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Chapter 1

Introduction

The nature of the dark matter is one of the greatest puzzles in modern cosmology.
In today’s standard cosmological model, the Λ−CDM, dark matter makes up about
80% of all the matter of the universe, with only a small fraction of baryonic mat-
ter(protons, neutrons and also electrons in cosmology notation)1. From the Copern-
incan point of view not only are humans not in a special place in the Universe, but
also they are not made of the same stuff that dominates the matter density of the
Universe.

Although the big evidence for dark matter no one knows what form it takes. No one
knows if dark matter consists of heavy neutrinos, or the Weakly Interacting Massive
Particles (WIMPs, the photino, or gravitino or neutralino), or axions(ultra-heavy dark
matter particles probably formed at the end of inflation), or a gas of primordial black
holes or MACHOs(the unique amongst dark matter candidates in that they have
actually been detected [7]) known as Massive Compact Halo Objects.

All this possible candidates act like a specific model of dark matter, the cold dark
matter. Cold Dark Matter (CDM) is a model of slow particles (compared to the
velocity of light and are slow during Universe’s history) that interact very weakly
with ordinary matter2, described by the Λ−CDM ,which assumes the correctness of
Einstein’s general relativity theory. Dark matter theory fits the data much better than
modifications to gravity(with some possible expections such as the one presented
here)3.

There are modifications of Einstein’s general relativity theory that explain the anoma-
lous observations in the Universe (such as its accelerated expansion) without intro-
ducing undetected sources of matter-energy. One of them is the Mimetic Dark Matter
theory, that can explain the phenomenon of the (cold) dark matter, by Chamseddine
& Mukhanov [3]. In this model the physical metric of General Relativity is a function
of an auxiliary metric and a scalar field appearing through its first derivatives. Ap-
plying a general conformal transformation on the auxiliary metric the physical one

1https://en.wikipedia.org/wiki/Cold_dark_matter
2Interact very weakly with respect to the typical interactions between ordinary matter
3http://www.quantumdiaries.org/2015/07/04/why-dark-matter-exists-believing-without-seeing/
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remains invariant, so the theory is conformally invariant. The isolated conformal de-
gree of freedom of the physical metric behaves as an irrotational pressureless perfect
fluid that can mimic the cold dark matter, with the scalar field playing the role of
the velocity potential(of the fluid). Studying the background solutions of it the dark
matter appears to be a simple integration constant.

Various studies have dealt with and generalizations of mimetic gravity have been
made. For example in [1] mimetic gravity of very general scalar-tensor theories of
gravity is obtained via disformal transformations and via Lagrange multiplier. In
Chamseddine et al. [4] it is shown that introducing a potential for the scalar field it’s
possible to mimic gravitational behaviours of normal matter.

In Deruelle & Rua [5] it is elegantly shown that Einstein’s General Relativity is
invariant under generic disformal transformations of the type gµν = F(Ψ, w)lµν +
H(Ψ, w)∂µΨ∂νΨ, where w = lρσ∂ρΨ∂σΨ , F and H two arbitrary functions, gµν the
physical metric and lµν an auxiliary one. And that there exists a subset of these trans-
formations such that the equations of motion are no longer those of Einstein but the
equations of the mimetic dark matter.

This thesis is structured as follows: in chapter one there is a brief review of Gen-
eral Relativity, dealing then with cosmology in chapter two to get a general un-
derstanding of how to find some evolution equations, i.e. Friedmann equations, of
the Universe. Finally in chapter three, after a presentation of the mimetic gravity
theory, are obtained the equations of the evolution of the Universe in the case of
Robertson-Walker metric with mimetic dark matter in a Universe without radiation
and ordinary matter.



Chapter 2

Gravitation

2.1 Principle of Equivalence

There is a general property for the gravitational field that is true both in classical and
relativistic mechanics. All small test bodies in a gravitational field (small means that
there isn’t a significant modification of the field by the bodies), with the same initial
conditions move in the same way, independently of their (intertial) mass. With this
property in mind the motion of a body that is studied from a noninertial system of
reference can be related to its motion in a gravitational field from an inertial system
of reference.

Given a set of free n test bodies in an inertial reference system their motion is uniform
and rectilinear, and if all their initial velocities are the same, this will be true for any
taken time. And viewed from a noninertial reference system, this test bodies move
again with the same velocity during the time. And again, in an inertial reference
system but with a gravitational field they all move in the same way.

Thus the properties of the motion in a noninertial system are the same as those in
an inertial system in the presence of a specific gravitational field. And any of the
two systems can be used to study the test bodies. This is called the principle of
equivalence.

The specific gravitational field equivalent to the noninertial system is not completely
identical to the gravitational fields generated by a set (discrete or continuous) of
energetic objects. There are two differences:

1. a gravitational field, in an inertial system of reference, generated by a set of
masses goes to zero at infinite. Contrary to this, a field to which the noninertial
reference frame is equivalent increases without limit at infinity, or remains finite
in value. The centrifugal force (on a test mass), for example, appearing in a
rotating reference system increases without limit moving away from the axis of
rotation. Or again, taking a reference frame moving with a non zero constant
acceleration, with respect to an inertial frame, studying a test mass from this
frame the force that this mass experiences is the same in any given position,
and also moving to infinite.
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2. a gravitational field ’generated’ by a noninertial system vanishes passing to an
inertial reference system. A ’real’ one, generated by non zero masses, exist-
ing also in an inertial frame, cannot be eliminated by any choice of reference
system(the mathematical formulation will be seen later).

From this two facts, it is clear that it is impossible, by any choice of reference frame,
to eliminate a ’real’ field, since it vanishes at infinity. But this can be done in a
given region of space, sufficiently small so that the ’real’ field can be considered
uniform over it. This is can be done by choosing a system in accelerated motion, the
acceleration of which is equal to that which would be acquired by a (small) particle
placed in the region of the considered field[8].

2.2 The space-time metric

In special relativity in an inertial reference system the interval ds, in cartesian space
coordinates, is given by

ds2 = c2dt2 − dx2 − dy2 − dz2

This element has the same value when passing in another inertial reference sys-
tem(with Lorentz transformations and space-time coordinate shifting).

In a noninertial system of reference the square of an interval appears as a quadratic
form of general type in the coordinate differentials[8],

ds2 = gµνdxµdxν

, where gµν are certain functions of the space coordinates x1, x2, x3 and the time
coordinate x0. In a noninertial system, the four-dimensional coordinate system
x0, x1, x2, x3 is curvilinear. And in each curvilinear system of coordinates, gµν deter-
mine all the geometric properties of the system. gµν is called the space-time metric
and gµν = gνµ .

For the principle of equivalence non-inertial reference frames are equivalent to cer-
tain gravitational fields given in an inertial reference frame. Those fields are so
related to gµν. The same thing is for the real gravitational fields, that the field is the
modification of the metric of the space-time and so is determined by the values of
gµν. So, the geometrical properties of the space-time, the metric, are determined by
physical phenomena and are not invariable properties of the space and the time[8].
The theory of the space-time and the one for gravitation are the same theory.

In an inertial reference system, when using cartesian space coordinates x1,2,3 = x, y, z
and the time x0 = ct, gµν is given by g00 = 1, g11 = g22 = g33 = −1, gµν = 0, µ 6= ν.



A four-dimensional system of coordinates with these values of gµν is called galilean.

The galilean metric is denoted by g(0)µν = diag(1,−1,−1,−1) = ηµν.

By an appropriate choice of coordinates the quantities gµν can be brought to the
galileain form at any individual point of the non-galileian space-time: reducing to
diagonal form the gµν. Such coordinate system is said to be galilean for the given
point. After the reduction to diagonal form at a given point, the matrix of the quan-
tities gµν has one positive(negative) and three negative (positive) principal values.
From this it follows, in particular, that for continuity with the galileian metric, the
determinant g , formed from the quantities gµν, is always negative for a real space-
time.

For a change of coordinate system x to another one x̃ the components gµν vary in
this way (as a 2-tensor):

g̃µν(x̃) =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x)

The invariant volume element under coordinate transformations is :
√−gdΩ, g =

det(gµν) and dΩ = dx0dx1dx2dx3 = d4x.

If the transformation of gµν to the galileian form is possible for all points of the
space the space-time is flat. And the geometry of the space is euclidean. If this
global transformation is not possible, there is a curved space-time. So, with real
gravitational fields there is a curved space-time. For a gravitational field, the real one
in which the space-time is curved or the ones generated by a non-inertial reference
system in which the space-time is flat, the geometry of the space is non-euclidean.

2.3 Principle of General Covariance

In general relativity a reference system is determined by an infinite quantity of bod-
ies that fill the space as a continuum medium in which to each body is attached
a clock that indicates an arbitrary time describing uniquely the points of the four-
dimensional space-time [8].

Because the choice of a reference system, and coordinate system, is arbitrary, nature
laws much be expressed in a covariant way for each four-dimensional coordinate
system. There isn’t any special frame with respect to others. The mathematical form
to write this is that physics laws must be expressed with tensors:

Tµ1µ2...µp
ν1ν2...νq = 0

If this is true for a given coordinate system it will be also for any another one(with
tensors transformation rules).



In order to write the equations that govern physical phenomena in a gravitational
field, the Principle of Equivalence tells that the laws of physics in a gravitational
field must reduce to those of Special Relativity in the galilean coordinate system for
a given point and, as said, maintain its form under a general coordinate transforma-
tion. This is the principle of general covariance.

There is a simple heuristic principle that permits to write the equations of physics in
any reference system in general relativity: if an equation is written for an arbitrary
metric g and connection ∇, when restricted to Minkowski spacetime it still holds
with gµν replaced by ηµν and ∇µ replaced by ∂µ. Conversely, given any special
relativistic equation written in tensorial form, the generally covariant equation is
obtained replacing ηµν by gµν and ∂µ by ∇µ and the volume element d4x by

√
|g|d4x.

This resulting equation will automatically satisfy the Principle of General Covariance
and the Equivalence Principle. This procedure is called ’minimal coupling’. The fact
that the generalized equation from flat to a curved space-time describes gravity it’s
not trivial [2].

2.4 Time Intervals

It was said that in general relativity the choice of coordinates is arbitrary. But how it
is possible from their values find real time intervals? Considering two infinitesimally
near events, that happen in the same point of the space. Then ds2 = c2dτ2 with τ the
real interval time (or proper time) measured by an observer in the point of the space
in a local galileian system, dxi = 0, i = 1, 2, 3. Putting it in the general expression of
ds2, (c = 1),ds2 = dτ2 = g00(dx0)2. So,

dτ =
√

g00dx0

and the real time interval is
τ =

ˆ √
g00dx0

From this the condition g00 > 0, otherwise the reference system can’t be realized by
real bodies. But it’s always possible to choose a reference system in which such that
g00 > 0 [8].

To synchronize the clocks indications of these two near events the relation ∆x0 =

− g0idxi

g00
= 0 must be satisfied [8].

A unique synchronization in all the space is possible if all g0i are zero. And for any
gravitational field it is always possible to find a reference system with this property,
or in which clocks synchronization is always possible[8].



If g00 = 1 then x0 = t is the proper time in each point of the space. A reference
system with

g00 = 1, g0i = 0

is called synchronous.

2.5 Curvature

Given in a specific coordinate system in the curved space-time a four-vector Aµ in the
point xµ, after the operation of parallel transport in the point xµ + dxµ, the difference
between Aµ and Aµ + dAµ(that is Aµ calculated in xµ + dxµ ) in xµ + dxµ is DAµ =
dAµ − δAµ = dAµ + Γµ

νρ Aνdxρ. Γµ
νρ are the Christoffel symbols with the property

Γµ
νρ = Γµ

ρν.

Γµ
νρ =

1
2

gµσ(
∂gσν

∂xρ
+

∂gσρ

∂xν
−

∂gνρ

∂xσ
)

The definition of covariant derivative is DAµ = Aµ
;νdxν = ∇µ

ν Adxν. And for the
covariant vector Aµ = gµν Aν, DAµ = Aµ;νdxν.

It can be shown [8] that

Aµ;ν;ρ − Aµ;ρ;ν = AσRσ
µνρ

where Rσ
µνρ is a four order tensor, the Riemann tensor defined by

Rσ
µνρ =

∂Γσ
µρ

∂xν
−

∂Γσ
µν

∂xρ
+ Γσ

ηνΓη
µρ − Γσ

ηρΓη
µν

The Ricci tensor is Rµν = gσρRσµρν, Rµν = Rνµ. The contraction of Rµν, R = gµνRµν is
the scalar curvature of the space.

In the presence of a flat space-time the curvature tensor is zero. This follows from the
fact [8] that in a flat space time it’s always possible to choose a coordinate system such
that the Christoffel symbols are zero everywhere and so Rσ

µνρ = 0. Then from the
tensor nature of the curvature tensor the last equation is true for any other coordinate
system on the flat space-time. The inverse is also true , if Rσ

µνρ = 0 everywhere in a
given coordinate system, then the space-time taken in consideration is flat[8].

In a curved space-time it’s always possible to choose a coordinate system such that
the Christoffel symbols are zero only locally in a given point (this is the mathematical
expression of the elimination of a real field in the point of the space expressed in 2.1).
But the curvature tensor is not zero in that point (Christoffel symbols have non zero
derivatives in the point).



2.6 Motion in a gravitational field

As in relativistic mechanics the motion for a free body particle in a gravitational field
is given by the principle of least action(the mass m of the particle is such that it
doesn’t influence the gravitational field):

δS = −mcδ

ˆ
ds = 0

, between two fixed points of the space time. The equations of motion derived are
(for example by the principle of least action or by minimal coupling):

d2xρ

ds2 + Γρ
µν

dxµ

ds
dxν

ds
= 0

, where d2xρ

ds2 is the four-acceleration of the particle and

−mΓρ
µν

dxµ

ds
dxν

ds

the ’four-force’ on the particle in the gravitational field in the given reference system.
With an adeguate reference choice it is always possible to set to zero all the Γρ

µν in a
given point of the space-time(see 2.5). From this

d2xρ

ds2 = 0

the relativistic mechanic expression for a free body particle. The gravitational field
in the infinitesimal volume about the point is zero. This is the possibility to choose a
localy inertial frame around a point of the space-time, expression of the principle of
equivalence.

2.7 Equations of the gravitational field

Now is the moment to see the connection between matter and gravity. The Ein-
stein equations explain how matter generates the gravitational field and then the
field modificate the motion of the matter. Solving these equations and knowing the
state equation that relates pressure with the density of matter(or energy), one can
obtain the tensor gµν, the matter distribution and its motion(that are described in the
stress-energy tensor Tµν). Here the derivation of Einstein equations follows the one
presented in [8], through the principle of least action.

The total action of the gravitational field is S = Sg + Sm, where Sg is the Einstein-
Hilbert action and Sm the action for matter. The equations of the field are obtained by
the principle of least action(that says that the action S is stationary under the variation



δS = 0, it is supposed that the variations of the field are zero on the boundary of the
system) :

δS = δSg + δSm = 0

The gravitational action has the form Sg = − 1
2

´
R
√−gdΩ (see [8] for why this form),

the variation

δSg = −1
2

δ

ˆ
R
√
−gdΩ = δ

ˆ
gµνRµν

√
−gdΩ =

=

ˆ
δ(gµνRµν

√
−g)dΩ

= −1
2

ˆ
(Rµν

√
−gδgµν + Rµνgµνδ

√
−g + gµν

√
−gδRµν)dΩ

, where g = det(gµν),√
−gdΩ =

√
−gdx0dx1dx2dx3 =

√
−gd4x

is the invariant volume element, R the Ricci scalar and Rµν is the curvature tensor.
The integral is done in the 4-volume between the hypersurfaces of the space-time
with x0

A < x0 < x0
B.

From a corollary of Jacobi’s formula1 log(g) = Tr(log(gµν))), where Tr is the trace of
a matrix, and B = log(A) is the inverse of the exponential of a matrix A, i.e eB = A.

Then

√
−g =

√
−eTr(log(gµν)) =

√
−e−Tr(log(gµν)) → δ

√
−g = δ(

√
−e−Tr(log(gµν)))

= δ(−e−
1
2 Tr(log(gµν))) =

= e−
1
2 Tr(log(gµν))δ(−1

2
Tr(log(gµν))) = −1

2
√
−gδg−1Tr((log(gµν))) =

= −1
2
√
−gTr(gµνδgνρ) = −1

2
√
−ggµνδgµν

1https://en.wikipedia.org/wiki/Logarithm_of_a_matrix



because the trace is a linear operator.

Another way is because gµν is an invertible matrix, from Jacobi’s formula 2 d(det(gµν)) =
dg = gTr(gµρdgρν), and so in terms of the variation δg = g(gµνδgµν). And

δ
√
−g = − 1

2
√−g

δg = − 1
2
√−g

ggµνδgµν = −1
2
√
−ggµνδgµν

And so

δ

ˆ
R
√
−gdΩ =

ˆ
(Rµν −

1
2

gµνR)δgµν
√
−gdΩ +

ˆ
gµνδRµν

√
−gdΩ

For

gµνδRµν = gµνδ(
∂Γρ

µν

∂xρ
−

∂Γρ
µρ

∂xν
+ Γρ

µνΓσ
ρσ − Γσ

µρΓρ
νσ)

Even if Γρ
µν is not a tensor it can be shown that δΓρ

µν is a tensor. So it is possible to
calculate the variation δRµν in a locally inertial reference system(where all Γρ

µν are
zero). This gives

gµνδRµν = gµνδ(
∂Γρ

µν

∂xρ
−

∂Γρ
µρ

∂xν
) = gµν ∂

∂xρ
δΓρ

µν − gµρ ∂

∂xρ
δΓν

µν =
∂wρ

∂dxρ

where
wρ = gµνδΓρ

µν − gµρδΓν
µν

is a vector. In any reference system

gµνRµν =
1√−g

∂

∂xρ
(
√
−gwρ)

This gives: ˆ
gµνδRµν

√
−gdΩ =

ˆ √−gwρ

∂xρ
dΩ

and for the Guass theorem this can be transformed in an integral over the hypersur-
face that encloses all the four-volume over which the integral is made. But this term
vanishes because the fields variation on the boundaries are zero.

In the end,

δSg = −1
2

ˆ
(Rµν −

1
2

gµνR)δgµν
√
−gdΩ

On the other hand,

Sm = −1
2

ˆ
Lm

√
−gdΩ

2https://en.wikipedia.org/wiki/Jacobi’s_formula



, where Lm is the density of Lagrangian for the matter.

δSm = −1
2

δ

ˆ
Lm

√
−gdΩ = δSm = −1

2

ˆ
Tµνδgµν

√
−gdΩ

, where Tµν is the stress-energy tensor for matter(with the electromagnetic field).

Now, using the principle of least action

δS = δSg + δSm = −1
2

ˆ
(Rµν −

1
2

gµνR− Tµν)δgµν
√
−gdΩ = 0

for each arbitrary δgµν(that is zero on the boundary). From this the equations of the
gravitational field or Einstein equations

Rµν −
1
2

gµνR = Tµν

The tensor
Gµν = Rµν −

1
2

gµνR

is the Einstein tensor. So Einstein equations can be written also as

Gµν = Tµν

The stress-energy tensor satisfy the local conservation of energy and momentum, the
continuity equation

∇νTµν = 0





Chapter 3

Cosmology

3.1 Cosmological Principle

The basic assumption in this work, the cosmological principle, is that the Universe
on large scales is homogenous, it looks the same in each point, and isotropic, it looks
the same in all directions. Large scales means that the distances in role are much
larger than those between galaxies. If a distribution(matter, radiation,...) is isotropic
about every point, then that does enforce homogeneity as well [7].

The density of the distribution is the average density with respect to the distances
such that the cosmolgical principle is true. It will be supposed the same every-
where. For the cosmological principle the universe is imaged to be filled by, perfect
fluids. A fluid because seen from large scales the universe appears filled by a con-
tinuum of matter, with the average density described above. Perfect because any
non-zero viscosity would destroy isotropy. Homogenous, perfect fluids for example
are dust(p = 0), dark matter and radiation. Given a reference system any, perfect,
fluid in the universe is described by the stress-energy tensor

Tµν = (ρ + p)uµuν + pgµν

, ρ and p are functions of time (for the cosmological principle functions depend only
on time) describing the density and the pressure, with a four-velocity vector that
follows uµuµ = 1 (signature(gµν) = (+1,−1,−1,−1)).

3.2 Components of the universe , expansion of the universe

After defined the stress energy tensor of the fluid model described above, there’s the
need of an equation of state, i.e. p = w(ρ). In cosmology perfect fluids are usually
described by p = wρ where w is some constant that is different for each type of
perfect fluid taken in consideration.
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Astronomical data of the distribution of galaxies in the space and the isotropy of the
cosmic microwave background don’t contradict the assumptions of the cosmological
principle.

The universe is filled with a mixture of different matter components1.

• Matter, all form of matter for which the pressure is less smaller than the density.
The case of a gas of non relativistic particles. This include:

– Baryons: for cosmologists is the ordinary matter, nuclei and electrons

– Dark Matter: most of the matter in the universe is in the form of invisible
dark matter. Usually thought to be a new heavy particle species, its nature
is not known

• Radiation, anything whose pressure is about one third of the density. The case
of a gas of relativistic particles. This include:

– Photons: the early universe was dominated by photons. Being massless,
they are always relativistic. Today, are detected in the form of the cosmic
microwave background.

– Neutrinos: are extremely weakly interacting particles. There is a signif-
icant experimental evidence that they possess a non-zero rest mass. For
now they can be treated as massless.

• Dark Energy, matter and radiation aren’t enough to describe the evolution of
the universe. Instead, the universe today seems to be dominated by a mysteri-
ous negative pressure component p = −ρ.

An observational evidence in cosmology is that almost eveything in the Universe
appears to be moving far away form Earth(taken as a point, or any other point in the
Universe), and the further away something is, the more rapid its recession appears
to be. This is summariezed by Hubble’s law. These velocities are measured via
redshift(Doppler effect for light waves).

3.3 Metric

Homoegeneity and isotropy of the space imply the choice of a universal time such
that for each instant the metric of the space is the same in all its points and in
all directions. Indeed, if time depended on the space coordinates of the point of
measurements, then this can be distinguished from other points. This contradicts the
cosmological principle.

1http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf



Figure 3.1: Comoving Coordinates

One have now to choose a reference system to study the system. As said general
relativity allows to take any one. It is convenient to choose the one in motion in each
point of the space with the fluid. The fluid is the reference system, in which each
its infinitesimal body component has a clock that indicate a time(it was said that
there is only a universal time, later it will be shown better how the various clocks
can share a unique time, synchronization). The observer of this reference system is
called comoving observer. Any other observer would see an apparent break of the
isotropy for the orientation of the velocities of the fluid in its different points.2

For a comoving observer pressure p of the fluid can be assumed to be everywhere
zero(or at least constant), so that w = 0. In the universe there aren’t pressure gradi-
ents, because the density and the pressure are everywhere the same. Pressure does
not contribute a force helping the expansion along. It’s effect is solely through the
work done as the Universe expands. It’s important to note that in the scales in role the
internal structure of the bodies in the universe are not taken in consideration(don’t
care about internal p of the bodies). It is also assumed that the radiation contained
in the space has energy density and pressure much smaller than the energy density
of the fluid [7].

After taking the comoving reference system it’s important to find the metric of the
space-time. Later equations of motion will be solved. For the equivalence of the
metric in all directions its components g0i = gi0 = 0 (otherwise no equivalence of the
different directions about a given point). This condition allows the synchronization

2Note that in this reference system the fluid has to be also irrotational



of the clocks in different points of the space. So,

ds2 = gµνdxµdxν = g00dx0
2 + 2gi0dx0dxi + giidxidxi = g00dt2 − dl2

, where
dl2 = γijdxidxj = −gijdxidxj

.(c = 1) For what said above g00 is a function only of the time. Choosing g00 = 1, t
is the synchronous proper time in each point of the space(this is the universal time,
see 2.4).

3.4 Robertson-Walker metric

For the comological principle the spatial part of the metric, at a given (universal)
time, has constant curvature. It can be shown that the most general spatial metric
with this property is

dl2 =
dr2

1− kr2 + r2(dθ2 + sin2θdφ2)

, in spherical polar coordinates. k >,=,< 0, respectively for, spherical, flat and
hyperbolic spatial geometries. Incorporating it into a space-time metric. The only
further dependence that can be put is a time one. The space is allowed to grow or
shrink with time. This leads to Roberston-Walker metric (spherical space coordinates)

ds2 = dt2 − a2(t)[
dr2

1− kr2 + r2(dθ2 + sin2θdφ2)]

, where a(t) is the scale factor of the Universe, a quantity that measures the universal
expansion rate.

It will be supposed k = 0 and ds2 will be simply ds2 = dt2 − a2(t)δijdxidxj(with
cartesian space coordinates). It is useful to introduce, by a conformal transformation,
the conformal time η by

dt = adη

Then the interval element is written as ds2 = a2(η)(dη2 − δijdxidxj).

3.5 Friedmann equations

The equations that describe the evolution of the universe are the Friedmann equa-
tions: these are differential equations in the universal time and includes the scale fac-
tor of the universe a(t), the density ρ(t) and the pressure of the universe p(t)(because
the evolution of the Universe, governed by general relativity, is determined not only



by geometry but also by its content). This functions can be expressed also in function
of the conformal time η.

The Friedmann equations can be derived from Einstein equations and substituting
directly in them the values of R, Rµν and Tµν for a isotropical, uniform and flat
universe. Or directly from the Einstein-Hilbert Action supposing to work in the
Robertson-Walker metric with conformal time(or also proper time).

S = −1
2

ˆ
d4x

√
−g(R(g) + Lm)

, R Ricci scalar and Lm the density of Lagrangian for matter.

The second way will be shown later, so it can be useful to see with the first one.

Einstein equations are

Rµν −
1
2

gµνR = Tµν

The values of the metric tensor are(coordinate system t, x, y, z): g00 = 1, g11 = g22 =
g33 = −a2(the other values are zero).

In Robertson-Walker metric with proper time3 :

R00 = −3
ä
a

Rij = −(
ä
a
+ 2

ȧ2

a2 )gij

R = − 6
a2 (aä + ȧ2)

The Einstein tensor has the following components

G00 = 3
ȧ2

a2

G0i = 0

3http://www.blau.itp.unibe.ch/newlecturesGR.pdf



Gij = (
2ä
a
+

ȧ2

a2 )gij

As said a perfect (irrotational) fluid has the stress-energy tensor

Tµν = (ρ + p)uµuν + pgµν

with uµ = (1, 0, 0, 0) in the comoving coordinate system(in which the fluid is at rest).
It is supposed also to have a barytropic fluid, in which the pressure depends only
on density, p = p(ρ). A good model for a cosmological fluid arise from considering
linear this relationship, i.e p = wρ, w is the state parameter.

Common cases are:

1. Non interacting particles, p = 0 and so w = 0. This is the matter dust.

2. Electromagnetic radiation, w = 1
3 , so the radiation has equation of state p = ρ

3 .

Because of isotropy there are only two independent equations for the Einstein equa-
tions, the 00-component and one of the non-zero ij components.

From the time Einstein equation:

(
ȧ
a
)2 =

ρ

3

From the spatial Einstein equations:

2
ä
a
+ (

ȧ
a
)2 = −p

From these two equations, or by the continuity equation for Tµν, it can be derived the
energy continuity equation

ρ̇ = −3(ρ + p)
ȧ
a

As an example, two simple cases for Friedmann Equations solutions:

• Universe dominated by Dust:from continuity equation d(ρa3)
dt = 0, then ρ ∝ a−3.

If t0 is the present time, it can be fixed a(t0) = 1 and so write

ρ =
ρ0

a3



substituting into the first Friedmann equation

ȧ2 =
ρ0

3
1
a

The full solution is therefore
a(t) = (

t
t0
)2/3

and

ρ(t) =
ρ0t2

0
t2

• Universe dominated by Radiation:p = ρ/3, from continuity equation d(ρa4)
dt = 0,

or ρ ∝ a−4. It follows that

a(t) = (
t
t0
)1/2

and

ρ(t) =
ρ0t2

0
t2

• There is also the case where there is a mixture of both matter and radiation.
And now ρ = ρmat + ρrad. The equations of the study of the expansion are
not presented, but the figure shows the evolution of the Universe containing
matter and radiation, with the radiation initially dominating. Eventually the
matter comes to dominate, and as it does so the expansion rate speeds up from
a(t) ∝ t1/2 to the a(t) ∝ t2/3law.



Figure 3.2: Radiation-Matter domination



Chapter 4

Mimetic Dark Matter

4.1 Mimetic Gravity via disformal transformations

In [5] it was shown that Einstein’s equations are generically invariant under the redef-
inition of the metric gµνby means of disformal transformations. Here are presented
only the main steps to show this. See [5] for details.

Taken gµν , this can be written as a function of a metric lµν and a scalar field Ψ with
a generic disformal transformation, i.e. :

gµν = F(Ψ, w)lµν + H(Ψ, w)∂µΨ∂νΨ

where w = lρσ∂ρΨ∂σΨ and the functions F and H are a priori arbitrary.

To find the equations of motion of gravity from the Einstein-Hilbert action,

S = −1
2

ˆ
(R

√
−g + Lm) = Sg + Sm

As usual, the variation of the action with respect to gµν is taken,

δS = −1
2

ˆ
d4x

√
−g(Gµν − Tµν)δgµν

, Tαβ = 2√−g
δSm
δgαβ

.

Writing δgµν as a function of lµν and Ψ and their variations, and then taking the
variation of the action one time with respect to lµν and the other with respect to
Ψ two equations of motion are obtained. The one derived by the variation of lµν,
contracted with respect to lµν and ∂µΨ∂νΨ yield to the system (1)

A(F− w
∂F
∂w

)− Bw
∂H
∂w

= 0

21



Aw2 ∂F
∂w
− B(F− w2 ∂H

∂w
) = 0

where A = (Gρσ − Tρσ)lρσ B = (Gρσ − Tρσ)∂ρΨ∂σΨ

A system of two homogenous equations for the two unkowns A and B. The
determinant det of the system is

det = w2F ∂
∂w (H + F

w )

In the generic case when it is not zero the only solution of the system above
is A = B = 0 and the equations of motion reduce to the standard Einstein
Equations of General Relativity Gµν = Tµν for the metric gµν

F(Gµν − Tµν) = 0

F 6= 0

Then extremizations of the Einstein-Hilbert action with respect to the ’disformed’
metric gµν or with respect to lµν and Ψ are equivalent, yielding to standard
Einstein’s equations.

But when det = 0, with F 6= 0, then ∂
∂w (H + F

w ) = 0 and the function H(w, Ψ)
takes the form

H(w, Ψ) = −F(w, Ψ)

w
+ h(Ψ) (4.1)

The solution of the system (1) yield to B = wA . Supposing h 6= 0 and defining Φ
such that dΦ

dΨ =
√
|h| one gets [5],

Gµν − Tµν = (G− T)∂µΦ∂νΦ

2∇ρ[(G− T)∂ρΦ] = 0

, supposing gµν∂µΦ∂νΦ = 1. These are not Einstein’s equations, because includes
also the extra term (G− T)∂µΦ∂νΦ that in general is not zero that gives novel solu-
tions.

The case of F = w and H = 0 is the same of mimetic gravity, that is made by a con-
formal transformation(a type of the disformal ones), which is described in the next
section in which also the meaning of Gµν − Tµν = (G− T)∂µΦ∂νΦ will be discussed.



4.2 Mimetic Gravity

Here it is presented a formulation, by Chamseddine & Mukhanov [3], in which the
equations of motion of the system are similar to Einstein’s equations of motion but
with an extra term that mimics cold dark matter even in absence of ’standard’ matter.

The Einstein-Hilbert action is

S = −1
2

ˆ
d4x

√
−g[R + Lm]

, with Lm the lagrangian density for matter and 8πG = 1, c = 1.

The physical metric gµν is represented as a function of g̃µν an auxiliary metric and a
scalar field φ.

gµν = (g̃αβ∂αφ∂βφ)g̃µν = P(x)g̃µν

, x = xα the coordinates of the point of space-time taken in consideration, ∂α partial
derivative with respect to xα (the reference system is not changed after this transfor-
mation).

Then the action is constructed with the physical metric gµν considered as a function
of the scalar field φ and the auxiliary metric g̃µν:

S = −1
2

ˆ
d4x

√
−g(g̃µν, φ)[R(gµν(g̃µν, φ)) + Lm]

In this case the metric gµν has its conformal mode isolated in the scalr field φ, and
now the physical metric is invariant with respect to the conformal transformation of
the auxiliary metric g̃µν,

gµν → gµν

when
g̃µν → Ω2 g̃µν

(g̃µν → Ω−2 g̃µν). And from gµν = P(x)g̃µν the isolation of the conformal mode of the
metric is seen in

gµν∂µφ∂νφ = 1

S is invariant under the conformal transformation of g̃µν above because it depends
only on gµν which is conformally invariant by itself.

Taking the variation of the action with respect to the physical metric

δS =

ˆ
d4x

δS
δgαβ

δgαβ = −1
2

ˆ
d4x

√
−g(Gαβ − Tαβ)δgαβ



, Gµν = Rµν − 1
2 Rgµν is the Einstein tensor and Tµν is the energy momentun tensor

for the matter.

The variation δgαβ can be expressed in terms of the variations δg̃αβ and δφ, taking the
form

δgαβ = δ(Pg̃αβ) = Pδg̃αβ + g̃αβδP =

= Pδg̃αβ + g̃αβδ(g̃κλ∂κφ∂λφ)

= Pδg̃αβ + g̃αβ(−g̃κµ g̃λνδg̃µν∂κφ∂λφ + 2g̃κλ∂κδφ∂λφ) =

= Pδg̃µν(δ
µ
α δν

β − gαβgκµgλν∂κφ∂λφ) + 2gαβgκλ∂κδφ∂λφ

because δgµν = −gµα(δgαβ)gβν and the derivatives of φ, and the metric tensor also,
are simmetric.

Thus the variation of the actions is written as:

δS = −1
2

ˆ
d4x

√
−g(Gαβ − Tαβ)δgαβ =

= −1
2

ˆ
d4x

√
−g(Gαβ − Tαβ)(Pδg̃µν(δ

µ
α δν

β − gαβgκµgλν∂κφ∂λφ) + 2gαβgκλ∂κδφ∂λφ) =

= −1
2

ˆ
d4x

√
−g((Gαβ−Tαβ)Pδg̃µν(δ

µ
α δν

β− gαβgκµgλν∂κφ∂λφ)+ (Gαβ−Tαβ)2gαβgκλ∂κδφ∂λφ))

= −1
2

ˆ
d4x

√
−g(Pδg̃µν(((Gµν−Tµν)− (G−T)gκµgλν∂κφ∂λφ)+ 2(G−T)gκλδ∂κφ∂λφ))

where G and T the trace (contraction with gµν) of the Einstein tensor and the stress-
energy tensor respectively. Treating now φ and g̃µν as independent variables, there
are two independent equations of motion:



(Gµν − Tµν)− (G− T)gκµgλν∂κφ∂λφ = 0

∂κ(
√
−g(G− T)gκλ∂λφ) = 0

Dividing the last equation by
√−g this is written more conveniently

1√−g
∂κ(

√
−g(G− T)gκλ∂λφ) = ∇k((G− T)∂λφ) = 0

Taking the trace of the first one

(G− T)− (G− T)gκµgλν∂κφ∂λφgµν = (G− T)(1− gκ
νgλν∂κφ∂λφ) =

= (G− T)(1− gκλ∂κφ∂λφ) = 0

that can be satisfied also for G− T 6= 0 and this repoduces the identity gµν∂µφ∂νφ = 1
(that follows directly from gµν = 1

P g̃µν → gαβ∂αφ∂βφ = 1). And even for Tµν = 0
the equations for the gravitational field have nontrivial solutions for the conformal
mode. Thus the gravitational field acquires an extra degree of freedom shared by the
scalar field φ and a conformal factor of the physical metric ( gµν = Pg̃µν ).

The resulting equation of motion is:

Gµν = Tµν + T̃µν

where T̃µν = (G − T)gµαgνβ∂αφ∂βφ. Comparing this to the stress-energy tensor of
a prefect fluid Tµν

per = (ε + p)uµuν − pgµν, where ε is the enrgy density, p is the
pressure and uµ is the four velocity of the fluid that satisfies (for the perfect fluid) the
normalization condition u2 = uµuµ = 1. Setting p = 0 it is natural the identification
between Tµν

per and T̃µν by:

ε = (G− T), uµ = gµν∂νφ

, so the extra degree of freedom, also for T = 0, has non zero energy density, imitating
a dust perfect fluid. As for the stress-energy tensor for a perfect fluid this one satisfies
a conservation law, that is ∇µT̃µ

ν = ∇µT̃µαgαν = 0



T̃µαgαν = (G− T)gµδgαβ∂δφ∂βφgαν =

= (G− T)∂µφgβ
ν ∂βφ = (G− T)∂µφ∂νφ

And so
∇µT̃µ

ν = ∇µ((G− T)∂µφ∂νφ) =

= ∂νφ∇µ((G− T)∂µφ) + (G− T)∂µφ(∂νφ) =

= ∂νφ∇µ((G− T)∂µφ) = 0

for the equation of motion ∇k((G − T)∂λφ) = 0 and because by differentiating
gµν∂µφ∂νφ = 1, ∂µ∇µ∂νφ = 0 and ∇ν∂µφ = ∇µ∂νφ.

After completed the presentation of mimetic dark matter, it’s time to study a partic-
ular case of it.

4.3 Mimetic Dark Matter in Robertson-Walker Metric

Writing these equations in the Robertson-Walker metric in a flat geometry( k = 0)
(note that the space-time is not flat) with a comoving observer,

ds2 = dt2 − a2(t)δijdxidxj

Considering the conformal transformation dt→ a(t(η))dη,

ds2 = a2(η)(dη2 − δijdxidxj)

, gµν = a2(η)diag(1,−1,−1,−1) = a2(η)ηµν. The aim is to find equations for the
scale function a(η).

The formulation of the problem is equivalent to [6]

S = −1
2

ˆ
d4x

√
−g[R(gµν) + Lm − λ(gµν∂µφ∂νφ− 1)]



with the constraint gµν∂µφ∂νφ = 1 and λ is a Lagrange multiplier that plays the role
of the energy density.

In this case: g = det(gµν) = −a8(η), R = −6 a′′
a3 .

Then,

S = −1
2

ˆ
d4x

√
−g[R(gµν)− λ(gµν∂µφ∂νφ− 1) + Lm]

Considering the fact that φ depends only on x0 = η (see 3.1),

S = −1
2

ˆ
d4xa4[−6

a′′

a3 − λ(a−2η00∂0φ∂0φ− 1) + Lm] =

= −1
2

lim
V→∞

V
ˆ

dη[−6
a′′

a3 − λ(a−2φ′2 − 1) + Lm]a4 = Sg + Sλ + Sm

The integration on space and time were separated. The integration on space is over
an infinite volume. Considering now the class of lagrangian densities:

LV = −1
2

V[−6
a′′

a3 − λ(a−2φ′2 − 1) + Lm]a4

, for each V 6= 0 there are the same equations of motion (they differ only by a non
zero factor). For simplicity L1 is considered. Then the action become (if Lm = 0)

S = −1
2

ˆ
dη[−6

a′′

a3 − λ(a−2φ′2 − 1)]a4 = −1
2

ˆ
dη[−6aa

′′ − λa4(a−2φ′2 − 1)]

Without considering the surface elements the action S becomes:

S = −1
2

ˆ
dη[6a′2 − λa4(a−2φ′2 − 1)]

Variation of the action with respect to a gives:

δaS = δaSg + δaSλ = −1
2

δa

ˆ
dη6a′2 +

1
2

δa

ˆ
dηa4λ(a−2φ′2 − 1) =

= −1
2

ˆ
dη6(−2a

′′
)δa +

1
2

ˆ
dη[

∂(λa4)

∂a
(a−2φ′2 − 1)δa + a4λδa(a−2φ′2)] =



= 6
ˆ

dηa
′′
δa + 1

ˆ
dη[

∂(λa4)

∂a
(a−2φ′2 − 1)− a4λφ′2

2
a3 ] =

= 6
ˆ

dηa
′′
δa +

1
2

ˆ
dη[

∂(λa4)

∂a
(a−2φ′2 − 1)− aλφ′22]δa = 0 ∀δa

Then

6a′′ +
1
2
[
∂(λa4)

∂a
(a−2φ′2 − 1)− aλφ′22] = 0

Variation of the action with respect to λ gives:

φ
′2

a2 − 1 = 0→ φ′2 = a2

Variation of the action with respect to φ gives:

d
dη

(φ′λa2) = 0

Using these results (φ′ = a):

φ′λa2 = λa3 = C → λ =
C
a3

where C is a real constant, this is gives a residual matter, whose energy density
decreases with the expansion of the universe, as the dark matter does. With respect
to the gravitational interaction this new mimetic dark matter behaves in the same
way as the usual one, but it does not participate in any other interaction besides the
graviational one.

Now
6a′′ − aλφ′2 = 0

Or
6a
′′ − C = 0

Finally

a′′ =
C
6



4.4 Background cosmological solutions

In the case of Robertson-Walker metric and in absence of matter the equation to study
is one as for a point particle ( say of mass m ) in classical physics ( 1D dimension ),
under an acceleration given by:

a′′(η) =
C
6

The velocity of the point particle is

a′(η) =
C
6

η + B

And the position at a given time

a(η) =
C
12

η2 + Bη + A→ a(η) = Cη2 + Bη + A

with a redefinition of C ( from the left to the right side of the second = ), where
A, B are real constants that depend only on spatial coordinates. A = 0, imposed by
a(η = 0) = 0. B > 0 for the expansion of the universe from the beginning. And
C > 0 because the scale factor can’t be negative for each time(indeed it is used to
measure proper distances that are positive by definition).

So a(η) = Cη2 + Bη = η(Cη + B) is a background evolution of a perfect fluid universe
with equation of state p = 0(for p 6= 0 see [4], and also [1] ), that mimic cold dark
matter. And the energy density is

λ =
C

η3(Cη + B)3

In the image below is given an example of evolution for a particular case.

4.5 Conclusions

First, after a brief review of general relativity and cosmology it was analyzed the
mimetic gravity theory, proposed as an explanation for dark matter. The resulting
equations of motion present an extra term, that appears also without the canonical
stress-energy tensor, that mimics the cold dark matter.



Figure 4.1: Evolution of scale factor and energy density for C = B = 1

Then it was made a simple study of a Universe, with Robertson-Walker metric, dom-
inated by mimetic dark matter. The evolution is similar to that of a Universe dom-
inated by non relativistic matter(setting A = B = 0 and C = 1). The elementary
study made here showed that this simple model demonstrates the expansion of the
Universe (an expansion that will last forever).

Possible simple generalizations of this thesis can be maked by introducing new
sources of energy, such as ordinary matter or radiation or also adding a potential.

It also be interesting to find a way to derive mimetic gravity without introducing any
extra scalar field λ (in this case the energy density of mimetic dark matter) in the
action.
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