaction Rate Equation ODEs solver tools

Advantages:

• Deterministic model.

• Dimension of the model equal to the

number of species.

• Gives an average analysis.

Limitations:

• Often not reliable.

• Describes evolution of the concentra-

tion of molecules.

Advantages:

• There exist available solvers.

• Fast.

Limitations:

• Not possible to see individual simula-

tions.
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2.3 Application examples

In this section we present two main examples within the biological context. The objective is to

illustrate the different modeling and simulation methods, highlighting the differences among them,

and identifying which is the most suitable depending on the application. For this reason, the coef-

ficients’ values have been chosen arbitrarily, or to be able to apply all the simulation methods, and

do not correspond to real-world scenarios.

For each example we will derive the Chemical Master Equation, the Chemical Langevin Equation

and the Reaction Rate Equation, and we will simulate all of them with the methods that have been

presented earlier:

• Gillespie’s SSA to simulate the CME.

• Adaptive τ-leaping approximation to simulate the CME as described in [21], with variability

threshold of the propensity functions equal to ε = 0.2. The algorithm switches to Gillespie’s

SSA when assumptions are not satisfied or a negative result would be returned.

• E-M method with fixed τ to simulate the CLE and variability threshold of the propensity

functions equal to ε = 0.2. The algorithm switches to Gillespie’s SSA when assumptions are

not satisfied or a negative result would be returned.

• Matlab ode45 to solve the RRE. This will be compared with the averages of the simulations

obtained by the stochastic methods.

For simplicity and clarity, we will often omit the dependence on time t in the number or concen-

tration of molecules, assuming that they always depend on time. Moreover, we will distinguish the

number of molecules X from their concentration denoting the last one as [X ].

Birth-Death process

/0
k1−→ X

k2−→ /0, with k1 = 5, k2 = 0.1s−1.

From the pseudo-reactions we can write the propensity functions as a1 = k1, a2 = k2 X , and the

stoichiometric vectors as ν1 = 1 and ν2 = −1. The choice of k1 and k2 is not casual in this case,

it is what allows us to apply the τ-leaping approximation and the E-M method. Indeed, as we will

show, the system will tend to k1/k2 and if this is too small, then it would be more reasonable to use

Gillespie’s SSA.
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From (2.1), the infinite dimensional CME for the birth-death process can be written as:

dP(n, t)

dt
=−(k1 + k2 n)P(n, t)+ k1 P(n−1, t)+ k2 (n+1)P(n+1, t), for n = 0,1, ...,∞.

It is also straightforward to write the CLE as in (2.4):

dX

dt
= k1− k2 X +

√

k1 dW1−
√

k2 X dW2, with dWj ∼N (0,1).

Notice that
√

k1 dW1 can be seen as a normal distribution with zero mean and standard deviation

equal to
√

k1, and similarly
√

k2 X dW2 as a normal distribution with zero mean and standard de-

viation equal to
√

k2 X . Then, exploiting the property of the linear combination of two gaussian

variables, we can claim that their sum is a normal distribution with zero mean and standard devia-

tion equal to
√

k1 +
√

k2 X . Hence, the CLE can be written also as:

dX

dt
= k1− k2 X +

(√

k1 +
√

k2 X
)

dW, with dW ∼N (0,1).

To write the RRE, we recall that we can ignore the noisy part of the CLE, and write X on the

right-hand side of the equation in terms of the concentration [X ]:

d[X ]Ω

dt
= k1− k2 [X ]Ω, where Ω is the Volume of the cell where the reactions take place.

In principle, there should also be the Avogadro number if one is considering the molar concentra-

tion, though, for our purposes of only simulating the system, we can ignore it.

The following Reaction Rate Equation is then obtained:

d[X ]

dt
=

k1

Ω
− k2 [X ]

Looking at the RRE we can easily find also its solution, given by

[X ](t) =
k1

k2 Ω
+

(

X(0)− k1

k2 Ω

)

e−k2 t t→∞−−−→ µ =
k1

k2 Ω
.

We can now proceed to the simulation phase, we have performed 100 simulations using Gillespie’s

SSA, τ-leaping and E-M method as previously described. Specifically, the value of τ = 3 for the
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E-M algorithm has been selected, so that a jτ > 10 most of the time:

τ >
10

a1
=

10

k1
= 2 and τ >

10

a2
=

10

k2 X
=

100

X
, for X ∈ [0,∼ 80].

At the same time, in the majority of the cases, τ = 3 is also satisfying the condition τ > 2
a0
= 2

k1+k2 X

and is such that the propensity functions are almost constant. The results obtained are shown in the

figure below with Ω = 1 for simplicity, since in any case we are not considering a real scenario.

0 20 40 60 80 100

t[s]

0

10

20

30

40

50

60

70

X

Average

Figure 2.7: 100 simulations of birth-death pro-

cess by SSA, with k1 = 5, k2 = 0.1s−1.
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Figure 2.8: 100 simulations of birth-death pro-

cess by adaptive τ-leaping method, with k1 =
5, k2 = 0.1s−1 and ε = 0.2
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Figure 2.9: 100 simulations of birth-

death process by E-M method, with

k1 = 5, k2 = 0.1s−1, τ = 3 and ε = 0.2.
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Figure 2.10: Comparison of RRE solution and

averages of the simulations obtained from SSA,

τ-leaping and E-M for the birth-death process,

with k1 = 5, k2 = 0.1s−1. Standard deviation

from the averages is shown with light colored

bands.

Let us first consider Fig. 2.10 from which it is possible to observe that all the methods yield similar
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average results that show the same trend as the one obtained by the RRE. Normally, in a real case

scenario, there will be a different scaling in the RRE because of the volume factor, but the trend

would still be the same. Indeed, it is possible to show that the evolution of the expected value com-

puted using the CME matches that described by the RRE, aside from the volume scaling factor.

Hence, we can claim that all the methods are in this case valid, and if someone is interested in the

average behavior, RRE provides reliable and fast results. Though, using the deterministic model

one loses information on the real system, which in this case presents high variability between the

trajectories, i.e. different cells could end up in a very different state.

We recall that both τ-leaping and E-M methods have been implemented so that Gillespie’s SSA is

used when one of the assumptions does not hold, the number of molecules is negative, or τ is quite

small that it is more convenient to use the SSA, since it is exact. We would like to highlight that

in the simulations reported here τ-leaping uses the SSA only at the very beginning for t < 1,2,3 s

since the resulting τ value would be too small; similarly, the E-M method uses the SSA at the first

iteration since the state is equal to zero, and then rarely calls it again. This means that in the given

example, both methods are applicable, although, it is worth noticing that using different reaction

coefficients, it is possible that this may no longer be true. Using for instance k1 = 1, we have noticed

that Gillespie’s SSA was almost always used when calling τ-leaping or E-M, probably because the

number of molecules was too low, indeed the steady-state equilibrium was 10, instead of 50.

Finally, we report the time required by each algorithm:

SSA: 1.6769 s, τ-leaping: 1.7354 s, E-M: 1.9102 s, RRE: 0.053003 s.

As we can see, neither E-M, neither τ-leaping are faster than the SSA; in this case it is actually

more convenient to use Gillespie’s SSA. We expect τ-leaping and E–M to be more efficient when

the number of molecules or reactions is higher. Indeed, increasing the steady-state equilibrium,

τ-leaping and E-M become more efficient, for instance, using k1 = 100, we got the following

computational times:

SSA: 2.9039 s, τ-leaping: 1.675 s, E-M: 1.661 s, RRE: 0.064063s,

from which one sees that E-M is slightly faster than τ-leaping, that is faster than the SSA.

Therefore, in general, one has to pay attention to weather τ-leaping and E-M are truly applicable

and more efficient than Gillespie’s SSA; if so, they can offer significant improvements in speed and

computational efficiency. The user should choose the simulation method carefully, depending on

the application.
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Two Species Compound process

X +Y
k1−→←−
k2

X : Y, with k1 = 0.01s−1, k2 = 1s−1.

Let us call x = [X Y X : Y ]T the state, then, the propensity functions a j and the stoichiometric

vectors ν j for both reactions are the following:

• First reaction: a1 = k1 X Y and ν1 =

[

−1 −1 +1

]T

.

• Second reaction: a2 = k2 X : Y and ν2 =

[

+1 +1 −1

]T

.

Again, the choice of the reaction coefficients has been made so that it was feasible to apply τ-

leaping and E-M methods, indeed, if the coefficients are such that the number of molecules is

pretty low, then the algorithms will almost only apply Gillespie. This happens for instance for

k1 = 0.01s−1, k2 = 0.1s−1, because in this case the number of free molecules X is smaller.

To write the CME, it is easier to consider the state changes due to only one reaction, as shown

below, since we supposed that in dt only one reaction will take place.










nX +1

nY +1

nX :Y −1










a1−→

←−
a2










nX

nY

nX :Y










a2←−

−→
a1










nX −1

nY −1

nX :Y +1










,

where nX = number of free molecules X , nY = number of free molecules Y , and nX :Y = number of

molecules X : Y . Let us call NX the total number of molecules X (both free and in X : Y ) and NY the

total number of molecules Y (both free and in X : Y ), with NY g NX , w.l.o.g.. Then, it is possible

to write the following finite dimensional Chemical Master Equation:

dP(nX ,nY ,nX :Y , t)

dt
=k1 (nX +1)(nY +1)P(nX +1,nY +1,nX :Y −1, t)+

+ k2 (nX :Y +1)P(nX −1,nY −1,nX :Y +1, t)− [k1 nX nY + k2 nX :Y ]P(nX ,nY ,nX :Y , t),

with nX = 0, ...,NX , nY = 0, ...,NY and nX :Y = 0, ...,NX .

Actually, it is possible to simplify this expression and obtain the state in only one dimension simply

by observing that there are no birth or death processes, hence the total number of molecules will be
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constant over time. This allows to write Y and X : Y in terms of X as follows:

nX +nX :Y = NX

nY +nX :Y = NY

=⇒
nX :Y = NX −nX

nY = NY −NX +nX , with NY g NX .

Therefore, the evolution of the state is fully described by only the evolution of nX(t) =: n(t), this

brings a big advantage to the model moving the system from a three dimensional one to a scalar

one. We can now write the CME in P(n, t) as:

dP(n, t)

dt
=k1 (n+1)(NY −NX +n+1)P(n+1, t)+ k2 (NX −n+1)P(n−1, t)+

− [k1 n(NY −NX +n)+ k2 (NX −n)]P(n, t), n = 0, ...,NX .

Similarly, we can write again the propensity functions and the stoichiometric vectors considering

only the number of free molecules X :

• First reaction: a1 = k1 X (NY −NX +X) and ν1 =−1.

• Second reaction: a2 = k2 (NX −X) and ν2 =+1.

From here we can easily obtain the CLE:

dX

dt
=−a1 +a2−

√
a1 dW1 +

√
a2 dW2, with dWj ∼N (0,1).

Exploiting the properties of linear combination of independent Gaussian variables as done in the

Birth-Death process, we can write it also as:

dX

dt
=−a1 +a2 +(−√a1 +

√
a2) dW, with dW ∼N (0,1).

Now we can substitute the expressions of a j and ν j, and write:

dX

dt
=−k1 X (NY −NX +X)+ k2 (NX −X)+

(

−
√

k1 X (NY −NX +X)+
√

k2 (NX −X)
)

dW.

From here it is easy to get the RRE, though, we have to be careful about the coefficients’ values

since we have a biomolecular reaction. In particular, if we neglect the noisy terms and we write

X = [X ]Ω, with Ω = Volume of the cell we are considering (not including the Avogadro number

always because it will only scale the coefficients), then we obtain:
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d[X ]Ω

dt
=−k1 [X ]Ω(NY −NX +[X ]Ω)+ k2 (NX − [X ]Ω),

which, calling ∆N = NY −NX , can be written as

d[X ]

dt
=−k1 [X ]Ω

(
NY

Ω
− NX

Ω
+[X ]

)

+ k2

(
NX

Ω
− [X ]

)

= k2
NX

Ω
− (k1 ∆N + k2) [X ]− k1 Ω [X ]2.

For simulations’ purposes here we have made the easiest choice of Ω = 1, knowing that it should

change depending on the application. In general, different values of the volume can cause the RRE

to behave differently than the other models; in this case we have tested it changing Ω, and we have

verified that it acts as the mean of the simulations, just scaled by the volume.

We have performed 100 simulations of the different algorithms that implement the models derived

above in the variable X since the evolution of the other molecules can be derived from it, as we have

seen. We would like to highlight that with E-M it was necessary to relax the inequality on the vari-

ability of the propensity functions by increasing the value of ε . This can cause losses in accuracy,

though, it is a price to pay to implement E-M, otherwise it was almost always using Gillespie’s

SSA because the propensity functions were changing very quickly, which implies in any case that

the time step must be quite small. We have chosen τ = 0.7, trying to satisfy the usual conditions.

Having made this choice, we were able to perform the E−M method, even though the time step was

small (not be particularly efficient), and ε was quite big (larger changes in the propensity functions).

The results of the simulations with NX = 50, NY = 60 and X(0) =NX are visible in the figure below.

0 10 20 30 40 50

t[s]

0

10

20

30

40

50

X

Average

Figure 2.11: 100 simulations of com-

pound formation process by SSA, with

k1 = 0.01s−1, k2 = 1s−1.
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Figure 2.12: 100 simulations of compound for-

mation process by adaptive τ-leaping method,

with k1 = 0.01s−1, k2 = 1s−1 and ε = 0.2.
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Figure 2.13: 100 simulations of compound

formation process by E-M method, with

k1 = 0.01s−1, k2 = 1s−1, τ = 0.7 and

ε = 0.4.
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Figure 2.14: Comparison of RRE solu-

tion and averages of the simulations ob-

tained from SSA, τ-leaping and E-M for

the compound formation process, with k1 =
0.01s−1, k2 = 1s−1. Standard deviation from

the averages is shown with light colored

bands.

Also in this case, as we could expect, the results of the different models are pretty similar, and the

considerations previously done still hold true. Moreover, it is noteworthy that in the E-M algorithm

it was necessary to call Gillespie’s SSA also when the state update was causing X > NX , which is

of course not feasible in reality. This additional case was similarly added also in the implementa-

tion of the τ-leaping approximation, even if this was performing particularly well with the chosen

parameters and the SSA was actually never utilized. In any case, it is necessary to add it if for

example we increase ε causing higher variability that can lead to X > NX . In fact, the most correct

way to handle these cases would probably be to introduce critical reactions, as has been proposed

in the literature [24] when a negative number of molecules is returned.

However, we can claim that the simulations obtained in the described way are all reliable. The

execution times are reported below:

SSA: 1.9338 s, τ-leaping: 2.1343 s, E-M: 1.5504 s, RRE: 0.050579 s .

We can easily see that in this case the τ-leaping approximation is not efficient, probably because the

time steps must be very small since the propensity functions change very quickly. The E-M method

gives a more satisfactory result, but we have to recall that it was necessary to choose a larger ε .

Therefore, if one is interested in the average trend, the RRE are without any doubt the best choice,

whereas, if one wants to look at the single realizations, in this case probably Gillespie’s SSA still

represents the best option since it does not do any approximation and it takes almost the same time

as the other methods.
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Chapter 3

From RRE to Simplified Stochastic Models,

via Quasi-Steady-State-Assumption

Stochastic modeling provides a very rich description of biological systems, especially when deal-

ing with complex systems where fluctuations can significantly influence reaction outcomes. The

high variability of stochastic trajectories is already evident in the Birth-Death process studied in

the previous chapter, even if the average of the simulations followed the trend of the determinis-

tic solution. In many cases, accounting for stochasticity is not only interesting but also essential,

especially when fluctuations have a profound effect on the physiology of the cell and statistical

averages do not accurately describe the chemical dynamics inside it. This happens, for example,

in bistable systems where stochasticity introduces the possibility of switching between the two sta-

ble states, even if starting from identical initial conditions or from the opposite basin of attraction.

However, performing stochastic simulations can be computationally demanding, especially when

using Gillespie’s Stochastic Simulation Algorithm, as we have seen. Therefore, finding an efficient

and reliable approach is crucial to save time and computations.

The objective of this chapter is to propose a novel and powerful method to perform stochastic sim-

ulations by reducing system’s dimension, thereby decreasing computational complexity. This ap-

proach can be particularly effective with complex and huge systems involving numerous reactions,

as can happen when transcription factors are employed in gene expression or protein production.

The method we propose lies on time scale separation, i.e. the idea that there exist fast and slow dy-

namics and that they can be treated differently. This is often observed in systems where reactions

involve more than two molecules, actually hiding underlying fast intermediate elementary reac-

tions. When treating these cases with RRE, there already exists a way to reduce the system [11]

based on the fact that fast dynamics can be considered at steady state after an initial fast transient

(relative to the timescale of interest for the slower variables). Hence, by imposing
d(·)
dt

= 0 for the

fast dynamics, one derives the corresponding steady-state value and can substitute it in the slow
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dynamics, usually obtaining Hill-type functions. The time scale separation in this case reduces

to the so-called quasi-steady-state assumption (QSSA), which can be formally derived also from

singular perturbation theory [68].

This approach is a typical approximation technique used with RRE, which, due to its great poten-

tial, has motivated researchers to explore ways to apply it also in a stochastic context. Notable

examples include its application to Chemical Master Equations [69–72], Gillespie’s SSA [73], and

τ-leaping approximation [74]. Taking inspiration from these papers, here we propose a method

(that should be formally proven, but this goes beyond the possibilities of this thesis) to reduce

stochastic models and hence ease their simulations under the same hypothesis of the QSSA. The

idea is to start from RRE, apply the QSSA, then substitute the resulting steady-state expressions in

the slow dynamics, identify some kind of new propensity functions, and finally use them to write

the new stochastic models and to perform the corresponding simulations. It is worth to make a

small note on this passage from RRE to stochastic models: the former indeed describes the evolu-

tion of the concentration, whereas the latter of the number of molecules. Thus, once one obtains

the reduced RRE, before deriving the new propensity functions, it is necessary to use the definition

of the concentration to obtain the correct values of the parameters, which could be scaled by the

volume with respect to the ones appearing in the RRE, as explained in the previous chapter.

This method offers a promising way to ease the simulation process by reducing the number of

species and reactions, and at the same time to bypass the problem of estimating a large quantity of

parameters about which we usually do not possess enough information. By adopting this approach

it is no longer necessary to make use of detailed first-principles to develop stochastic models; they

can now be derived from existing robust ODE models that may encapsulate detailed chemical ki-

netics by various Hill functions and quasi-steady-state assumptions [74].

A common example, that we will soon examine, is the genetic toggle switch. Since transcription

factors are involved in the reactions and they bound very rapidly to the DNA promoter sites, the

described method can be applied by considering their equations to be at steady state and using

them inside the dynamics of the mRNA. In this way, the mRNA equations can be written via Hill

functions of the transcription factors. Similarly, since the dynamics of the mRNA are faster than

those of proteins, it is possible to further simplify the system by reducing it to the protein dynamics

alone, with the mRNA and other species incorporated into the proteins activation functions. The

detailed method and results are provided in the following pages.
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3.1 The Genetic Toggle Switch

The genetic toggle switch is a synthetic bistable gene-regulatory network which has analogous

functions to its electronic counterpart. In particular, it acts as a binary memory element exhibiting

two different stable states, each corresponding to either the production or inhibition of a specific

protein. This bistable nature requires the use of stochastic modeling because deterministic ones

would not be sufficient to describe all the possible behaviors and switchings the toggle switch can

encounter. Multistability, in general, plays a significant role in some of the basic processes of bio-

logical life and evolution. Indeed, it might account for the maintenance of phenotypic differences

in the absence of genetic or environmental variations, or it can be used to explain cell differentia-

tion [75]. Therefore, being able to properly model multistable systems can be of great importance.

Stochastic modeling represents a reliable way to do it, even though it often requires detailed infor-

mation about chemical kinetics and computationally intense simulations, especially when there is

a large number of reactions, as in the case of the toggle switch. For these reasons, model reduction

through QSSA, including the noise as previously described, becomes particularly valuable.

Implementation

The genetic toggle switch can be engineered by inserting into a living cell a new piece of DNA

describing the production of two repressing proteins creating a double negative feedback. This

is such that if there is abundance of one protein then the other one is almost not produced and

we consider the system to be in State 1; otherwise, if there is abundance of the second protein,

the production of the first one is repressed and we can say we are in State 2. Such behavior can

be obtained by making use of inducible promoters, which are such that the transcription of the

corresponding genes can be controlled by changing the external concentration of an inducer. Their

general functioning is shown in the image below. Observe that inducible promoters provide a

simple way of switching genes on and off, or in general of controlling their expression level; hence,

the genetic toggle switch exploits exactly this principle.

Figure 3.1: Schematic regulation with positive and negative inducible promoters.
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Gardner and Collins implemented the genetic toggle switch in vivo for the first time in the Es-

cherichia coli [76], constructing the plasmid in Fig.3.2a through typical biological techniques. In

particular, the circuit includes the lac and tet promoter, and the genes encoding the LacI and TetR

repressor proteins, which can bound to the isopropyl β -D-1-thiogalactopyranoside (IPTG) and an-

hydrotetracycline (aTc) inducers. The advantage of using IPTG and aTc is that they have virtually

no effect on the cell other than changing the binding affinity of the respective repressor, and thus

they can be used to control the functioning of the promoters. Moreover, the lac and tet promoters

also control the expression of a reporter gene (e.g. a fluorescent protein) that is produced pro-

portionally to the LacI or TetR protein; hence, it can be used in the experiments to analyze the

quantity of each protein through a fluorescence microscope. In this case, the reporter genes are the

green fluorescent protein (GFP), which will be proportional to TeR, and the red fluorescent protein

(RFP), proportional to LacI. The plasmid implementing this circuit and the relative scheme of the

main reactions are shown in the following figure.

(a) The toggle switch plasmid. Promoters are

marked by solid rectangles with arrowheads.

Genes are denoted with solid rectangles. Ribo-

some binding sites and terminators are denoted

by outlined boxes [76].

(b) Genetic Toggle Switch Scheme: Proteins

LacI and TetR mutually repress each other’s pro-

moter, unless they bind with inducers aTc or

IPTG. The quantity of LacI and TetR is propor-

tional to reporter genes RFP and RFP rispec-

tively.

The toggle switch so implemented constitutes a bistable system, where in one state LacI is mainly

produced, and in the other one the production of TetR is dominating. The inducers can be added

to perform switching between these two states by inhibiting the repressing action of the protein to

which they can bind. As anticipated, the toggle switch is of fundamental importance in biological

systems because it plays a key role in processes like cell differentiation and decision making. In-

deed, it allows cells to have memory of some previous stimulus by maintaining a high expression

level of a specific repressor protein [77]. Additionally, it is at the base of an emerging challenge in

synthetic biology: Ratiometric Control Problem using a Single Population. This will be discussed

in the next chapter, here we focus, instead, on the toggle switch model and analysis.
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3.1.1 Deterministic Model using QSSA and Bistability Analysis

A schematic representation of the toggle switch was shown in Fig. 3.2b, though, in reality many

other reactions are present. The total set of reactions is shown below. On the left and right sides we

have reported the reactions involved with the production of LacI and TetR respectively. We have

denoted by DNAL and DNAT the operator region of the DNA where LacI and TetR can bind and

hence act as repressors. The remaining notations should be self-explanatory.

Transcription

DNAL +RNAp

k1
L−→←−

k2
L

DNAL : RNAp DNAT +RNAp

k1
T−→←−

k2
T

DNAT : RNAp

DNAL : RNAp
k3

L−→ mRNAL +DNAL +RNAp DNAT : RNAp
k3

T−→ mRNAT +DNAT +RNAp

Translation

mRNAL +Ribo

k4
L−→←−

k5
L

mRNAL : Ribo mRNAT +Ribo

k4
T−→←−

k5
T

mRNAT : Ribo

mRNAL : Ribo
k

p
L−→ mRNAL +Ribo+LacI mRNAT

k
p
T−→ mRNAT +TetR

Repressing action

TetR+DNAL

k6
L−→←−

k7
L

TetR : DNAL LacI +DNAT

k6
T−→←−

k7
T

LacI : DNAT

Proteins-Inducers interaction

TetR+aT c

k8
L−→←−

k9
L

TetR : aT c LacI + IPT G

k8
T−→←−

k9
T

LacI : IPT G

Inducers diffusion

uaT c
kaT c−−→ aT c uIPT G

kIPT G−−−→ IPT G

Degradation

mRNAL

gm
L−→ /0 mRNAT

gm
T−→ /0

mRNAL : Ribo
gm

L−→ Ribo mRNAT : Ribo
gm

T−→ Ribo

LacI
g

p
L−→ /0 TetR

g
p
T−→ /0

aT c
kaT c−−→ /0 IPT G

kIPT G−−−→ /0
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The number of reactions and parameters involved is very high, this is why we were anticipating

that model reduction can be fundamental in this case. The reduced deterministic model below can

be obtained by re-arrenging the equations to only leave the independent ones, and by applying the

QSSA since reactions can reasonably be distinguished between fast and slow ones because of the

presence of transcription factors.







d
dt
[mRNALacI] = km0

L +
km

L

1+






[TetR]
θTetR

1

1+

(

[aT c]
θaT c

)ηaT c







ηTetR
−gm

L [mRNALacI]

d
dt
[mRNATetR] = km0

T +
km

T

1+







[LacI]
θLacI

1

1+

(

[IPT G]
θIPT G

)ηIPT G







ηLacI
−gm

T [mRNATetR]

d
dt
[LacI] = k

p
L [mRNALacI]−g

p
L [LacI]

d
dt
[TetR] = k

p
T [mRNATetR]−g

p
T [TetR]

d
dt
[aT c] = kaT c (uaT c− [aT c])

d
dt
[IPT G] = kIPT G (uIPT G− [IPT G])

(3.1)

The model describes the evolution of 6 species interacting through 12 reactions, a significant sim-

plification from the original system which involved 18 species and 30 reactions, thus one can see

why this method could be essential and pivotal. From the model, it is possible to see that the effects

of the repressor proteins and of the inducers are encapsulated in the mRNA equations through Hill

functions, as anticipated. This is the typical way these interactions can be described; and hence

one can directly assume this Hill-type shape for the activation functions and fit the model in (3.1)

to some calibration data, using a global optimization tool, as done in [78]. The values found in this

way are the ones we will refer to throughout the thesis, and are summarized in Table 3.1 below.

The main advantage of applying the QSSA is that only the necessary parameters’ values must be

estimated, without the need of knowing in advance all the coefficients appearing in the pseudo-

reactions. This efficiency, along with the simplicity of the resulting model, has led to the use of

(3.1) in numerous studies. Examples include [78] and [79], where the objective was to control the

system at its unstable equilibrium, similarly to the classic inverted pendulum problem; [44], which

focuses on ratio control of a population of cells endowed with the toggle switch; [77] that investi-

gates the dynamics of the system when subject to pulse-width modulated inputs; and [30], where a

population endowed with the toggle switch is controlled by a multicellular controller.
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Parameters Values Parameters Values

km0
L 0.3045 mRNA min−1 km0

T 0.3313 mRNA min−1

km
L 13.01 mRNA min−1 km

T 5.055 mRNA min−1

k
p
L 0.6606 a.u. mRNA min−1 k

p
T 0.5098 a.u. mRNA−1min−1

gm
L 0.1386 min−1 gm

T 0.1386 min−1

g
p
L 0.0165 min−1 g

p
T 0.0165 min−1

θLacI 124.9 θTetR 76.40

ηLacI 2.00 ηTetR 2.152

θaT c 35.98 ηaT c 2.00

θIPT G 0.2926 ηIPT G 2.00

kaT c 0.04 min−1 kIPT G 0.04 min−1

Table 3.1: Parameters and corresponding values for the genetic toggle switch [78].

The model in (3.1) can be further reduced by applying again the QSSA to the equations regarding

the mRNAs and the inducers, which is possible because they degrade faster than the proteins. In

this way, the following approximated reduced model in only the repressor proteins is obtained.



















































d
dt
[LacI] =

k
p
L km0

L

gm
L

+

k
p
L

km
L

gm
L

1+







[TetR]
θTetR

1

1+

(

uaT c
θaT c

)ηaT c







ηTetR
−g

p
L [LacI]

d
dt
[TetR] =

k
p
T km0

T

gm
T

+

k
p
T

km
T

gm
T

1+







[LacI]
θLacI

1

1+

(

uIPT G
θIPT G

)ηIPT G







ηLacI
−g

p
T [TetR]

(3.2)

Albeit still deterministic, this system plays a key role in understanding the bistable nature of the

toggle switch. Indeed, since it is a two-dimensional system we can easily perform the nullcline

analysis and plot the 2D vector field and phase portrait. We recall that the nullclines are the curves

obtained by setting to zero the derivative of each variable, thus they represent the points on which

the corresponding variable is not changing. Setting to zero both d
dt
[LacI] and d

dt
[TetR] of (3.2), one

obtains the following two nullcline curves, which have a sigmoidal shape visible in Fig.3.3.
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[LacI] =
k

p
L km0

L

gm
L g

p
L

+

k
p
L km

L

gm
L g

p
L

1+

(

[TetR]
θTetR

1

1+
(

uaT c
θaT c

)ηaT c

)ηTetR

[TetR] =
k

p
T km0

T

gm
T g

p
T

+

k
p
T km

T

gm
T g

p
T

1+

(

[LacI]
θLacI

1

1+
(

uIPT G
θIPT G

)ηIPT G

)ηLacI

(3.3)

The crossing points of these curves represent the equilibria of the system because here both protein

concentrations do not vary [80]. The vector field assigns a vector to each point in the phase space,

representing the derivative in that point. This is a typical way to analyze dynamical systems, indeed

from this it is also possible to see the trajectory corresponding to any initial condition, obtaining

the phase portrait. The vector field can be obtained, for example, with the Matlab command quiver,

the resulting plot for the reduced toggle switch with zero inputs uaT c = 0 and uIPT G = 0 is shown

in the image below.
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Eigenvector at the Unstable Equilibrium

Separatrix

Figure 3.3: Phase portrait, nullclines, equilibria, separatrix of the reduced toggle switch model in

(3.2), with uaT c = 0 and uIPT G = 0.

From the phase portrait it is straightforward to see that without input the system has three equilib-

ria, specifically the (low LacI, high TetR) and the (high LacI, low TetR) are the stable ones, while

the third one is unstable. Practically the toggle switch will always be in one of these states or will

switch between them, moving away from the unstable equilibrium. The two stable equilibria cor-

respond to the two ON/OFF states of the toggle switch, in one the production of LacI is active and
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the one of TetR is suppressed; and in the other equilibrium the opposite holds. The phase space

can thus be divided into two regions of attraction, each one leading to one of the stable equilibria.

Indeed, when treating the system deterministically, the region of the initial conditions determines

the equilibrium to which the system will converge. The separatrix (red curve in the plot) is by

definition the curve separating these two regions, obtained by solving the system in (3.2) with op-

posite sign, ẋ = − f (x), with initial condition in the unstable equilibrium. The separatrix can also

be linearly approximated by one of the eigenspaces (light blue line) associated with the linearized

system at the unstable equilibrium, as visible in Fig.3.3.

Up to this point, we have considered the inputs to be equal to zero. By changing them, one can

observe some interesting behaviors. In particular, the system can become monostable if, for in-

stance, one adds sufficient uIPT G, which will bound to LacI, inhibiting its repressing action. As a

result, there will be an abundance of TetR, which will further repress LacI production, leading the

system to a single stable equilibrium at (low LacI, high TetR). Similarly, the other equilibrium can

be obtained by adding a sufficient quantity of uaT c, which will inhibit the repressing action of TetR

and cause an increase in the quantity of LacI.

The effect of the inputs on the quality and quantity of equilibria can be studied via the bifurcation

diagram. This is a common way to analyze how the equilibria of a system change depending on a

parameter. In this case, we have two possible parameters uaT c and uIPT G, but they can be reduced

to only one virtual input by imposing the following convex combination, as done in [44]:

uaT c ∈ [0,UaT c] and uIPT G =

(

1− uaT c

UaT c

)

UIPT G, with UaT c = 100ng/ml,UIPT G = 1mM.

This imposes a relationship between the inputs, hence we can consider as bifurcation parameter

either one of them individually or a combination of both; for instance, we chose to use the difference

of the standardized inputs, defined as follows.

uvirtual =
uaT c

UaT c
− uIPT G

UIPT G

= 2
uaT c

UaT c
−1 ∈ [−1, 1], for uaT c ∈ [0,UaT c]. (3.4)

This is a virtual input we can give to the system to study the effects on the position and number of

equilibria. From this it is possible to retrieve the values of the original inputs as:

uaT c =
UaT c

2
(uvirtual +1) and uIPT G =

UIPT G

2
(1−uvirtual).

To draw the bifurcation diagram, we need to reduce to only one variable between LacI and TetR, or

to a scalar function of both these proteins. Since they are in a direct relationship, we can focus only

on one of them and obtain the value of the other one from the expression in (3.3). We have chosen

to look at LacI, and for each value of the virtual input, we have found and plotted its equilibria,
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distinguishing between stable and unstable equilibrium points. The bifurcation diagram obtained

in the way described is shown in the figure below.

Figure 3.4: Bifurcation diagram for LacI and TetR of reduced toggle switch model (3.2), with

parameter the virtual input defined in (3.4).

The figure shows that there exists an interval in which the system exhibits bistability, for uvirtual ∈
[−0.172, 0.042], for which it holds:

uvirtual ∈ [−0.172, 0.042] =⇒ uaT c ∈ [41.4, 52.1]ng/ml and uIPT G ∈ [0.586, 0.479]mM.

For the other values, the system is instead monostable, in particular with an equilibrium in (low

LacI, high TetR) when uvirtual <−0.172, and in (high LacI, low TetR) when uvirtual > 0.042. Below,

the nullclines are shown for three significant cases uvirtual = −1, uvirtual = −0.07 and uvirtual = 1,

that implies uaT c = 100ng/ml, uIPT G = 0, uaT c = 46.75ng/ml and uIPT G = 0.5325mM and uIPT G =

1mM, uaT c = 0, for which the system is monostable.

0 500 1000 1500 2000 2500 3000 3500 4000

LacI

0

500

1000

1500

T
e

tR

LacI Nullcline

TetR Nullcline

Stable Equilibrium

Vector Field

(a) uvirtual =−1

(uaT c = 0 and uIPT G = 1mM).
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(b) uvirtual =−0.07

(uaT c = 46.75ng/ml and uIPT G =
0.5325mM).
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(c) uvirtual = 1

(uaT c = 100ng/ml and uIPT G = 0).

Figure 3.5: Phase portrait, nullclines, (low LacI, high TetR) equilibrium of the reduced toggle

switch model for different inputs.

3.1.2 Stochastic Model using QSSA

The deterministic model considered has provided valuable insights into the system’s behavior, en-

abling to determine whether the system exhibits two or just one stable equilibrium, or to identify
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the corresponding regions of attraction. However, this approach is not sufficient to fully describe

a real genetic toggle switch. For instance, even if an initial condition lies in one of the basins of

attraction, it is not always true that the real system will end up, or remain for all times, in the cor-

responding equilibrium, as the RRE instead predicts. Similarly, the bifurcation diagram of Fig. 3.4

identifies the areas of mono- and bi-stability, though in a real case scenario, the boundaries would

not be so precise. Especially near the limit values of u1 and u2, one of the stable equilibria will

be very close to the unstable one and basically ”disappear”. Furthermore, real biological systems

exhibit variability at the cellular level: even under identical experimental conditions, there could be

different genetic switching in different cells. Therefore, to perform a reliable and realistic analysis,

it is essential to consider a stochastic model, which accounts for the inherent noise characteristic of

biological systems.

To obtain stochastic models, we can apply what has been explained previously, namely: consider

the system in (3.1) obtained by QSSA, write it in the number of molecules, extrapolate the propen-

sity functions, and use them in the stochastic modeling and simulations as presented in Chapter 2.

This approach has been applied in [79] to the toggle switch model to perform stochastic simulations

with Gillespie’s Algorithm.

Following the procedure described, the first step requires to write the equations in the number of

molecules. To do so, let us recall the definition of molecular and molar concentration: [X ] = X
Ω

and [X ] = X
ΩNA

. The choice of one of them strictly depends on the measurement unit adopted

in the specific reference document; in our case, we used the values of [78], reported in Table 3.1,

where the measurement unit is the number of molecules, not of moles. Therefore, we can substitute

the definition of molecular concentration into the equations in (3.1). To illustrate this step, let us

consider only the first equation:

d

dt
mRNALacI Ω = km0

L +
km

L

1+

(

TetRΩ
θTetR

1

1+
(

aT cΩ
θaT c

)ηaT c

)ηTetR
−gm

L mRNALacI Ω.

Dividing both sides by Ω, one gets:

d

dt
mRNALacI =

km0
L

Ω
+

km
L

Ω

1+

(

TetRΩ
θTetR

1

1+
(

aT cΩ
θaT c

)ηaT c

)ηTetR
−gm

L mRNALacI,

and defining the new coefficients scaled by the volume as km0
L

′
=

km0
L

Ω
, km

L
′ = km

L

Ω
, θTetR

′ = θTetR

Ω
,

θaT c
′ = θaT c

Ω
, then one obtains:
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d

dt
mRNALacI = km0

L

′
+

km
L
′

1+

(

TetR
θTetR

′
1

1+
(

aT c
θaT c

′
)ηaT c

)ηTetR
−gm

L mRNALacI.

The same reasoning can be applied to the remaining equations in 3.1, obtaining something anal-

ogous for the mRNATetR, after defining the coefficients as km0
T

′
=

km0
T

Ω
, km

T
′ = km

T

Ω
, θLacI

′ = θLacI

Ω
,

θIPT G
′ = θIPT G

Ω
. The other equations instead stay the same, just written in the number of molecules.

In particular, we have supposed that the inputs uaT c and uPIT G are given as a concentration, if not,

a scaling factor would simply be applied to the coefficients kaT c and kIPT G to account for this dif-

ference.

Finally, let us define the state as X =

[

mRNALacI mRNATetR LacI TetR aT c IPT G

]T

, and

order the reactions as birth and death processes for each species in X . Under this setup, the propen-

sity functions will have the following expressions:

Birth Death

a1 = km0
L

′
+

km
L
′

1+

(

TetR
θTetR

′
1

1+
(

aT c
θaT c

′
)ηaT c

)ηTetR
, a2 = gm

L mRNALacI,

a3 = km0
T

′
+

km
T
′

1+

(

LacI
θLacI

′
1

1+
(

IPT G
θIPT G

′
)ηIPT G

)ηLacI
, a4 = gm

T mRNATetR,

a5 = k
p
L mRNALacI, a6 = g

p
L LacI,

a7 = k
p
T mRNATetR, a8 = g

p
T TetR,

a9 = kaT c uaT c, a10 = kaT c aT c,

a11 = kIPT G uIPT G, a12 = kIPT G IPT G.

The stoichiometric vectors can be written just by looking at the equations in (3.1). Since there are

only birth and degradation processes, the entries will be equal to ±1, or 0 when the species is not

affected by the corresponding reaction. The vectors can be stacked in the following stoichiometric

matrix:
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V =

[

ν1 ν2 . . . ν12

]

=





































+1 −1 0 0 0 0 0 0 0 0 0 0

0 0 +1 −1 0 0 0 0 0 0 0 0

0 0 0 0 +1 −1 0 0 0 0 0 0

0 0 0 0 0 0 +1 −1 0 0 0 0

0 0 0 0 0 0 0 0 +1 −1 0 0

0 0 0 0 0 0 0 0 0 0 +1 −1





































.

Finally, knowing the propensity functions and the stoichiometric vectors, we can simply use them

to derive any desired model and corresponding simulation method. Comparable approaches have

been applied in [74] using the τ-leaping method for a similar case, in [73] using Gillespie Algo-

rithm for the enzymatic reaction, and in [79] specifically for simulating the toggle switch. Hence,

we have strong reasons to believe that this method could be both valid and effective. The key ad-

vantage is that it is possible to consider existing robust ODE models that may encapsulate detailed

chemical kinetics by various Hill functions and quasi-steady-state assumptions, and use these to

directly derive reliable stochastic descriptions.

Below we show the plots obtained following this approach for Gillespie and τ-leaping algorithms,

using zero inputs. Since the experiments in [76] with the toggle switch were performed in the

Escherichia coli, we have considered its volume Ω = 1 µm3 [81].

(a) 100 simulations of the toggle switch in 6 vari-

ables (3.1) by Gillespie’s SSA, with zero input.

(b) 100 simulations of the toggle switch in 6 vari-

ables (3.1) by adaptive τ-leaping method, with zero

input and ε = 0.01.

From the simulations, the two equilibria are clearly visible, and we can claim that the toggle switch
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is quite robust since only a few number of trajectories is switching equilibrium. Moreover, we can

see that qualitatively both algorithms return similar results, hence τ-leaping represents a valid op-

tion, even if it is important to mention that sometimes during its run, it was necessary to call Gille-

spie’s SSA because the number of molecules was too low (especially for the mRNATetR) and the

algorithm was generating negative numbers. This is why we had to choose a very small ε = 0.01,

to ensure that the state change was minimal. The time spent by each algorithm is the following:

SSA: 424.5333 s, τ-leaping: 256.3125 s.

Therefore, τ-leaping approximation is reliable and faster than the SSA, and can be used to speed

up simulations. We have also tried to implement the E-M method, though, the approximation of

the Poisson distribution with a Gaussian one was never true, and E-M was always calling Gillespie.

This is probably due to the fact that the number of mRNA molecules was quite low, violating the

main hypothesis of this method: to have a high number of molecules.

The stochastic models so obtained have been validated by comparing their realizations with ex-

perimental data taken from the Supplementary Information of [78]. The figures below show this

comparison for various combinations of the inputs. In almost all the cases, both Gillespie’s SSA

and τ-leaping method return simulations similar to the real data, except for the last two cases (Fig.

3.11 and 3.12) in which, when simulating the system, the quantity of LacI decreases after the reduc-

tion of uaT c, whereas, in the real system this reduction is not observed. This discrepancy may arise

because, in an experimental setting, decreasing the amount of uaT c is not instantaneous, whereas in

the simulations we can assume that the change is immediate. Consequently, in a real experiment,

the quantity of LacI may also decrease over time due to the continuous presence of uIPT G and the

reduction of uaT c, but probably it was not possible to see it in the time provided. Indeed, IPTG

would continue to bind to LacI preventing the repression of TetR, and, as aTc diminishes, TetR

will further repress LacI. Together, these two factors will eventually result in a reduction in LacI

levels. This hypothesis is supported by the fact that in [78] an asymmetrical exchange of aTc and

IPTG is considered, in particular the out-exchange rate of aTc is half of the value reported in Table

3.1. Hence, taking this into account should provide more accurate simulations, resulting in a much

slower decrease in the concentration of LacI in the last two tests, comparable with the experimental

data. However, we have adopted the values of Table 3.1 because they are the ones used in [44], that

is the work we will refer to in the next chapter.
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(a) (b)

(c)

Figure 3.7: (a) Given inputs. (b) Experimental data [78]. (c) 10 model simulations by Gillespie’s

SSA (top) and τ-leaping (bottom).

(a) (b)

(c)

Figure 3.8: (a) Given inputs. (b) Experimental data [78]. (c) 10 model simulations by Gillespie’s

SSA (top) and τ-leaping (bottom).

(a) (b)

(c)

Figure 3.9: (a) Given inputs. (b) Experimental data [78]. (c) 10 model simulations by Gillespie’s

SSA (top) and τ-leaping (bottom).
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(a) (b)

(c)

Figure 3.10: (a) Given inputs. (b) Experimental data [78]. (c) 10 model simulations by Gillespie’s

SSA (top) and τ-leaping (bottom).

(a) (b)

(c)

Figure 3.11: (a) Given inputs. (b) Experimental data [78]. (c) 10 model simulations by Gillespie’s

SSA (top) and τ-leaping (bottom).

(a) (b)

(c)

Figure 3.12: (a) Given inputs. (b) Experimental data [78]. (c) 10 model simulations by Gillespie’s

SSA (top) and τ-leaping (bottom).
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Comparison with reduced stochastic model

The same approach to derive stochastic simulations can in principle be applied to the system

in (3.2), reduced to only two variables. The results are shown in the following figures, where we

have compared the trajectories obtained by the system, before and after applying the QSSA to (3.1).

(a) Simulations performed by Gillespie’s SSA.

aaaaaaaaaaaaaaaaaaaa

(b) Simulations performed by adaptive τ-leaping,

with ε = 0.01.

(c) Simulations performed by E-M method with ε =
0.2 and τ = 15; and by Gillespie’s SSA.

(d) Simulations performed by E-M method with

ε = 0.2 and τ = 15; and by τ-leaping approxima-

tion with ε = 0.01.

Figure 3.13: Comparison of 100 simulations of the reduced toggle switch model in 2 variables

(3.2), with the one in 6 variables (3.1), with uaT c = 0 and uIPT G = 0.

As the reader can see, in this case it was also possible to perform E-M simulations, using ε = 0.2.

This is probably due to the fact that we have thrown away the evolution of the molecules that were

present in low numbers, allowing for the hypothesis of the CLE to be true. In particular, Fig. 3.13

compares the results of the reduced system obtained by E-M method with those of the system in

(3.1) of 6 variables, obtained by the SSA and τ-leaping respectively, since E-M method was not

applicable in that system.
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The figures above reveal that the behavior of the stochastic systems in two or six variables is quite

different. Indeed, the former is less noisy than the latter, which does not seem to be an issue with

zero input, but it actually is for example with uIPT G = 0.05mM. Indeed, Fig.3.14 shows that for

this input the trajectories of the system in 6 variables oscillate and switch between the two stable

states, whereas the ones in 2 variables do not move from the equilibria. We have reported only the

simulations made by Gillespie’s SSA and τ-leaping algorithm, but the same happens also with the

E-M method.

(a) Simulations performed by Gillespie’s SSA.

aaaaaaaaaaaaaaaaaaaa

(b) Simulations performed by adaptive τ-leaping,

with ε = 0.01.

Figure 3.14: Comparison of 100 simulations of the reduced toggle switch model in 2 variables

(3.2), with the one in 6 variables (3.1), with uaT c = 0 and uIPT G = 0.05mM.

The different behavior of the two systems can be attributed to the fact that the QSSA has been

applied to the deterministic system. As a result, when constructing the stochastic version, the noise

associated with the equations at steady state is omitted, leading to a reduced variability in the sim-

plified system. However, we can expect that there exists a way to include this noise into the reduced

stochastic model, obtaining more reliable simulations.
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3.1.3 Discussion

In this chapter, we have introduced, tested, and discussed an innovative and powerful method for

performing stochastic simulations on a reduced system without necessarily accounting for all the

reactions, or requiring prior knowledge of all the corresponding parameters. This approach takes

inspiration from the well-established technique used to reduce Reaction Rate Equations via time

scale separation. Based on previous work, we have shown how to extend it in order to develop a

corresponding stochastic framework.

The example considered is the genetic toggle switch, a bistable circuit involving 18 species and 30

reactions. Among these, certain species exhibit rapid dynamics, which can be approximated as be-

ing at steady state, which allows to reduce the system to one with 6 species and 12 reactions (3.1),

or even further to a two-dimensional system (3.2). The latter has been used to perform a stability

and bifurcation analysis, revealing the existence of two monostable regions (one for each stable

equilibrium) and one bistable region, depending on the value of a virtual input. However, when the

noise is considered, the boundaries between these regions become less defined, as will be shown

in detail in the next chapter. Hence, the objective of this chapter was to propose an efficient way

to account also for intrinsic noise that, particularly in the case of the toggle switch, could produce

unwanted switches or different outcomes across the cells, making its consideration essential.

Therefore, we have presented a method to produce stochastic simulations of the system in 6 vari-

ables, and tested its validity by comparing the simulation results with the experimental data pro-

vided in [78]. Simulations were conducted using both Gillespie’s algorithm and the τ-leaping

method, which showed behaviors similar to the real system, with τ-leaping being nearly twice as

fast. Instead, in this case, the E-M method was not applicable, probably due to low molecular num-

bers of certain species.

Finally, we have tried to perform stochastic simulations using the reduced system with only two

variables, but unfortunately, the variability observed in this system was significantly lower than the

one in the six-dimensional case. This could be explained by the fact that, moving from a system

in 6 dimensions to one in 2 dimensions, part of the noise (the one of the fast dynamics) has been

neglected, thereby causing less variability. Nevertheless, we are confident that there can be a way

to take into account this noise artificially adding it to the 2-dimensional system to obtain reliable

simulations also in this case. If such a method does not already exist, it could represent a significant

future research direction, which could lead to the development of even more efficient stochastic

simulation techniques and models. However, to ensure accurate representations, this thesis relies

on the six-variable model in (3.1), incorporating the noise as described.
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Chapter 4

Application to Ratiometric Control Problem

Synthetic biology is a highly promising and innovative field; however, its novelty inevitably brings

significant challenges. These are mainly due to the desire of inserting huge and complex circuits

into a single living cell, which may lead to unintended side effects, such as metabolic burden, com-

petition of limited resources, retroactivity, or incompatible chemical reactions [44]. To address

these problems, the standard solution proposed in the literature consists in distributing the work-

load, or the different functionalities, among multiple cell populations in a microbial consortium

[82]. Therefore, instead of having a population where each cell is producing a set of proteins or is

having various roles, there will be more populations with each population having a specific func-

tion, for example to produce only one type of protein. This alleviates the burden of single cells and

enables compartmentalization and collaboration between diverse microbial consortia. Moreover,

it can be significantly advantageous to distribute and optimize complex metabolic pathways or to

facilitate the production of high-value compounds.

Although this approach seems very appealing, it arises a new challenge: controlling the ecosystem

as a whole rather than only the individual cells and reactions happening inside them. This can be

particularly difficult because of different growth and death rates, diverse metabolic burdens, various

environmental conditions, or distinct reactions to a stimulus, all of which can cause one popula-

tion to displace the others. Indeed, according to the competitive exclusion principle, competitors

species cannot co-exist [35], even if growth and death rates are only slightly different. Therefore,

researchers have started to seek a way to regulate the relative sizes of the different populations

in order to counteract the competitive exclusion principle, preventing faster-growing species from

eliminating the slower ones. This problem is commonly known as Population Ratio Control [41,

42, 44], and has the formal objective of balancing the populations so that their relative numbers

satisfy a desired ratio.
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4.1 Single vs Double Population Approach

The goal of Ratiometric Control is to regulate the relative sizes of two populations, in order to

guarantee their stable co-existence. As discussed in the Introduction, microbial consortia can have

different important applications, among which multicellular feedback controller, implementation

of multiple logical functions, and innovative solutions for industrial applications, thanks to task

division within populations. Though, to be able to ensure the survival of all populations, con-

trolling their proportions is essential. Usually, this is addressed by embedding additional genetic

circuits that enable cells to sense and respond to each other’s relative size through quorum sensing

molecules (Fig.4.1a). In particular, by sensing the density of the other group, cells can either in-

crease their growth rate by producing some growth regulatory protein, or decrease their number by

means of toxin–antitoxin mechanisms.

However, dealing with more populations requires to guarantee their survival and to insert additional

genetic circuits enabling communication within the consortium. To overcome this challenge, an

innovative solution has been proposed, approaching the problem from a different perspective which

focuses on only one population. In this setup, all cells grow at the same rate, and there is no need of

communication and sensing molecules anymore. The key idea is to distinguish two groups within

the same population using a reversible bistable memory element, so that each group has a specific

role (Fig. 4.1b). At the same time, cells can quickly and easily switch between groups in response

to exogenous stimuli from the environment, such as the injection of inducer molecules or light.

This is particularly useful if for example one group dies, or if a new population ratio is asked. This

approach represents a cutting-edge solution that, to the best of our knowledge, has been proposed

and studied only by D. Salzano, D. Fiore and M. di Bernardo in [44]. Their detailed proposal is

discussed in the following pages.

(a) Two cells populations (circles and squares) in a

chemostat, communicating through quorum sensing

molecules (pentagons) that control their growth or

death rates.

(b) One single population (circles), where each cell

can carry out different roles (red or green), in re-

sponse to exogenous stimuli.

Figure 4.1: Ratiometric Control Solutions.
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Before analyzing the single population approach, we would like to mention some works proposing

solutions to the ratiometric control problem using two populations. In [43] the authors imple-

mented autonomous regulation of the consortia composition via cell-based signal translator and

growth-controller modules. Other studies [37–40] dealt with competitive populations, realizing

stable co-cultures using various strategies, between which controlling the toxin production or the

dilution rate. This last strategy was also used in [41] to regulate the ratio between the concentrations

of two microbial populations in a chemostat while guaranteeing their survival and fast convergence

dynamics. Finally, in [42] both the total cell population and the relative ratio between two cell

strains have been regulated via dual feedback control modulating either cell growth, or cell death

processes, with communication implemented by quorum sensing molecules.

4.2 The Single Population Approach [44]

This chapter aims to present the pioneering work conducted by Salzano et al. in [44], where ra-

tiometric control problem is treated using only one population. The aim is to create a population

divided into two groups whose relative numbers satisfy a given ratio. By focusing on a single popu-

lation, this approach bypasses challenges associated with different growth rates or communication

molecules. Moreover, having cells of only one population should allow fast switching and recovery

if one of the groups dies. As anticipated, the innovative idea is that cells can transition between

these two groups via a reversible bistable memory element, that in the paper has been implemented

with a genetic toggle switch. Although introducing a circuit into a cell could affect the growth

of the host organism, this impact is likely less significant compared to the more complex circuits

required when managing two separate populations; hence, this represents a very promising solution.

The population considered is composed of bacterial cells endowed with a reversible genetic toggle

switch. In particular, they considered the toggle switch presented in the previous chapter, which

was implemented in vivo by Gardner et al. in [76], and can be modeled by the equation (3.2). We

recall that the different cells can exhibit different states due to inherent noise and can be controlled

individually by an external stimulus. In this context, the same input is common to all cells, and it is

precisely the heterogeneity of the responses that makes this method effective. This variability, in-

deed, allows some cells to adopt one state, others to settle in another state, and still others to switch

dynamically between equilibria. To distinguish between the stable states of the toggle switch, to

each of them is associated a reporter protein (RFP or GFP) which determines the phenotype (i.e. a

set of observable characteristics) of each cell. Specifically, if a cell has the green phenotype, it will

mainly produce TetR, and viceversa for the red phenotype.
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Figure 4.2: Phenotypic switching inside a cell [45].

In [44] they applied ratiometric control to the bioproduction of protein dimers. Therefore, to the

production of the repressing proteins LacI and TetR, and of the reporter genes GFP and RFP, it is

associated also the production of the corresponding monomer, in order to obtain the desired dimer.

Since they assumed that the two monomers have equal transcription and translation rates, the dimer

is produced at maximum rate if the consortium is divided into two symmetric groups with a 1 : 1

ratio. Depending on the application, there could be different transcription and translation rates

which would require different ratios between the two groups. In any case, rd should be such that it

guarantees high efficiency in the production of the desired metabolic end product.

Therefore, we can state the objective as follows:

Given cells belonging to the same strain, endowed with a reversible bistable memory

mechanism, design a feedback law u(t,x) =

[

uaT c(t,x) uIPT G(t,x)

]T

such that at steady

state the consortium is divided into two cell groups whose ratios converge to the desired

values rd,LacI(t) =
nLacI(t)

N(t) and rd,TetR(t) =
nTetR(t)

N(t) , where nLacI(t) and nTetR(t) are the num-

ber of LacI and TetR molecules, N(t) the total number of molecules in the consortium,

and x the state of the system denoted by the phenotype of each cell.

This can be achieved by designing a controller for the scheme outlined in Fig.4.3, where a fluores-

cence microscope measures the expression of the reporter proteins (proportional to LacI and TetR)

in each cell. These measurements will be fed into the feedback control algorithm that compares the

current ratio r(t) between the two groups with the desired one and computes online the appropriate

control inputs. The calculated inputs, together with a mixture of growth medium, will then be de-

livered to the population using a pair of syringes.

aaaaa
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Control Plant

Figure 4.3: Control Scheme for Ratiometric Control Problem as faced in [44].

Before introducing the proposed controllers, it is important to specify the model used in this study.

The authors considered a deterministic model of the reduced toggle switch (3.2), which was simu-

lated using the agent-based cell simulator BSim [50]. This simulator generates realistic realizations

of a cell population, accounting for environmental geometries, cellular growth, and physical inter-

actions; though, it does not include stochastic intracellular dynamics.

Moreover, it is important to precise how the phenotype of each cell is determined. Fig. 3.3 of the

previous chapter, shows the vector field of the deterministic model, together with the separatrix

distinguishing the two regions of attraction of the stable equilibria. Though, due to higher dimen-

sional dynamics of the real system and unavoidable uncertainties affecting it, it is not possible to

define such precise boundary between the two regions. It is necessary, indeed, to consider an ad-

ditional region where neither of the two proteins is produced in higher abundance than the other.

This region is called the uncertain set because it is not possible to identify if the toggle switch is

in TetR or LacI state since their values are close to the separatrix. The areas that the authors have

defined in [44] are the ones we refer to, shown in the figure below.
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TetRt = {i ∈Nt |2LacIi(t)< TetRi(t)}.

LacIt = {i ∈Nt |LacIi(t)> 2TetRi(t)}.

Uncertaint = {i ∈Nt | i /∈ TetRt , i /∈ LacIt}.

Figure 4.4: Regions of attraction for stable equilibria of reduced toggle switch, as defined in [44].
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However, the existence of the uncertain set implies that the total number of cells is not simply the

sum of those producing LacI and TetR, but it is given by N(t) = nLacI(t)+nTetR(t)+nUncertain(t).

Thus, when considering the current ratios, we have to distinguish between rLacI(t) =
nLacI(t)

N(t) and

rTetR(t) =
nTetR(t)

N(t) ̸= 1− rLacI(t) and keep track of both of them. Observe that, instead, the desired

ratio can be specified for only one protein, as the ideal scenario assumes there are no cells in the

uncertain set; hence rd,LacI(t)+ rd,TetR(t) = 1 holds. For instance, let rd represent the desired ratio

for LacI, then the errors will be defined as eLacI(t) = rd− rLacI(t) and eTetR(t) = (1− rd)− rTetR(t).

Therefore, the objective will be achieved when both errors converge to zero, which slightly com-

plicates the control laws. In the paper two possible controllers are implemented: the relay and the

PI controller. To each of them corresponds a specific kind of input u = [uaT c uIPT G]
T that has been

adopted.

4.2.1 Control Design

Relay controller

The inputs satisfy the T-junction condition, meaning that uaT c and uIPT G are mutually exclusive

and with fixed amplitude:

u = [UaT c 0]T or u = [0 UIPT G]
T . (4.1)

The relay controller is probably the simplest feedback controller, indeed, based on the output error

interval, it generates a piece-wise constant input signal that belongs to a discrete set. In particular,

in this case, based on the major error in absolute value, it returns the input able to reduce this error.

The control law can be written as:

u(t) =







u1 if |eLacI| g |eTetR|

u2 if |eLacI|< |eTetR|
, where:

u1 =







































0

UIPT G



 if eLacI f 0





UaT c

0



 if eLacI > 0

, u2 =







































UaT c

0



 if eTetR f 0





0

UIPT G



 if eTetR > 0

. (4.2)

A shutdown condition (u= [0 0]T ) can be included when both errors are equal to zero, to allow finite

convergence to zero error. Indeed, without it, the control would continuously alternate between the

two possibilities, causing the inputs to oscillate.
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PI controller

The inputs satisfy the Dial-A-Wave combination, which implies uaT c and uIPT G being in the

following convex combination:

uaT c ∈ [0,UaT c] and uIPT G =

(

1−
uaT c

UaT c

)

UIPT G. (4.3)

Note that actually the T-junction is a special case of the Dial-A-Wave, when one of the inputs is

equal to zero.

The PI controller is given by the sum of a proportional and an integral action, which is known

to ensure zero regulation error at steady state. In this case the input is smoother and the error

converges to zero, even if slower than before. The control law is the following:











uaT c = kP,1 eLacI(t)+ kI,1
∫ t

0 eLacI(τ)dτ−
(

kP,2 eTetR(t)+ kI,2
∫ t

0 eTetR(τ)dτ
)

uIPT G =
(

1− uaT c

UaT c

)

UIPT G

. (4.4)

To improve performances, they also added an anti-windup scheme that sets to zero the internal state

of the integrator when the error is 0 or changes sign, and a dynamic saturation defined as:







uaT c ∈ [0,50] |eLacI|< |eTetR|

uaT c ∈ [0,100] otherwise
.

4.2.2 Simulation Results

As anticipated, the simulations have been performed using BSim, in particular they accounted for

realistic physical and technological constraints summarized in the following table:

Target Variable Constraint Motivation

Input values
UaT c ∈ [0,100]mg/ml,

UIPT G ∈ [0,1]mM
Avoids excessive stress on cells.

Input switching frequency f 1
15 minutes

Reduces osmotic stress on cells.

Time delay 40 seconds
Accounts for time spent by inducers

to flow into cell chambers.

Sampling time g 5 minutes Prevents excessive photo-toxicity.

Experiment duration f 24 hours Avoids substantial cell mutations.

Table 4.1: Constraints considered in BSim by [44].
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The figures below show the results of the simulations using the controllers described, where the

proportional and integral gains, and the values of the maximum concentrations of the inducers,

have been empirically tuned by trial-and-error. Their values are reported in the captions of the

corresponding figure.

(a) Control inputs. (b) Evolution of the ratios rLacI and rTetR.

Figure 4.5: Relay controller (4.2) for ratiometric control problem with one population simulated

using BSim [44]. Parameters rd = 0.5, UaT c = 60ng/ml and UIPT G = 0.5mM.

(a) Control inputs. (b) Evolution of the ratios rLacI and rTetR.

Figure 4.6: PI controller (4.4) for ratiometric control problem with one population simulated using

BSim [44]. Parameters: rd = 0.5, UaT c = 100ng/ml, UIPT G = 1mM, kP,1 = 100, kP,2 = 1.5, kI,1 =
1.5 and kI,2 = 0.05.

The figures illustrate the validity and efficacy of the controllers implemented in the paper, even in

the presence of realistic physical and technological constraints. In the case of the relay controller

the inputs are switching between the two cases defined in (4.2) causing the output to never really

reach the desired value, although getting very close to it. On the other hand, when using the PI

controller, the inputs evolutions are smoother and after some time they stabilize to the value of

0.5 for uIPT G and 50 for uaT c, even though the response of the system is a bit slower, but still

with higher accuracy at steady state. Moreover, the authors accounted for cell-to-cell variability by

changing the model parameters. This can cause some cells to be uncontrollable, meaning that they
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are either monostable or unswitchable, and hence there does not exist an input able to bring them

from one state to the other. In the paper, they proved that the error goes to zero as long as no un-

controllable cells are present; otherwise, a small, unavoidable residual error will remain. Similarly,

the controllers have been tested varying rd and have always returned satisfactory results, showing

the robustness of the controller. Therefore, the ratiometric control problem is solvable for any rd

if and only if all the cells are controllable. Finally, they observed that actually the growth rates of

the two phenotypes differ because of different metabolic loads caused by the production of LacI or

TetR. However, this did not lead to divergence phenomena; nevertheless, it represents an interesting

observation that is worth exploring further in the future, potentially by accounting for the different

metabolic loads directly in the model.

4.3 Analysis via Probability Distribution

The simulations performed in BSim demonstrate the efficiency of the controllers proposed in [44]

to balance the ratios of two groups of cells within the same population. However, as anticipated,

despite BSim can account for factors such as cells morphology, realistic growth and division dy-

namics, mutual cells interactions, and environmental parameters [50], it models intracellular dy-

namics through ordinary or delayed differential equations, which do not capture the intrinsic noise

of chemical reactions. Therefore, our aim is to employ stochastic models to test the controllers, and

hence compare the results with those of the paper.

Before doing so, we would like to introduce a way to easily compare stochastic simulations results

using the probability density function at steady state. This is a typical framework for analyzing

stochastic scenarios, such as Markov chains, because it gives the possibility of directly seeing the

most probable event, which could not be well described by the average behavior. Applying the

negative logarithm to the probability density function, one obtains the potential energy function,

which is equivalent to the probability, though it could ease the study of global properties showing

the basins of attraction and the barriers between equilibria. Energy-like functions are used in many

applications from biology to economics or physics. Within biology, very interesting examples re-

gard proteins conformations or species evolution. Specifically, in the former the lowest-energy

landscape represents the structure assumed by the protein, and thus can be used to find the correct

amino acid sequence; whereas in the latter the potential measures the likelihood of a species to

survive in a given external environment. In any case, because of the noise, the system can explore

different energy levels, leading to different results.
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In the case of the toggle switch, observing the probability distributions P([LacI,TetR]), P([LacI])

and P([TetR]) for different inputs can be very useful to see the basins of attraction of the equilibria,

to visualize and count the number of cells producing LacI or TetR, and to study the robustness of the

system and the controllers, providing in general a much reacher description than the deterministic

one. In a stochastic framework it is common to talk about functional cellular attractors, i.e. areas

where it is more likely to find the state, rather than considering exact equilibria. Indeed, observe

that if the RRE converges to a steady-state, typically the stochastic solution is instead such that it is

the likelihood of a particular steady-state value to converge, rather than the state value itself [73].

For this reason, studying the probability distribution can be very important, though in many cases

it is not trivial to obtain its explicit expression. In [83] they actually found a way to solve the CME

for a symmetric toggle switch by using the Hartree mean field approximation. Here, we propose an

easier approach, which constructs the probability distribution from Gillespie’s or τ-leaping realiza-

tions of the CME. It is noteworthy that, since observable trajectories cannot capture the complete

nature of the system because of the existence of rare events, this method is valid if a sufficiently

high number of simulations is present. Other diverse methods have been tried considering station-

arity or detailed balance conditions, or the CLE when applicable; however, these approaches did

not yield reliable results, likely because they were not appropriate in this context.

The method we used computes P([LacI,TetR]) as the sum of the time spent by all the trajectories

in each state (LacI, TetR) after a transient period, normalized by the total time of all simulations.

The detailed steps we followed are outlined in the pseudocode below.

Algorithm 5 Probability Distribution

t f ← simulation length

ts←
[

0 . . . t f

]

, standard vector

tss← steady state time

C← 2000x4000 zero matrix

for all simulations do

x← state evolution returned by a stochastic simulation method

xL,xT ← state components describing the evolution of the proteins LacI and TetR at steady

state (t g tss)

xL,s,xT,s← standardized versions of xL,xT based on ts

for all points (L,T ) in the phase space grid do

C←C+ number of elements such that (xL,s,xT,s) = (L,T )

end for

P← C
total times*number of simulations

end for
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As visible in the pseudocode, we have represented the phase space via a grid of points, assigning

to each point the sum of the elements in the state vector that were equal to the corresponding value

on the grid. This process has been repeated for all simulations after removing a transient interval,

which we defined as 1000 minutes. However, it is important to emphasize that, to do this correctly,

we needed to standardize the state vector before calculating the time spent, because both Gillespie’s

SSA and τ-leaping method return vectors not equally spaced, as the state is updated every time a

reaction occurs or for each adapting τ , rather than at fixed time intervals. In particular, we con-

sidered as standard vector the time vector divided in intervals of 15 minutes and used the interp1

command to obtain the standard version of the state.

Once the probability distribution P(LacI,TetR) was obtained, this has been plotted as a 2D his-

togram, together with the 1D marginal probability density functions of LacI and TetR, as visible in

Fig.4.7a and 4.8a. Note that in the figures it was necessary to multiply P(LacI,TetR) by a factor

of 130 to make it visible in the same plot of the marginal probabilities. Finally, we recall that these

can be computed by integrating P(LacI,TetR) along the direction of each protein:

P(LacI) =
∫

∞

0
P(LacI,TetR)dTetR and P(TetR) =

∫

∞

0
P(LacI,TetR)dLacI. (4.5)

Fig.4.7b and 4.8b show the corresponding heat maps, where to each grid point is assigned a color

based on the magnitude of the value at that point. To better visualize the quantity of cells producing

LacI or TetR, the regions of attraction defined in [44] are also plotted. To determine the precise

number of cells in each region is therefore sufficient to integrate the probability density over the

respective LacI or TetR region, obtaining the two ratios as follows:

rLacI =
∫

LacI region
P(LacI,TetR)dLacI dTetR, (4.6)

rTetR =
∫

TetR region
P(LacI,TetR)dLacI dTetR, (4.7)

recalling that
∫

R2 P(LacI,TetR)dLacI dTetR = 1.

Note that the definition of the regions of attraction is arbitrary and will influence the resulting ratio

values. The choice made in [44] is reasonable, as it approximates the shape of the nullclines of

Fig.3.3, 3.5a, 3.5c. Therefore, we have adopted this definition in our analysis.

The procedure described has been applied to 100 simulations of the toggle switch system defined

by equation (3.1), involving six variables. The simulations have been obtained as described in the

previous chapter, both by Gillespie’s SSA and τ-leaping method, each starting from random initial

conditions. The results of both methods are very similar, proving the validity of the τ-leaping

approximation, making it the preferred choice due to its significantly faster computation.
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The figures below show the probability density function and the corresponding heat map derived

from the simulations using Gillespie’s SSA and τ- leaping method with zero input. Consistently

with the nullcline configuration in Fig.3.3, we see that most of the cells are in the LacI region.

(a) 2D Probability density function of LacI and

TetR, scaled by a factor of 130. 1D Marginal prob-

abilities of LacI and TetR individually.
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(b) Heat map of 2D Probability density function of

LacI and TetR, with regions of attraction.

Figure 4.7: Probabilistic analysis via Gillespie’s SSA with u = [0 0]T .

(a) 2D Probability density function of LacI and

TetR, scaled by a factor of 130. 1D Marginal prob-

abilities of LacI and TetR individually.
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(b) Heat map of 2D Probability density function of

LacI and TetR, with regions of attraction.

Figure 4.8: Probabilistic analysis via τ-leaping approximation with u = [0 0]T .

Using these graphs, as anticipated, we are able, for example, to compare the different models or

to analyze the effects of the inputs. Observe that this method is much more powerful than the

deterministic models, as it returns the values of the ratios that are most probable. Furthermore, it is

more effective than looking solely at the simulations, especially if unwanted switchings are present.
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In the previous chapter, the bifurcation analysis was performed using the deterministic model, while

here we aim to analyze the effects of the inputs on the probability distribution through stochastic

simulations. Depending on the input values, we can expect the probability density function to

exhibit either one or two peaks, corresponding to whether the system is monostable or bistable.

However, close to the border of these regions, probably frequent transitions will occur, leading

to less defined peaks in the probability density function. As in the bifurcation analysis, let us

consider the convex combination of the inputs defined in (4.3). We will study four cases of interest,

corresponding to the monostability, bistability, or critical regions in the bifurcation diagram:

• uvirtual = 1 −→ u = [UaT c 0]T , for which there is a unique equilibrium in the LacI region.

• uvirtual =−1 −→ u= [0 UIPT G]
T , for which there is a unique equilibrium in the TetR region.

• uvirtual = −0.07 −→ u = [46.75ng/mL 0.5325mM]T , for which we expect two equilibria,

one in each region.

• uvirtual =−0.24 −→ u = [38ng/mL 0.62mM]T , for which we expect to have basically one

equilibrium in the TetR region, but with a lot of noise.

These input values are highlighted in the figures below by vertical red lines to allow a visual fast

interpretation.

Figure 4.9: Bifurcation diagram for LacI and TetR of reduced toggle switch model (3.2), with

parameter the virtual input defined in (3.4). Highlighted in red four cases of interest.

For each of these cases, the simulations have been generated using the τ-leaping method, with the

initial conditions belonging to three different sets: all phase space, LacI region, or TetR region. In

this way, it is possible to study the impact on the probability density function of both the inputs and

the initial conditions. We have decided to compute the probability distribution after t = 1000 min-

utes since before the system is still adjusting and the probability would not be reliable. Moreover,

we computed it during two different time intervals, t ∈ [1000, 2500] minutes and t ∈ [3500, 4000]

minutes, to see the time evolution of the probability distribution. The plots obtained for all the

cases described are shown in the figures below.
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(i)

Figure 4.10: Probabilistic analysis, case 1: u = [UaT c 0]T , uvirtual = 1. (a),(d),(g) Initial conditions.

(b),(e),(h) Heat map of probability density function for t ∈ [1000, 2500] minutes. (c),(f),(i) Heat

map of probability density function for t ∈ [3500, 4000] minutes.
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(i)

Figure 4.11: Probabilistic analysis, case 2: u = [0 UIPT G]
T , uvirtual =−1. (a),(d),(g) Initial condi-

tions. (b),(e),(h) Heat map of probability density function for t ∈ [1000, 2500] minutes. (c),(f),(i)

Heat map of probability density function for t ∈ [3500, 4000] minutes.

From these two cases, it is already visible that, given a certain input, the simulations converge all

to the same stationary distribution, regardless of the initial conditions. Indeed, these only influence

the system during the early stages, before the cells have stabilized. Moreover, as we could expect,

the single equilibria are clearly visible in the heat maps, with the ratios stabilizing at either 0 or 1

for all initial conditions. This means that the inputs are strong enough not only to make the system

monostable, but also to keep the trajectories very close to the deterministic equilibrium, despite the

presence of the noise.

When the system is in the bistability region, trajectories can converge to either of the two equilibria.

However, many transitions occur because of noise, and we cannot talk about true bistability. As

visible in the figures below, this causes almost half of the cells to be in the uncertain set, which

implies that the potential barrier between the equilibria is very low, making it easy for the cells to

switch between the stable states.
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Figure 4.12: Probabilistic analysis, case 2: u= [46.75
ng
mL

0.5325mM]T , uvirtual =−0.07. (a),(d),(g)

Initial conditions. (b),(e),(h) Heat map of probability density function for t ∈ [1000, 2500] minutes.

(c),(f),(i) Heat map of probability density function for t ∈ [3500, 4000] minutes.

Finally, let us consider the last case, in which the inputs are such that the deterministic system is

monostable with equilibrium in the TetR region, though at the same time it is very close to the

bistability region.
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Figure 4.13: Probabilistic analysis, case 2: u = [38ng/mL 0.62mM]T , uvirtual =−0.24. (a),(d),(g)

Initial conditions. (b),(e),(h) Heat map of probability density function for t ∈ [1000, 2500] minutes.

(c),(f),(i) Heat map of probability density function for t ∈ [3500, 4000] minutes.
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On one hand, we know that the solution of the RREs would have behaved exactly as in the second

case with u = [0 UIPT G]
T , for which there was a unique equilibrium in (low LacI, high TetR). On

the other hand, the stochastic simulations reveal that only slightly more than half of the trajectories

stays in the TetR region, while the others are either in the uncertain or the LacI region, resulting in

a completely different outcome compared to Fig. 4.11.

Observing the outcomes of the cases presented, we can conclude that unless the input is strong

enough to lead all simulations to the same equilibrium, as in the first two cases, there will be many

uncertain cells. Indeed, around the bistability region, even if the system starts from a certain region

of attraction, it will not necessarily remain there, but it will rather transit between the different re-

gions. Moreover, we highlight that changing the inputs close to this region does not really influence

the stability analysis, but rather the presence and impact of the noise. This shows the difference

between deterministic and stochastic stability analysis, proving the importance of including the

noise into the models. However, despite oscillations in the system, it still produces LacI and TetR

proteins, even though at a slower rate. It is worth noting that realizations alone cannot lead to this

conclusion, whereas the probability density function offers a clearer way to interpret the results,

even in the presence of oscillating trajectories. Finally, we emphasize that, as anticipated, the prob-

ability distribution converges to a stationary one after a fast transient.

In conclusion, the most significant result we have shown is that there does not exist an input so that

there are simultaneously two equilibria and no uncertain cells. This will be particularly valuable

when analyzing the controller’s response. Moreover, we have observed that when the system is

supposed to have a single equilibrium, actually also the other equilibrium slightly appears, show-

ing bimodality, i.e. the presence of two distinct peaks in the probability distribution even if the

underlying system is monostable. Similarly, when the system is supposed to be bistable, in reality

it is difficult to distinguish between the two equilibria. Therefore, we can claim that in the stochas-

tic framework it is not appropriate to refer to the concept of bistability; and to fully understand the

system’s behavior, it is essential to examine the probability density function.

4.4 Relay Controller Validation via Stochastic Models

A detailed analysis of the system’s properties has been performed, including stochasticity directly

into the model, differently from the approach in [44]. In this chapter, the stochastic model will

be utilized to test the controllers proposed in the paper and determine whether they yield compa-

rable results. Indeed, we recall that the controllers were previously tested using BSim, showing

their ability to reach the desired ratio (Fig. 4.5, 4.6). However, the toggle switch was modeled by
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deterministic equations, and, as we have observed, this simplification reduces the richness of the

real system and can lead to discrepancies when compared with stochastic simulations. Another key

difference with the study carried out in the paper is that we have not considered a realistic popula-

tion and chemostat dynamics, that they instead implemented using BSim. Nevertheless, our study

focuses on the foundational model, offering better understanding of the system and more appropri-

ate controllers designs. Finally, we anticipate that we have focused on the relay controller given in

(4.2), as it already returned interesting and novel results compared to those presented in the paper.

Therefore, for the purposes of this thesis, it is not necessary to explore more complex controllers.

In [44] a microfluidic chamber with about 200 cells was considered. Since the cells can be seen

as independent stochastic processes (indeed the probability of each cell being in a specific state at

a given time is a time-dependent random variable [84]), we can consider 200 simulations, which

were generated using the τ-leaping method because of its reliability and computational efficiency.

However, performing the simulations as before requires to assume ergodicity, which in this case

implies that every time an input is given, the cells will have enough time to stabilize. If this con-

dition holds, then simulations can be performed one after the other, with the state sampled at the

end of each run. Though, this would require an impractically long amount of time, which is not

feasible in practice. Indeed, in the paper they supposed possible substantial cells mutations after

24 hours. Therefore, it is necessary to consider an alternative method to realistically perform the

desired simulations.

A reasonable way to generate the simulations taking into account the previous considerations, is to

discretize the simulation time length and, at each time step, perform all the realizations simultane-

ously. In particular, the time steps we considered are of 15 minutes because it is the minimum input

switching frequency considered in the paper to not overstress the cell (Table 4.1). Although this

will result in longer computational time, it ensures reliable outcomes. To implement this algorithm,

during each time interval, the control law generates the inputs for the next 15 minutes, and then the

corresponding simulations are performed. The algorithm implements the relay controller in (4.2)

using the error at the end of the previous time step. Specifically, it calculates the error by counting

the number of cells producing LacI or TetR and taking the difference between these and the desired

values. Observe that the determination of which protein each cell produces has been made using

the regions of attraction of the paper, depicted in Fig. 4.4. Finally, it is important to note that the

controller was applied only after the first 1000 minutes, allowing the cells to first stabilize in the

most probable configuration, which should yield greater realism in our results. Below we report the

plot of 200 simulations generated as described, all starting from random initial conditions. Note

that the inputs are normalized to their maximum value, as done in the paper.
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(d) Heat map of probability distribution.

Figure 4.14: Relay controller (4.2) on a population of 200 cells, using the stochastic model of the

toggle switch. Parameters rd = 0.5, UaT c = 60ng/ml and UIPT G = 0.5mM.

From the figures, it is evident that the trajectories oscillate continuously, resulting in a significant

number of uncertain cells (approximately 30% of the whole population), making it impossible to

reach the desired ratio. Despite this, the controller is still able to maintain a balance between the

number of cells producing LacI and TetR, even though at levels below 0.5. This result differs from

the one presented in [44], which, as previously explained, used a significantly different simulation

approach. However, we can claim that our findings appear more realistic because the oscillations in

the input cause the cells to continuously move from one equilibrium to the other, which reasonably

leads to a large proportion of cells being in the uncertain state, as observed in the plots. This is

confirmed also by the fact that even when starting from the desired ratio, the controller produces an

error similar to before. This is visible in the figure below.
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Figure 4.15: Relay controller (4.2) on a population of 200 cells, using the stochastic model of the

toggle switch, starting at rd . Parameters rd = 0.5, UaT c = 60ng/ml and UIPT G = 0.5mM.

4.5 Discussion

In this chapter the importance of ratiometric control has been discussed, considering both the case

of multiple and single population. Regulating the relative number of two populations, or of two

subgroups within a single population, is indeed fundamental to prevent one group from displacing

the other, and can serve for diverse purposes ranging from multicellular controllers to innovative in-

dustrial applications. In this work, we focus on the promising single population approach proposed

by Salzano et al. in [44]. This is expected to perform better than the case with two populations

by avoiding problems related to different growth rates or communication molecules. Additionally,

it will enable fast switching between the two groups of cells, which can be particularly useful if

one of the groups dies or if the desired ratio significantly changes. The proposed method consists

in equipping each cell with a bistable toggle switch, whose state determines the role of the cell,

which can be modified by means of an external input. Therefore, ratiometric control problem is

solved using two feedback controllers, the relay and the proportional integral controllers. These

have been validated in silico via BSim simulations, which account for cell morphology, growth and

division dynamics, cell-to-cell variability, mutual cell interactions, and environmental parameters.

Although BSim represents a useful tool commonly employed to simulate cell populations, it mod-

els the toggle switch via delayed Reaction Rate Equations, which do not account for the intrinsic

noise typical of chemical reactions.

Therefore, the goal of this chapter was to firstly study the stochastic behavior of the toggle switch

under different inputs, and then to evaluate the controller performances on this model. To achieve

this, we started by introducing a method to compute the probability distribution from the stochastic

realizations. This allows to directly determine the value of the ratios and to better understand the
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system’s response. In particular, by looking at the heat maps of the probability distribution, we

observed that using only one of the two inputs allows to drive all simulations to one unique equilib-

rium; whereas, when using a combination of the inputs, especially close to the bistability region, a

significant amount of cells stay in an uncertain state, where it is not possible to determine whether

they are producing LacI or TetR. This still holds true even when starting from a deterministically

stable equilibrium, as trajectories continue to oscillate regardless of the initial conditions. There-

fore, no pair of input values satisfying the given convex combination (except for the exclusive input

solution) can yield zero uncertain cells. The presence of a high number of uncertain cells makes

it more difficult to identify the different equilibria, emphasizing the differences between the deter-

ministic and stochastic models, and supporting the importance of our proposal.

Finally, we have tested the proposed relay controller and obtained inconsistent results with those of

the paper, sufficiently supporting the reasons behind our thesis. However, in the future also the PI

controller should be tested in order to further understand the system.

The relay controller has been tested by implementing an algorithm which simulates simultaneously

all the cells of a population. This accounts for inherent randomness of chemical reaction, though,

it does not incorporate the chemostat dynamics that are likely considered in BSim. Including it

would allow to account also for the possibility that some cells can be flushed out of the chamber

and that new ones can appear, introducing additional noise at steady state. Hence, we can expect

that developing a method to include also this factor into our model would produce even more

oscillations in the simulations. However, even without considering it, our approach already yields

different results from those of the paper. In particular, using the relay controller, we have found that

this is able to balance the number of cells producing LacI and TetR, though leaving approximately

30% of the population in the uncertain state. It is important to note that, as mentioned earlier, even

the cells producing one of the proteins do not remain all the time in the corresponding region; they

likely stay there only for a small period of time and then move out. Since this applies to all cells,

there still is an overall production of the two proteins, but this is not maximized because part of the

population remains in the uncertain state. Therefore, an interesting direction for the future would

be to seek inputs able to create an high barrier between the equilibria, limiting unwanted switching.

If this is possible, then the barrier could be lowered when it is necessary to let the cells transit, and

then raised again to ensure robusteness.
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Conclusions

The thesis begins with a comprehensive study and detailed analysis of the current main modeling

and simulation methodologies, to then extend a typically deterministic technique to the stochastic

framework, proposing a possibly cutting-edge method to ease stochastic simulations. This has been

used to prove the importance of an accurate model which includes the noise, showing the funda-

mental differences with the deterministic framework. In particular, we considered the controller

proposed in the literature to achieve regulation of cell groups within a single population, which was

validated by BSim simulations. This has been tested on the stochastic model bringing novel, but

reasonable, and hence promising, important results. These can therefore be used to design more

appropriate and innovative controllers.

”Assumptions of Chemical Langevin Equation breaks down with genetic toggle switch.”

We provided a systematic evaluation of deterministic and stochastic modeling techniques for

chemical reactions, with different methods depending on the applications. In particular, we have

described the hypothesis underlying each of these methods, and presented a pseudo code to sim-

ulate the stochastic models. The Chemical Master Equation represents an exact description that

is very useful when the molecular numbers are low and fluctuations are significant, though its di-

mension equals the total number of possible states. It can be simulated exactly by the Gillespie’s

Algorithm, which can be particularly slow if the number of frequent reactions is high. This led to

the introduction of a new method, the τ-leaping approximation. Although this represents a valid

alternative, satisfying the leaping condition can be challenging, and potential negative numbers

of molecules must be handled. We presented an algorithm implementing a recent version of the

τ-leaping method which allows to easily compute online an appropriate value of τ , and which

switches to the Gillespie’s SSA when necessary. The Chemical Langevin Equation is applicable if

additionally the Poisson distribution describing the number of reactions in the τ-leaping approxi-

mation can be considered to be Gaussian. This provides an important simplified model which can

significantly ease the study and the simulations when valid, indeed, to it is possible to apply so-

phisticated tools commonly used with Brownian motion. Though, one has to be careful because for

example we surprisingly found that the assumptions broke down when trying to use the Chemical

Langevin Equation with the toggle switch case. Finally, the Reaction Rates Equation represents

a commonly used model, although it is valid only when the population and the volume tend to
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infinity, which justifies the use of the average concentration. This can still be highly useful when

studying the model, as in the case of the toggle switch to perform the bifurcation analysis, but, as

already said, it can often be unreliable or insufficient.

”Limitation of separation of time-scales in stochastic dynamics.”

One of the main results of this thesis is the validation in the case of the toggle switch of a

method to obtain simplified stochastic models starting from Reaction Rate Equation. This consists

in applying the time scale separation, a technique developed for ordinary differential equations that

allows to reduce the system dimension. We have presented a way to add the noise to this reduced

system and obtain stochastic simulations comparable with experimental data for various inputs.

Though, this holds for a first time reduced model, indeed, when we attempted to further reduce

the system, the resulting simulations showed less variability. This is likely due to the fact that,

by applying the quasi-steady-state-assumption to the deterministic equations, we neglected some

significant noisy terms. Therefore, it would be interesting to study a way to artificially include them

again in the reduced stochastic model in order to obtain realistic results also in this case. However,

in our work we considered the validated model, reduced to six variables. This is the one used

to show that even if the deterministic system predicts a certain output, actually in the stochastic

framework not only we have oscillations, but a completely different result can be obtained when

compared with the deterministic one.

”Stochastic dynamics show limitation of population ratio control.”

The final part of the thesis focuses on ratiometric control problem and in particular on the single-

population approach. This represents a recent and pivotal solution to balance the relative sizes of

two cell groups that are part of the same population. Because of its novelty, this proposal requires

further detailed study before it is possible to transform it a real experiment. Our contribution is

significant in this direction, because we found a novel result, by accounting for intrinsic randomness

of chemical reactions. This differs from the one present in the literature because it exhibits non-zero

steady state error due to the presence of an high number of uncertain cells. Indeed, we showed that

there not exists a pair of inputs satisfying the proposed convex combination such that there are two

equilibria and no uncertain cells. Therefore, for example to have an equal size of the two groups,

the relay controller provided continuously oscillating inputs to make some cells move to one region,

and when this becomes too populated, to let others return to the previous region, and so on. Though,

this inevitably causes a big portion of uncertain cells, as shown in our validation results. Despite

this, it is exactly this heterogeneity of the responses that enables ratiometric control.

aaaa
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4.6 Potential Future Directions

On the model...

This thesis opens up several questions for further research aiming to understand stochastic dy-

namics and achieve ratiometric control in a single population. As we have seen, at the base there

is the necessity of finding even more efficient modeling and simulation techniques. In particular,

some of the mentioned alternative methods can be investigated, focusing especially in finding a

way to generally apply the quasi-steady-state assumption in the stochastic framework. On the other

hand, a population and chemostat dynamics should be included in the stochastic model to account

also for cell interaction and spatial factors.

... and on the controller design.

The other key future direction consists in firstly testing the proposed PI controller, and conse-

quently develop more sophisticated controllers, including approaches that exploit stochastic dy-

namics. For instance, it could be interesting to look for an input pair able to ”control” the noise,

lowering the barrier between the equilibria when it is necessary to let the cells transit, and then

raising it again to ensure robusteness of the system. Such approach could lead to the design of

non-standard controllers, specific for the study case considered. Another interesting question is

to understand whether it is possible to find a controller able to decrease the number of uncertain

cells. We believe that to answer this question, future work will have also to investigate if precisely

maintaining the desired ratio is truly reasonable. Indeed, if the system slightly move away from it,

then a necessary transient time interval with possibly more uncertain cells is necessary to let cells

go in the desired regions and hence reach again the desired ratio.

To conclude...

We provided an insightful study of a possible solution to the ratiometric control problem. While

promising, this approach still requires further refinement and validation via in vivo experiments.

These create a fundamental bridge between theory and practice, albeit raising new significant chal-

lenges related to real-world experiments.
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