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Abstract

The goal of this thesis is to study hierarchical mergers of binary black holes in evolving nu-
clear star clusters. Nuclear star clusters are dense and heavy objects located at the center of
galaxies. Their mass and density can go up to 108Md and 105Md{pc3. Such conditions prove
excellent to study hierarchical mergers. We begin by modeling a nuclear star cluster that is
growing by star cluster infall through dynamical friction. Our goal is an expression for NSC
mass that is growing with time. From this mass, we can infer the size of the NSC. These two
quantities are sufficient to derive the necessary physical properties like escape velocity and
density. We then implement this model into the FASTCLUSTER code, intensively updating
the code in the process. To simulate the phenomenon, we also create a black hole library that
is forming in the star clusters. We run 12 different simulations, varying the mass of galaxies,
type of galaxies, and initial population of black holes. We find that not all nuclear star clus-
ter are excellent for hierarchical mergers. Small escape velocity in lighter nuclear star clusters
and long dynamical timescales in heavier nuclear star clusters stops hierarchical mergers. We
also find that changing the initial mass population of black holes from local black holes pro-
duced in the nuclear star cluster to migratory black holes originating in star clusters heav-
ily alter the binary black hole dynamics inside. We find that only a few NSCs are capable of
producing black holes with mass greater than 1000Md. Finally, we compare our results with
gravitational wave events to understand if our simulations are able to reproduce those events.
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Useful Abbreviation

Term Definition

BH Black hole
BBH Binary black hole
IMBH Intermediate mass black hole
SMBH Super massive black hole
MBH Massive black hole
NSC Nuclear star cluster
GC Globular cluster
YMC Young assive cluster
LVK LIGO-Virgo-KAGRA
EM Electromagnetic waves
GW Gravitational waves

GWTC GW transient catalog
CE Common Envelope
MS Main Sequence
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trep Replenishment time
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tform Black hole formation time
t3bb Three body interaction time
t121 Exchanges time
LL Local BH in late galaxy
LML Local and migratory BH in Late galaxy
LME Local and migratory BH in Early galaxy
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Chapter 1

Introduction

In September 2015, a hundred year long search for gravitational waves (GW) gave results.
The Laser Interferometer Gravitational-wave Observatory (LIGO) at Hannover and Livingston,
US, detected a signal coming from the merger of two black holes (BHs), GW150914, (Ab-
bott et al. [2016]). Since then, we have had almost a hundred GW detections, including the
third gravitational waves transient catalog (GWTC-3 Abbott et al. [2021]). Binary black holes
(BBHs) contribute to most of these observations.

These many observations of GW have raised many important questions. BBHs were thought
to exists from a long time ago but GW150914 was the first direct proof of them. Along with
the existence of BBHs, this observation confirmed that BBHs could merge within Hubble time.
Typical BBHs have merging timescales much larger than the Hubble time. We shouldn’t see
any GW events in our time. GW observations have forced us to think of processes that could
solve this problem. One possible solution may be common envelope. When an original binary
evolves, Roche-lobe overflow may cause the donor’s outer surface to envelope the binary. This
common envelope can suck the binary’s orbital energy, causing it to shrink to a radius that can
merge within Hubble time. We will discuss this process in depth in chapter 2.

Many of the GW observations have BHs with mass greater than 20Md, which contradicted
earlier observations of BHs through X-ray binaries that had masses less than 20Md. The X-ray
observations were supported by theories that did not predict BHs of masses greater than 30Md.
However, GW observations broke the norm, forcing us to revise the theories of stellar evolu-
tion. Supporting the change were observations of BHs in pair-instability mass gap, which we
thought weren’t possible. For massive stars that have helium core between the masses of 64Md

and 133Md, the photons inside the core are powerful enough to produce electron-positron pair.
The runaway collapse of the core due to this process would disrupt the star in a violent event
called pair-instability supernova, leaving no compact remnant behind. However, we have found
observations with primary mass in this mass gap, GW190521 and GW191109 010717. There
is some other mechanism for the formation of these BHs and also the formation of their binaries.

Maybe BBH merger itself is the phenomenon behind the formation of massive BHs. Many
of the GW events like GW170823 and GW170729 have remnant BHs in the pair-instability
mass gap. However, this possibility raises other questions like: how did a remnant BH from a
merger form a binary and merge a second time within Hubble time? Where are BBH merg-
ers so efficient? We will see in chapter 2 that Hierarchical merger, which is a consequence of
dynamical formation of BBH, can be the answer to these questions. In special environment
where density of stellar objects is extremely high like globular clusters (GCs) or nuclear star
clusters (NSCs), stars and their remnants may interact with each other frequently, resulting
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in processes like collision, three-body interactions, and exchanges. BHs may similarly interact
in these dense environment and form binaries. Under repeated interactions, these BBHs may
compress, eventually merging. If the remnant BH is retained by the cluster after the merger, it
may go through the same process again. This would not only explain the existence of heavier
BHs but also them being merging again.

Among star clusters, NSCs prove more efficient in hierarchical mergers than GCs or young
massive clusters (Mapelli et al. [2021]). NSCs are compact dense objects present at the center
of galaxies. They are extremely heavy with masses reaching up to 108Md and number density
reaching up to 105pc´3. As we will see in chapter 2, such dense environments make it extremely
easy for BHs to form a binary and eventually merge.

The formation and evolution of NSCs is still an active field of research. Observation of
stellar age of NSCs have shown that stars of varying ages are found in NSCs (Walcher et al.
[2005],Kacharov et al. [2018]). This suggests a long star formation history, boosting the in-situ
star formation theory, where gas accretes onto the NSC. Observation of GCs around nucle-
ated galaxies found that there is deficit of GCs near the center of these galaxies (Lotz et al.
[2001],Capuzzo-Dolcetta and Mastrobuono-Battisti [2009]). This fact promoted another theory
for NSC formation, the globular cluster migration theory. In chapter 3, we will discuss these
theories in depth, eventually settling on globular cluster migration for the purpose of this thesis.

Globular cluster migration states that any star clusters near the center of galaxies would
spiral in through dynamical friction (Tremaine et al. [1975]). It is to be noted that the only
requirement for the scenario is for a cluster to be formed sufficiently close to the center of the
galaxy, it does not need to be a GC. The terminology globular cluster migration remains for
historical reasons. This is a complex process that depends on the mass and spatial distribution
of the star clusters and on the host galaxies. N-body simulations were performed to observe
this phenomenon (Arca-Sedda and Capuzzo-Dolcetta [2014]) and they formulated an analytical
model that produces similar results. We will recreate this model in chapter 3 to extract physical
properties like NSC mass, density, velocity dispersion, half-mass radius for our future analysis.

In this thesis, we are interested in studying hierarchical mergers (refer section 2.3) of BBHs
in realistic NSCs. Recreating this process through N-body simulation is computationally ex-
pensive. For a single merger, we would have to take into effect the forces of the background
stars in the cluster. Semi-analytic methods greatly reduces the computational cost, also giving
us the freedom to explore the parameter space.

FASTCLUSTER (Mapelli et al. [2021]) is a semi-analytical population synthesis code that
simulates hierarchical mergers. We will use it to simulate our interest. In chapter 4, we will
review FASTCLUSTER, its initial condition, methodology, and what physics goes behind the
process. We will also see the results of BBH mergers in unrealistic and non-evolving NSCs. In
the paper introducing the code, they have found NSCs excellent for hierarchical mergers. But
are all NSCs efficient? Does the formation channel of NSC affect the dynamics of BBHs inside?
Does the evolution of NSC through accretion of mass change the dynamics of BBHs? These
are the questions we will try to answer in this thesis.

To study these questions, we will need to introduce a realistic model of NSC into FAST-
CLUSTER.We will implement globular cluster migration scenario into FASTCLUSTER, chang-
ing the code deeply in the process. We will also need to create new BH libraries for our purpose.
This will be discussed in chapter 5.
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In chapter 6, we will see the result of our analysis. We indeed find that not all NSCs produce
massive BHs beyond 1000Md. Depending on the size and mass of the NSCs, we get different
type of BH dynamics.



Chapter 2

Binary Black Holes

Stellar mass BHs form as the end results of stars and are some of the most exotic objects of
the universe. They are characteristic of their strong gravitational field from which, even light
cannot escape. In a BBH, two of these extreme objects interact through the exchange of energy
and momentum, exhibiting phenomenon that can’t be observed elsewhere. They emit GW,
which causes them to spiral towards each other until they merge into a single more massive
BH. BBH are of great interest to astrophysicists as they provide insights from stellar evolution
to galaxy formation.

Physical properties of the binaries define the GW that are emitted. Conversely, we can
say the GW carry away information regarding the binary. Thus, it becomes vital to study the
properties of a binary that may affect its evolution and GW emission. BBH are characterized
by the following properties:

• Masses: Mass play an important role in determining GW emission, the merging timescales,
and even the remnant’s state. We will suppose m1 and m2 to be the two BHs’ masses
with m1 ě m2. Since they are in a binary, we will also define reduced mass for the system,

µ “
m1m2

M
, (2.1)

where M “ m1 `m2 is the total mass of the system. Another important quantity is chirp
mass of the system, defined as,

Mc “ µ3{5M2{5. (2.2)

• Semi-major axis (a): The orbital separation between the masses define how long it
will take to merge. In a cluster system, it will determine if a binary is strong enough to
endure the interactions or not.

• Eccentricity (e): This quantity also defines how fast a merger will take place. If a
binary is highly eccentric, it releases energy through GW much faster than a circular
binary.

• Spins: Each BH has a spin, passed to them by their progenitor stars. We will call them
S⃗1 and S⃗2. Their alignment with the orbital angular momentum greatly influences the
evolution of the binary.
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2.1 Formation Channels of Binary Black Holes

Isolated Formation

With more than fifty percent of current stars in binaries or higher order systems (Tian et al.
[2018]), it is no surprise that we expect BHs to remain in binaries, albeit a smaller number.
BBHs formed in such a way are called original binaries. In this section, we discuss some of the
most important binary evolution processes.

Mass Transfer

If matter is exchanged between two stars of a binary, we call it mass transfer. It can happen
either through stellar winds or Roche-lobe overflow. When a star loses mass through stellar
winds, the companion may be able to capture some of the mass depending on the separation
between them, the velocity of the wind, and the gravitational potential of the companion.
Hurley et al. [2002] gave a nice expression to describe the accretion by stellar winds based on
Bondi-Hoyle mechanism,

m9 2 “
1

?
1 ´ e2

ˆ

Gm2

v2w

̇2
αw

a2
1

r1 ` pvorb{vwq2s3{2
|m9 1|, (2.3)

where e is the eccentricity of the binary, m2 is the mass of the accretion star, vw is the
velocity of winds, vorb “

a

Gpm1 ` m2q{a is the orbital velocity, αw „ 3{2 is the efficiency
constant, and m9 1 is the mass loss by the donor star through stellar winds. If we were to input
the typical quantities of stellar winds (m9 1 “ 10´3Md{yr and vw “ 1000km{s), we will find the
mass accretion too low or inefficient. The companion receives an extremely small fraction of
the mass lost by the donor.

Roche lobe overflow is a much better mechanism for mass transfer. Roche lobe is the region
around a star where gravitational forces are balanced out by its companion. It is the maximum
equi-potential surface where matter is bound to the star. Roche-lobe has a teardrop shape
with the apex of teardrop located between the two bodies, also called the L1 Lagrangian point.
If matter of the first star exceeds the Roche lobe, it can fall-off to the companion via L1 La-
grangian point. This process is called Roche lobe overflow. Mass transfer alters the binary’s
masses, changing masses and radius for both stars. If the mass loss in not conservative, the
binary may lose angular momentum, affecting the semi-major axis.

As mass transfer begins, the donor’s radius changes along with the Roche lobe’s radius. If
the Roche lobe compresses faster than the donor’s radius, we can have unstable and runaway
mass transfer, meaning that the mass transfer rate increases speedily. If the donor’s core and
envelope are clearly distinct, the binary can enter common envelope, where the donor’s envelope
surrounds both stars.

Common Envelope

When the binary enters the common envelope (CE) phase, the envelope stops rotating with the
binary inside. For the binary, it is like suddenly moving in a dense medium. The gas causes a
drag to the binary’s rotation, sucking away energy from it. If the envelope uses this energy to
expand end eventually eject, then we will get two naked stellar cores whose orbital separation
is much smaller than the original binary. This ejection is crucial for the formation of BBHs
whose orbital separation is small enough for them to merge within Hubble time.
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Figure 2.1: Common Envelop Scenario: A main sequence star is in binary with a BH. When
the main sequence stars enters red giant phase, its outer radius can extend until it over-
fills the roche lobe and eventually form a common envelope around them. The core and
BH spirals towards each other, giving energy to the CE. If the CE is ejected we can have a
Wofl-Rayet star and BH binary that can eventually evolve to form a BBH. If the core is not
ejected, the BH and core mergers in the CE before a BBH can form. (Mapelli [2020])

Conversely, if the envelope isn’t ejected, it keeps extracting energy from the binary, causing
the binary to prematurely merge in the end. The end result is a BH covered by an envelope.

We will use α formalism developed by Webbink [1984] to describe the common envelope.
The basic concept is that the energy required to eject the envelope should be a fraction of the
energy lost by the binary during inspiral.

∆E “ αpEf ´ Eiq “ α
Gmc1mc2

2

ˆ

1

af
´

1

ai

̇

. (2.4)

mc1pmc2q are the masses of the cores of primary(secondary) body. On the other hand, the
binding energy of the envelope is,

Eenv “
G

λ

„

menv,1m1

R1

`
memv,2m2

R2

ȷ

, (2.5)

where menv,1pmenv,2q is the envelope masses of the primary(secondary) member. λ is a pa-
rameters that captures the compactness of the envelope. The smaller λ is, the compact the
envelope is and the more energy is needed to eject it. By forcing ∆E “ Eenv, we can derive
and expression for the final semi-major axis for which the envelope will be ejected. If af is
smaller than the sum of the two core radii, it means the binary would merge before enough
energy to expel the envelope is obtained. Conversely, if it is larger, the binary can survive.
These surviving cores can evolve to form BHs.

The physics behind CE is much more complex than what we have discussed here. We
haven’t considered radiation pressure, nuclear energy, tidal effects. Nevertheless, we now have
a general idea of how isolated binaries evolve to BBH.
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Dynamical Formation

Most of the stellar binaries we observe have large semi-major axis for GW emission to have any
impact. The coalescence time, which is the time taken by a binary to merge from GW emission
can be calculated according to the following equation (refer Appendix A),

τ “
5

256

c5R4

G3M2µ
, (2.6)

where R is the orbital separation or semi-major axis of the binary, M is their total mass, and
µ is their reduced mass. For a separation of 10AU and BBHs of 10Md each, we get coalescence
time in the range of,

τ « 1018yr

ˆ

R

10AU

̇4ˆ
20Md

M

̇2ˆ
10Md

µ

̇

. (2.7)

If all the binaries in the universe were separated with semi-major axis larger than a few
AU, we won’t receive GW within our time unless some mechanism shortens the semi-major
axis below 1AU . This was known as the final AU (Stone et al. [2017]). As we saw in the above
section, CE is one of the solutions. CE helps in shortening the semi-major axis with it taking
away a fraction of the binary’s energy. We will now discuss another possible mechanism, called
the dynamical channel.

Dynamical channel only becomes prominent in dense systems where the density of stellar
bodies go above 103pc´3. Such densities can easily be achieved in star clusters. Star clusters
are also locations for the birth of massive stars that can be progenitors of BHs. As such, we
expect a significant population of BHs to be present in star clusters. There are several types
of star clusters:

• Globular cluster are old, heavy, with high densities. They can have 104 ´ 106 stars with
number density going up to 105 near the center. They have long lifetime and can form
along the galaxy. A fraction of the galaxy’s baryonic mass is within these clusters.

• Young massive clusters (YMC) are characterized by intense star formation episodes. They
are also stellar nurseries for massive stars. They have masses around 104Md and number
density at 103pc´3. They are short lived, often disrupted by the galaxy’s tidal effect,
releasing stars in the galaxy plane or field. If they survive the tidal disruption, they may
evolve to open clusters.

• Nuclear Star Clusters are the heaviest star clusters with their mass going up to 108 ´

109Md. We will discuss more of their properties in the next chapter.

Lastly, we can also have dynamical formation in the accretion disk around a supermassive black
hole (SMBH), where it is not the stars that influence the dynamics but the disk.

The main driving force behind the dynamics of stars is gravity. We can distinguish these
interactions in the following ways:

Three Body Interactions

In star clusters, it is possible for three bodies to interact with one taking away the kinetic energy
of the system. The remaining two bodies gets bound in a binary, whose orbital separation
depends on their initial conditions and ejected energy. For a star of mass m, its cross scattering
area due to gravity is,

σcs “ πb2, (2.8)
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Figure 2.2: Three single stars can come close enough to each other and interact. The smallest
mass will carry away majority of the kinetic energy and get ejected from the cluster. The
remaining two will form a binary.

where b is the impact parameter, the distance at which gravitational forces significantly
alter the path of the star. Impact parameter depends on the mass and velocity of the star. If
the velocity dispersion of the cluster is v and density of stellar bodies in the environment is n,
the interaction rate between two bodies is given by nσcsv. For a third body to interact with
these two, it should be within a volume around them, which can be shown by nb3. Thus, for a
cluster with N stellar bodies, their rate of interactions is given by λ,

λ “ Nn2σcsvb
3

“ πNn2vb5.
(2.9)

Impact parameter, b, can be written as 2Gm{v2, giving us

λ “
32πNn2G5m5

v9
(2.10)

Inverting this expression gives us the timescales on which a star of mass m can form a binary
through three body interactions.

t3b “
v9

32πNn2G5m5
. (2.11)

An important parameter to notice here is the dependence of three-body timescales on ve-
locity dispersion of the cluster. A small increment in the velocity may heavily alter the time
taken to form a binary. On the contrary, the heavier the star is, the less time it takes to form a
binary, owing to its greater gravitational force. If we insert the characteristic values for physical
properties of a cluster in equation 2.10, we get an estimate on how frequently such interactions
occurs within a cluster. For a cluster with 106 bodies, its number density goes like 105 and
velocity dispersion is in the range of „ 30Km{s. A star with mass of 10Md will form binary
in,

t3b “ 152Myr

ˆ

v

30Km{s

̇9ˆ
106

N

̇ˆ

105pc´3

n

̇2ˆ
10Md

m

̇5

(2.12)

Within just 152 million year after the star forms in a dense cluster, it can enter a binary.
It can be seen that an increase in velocity dispersion by a factor of two or v “ 60Km{s results
in the three-body time to increase to 77.8 billion years. Conversely, an increase in mass of the
star by a factor of two, m “ 20Md, the time decreased to 4.75 million years. These two factors
will play an important role when we will discuss the dynamics of BBHs in different NSCs. The
binary formed after this time would be hard, it won’t be disrupted by other stars in the cluster.
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Figure 2.3: When a BH with mass m3 approached a binary that is soft with m3 ą m2 and
m1 ą m2, it can kick the lighter mass, m2 , from the binary. m2 will carry away the initial
kinetic energy of the heavier mass, getting ejected from the cluster

Exchanges

We have discussed how single stars would form binaries but a fraction of stellar bodies start
their lives as binaries. These original binaries may be soft, meaning they can be disrupted by the
dynamics of the cluster. A heavier body can knock the lighter body of the binary and take its
place. This process favors the formation of heavier binaries, which are harder. Such interactions
may completely disrupt the binary too. This can be determined by comparing the binding
energy of the binary to the average kinetic energy of the cluster. If the velocity dispersion of
the cluster is v, the orbital separation of the binary must be smaller than a “ 2GM{v2 for it
to survive an average interaction. Otherwise the binary would get disrupted. We will derive an
timescale estimate like we did before to understand this process well. The calculation would
deviate a little, owing to the consideration of a binary. The cross section we take this time is
the area of the binary.

We can consider the binary as a single body, which greatly eases the calculation. The rate
of interaction is given by nvσcs, so the timescales of exchanges are,

t12 “
1

nvσcs

(2.13)

The cross section for such interactions is,

σcs “ 4
?
πpa2 ` abq, (2.14)

where a is the semi-major axis and b is the impact parameter. The impact parameter also
differs from the three body case since we consider the gravitational effect of the binary with
a third body. b “ GM123{v

2, where M123 “ 2m ` mb. Here, m is the average mass of stellar
bodies in the cluster while mb is the BH for which we are calculating the timescale. For hard
binaries, the semi-major axis is usually small, which causes the second term in equation 2.14
to dominate. So, the exchange timescale can be simplified to,

t12 “
1

4
?
πnvab

“
v

4
?
πGM123na

.
(2.15)

The average mass of stellar bodies in clusters can be taken as 1Md. For a BH of mass
10Md, semi-major axis of 1AU, and similar cluster properties as the three body case, we arrive
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at the expression,

t12 “ 180Myr

ˆ

v

30Km{s

̇ˆ

12Md

M123

̇ˆ

105pc´3

n

̇ˆ

1AU

a

̇

. (2.16)

For these values, exchange timescales are similar to three body timescales. This won’t nec-
essarily be true for different parameter values. Exchange timescales is not heavily dependent on
velocity dispersion and mass. A further addition to this simplification is to consider the fraction
of stellar bodies within the cluster that are in binaries. This may change the timescales by an
order too.

During an exchange scenario, the binary may harden by giving energy to the ejected body.
By conservation of energy, this kinetic energy comes from the binary’s binding energy. The
binary recoils by conservation of momentum. If this recoil velocity is larger than the escape
velocity of the cluster, even the binary may escape. After the binary is ejected from the clus-
ter, its orbital evolution only depends on GW emission. As we have seen, depending on the
semi-major, we may never get to observe the merger of binaries that were ejected.

We can derive an expression for the semi-major axis that will eject the binary. On average,
an exchange would decrease the semi-major axis by a factor of 7/9 (Kocsis [2022]), which we
will call δ. We can calculate the difference in energy brought my this,

∆E “ ´
Gm1m2

a
´

ˆ

´
Gm1m2

7a{9

̇

“
Gm1m2

a

ˆ

1

δ
´ 1

̇

.

(2.17)

In our case, m1 “ m2 “ m. This energy is carried by the binary and the third body.

∆E “
1

2
p2mqv2bin `

1

2
m3v

2
3 (2.18)

From conservation of momentum, we also have

2mvbin ` m3v3 “ 0 (2.19)

Substituting v3 “ ´2mbin{m3 in equation 2.18, we compare it with equation 2.17. For the
binary to be ejected from the cluster vbin ě vesc, so we get an expression,

aej “

ˆ

1

δ
´ 1

̇

mm3

p2m ` m3q

G

v2esc
(2.20)

For all three bodies with mass 10Md and escape velocity of 30Km{s, we get the semi-major
axis value,

aej “ 0.36AU

ˆ

m

10Md

̇ˆ

30Km{s

vesc

̇2

(2.21)

A binary whose total mass is 20Md will get ejected by interacting with a BH of mass 10Md

if its semi-major axis is smaller than 0.36AU . If escape velocity of the cluster increases, the
semi-major axis decreases, making it harder for the binaries to be ejected by recoil. Binaries
can harder more in heavier clusters.
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Dynamical Friction

When a massive BH moves in dense clusters, it gets influenced by the background field of stars,
causing it to lose kinetic energy. This process is called dynamical friction and causes the BH
to inspiral towards the depth of the potential well, which is the star cluster’s center. Due to
stellar bodies infalling towards the core of the cluster, the central density is greater than the
cluster. According to equations [2.12], [2.16], the increase in density decreases the timescales,
making three-body interactions and exchanges more efficient. BHs in the core form binaries
more quickly than elsewhere in the cluster.

Chandrasekhar [1943] gave us the drag felt by a star of mass M, moving through a homo-
geneous ocean of stars,

dv

dt
“

4πG2M

v2
ρ ln Λ, (2.22)

where ρ is the density of stars. Λ is called Coulomb logarithm and is the ratio between the
maximum and minimum impact parameter for the star. (For our application, we will take lnΛ
as 10). The heavier a star is, the more drag force it will experience. If the star is moving with
higher velocities, it will experience less drag. Inverting this equation can give us an idea on
what timescales would this star inspiral to the core,

tDF “
1

4πG2 ln Λ

v3

Mρ
(2.23)

For typical values in a star cluster, this comes out to be,

tDF “ 11.25Myr

ˆ

v

30Km{s

̇3ˆ
10Md

M

̇ˆ

105Md{pc3

ρ

̇

. (2.24)

Equations 2.22 and 2.23 can be applied to a multitude of cases in astrophysics. They define
the friction a star cluster feels inside the galaxy, which may spiral into the NSC. They can also
explain the inspiral of galaxies in large galaxy clusters.

In calculating three-body timescales, exchange timescales, and dynamical friction timescales,
we have kept the cluster properties and BH mass constant and typical. Comparing the three
timescales give us an idea what might occur in the cluster. If a BH forms at the edges of a star
cluster and we assume that all dynamical processes begin at once, dynamical friction will take
the shortest time. The BH is brought to the core before it forms a binary. It is safe to assume
that most of the BHs form hard binaries when they reach the core. This fact is assumed in
creating the FASTCLUSTER code, which we will discuss in Chapter 4.

2.2 Dynamical Evolution of Binary Black Holes

Heggie [1975] showed us that in star clusters, soft binaries will go softer while hard binaries
will go harder. All the future interactions will only take away energy of the binary and help
them merge in a process called ’Hardening’. We will now discuss the changes hardening brings
to the orbit of a BBH. If a third body comes near the binary and extracts internal energy, it
will cause the kinetic energy to increase and binding energy to decrease,

Eb,f “
Gm1m2

af
ą

Gm1m2

ai
“ Eb,i, (2.25)
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which implies that af ă ai if the masses are conserved. The binary shrunk when as a
consequence to the third body passing by. For our work, we will derive the cumulative effect
of hardening from the entire cluster on the binary like we have done in the previous section.

The cross section for a three body encounter is,

σ “ πb2max, (2.26)

where bmax is the maximum impact parameter the third body can have to influence the
binary, i.e. exchange of energy is not zero. Under the assumptions that the binary is hard and
the exchange of energy is significant (bmax „ a), we can rewrite the above equation as,

σ “ πbmaxa “
2πGpm1 ` m2 ` m3qa

v2
, (2.27)

where we have used the fact that b can be written as 2Gm{v2. Similar to our discussion for
exchanges, the rate of interactions is given by nvσ or explicitly,

dN

dt
“ nvσ “

2πGpm1 ` m2 ` m3qna

v
(2.28)

We are interested in finding the energy change brought by these interactions. We will
combine the above equations with results of Hills [1983]. Using their numerical simulations, we
can write the average change in binary energy per encounter is,

ă ∆Eb ą“ ξ
m3

m1 ` m2

Eb. (2.29)

ξ is a post encounter energy parameter that can estimate to „ 0.2 ´ 1 from numerical
simulations (Quinlan [1996]). It can be seen from the above expression that for binary with large
binding energy, their loss would also be great, which is Heggie law written in mathematically
expression: hard binary will tend to harden. The above expression has been derived under
three assumptions: the binary should be hard, the third body should pass close by (b À 2a),
the mass of the third body shouldn’t be greater than the binary m1 ` m2 ąą m3. Now, we
can combine equation 2.28 and 2.29 to write,

dEb

dt
“ă ∆Eb ą

dN

dt
“

πξG2m1m2ρ

v
, (2.30)

where ρ “ n ă m ą, the average mass of the cluster mass (similar to what we did in
exchanges). We can translate the above expression in semi-major axis a using equation 2.25,

da

dt
“ ´2πξ

Gρ

v
a2, (2.31)

The change is coherent with what we saw earlier. The greater the density, the more faster
they will merge and opposite can be said for velocity dispersion.

As the semi-major axis becomes smaller and smaller, so does the cross section for hardening.
It will become inefficient below a certain a and GW emission will take over the semi-major axis
evolution. Peters [1964] gave us the change in semi-major axis as GW takes away the energy,

da

dt
“ ´

64

5

G3m1m2pm1 ` m2q

c5a3p1 ´ e2q7{2
f1peq, (2.32)
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where e is eccentricity, f1peq “ 1 ` 73e2

24
` 37e4

96
. We can write the combined equation for

semi-major axis’s evolution as,

da

dt
“ ´2πξ

Gρ

v
a2 ´

64

5

G3m1m2pm1 ` m2q

c5a3p1 ´ e2q7{2
f1peq, (2.33)

We know that as semi-major axis decreases, hardening becomes inefficient while GW be-
comes stronger. From the above expression, we can derive the precise a at which GW takes
over hardening by equating the two sides,

aGW “

„

32G2

5ξc5
vm1m2pm1 ` m2q

ρp1 ´ e2q7{2
f1peq

ȷ1{5

(2.34)

For all a ě aGW , the semi-major axis shrinks due to hardening while for a ď aGW , GW
emission shapes the binary. We can compare this expression to equation 2.21 to find an im-
portant condition for the binary to merge within the cluster. If aej ą aGW , it will be ejected
by three-body interactions before GW can take over, causing this binary to merge outside the
cluster on a much longer timescale.

Eccentricity of the binary similarly evolves through the two processes,

de

dt
“ 2πξκ

Gρ

v
a ´

304

15
e
G3m1m2pm1 ` m2q

c5a4p1 ´ e2q5{2
f2peq, (2.35)

where κ ” de
d lnp1{aq

, defined in Quinlan [1996]. Together with the semi-major axis equation,
these two equations govern the binary’s evolution. The coalescence time with eccentricity will
add a term in equation 2.6

τ “
5

256

a4c5

G3m1m2M

p1 ´ e2q7{2

f1peq
(2.36)

Binaries with higher eccentricities have shorter coalescence times.

2.3 Hierarchical Mergers

I will present the summary of this chapter considering the life of one BH in a star cluster.

A star forms randomly in the cluster. The homogeneous sea of background stars affect the
star’s motion as it spirals towards the cluster’s core. Suppose that this star has a mass that will
surely cause it to end up as a BH. Depending on this mass and metallicity, this star may turn
to BH along the journey to the core or it may turn afterwards in the core. Whenever it turns,
the BH will receive a supernova kick, which will once again throw it towards the outskirts of
the cluster.

The BH is similarly affected by the homogeneous background, inspiraling towards the core.
When it reaches the core, its environment is so dense that now other stellar bodies (BH from
now) are no longer background. They can directly interact with our BH, changing its velocity
and direction by a significant factor. At an instance, our BH is hurling towards two other BHs.
The three BHs interact and the lightest BH bears the brunt. It is thrown away by the remaining
two, our BH now has a companion. It has just begun a stable orbit with its companion when
an intruder comes and completely destroy our BH’s binary. All three BHs are thrown away.
After many such interactions, our BH finally manages to form binary with a companion. The
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Figure 2.4: Evolution of semi-major axis with time for three different mass binaries. Massive
binaries take shorter time to merge, a result of equation 2.33. When semi-major axis is large,
the evolution curves of all three binaries are same due to hardening, which only depends on
the cluster properties. When a „ aGW , GW begins to dominates and separates the evolution
tracks according to the masses. Image credit:Mapelli [2020]

binary is hard and now, all these interactions no longer threatens its existence. Instead, they
only help the binary become more harder until the force of gravity becomes too strong.

Ripples in the fabric of space-time spreads at the expense of the binary’s energy. The loss
through GW only increases with time until the BHs merge in a violent explosion of GW. Almost
ten percent of the binary’s total mass is converted to GW that spread across the universe. The
remnant BH is now around ninety percent of the binary’s mass and receives a relativistic kick
from the merger. Fortunately, the force of this kick was unable to completely remove it from
the cluster. It is now just a heavier BH that can retrace the footsteps of its progenitor.

The phenomenon of one BH merging several time is called Hierarchical mergers. This
scenario is what we study in this thesis. FASTCLUSTER, which we will see in chapter 4, is
based on such logic.



Chapter 3

Nuclear Star Cluster

Nuclear Star Cluster are dense compact objects present at the center of galaxies. For a long
time, it was known that central regions of galaxies manifested a surface brightness peak, re-
gardless of their morphological type. Limiting the study of this phenomenon was our inability
to resolve the source and disentangle the compact nucleus from the galaxy’s density profile.
Fortunately, as techniques and telescopes advanced, we were able to prove that nuclear stellar
clusters were indeed a separate feature of the galaxy. It was first shown in M31 by Light et al.
[1974] since dust prevented us from observing Milky Way’s center.

With advancement in telescopes, particularly the breakthroughs brought by Hubble Space
telescope (HST), the study of NSC received attention from both theorist and observational
people. In section one, we will see the properties deduced from observations. Based on the
properties, we will theorize some scaling relations and formation channels for NSC in section 2
and 3. In section 4 and 5, we will briefly discuss the dynamics inside a cluster and the presence
of SMBH. Finally, in section 6, we will create a semi-analytical model for the globular cluster
migration scenario.

3.1 Properties of NSC

With the last two decades of observations, we have been able to deduce the following properties
of NSC.

• Size: Due to their location and environment, it is not easy to determine the sizes of NSCs.
HST was only able to resolve the closest NSCs to us. We define effective radius reff as
the radius that contains half of the NSC’s light. Through observations, we have found the
median of reff to be around 3.3`7.0

1.9 pc, which is comparable to globular clusters. Although,
we have a longer tail in NSC, going up to 30 ´ 40pc. If we use Dehnen density profile
to explain the galaxy’s density, we can translate effective radius to the half-mass radius
using a simple equation: rhm “ p4{3q ˚reff (Dehnen [1993]). For our analysis, we will find
the half-mass radius more functional. NSC also shows non-spherical characteristics, with
eccentricities going as high as 0.6. In Late-type galaxies, the NSCs also exhibit a flattened
shape. Their shape scales with the host galaxies and may prove to be a constraint towards
their formation mechanism.

• Luminosity and Mass: NSCs are very luminous objects and are sometimes hard to
directly distinguish them from the galaxy’s central luminosity. We need sophisticated
methods to find their luminosity. From their brightness, we can extract their stellar
masses using relations of color and mass-to-light ratio for stellar populations. We can

15
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Figure 3.1: NSC in the center of Milky Way. The image is taken in infrared using the NaCo
instrument on VLT. Image Credit Stefan Gillessen, Reinhard Genzel, Frank Eisenhauer
(ESO).

also use spectroscopic and dynamical approaches to measure their masses. We found that
NSC have masses ranging from 105 ´ 109Md with the distribution peaking at 106.5Md.

• Density: From the above discussed mass and radius, we can already estimate that NSCs
are extremely dense objects. From the observed data, we can make a few conclusions: i)
For NSCs of mass lower than 106Md, the radius is independent on mass while beyond that,
the radius increases proportional to mass. The quantities change is such a way that the
surface density is preserved. ii) For a NSC of same mass, the NSCs in late-type galaxies
are more compact than in early-type galaxies. (We will use this fact in our simulation
later.) iii) The most massive NSCs can go up to 106Md{pc2 in surface density. Central
volume densities in NSCs are also within the same range, going even up to 107Md{pc3 in
our Milky Way.

• Age and Metallicity: If we could resolve individual stars in an NSC, it becomes easy
to measure the age and metallicity. Unfortunately, this is only possible for the nearest
NSCs. For others, we have to fit their integrated light to find the stellar population. In
the integrated light, we can easily determine the young stars population as they dominate
the light. But it is difficult for the old population. The latter is important since they can
tell us when the NSC was formed.

In late-type galaxies, we find that the data prefers an extended history of star forma-
tion rather than a single stellar population. Although the older population dominates
the NSCs, we also find stars younger than a 100 Myr, suggesting a recent burst in star
formation. The presence of these younger generation stars prefers the in-situ formation
model for NSC. These younger generation stars are more concentrated at the center of
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NSCs.

In early-type galaxies, since the galaxies possess less gas to create stars, the NSCs have
older population compared to late-type galaxies. However, we also find that NSCs are
younger than their surrounding host galaxies. The physics isn’t well understood and this
is still an active field of research.

• Kinematics: The stars in NSCs usually rotate about the same direction as their host
galaxies, no matter if they are in spirals or spheroidal galaxies. An useful quantity,
pv{σqeff , is the ratio between the rotational velocity and velocity dispersion that tells us
if the motion is influenced by rotation or random motion. In most of NSCs, the ratio is
in the range of 0-0.5, while a few also exhibits a much higher ratio. (For the NSCs we
will consider in our simulation, we will take this ratio as 2.)

3.2 Scaling Relations

Nucleation

It is important to ask whether NSCs appear in galaxies across the mass range. We define a term
called ”NSC occupation factor”, which is the fraction of NSCs as a function of galaxy stellar
mass. For early type galaxies, data shows that NSCs are present in ě 80% in 109Md galaxies.
The NSC occupation factor falls steadily as we go towards the low mass galaxies, reaching zero
for galaxies of mass 106Md. On the high end side, occupation factor similarly drops. A pos-
sible explanation is the disruption by SMBHs that are present in high mass galaxies. Another
possible answer may be the existence a lot of BBHs. In the process of BBH formation and
merger, they transfer a lot of energy to the surrounding stars as we saw in the last chapter.
They may destroy the NSC too.

For late type galaxies, it becomes harder to distinguish the NSC but studies have been done
(Georgiev and Böker [2014]). We find that for lower mass end, we have a small occupation
number that peaks in the mass range of 109 ´ 1010Md. What differs from the early type galax-
ies is the presence of NSCs in many high mass late type galaxies. Prime examples would be
our Milky Way and Andromeda that despite possessing high stellar masses also have NSCs in
their core.

In figure 3.2, the results discussed above are displayed. This image is taken from Neumayer
et al. [2020]. The red and blue lines are the fitting lines while the shaded area is uncertainties.
We see that for late-type galaxies, we have large uncertainties because of data obscured by dust
and galactic light.

Studies have also found that even the galaxy’s environments impacts the occupation factor.
Sánchez-Janssen et al. [2019] showed that galaxies in Coma cluster had a higher occupation
number than in Virgo cluster. A related study of radial distribution of galaxies with NSCs in
clusters found that nucleated galaxies were more concentrated towards the center of the clus-
ter(Ferguson and Sandage [1989]). In other words, occupation factor decreased with density of
surrounding galaxies. However, these studies are done only for low-mass early type galaxies.
Most of the late-type galaxies are in field but still possess NSCs. Our Milky Way and An-
dromeda are prime examples of this. This suggests that environment shouldn’t affect galaxies
across the Hubble classification but only the early type galaxies.
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Figure 3.2: Fraction of NSC along the mass range of galaxies. For Early type galaxies, we see
a sharp rise in NSC as mass increases to 109Md from where it steeply decreases. For Late
type galaxies, we see a similar trend in the lower mass range. But we do not observe the
decrease in NSC in heavier late type galaxies. Due to dust obscuring the light in late-type
galaxies, we also have greater uncertainties, as shown in broader blue shaded area. Image
credit:Neumayer et al. [2020]

Host type c1 c2 α β

NSC Mass-Galaxy Mass Relation
logpMNSC{c1q “ α ˆ logpMgal{c2q ` β

Late 2.78 ˆ 106 3.94 ˆ 109 1.001`0.054
´0.067 0.016`0.023

´0.067

Early 2.24 ˆ 106 1.75 ˆ 109 1.363`0.129
´0.071 0.010`0.047

´0.060

Effective Radius-Galaxy Mass Relation
logpreff{c1q “ α ˆ logpMgal{c2q ` β

Late 3.44 5.61 ˆ 109 0.356`0.056
´0.057 ´0.012`0.026

´0.024

Early 6.11 2.09 ˆ 109 0.326`0.055
´0.051 ´0.011`0.015

´0.040

Effective Radius-NSC Mass Relation
logpreff{c1q “ α ˆ logpMNSC{c2q ` β

Late 3.31 3.60 ˆ 106 0.321`0.047
´0.038 ´0.011`0.014

´0.031

Early 6.27 1.95 ˆ 106 0.347`0.024
´0.024 ´0.024`0.022

´0.021

Table 3.1: Scaling relations between mass of the NSC, mass of the galaxy, and effective ra-
dius of the NSC taken from Georgiev et al. [2016]

.
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Figure 3.3: Left: Mass of NSCs versus mass of their host galaxies. For both early type and
late type, we see an increase in NSC mass as the host galaxy mass increases. The black
line in fitted to find a scaling relations between the two quantities. Late type galaxies show
a much steeper trend than early type galaxies. Right: Mass fraction of NSC to their host
galaxy as a function of host galaxy mass. For larger galaxies, their NSC constitute smaller
percentage of their total mass. Image Credit: Neumayer et al. [2020]

3.3 Formation Channels of NSC

An important question is to ask: when did the NSC form? Was it before, together or after the
formation of their hosts. As they lie in the central part of a galaxy where gas density is the
highest, they may have been the earliest components of a galaxy. If this were true, the stars
formed from this gas must be metal poor, so the seed population of stellar bodies in NSC must
have low metallicity. In principle, this isn’t easy to see. We have only been able to confirm this
in nearby NSCs (Alfaro-Cuello et al. [2019]). For farther galaxies, we may be able to confirm if
the NSC has a dominant older population of stars. However, as we already know from the above
section, NSC host stars across the metallicities like our own Milky Way’s NSC, prompting us
to think of NSC’s further evolution.

Globular Cluster Migration

In 1975, Tremaine et al. [1975] gave us the first scenario for the formation of M31 NSC. They
proposed that GCs in the galaxy would be dragged to the galaxy’s potential well through dy-
namical friction. (Similar to what we discussed in Chapter 2) This force would be linearly
dependent on the GC’s mass and inversely on velocity of the stars in the host galaxies. These
GCs would form compact NSCs like the one we observe in M31.

This scenario was boosted by the deficit of GCs in the inner parts of early type galaxies.
Another fact supporting this theory is the luminosity/mass ratio that is similar for both GCs
and NSCs. This fact is something in-situ formation model cannot explain. How did NSC and
GCs both have similar population when they are forming through different mechanisms. As
discussed in the above section, the low metallicity population may also originate from this sce-
nario. If a NSC is more metal poor than its surrounding, it is likely due to dynamically-driven
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formation.

N-body simulations performed to study this phenomenon tell us that GCs with mass above
105Md can indeed spiral into the galaxy’s center within Hubble time. These simulations are
also able to explain the sizes and density profile of the NSC. However, the existence of younger
generation stars along with kinematics of NSCs suggest that a fraction of the NSC’s mass was
brought in by gas.

In-situ Star Formation

The younger star population was not something the globular cluster migration theory could
explain. So, the theory of in-situ star formation was proposed. When gas reaches the center,
an intense star burst can be triggered. If this process is repeated over the evolution time of
a NSC, we can explain the composite stellar population we find. Supernova in the NSC and
stellar winds may halt the infall of gas, until the cycle repeats. It has been shown that this
cycle repeats on timescales of a hundred million years (Loose et al. [1982]). One can also argue
that instead of gas, young stars spiral in to the center. Or YMCs have accreted instead of
Gcs. However, if these two approaches were true, we should find young population on the outer
rims of the NSC, which we do not. Moreover, observations show that these younger stars are
flattened and rotating, which is to be expected if they formed from gas.

The in-situ star formation channel raised an important question. How is this gas transported
to the central few parsecs of the galaxy? Mergers of gas-rich galaxies could be an answer as
increase the gas concentration in the central region of the remnant galaxy. This could explain
the NSCs of early-type galaxies but we find young population in even Late-type galaxies that
haven’t experienced such interactions. There are other mechanisms that bring gas, one of which
is bar driven gas infall: Stellar bars in galaxies produce a non-axisymmetric potential that could
bring that the gas inwards. This has been observed in spiral galaxy NGC6946 (Schinnerer et al.
[2007]). Other possible answers may be magneto-rotational instability, tidal compression, and
dissipative nucleation. Overall, it is possible to bring gas to the center of galaxies on timescales
shorter than Hubble time and form NSCs.

Observations also tells us that the host galaxy may decide which of the two formation
channel the NSC will take. Galaxies lighter than 109Md seems to prefer globular cluster
migration while those above prefer gas infall. This is not a certainty but probability. Overall,
there is evidence in support for both theories. We will need more observational data and more
computationally expensive simulations to understand the process in much detail. Luckily, we
are advancing on both frontiers.

3.4 Dynamics of NSC

Let us combine what we learned in this chapter with what we know from the previous chapter.
The stellar bodies inside the NSC are all influenced by each other, gradually inspiraling towards
the core. Dynamical friction acts on all bodies, the heavier one reaches the core faster. If this
process was rampant, we would have an overly dense core that will eventually cause a runaway
collision of stellar bodies. Fortunately, the dynamical processes in the core are intense, the
stellar bodies can have their trajectories completely changed. As we saw in chapter 2, a lot of
bodies are either completely ejected from the cluster or are just thrown towards the edges from
three-body interactions. This relaxes the core and reshuffles the velocities and distribution of
stellar bodies in the cluster. These two processes shape the cluster and its future.
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3.5 NSC with SMBH

Most of the galaxies in the mass range 108 ´ 1010Md host an NSC. Above this mass range,
the appearance of SMBH increases at the center of massive galaxies. A number of galaxies,
our Milky Way included, have found NSC and SMBH existing with each other. In our Milky
Way, a SMBH with mass « 4 ˆ 106Md resides in an NSC of mass « 3 ˆ 107Md. Their coex-
istence is mostly found in galaxies with mass 109´1010Md above which, the NSC are destroyed.

Since this trend is very systematic and adding the tight scaling relations NSCs and SMBHs
have with their host galaxies, these two separate components are indeed interrelated. The
formation of SMBH, like NSC, is not very well understood. There are several formation chan-
nels out of which, we will focus on a single one, particularly, the formation of SMBH through
runaway mergers of BHs in NSCs. The formation of intermediate mass black hole (IMBH) in
NSC has already been shown by many studies (Mapelli et al. [2021]). They have also shown
that NSCs are capable of producing IMBH with masses greater than 104Md. The subsequent
growth of massive black holes (MBHs) can be through various channels. The in-fall of gas that
create bursts of star formation may also feed these MBHs. At the end of our thesis, we will
also try to provide the answer to this question using the results we found.

3.6 NSC Model

For our discussion and future integration with FASTCLUSTER code, we will create a analytical
model for NSC’s growth. We will follow the analysis done by Arca-Sedda and Capuzzo-Dolcetta
[2014]. They have shown that at center of galaxies, dynamical friction given by Chandrasekhar
[1943] fails to correctly estimate the drag felt. Thus, with the help of N-body simulations, they
formed a new analytical equation to explain dynamical friction time. We will use their equation
along with an estimate of GCs to develop an evolutionary model for the NSC.

The distribution of GCs along the radial profile of the galaxy can be written as,

NGCprq “ NGC,t

ˆ

rGC

rGC ` Rg

̇3´γ

(3.1)

where, NGC,t is the total number of GCs within a galaxy considering average GC mass and
what fraction of galaxy mass does the GCs take and γ is the density slope for the galaxy. We
will assume that one percent of the galaxy’s mass is in globular cluster, then the number of
clusters is, NGC,t “ 0.01Mg{MGC . Rg is the scale length of the galaxy, which is the radius where
the galaxy’s luminosity falls by a factor of e. Throughout the discussion of the thesis, whenever
we mention accreting globular clusters, we only consider GCs within the scale length. The
reason being that these GCs always have dynamical friction time lower than that of Hubble
time. For lighter galaxies, we may be able to go way beyond the scale length, however, this
consideration will give us a starting point upon which, we can build in the future. The relation
between the scale length and mass of a galaxy is,

ˆ

Rg

kpc

̇

“ 2.37p21{p3´γq
´ 1q

ˆ

Mg

1011Md

̇k

, (3.2)

where k “ 0.14 derived from the same paper. The new analytical equation developed by
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Arca-Sedda and Capuzzo-Dolcetta [2014] is,

τDF “ τ0gpeGC,γq

d

R3
g

Mg

ˆ

MGC

Mg

̇αˆ

rGC

Rg

̇β

(3.3)

Here, τ0 is a normalization constant and gpeGC,γq is a weak function of GC eccentricity and
density slope of the galaxy. α and β are parameters of the infall that have been fitted through
N-body simulations. Their values come out to be -0.67 and 1.76 respectively. Along with the
density slope γ “ 1.8, these values will remain constant for the course of the thesis. The infall
rate is the number of GCs falling per unit time can be written as,

N9 GC “ NGC{τDF (3.4)

Combining equation equation (3.4) with equation (3.1),(3.2), and (3.3), we get the infall
rate as,

N9 GCpRgq “0.001Myr´1 1

0.3 ˆ gfact ˆ p2.37p21{p3´γq ´ 1qq3{2

ˆ

rGC

rGC ` Rg

̇3´γ

ˆ

ˆ

Mg

1011Md

̇3{2p1´kq`αˆ

MGC

1011Md

̇´1´αˆ

rGC

Rg

̇´β

,

(3.5)

where,

gfact “ p2 ´ γq

„ˆ

2.63

ˆ

1

2 ´ γ

̇2.26

` 0.9

̇

p1 ´ eq ` e

ȷ

(3.6)

The above expression can be understood better if divided into smaller terms. The most
straightforward would be the mass of the galaxy and GC, the heavier they are, the faster the
rate of accretion is. There is weak dependence on eccentricity, we have seen something similar
in Chapter 2 for BBH case. Finally, there is a term for the density profile of the galaxy, which
tell us how the GCs are spaced in the galaxy. There is also inclusion of the fact that the farther
the GC is, the more time it will take to fall in. If we take inverse of equation (3.5), we arrive at
’Replenishment Time’, which is the time between two successive GC infall events. Along with
the dynamical infall timescales, they give us two important timescales to estimate our model.

treppRgq “ pN9 GCpRgqq
´1. (3.7)

Translating the infall rate to mass and adding to the initial mass of NSC, we can finally
arrive at our desired expression. In the GC migration model, we assume that there is only gas
at the center of the galaxy. The initial mass of the NSC is the gas encompassed in the central
10 pc of the galaxy, which will be our initial NSC size. Since, we are using Dehnen density
profile, the initial mass can be calculated from this radius,

Minit “

ˆ

Mg
10

10 ` Rg

̇3´γ

(3.8)

With this, we can write the mass of NSC at a given time, t, as

MNSC “ Minit ` N9 GC ˆ MGC ˆ t. (3.9)

There are a few caveats that concerns validation of the above assessment but we will take
the equation 3.9 as it is for now. Now that we have ab analytical equation to model the growth
of a NSC, let us compare it with observational data to confirm our analysis. For simplicity, in
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Figure 3.4: Left: Initial mass (dotted) and final mass (hard black) given by the model we just de-
scribed above. The red scattered points are obtained from scaling relations of Georgiev et al. [2016].
Right: Replenishment time and dynamical friction time for GCs against that of galaxy mass. The
color scale indicates the number of GCs within each galaxy.

equation 3.5, we will take rGC “ Rg, MGC “ 5 ˆ 105Md, and vary galaxy mass across a range.

As we can see from the figure 3.4, our model traces the observations quite well. A notewor-
thy thing is the fact that our mass always stays above the observed mass. A possible answer
to it is that our model does not include the scenario of tidal forces that disrupt the GCs, pre-
venting them from accreting. As such, we would always have a larger mass, which is not a big
concern for the analysis we want to perform. The right figure tells us about the timescales on
which the NSC grows and when it stops growing. For the lighter galaxies, we have fewer GC,
which take a few hundred to a few thousand million years to migrate. On the other hand, for
the heaviest galaxies, we have a merger event every million years.

To implement this method into FASTCLUSTER, we need time variance of the NSC mass.
Let us consider the dynamical friction timescale and its dependence on radius,

τDF “ τ0gpeGC,γq

d

R3
g

Mg

ˆ

MGC

Mg

̇αˆ

rGC

Rg

̇β

. (3.10)

For rGC “ Rg, we get the maximum dynamical friction timescale

τDF pRgq “ τ0gpeGC,γq

d

R3
g

Mg

ˆ

MGC

Mg

̇α

, (3.11)

which is just the initial term of equation (3.3). So, we can write

τDF “ τDF pRgq

ˆ

rGC

Rg

̇β

. (3.12)

We can invert this equation to write,

rGC “ Rg

ˆ

t

τDF pRgq

̇1{β

(3.13)

The above equation tells which specific radius of GC has been conquered at the particular
time.
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Figure 3.5: The mass evolution curves for NSC present in different galaxies masses according
to the model described above. The accretion stops after the GC at scale length of the galaxy
has accreted. This takes different times for different galaxies as shown in the figure. We also
see that the mass of the NSC increases faster in the beginning that later, which can be at-
tributed to the density profile of the galaxy.

Let’s denote τDF pRgq as TR for simplicity. We can insert this into equation 3.5 to get,

N9 GCpRgq “0.001Myr´1 1

0.3 ˆ gfact ˆ p2.37p21{p3´γq ´ 1qq3{2

ˆ

1

1 ` pTR{tq1{β

̇3´γ

ˆ

ˆ

Mg

1011Md

̇3{2p1´kq`αˆ

MGC

1011Md

̇´1´αˆ

t

TR

̇´1
(3.14)

where,

gfact “ p2 ´ γq

„ˆ

2.63

ˆ

1

2 ´ γ

̇2.26

` 0.9

̇

p1 ´ eq ` e

ȷ

(3.15)

Through a similar analytical calculation, we can define the infall rate at Rh, which is the
half-mass radius. It is related to the rate defined above by,

N9 GCpRhq “ 22´γ
p21{p3´γq

´ 1q
γN9 GCpRgq (3.16)

The other physical properties of the cluster can be derived from mass of the NSC (equation
3.9). The effective radius reff can be extracted using the scaling relations in table 3.1. Effective
radius can be translated to half-mass radius through this equation,

rhm “
4

3
reff (3.17)

This equation is only valid for Dehnen density profile. The density and escape velocity of
the cluster are defined as follows:

ρ “
3MNSC

4πr3hm
and vesc “

c

2GMNSC

rhm
(3.18)
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In the table below, I have summarized the results of our model. All the results I displayed
in table 3.2 and figure 3.4 were taken for late type galaxies. We can reproduce the similar
results with early type galaxies too.

Galaxy Mass Initial NSC Final NSC Half-Mass Velocity Scale Density
(Md) Mass (Md) Mass (Md) Radius (pc) (cm{s) (Md/pc

3)

1.e+08 6.29e+04 1.95e+05 1.68 1.42+06 9.81e+03
3.e+08 1.44e+05 5.41e+05 2.33 2.00e+06 1.02e+04
1.e+09 3.56e+05 1.68e+06 3.35 2.94+06 1.06e+04
3.e+09 8.13e+05 4.78e+06 4.69 4.20e+06 1.10e+04
1.e+10 2.01e+06 1.52e+07 6.81 6.22+06 1.15e+04
3.e+10 4.59e+06 4.43e+07 9.59 8.94e+06 1.20e+04
1.e+11 1.13e+07 1.44e+07 14.0 1.33+07 1.25e+04
3.e+11 2.58e+07 4.23e+08 19.8 1.92e+07 1.30e+04
1.e+12 6.36e+07 1.39e+09 29.0 2.88+07 1.36e+04

Table 3.2: NSC properties for various galaxy masses.



Chapter 4

FASTCLUSTER

Gravitational wave astronomy take a different approach than light astronomy. We do not have
a telescope pointed in a particular direction. Instead, we are detecting signals coming from all
over the sky all at once. Adding this to the noise we have in detectors, an analogy would be
looking at the sky, which is completely filled with sunlight. There is so much light that the
light from stars and galaxy almost seems insignificant. To extract data from such noise, we can
use a smart technique of convolution. If by any chance we know the waveform of a GW event,
we can convolve this waveform to real time data, getting a spike if there is a signal hidden in
all that noise. Still, we can only check if this one specific waveform is present in the signal, all
the others would be missed. As we have seen in Appendix (A), the waveform depends on the
orbital frequency and the masses of the binary. This is a simplified expression, the waveform
has many other parameters that we haven’t considered.

Thus, we should have a library of waveforms along with the physics behind each merger.
N-body simulations can provide us with precise results to each merger, but it takes too long
to explore the parameter space. It is even more impossible to simulate a whole star clusters
with millions of stellar bodies for a few hundred possible binary mergers. So, we turn to semi-
analytic codes. They may be less precise but they help explore the parameter space efficiently.
With the tools we developed in Chapter 2 (2.16,2.12,2.23), we can concisely write the effects
of a whole cluster on a BH with a few analytical equations. Adding on what we discussed in
chapter 2, we will build upon and create a code that will simulate BH mergers in star clusters.
The results of FASTCLUSTER can help create mock data for GW observations. From now on,
all star cluster reference would be for NSC unless specified otherwise.

4.1 Initial Conditions

Star Cluster

Before discussing BHs, we will understand the environment they live in. In the basic version of
FASTCLUSTER, there is no evolution of star clusters, they remain static in all their properties
throughout the BHs evolution. The mass and density of the cluster are sampled from log-
normal distributions with root mean square at 6 and 5 respectively. The standard deviation
σ is assumed to be 0.4. This gives us a mass spread of 105 ´ 107Md and density spread of
104 ´106Md{pc3 as shown in figure 4.1. For each cluster, we also assume core density ρc “ 20ρ.
We extract escape velocity from mass and density using the relationship from Georgiev et al.

26
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Figure 4.1: Left: 2D histogram of density and mass in an usual FASTCLUSTER run. Right:
2D histogram of half-mass radius and escape velocity. Density and mass are pulled from two
radius normal functions so we get a 2d normal function aligned with the axis as their his-
togram. Half-mass radius and escape velocity are derived from them using equation 4.1 and
4.2

[2009],Fragione and Silk [2020],

vesc “ 40 ˆ 105
ˆ

Mtot

105Md

̇1{3ˆ
ρ

105Md{pc3

̇1{6

. (4.1)

The half-mass radius is simply,

rhm “

ˆ

3Mtot

8πρ

̇1{3

(4.2)

The distribution of parameters in the clusters can be seen from the figure 4.1.

As we already saw in chapter 3, this does not cover the whole range of masses a NSC can
have. We are not expanding to the whole parameter space for NSCs. However, that wasn’t the
goal of the basic FASTCLUSTER mode. It was meant to understand the difference brought by
the median of different type of star clusters like GCs and YMCs. We will solve this when we
introduce our model in the next chapter and see the changes it brings to the initial conditions
too.

Black Holes

FASTCLUSTER is a population synthesis code, which mean we study a population of BHs
having different parameters and see which BHs merge and why? The first step is to build a
population of BHs that can be fed to FASTCLUSTER.
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Figure 4.2: Left: Initial population of primary BH masses created using MOBSE. Since we
are considering NSCs whose metallicity is high, we will constraint the mass range to 30Md.
We see that this population is peaked at 7 ´ 8Md, which do not match the observation from
LIGO-VIRGO. Right: The formation time of the BHs we have chosen. Most of them are
formed within a few million years.

Masses and formation time: BHs are the end-points of massive stars. Depending upon
the metallicity and initial mass of the star, we can create a library of BH mass through stel-
lar evolution codes. We will use the catalogs developed through MOBSE (Giacobbo et al.
[2018],Giacobbo and Mapelli [2018],Giacobbo and Mapelli [2019],Giacobbo and Mapelli [2020]).
To create this catalog, we will use solar metallicity, z=0.02 since NSC are metal rich. This gives
us an initial population that looks like figure 4.2.

The primary mass is taken randomly from the above explained library while the secondary
mass is pulled from an interval rmmin,m1q, where mmin “ 3Md is the minimum mass a BH
can have. This distribution takes into account that nth generation BH can form binary with
another nth generation BH and also the fact the heavier BHs will prefer heavier partner. m2

follows this probability distribution function,

ppm2|m1q9pm1 ` m2q
4. (4.3)

Spins Another important quantity that determines the end fate of merger remnants are
the dimensionless spins (χ1 and χ2) of the BHs. We sample the spins from a Maxwellian dis-
tribution with mean of σχ “ 0.1, truncating the spins at χ “ 1. These parameters are inferred
according to the data from GWTC-3.

Spins tilts: The direction of these spins (θ1 and θ2) are drawn isotropically over the sphere,
from 0 to 2π
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For each binary, we also calculate the effective spin (χeff ) and precessing spin (χp) defined
as,

χeff “
pm1χ⃗1 ` m2χ⃗2q

pm1 ` m2q
¨
L⃗

L

χp “
c

B1Gm2
1

maxpB1S1K, B2S2Kq

(4.4)

Eccentricity and orbital separation: Eccentricities are drawn from a thermal distribution,
ppeq “ 2e with e P r0, 1q. The semi major axis is sampled from a distribution ppaq91{a with
amin “ 1Rd and amax “ 103Rd. Along with this sampling, we check whether the binary is soft
or not using the equation,

Gm1m2

2a
ě

1

2
m˚σ

2, (4.5)

where m˚ is the average mass in the cluster and σ is the velocity dispersion. This equation is a
simple statement: if the binding energy of the binary is less than the average kinetic energy of
stars, it will be easily destroyed by dynamical interactions. If the semi major axis sampled gives
us a soft binary, we ignore it and call another sample. In such a way, all the binaries formed
are hard binaries. Now, we have a physical system ready, we will simulate it as described in
the next section.

4.2 Methodology

First Generation

After we have created a population of BHs, giving them mass and formation time, we try to
find out which of these BHs can successfully form a binary through dynamical processes in
Hubble time. We define a unique time tdyn,

tdyn “ maxptform, tDF ` minpt3bb, t121qq, (4.6)

where tform is the formation time of the BH, tDF is the time taken by the BH to migrate to
the cluster’s core through dynamical friction (equation 3.3), t3bb is the time after which the BH
will form binary through three body interactions (equation 2.12), and t121 is the time taken by
BH to form a binary through exchanges (equation 2.16).

The assumptions went behind tdyn are as follows. If the evolution time of a star is small, it
would become a BH early on, way before dynamical friction could bring it to the core. In this
case, the time it will take to form a hard binary is the time taken to bring it to the core and
shape the binary through dynamical processes. Since three body interactions and exchanges
are complimentary, we only need the process, which occurs faster. On the other hand, if the
evolution time of the star is long. By the time it has turned to a BH, the star would already
be in the cluster core in a hard binary.

Now, we check for the condition tdyn ă tH , where tH is Hubble time. We are only interested
in mergers that could happen within Hubble time since we won’t see them otherwise. For
the BHs that satisfy this condition, we pair it up with a secondary BH, chosen according to
equation 4.3.

Next, we check if the two BHs in the binary received supernova kicks strong enough for them
to be ejected by the cluster. If they are ejected, we aren’t interested since they will no longer
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contribute inside the cluster. The supernova kicks vSN0 are taken from a normal distribution
with one dimensional root mean square at 265Km{s. We re-scale this kicks according to the
mass of the BH by,

vSN “ vSN0
ă mNS ą

mBH

, (4.7)

where ă mNS ą is average neutron star mass, taken as 1.33Md. If these two conditions
are met, we assign these pair spins, orientations, orbital separation, and eccentricity. There is
still a condition that can force the binaries to eject. It is the same process that tend to bring
them together. In chapter 2, we discussed semi-major axis beneath which, a binary is ejected
because of dynamical processes aej (eq 2.21) and simultaneously, we saw a distance at which,
gravity becomes dominant. aGW (eq. 2.34). Before starting the orbital evolution, we need to
ascertain if aGW ą aej or else the binary will be ejected.

The BHs that survive through these barrage of conditions can finally settle merge. The
orbital evolution of the binaries is governed by equations 2.33 and 2.35. We follow Euler
method to solve these two first order different equations,

apt ` hq “ aptq ` hfapt, aptq, eptqq

ept ` hq “ eptq ` hfept, aptq, eptqq
(4.8)

where fapt, aptq, eptqq and fept, aptq, eptqq is the right hand side of equations 2.33 and 2.35
respectively. h is the time step of integration, which we adaptively change with each step. At
each step, we also check if for the condition of t ` h ă tH since we want to avoid these kind
of binaries. The evolution stops when semi-major axis, a, becomes equivalent to Schwarzschild
radius of the BHs (a „ 2GM{c2).

At the end of this evolution, we get the final eccentricity, final orbital separation, and coa-
lescence time of the pairs. We then calculate the remnant BH merger mass and spin according
to fitting formulas from numerical relativity, as described by, Jiménez-Forteza et al. [2017].
The final mass is 0.9 of the total mass of merging BHs and the spins peak around 0.7-0.9. The
remnant will also receive a relativistic kicks, modeled according to Lousto et al. [2012].

vkick “
`

v2m ` v2K ` 2vmvK cosϕ ` v2||
˘1{2

(4.9)

where,

vm “ Aη2
p1 ´ qq

p1 ` qq
p1 ` Bηq

vK “ H
η2

p1 ` qq
|χ1|| ´ χ2|||

v|| “
15η2

p1 ` qq

„

V1,1 ` VAS|| ` VBS
2
|| ` VCS

3
||

ȷ

|χ1K ´ qχ2K cospϕ∆ ´ ϕq|

(4.10)

In the above equations, q “ m2{m1 with m2 ă“ m1. η “ qp1 ` qq´2, A “ 1.2 ˆ 104Km{s,
B “ ´0.93, H “ 6.9 ˆ 103km{s, pV1,1, VA, VB, VCq “ p3678, 2481, 1792, 1506qkm{s respectively.
χ1 and χ2 are spins of the BHs, which are separated into parallel and perpendicular according
to the binary’s orbital momentum. S|| is the component of vector S⃗ “ 2pχ⃗1 ` q2χ⃗2q{p1 ` q2q.
Finally, ϕ∆ is the direction of the infall at merger and ϕ is the phase of the binary. Both of
these quantities are randomly drawn. If vkick ă vesc, the remnant can stay in the cluster and
repeat the process.
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Nth Generation

Even if the remnant BH is not ejected by relativistic kick, it is thrown to the edges of the
cluster. It must sink back into the core to repeat the process through dynamical friction. We
once again calculate the dynamical time,

tdyn “ tmerg ` tDF ` minpt3bb, t121q, (4.11)

where tmerg is the time taken by the previous generation binary to form and merge. If this
time is less than Hubble time, we assign this BH a secondary according to the same distribution.
After checking for their supernova kicks, we assign the binary a new eccentricity, semi-major
axis, orientations. As for spin, the primary takes the remnant spin while the secondary’s spin
is taken from a random sample.

The evolution follows the same numerical formulas as first generation. We repeat this
process until all the BHs have been ejected by the cluster or their merger time is larger than
Hubble time.

4.3 Results

We have simulated 105 BHs in NSC mode of FASTCLUSTER code. Since there is no evolution
to the properties of NSC, the dynamics of a single BH largely depends on its mass.

Figure 4.3: Left: BH growth chains. One particular line is the evolution track of one particu-
larly BH. The first point is its formation and each following dot is a merger in its life. We see
that in NSC, it is easy to have hierarchical mergers and form intermediate mass BHs. Right:
The population of BHs that merge in the first, second, third, and seventh generation. With
each progressing population, our population shifts right on the mass spectrum.

In the left plot of figure 4.3, we show the growth history of BHs through merger chains.
Each line is the merger history of one particular BH. The first point is the mass and formation
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Figure 4.4: Left: Primary mass v/s secondary mass of the binaries that merge within our simula-
tion. Right: χeff v/s χp histogram as shown in equation 4.4.

time of the BH while each progressing points represents a merger. The projection of the line
connecting two points on x-axis is the addition of dynamical time and coalescence time and on
y-axis is the increment of mass. We can see that the lines are heavily influenced by the mass
of the BHs. The larger the mass, the smaller is the dynamical time (eq 4.6) for the binary’s
formation and merger. This causes a steep line between two points. Moreover, the higher the
mass, the steeper the line becomes in most cases. This is easily seen for lighter BHs. They take
longer to merger initially than speeding up as their mass increases. Mergers for which the line
becomes almost vertical are called runaway mergers.

On the right side of figure 4.3, I have shown the populations of BHs of progressive gener-
ations. The two factors stopping BH from merging in our simulation is the BH being ejected
from the cluster by supernova, relativistic kick or the BH taking too long to form a binary and
merge. We will see these two forces shaping the dynamics of BHs for our work in chapter 6.
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Figure 4.5: Final eccentricity v/s coalescence time of BH binaries. The color scheme is ac-
cording to the generation of BHs. We see that FASTCLUSTER is able to produce highly
eccentric mergers for whom, the coalescence time is very short. We also notice that with pro-
gressive generations, the coalescence time is also shortening since BHs are getting heavier.

Stellar dynamics in dense cluster systems can produce highly eccentric binaries, that lose
energy more rapidly than binaries in circular orbits. More energy loss means shorter coalescence
times: this can be observed in figure 4.5. The coalescence time also depends on the semi-major
axis of the binary, since larger separation would imply a greater time (eq. 2.6).

Figure 4.6: Eccentricity versus semi-major axis of the BH binaries that merger. The color
scheme is according to the log of coalescence time of the binaries. Coalescence time decreases
with shorter semi-major axis and higher eccentricity. The bit of noise in the color scheme is
due to different BH masses.



Chapter 5

Black Hole Population Synthesis

The basic form of FASTCLUSTER does it job very well. We are able to explore the parameter
space of clusters and BHs to find dynamical mergers. However, not all pairs of parameters
create a realistic physical system. For example, a cluster of mass 106Md cannot have a density
of 105Md{pc3 unless is size is around 1pc, which is a little improbable. Moreover, realistic
systems may hide under all the randomness we have created. If our goal is to simply study
the mergers in realistic clusters, we may have to sacrifice some of the freedom in parameter
space and turn to physical properties that depend on each other. An example would be the
change in mass and density relation. Previously, these quantities were taken independent of
each other but we know its not true. The more mass a cluster has, the more radius it would
have (generally), so density would directly and indirectly depend on the mass of the cluster.
We will make several such changes to the working of the population synthesis to achieve our
goal.

5.1 Initial Conditions

Star Clusters

We will use the mathematical expressions developed in Section 3.6 to now define the initial
parameters of the star cluster. For the initial mass of the cluster, we will use the mass enclosed
within 10 pc of the galaxy’s radius. This will add galaxy mass as an additional parameter in
our code along with various other parameters such as the density profile and so on. We will
also have additional parameters that are important to the evolution model like α and β but
since we are keeping them constant throughout the work, we won’t dive into them. To increase
the parameter space by a little, we will also introduce a scatter that will change the initial mass
adequately that we can explore some of the parameter space while consequently not drifting
too far from a realistic system.

For the radius of the cluster, we will once again take help of Georgiev et al. [2016].

logpreff{c1q “ α ˆ logpMNSC{c2q ` β, (5.1)

where c1, c2, α, and β are values taken from table 3.1 according to the parameter of galaxy
type. In figure 5.1, the histogram are created with a random ensemble where galaxy mass can
vary between 109 to 1012Md and galaxy type can vary between late and early. Density and
escape velocity will be calculated through these simple formulas,

ρ “
4

3
πr3, (5.2)

34
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Figure 5.1: Left: Mass and Density of the clusters our BHs will live in. This is created from
combination of all galaxies from 109 to 1012Md along with early and late type galaxies. The
four peaks in both plots are for four different galaxy masses. We can see that for galaxy of
one particular mass, we have a small parameter space. Conversely, as a whole, the parameter
space is increased in all four quantities.

vesc “

c

0.4GMNSC

rhm
(5.3)

Velocity dispersion is simply half the escape velocity as before. We get the following pa-
rameter spread.

Black Holes

As shown above, NSC possess gas before the GC migration starts. Stars can form from this gas,
eventually evolving to BHs. The distribution of these BHs would be similar to stellar evolution
codes that we have used before. However, this mass is just a small fraction of the total mass
that would arrive later through globular clusters.

As shown in Mapelli et al. [2021], globular clusters also exhibit hierarchical mergers. Us-
ing FASTCLUSTER, we create a library of BHs in globular clusters. We want all the BHs
that weren’t ejected from the cluster, either by supernova or relativistic kicks. A large portion
of these BHs would be the ones who had dynamical time greater than Hubble time, so they
couldn’t do anything other than just sitting inside the globular cluster. Naturally, to make our
synthesis more realistic, we simply can’t take all the BHs a globular cluster may have. We also
have to took at when a globular cluster fell into the center and pull a BH according to it.

From figure 3.5, we see that according to our current model, the accretion stops when all the
globular clusters within the scale length of the galaxy have spiraled in. Moreover, the accretion
curve is not linear. More globular cluster accrete in the earlier years than later. The formation



36

Figure 5.2: Left: Population of masses we get from BH from globular cluster. This includes
the BH that have merged to create heavier BHs too. Right: This is no longer the formation
time but the time these BH accreted onto the NSC. This particular population is for a NSC
forming in a galaxy of mass 1011Md where accretion stops around 3000Myr. The peak at
lower times comes from the BHs that formed in the NSC, i,e, local BHs.

time of the migrating BHs follows a non-linear curve.
The remaining properties of BHs such as eccentricities, spins, and orientations are kept the

same as the basic FASTCLUSTER.

5.2 Methodology

In the previous section, we only focused on BBH evolution, but this time, we would also evolve
the NSC along with it. For each BH, we will calculate the dynamical time using equation 4.6.
To calculate dynamical friction, three body and exchanges timescales, the inputs of NSC like
velocity dispersion and density are taken at the instant the BH was formed. A different way of
writing 4.6 is,

tdyn “ maxptform, tDF ptformq ` minpt3bbptformq, t121ptformqqq (5.4)

The density and velocity dispersion that enter the above equation are ρptformq and σptformq.
After checking that the dynamical time is less than Hubble time, we give the BH a companion
according to distribution 4.3. Now that we also have a population of BHs also coming from
globular clusters, we need to update how we check for their supernova kick. Internally, we know
for each BH if it originated in the NSC or is migrating through a GC. We will call them ”Local”
and ”Infall” BHs respectively. For local BHs, their is no difference, we take normal distribution
with the root mean square at 265Km{s for their supernova kick and escape velocity at the
formation time of the BH. (equation 4.7,5.3). The infall BHs can further be divided into two
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Figure 5.3: Evolution of NSC properties with time. With scatter implemented, the NSC does
not follow a straight line but does a Brownian motion in the parameter space as shown by
the yellow line

categories, first generation and nth generation. If they are first generation, their supernova
kick is as the same as above but the escape velocity is considered according to the globular
cluster. Considering the average mass of a globular cluster, we have set this escape velocity
at 29.4Km{s. Lastly, for the nth generation BHs, we consider their relativistic kicks instead
of supernova kicks, which can also be found out through FASTCLUSTER. This conditions are
set true for both companions.

Once the binary survives the kicks, we assign them spins, orientations, semi-major axis, and
eccentricities in a similar way. We will calculate aej and aGW and see that aGW ą aej, otherwise
ignore that binary for all further cases.

The orbital evolution is similar, we numerically evolve the semi-major axis and eccentricity
until the BH mergers. Note that in equation 2.33, 2.35, we have density and velocity dispersion
of the NSC. These quantities will change with time throughout the orbital evolution.



Chapter 6

Results

6.1 Simulations

Using the methodology described in chapter 5, we have ran three simulations. We will simply
call them Local BH, Late-type galaxy (LL), Local BH, Migratory BH, Lale-type galaxy (LML),
Local BH, Migratory BH, Early-type galaxy (LME). In all three simulations, the NSC is evolv-
ing through the model described in Chapter 3 and 5. Their difference originate from the initial
BH population we take. In LL runs, we consider BHs forming in the NSC throughout the
GC accretion, i.e. we take mass population from stellar evolution in NSC as in chapter 4 and
formation times (tform) according to our discussion in chapter 5. We did this to understand
the changes brought by a different mass distribution to dynamics of BBHs.

Simulation Galaxy Mass Md Max mmerg Md Ng

LL 109 145.54 3
LL 1010 192.40 4
LL 1011 526.41 6
LL 1012 119.92 3

LML 109 279.98 4
LML 1010 652.61 6
LML 1011 2360.41 10
LML 1012 15900.13 12

LME 109 299.01 3
LME 1010 388.31 4
LME 1011 826.02 5
LME 1012 735.72 4

Table 6.1: Maximum merger mass and generation of BHs produced in each simulation.

In LML and LME, we have taken the formation times and mass population as we would
get from the globular clusters. The parameter we change is the type of galaxy. They are taken
as late-type and early-type respectively. The major difference brought by this parameter is the
radius of the NSC. In early-type galaxies, the clusters are much larger than late-type. Although
this may not impact the escape velocity and mass of the clusters, it heavily alters the density
of the cluster, therefore all the dynamical processes.

Each simulation is grouped together with four sub-simulations of four different galaxy masses

38
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Figure 6.1: Maximum mass of primary BH that merge with each generation. From top to
bottom: LL, LML and LME.

(109, 1010, 1011, 1012Md). With scatter implemented, we are able to form NSCs for different
masses and sizes. There are 105 BHs in each sub-simulation, which makes it easy to compare
between the simulations.

In table 6.1, we can see the heaviest BH each simulation has produced along with the maxi-
mum generation they reached. Each NSC, from the lightest to heaviest is capable of producing
IMBHs. A major change we observe is that with the addition of migratory BHs (heavier BH
population), the efficiency of hierarchical mergers increases. In LL simulation, we are only
reaching sixth generation while in LML, we go up to twelfth generation, producing BH greater
than 10000Md. We will discuss the reason for this change in the following sections. Lastly, in
LME, the decrease in density have once again reduced the efficiency of hierarchical mergers.

Figure 6.1 is showing the maximum merger mass for each generation. Each color chain if
for one particular galaxy. For coherence, we will use the same color scheme across the chapter
unless specified otherwise.

6.2 Timescales

As we have seen in chapter 2 and chapter 5 (eq 2.24,2.12,2.16,5.4), the timescales are heavily
dependent on the cluster properties like density and velocity dispersion along with BH masses.
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Higher density decreases the timescales while higher velocity dispersion increases the timescales.
This can be seen from the figure 6.2. In the figure, the four colors signify four galaxy masses
while the three plots display the information of three major runs. Each point is the average
time taken by a BH to form a hard binary according to equation 5.4 in that generation.

For galaxies of higher mass, the dynamical time is generally higher since NSCs are more
massive and so is the velocity dispersion. A BH can form hard binary within a few million years
in the lightest NSC, while it can take billions of years in the heaviest NSC. Another trend to
notice is the decrease in dynamical time with increasing generation. It is straightforwards that
each leading generation is later in time, which means the NSC has accreted more matter, be-
come more massive, and have higher velocity dispersion. However, with progressing generation,
the BH masses are also increasing. These two parameters have opposite effect on timescales
with mass winning. It leads to shorter dynamical time as NSC evolves. This trend is only
broken in the heaviest NSC in LL and LME. In these two cases, mass is unable to overcome
the effect of velocity dispersion.

Figure 6.2: Dynamical timescales for all the 12 simulations. The three subplots are of three
major runs while the different color markers are for different galaxies. The points shown here
are the average for all the BHs within that generation.

6.3 Population

In the above section, we saw that heavier NSCs have long dynamical times, which implies the
BHs can’t have many hierarchical mergers. This is the key factor stopping mergers in heavier
NSCs. On the other hand, lighter galaxies have small escape velocities, so supernova kicks and
relativistic kicks are able to expel the BHs from the clusters. As for NSCs of intermediate mass,
both forces act depending on the BH mass.

In 109Md run of LL simulation, we only have 933 BH mergers out of 105 initial BHs. The
remaining 99% were thrown out of the cluster due to small escape velocities. Among the 933
that merged, a majority of remnant BHs were expelled by relativistic kicks with only 78 form-
ing second generation BHs. Because of small dynamical time for lighter galaxies, all of these
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Figure 6.3: Mean escape velocities of all 12 simulations along the generations

BHs were able to merge within Hubble time. Most of the remnants were once again ejected
from the cluster with only 2 BHs forming third generation. On further merger, these two were
also ejected, causing the simulation to stop at third generation. Even though the NSCs was
growing, they weren’t able to retain the BHs.

On the other end of mass spectrum, for 1012Md run of LL simulation, most of the BHs
remained in the cluster. However, due to longer dynamical time and coalescence time, only 738
BHs were able to merge within Hubble time. Because of the NSCs’ heavier mass, none were
ejected and only thrown to the outskirts of the clusters. Because of their long coalescence time,
the NSCs have grown a lot, having greater velocity dispersion. Dynamical friction time for
these BHs was too large So, only 43 become second generation. The simulation also stopped
at third generation with only 5 BHs merging.

In the 1010 and 1011Md galaxy runs, we have a balance of ejection and longer times. These
two mass ranges are the most efficient with the latter simulation producing the heaviest mass
remnant of the LL simulation.

In the LML runs, we are also considering masses of BHs coming from globular clusters.
The peak in mass shifted from 7 ´ 10Md to two peaks at 12 ´ 15Md and 30 ´ 35Md with a
long tail going more than a hundred Md. In the lighter NSCs, the change in mass have altered
the distribution of supernova kicks since they are inversely proportional to the BH mass (eq.
4.7). Additionally, we are considering the escape velocities from GCs for the BHs that are
infalling. This creates a more realistic system. Their combined effect still produces a higher
number of mergers in the 109Md galaxy run with 43841 BHs merging in the first generation.
The relativistic kicks are the same, they do not depend on the mass of the primary but rather
the fraction q “ m2{m1 (eq. 4.9). These kicks remain similar to LL runs, ejecting a lot of BHs
from the lighter NSCs. The simulation stops at fourth generation.
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Figure 6.4: Population of BHs that merge with all 12 simulations. The blue filled popula-
tion is first generation, orange is second generation and green is third generation. It is clearly
shown that LML runs produced the most BH mergers.

For 1012Md run, we saw earlier that most of the BHs were retained in the NSCs. The
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increase in mass will effectively bring dynamical time of many of these BHs down, leading to
many first generation mergers, 7902 exactly. With greater mass, the coalescence time is also
small, so the NSC has not grown a lot within that time. The effect caused by increase in mass
overcomes the effect caused by increase in velocity dispersion. We have a greater amount of
BHs going to higher generations.

The runs with galaxy mass 1010 and 1011Md have similarly many BHs surviving and reach-
ing higher generations.

Lastly, in the LME runs, we see the effect of density on the dynamics of BHs. Changing the
galaxy type from late to early, we decreased the average density from 11000´ 13000Md{pc3 to
just 700´800Md{pc3. The efficiency brought my increasing BH mass is canceled by the sparser
NSCs. Although a lot of BHs survive ejection from BH, we do not get higher generation BHs.
From table 6.1, we see that we only go maximum fifth generation in all LME runs.

6.4 BH Growth History

Figure 6.5: Merger Chain of BHs in cluster with local BHs.

Studying the merger chains of BH provide information on the dynamical time, which tell us
about the NSCs they live in. Figure 6.5 shows merger chains of LL runs. In these four plots,
I have selected ten merger chains among which six are random while four are for BHs that
perform the most hierarchical mergers. In the first plot for 109Md galaxy, we see more than
half the BHs performing runaway mergers. The longest a BH takes to inspiral and merge is
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1 billion years. Another important fact to notice would be which BHs have merged. Most of
them had masses above 10Md and formation time greater than a few hundred million years.
This is logical considering that the more massive a BH is, the smaller is the supernova kick.
Simultaneously, the later a BH forms, heavier the NSC is and more is the escape velocity. An
interesting fact is that in such light NSCs, hierarchical merger stops a couple of billion years
after the star formation stops. So, for lighter NSCs to exhibit gravitational waves event in
current epoch, it may have had a recent star formation episode.

On the other extreme, for 1012Md galaxy, as dynamical time is too long, we see long lines
between two successive mergers. More massive BHs find it easier to merge due to their smaller
dynamical and coalescence time. On the other hand, BHs formed at earlier times are more
probable to merge since velocity dispersion is small in the beginning. If an NSC is extremely
heavy and formed as soon as the first galaxies formed, there can still be merger happening in
them from those early BHs.

As for 1010Md and 1011Md galaxy runs, the results are a mixture of both extreme, with the
former preferring run-away mergers and later preferring long dynamical formations. In 1011Md

plot, we see a hint of runaway mergers at the higher generations. If the BH mass is able to
overcome the effect brought by velocity dispersion, we can form BHs heavier than a 1000Md.

Figure 6.6: Merger Chain of BHs in cluster with accreting BHs in Late Type galaxy

In figure 6.6 showing the merger chains of LML run, we still observe the general trends,
heavier mass BHs are more likely to merge. Lighter NSCs prefer BH formed later while heavier
NSCs prefer BH formed earlier. However, with increased BH mass population, the second sce-
nario is relaxed. In 1011 and 1012Md galaxies, we also see merger chains of BH formed later on.
Another major difference would be runaway mergers in the heavier NSCs, capable of producing



45

BHs heavier than 1000Md. If SMBHs are created from seed IMBHs, the probability of them to
form in heaviest NSC is high, which in turn means the heaviest galaxies. This can be a reason
for the creation of SMBHs in such galaxies and absence of NSCs in them.

Figure 6.7: Merger Chain of BHs in cluster with accreting BHs in Early Type galaxy

Lastly, the merger chains of LME are shown in figure 6.7. The decrease in density makes
runaway mergers in NSCs of all masses less likely. The lightest NSCs in 109Md galaxy run
only have a few runaway mergers. Simultaneously, we get mergers chain that last more than
ten billion years, something we hadn’t seen previously.

6.5 Observational Comparison

Population of BHs from all our simulations can be seen in figure 6.8. The plots are of primary
mass versus secondary mass of all merging BHs across the generations. The color scheme simply
tells us what mass of BHs are merging more. The black points overlapped on the distribution
are GW observational data from O1, O2, and O3 observational runs. The data is shown in
appendix B. The elongated bars on each point are uncertainties of GW data.
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Figure 6.8: 2D histograms of primary and secondary mass of all the simulations. The color
scheme tells us what mass of BHs are merging more likely. The black points overlapped on
the distribution are GW observational data from O1, O2, and O3 observational runs. The
data are shown in appendix B. The bars on each point are 90% uncertainties of GW data.
The same plots without GW data is in appendix C
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As we have already discussed in the previous sections, changing the initial mass population
in LML runs has significantly altered the merging BH population. The difference can be clearly
seen by comparing LL and LML models, we have more massive mergers in both LML and LME
runs. The major difference in LML and LME shows up in heavier galaxies, with LME produc-
ing no BHs above a 1000Md.

It can be seen from the figure that LML and LME runs are capable of producing BH mergers
in similar mass range of most of the GW events. While LL fails to reproduce BH mergers near
the heaviest GW events. It also seems unlikely that the lower mass end GW events came from
dynamical formation in NSCs.

The inability of LL run to reproduce the data can also be seen from figure 6.9, where I have
plotted the final mass of the remnants along their spins.The effect is even more pronounced
than mass distribution.

A trend to observe here is that with increasing mass, the spins also increase. It isn’t straight-
forwards to see but can be inferred by watching the higher population of spins with increasing
masses. In 1010Md and 1011Md runs of LML and LME, we can clearly see the yellow dense
region shifting towards higher spins with increasing mass. Higher generation mergers produce
higher spins remnants.
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Figure 6.9: 2D histograms of remnant mass and remnant spins of all the simulations. The
color scheme is similar to figure 6.8. The black points overlapped on the distribution are GW
observational data from O1, O2, and O3 observational runs. The data are shown in appendix
B. The bars on each point are 90% uncertainties of GW data. The same plots without GW
data is in appendix C



Chapter 7

Conclusion and Future Work

We started our discussion with showing that dynamical formation of BBH could answer the
inconsistency in BH mass distribution inferred from GW data. We could form BHs in pair-
instability mass gap and even have these BHs form binaries through hierarchical mergers. NSC
were excellent locations to study this phenomenon with high density and escape velocity. In
this thesis, we wanted to study BBH mergers in a realistic NSC, which is growing through GC
accretion. To study this phenomenon, we created a semi-analytical model for NSC evolution
and matched it with observational data. Once we were sure our model worked nicely, we im-
plemented it into FASTCLUSTER

We had to exhaustively update the FASTCLUSTER code to include our realistic model.
Simultaneously, we created a BH library that could form in GC and stay within the cluster.
We did this by running ten simulations of FASTCLUSTER in GC mode and selecting all the
BHs that were not ejected by supernova, relativistic, or dynamical kicks.

We performed 12 simulations with 105 BHs. Depending on the initial BH mass population
and galaxy type, we divided these 12 simulations into three groups named: Local BH and
Late type galaxy (LL), Local BH, Migratory BH, and Late type galaxy (LML), and Local BH,
Migratory BH, and Early type galaxy (LME). Each group was further divided by galaxy mass
of 109, 1010, 1011, and 1012Md. Local BH are produced in NSC while migratory BH come from
GC accretion.

Through the results of LL simulations, we were able to answer an important question: are
NSCs of all masses efficient in hierarchical mergers? In chapter 6, we found that although NSCs
of all masses were capable of producing IMBHs, the lightest and heaviest NSCs couldn’t go
above three generations. In the lightest NSCs, small escape velocities caused most of the BHs
to be ejected from the cluster. On the heaviest side, greater velocity dispersion caused longer
formation and merger time for the binaries. We wouldn’t see those mergers within Hubble time.

The LML simulations showed us how the initial BH population could alter the dynamics
of BBH. With heavier BHs coming from GCs, we were able to shorten the dynamical time for
forming and merging BHs. This effect was seen across the NSC masses with the greatest effect
in the heaviest NSCs. In the heaviest NSCs, larger dynamical time was the reason behind halt-
ing of hierarchical mergers. With this problem solved, we were able to form BH with masses
greater than 10000Md in the heaviest NSCs.

In chapter 3, we studied two formation channels of NSCs, asking if the formation channel
affected BBH mergers inside. Indeed, with the GC migratory channel, we see a larger initial
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BH population (LML) that significantly changes the BBH dynamics inside.

The formation of BHs larger than 2000Md in late type galaxies of mass 1011 and 1012Md

could answer the presence of SMBH in these galaxies. Such MBHs may be seeds that give
birth to SMBHs in heavier galaxies. These SMBHs can disrupt the NSCs, leading to absence
of NSCs in high mass galaxies. The SMBH can also co-exist with the NSCs like in our Milky
Way and M31.

An important question was the impact of NSC’s evolution on BBH dynamics. We saw
from figures 6.5, 6.6, 6.7 that in many simulations, the evolution of NSC created an increase
in dynamical time. In simulations where the increase in BH mass was able to overcome the
evolution’s effects, we saw run-away mergers of BHs. Additionally, we saw that in the lightest
NSCs, most of BBH mergers stop after a few billion years of NSCs formation.

In LME simulations, we changed the galaxy type to early, which created bigger NSCs in
size. Greater sizes for similar masses meant smaller densities, which changed the dynamical
times for BBH formation and merger. Despite a heavier BH population coming from GCs, we
weren’t able to produce BHs greater than a 1000Md. According to our model and analysis,
SMBH creation in massive early type galaxies seems unlikely from seed IMBHs. We know from
chapter 3 that most massive early type galaxy do not host NSCs and host SMBHs. Our model
is unable to answer this question.

Lastly, we compared the results we obtained from our simulations with confident GW de-
tections from GWTC-1,2, and 3 (figure 6.8). We found that it is highly unlikely that these
observations came from BHs that formed in NSCs. They have small masses and longer dy-
namical time to form hierarchical mergers of heavier mass. On the other hand, LML and LME
simulations showed that they can produce mergers similar to GW events. These effects can
also be seen in figure 6.9.

To conclude, the physical properties of NSC along with its formation channel, and evolution
affect the dynamics of BBHs inside. Conversely, BBH detection from NSCs can shed light on
NSC formation and evolution processes, which is still an active area of research.

This work is the first step towards a more refined FASTCLUSTER code that could repro-
duce the physical phenomenon more precisely. The GC migratory model we consider for NSC
evolution has room for growth. First, we have only considered GCs within the scale length. In
lighter galaxy cases, the GC within scale length inspiral to the NSC within just a few million
years. But the accretion doesn’t stop there. We will account for this in the future. Secondly,
there is no consideration for tidal forces that disrupt the GCs. This is important since it will
alter the growth trajectory of the NSCs, certainly in the heaviest galaxies.

The BH libraries we took for both local and migratory BH were from evolution of stars
around solar metallicity. This is not exactly true for GCs who show older population stars and
thus lower metallicity. GCs can also produce heavier mass BH from stellar evolution that we
haven’t considered. The change in metallicity will change the initial BH mass population, thus
heavily altering the final BBH population.
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Appendix A

Coalescence

When two stellar bodies revolve around each other, they create ripples in the fabric of space-
time that propagate in the form of gravitational waves. These waves carry away the energy
from the system, causing the binary to shrink and eventually merge. From linearized Ein-
stein’s equations, we know that an object with stress energy tensor Tµν can act produce small
perturbations,

lhµν “ ´
2Tµν

Mp

, (A.1)

where Mp is the reduced Planck mass. In vacuum, these equations reduce to a four-dimensional
analog of wave equations, easily solved by a sinusoidal system. But what we are interested is
knowing the waves emitted by a binary system. Solving this equation in its grandness is not
the aim of this thesis, so I will simply skip to the main results. For a system to two bodies
orbiting each other, the perturbation created is,

h`pt, θ, ϕq “
1

r

4G5{3ω
2{3
S µM2{3

c4
1 ` cos2 θ

2
cosp2ωst ` 2ϕq

hˆpt, θ, ϕq “
1

r

4G5{3ω
2{3
S µM2{3

c4
cos pθq sinp2ωst ` 2ϕq

(A.2)

h` and hˆ are two polarization of the gravitational waves seen by an observer present in the
direction of pθ, ϕq. µ is the reduced mass of the system while M is the total mass. It can be
seen that depending on where the observer is, the amplitude of gravitational waves can change,
which greatly helps in localizing these waves from observations. These waves naturally carry
away some energy, which can be inferred by inverting Einstein’s equations. The total radiated
power is,

E9 GW “
dE

dt
“

32

5

c5

G

ˆ

GMcωGW

2c3

̇10{3

, (A.3)

where Mc is the chirp mass, defined as Mc “ µ3{5M2{5. Ignoring the constants, we can easily
see that for large mass bodies, the energy released as GW is also large. The same could be said
about the frequency. The faster those bodies rotate, the more energy per unit time they emit.

A two body system, virialized has its total energy just half the potential energy,

E “
Gm1m2

2R
. (A.4)

The change in energy brought by the change in radius is,

E9 “ ´
Gm1m2

2R2
R9 . (A.5)
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Figure A.1: Left: Chirping Waveform created using pycbc package. m1 “ 500Md, m2 “

300Md,S1 “ 0.9,S2 “ 0.4 and e “ 0 are the physical parameters of the binary taken to
form this waveform. Right: The evolution of frequency according to equation A.10 for var-
ious mass combination of primary and secondary. We see that for our frequency of interest
(10Hz), most binaries come into this range only towards the end of their life, the final few
seconds.

From Kepler’s third law, we find an equation connecting radius with angular frequency,

R “

ˆ

GM

ω2
s

̇1{3

(A.6)

Differentiating and solving, we find,

R9 “ ´
2

3

ω9 s
ωs

R (A.7)

Combining equations (A.3),(A.5),(A.7), we arrive at the result,

ω9 GW “
12p2q1{3

5

ˆ

GMc

c3

̇5{3

ω
11{3
GW , where ωs “ 2ωGW (A.8)

or

f9 GW “
96

5
π8{3

ˆ

GMc

c3

̇5{3

f
11{3
GW

f9 GW “ kfGW

(A.9)

Above equation can be easily solved to give us the final result of,

fGW “
1

π

ˆ

5

256τ

̇3{8ˆ
c3

GMc

̇5{8

, (A.10)

where τ “ t´ tcoal and tcoal is the time of merger. Inverting the above equation can give us the
time for merger,

τ “
5

256

ˆ

1

πfGW

̇8{3ˆ
c3

GMc

̇5{3

, (A.11)



Appendix B

GW Observations

Table B.1: GW data for BBHs from O1,O2, and O3 runs.

GW Event Primary Secondary χeff Remnant
- Mass Md Mass Md - Mass Md

GW150914 35.64.7´3.1 30.63.0´4.4 ´0.010.12´0.13 63.13.4´3.0

GW151012 23.214.9´5.5 13.64.1´4.8 0.050.31´0.2 35.610.8´3.8

GW151226 13.78.8´3.2 7.72.2´2.5 0.180.2´0.12 20.56.4´1.5

GW170104 30.87.3´5.6 20.04.9´4.6 ´0.040.17´0.21 48.95.1´4.0

GW170608 11.05.5´1.7 7.61.4´2.2 0.030.19´0.07 17.83.4´0.7

GW170729 50.216.2´10.2 34.09.1´10.1 0.370.21´0.25 79.514.7´10.2

GW170809 35.08.3´5.9 23.85.1´5.2 0.080.17´0.17 56.35.2´3.8

GW170814 30.65.6´3.0 25.22.8´4.0 0.070.12´0.12 53.23.2´2.4

GW170818 35.47.5´4.7 26.74.3´5.2 ´0.090.18´0.21 59.44.9´3.8

GW170823 39.511.2´6.7 29.06.7´7.8 0.090.22´0.26 65.410.1´7.4

GW190403 051519 85.027.8´33.0 20.026.3´8.4 0.680.16´0.43 102.226.3´24.3

GW190408 181802 24.85.4´3.5 18.53.3´4.0 ´0.030.13´0.17 41.43.9´2.9

GW190412 27.76.0´6.0 9.02.0´1.4 0.210.12´0.13 35.64.8´4.5

GW190413 052954 33.710.4´6.4 24.26.5´7.0 ´0.040.27´0.32 55.510.1´7.3

GW190413 134308 51.316.6´12.6 30.411.7´12.7 ´0.010.28´0.38 78.016.1´11.5

GW190421 213856 42.010.1´7.4 32.08.3´9.8 ´0.10.21´0.27 70.512.4´9.0

GW190426 190642 105.545.3´24.1 76.026.2´36.5 0.230.42´0.41 172.937.7´33.6

GW190503 185404 41.310.3´7.7 28.37.5´9.2 ´0.050.23´0.3 66.59.4´7.9

GW190512 180714 23.25.6´5.6 12.53.5´2.6 0.020.13´0.14 34.34.1´3.4

GW190513 205428 36.010.6´9.7 18.37.4´4.7 0.160.29´0.22 52.18.8´6.6

GW190514 065416 40.917.3´9.3 28.410.0´10.1 ´0.080.29´0.35 66.419.0´11.5

GW190517 055101 39.213.9´9.2 24.07.4´7.9 0.490.21´0.28 60.19.9´9.4

GW190519 153544 65.110.8´11.0 40.811.5´12.7 0.330.2´0.24 100.013.0´12.9

GW190521 98.433.6´21.7 57.227.1´30.1 ´0.140.5´0.45 147.440.0´16.0

GW190521 074359 43.45.8´5.5 33.45.2´6.8 0.10.13´0.13 72.66.5´5.4

GW190527 092055 35.618.7´8.0 22.29.0´8.7 0.10.22´0.22 55.517.9´8.5

GW190602 175927 71.818.1´14.6 44.815.5´19.6 0.120.25´0.28 110.517.9´13.9

GW190620 030421 58.019.2´13.3 35.013.1´14.5 0.340.22´0.29 88.017.2´12.4

GW190630 185205 35.16.5´5.5 24.05.5´5.2 0.10.14´0.13 56.64.4´4.5

GW190701 203306 54.112.6´8.0 40.58.7´12.1 ´0.080.23´0.31 90.211.2´8.9

GW190706 222641 74.020.1´16.9 39.418.4´15.4 0.280.25´0.31 107.325.2´15.9

GW190707 093326 12.12.6´2.0 7.91.6´1.3 ´0.040.1´0.09 19.21.7´1.2

Continued on next page
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Table B.1 – continued from previous page
GW Event Primary Secondary χeff Remnant

- Mass Md Mass Md - Mass Md

GW190708 232457 19.84.3´4.3 11.63.1´2.0 0.050.1´0.1 30.12.9´2.1

GW190719 215514 36.642.1´11.1 19.910.0´9.3 0.250.33´0.32 54.538.3´11.1

GW190720 000836 14.25.6´3.3 7.52.2´1.8 0.190.14´0.11 20.83.9´2.0

GW190725 174728 11.810.1´3.0 6.32.1´2.5 ´0.040.36´0.16 17.67.7´1.8

GW190727 060333 38.98.9´6.0 30.26.5´8.3 0.090.25´0.27 65.49.5´7.3

GW190728 064510 12.56.9´2.3 8.01.7´2.6 0.130.19´0.07 19.74.4´1.4

GW190731 140936 41.812.7´9.1 29.010.2´9.9 0.070.28´0.25 67.415.3´10.8

GW190803 022701 37.79.8´6.7 27.67.6´8.5 ´0.010.23´0.28 62.111.2´7.6

GW190805 211137 46.215.4´11.2 30.611.8´11.3 0.370.29´0.39 72.418.2´13.2

GW190828 063405 31.95.4´4.1 25.84.9´5.3 0.150.15´0.16 54.37.3´4.0

GW190828 065509 23.76.8´6.7 10.43.8´2.2 0.050.16´0.17 33.05.3´4.3

GW190910 112807 43.87.6´6.8 34.26.6´7.3 0.00.17´0.2 74.48.5´8.6

GW190915 235702 32.68.8´4.9 24.54.9´5.8 ´0.030.19´0.24 54.76.6´5.0

GW190916 200658 43.819.9´12.6 23.312.5´10.0 0.20.33´0.31 65.017.3´12.6

GW190924 021846 8.84.3´1.8 5.11.2´1.5 0.030.2´0.08 13.33.0´0.9

GW190925 232845 20.86.5´2.9 15.52.5´3.6 0.090.16´0.15 34.93.5´2.6

GW190926 050336 41.120.8´12.5 20.411.4´8.2 ´0.020.25´0.32 59.622.1´11.8

GW190929 012149 66.321.6´16.6 26.814.7´10.6 ´0.030.23´0.28 90.322.3´14.6

GW190930 133541 14.28.0´4.0 6.92.4´2.1 0.190.22´0.16 20.26.1´2.0

GW191103 012549 11.86.2´2.2 7.91.7´2.4 0.210.16´0.1 19.03.8´1.7

GW191105 143521 10.73.7´1.6 7.71.4´1.9 ´0.020.13´0.09 17.62.1´1.2

GW191109 010717 65.011.0´11.0 47.015.0´13.0 ´0.290.42´0.31 107.018.0´15.0

GW191113 071753 29.012.0´14.0 5.94.4´1.3 0.00.37´0.29 34.011.0´10.0

GW191126 115259 12.15.5´2.2 8.31.9´2.4 0.210.15´0.11 19.63.5´2.0

GW191127 050227 53.047.0´20.0 24.017.0´14.0 0.180.34´0.36 76.039.0´21.0

GW191129 134029 10.74.1´2.1 6.71.5´1.7 0.060.16´0.08 16.82.5´1.2

GW191204 110529 27.311.0´6.0 19.35.6´6.0 0.050.26´0.27 45.08.6´7.6

GW191204 171526 11.93.3´1.8 8.21.4´1.6 0.160.08´0.05 19.211.79´0.95

GW191215 223052 24.97.1´4.1 18.13.8´4.1 ´0.040.17´0.21 41.45.1´4.1

GW191216 213338 12.14.6´2.3 7.71.6´1.9 0.110.13´0.06 18.872.8´0.94

GW191222 033537 45.110.9´8.0 34.79.3´10.5 ´0.040.2´0.25 75.515.3´9.9

GW191230 180458 49.414.0´9.6 37.011.0´12.0 ´0.050.26´0.31 82.017.0´11.0

GW200112 155838 35.66.7´4.5 28.34.4´5.9 0.060.15´0.15 60.85.3´4.3

GW200128 022011 42.211.6´8.1 32.69.5´9.2 0.120.24´0.25 71.016.0´11.0

GW200129 065458 34.59.9´3.2 28.93.4´9.3 0.110.11´0.16 60.34.0´3.3

GW200202 154313 10.13.5´1.4 7.31.1´1.7 0.040.13´0.06 16.761.87´0.66

GW200208 130117 37.89.2´6.2 27.46.1´7.4 ´0.070.22´0.27 62.57.3´6.4

GW200208 222617 51.0104.0´30.0 12.39.0´5.7 0.450.43´0.44 61.0100.0´25.0

GW200209 085452 35.610.5´6.8 27.17.8´7.8 ´0.120.24´0.3 59.913.1´8.9

GW200216 220804 51.022.0´13.0 30.014.0´16.0 0.10.34´0.36 78.019.0´13.0

GW200219 094415 37.510.1´6.9 27.97.4´8.4 ´0.080.23´0.29 62.211.7´7.8

GW200220 061928 87.040.0´23.0 61.026.0´25.0 0.060.4´0.38 141.051.0´31.0

GW200220 124850 38.914.1´8.6 27.99.2´9.0 ´0.070.27´0.33 64.016.0´11.0

GW200224 222234 40.06.9´4.5 32.55.0´7.2 0.10.15´0.15 68.66.6´4.7

GW200225 060421 19.35.0´3.0 14.02.8´3.5 ´0.120.17´0.28 32.13.5´2.8

GW200302 015811 37.88.7´8.5 20.08.1´5.7 0.010.25´0.26 55.58.9´6.6

Continued on next page
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Table B.1 – continued from previous page
GW Event Primary Secondary χeff Remnant

- Mass Md Mass Md - Mass Md

GW200306 093714 28.317.1´7.7 14.86.5´6.4 0.320.28´0.46 41.712.3´6.9

GW200308 173609 36.411.2´9.6 13.87.2´3.3 0.650.17´0.21 47.411.1´7.7

GW200311 115853 34.26.4´3.8 27.74.1´5.9 ´0.020.16´0.2 59.04.8´3.9

GW200316 215756 13.110.2´2.9 7.81.9´2.9 0.130.27´0.1 20.27.4´1.9

GW200322 091133 34.048.0´18.0 14.016.8´8.7 0.240.45´0.51 53.038.0´26.0



Appendix C

Additional Figures

Figure C.1: Coalescence timescales for all the 12 simulations. The three subplots are of three
major runs while the different color markers are for different galaxies. The points shown here
are the average for all the BHs within that generation. We see that with each generation,
coalescence time is generally decreasing.
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Figure C.2: 2D histograms of primary mass and secondary mass of all the simulations. The
color scheme is similar to figure 6.8.
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Figure C.3: 2D histograms of remnant mass and remnant spins of all the simulations. The
color scheme is similar to figure 6.8.
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