
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea in Fisica

Tesi di Laurea

Ricostruzione dell’energia nell’esperimento JUNO con

tecniche di Machine Learning

Energy reconstruction in the JUNO experiment with

Machine Learning techniques

Relatore Laureando

Prof. Alberto Garfagnini Tommaso Ferracci

Correlatore

Arsenii Gavrikov

Anno Accademico 2022/2023

Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) is a neutrino observatory currently
under construction in South China. The JUNO central detector is a 35.4 m diameter sphere filled
with 20 kt of liquid scintillator (LS). Thanks to an unprecedented effective energy resolution better
than 3%/

√
E(MeV), JUNO is expected to determine the neutrino mass hierarchy, one of the still

open questions in neutrino physics. The interactions of rector anti-neutrinos in the detector happen
via the so-called inverse beta decay (IBD), where an anti-neutrino interacts with a proton producing a
positron and a neutron in the final state. The positron deposits its energy in the LS and annihilates into
two gammas. The scintillation light produced after energy deposition is collected by photomultipliers
(PMTs) and used for energy reconstruction of the neutrino interactions.

Because of its ability to automatically learn complex non-linear dependencies, Machine Learning
(ML) represents a valid alternative to traditional energy reconstruction algorithms. In this work, based
on recently published papers, 162 features are engineered from the information provided by individual
PMTs to train three different ML models: boosted decision trees (BDT), a fully connected deep
neural network (FCDNN) and a 1-dimensional convolutional neural network (1DCNN). All models
satisfy the requirement on the effective energy resolution to determine the neutrino mass ordering,
and FCDNN results in the best combination of performance and stability. In addition, possible future
improvements to the 1DCNN architecture are outlined, based on its promising preliminary results.

Il Jiangmen Underground Neutrino Observatory (JUNO) è un osservatorio di neutrini attualmente
in costruzione nel Sud della Cina. Il detector centrale di JUNO è una sfera da 35.4 m di diametro
riempita con 20 kt di scintillatore liquido. Grazie a una risoluzione energetica efficace migliore di
3%/

√
E(MeV) ci si aspetta che JUNO determini la gerarchia di massa dei neutrini, una delle domande

ancora aperte nella fisica dei neutrini. L’interazione degli anti-neutrini da reattore all’interno del
detector avviene tramite decadimento beta inverso (IBD), dove un anti-neutrino interagisce con un
protone producendo un neutrone e un positrone. Il positrone deposita la sua energia nello scintillatore
liquido e annichilisce in due gamma. La luce di scintillazione prodotta in seguito al deposito di energia
viene raccolta da fotomoltiplicatori (PMTs) e utilizzata per la ricostruzione energetica delle interazioni
di neutrini.

Per via della sua abilità di apprendere automaticamente dipendenze non-lineari complesse, il Ma-
chine Learning (ML) rappresenta una valida alternativa a algoritmi tradizionali per la ricostruzione
dell’energia. In questo lavoro, basato su pubblicazioni recenti, 162 features vengono ingegnerizzate a
partire dall’informazione fornita dai singoli PMTs con lo scopo di addestrare tre diversi modelli di
ML: alberi di decisione (BDT), una rete neurale completamente connessa (FCDNN) e una rete neu-
rale convoluzionale unidimensionale (1DCNN). Tutti i modelli soddisfano il requisito sulla risoluzione
energetica efficace per determinare l’ordinamento di massa dei neutrini, e FCDNN fornisce la migliore
combinazione di performance e stabilità. Vengono in aggiunta proposti suggerimenti su possibili futuri
miglioramenti dell’architettura 1DCNN, a partire da risultati preliminari promettenti.

ii

Contents

1 Introduction 1
1.1 The JUNO Experiment . 1
1.2 Inverse Beta Decay . 3
1.3 Energy Reconstruction . 4

2 Machine Learning 5
2.1 Supervised Learning . 5
2.2 Gradient Boosted Trees . 6
2.3 Deep Neural Networks . 7
2.4 Computing Details . 8

3 Data Analysis 9
3.1 Data Description . 9
3.2 Feature Engineering . 9
3.3 Feature Selection . 13
3.4 Hyperparameter Tuning . 14

3.4.1 BDT . 14
3.4.2 FCDNN . 15
3.4.3 1DCNN . 16

3.5 Results . 18

4 Conclusions 21

Bibliography 23

iv

Chapter 1

Introduction

1.1 The JUNO Experiment

The Jiangmen Underground Neutrino Observatory (JUNO) [1, 2] is a large neutrino experiment
currently under construction near Kaiping, in the region of Guangdong in South China. The commis-
sioning of the main detector, followed by science runs, is expected to begin in 2024. The main purpose
of the experiment is to establish the neutrino mass ordering (NMO).

It is known from particle physics that neutrinos exist in three different flavors: electronic (|νe⟩),
muonic (|νµ⟩) and tauonic (|ντ ⟩). While neutrinos were long believed to be mass-less particles, in
1998 the Super-Kamiokande Collaboration announced the first experimental evidence of neutrino
oscillation [3] and, as a consequence, of non-zero neutrino mass. More precisely, each flavor eigenstate
can be expressed as a quantum superposition of three different mass eigenstates (|ν1⟩, |ν2⟩ and |ν3⟩),
meaning that neutrinos oscillate between different flavors as they travel through space and time. The
relationship between flavor and mass eigenstates is given by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix U [4, 5]:

νe
νµ
ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1
ν2
ν3

In the Standard Model of particle physics the PMNS matrix is unitary. It can in general be param-
eterized with 3 mixing angles (θ12, θ13 and θ23) and single phase angle δCP related to charge-parity
violations [6].
While the mixing angles have already been measured with precisions at a level of few percents, δCP

and the octant of θ23 (i.e., θ23 < π
4 or θ23 > π

4) are still unknown. JUNO’s sensitivity the the NMO
is independent of both these parameters, providing complementary information with respect to ac-
celerator and atmospheric experiments which are instead reliant on the matter effects in neutrino
oscillation.

The main sources of electron antineutrinos (|ν̄e⟩) for the JUNO experiment are two nuclear power
plants located roughly 53 km away from the detector. Due to neutrino oscillations, their survival
probability in vacuum [7] can be written as:

Pν̄e→ν̄e = 1− sin2(2θ13)

(
cos2(θ12) sin

2

(
∆m2

31

L

4Eν

)
+ sin2(θ12) sin

2

(
∆m2

32

L

4Eν

))

− cos4(θ13) sin
2(2θ12) sin

2

(
∆m2

21

L

4Eν

)

where ∆m2
ij = m2

i −m2
j is the mass-square-difference between eigenstates i and j, L ≈ 53 km is the

distance from the power plants and Eν is the antineutrino energy. While ∆m2
21 has been measured in

previous experiments, there are two possibilities regarding the neutrino mass ordering:

• Normal Ordering (NO): |∆m2
31| > |∆m2

32| =⇒ m1 < m2 < m3

• Inverted Ordering (IO): |∆m2
31| < |∆m2

32| =⇒ m3 < m1 < m2

1

JUNO will measure oscillations driven by both small mass splitting (∆m2
21) and large mass splitting

(∆m2
31 and ∆m2

32), as shown in fig. 1.1. An unprecedented relative energy resolution of σE/E =
3%/

√
E (MeV) will be needed to identify the correct NMO in the small oscillation peaks.

Figure 1.1: Expected reactor antineutrino energy spectrum with (black) and without (gray, blue
and red) the effect of neutrino oscillation. The spectra are weighted by IBD cross-section [2].

The JUNO detector (fig. 1.2) consists of a Central Detector (CD), a water Cherenkov detector and
a Top Tracker. The CD contains in a transparent 12-cm thick, 35.4 m in diameter acrylic sphere the
primary antineutrino target: 20 kton of liquid scintillator. The acrylic sphere is surrounded by 17612
large 20-inch photomultiplier tubes (LPMTs) and 25600 small 3-inch photomultiplier tubes (SPMTs).
The former provide 75.2% photocatode coverage, and the latter add an extra 2.7%. The ultra-pure
water Cherenkov detector serves both as a passive shield against external radioactivity and neutrons
from cosmic rays and as an active veto for cosmic muons (efficency > 99.5%). It is equipped with 2400
LPMTs to detect Cherenkov light from muons. The veto system is completed by the Top Tracker,
located at the top of the detector and capable of detecting muon tracks through three layers of plastic
scintillator.

Acrylic spherical
vessel filled with
liquid scintillator

Water pool

Top tracker and
calibration house

Earth magnetic
field compensation

coils

Photomultiplier
tubes

Acrylic supporting
nodes

Figure 1.2: Schematic view of the JUNO detector [2].

2

1.2 Inverse Beta Decay

All reactors in the proximity of JUNO are pressurized water reactors where fissions of four main
isotopes, 235U, 238U, 239Pu and 241Pu, account for > 99.7% of the antineutrinos. The antineutrino
flux ϕ(Eν) is given by these four components weighted by the fission rate of the isotopes, which can
be reconstructed using information provided by the nuclear power plants (fig. 1.3).

JUNO detects electron antineutrinos via the Inverse Beta Decay (IBD) channel:

ν̄e + p → e+ + n.

The positron deposits its kinetic energy (0-8 MeV range) in the liquid scintillator, then it quickly
annihilates with an electron into two 0.511-MeV gammas, providing a prompt signal. The deposited
energy in the detector is the sum of the kinetic energy of the positron and the annihilation energy:
Edep = Ee+ + 1.022MeV. As the antineutrino transfers most of its energy to the positron, Eν ≈
Ee+ + 1.8MeV.
The neutron scatters in the detector until it is captured on hydrogen (99%) or carbon (1%) nuclei,
producing respectively 2.2 MeV and 4.9 MeV de-excitation gammas. This signal comes with an average
delay of ∼ 200µs, which allows for the separation of IBD events from background.

Figure 1.3: Antineutrino flux for the four main isotopes. IBD cross-section. Antineutrino
energy spectrum (no oscillation) weighted by IBD cross-section [1].

The energy deposited in the detector can be measured through the scintillation mechanism: a
material excited by ionizing radiation re-emits the absorbed energy in form of light that can be
detected by PMTs. The active volume of the main detector is filled with Linear Alkyl Benzene
(LAB), an organic solvent that emits 280 nm (UV) radiation upon γ excitation. As the signal requires
a larger wavelength to be observable, wavelength shifter molecules like 2,5-diphenyloxazole (PPO),
and 1,4-bis(2-methylstyryl)benzene (bis-MSB) [8] are needed for the energy to be re-emitted as visible
photons. Finally, the produced light is collected by PMTs around the detector and converted to an
electric signal which is then processed and digitized by the electronics.
Effects such as quenching in the liquid scintillator and Cherenkov radiation are responsible for complex
non-linearities which affect energy reconstruction. The visible energy Evis, reconstructed in this work,
is intended as the scintillation part of the realized energy.

3

1.3 Energy Reconstruction

To determine the NMO at the level of 3 standard deviations in 6 years of data-taking, the JUNO
detector requires an energy non-linearity uncertainty below 1% and an effective energy resolution
better than 3%/

√
E(MeV). To achieve this unprecedented resolution, stringent requirements must

be enforced on the transparency of the scintillator and the detection efficiency of PMTs. A yield of
over 1500 photoelectrons/MeV is obtained at the detector center in current simulations using nominal
detector parameters [2]. This yield is position-dependent, and a calibration strategy based on the
combined information provided by LPMTs and SPMTs is implemented to compensate for this non-
uniformity in traditional reconstruction methods.

In general, the energy resolution [7] can be parameterized as:

σE
E

=

√(a√
E

)2
+ b2 +

(c

E

)2

where a is mainly driven by the Poisson statistics of true accumulated charge on PMTs, b is inde-
pendent of energy and accounts for positional non-uniformity, and c represents the contribution of
dark noise. It was found numerically using mock neutrino energy spectra generated assuming different
values of a, b and c that the JUNO requirement on the effective energy resolution can be rewritten in
terms of a single parameter ã [7]:

ã =

√
(a)2 + (1.6 · b)2 +

(c

1.6

)2
< 3%.

The charge and time information provided by PMTs can be used as input for various energy and
vertex reconstruction algorithms. While many traditional approaches have been explored, from simply
using charge-weighted PMTs positions to reconstruct the event vertex to complex likelihood methods,
the underlying non-uniformities and non-linearities characterizing the experiment suggest a different
possibility: Machine Learning.

4

Chapter 2

Machine Learning

2.1 Supervised Learning

The purpose of supervised learning is, given a large amount of input data for which the correct
output is known, to build a model capable of mapping the input data in the corresponding output.
This approach has experienced a rapid rise in popularity in High-Energy Physics (HEP), mostly due
to the significant amount of labeled data produced in modern simulations. Several components are
needed to successfully build, train and deploy a supervised learning algorithm:

• Data. A set {X(i), y(i)}i=1,...,m, where for each instance i both the features matrix X(i) contain-
ing all the information that will be used to make predictions and the true value of the target
y(i) are known. As energy reconstruction is a regression task, y will be treated as a continuous
variable.

• Inductive Bias. Training a Machine Learning algorithm equates to searching a hypothesis space
H for the function f : X → y that correctly maps the features in the target. The inductive bias
represents the set of assumptions made about both data and the target function that make this
search possible, and leads to the selection of the Machine Learning model to use.

• Training. While training algorithms are model-specific, in the common case of neural networks
the selected model will depend on a set of weights W, typically initialized randomly. The model
is used to make predictions that are then compared to the true values of the target through a
loss function, and the weights are updated in order to minimize the loss. The update rule is
defined by an optimizer. In this process, each training sample passes through the model multiple
times; each pass of the entire training dataset is defined as an epoch.

• Validation. The trained model is useful only if it is able to generalize well to data it has not
yet seen. Failure to do so can be observed when the model either is too simple to fully capture
the dependency of y on X (underfitting), or has learned by heart the training dataset, meaning
that predictions on new data are influenced by random noise present in the training samples
(overfitting). Because of these problems measures of performance on the training dataset are
not reliable, and a validation dataset is needed to monitor the training process.
In addition, Machine Learning models typically depend on various hyperparameters that can be
tweaked based on the performance on validation data, in a process called hyperparameter tuning.

• Testing. As the choice of hyperparameters is optimized on the validation dataset, measures
of performance on this dataset also become unreliable, especially after a lot of fine-tuning. An
additional testing dataset is thus needed to provide a definitive measure of performance after
which the model can no longer be tweaked.

5

2.2 Gradient Boosted Trees

Decision trees are a white-box Machine Learning model, meaning they make predictions by estab-
lishing a set of easily interpretable rules. The ID3 algorithm [9], typically used to generate decision
trees, splits the dataset based on the feature that maximizes the information gain (or equivalently
minimizes the entropy). It then reiterates on the different subsets using the remaining features until
it either cannot decrease the entropy further or it reaches the maximum allowed depth for the tree,
which is a hyperparameter set to prevent overfitting. This process defines a discrete set of branches
leading from the root to a leaf-node, each representing a certain region Rn of the input space. In
regression problems, given a new sample falling in Rn, the algorithm assigns it the mean value of the
target for all training samples in Rn as the predicted value. Notice how ID3 is a greedy algorithm: it
searches for the best feature at the current iteration, generating a tree that is not guaranteed to be
the global optimum. Indeed, the problem of learning the best decision tree is NP-complete [10].

Gradient boosting [11] is a popular algorithm in ensamble learning, and it works by sequentially
adding new predictors to an ensamble, each one correcting its predecessor. In the context of regression
problems, a decision tree is trained and used as base predictor. Then, a second tree is trained using as
input the residual errors made by the first predictor, and this process is repeated until the ensamble
grows to a predetermined size (although several regularization hyperparameters are available to prevent
overfitting). Given a new sample at prediction time, the predictions of all trees are added (fig. 2.1).
Gradient boosted models, in spite of their efficiency, are capable of achieving performances comparable
to complex Deep Learning models on tabular data [12].

Figure 2.1: Depiction of gradient boosting for a simple regression problem. The first tree is
trained normally (top left), then each subsequent tree is trained on the previous predictor’s

residuals (lower left). The right column displays the updated ensamble predictions.

6

2.3 Deep Neural Networks

Artificial neurons were first introduced in 1943 [13], and the simplest architecture for an artificial
neural network (ANN), the perceptron, was invented in 1957 [14]. It is composed of one or more
threshold logic units (TLU) organized in a single layer. Each TLU computes a linear combination of
its inputs adding an offset, then it applies an activation function to the result:

a
(0)
1

a
(0)
2

a
(0)
3

a
(0)
4

a
(0)
n

a
(1)
m

a
(1)
3

a
(1)
2

a
(1)
1

w1,1w1,1

w1,2w1,2

w1,3w1,3

w1,4w1,4

w1,nw1,n

...

...

= σ
(
w1,0a

(0)
0 + w1,1a

(0)
1 + . . .+ w1,na

(0)
n + b

(0)
1

)

= σ

(
n∑

i=1

w1,ia
(0)
i + b

(0)
1

)

a
(1)
1

a
(1)
2
...

a
(1)
m

= σ

w1,0 w1,1 . . . w1,n

w2,0 w2,1 . . . w2,n

...
...

. . .
...

wm,0 wm,1 . . . wm,n

a
(0)
1

a
(0)
2
...

a
(0)
n

+

b
(0)
1

b
(0)
2
...

b
(0)
m

a(1) = σ
(
W(0)a(0) + b(0)

)

where a(0) is the matrix of input features, W(0) contains all the connection weights, b(0) contains
one bias term per unit and σ is the activation function, needed to introduce non-linearity. A fully
connected deep neural network (FCDNN) is given by multiple perceptrons stacked on top of each
other, creating several hidden layers before the final output layer, as seen in fig. 2.2.

x1

x2

x3

xn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
m

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
m

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
m

...

y1

y2

yk

...

input
layer

hidden layers

output
layer

Figure 2.2: Fully connected deep neural network architecture.

Training of such complex architectures is made possible by a combination of reverse-mode au-
tomatic differentiation [15] and gradient descent. In the forward pass, the output of each layer is
computed to measure the network’s output error. Then the partial derivatives of the loss function
with respect to each weight are estimated by working backward through the network and computing
how much each connection contributed to the error in the following layer. Finally, the weights are
updated by gradient descent.

7

Because of the inner complexities of these architectures there are many hyperparameters to tune:
the number of hidden layers, the number of units per hidden layer, activation functions, weight ini-
tialization, optimizers, learning schedulers, etc.

2.4 Computing Details

In this work, ML models were trained on a virtual machine hosted on CloudVeneto and equipped
with a NVIDIA T4 GPU. To benefit the most from the GPU acceleration provided by the CUDA
hardware architecture, the following libraries for Python 3.10.6 were used:

• XGBoost [16] for tree-based models. It is a robust and efficient framework to train and deploy
gradient boosted trees. GPUs are easily integrated via the tree method parameter.

• PyTorch [17] for neural networks. It defines a class called Tensor (torch.Tensor) to store and
operate on arrays of numbers. Tensors behave similarly to NumPy arrays, but they can easily
be moved between the CPU and GPU and support highly optimized routines for linear algebra
and gradient computation, making them particularly suited to train deep neural networks.

8

Chapter 3

Data Analysis

3.1 Data Description

The analyzed dataset has been generated using the full detector Monte Carlo method provided by
the official JUNO software [18–20], which is based on the Geant4 framework [21, 22]. Each simulated
event begins with the injection of a positron with given kinetic energy, while the neutron produced
in the IBD interaction is not simulated. The dataset has then been split for the purposes of training
and model evaluation:

• Training dataset: 2 · 106 events spread uniformly in the scintillator volume with isotropic
angular distribution. The kinetic energy of the simulated positron has been sampled uniformly
in the [0, 10] MeV range.

• Testing dataset: 14 subsets of 5 · 104 events each corresponding to the following values of the
kinetic energies of the positron: [0, 0.1, 0.3, 0.6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] MeV. This allows for
evaluation at different energies.

The following details should be noted:

• Both the information provided by 20-inch PMTs and 3-inch PMTs have been used for energy
reconstruction. While the contribution of the latter to the total light collection is small, this
serves as a useful comparison with previous studies [23] which considered only large PMTs.

• PMTs produce pulses spontaneously causing noise (dark current). Of the 17612 LPMTs, 25%
are produced by Hamamatsu and 75% by NNVT, with dark current rate measured at 19.3 kHz
and 49.3 kHz respectively [24]. This effect, together with other intrinsic noise in the electronics,
has been simulated.

• For events happening near the edge of the detector, one or both photons produced in the electron-
positron annihilation can escape without contributing to the light yield. In addition, the radioac-
tive background is particularly strong at the detector’s edge. To counter for these effects affecting
energy reconstruction, a volume cut at 17.2m has been applied, removing from the dataset all
events in the outer 0.5m layer of the detector.

3.2 Feature Engineering

Given a simulated event, both the accumulated charge and the first hit time (FHT) are known
for each PMT (fig. 3.1). This results in 86424 information channels (many of which empty) that can
be used for energy reconstruction. Training of neural networks on such a large number of features is
computationally expensive, so the purpose of this study is to aggregate the available information in a
small set of features that will be used as input to simpler Machine Learning models with the purpose
of reconstructing the visible energy Evis.

9

Figure 3.1: Accumulated charge in the trigger window and first hit time for the same event as
seen by LPMTs (above) and SPMTs (below). Only fired PMTs are shown.

The following features have been engineered:

1. AccumCharge: sum of the charges accumulated by all PMTs in the trigger window. It is linearly
correlated with Evis and thus expected to be a powerful feature. It is also strongly position
dependent: in the region R ≳ 16 m it decreases (fig 3.2) because of the total internal reflection,
due to which photons with a large enough incident angle never reach the PMTs.

2. nPMTs: number of fired PMTs weighted by surface area of the PMT. It is expected to be similar
to AccumCharge but its correlation with Evis is slightly less linear.

Figure 3.2: AccumCharge on PMTs per 1 MeV of deposited energy against event radius cubed.

10

3. Features aggregated given the charge and position of the PMTs:

(a) Cartesian coordinates of the center of charge:

(xcc, ycc, zcc) = r⃗cc =

NLMPTs∑
i=1

r⃗LPMTi · npe,i +
NSMPTs∑

i=1
r⃗SPMTi · npe,i

NLMPTs∑
i=1

npe,i +
NSMPTs∑

i=1
npe,i

and its radial component Rcc = |r⃗cc|. As JUNO’s spherical symmetry is broken along the
z axis because of the supporting structure which obstructs the installation of some PMTs
in the bottom hemisphere, zcc is expected to be particularly important.
While these features are technically enough to characterize the center of charge, the follow-
ing others are engineered to help ML models learn complex non-linear dependencies:

θcc = arctan

√
x2cc + y2cc
zcc

, ϕcc = arctan
ycc
xcc

, Jcc = R2
cc · sin θcc, ρcc =

√
x2cc + y2cc

γccx =
xcc√

y2cc + z2cc
, γccy =

ycc√
x2cc + z2cc

, γccz =
zcc√

x2cc + y2cc

Figure 3.3: CDFs and PDFs of LPMTs charge distribution for events with Ekin ≈ 1 MeV and
different radii (left) and events roughly at the detector’s center but with different energies

(right). Dashed lines indicate mean values of the PDFs.

(b) Charge distribution for LPMTs.
As it can be seen from fig. 3.3, the shape of the charge distribution captures information
about both the intensity of light emission (for higher energies the peak at two hits per PMT
becomes more prominent) and the position (near the edge of the detector the distribution
becomes more right-tailed). To characterize the distribution the following percentiles are
used:

{pe2%, pe5%, pe10%, pe15%, . . . , pe90%, pe95%}

in addition to the distribution’s mean, standard deviation, skewness, kurtosis and entropy:

{pemean, pestd, peskew, pekurtosis, peentropy}

(c) Charge distribution for SPMTs.
The same set of features described in (b) is engineered separately for SMPTs.

4. Features aggregated given the first hit time and position of the PMTs:

11

(a) Cartesian coordinates of the FHT center:

(xcht, ycht, zcht) = r⃗cht =

NLMPTs∑
i=1

r⃗LPMTi
tht,i+c +

NSMPTs∑
i=1

r⃗SPMTi
tht,i+c

NLMPTs∑
i=1

1
tht,i+c +

NSMPTs∑
i=1

1
tht,i+c

and its radial component Rcht = |r⃗cht|. Here c is a constant (50 ns) needed to avoid division
by zero. As it can be seen from fig. 3.4, the correlation between the radial components of
the center of charge and the center of first hit time is non-linear, especially for large event
radii, thus bringing complementary information.

Figure 3.4: Correlation between Rcc and Rcht, colored by the radial component of the event vertex.

As it was done for the center of charge, additional features are engineered:

θcht = arctan

√
x2cht + y2cht

zcht
, ϕcht = arctan

ycht
xcht

, Jcht = R2
cht · sin θcht, ρcht =

√
x2cht + y2cht

γchtx =
xcht√

y2cht + z2cht

, γchty =
ycht√

x2cht + z2cht

, γchtz =
zcht√

x2cht + y2cht

Figure 3.5: CDFs and PDFs of LPMTs FHT distribution for events with Ekin ≈ 1 MeV and
different radii (left) and events roughly at the detector’s center but with different energies

(right). Dashed lines indicate mean values of the PDFs.

12

(b) FHT distribution for LPMTs.
Once again there is dependence on both the energy and radial position (see fig 3.5). Near
the detector’s edge photons are detected earlier due to the lower time-of-flight correction
and a depression in the distribution is symptomatic of the effects of internal reflections.
At the detector’s center distributions are similar in shape, differing mostly by the relative
contribution from dark noise and annihilation gammas, which is higher at lower energies.
We characterize the distribution with the same features used above:

{ht2%, ht5%, ht10%, ht15%, . . . , ht90%, ht95%}

{htmean, htstd, htskew, htkurtosis, htentropy}

From fig. 3.6 it can be noted how the FHT distribution displays high variance in the bins
leading to its peak. To account for this effect, differences between adjacent percentiles have
also been introduced as features, as they are more robust to variance:

{ht5%−2%, ht10%−5%, . . . , ht95%−90%}

Figure 3.6: Average PDF for the FHT distribution using events with Ekin ≈ 2 MeV and R ≈ 16 m.

(c) FHT distribution for SPMTs.
The same set of features described in (b) is engineered separately for SMPTs.

In total 162 features have been engineered, drastically reducing the number of channels needed for
energy reconstruction. Many of these features are highly correlated, so further reduction is possible
via feature selection.

3.3 Feature Selection

The purpose of feature selection is to obtain the smallest subset of features capable of providing
the same performance as when the model is trained on the entire set. As this step is computationally
expensive, boosted decision trees have been chosen as the baseline model. The developed algorithm
works as follows:

1. Firstly it trains a BDT using all the engineered features. To get a more reliable estimate of the
model’s performance on data it has not yet seen, 5-fold cross-validation is implemented. The
performance on an additional hold-out dataset is monitored to stop training when the validation
loss starts increasing (early stopping). The performance metric chosen is the mean absolute
percentage error (MAPE):

MAPE =
100%

N

N∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣

13

as it is less forgiving than the root mean squared error (RMSE) when dealing with lower energies.
Because of cross-validation, both the mean and standard deviation of the metric are known.

2. Then it loops over all the features, finds the one with the best performance on its own (unsur-
prisingly it is AccumCharge) and adds it to an empty list of features as its first element.

3. Lastly it loops over all the remaining features, finds the one providing the largest step-wise gain
in performance and adds it to the list. The process is repeated recursively until the MAPE
becomes statistically compatible with the value found when training on all features.

Figure 3.7: The feature selection process. In blue the MAPE when training on all features.

The following 13 features are selected (see fig. 3.7):

1. AccumCharge

2. pestd

3. ρcc

4. ht95%−90%

5. nPMTs

6. zcc

7. htentropy

8. ht5%−2%

9. htkurtosis

10. pemean

11. ht10%−5%

12. pe15%

13. ht80%−75%

Many features characterizing the shape of the charge and time profiles prove to be important, among
which the entropy of the first hit time distribution, which was not present in previous studies [23]. As
expected, none of the features regarding the charge and time profiles for SPMTs made it to the top,
but SPMTs still affect AccumCharge, ρcc, nPMTs and zcc and may thus provide useful information.

BDTs are trained setting the maximal tree depth to 8 and subsampling to 0.8 for regularization
purposes. The learning rate was set to 0.08 and the early stopping condition to a patience of 5.

3.4 Hyperparameter Tuning

3.4.1 BDT

Now that the most important features have been selected, hyperparameter tuning is performed on
BDTs trained with 5-fold cross-validation and early stopping on an additional hold-out dataset. The
implementation of the Tree-Structured Parzen Estimator algorithm available in the Optuna library
[25] is used to search for an optimum in the hyperparameter space (see fig. 3.8 and tab. 3.1).

14

Figure 3.8: Visualization of 50 attempts in the hyperparameter search, colored by MAPE.

Hyperparameter Range Optimum

Max depth of trees [6, 12] 10
Learning rate [0.05, 0.5] 0.05

γ [0.001, 0.01] 0.008
λ [0.1, 5] 0.7
α [0.001, 0.01] 0.003

Table 3.1: Hyperparameter search space and results.

The best model is finally trained and SHAP (SHapley Additive exPlanations) values [26] are
computed to assess the contribution of each feature to the predictions of the model. As it can be
seen from fig. 3.9, although the order is slightly different from that returned by the feature selection
algorithm, the most important features are confirmed.

Figure 3.9: SHAP values distributions for all features. AccumCharge
is not displayed as its impact is much larger (SHAP > 2).

3.4.2 FCDNN

Fully connected deep neural networks (FCDNN) can also be effective when working with tabular
data, but they are generally more computationally expensive than tree-based models and require a
lot of hyperparameter tuning. To compensate for that, a single validation set is used instead of a
5-fold cross-validation. In addition, the Median Pruner algorithm from the Optuna library [25] is

15

implemented to help with the Bayesian optimization of hyperparameters by discarding unpromising
trials. Training is performed with an early stopping condition on the validation set with a patience of
50 epochs and with the batch size set to 1024.

Figure 3.10: Visualization after 200 attempts (many are pruned) in the
hyperparameter search, colored by MAPE.

Hyperparameter Range Optimum

Number of hidden layers [6, 24] 8
Number of units in hidden layers [1, 256] 173

Activation function [ReLU, ELU, SELU] ELU
Optimizer [Adam, SGD, RMSprop] Adam

Learning rate [0.0001, 0.01] 0.00013
Learning scheduler [None, Cos, Exp] Exp

Table 3.2: Hyperparameter search space and results.

As it can be seen from fig. 3.10, the combination of Bayesian optimization and pruning allows
for a very efficient search in the hyperparameter space, with only 7 trials needed to converge to an
optimum. The best trial (see tab. 3.2) is trained until the early stopping condition triggers after 113
epochs, when both the MAPE and MSE curves have converged to similar values for the training and
validation set, indicating a good balance in the bias/variance trade-off.

3.4.3 1DCNN

A more exotic approach consists in using a 1-dimensional convolutional neural network (1DCNN).
CNNs are widely used in computer vision, as they are capable of automatically extracting through
filters local features in image data which can then be fed to fully connected layers. Such networks
are rarely used on tabular data as there are no locality characteristics (the ordering of columns is
arbitrary, see fig. 3.11). However, a fully connected layer can be used to let the model learn on its
own a spacial representation of the features on which the convolutional layers can then work on [12].

16

Figure 3.11: Correlation heatmap of the 162 engineered features.

As this model is significantly more complex than the previous ones, it benefits from using all
the 162 features available and requires multiple regularization techniques to prevent overfitting and
improve stability, including batch normalization, weight normalization and dropout layers. In addition,
a shortcut is added to the architecture: after the second convolutional layer, propagation proceeds
through either two consecutive convolutions or directly to the last pooling layer (see fig. 3.12). The
shorter connection is clearly less prone to overfitting. Lastly, due to the computational complexity of
the model the architecture is kept fixed and only hyperparameters related to the training process are
tuned.

In
p
u
t

D
en

se

C
on

v
1D

A
v
gP

o
ol

C
on

v
1D

C
on

v
1D

C
on

v
1D

M
ax

P
o
ol

D
en

se

O
u
tp
u
t

Shortcut

Figure 3.12: 1DCNN architecture.

Figure 3.13: Visualization after 500 attempts (many are pruned) in the
hyperparameter search, colored by MAPE.

17

Hyperparameter Range Optimum

Dropout rate [0, 0.05] 0.0006
Activation function [ReLU, ELU, SELU] SELU

Optimizer [Adam, SGD, RMSprop] Adam
Learning rate [0.0001, 0.01] 0.005

Learning scheduler [None, Cos, Exp] Cos

Table 3.3: Hyperparameter search space and results.

Fig. 3.13 displays Bayesian optimization in action: SELU [27] and Adam [28] are immediately
identified as the best activation function and optimizer respectively, and following trials sample a
smaller region of the hyperparameter space keeping these hyperparameters fixed.

The best trial (see tab. 3.3) is trained until the early stopping condition triggers after 97 epochs.
It should be noted that both validation MAPE and validation MSE exhibit significant fluctuations
during training, causing the early stopping condition to be unreliable in identifying the moment the
model starts overfitting. This may be the cause of the deterioration in performance at higher energies
discussed in 3.5. In addition, the asymptotic limit of the validation loss is lower than the corresponding
limit for the training loss, although this can partly be attributed to the presence of dropout layers,
which are not active at prediction time as they serve only for regularization purposes. Suggestions for
future improvement are discussed in 4.

3.5 Results

The best models returned by the hyperparameter tuning process are now ready for evaluation.
For every subset of the testing dataset, characterized by a distribution of events peaked around a
specific value of the visible energy, a Gaussian fit of the distribution of the difference between true
and predicted energy (Evis − Epred) is performed. Bias and resolution can then be computed based
on the results of this fit:

Bias, % = 100 · µ

Evis
Resolution, % = 100 · σ

Evis

with µ and σ mean and standard deviation estimated by the Guassian fit. Subsets with kinetic energy
of the simulated positron equal to 0 MeV and 10 MeV are excluded from the analysis, as ML models
learn to expect Ekin ∈ 0 − 10MeV causing distributions at the edge points to deviate from normality
and exhibit systematically higher resolution (see fig. 3.14).

Figure 3.14: Examples of distributions of the difference between true and predicted energy for
BDT. On the left Ekin = 0MeV with the described edge effect, on the right Ekin = 1MeV.

.

18

Figure 3.15: Percentage resolution (top) and bias (bottom) for BDT, FCDNN,
1DCNN on the different subsets of the testing dataset.

As it can be seen in fig. 3.15, excluding occasional outliers at lower energies, possibly still affected
by the edge problem described above, the energy reconstruction bias for BDT and FCDNN is sta-
tistically compatible with zero. On the other hand, 1DCNN’s reconstruction bias, while still small,
presents a systematic trend at higher energies, possibly due to overfitting of the training dataset.

1DCNN has the lowest resolution at lower energies but deteriorates at higher energies with a
significant outlier for Ekin = 9MeV, which has been excluded from the fit. FCDNN and BDT are
more consistent, with the former performing better at nearly all energies.

Parameter

Model
BDT FCDNN 1DCNN

a± σa 2.524± 0.091 2.550± 0.038 2.470± 0.079

b± σb 0.433± 0.066 0.409± 0.028 0.519± 0.048

c± σc 1.28± 0.21 0.77± 0.16 0.87± 0.25

ã± σã 2.737± 0.023 2.675± 0.011 2.661± 0.022

Table 3.4: Energy resolution parameterization fit results for BDT, FCDNN and 1DCNN.

Energy resolution is fitted for all models according to the parameterizations described in 1.3 (see
tab. 3.4). 1DCNN exhibits the lowest effective resolution ã, but because of the large error the estimate
is statistically compatible with the value for FCDNN. What can be said with certainty is that neural
networks achieve lower effective resolutions than BDT and all models satisfy the requirement to
determine the neutrino mass ordering: ã < 3%.

19

Chapter 4

Conclusions

In this work, three different Machine Learning models have been trained on aggregated features
extracted from Monte Carlo simulation data to reconstruct the visible energy in the JUNO detector:
boosted decision trees (BDT), a fully connected deep neural network (FCDNN) and a 1-dimensional
convolutional neural network (1DCNN). While all models satisfy the requirement on the effective
energy resolution to determine the neutrino mass ordering (ã < 3%), FCDNN provides the best
combination of performance and stability. On the other hand, decision trees train approximately 100
times faster and perform better on smaller datasets, making them useful for calibration on sparse
data. Finally, 1DCNN achieves statistically compatible performance to FCDNN while training twice
as fast and is the best candidate for future improvements:

• cross-validation can be implemented to offer more reliable estimates of performance on validation
data and thus improve stability;

• the early stopping condition can be set on a trailing average of the validation loss, reducing the
dependence on random noise in validation data;

• redundant features may prevent the model from learning a useful representation of the feature
space. Principal Component Analysis (PCA) and other unsupervised learning algorithms could
filter for a predetermined number of features to use, leading to faster training times and possibly
better performance.

21

Bibliography

[1] F. An et al., “Neutrino Physics with JUNO”, J. Phys. G 43, 030401 (2016).

[2] A. Abusleme et al., “JUNO physics and detector”, Prog. Part. Nucl. Phys. 123, 103927 (2022).

[3] Y. Fukuda et al., “Evidence for oscillation of atmospheric neutrinos”, Phys. Rev. Lett. 81,
1562–1567 (1998).

[4] Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles”,
Prog. Theor. Phys. 28, 870–880 (1962).

[5] B. Pontecorvo, “Neutrino Experiments and the Problem of Conservation of Leptonic Charge”,
Zh. Eksp. Teor. Fiz. 53, 1717–1725 (1967).

[6] R. L. Workman and Others, “Review of Particle Physics”, PTEP 2022, 083C01 (2022).

[7] A. Abusleme et al., “Calibration Strategy of the JUNO Experiment”, JHEP 03, 004 (2021).

[8] A. Abusleme et al., “Optimization of the JUNO liquid scintillator composition using a Daya
Bay antineutrino detector”, Nucl. Instrum. Meth. A 988, 164823 (2021).

[9] J. R. Quinlan, “Induction of decision trees”, Mach. Learn. 1, 81–106 (1986).

[10] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees is np-complete”, Infor-
mation Processing Letters 5, 15–17 (1976).

[11] J. Friedman, “Greedy function approximation: a gradient boosting machine”, The Annals of
Statistics 29 (2000).

[12] R. Shwartz-Ziv and A. Armon, “Tabular data: deep learning is not all you need”, Information
Fusion 81, 84–90 (2022).

[13] W. S. Mcculloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity”,
Journal of Symbolic Logic 9, 49–50 (1943).

[14] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization
in the brain.”, Psychological review 65, 386 (1958).

[15] S. Linnainmaa, “Taylor expansion of the accumulated rounding error”, BIT 16, 146–160 (1976).

[16] T. Chen and C. Guestrin, “XGBoost”, in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining (2016).

[17] A. Paszke et al., “Pytorch: an imperative style, high-performance deep learning library”, in Pro-
ceedings of the 33rd international conference on neural information processing systems (2019).

[18] X. Huang et al., “Offline Data Processing Software for the JUNO Experiment”, PoS, 1051
(2017).

[19] T. Lin et al., “The Application of SNiPER to the JUNO Simulation”, J. Phys. Conf. Ser. 898,
edited by R. Mount and C. Tull, 042029 (2017).

[20] T. Lin et al., “Parallelized JUNO simulation software based on SNiPER”, J. Phys. Conf. Ser.
1085, 032048 (2018).

[21] S. Agostinelli et al., “GEANT4–a simulation toolkit”, Nucl. Instrum. Meth. A 506, 250–303
(2003).

23

https://doi.org/10.1088/0954-3899/43/3/030401
https://doi.org/10.1016/j.ppnp.2021.103927
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1007/JHEP03(2021)004
https://doi.org/10.1016/j.nima.2020.164823
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.2307/2268029
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.22323/1.282.1051
https://doi.org/10.22323/1.282.1051
https://doi.org/10.1088/1742-6596/898/4/042029
https://doi.org/10.1088/1742-6596/898/4/042029
https://doi.org/10.1088/1742-6596/1085/3/032048
https://doi.org/10.1088/1742-6596/1085/3/032048
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8

[22] J. Allison et al., “Recent developments in Geant4”, Nucl. Instrum. Meth. A 835, 186–225
(2016).

[23] A. Gavrikov, Y. Malyshkin, and F. Ratnikov, “Energy reconstruction for large liquid scintillator
detectors with machine learning techniques: aggregated features approach”, Eur. Phys. J. C 82,
1021 (2022).

[24] A. Abusleme et al., “Mass testing and characterization of 20-inch PMTs for JUNO”, Eur. Phys.
J. C 82, 1168 (2022).

[25] T. Akiba et al., “Optuna: a next-generation hyperparameter optimization framework”, in
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and
data mining, KDD’19 (2019), 2623–2631.

[26] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions”, in Pro-
ceedings of the 31st international conference on neural information processing systems, NIPS’17
(2017), 4768–4777.

[27] G. Klambauer et al., “Self-normalizing neural networks”, in Proceedings of the 31st international
conference on neural information processing systems, NIPS’17 (2017), 972–981.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, in Proceedings of the
3rd international conference on learning representations (2015).

24

https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1140/epjc/s10052-022-11004-6
https://doi.org/10.1140/epjc/s10052-022-11004-6
https://doi.org/10.1140/epjc/s10052-022-11002-8
https://doi.org/10.1140/epjc/s10052-022-11002-8
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	Introduction
	The JUNO Experiment
	Inverse Beta Decay
	Energy Reconstruction

	Machine Learning
	Supervised Learning
	Gradient Boosted Trees
	Deep Neural Networks
	Computing Details

	Data Analysis
	Data Description
	Feature Engineering
	Feature Selection
	Hyperparameter Tuning
	BDT
	FCDNN
	1DCNN

	Results

	Conclusions
	Bibliography

