
Master Thesis in control systems engineering

Camera simulation for YoloV5 training and
optimization

Master Candidate Supervisor

Michele Patero Prof. Carli Ruggero
Student ID 205321 University of Padova

Academic Year
2023/2024

To my mother
to my father

and to people I love

Abstract

Nowadays, one of the biggest challenges in machine learning and artificial
intelligence is the acquisition of labeled data since it usually is a heavy time and
money consuming task. The aim of this document is to propose a solution that
tries to automatize this process by adapting an already existing robot simulator’s
rendering software in order to produce synthetic images. Those images will
then be used to train the YoloV5 algorithm and it will be verified how well the
algorithm performs onto real new images.

Oggigiorno, una delle sfide più grandi nell’ambito del machine learning e
dell’intelligenza artificiale è l’acquisizione di dati etichettati, in quanto è usual-
mente un compito molto impattante in termini di tempo e costi. L’obiettivo
di questo elaborato è quello di proporre una soluzione che cerca di autom-
atizzare questo processo adattando un già esistente software di rendering di
simulazione robotica per la creazione di immagini sintetiche. Queste immagini
verranno poi utilizzate per allenare l’algoritmo YoloV5 e sarà verificata la qualità
delle prestazioni su nuove immagini reali.

Contents

List of Figures xi

List of Tables xiii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1
1.1 Brief machine learning historical background 1
1.2 The lack of data problem in Machine Learning 2
1.3 Thesis objective . 4
1.4 The starting point . 4

1.4.1 Light model used . 5
1.4.2 YoloV5 . 8
1.4.3 MVVM paradigm . 11

2 Preliminary works 13
2.1 Software analysis . 13
2.2 UI modification . 14
2.3 Automatisms . 16

2.3.1 Auto adjust camera position 16
2.3.2 Synthetic dataset generation 20
2.3.3 Yolo training . 28

2.4 Model deployment . 32
2.5 Real camera and real image dataset 35

2.5.1 Image acquisition . 35
2.5.2 Image labelling . 38

2.6 Other consideration on the preliminary work 39

vii

CONTENTS

3 Tests, results and future works 45
3.1 Genetic algorithm . 45

3.1.1 General Genetic Algorithm 45
3.1.2 Implementation of a genetic algorithm in the software . . 47

3.2 Technical issues . 50
3.2.1 Random number generator 51
3.2.2 Async methods . 53

3.3 Test and results . 55
3.4 Comments on the result and future works 63

References 65

Acknowledgments 67

viii

List of Figures

1.1 Reference model . 6
1.2 LTC rendering algorithm compared to ground truth 7
1.3 YoloV1 CNN architecture . 9
1.4 Non Maximum Suppression Pseudo-code 10
1.5 MVVM pattern . 11

2.1 Initial software UI . 14
2.2 Comparison with pre and post single value input 14
2.3 Comparison with pre and post vector value input 15
2.4 Comparison with pre and post matrix value input 15
2.5 Mesh example, on the right it is visible the irregularities 16
2.6 Camera positioning scheme . 17
2.7 With rotated object the outcome is wrong 18
2.8 Updated algorithm, the object occupies all the image height-wise 20
2.9 Dataset Generation tab . 20
2.10 Example of Yaml file . 21
2.11 Example of images generated . 23
2.12 Example of labelling file . 24
2.13 First attempt for automatizing Bounding Boxes placement scheme 24
2.14 The top images have object well bounded while the bottom two

are cut toward the centre . 25
2.15 Perspective effect . 26
2.16 With this algorithm the BBs are corrected also at the extremities . 27
2.17 Flaw in the second algorithm . 27
2.18 Final algorithm for BB labelling . 28
2.19 Example of Intersection over Union 31
2.20 Prediction example . 35

xi

LIST OF FIGURES

2.21 Example of image taken . 39
2.22 Image labelling . 40
2.23 New image for YoloV5 training . 41
2.24 Output graphics of training process 42

3.1 Genetic algorithm scheme . 46
3.2 General workflow for the experiments 47
3.3 Genetic algorithm UI . 49
3.4 Training Generation 1, Agent 1 . 55
3.5 Training Generation 1, Agent 2 . 56
3.6 Training Generation 1, Agent 3 . 56
3.7 Training Generation 1, Agent 4 . 57
3.8 Training Generation 1, Agent 5 . 57
3.9 Training Generation 1, Agent 6 . 58
3.10 Training Generation 4, Agent 1 . 59
3.11 Training Generation 4, Agent 2 . 60
3.12 Training Generation 4, Agent 3 . 60
3.13 Training Generation 4, Agent 4 . 61
3.14 Training Generation 4, Agent 5 . 61
3.15 Training Generation 4, Agent 6 . 62

xii

List of Tables

3.1 First generation results . 55
3.2 Second generation results . 58
3.3 Third generation results . 59
3.4 Fourth generation results . 59
3.5 First generation results with new method 63

xiii

List of Code Snippets

2.1 Final camera auto-adjust algorithm 18
2.2 Fisher-Yates algorithm . 22
2.3 Custom Yolo model class definition 32
2.4 Inference on single image . 34
2.5 Code snippet for grabbing images with the camera 36
2.6 Python code for training YoloV5 41
2.7 Python code for validating trained model 42
3.1 Random Number Generator . 51
3.2 Double random generator . 52
3.3 Use of the Task.Run() method and async and await keyword . . . 54

xvii

List of Acronyms

CSV Comma Separated Values

NN Neural Network

RL Reinforcement Learning

NMS Non Maximum Suppression

CNN Convolutional Neural Network

HSV Hue Saturation Value

UI User Interface

MVVM Model View Viewmodel

BB Boundig Box

ONNX Open Neural Network Exchange

PoE Power over Ethernet

xix

1
Introduction

1.1 Brief machine learning historical background

Throughout history, humans have tirelessly endeavored to automate tasks,
ranging from the simplest to the most intricate. Over centuries, technologi-
cal advancements have been devised to streamline and enhance manual labor,
progressively automating increasingly complex tasks. As intellectual curiosity
grew, there emerged a fascination with creating machines that could emulate
the behavior of living beings. An illustrative example is Jacques de Vaucan-
son’s Canard Digérateur, crafted in 1764, a duck-shaped automaton capable of
consuming kernels of grain. In the 1950s, scientific interest shifted towards the
prospect of computers learning from data. This led to the proposal of algorithms
such as early forms of Neural Networks, genetic algorithms, and the renowned
perceptron by F. Rosenblatt in 1957. However, due to technical constraints, Neu-
ral Networks were temporarily set aside until 1981 when Werbos introduced
the Multi-Layer Perceptron with a specific Neural Network Backpropagation
technique. In 1995, Support Vector Machines, a pivotal algorithm in Machine
Learning, were put forth by Vapnik and Cortes. Presently, with the remarkable
advancements in modern computer capabilities, Neural Networks have become
the most popular, extensive, and extensively studied category of learning algo-
rithms. Despite this, Support Vector Machines continue to be widely utilized
owing to their simplicity, showcasing the ongoing coexistence and relevance
of various approaches in the ever-evolving field of automation and machine

1

1.2. THE LACK OF DATA PROBLEM IN MACHINE LEARNING

learning.

1.2 The lack of data problem in Machine Learning

The machine learning field can be categorized into three main classes:

• Supervised learning: the algorithm is trained on a labeled dataset consist-

ing of input-output pairs. The main objective is to find an input-output

relation in order to make accurate prediction on new, unseen data. In other

words, a set of examples where the correct answers is known is shown to

the algorithm. It has to learn and generalize from these examples to make

predictions on new, similar instances.

• Unsupervised learning: the algorithm is given input data without output

labels. The objective is to find relationships between the data. Unlike su-

pervised learning, there is no predefined target variable for the algorithm

to predict but the aim is to group the input data based on their similarities.

Unsupervised learning is particularly useful for tasks where the goal is to

uncover hidden patterns or groupings within the data, without the need

for labeled examples.

• Reinforcement learning (RL): in this class of algorithm there is an agent that

learns to make decisions by interacting with an environment. The agent

receives feedback in the form of positive or negative rewards based on the

actions it takes and on how the environment responds. The objective is

for the agent to learn a policy, that maximizes the cumulative reward over

time. The learning process involves the agent exploring different actions

in various states, receiving feedback and adjusting its strategy to maximize

cumulative rewards over time.

Among the three macro area listed above, one issue concerning the super-
vised learning algorithm is the data scarcity in specific datasets that can lead to
multiple problems such as:

2

CHAPTER 1. INTRODUCTION

• Model Generalization: The effectiveness of models is often measured by

their ability to generalize from the training data. Increased exposure to

diverse examples enhances the likelihood of achieving this desirable prop-

erty;

• Unbalanced Datasets: this issue is present when there is a class that is

larger in number with respect to another one. This could lead to bad

performances by the models since it could become biased toward one

class.

In the following list are present some solutions to these problems:

• With Reinforcement Learning the agent is able to build itself a set of exam-

ple of the form a pair (state, action) to its corresponding reward in order to

complete a task without being instructed on how to do it. In general this

paradigm can’t be used for substituting any supervised learning problem

(e.g. image classification is hard or even impossible to be formulated as a

RL problem). Moreover this can lead to high cost in therms of time, money

and architecture, therefore it can’t always be exploited as a solution.

• Data Resample: in case of unbalanced dataset, some of the pairs that

input-output that are less present can be duplicated in order to restore the

equilibrium among the classes.

• Data Augmentation: this is a technique used in the context of machine

learning applied to computer vision to artificially increase the diversity

of a training dataset. Instead of collecting new data, data augmentation

involves applying various transformations to the existing training samples,

creating augmented versions of the original data. These transformations

can include rotations, flips, zooms, shifts, crops and changes in brightness

or color. By exposing the model to a broader range of augmented data

during training, it helps improve the model’s ability to generalize and

perform well on new, unseen examples.

3

1.3. THESIS OBJECTIVE

• Transfer Learning: In training models, if two models are related to some

domain, then it is possible to transfer knowledge to improve the results of

the target learner. In this case the models does not have to learn from the

zero but has already a solid starting point. Moreover a benefit of using

transfer learning is the less time spent on the training process and smaller

probability of getting stucked in a local minimum.

1.3 Thesis objective

Since the problem of lack of data in Machine Learning described in the para-
graph above, this thesis objective was to continue the development of a robot
rendering program that could simulate the functions of an industrial camera.
The aim of this project was to firstly automatize the process of creating a syn-
thetic dataset of images with their respective labels. Afterwards, this dataset
is used to train a chosen object detection algorithm. The algorithm is then
tested on a test dataset, made of real images and priorly labelled, to assess the
performances of the vision algorithm. Lastly, parameters in the simulation are
changed in order to generate more realistic images for a new synthetic dataset
on which the vision algorithm will be again trained.

1.4 The starting point

At the beginning of this work I had little to no knowledge of:

• How a relatively big software is structured and the general workflow. Only

some basis;

• C# programming although I had some experience with C and very little

experience with C++;

• Experience with object-oriented programming;

• Experience with user interface programming and the MVVM paradigm;

4

CHAPTER 1. INTRODUCTION

While I acknowledge that I am far from mastering any of the aforementioned
technologies, I express my gratitude and appreciation to Euclid Labs s.r.l. for
providing me with the opportunity to experiment and gain valuable experience
in this field.

1.4.1 Light model used

Euclid Labs S.r.l. provided me with software that included a real time
rendering component. This component consisted in a 3D virtual environment
capable of rendering various entities such as 3D objects, cameras, and lights.
The implementation of the Linear Transformed Cosine (LTC) technique was
already employed and used to facilitate the accurate rendering of lights and
their associated behaviors. Making a step back, let’s introduce some lighting
basics. Nowadays, the prevailing method for real-time lighting computations
is denoted as "per-pixel shading." This approach entails the calculation of light
values individually for each pixel displayed on the screen. To achieve this it is
usually available:

• P: the pixel position in the 3D world;

• N: the vector corresponding to the normal to the surface where the point

P is;

• V: the vector from the point P to the observer;

• L: the vector that connects the point P to the light source;

• A material holds details on how it reacts to incoming light.

Usually what rendering algorithms try to accomplish is to approximate in
some way the rendering equation[12]:

𝐿𝑜(𝑃,𝑉) = 𝐿𝑒(𝑃,𝑉) +
∫
Ω

𝑓𝑟(𝑃, 𝐿, 𝑉)𝐿𝑖(𝑃, 𝐿)⟨𝑁, 𝐿⟩𝑑𝐿 (1.1)

where:

• 𝐿𝑒 is the light directly emitted by the point P in the case it belongs to a light

source (e.g a lamp or a fire);

5

1.4. THE STARTING POINT

Figure 1.1: Reference model

• The integral expresses the necessity to compute the contribution from

each light source by integrating over all directions L on an unit sphere Ω

centered around the point P, with normal N as zenith.

• ⟨𝑁, 𝐿⟩ denotes a clamped cosine function. In simple terms, it means that

light from behind the point doesn’t really impact the brightness or radiance

emitted from that point.

• 𝐿𝑖 is the radiance that reaches the point P

• 𝑓𝑟(𝑃, 𝐿, 𝑉) is the so called Bidirectional Reflectance Distribution Function

(BDRF) of the surface where P lays. In the general form, it divides the light

into two terms: the diffuse term, representing light reflected from point P

in all directions; the specular term, capturing light reflected within a cone

surrounding the perfectly reflected light ray.

With the exception of certain scenarios, such as point light sources, it is
not always possible to obtain a closed-form solution for the rendering equation
within a finite timeframe. Consequently, various models have been proposed to
approximate this equation. One of the most simple models available to render
light, and also the first one implemented on the software, is the Blinn-Phong
model [11]:

6

CHAPTER 1. INTRODUCTION

𝐿𝑜(𝑃,𝑉) = (𝐾𝑑⟨𝑁 · 𝐿⟩ + 𝐾𝑠 ⟨𝑁 · 𝐻⟩𝑛)𝐿𝑖 (1.2)

where

• H is the halfway vector defined as 𝐻 = 𝐿+𝑉
∥𝐿+𝑉 ∥

• 𝐾𝑑 is the fraction of light diffused

• 𝐾𝑠 is the fraction of light specularly reflected

• n is the specular power or the shininess and indicates how close to the

behaviour of a mirror is the surface (a perfect mirror would have 𝑛 → ∞)

Despite its simplicity and real-time capabilities, the model tends to produce
inaccurate results. At the end, the model used in this rendering software was
Linearly Transformed Cosine (LTC). The idea behind this technique is this: let’s
take the Rendering Equation. A BRDF that behaves similarly to the original
Phong model is the following:

𝑓𝑟(𝑃, 𝐿, 𝑉) = 𝐾𝑑
𝜋

+ 𝐾𝑠
𝑛 + 2
2𝜋 ⟨𝑉 · 𝑅⟩ (1.3)

While the first term of the integral can be shown to have a closed solution, the
second term has to be solved numerically with computational complexity of
𝒪(𝑛) but we want this to be constant. This technique applies an approximation
to the specular term in order to transform it into a the integral of a clamped
cosine which can be analytically solved [6].

Figure 1.2: LTC rendering algorithm compared to ground truth

7

1.4. THE STARTING POINT

1.4.2 YoloV5

To assess the efficacy of the implemented rendering algorithm, the YoloV5
algorithm has been employed. Yolo, which stands for "You Only Look Once,"
is a member of the family of real-time object detection algorithms. Here it
follows a brief description of this algorithm. Yolo was born from the necessity of
object detection algorithms that could work in real time application such as the
recognition of vehicles, pedestrians, bicycle and other obstacles in autonomous
driving tasks. Back in the past, to achieve object detection, a single or multi object
classifier algorithm was employed in a sliding window at different scales and
position. Another technique used to achieve a similar result was to use a neural
network that could propose different bounding boxes and on each bounding box
a classifier was run to verify whether an object was present or not. Both these
method result to be quite accurate but very slow since multiple steps have to be
completed in order to fulfill the task. Yolo stated this problem as a regression
problem directly from pixels of an image to the bounding box coordinates and
class probabilities. In this way the inference results to be much faster with
respect the two methods presented before while reaching a good, although
lower, precision. Furthermore, in contrast to previous methods, Yolo reasons
globally by processing the entire image through the neural network. Unlike its
predecessors, which operated on localized regions defined by sliding windows
or proposed regions, Yolo takes a holistic approach. This global perspective
allows Yolo to consider contextual information across the entire image during the
object detection process, potentially enhancing its ability to recognize complex
patterns and relationships. The utilization of the entire image as input sets Yolo
apart in terms of its global reasoning capabilities. The first version of Yolo had
the following workflow. At the beginning the input image was divided into an
SxS grid where S could be considered an hyperparameter. If the centre of an
object falls into a grid cell, it is responsible for detecting that object. Each grid
cell predicts B bounding boxes in the form of (x, y, w, h, P) where the pair (x,
y) identify the centre of the bounding box, (w, h) its width and height and P
is the probability that the bounding box contains an object or not. Lastly, each
grid cell predicts C class probabilities, namely, given that an object is present
in the cell, how likely is that a specific object is contained in a specific cell.
To summarize, the output of a Yolo Neural Network is a tensor of dimension
𝑆 ∗ 𝑆 ∗ (𝐵 ∗ 5 + 𝐶). For what concern the Yolo architecture, it is fairly simple: it

8

CHAPTER 1. INTRODUCTION

consist in 24 convolutional layers followed by 2 fully connected layers.

Figure 1.3: YoloV1 CNN architecture

The last component to define for what regards the Yolo Neural Network is
its loss function, essential for the parameters training part. In fact, during the
training, it is tried to optimize the following loss function:

𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑︂
𝑖=0

𝐵∑︂
𝑗=0

1
𝑜𝑏 𝑗

𝑖 𝑗
[(𝑥𝑖 − �̂� 𝑖)2 + (𝑦𝑖 − �̂� 𝑖)2]

+𝜆𝑐𝑜𝑜𝑟𝑑
𝑆2∑︂
𝑖=0

𝐵∑︂
𝑗=0

1
𝑜𝑏 𝑗

𝑖 𝑗
[(
√
𝑤𝑖 −

√︁
�̂� 𝑖)2 + (

√︁
ℎ𝑖 −

√︂
ℎ̂ 𝑖)2]

+
𝑆2∑︂
𝑖=0

𝐵∑︂
𝑗=0

1
𝑜𝑏 𝑗

𝑖 𝑗
(𝐶𝑖 − �̂� 𝑖)2 + 𝜆𝑛𝑜𝑜𝑏 𝑗

𝑆2∑︂
𝑖=0

𝐵∑︂
𝑗=0

1
𝑛𝑜𝑜𝑏 𝑗

𝑖𝑗
(𝐶𝑖 − �̂� 𝑖)2

+
𝑆2∑︂
𝑖=0

1
𝑜𝑏 𝑗

𝑖

∑︂
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

(𝑝𝑖(𝑐) − �̂� 𝑖(𝑐))2

(1.4)

where 1𝑖 denotes if object appears in cell 𝑖 and 1𝑖 𝑗 denotes that the 𝑗th bound-
ing box predictor in cell 𝑖 is “responsible” for that prediction. Moreover: the
summations multiplied by 𝜆𝑐𝑜𝑜𝑟𝑑 can be defined as the localization loss namely
the part of the loss that tries to reduce the error on the bounding boxes predic-
tions; the third line summations can be defined as the confidence loss namely a
penalty either if an object is predicted but not present or if an object is not pre-
dicted but present; the last term can be defined as classification loss for category

9

1.4. THE STARTING POINT

prediction accuracy [5]. The last step for the Yolo algorithm to run is the Non
Maximum Suppression (NMS) technique. It serves as a post-processing method
employed in object detection algorithms. Its primary role is to minimize the
occurrence of overlapping bounding boxes, thereby enhancing the overall ac-
curacy and precision of object detection results. In the field of object detection
algorithms, it’s common for multiple bounding boxes to be generated around a
single object, each accompanied by varying confidence scores. Non-Maximum
Suppression steps in to sift through this abundance of bounding boxes, dis-
carding redundancies and retaining only the most precise ones. This process
streamlines the output, ensuring that the final set of bounding boxes represents
the most accurate and relevant detections [8].

Figure 1.4: Non Maximum Suppression Pseudo-code

These described above are the fundamentals of the Yolo algorithm. In this
project, it is made use of the 5th version of this algorithm (YoloV5) which presents
some improvements in terms of efficiency and accuracy. First of all, it uses many
improvements used in YoloV4 but developed in PyTorch deep learning frame-
work. It uses several augmentation techniques for better generalization such
as random affine, HSV augmentation, random horizontal flip as well as other.
YoloV5 offers a range of scaled versions, each tailored to specific applications and
hardware demands. These variants include YoloV5n (nano), YoloV5s (small),
YoloV5m (medium), YoloV5l (large), and YoloV5x (extra-large). The adjustments
in width and depth of the convolution modules allow customization for diverse
use cases. For example, YoloV5n and YoloV5s are designed as lightweight mod-
els, suitable for resource-constrained devices, whereas YoloV5x prioritizes high

10

CHAPTER 1. INTRODUCTION

performance, albeit with a trade-off in speed.

1.4.3 MVVM paradigm

Model-View-ViewModel (MVVM) is a widely-used architectural pattern in
software development that facilitates the separation of concerns between the
graphical user interface (GUI or the "view") and the business logic or back-end
processes (the "model"). This segregation ensures that the view remains inde-
pendent of any specific model platform, promoting modular and maintainable
code. In MVVM, the viewmodel serves as a crucial component, essentially act-
ing as a value converter. Its primary responsibility is to expose and convert data
objects from the model in a way that is easily manageable and presentable for
the view. Contrary to its name, the viewmodel often plays a more significant
role in managing the model than the view. It takes charge of most, if not all,
of the view’s display logic. One notable characteristic of the viewmodel is its
potential implementation of a mediator pattern. By doing so, it organizes access
to the back-end logic, coordinating interactions between the view and the un-
derlying business logic. This mediation helps organize and streamline the flow
of data and user interactions, aligning with the specific use cases supported by
the view. It’s worth mentioning that MVVM has been prominently incorporated
into the Windows Presentation Foundation (WPF), a framework by Microsoft for
building desktop applications with rich user interfaces. Additionally, the term
"Model-View-Binder" is sometimes used interchangeably with MVVM, empha-
sizing the role of the binder in connecting and synchronizing the model and
view components. Overall, MVVM stands as a powerful architectural pattern
that enhances code organization, maintainability, and scalability in software
development.

Figure 1.5: MVVM pattern

11

2
Preliminary works

As previously described in the Chapter 1, I was provided with a software with
the rendering component already implemented. The greatest part of my project
focused on the preliminary works made in order to then asses the performances
of the object detection algorithm trained with synthetic images.

2.1 Software analysis

The journey with this project began with the analysis of the code provided.
Providing an in-depth explanation of the code is not possible as a portion of
it is proprietary to Euclid Labs. Hence, the forthcoming content will offer a
highly simplified overview of the outcome. This software uses libraries from
the company MARS program, a simulator for industrial manipulator workcells.
In the first execution attempt, the code presented an user interface subdivided
into three columns: the left hand side with a selection of actions that the user can
access to; in the middle column a window displaying the rendered 3D world; in
the right hand side a column some user command to move objects and cameras
and to add or remove and manipulate the lights in the scene. The user interface
was connected to the computation in the back end through the MVVM paradigm
which allows to decouple the UI design with the logic behind.

13

2.2. UI MODIFICATION

Figure 2.1: Initial software UI

2.2 UI modification

With MVVM paradigm, it was necessary to immediately start to learn the
concept of binding. In fact, the very first task assigned was to modify the buttons
that allow to change the position and the orientation of an object. Although
seeming a simple task, I encountered several challenges when attempting to
make it modular and reusable. The workflow followed for implementing this
first part was to firstly design the single number textbox with its up and down
buttons; the buttons have been defined as repeat buttons in order to increase or
decrease the number if kept pressed. Moreover, in order to add further flexibility
to the user command, it was implemented a mechanism that allow to modify the
number by 0.1 if the left shift key was being pressed, 10 if the left control key was
being pressed and 100 if both were being pressed. The outcome turned out to be a
slightly more user-friendly input where the numbers digited don’t superimpose
with the arrows. Once accomplished this part, three of these inputs were group

Figure 2.2: Comparison with pre and post single value input

14

CHAPTER 2. PRELIMINARY WORKS

in order to form a vector modifier. It was made use of the dependency property
to add property to this custom element such as the input value which could be
accepted as Vector3D. The final component to upgrade was the matrix modifier,

Figure 2.3: Comparison with pre and post vector value input

which proves useful for altering the position and orientation of objects within
the scene. In this case it was made use of both the previous custom controls since
the position was always defined as a triplet (x, y, z) while the orientation could be
defined as different types of Euler angles. It was maintained the original feature
which was that when changing the angle triplet, if the rotation was made about
the X axis the colour assigned was red, about the Y axis green and about the Z
axis blue.

Figure 2.4: Comparison with pre and post matrix value input

15

2.3. AUTOMATISMS

2.3 Automatisms

In this section it is presented the automatisms implemented for the generation
of the images for the Yolo algorithm training

2.3.1 Auto adjust camera position

Regarding the effective computation, the first task assigned was to create
an automatism in order to get some confidence with the manipulation of the
objects, camera and lights inside the 3D rendered world. In this particular
scenario, the objective was to position the camera directly above the object,
regardless its initial position, in such a way that when a picture is taken, the
object occupies the entire frame without any empty spaces on the width or
height of the image. To achieve this it was needed to know where each point of
the mesh composing the 3D object was. A 3D object is essentially composed by
a number of points describing the vertices of the object. Those points are then
connected by small triangles in order to make the object defined and visible.
The more the points that defines the object, the more accurate is at sight but
also the more computationally expensive. While exploring the given software,

Figure 2.5: Mesh example, on the right it is visible the irregularities

a function utilizing a mesh was discovered, serving as a source of inspiration.
The first attempt made was to go through all the mesh region and for each mesh
region go through all the vertex. The initial suppositions were made about the
starting position of the camera with height equal to −∞ and the object with

16

CHAPTER 2. PRELIMINARY WORKS

its centre along the Z axis. It was considered the problem from two different
perspectives, one per side, and then the solutions were merged at the end. Let’s
take one of them as an example: suppose we are considering the first point in

Figure 2.6: Camera positioning scheme

this case. The field of view of the camera can be modeled as two lines with
coefficient m and -m where m is given by the equation

𝑚 = tan
(︃
𝜋
2 −

𝑓 𝑜𝑣

2

)︃
(2.1)

The objective then becomes, given the line equation

𝑧 = 𝑚 ∗ 𝑥 + 𝑞 (2.2)

find the line that is above each point of the mesh, namely, given the family of
parallel lines, the line that has the highest y axis intercept. Therefore, for each
point, defined by the pair (𝑥, 𝑧) or (𝑦, 𝑧) it is computed its q value and it is
checked whether it is higher or not with respect to the previous maximum; if it
is, it is set as the new maximum. This process is execute for both the line with
coefficient m and -m hence we will have 𝑞+ and 𝑞− . Once the two lines have been
univocally, to find the camera height it can be used the point of intersection of

17

2.3. AUTOMATISMS

the lines. Moreover, this gives also the position of the camera on the X or Y axis
depending on which side we are solving the problem. Given that there will be
two terms for Z, the highest one is selected to prevent cropping the object in the
image. At the end, since every computation is made with respect to the vertex of
the mesh, hence without keeping account of the effective position of the object
inside the 3D world, an offset corresponding to the compound transform of the
object is added to the camera position previously found. It is possible to say that
this algorithm works for the purpose of the project but it does not keep count of
the orientation of the object. In fact, if the object is not a sphere and is rotated
around any axis, since the computation were made with respect to the mesh, the
algorithm does not return what expected(Figure 2.7). This is due to the fact that
the mesh could be described as a stencil representing the object. The compound
transform then tells to the GPU where to draw the object. To solve this problem,

Figure 2.7: With rotated object the outcome is wrong

before doing any of the computation described above, each point was rotated by
the rotation matrix representing the object orientation(figure 2.8).

1 private void AutoAdjust(object param)

2 {

3 double adjustedHegiht;

4 double vFoV = (simCamera.GetVerticalFoV()) / 2;

5 double hFoV = (simCamera.GetHorizontalFoV()) / 2;

6 double q_min_x = double.MinValue;

7 double q_max_x = double.MinValue;

8 double q_min_y = double.MinValue;

9 double q_max_y = double.MinValue;

18

CHAPTER 2. PRELIMINARY WORKS

10 double m_x = Math.Tan((MathConstants.PI / 2) - hFoV);

11 double m_y = Math.Tan((MathConstants.PI / 2) - vFoV);

12 foreach (elMeshRegion meshregion in

13 selectedObject.Mesh.MeshRegions)

14 foreach (elVertex item in meshregion.VertexBuffer)

15 {

16 Euclid.MathFun.Vector3D position =

17 item.Position;

18 Euclid.MathFun.RotationMatrix.Multiply

19 (selectedObject.CompoundTransform.Rotation,

20 position , ref position);

21 double new_q = position.Z - m_x * position.X;

22 if (new_q > q_min_x)

23 q_min_x = new_q;

24 new_q = position.Z + m_x * position.X;

25 if (new_q > q_max_x)

26 q_max_x = new_q;

27 new_q = position.Z - m_y * position.Y;

28 if (new_q > q_min_y)

29 q_min_y = new_q;

30 new_q = position.Z + m_y * position.Y;

31 if (new_q > q_max_y)

32 q_max_y = new_q;

33 }

34 double centreX = (q_min_x - q_max_x) / (-2 * m_x);

35 double centreY = (q_min_y - q_max_y) / (-2 * m_y);

36 //find z

37 double x = (q_max_x - q_min_x) / (2 * m_x);

38 double z1 = m_x * x + q_min_x;

39 double y = (q_max_y - q_min_y) / (2 * m_y);

40 double z2 = m_y * y + q_min_y;

41 adjustedHegiht = Math.Max(z1, z2)

42 + simCamera.PinholeModelOrigin.Z

43 + importedObject.PositionTransform.OriginOffset.Z;

44 centreX += selectedObject.OriginOffset.X;

45 centreY += selectedObject.OriginOffset.Y;

46 CameraPosition = new HomogeneousMatrix(centreX,

47 centreY, adjustedHegiht , 0, 0, MathConstants.PI);

19

2.3. AUTOMATISMS

48 }

Code 2.1: Final camera auto-adjust algorithm

Figure 2.8: Updated algorithm, the object occupies all the image height-wise

2.3.2 Synthetic dataset generation

The very relevant part of this project started here, wherein pertinent infor-
mation regarding the labeling process was obtained from the YoloV5 algorithm
documentation [9]. Therefore in this section it is going to be presented the algo-
rithm with which the dataset was created. First of all it was needed to develop
the appropriate user interface part and it was accomplished in the following
manner: the data to be prompted is the number of images, that compose the
whole dataset, and the test split percentage. Once these input are present and
the camera and the object in the 3D world are selected, then the Generate Image
Set button is enabled.

Figure 2.9: Dataset Generation tab

After pressing the button, a new folder labeled "custom#" is generated within
the dataset directory, with # representing the incremented last folder number.

20

CHAPTER 2. PRELIMINARY WORKS

Subsequently, additional folders are created, including "train" and "validation"
directories. Within each of these, subdirectories named "images" and "labels"
are set up. After this, it is required to create a YAML file. This file is required
for YoloV5 in order to know where the dataset is located and which classes of
object it will predict. The YAML file is composed in the following way:

• path to dataset folder

• path to training images relative to the dataset directory

• path to validation images relative to the dataset directory

• path to test images relative to the dataset directory

• class name dictionary

In figure 2.10 is an example taken from the Ultralytics github repository. Once

Figure 2.10: Example of Yaml file

the various subdirectories and the YAML file are created, it is time to generate
the training images and their corresponding label files. As it will be explained in
the next section, in order to train the YoloV5 algorithm it is required to already
have the images and labels divided into training and validation set. Hence,
the choice made was to create an array containing the range of numbers from
0 to the number of image generated, shuffle it with the Fisher-Yates algorithm
and take only the first M indexes where M is the number of validation images
selected before.

21

2.3. AUTOMATISMS

1 static void Shuffle<T>(T[] array)

2 {

3 Random random = new Random();

4 // Start from the end of the array and swap each

5 //element with a random one before it

6 for (int i = array.Length - 1; i > 0; i--)

7 {

8 int j = random.Next(0, i + 1);

9 // Swap array[i] and array[j]

10 T temp = array[i];

11 array[i] = array[j];

12 array[j] = temp;

13 }

14 }

Code 2.2: Fisher-Yates algorithm

Therefore, since a for loop is created in order to generate N images, each time
that the i-th index, which is increased at every iteration, is contained in the array
above mentioned, the results are saved into the validation folder. Now let’s
tackle the effective image generation code. In this part it was needed to decide
how the images were taken since there is not an effective rule. The decision
was to make the object move from left to right while centered on the height of
the image for half of the number of images taken and from bottom to top while
centered on the width of the image for the other half. To add a bit more of
generalization in the images, a Gaussian noise is injected to the position in the
axis perpendicular to the one on which the object moves. Moreover, the object
is casually rotated along its Z axis in order to view it from different viewpoints.
Lastly, on the image side, it was decided to resize pictures to a dimension of
640∗640 pixel which could be accepted as input of the YoloV5 Neural Network.
In figure 2.11 some example of images generated. For each image generated, a
txt file containing the labels had to be produced. The labels for YoloV5 have to
be in the form of (𝐿, 𝑥, 𝑦, 𝑤, ℎ) where L is the class of the object contained inside
the bounding box; x and y are correspondingly the center on the horizontal axis
and vertical axis of the bounding box; w and h are the width and height of
the bounding box. All the measures but L must be normalized with respect to
the images size hence each of those numbers will be bounded between 0 and
1 (figure 2.12). The first attempt for accomplish the labelling task was to use

22

CHAPTER 2. PRELIMINARY WORKS

Figure 2.11: Example of images generated

the bounding box of the object. With this, a 3D vector for both the maximum
and the minimum point of the bounding box were taken into consideration.
Given that the object has been approximated as a rectangular parallelepiped
and positioned in a way that only one face is directly aligned with the camera
axis, it is necessary to solely consider the aspects of the face that is facing the
camera (figure 2.13). This approach simplifies calculations and facilitates a more
straightforward representation of the object. Hence, to compute the label of an
object it is considered as image plane a rectangle posed at the height of the
upward face of the parallelepiped. The x and y coordinate of centre of this
figure are the same as the one of the camera. Its width and height is computed
with some trigonometric calculations namely given that it is known from the
manufacturer the horizontal and vertical field of view and the distance between
the camera origin and the parallelepiped face, the width and height of the plane
becomes:

𝑤𝑖𝑑𝑡ℎ = [(𝐶𝑎𝑚𝑒𝑟𝑎𝐻𝑒𝑖𝑔ℎ𝑡 − 𝑃𝑙𝑎𝑛𝑒𝐻𝑒𝑖𝑔ℎ𝑡) ∗ tan(𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐹𝑜𝑉/2)] ∗ 2

ℎ𝑒𝑖𝑔ℎ𝑡 = [(𝐶𝑎𝑚𝑒𝑟𝑎𝐻𝑒𝑖𝑔ℎ𝑡 − 𝑃𝑙𝑎𝑛𝑒𝐻𝑒𝑖𝑔ℎ𝑡) ∗ tan(𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝐹𝑜𝑉/2)] ∗ 2
(2.3)

23

2.3. AUTOMATISMS

Figure 2.12: Example of labelling file

Once the measurements have been obtained, it becomes feasible to perform
reasoning solely in relation to the plane under consideration. By establishing
the bottom left corner as the origin for the bounding box points, normalizing
the measures involves subtracting the coordinates of the bottom left corner from
both points. Subsequently, the x-coordinate is divided by the width of the
image plane, and the y-coordinate by its height. With normalized coordinates
in place, they can then be utilized to calculate pixel coordinates by multiplying

Figure 2.13: First attempt for automatizing Bounding Boxes placement scheme

24

CHAPTER 2. PRELIMINARY WORKS

them for the width and the height of image. Upon implementing the first
algorithm, an imperfection in bounding box placement was observed. It was
noticeable that when the object was near the center of the camera origin, the
bounding boxes were well-placed. However, upon reaching the extremities of
the camera field, the bounding boxes appeared to cut part of the object, as
depicted in Figure 2.14. This is caused by the fact that the parallelepiped when

Figure 2.14: The top images have object well bounded while the bottom two are
cut toward the centre

in the extremities of the camera field shows also one lateral side that needs to
be taken into account (e.g if the object is on the left side of the image plane
then the right side of the figure is not covered by the front side). This would be
more evident the more the object depth is. In fact, taking the reasoning to an
extreme case, if the object taken into consideration was flat then this phenomena
would not appear. Therefore, in order to avoid this flaw, this algorithm was
improved by taking into consideration the relative position on the xy plane of
the object with respect to the camera. In other words, taking as a reference the
image in the figure 2.15, if the object is on the upper left side of the camera
centre, the vertex used to compute the bounding boxes are the top left corner
of the front face and the bottom right corner of the rear face; in the case in
which the object is in the bottom left side of the camera centre, the vertex used

25

2.3. AUTOMATISMS

to compute the bounding boxes are the bottom left corner of the front face
and the top right corner of the rear face; the other two cases are analogue to
the previous ones and are respectively when the object is on the bottom right
corner and in the top right corner of the camera centre. Moreover, in this case,

Figure 2.15: Perspective effect

since the points considered are laying on 2 different planes perpendicular to
the camera axis, the reasoning exploited in the previous algorithm has to be
extended to the point taken into consideration, namely to normalize the point
coordinates in the xy plane the equation 2.3 has to be used for each of the points.
The results given by this algorithm seemed better than the previous algorithm
and are shown in figure 2.16. During testing, it became apparent that the
algorithm encountered difficulties when applied to objects lacking symmetry
with respect to the z-axis. The issue stemmed from the algorithm’s reliance on a
bounding box that was specific to the object’s mesh, rather than being adaptable
to the object’s orientation in the 3D world. This limitation was evident in cases
where objects, lacking z-axis symmetry, underwent rotation. For instance, the
algorithm performed well with objects possessing z-axis symmetry, as a square
bounding box could consistently encapsulate them, regardless of orientation,
such as the case presented above where the tuna can has a cylindrical shape,
hence if rotated around the z axis, the original bounding box remains still valid.
Rotating a bounding box could not be an option since the output would not be
an aligned rectangle. Also, using the vertices of the rotate bounding box was not

26

CHAPTER 2. PRELIMINARY WORKS

Figure 2.16: With this algorithm the BBs are corrected also at the extremities

Figure 2.17: Flaw in the second algorithm

a solution since in this case the risk was to have wide spaces between the inner
side of the BBs and the object. The last method resorted to was to evaluate each
single point on the mesh, rotated and translated by the compound transform of
the object and then evaluated with respect to the other points when normalized.

27

2.3. AUTOMATISMS

With this comparison, it is possible to find directly the points with minimum
and maximum coordinates along the normalized x and y plane. Once these,
which represent the normalized coordinate of the bounding box in the image
plane, are present, the only remaining thing to do is to multiply them by the
width and height of the image to obtain the BB in pixel coordinates.

Figure 2.18: Final algorithm for BB labelling

2.3.3 Yolo training

In this part it is presented the methodology employed for training the algo-
rithm. The YoloV5 algorithm was released a couple of months after YoloV4
in 2020 by Glen Jocher, founder and CEO of Ultralytics. Hence all the doc-
umentation necessary for the implementation of this algorithm was found on
the Ultralytics website. First thing to do was to clone the git repository on the
desired folder. After this it was required to install all the libraries necessary for
the scripts to operate such as numpy, matplotlib, pytorch and many more. To
do so, a requirement.txt file was provided in the cloned repository. In order to
install the precise version of all the libraries and not to have conflicts between
various versions of the same library already installed and other libraries, it was
made use of a virtual environment. A virtual environment in the context of

28

CHAPTER 2. PRELIMINARY WORKS

installing libraries typically refers to a self-contained and isolated workspace
within a computer system. This type of environment allows users to manage
and organize their project-specific dependencies, libraries, and packages sepa-
rately from the system-wide installations. The primary purpose is to create a
controlled environment, ensuring that the required software components for a
particular project do not interfere with the global system configuration. Using
tools like virtualenv (for Python) or venv, developers can create these isolated
environments, encapsulating the specific versions of libraries and dependencies
needed for a given project. This practice enhances project reproducibility, as the
virtual environment can be easily shared, and other users can recreate the exact
software environment to run the project seamlessly. Additionally, virtual en-
vironments contribute to better dependency management, enabling developers
to work on multiple projects with potentially conflicting requirements without
conflicts. Overall, virtual environments play a crucial role in maintaining a clean
and well-organized development workflow, promoting consistency and ease of
collaboration in software projects. To achieve what previously described, it was
needed to run the terminal from a desired folder and creating and activating the
virtual environment with the following commands:

1 python -m venv myVirtualEnv

2 venv\Scripts\activate

After successfully creating and activating the virtual environment (you can
verify activation by checking if the command line prompt starts with the virtual
environment name, e.g., (myVirtualEnv)), it can be proceeded with cloning
the repository and installing the necessary requirements. Use the following
commands [10]:

1 git clone https://github.com/ultralytics/yolov5

2 cd yolov5

3 pip install -r requirements.txt

Once this is done, it was possible to use the python script train.py in order to
start the training of the algorithm. To make use of this script the terminal was
employed. In fact, with the virtual environment still activated, it was possible
to enter the following command:

1 python train.py --img 640 --epochs 3 --data data.yaml --weights

yolov5s.pt

where:

29

2.3. AUTOMATISMS

• - - img 640 is the dimension in pixel of the input image;

• - - epochs 3 is the number of the epochs on which the Neural Network is

trained;

• - - data data.yaml is the YAML file described in one of the previous sections;

• - - weights yolov5s.pt is the version of YoloV5 that it is decided to use

(small). Other versions are YoloV5n (nano), YoloV5m (medium), YoloV5l

(large), YoloV5x (xLarge). Moreover this allow to train the network with

pretrained weights. These weights are trained on the COCO dataset.

Additional configuration options, such as batch size, optimizer selection, and
the output folder for saving training results, can be incorporated into the setup.
After configuring these parameters, integration with the C# code involves using
the System.Diagnostics.Process class. Instantiate the Process object, providing
the file name (e.g., cmd.exe), the working directory, and any other necessary op-
tions to update the user interface. Once the Process object is configured, it can
be started, and the previously described commands, including virtual environ-
ment activation and initiation of the training script, can be executed. During the
training process, a significant challenge arose as the available computer mem-
ory proved insufficient, leading to frequent system collapses. Initially, it was
hypothesized that the default batch size of 16 might be the culprit. However,
even after reducing the batch size, the issue persisted. In the quest for a solution,
a crucial insight emerged from a GitHub discussion pertaining to the workers
parameter. The workers parameter determines the number of CPU cores utilized
during training. It was discovered that adjusting this parameter to a value of 1 re-
solved the memory problem, albeit at the cost of a considerable slowdown in the
training process. This compromise, while effective in mitigating memory con-
straints, highlighted the delicate balance between computational efficiency and
memory usage, necessitating careful consideration and optimization of training
parameters for optimal performance. Once the training process is finished the
script outputs a series of files among which are present 2 files named last.pt and
best.pt. These are the pytorch files containing the NN weights at respectively
the last iteration and the best iteration, which is chosen among the ones with
best fitness to the validation dataset. The fitness to a certain dataset is evaluated

30

CHAPTER 2. PRELIMINARY WORKS

as a weighted sum of the network Precision, Recall, mAP@.5 and mAP@.95 on
the validation dataset. These metrics are defined with the following equations:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

𝑚𝐴𝑃 =
1

|𝑐𝑙𝑎𝑠𝑠𝑒𝑠 |
∑︂

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

#𝑇𝑃(𝑐)
#𝑇𝑃(𝑐) + #𝐹𝑃(𝑐)

(2.4)

where Tp are the true positive predictions, Tn are the true negatives, Fp are the
false positives and Fn are the false negatives. To determine if a prediction is,
for example a true positive, it is made us of the Intersection over Union metric
(typically indicated as IoU). The IoU between a set A, representing the pixels of
the proposed object region, and a set B, representing the pixels of the true object
region, is calculated as:

𝐼𝑜𝑈(𝐴, 𝐵) = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵 (2.5)

Typically, an IoU value greater than 0.5 is considered indicative of a successful
detection, while an IoU value less than or equal to 0.5 is considered indicative of
a failed detection. Hence a prediction is considered a true positive if a proposal
was made for class c and there actually was an object of class c. Therefore
mAP@.5, which is the mean Average Precision at 0.5, is calculated by setting the
IoU threshold at 0.5 [1] [2].

Figure 2.19: Example of Intersection over Union

Another precision to be made is that, depending on the algorithm used,
validation and test dataset could change in meaning. In this case, the validation
dataset is primarily employed to calculate metrics at the end of each epoch, with

31

2.4. MODEL DEPLOYMENT

no direct impact on the model weights evolution while the test dataset is used
in order to test the neural network onto new unseen data.

2.4 Model deployment

Once trained, the model has to be deployed. Model deployment in machine
learning is the process of integrating the model into an existing production envi-
ronment where it can take in an input and return an output. The goal is to make
the predictions from the trained machine learning model available to others. In
order to accomplish this task, it was needed a way to use the model with the
C# environment. By researching on the internet, it was found a small library
on a github repository which allows to load the trained model and use it for
the inference task [3]. The library makes use of the Microsoft.ML.OnnxRuntime
library. Hence the model needs to be converted from the original pytorch for-
mat to the ONNX one. This is simply achieved by utilizing the export.py script
already present in the YoloV5 repository downloaded at the beginning of this
project. By utilizing the system described in the previous chapter for invoking
the shell command, the script was invoked with the following command

1 python export.py --weights /Path/to/NeuralNetwork/best.pt

--include onnx

To use the now format correct network, the library required to create a custom
class that inherit from a given class called YoloModel. This class is an abstract
class with some public Get only properties such as Width, Height, Depth, Labels,
Confidence and so on and so forth. Locating documentation for certain property
definitions proved challenging, leading to reliance on comments from the is-
sues GitHub section and insights gathered from discussions on Stack Overflow.
Following is the class definition that was formulated in the end:

1 public class YoloCustomModel : YoloModel

2 {

3 public override int Width => 640;

4 public override int Height => 640;

5 public override int Depth => 3;

6 public override int Dimensions => 7;

7 public override float[] Strides => new float[] { 8, 16,

8 32 };

32

CHAPTER 2. PRELIMINARY WORKS

9 public override float[][][] Anchors => new float[][][]

10 {

11 new float[][] { new float[] { 10, 13 }, new float[]

12 { 16, 30 }, new float[] { 33, 23 } },

13 new float[][] { new float[] { 30, 61 }, new float[]

14 { 62, 45 }, new float[] { 59, 119 } },

15 new float[][] { new float[] {116, 90 }, new float[]

16 { 156, 198 }, new float[] { 373, 326 } }

17 };

18 public override int[] Shapes => new int[] {80, 40, 20};

19 public override float Confidence => 0.20f;

20 public override float MulConfidence => 0.25f;

21 public override float Overlap => 0.45f;

22 public override string[] OutputNames => new string[]

23 { "output0" };

24 public override bool UseDetect => true;

25 public override string Weights => customWeights;

26 public static string customWeights;

27 public YoloCustomModel()

28 {

29 base.Labels = new List<YoloLabel >

30 {

31 new YoloLabel

32 {

33 Id = 0,

34 Name = "Pezzo in metallo"

35 },

36 new YoloLabel

37 {

38 Id = 1,

39 Name = "Interruttore"

40 }

41 };

42 }

Code 2.3: Custom Yolo model class definition

It can be observed that the customWeights field is not overridden. This is inten-
tional, as it was introduced in relation to the base class to enable the definition

33

2.4. MODEL DEPLOYMENT

of the weights path after the model instantiation. The rationale behind this
design is rooted in the flexibility it provides, allowing users to specify the path
to the Yolo model dynamically. The original guidance from the publisher ad-
vised manually crafting a class that already incorporates the specific path to the
Yolo model. This approach facilitates reusability, enabling the same class to be
employed for different models with distinct weight file locations. After having
defined this, it could be instantiated the YoloScorer object from the library cited
above and to perform the inference task it could be invoked its Predict method.
It follows an example of the inference on a single image:

1 public void PredictOnSingleImage()

2 {

3 using (System.Drawing.Image image = System.Drawing.

4 Image.FromFile(ImagePath))

5 {

6 YoloCustomModel.customWeights = NNPath;

7 YoloScorer <YoloCustomModel > scorer = new

8 YoloScorer <YoloCustomModel >();

9 var predictions = scorer.Predict(image);

10 Bitmap bitmap = new Bitmap(image);

11 for (int i = 0; i<predictions.Count; i++)

12 {

13 Rectangle rectangle = new Rectangle((int)

14 predictions[i].Rectangle.X, (int)

15 predictions[i].Rectangle.Y, (int)

16 predictions[i].Rectangle.Width, (int)

17 predictions[i].Rectangle.Height);

18 Yolov5Image = DrawRectangle(bitmap,

19 rectangle);

20 }

21 }

22 }

Code 2.4: Inference on single image

34

CHAPTER 2. PRELIMINARY WORKS

Figure 2.20: Prediction example

2.5 Real camera and real image dataset

The last part concerning the preliminary work revolved around the acquisition
of the real images and their labelling.

2.5.1 Image acquisition

In order to acquire the needed images it was provided from Euclid Labs s.r.l.
an industrial camera produced by Basler, in specific the Basler ace 2 a2A1920-
51gmBAS model. Its specifications could be found in its datasheet but the choice
of the used camera was not critical for this project for it has only to be made
present to the software in order to correctly simulate the camera. For what
concerns the optic, it was used the 6mm Focal Length Lens, 1" Sensor Format,
#13-755 from Edmund Optics. Also in this case the choice of the optic was not
critical. It is crucial to pay attention to the specifications of both the camera body
and optics to ensure a more accurate and realistic simulation of the resulting
image. For the purpose of connecting the camera to the computer, on which the
software runs, it was needed to make use of a power over Ethernet unit, usually

35

2.5. REAL CAMERA AND REAL IMAGE DATASET

denominated as PoE. It consists in a unit that is able in the same time to transmit
data between the camera and the computer and to power the camera. As the
name implies, it uses an Ethernet cable to connect the twos. Once the setup
has been completed, it was time to follow the instruction that the constructor
provided. Basler allows to download 2 main software to use their camera:
Basler Pylon IP Configurator and Basler Pylon. The first is used in order to
view and manipulate the IP address of the camera. This results to be essential
since to connect the two unit it is needed to change the computer IP address to
192.168.0.10 and afterward check the status of the camera on the IP Configurator.
After the connection has been established it can be opened the Basler Pylon
software. This results to be extremely convenient in order to test the camera to
check whether there are some spots on the grabbed image meaning that some
dirt has deposited onto the lens or onto the sensor itself. Once everything has
been checked, then, it was proceeded to acquire the code for the purpose to use
the camera directly by this thesis software. Basler proposes a series of samples in
order to operate its cameras with C# based software. There is a specific example
used for grabbing 10 images that was adapted in order to grab a single image
and multiple images at an interval of n seconds where n was specified by the
user. Here it follows the first algorithm (the latter is basically the same but with
a for loop and a wait between each cycle):

1 public void GrabRealImageCommandHandler()

2 {

3 using (Camera camera = new Camera())

4 {

5 // Set the acquisition mode to free running

6 // continuous acquisition when the camera is opened

7 camera.CameraOpened += Basler.Pylon.Configuration.

8 AcquireContinuous;

9 // Open the connection to the camera device.

10 camera.Open();

11 camera.Parameters[PLCamera.ExposureTime].SetValue

12 (CameraExposure , FloatValueCorrection.ClipToRange);

13 // The parameter MaxNumBuffer can be used to

14 // control the amount of buffers

15 // allocated for grabbing. The default value of

16 //this parameter is 10.

17 camera.Parameters[PLCameraInstance.MaxNumBuffer].

36

CHAPTER 2. PRELIMINARY WORKS

18 SetValue(5);

19 // Start grabbing.

20 camera.StreamGrabber.Start();

21 // Wait for an image and then retrieve it.

22 //A timeout of 5000 ms is used.

23 IGrabResult grabResult = camera.StreamGrabber.

24 RetrieveResult(5000,

25 TimeoutHandling.ThrowException);

26 using (grabResult)

27 {

28 // Image grabbed successfully?

29 if (grabResult.GrabSucceeded)

30 {

31 RealImage = new Bitmap((int)grabResult.

32 Width, (int)grabResult.Height, System.

33 Drawing.Imaging.PixelFormat.Format24bppRgb)

34 ;

35 BitmapData bmpData = RealImage.LockBits(new

36 Rectangle(0, 0, RealImage.Width,

37 RealImage.Height), ImageLockMode.WriteOnly ,

38 RealImage.PixelFormat);

39 // Assuming buffer contains 8-bit grayscale

40 values

41 byte[] buffer = grabResult.PixelData as

42 byte[];

43 int stride = bmpData.Stride;

44 for (int y = 0; y < RealImage.Height; y++)

45 {

46 for (int x = 0; x < RealImage.Width;

47 x++)

48 {

49 byte intensity = buffer[y *

50 RealImage.Width + x];

51 Color color = Color.FromArgb

52 (intensity , intensity , intensity);

53 Marshal.WriteByte(bmpData.Scan0, y

54 * stride + x * 3, color.B);

55 Marshal.WriteByte(bmpData.Scan0, y

37

2.5. REAL CAMERA AND REAL IMAGE DATASET

56 * stride + x * 3 + 1, color.G);

57 Marshal.WriteByte(bmpData.Scan0, y

58 * stride + x * 3 + 2, color.R);

59 }

60 }

61 RealImage.UnlockBits(bmpData);

62 }

63 else

64 {

65 Console.WriteLine("Error: {0} {1}",

66 grabResult.ErrorCode ,

67 grabResult.ErrorDescription);

68 }

69 }

70 // Stop grabbing.

71 camera.StreamGrabber.Stop();

72 // Close the connection to the camera device.

73 camera.Close();

74 }

75 }

Code 2.5: Code snippet for grabbing images with the camera

The code above is used to acquire an image from the camera. In the user interface
it is placed a button for taking single images and multiple images. The first one
is useful in order to set the exposure to have brighter or darker images and to
prepare the setup for taking picture. The second is used after for creating a
specific dataset of images. After pressing the second button, in fact, it is asked
to choose a folder where to save the current dataset and at intervals of some
seconds a chosen number of picture are taken.

2.5.2 Image labelling

After having generated the real image dataset it was time to also create the
associated label txt file to build the ground truth for the experiments. To achieve
this, the YoloV5 GitHub repository suggested to make use of the Roboflow
online software [7]. Basically, it is a website developed on purpose for creating
dataset for image classification and object detection for Yolo algorithms. In the
context of this project this was used to utilize its labelling function. The software

38

CHAPTER 2. PRELIMINARY WORKS

Figure 2.21: Example of image taken

requires to upload the custom images and, for creating the annotation, onto each
image drag a square of the dimension of the object in question. It is possible to
select also different labels for each object but in this case the object considered
was just one. Before generating the labels file, Roboflow allows some type of
image augmentation and resize. In this first phase only the resize of the image
was chosen. Hence the output were 640*640 pixel images and their associated
txt file.

2.6 Other consideration on the preliminary work

Before proceeding it is mandatory to mention some aspects that were mod-
ified in order to obtain better results by the software. By speaking with Mr.
Polesel, CEO of Euclid Labs s.r.l., it was noticed that using squared images ob-
tained by resizing the images could lead to the lost of proportions in object that
don’t present a specific form of symmetry. This could cause loss of information,
for example a rectangular object does not maintain its "rectangularness" if, when
the image is shrunk, the sides become comparable. To avoid this issues, the so-
lution presented was to enlarge the image size so that the height of the image

39

2.6. OTHER CONSIDERATION ON THE PRELIMINARY WORK

Figure 2.22: Image labelling

matched its width of 1920 pixel. To fill the new portion then it was decided to
set all the new pixel to 255, hence making them white. Lastly all the images
had to be resized to a dimension of 640 pixel per dimension. An example of
this outcome is showed in the image 2.23. Secondly, it was evident from the
beginning that the computational power of the computer on which this project
was developed was too low to perform the training of YoloV5 for hundreds of
epoch. A solution was found using the Google Colab script made available by
Roboflow. It basically allowed to use NVIDIA T4 Tensor Core GPUs that made
the training process extremely faster compared to the previous method. The
new code, implemented in Python, essentially starts with installing the neces-
sary libraries onto the virtual environment, as it was done also in this project.
Afterwards, it connects the environments to the user google drive in order to get
the access to the images and their respective labels. Once that part is completed,
it runs the train.py python script to start the training of the YoloV5 network. A
small modification of the YAML file has been made to correct the position of the
training test and validation folder location for the use of the script on Google

40

CHAPTER 2. PRELIMINARY WORKS

Figure 2.23: New image for YoloV5 training

Colab. Then some plots are shown to the user in order to have a first glance to the
quality of the trained network. These plots contain information about the loss
function on both train and validation dataset, and some metrics computed onto
the validation dataset (an example in figure 2.24). Lastly it is tested on a unseen
test dataset of real images to assess the network capability of generalization.

1 # clone YOLOv5 repository

2 !git clone https://github.com/ultralytics/yolov5 # clone repo

3 %cd yolov5

4 !git reset --hard 064365d8683fd002e9ad789c1e91fa3d021b44f0

5 # install dependencies as necessary

6 !pip install -qr requirements.txt # install dependencies (

ignore errors)

7 import torch

8 from IPython.display import Image, clear_output # to display

images

9 from utils.downloads import attempt_download # to download

models/datasets

10 # clear_output()

41

2.6. OTHER CONSIDERATION ON THE PRELIMINARY WORK

11 print(’Setup complete. Using torch %s %s’ % (torch.__version__ ,

torch.cuda.get_device_properties(0) if torch.cuda.

is_available() else ’CPU’))

12 from google.colab import drive

13 # Mount Google Drive to the ’/content/drive/’ directory

14 drive.mount(’/content/drive’)

15

16 generation=0

17 custom=1

18 dataset=f"/content/drive/MyDrive/Tesi/Gen{generation}/custom{

custom}"

19 %cd /content/yolov5/

20 !python train.py --img 640 --batch 32 --epochs {epochs} --data

{dataset}/data.yaml --cfg /content/yolov5/models/yolov5s.

yaml --weights ’’ --name yolov5s_results_Gen{generation}

_custom{custom} --cache

Code 2.6: Python code for training YoloV5

Figure 2.24: Output graphics of training process

1 %cd /content/yolov5/

2 custom=1

3 !python val.py --weights runs/train/yolov5s_results_Gen{

generation}_custom{custom}/weights/best.pt --img 640 --data

42

CHAPTER 2. PRELIMINARY WORKS

{dataset}/data.yaml --task test

Code 2.7: Python code for validating trained model

43

3
Tests, results and future works

In this chapter it is presented the results of the training and how the pa-
rameters of the simulation were changed in order to obtain better results when
training the networks with synthetic images.

3.1 Genetic algorithm

3.1.1 General Genetic Algorithm

This section explores the application of Genetic Algorithms (GAs) as a pow-
erful optimization technique. Genetic Algorithms draw inspiration from the
principles of natural selection and genetics, providing a versatile and robust
methodology for solving complex optimization problems. Genetic Algorithms
have emerged as a popular optimization method due to their ability to mimic
the evolutionary processes observed in nature. Inspired by Darwinian prin-
ciples, GAs harness the power of genetic recombination, mutation, and selec-
tion to iteratively evolve a population of potential solutions towards optimal or
near-optimal solutions. Traditional optimization methods may face challenges
when dealing with complex, nonlinear, and multi-dimensional problem spaces.
Genetic Algorithms offer a promising alternative by providing a flexible and
adaptive approach to search for solutions in such challenging domains. In the
context of Genetic Algorithms, a solution to the optimization problem is encoded
as a chromosome, which consists of genes representing different parameters or
variables. The structure of chromosomes is crucial in determining the potential

45

3.1. GENETIC ALGORITHM

solutions within the population. A GA maintains a population of candidate
solutions. Through successive generations, these solutions undergo genetic op-
erations such as crossover and mutation, creating diversity and exploration in
the search space. The fitness function evaluates the performance of each solu-
tion in the population, assigning a numerical value that represents the solution’s
quality. Genetic Algorithms utilize the fitness values to guide the evolutionary
process, favoring solutions that contribute positively to the objective. As said,

Figure 3.1: Genetic algorithm scheme

two different genetic operation are performed on each individual:

• Crossover, or recombination, involves exchanging genetic information be-

tween parent solutions to produce offspring. This operation introduces

exploration by combining promising features from different solutions, po-

tentially yielding superior offspring;

• Mutation introduces random changes to individual genes within a chro-

mosome. This operation promotes exploration by introducing small, ran-

dom modifications to the solutions, preventing premature convergence to

suboptimal solutions.

The optimization process begins with the creation of an initial population of
solutions. Each solution is represented by a chromosome, and the population is

46

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

evaluated using the fitness function. Solutions are selected to serve as parents
for the next generation based on their fitness values. Higher fitness increases
the likelihood of being selected, emulating the natural selection process. The
selected solutions undergo genetic operations (crossover and mutation) to pro-
duce offspring. The offspring forms the next generation of the population. The
optimization process continues for a predefined number of generations or until
a convergence criterion is met. The algorithm terminates when a satisfactory
solution or a predefined stopping condition is achieved.

3.1.2 Implementation of a genetic algorithm in the software

The problem that needed to be addressed was how to optimize the simulation
parameter in order to generate images that could be used to efficiently train a
computer vision algorithm such as YoloV5. Therefore the last step to accomplish
was to find a method that allowed the modification of the parameters in a sensible
manner. This could be stated as an optimization problem where it was needed

Figure 3.2: General workflow for the experiments

to define the parameters to change and a score function to evaluate the dataset
generated with a specific set of parameters. For what concerns the parameters
chosen, they are the following:

• Object specular power/roughness: the property of the object that express

its behaviour when reflecting light. As explained in the first part of this

thesis the higher the specular power the more the object act as a perfect

mirror;

47

3.1. GENETIC ALGORITHM

• Light intensity: this parameter is connected to the irradiance of the lamp

used when the real dataset was acquired. Since there is not a real connec-

tion between the power of the real light and the light intensity used on the

simulation, this could be used as parameter to calibrate the scene;

• Ambient light: this parameter is fundamental since the real dataset was

taken in a space where other light source were present such as windows

and other lights. Though they were less relevant compared to the main

light used, they need to be taken into account in the simulation with the

ambient light parameter. This parameter can take a value between 0 and 1

and it basically create a directional light of different intensity.

Hence each and every chromosome was composed of the genes listed above.
The tests were organized in the following manner:

1. Given the chromosome generate the synthetic dataset with images and

labels;

2. Train the network with the generated dataset as train set and a portion of

the real dataset as validation set;

3. Evaluate the algorithm best performance on the rest of the real dataset.

The first thing to do was to produce the code that allowed to replicate the
genetic algorithm in C#. To accomplish this, a class named Agent was created.
Its constructor did not accept any inputs and set the genes as a random number
chosen between a maximum and a minimum. This class presents three public
fields, one for each gene, a breed method and a mutate method. The breed
method is called when it is necessary to generate a children from 2 agent par-
ents. Hence, for each gene it is generated a random number between 0 and 1
and if the result is lower than 0.5 then the children gene is inherited from the
first chromosome, if it is higher than 0.5 then it is the other way around. After
the inheritance of the parents genes, it was time for using the mutation method.
It consists into apply a small change to one of the genes of the chromosome. In

48

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

order to choose which gene has to change, it was generated a integer random
number belonging to the set {0, 1, 2}. If the outcome was 0 then the roughness
was changed; if it was 1 the ambient light; if 2 the light intensity. Once cho-
sen the gene to mutate, it was increased or decreased by a random percentage
bounded between -20% and +20%. It was decided to instantiate six objects of
that class. This number was chosen as a trade off between diversity and time
constraint since it was expected a huge time to train each neural network with
each dataset. Once the new generation of chromosomes was created, a new
dataset of synthetic images was generated. This process exploited the functions
and methods defined in the chapter 2 in order to automatically to automatically
generate the labels file for the images. For each dataset it was chosen to generate
50 images of the piece in question. This was a rule of thumb but this number can
be decreased or increased based on the complexity of the piece photographed.
Obviously, also in this case, the more the training images, the higher the time to
train the models. On the side of the user interface, the GUI presented itself in
this manner:

Figure 3.3: Genetic algorithm UI

hence for each agent were presented its relative genes and had to be prompted
manually the individual score. Once started the user interface presents all its
fields empty. It is needed to press the Next button in order to generate the
dataset. Moreover, before pressing the Next button it is needed to select the
object which is needed for the dataset generation. This is due to the fact that

49

3.2. TECHNICAL ISSUES

the scene could be composed of multiple object such as the object of interest, a
plane that emulates the plane on which it is placed or a conveyor belt in the case
the object detection algorithm is used in an automatic machine. In the specific
case of this project, in fact, for simplicity of use, when starting the program the
scene was initialized with the reference object, a light having the dimensions of
the real one used for acquiring the real dataset and a plane with specular power
calibrated with the one of the real experiment.
Upon pressing the Next button for the first time, six datasets are generated to
allow the training of the YoloV5 algorithm. These datasets play a crucial role
in the subsequent training process. Once the training completes, the scores
corresponding to the performance of each Agent are prompted in the desig-
nated score section of the user interface. Subsequently, when the Next button
is pressed again, the system initiates the back-end process. This involves rank-
ing the Agents based on their respective scores. The top two Agents in this
ranking are then selected for breeding, giving rise to the generation of new
offspring. It’s important to note that no specific terminal condition is defined
within the system. Instead, the decision to conclude the evolutionary process
is left to the user’s discretion. The user is empowered to determine when they
believe further iterations would yield marginal or no improvements. This flexi-
ble approach allows users to exercise their judgment and bring the evolutionary
process to a close when they deem it appropriate. In summary, the iterative cy-
cle involves training the YoloV5 algorithm, evaluating Agent performance, and
then selectively breeding Agents for subsequent generations. The absence of a
predetermined terminal condition empowers users to decide when to conclude
the evolutionary process based on their assessment of the system’s performance
and the potential for further improvement.

3.2 Technical issues

Throughout the development phase of this specific software module, vari-
ous challenges were encountered, each requiring resolution with the available
knowledge and resources at hand.

50

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

3.2.1 Random number generator

First of all it was noticed that whenever it was tried to generate a random
number, often the outcomes resulted to be the same. In fact, to draw a random
number from a uniform distribution between two number, it was used the
Random class which requires to instantiate a Random object usually called
random or rnd [4]. Once instantiated, it can be called the method Next(Int32,
Int32) in order to get a random integer that is within a specified range or the
method NextDouble() that returns a random floating-point number that is greater
than or equal to 0.0, and less than 1.0. The first method was used to draw a
number from the set {0,1,2} in order to decide which gene to mutate while the
second method was employed to draw a number from 0 to 1 for choosing from
which parent a gene has to be inherit and how much a gene had to be increased
or decreased. The Random class, though, represents a pseudo-random number
generator, which is an algorithm that produces a sequence of numbers, starting
from a certain number called seed, that meet certain statistical requirements for
randomness. Hence, as intuition leads to assume, each generated number is
in a certain way connected to the previous and the next. The problem was
indeed attributable to the use of this class. Searching on the internet, an user
responding to a question on stackoverflow explained that when instantiated,
Random class takes seed values from your CPU clock which is very much
predictable. The correct usage of this class, hence, was to define a single random
object and to use it as needed. In this way sampling from the pseudo random
variable guaranteed to get result different one from another. To ensure a greater
randomness, though, it was implemented another method: the .Net framework
makes available the RNGCryptoServiceProvider class. This class implements
a cryptographic Random Number Generator (RNG) using the implementation
provided by the cryptographic service provider (CSP). This class differs from
the previous by the choice of the seed for the pseudo random sequence. In
fact, the class uses OS entropy to generate seeds. OS entropy is a random value
which is generated using sound, mouse click, and keyboard timings, thermal
temp etc. Below, an example of the usage of this class for generating a random
Int 32 number with range {-2 147 483 648; 2 147 483 647 }

1 using (RNGCryptoServiceProvider rg = new

RNGCryptoServiceProvider())

2 {

51

3.2. TECHNICAL ISSUES

3 byte[] rno = new byte[4];

4 rg.GetBytes(rno);

5 int randomvalue = BitConverter.ToInt32(rno, 0);

6 }

Code 3.1: Random Number Generator

The code in 3.1 was then taken and modified in order to produce a double that
could take values in the interval [0,1] using the following method of the Agent
class:

1 static double GetRandomDouble()

2 {

3 using (RNGCryptoServiceProvider rg = new

4 RNGCryptoServiceProvider())

5 {

6 byte[] rno = new byte[4];

7 rg.GetBytes(rno);

8 int randomvalue = BitConverter.ToInt32(rno, 0);

9 randomvalue = Math.Abs(randomvalue % 10001);

10 double randomvaluedouble =

11 (double)randomvalue / 10000D;

12 return randomvaluedouble;

13 }

14 }

Code 3.2: Double random generator

In the course of enhancing the evolutionary algorithm, a deliberate decision
was made to focus on the method for generating random double numbers ex-
clusively. This choice was driven by the concurrent modification of the mutate
class, which was specifically tailored to mutate each gene within every chromo-
some each time a breeding operation occurred between two chromosomes. The
rationale behind this modification was rooted in the desire to enhance the ex-
ploration parameter within the exploitation versus exploration dilemma. Given
the limited number of agents available, a comprehensive approach was adopted
to systematically mutate genes during each breeding iteration. The strategy em-
ployed involved the meticulous tracking of the best-performing agent through-
out the evolutionary process. This strategic oversight allowed for the retention
of the best agent’s genetic makeup. Consequently, when newly bred agents
yielded suboptimal results in comparison to the established best performer, the

52

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

superior genetic configuration could be preserved. This adaptive mechanism
ensured that the evolutionary algorithm retained a robust ability to navigate the
complex landscape of the optimization problem, striking a balance between ex-
ploiting existing solutions and exploring potential improvements. The synergy
between the refined random number generation method and the comprehensive
gene mutation approach contributed to the algorithm’s adaptability and efficacy
in addressing the challenges posed by the limited pool of available agents.

3.2.2 Async methods

The dataset generation process employed a sequential approach, starting
with the definition of genetic information for each agent, encompassing param-
eters such as roughness, light intensity, and ambient light. Subsequently, these
parameters were applied to the scene, initiating a sequence of steps involving
the positioning of an object with random orientation on the z-axis. A simu-
lated camera captured images of the scene at each step, with the object being
successively moved to different positions. The problem encountered, though,
was that if the code was made running synchronously, when changing the pa-
rameters of the simulation or the position of the object, it would have left no
time to the GPU to process the request that another change had to be made.
Moreover the user interface would have not update itself since the main thread
was being occupied by the algorithm working in the back end. In order to ad-
dress this problem, it was made use of the Task.Run() method. This method,
intrinsic to the Task Parallel Library (TPL) in C#, serves as a pivotal construct for
asynchronous task execution within the programming paradigm. Enabling the
concurrent execution of operations, it is specifically designed to offload compu-
tationally or I/O-intensive tasks from the main thread, fostering parallelism and
responsiveness. Within the context of the broader Task Parallel Library, a Task
represents an asynchronous unit of work, encapsulating operations that can be
executed independently. The ThreadPool, an essential element of the runtime
environment, manages a pool of worker threads, minimizing the overhead as-
sociated with thread creation and promoting efficient multitasking. Task.Run()
encapsulates a succinct mechanism for initiating and dispatching a new Task
on the ThreadPool. Its usage involves providing a delegate, often expressed
through an anonymous function or a lambda expression, delineating the code
to be executed asynchronously. This method facilitates the concurrent execution

53

3.2. TECHNICAL ISSUES

of the specified code block, allowing the main thread to proceed with its tasks
without being obstructed by the asynchronous operation. Without knowing
about how to operate with this tool, a datasetGenerated boolean variable was
declared. It was set false before the Task.Run() method and inside it, after
having generated the dataset, was converted to true. After the Task.Run() was
a while(!datasetGenerated); loop. The problem was that sometimes this code
wasn’t able to escape the while loop. After some researches it was found out
that asynchronous programming made also use of the await and async keywords.
The async modifier, when applied to a method, signals the compiler to transform
the method into an asynchronous operation. This enables the method to execute
asynchronously, freeing the calling thread to concurrently perform other tasks.
An async method typically returns a Task or Task<T>, indicating the ongoing
execution of the asynchronous operation. The await keyword, employed within
an async method, acts as a suspension point. It allows the asynchronous method
to pause its execution until the awaited task is complete. Crucially, during this
pause, the calling thread remains unblocked, contributing to a responsive user
interface and efficient resource utilization. The previous code then was changed
and the dataset generation method was converted to an async function while
the await keyword was used each time the Task.Run() method occurred.

1 async public Task GenerateDataset()

2 {

3 await Task.Run(() =>

4 {

5 GenerateDatasetFromAgent(Agent1);

6 });

7 .

8 .

9 .

10 }

Code 3.3: Use of the Task.Run() method and async and await keyword

54

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

3.3 Test and results

After having completed all the previous steps it was time to train the Neural
Network onto the dataset generated. Hence for each generation the dataset have
been uploaded onto google drive in order to make them available for google
colab and sequentially the neural network have been trained for each agent.
Each neural network had been trained for 300 epochs and each took from 15 to
20 minutes to complete. For the first generation the following results have been
obtained:

Table 3.1: First generation results

Gen 1 Roughness Light intensity Ambient light mAP@0.5

Agent1 0.611 2.4211 0.66808 0.939

Agent2 2.065 2.2166 0.28464 0.612

Agent3 8.823 1.6977 0.1528 0.985

Agent4 1.409 2.2803 0.13632 0.938

Agent5 1.723 1.9915 0.4012 0.962

Agent6 1.575 2.1336 0.12424 0.888

Figure 3.4: Training Generation 1, Agent 1

55

3.3. TEST AND RESULTS

Figure 3.5: Training Generation 1, Agent 2

Figure 3.6: Training Generation 1, Agent 3

56

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

Figure 3.7: Training Generation 1, Agent 4

Figure 3.8: Training Generation 1, Agent 5

57

3.3. TEST AND RESULTS

Figure 3.9: Training Generation 1, Agent 6

From the results in the table above, the two agents chosen as parents were
Agent 3 and Agent 5. The genetic algorithm then produced 6 new agents starting
from the new parents. Another wanted peculiarity was that, for what regards
the graph, as the training loss decreased also the mAP@0.5 and mAP@0.95
increased. In a practical scenario, the absence of a validation dataset comprising
real images necessitates the determination of the best.pt weight file based on
the synthetic validation set’s optimal performance. The aim in fact was for this
part was to calibrate the scene with proper parameters. In the tables 3.2, 3.3, 3.4
are the next generation results and in figure 3.10, 3.11. 3.12, 3.13, 3.14, 3.15 the
results of the training of the last generation.

Table 3.2: Second generation results

Gen 2 Roughness Light intensity Ambient light mAP@0.5

Agent1 10.34479 1.61336 0.72512 0.286

Agent2 9.09616 1.51143 0.16777 0.944

Agent3 0.52155 1.7159 0.79608 0.093

Agent4 7.17204 1.44298 0.17908 0.217

Agent5 0.60345 1.87562 0.18187 0.987

Agent6 0.65895 1.99305 0.56175 0.498

58

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

Table 3.3: Third generation results

Gen 3 Roughness Light intensity Ambient light mAP@0.5

Agent1 10.02215 1.90923 0.13445 0.683

Agent2 0.63468 1.91358 0.16138 0.965

Agent3 0.55822 1.21604 0.17715 0.952

Agent4 9.3312 1.6726 0.18751 0.96

Agent5 9.42144 1.54214 0.15194 0.167

Agent6 7.50506 2.18562 0.18302 0.885

Table 3.4: Fourth generation results

Gen 4 Roughness Light intensity Ambient light mAP@0.5

Agent1 0.5635 1.52862 0.15404 0.994

Agent2 10.34457 1.74894 0.19796 0.995

Agent3 9.8177 1.75663 0.15361 0.992

Agent4 9.60069 1.65487 0.16286 0.994

Agent5 0.54895 1.98919 0.1316 0.995

Agent6 0.61206 1.59392 0.1843 0.942

Figure 3.10: Training Generation 4, Agent 1

59

3.3. TEST AND RESULTS

Figure 3.11: Training Generation 4, Agent 2

Figure 3.12: Training Generation 4, Agent 3

60

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

Figure 3.13: Training Generation 4, Agent 4

Figure 3.14: Training Generation 4, Agent 5

61

3.3. TEST AND RESULTS

Figure 3.15: Training Generation 4, Agent 6

One thing to notice is that, although the train losses in general decrease
smoothly, the validation losses tends to flutter, hence the metrics tends to have
a great variance. This is due to the fact that by decreasing the train losses the
model tends to generalize less and hence there could be some epochs in which
the model tends to overfit.
After the previous tests were completed, it was decided to try with another
method. In this case the Neural Network was still trained with synthetic images
but for what concerns the metrics it was decided to use also a synthetic validation
dataset. The train validation split in this case was set to 70% train and 30%
validation with 70 images for training and 30 for validation. This is a more
real scenario since everything in this case was simulation made. After that the
network was trained, it was tested onto a real dataset of 100 labelled real images
to evaluate its quality. The results obtained were quite surprising since even
from the first generation of images the performances of some neural networks
were exceptionally good. In the table 3.5 are presented the parameters with the
score of the NN with best weights for each dataset on the real data:

62

CHAPTER 3. TESTS, RESULTS AND FUTURE WORKS

Table 3.5: First generation results with new method

Gen 1 Roughness Light intensity Ambient l. mAP@0.5 mAP@0.95

Agent1 3.838 1.8612 0.18626 0.995 0.593

Agent2 5.295 2.8414 0.21320 0.912 0.507

Agent3 6.564 1.3628 0.26082 0.933 0.457

Agent4 9.452 2.6716 0.16424 0.979 0.452

Agent5 2.301 1.1222 0.09778 0.995 0.584

Agent6 2.560 1.6042 0.09532 0.989 0.553

3.4 Comments on the result and future works

The results of the rendering algorithm used to train the YoloV5 network in
this setup are astonishing with a mAP@0.5 over 0.99 in the best case. It could
be seen that in some cases such as the agents 1 and 5 from the first generation
of the second method, there is a balance between the light intensity of the lamp
and the general ambient light for obtaining good results. In fact in the first case
it is present a higher light intensity with lower ambient light while in the second
case it is the vice versa. From the tests with the first method it is evident that the
roughness plays a minor role with respect to the lighting and this is reasonable.
Overall, the results of the every test were very good and for the first method it
is shown that genetic algorithm could be a valid optimization method for this
job. Due to time and spatial constraints it was not possible to test the networks
in more complex environment hence it is possible to suppose that the NN could
likely behave well in controlled and simple scenarios like the one used in this
project.
In terms of future work, it is imperative to subject the algorithm to more complex
scenarios to comprehensively evaluate its efficacy. Furthermore, expanding the
project to facilitate model training directly on the machine where the software is
deployed, rather than relying on Google Colab, is essential. Unfortunately, the
hardware demands proved too burdensome for my personal computer, result-
ing in impractical training times.
Addressing the code is also paramount. Given my limited experience with large-
scale coding projects, a thorough review is necessary. Workflow and structural
aspects require optimization to enhance efficiency and maintainability. This

63

3.4. COMMENTS ON THE RESULT AND FUTURE WORKS

might entail revisiting design patterns, modularization, and ensuring adher-
ence to coding best practices.
In summary, future efforts should focus on rigorous testing in diverse scenarios,
transitioning to local model training, and refining the codebase through compre-
hensive review and optimization. These endeavors are vital for the continued
advancement and success of the project.

64

References

[1] DataScience. what does the notation map 0.5 0.95 mean. 2017. url: https:
//datascience.stackexchange.com/questions/16797/what-does-

the-notation-map-5-95-mean.

[2] Jonathan Hui. map mean average precision for object detection. 2018. url:
https://jonathan-hui.medium.com/map-mean-average-precision-

for-object-detection-45c121a31173.

[3] kkarakhainko. Yolov5Net. 2021. url:https://github.com/techwingslab/
yolov5-net.

[4] Microsoft. System.Random. url: https://learn.microsoft.com/en-
us/dotnet/api/system.random?view=net-8.0.

[5] Joseph Redmon et al. “You only look once: Unified, real-time object de-
tection”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 779–788.

[6] De Zen Riccardo. “Image acquisition systems simulation techniques for
computer vision algorithms’ training and validation”. MA thesis. Univer-
sità degli studi di Padova, 2022.

[7] Roboflow. Roboflow. 2020. url: %https://roboflow.com/.

[8] Juan Terven and Diana Cordova-Esparza. “A comprehensive review of
YOLO: From YOLOv1 to YOLOv8 and beyond”. In: arXiv preprint arXiv:2304.00501
(2023).

[9] Ultralytics. YOLOv5 custom train. 2024. url:https://github.com/ultralytics/
yolov5/wiki/Train-Custom-Data.

[10] Ultralytics. YOLOv5 custom train - train on custom data. 2024. url: https:
//docs.ultralytics.com/yolov5/tutorials/train_custom_data/

#train-on-custom-data.

65

https://datascience.stackexchange.com/questions/16797/what-does-the-notation-map-5-95-mean
https://datascience.stackexchange.com/questions/16797/what-does-the-notation-map-5-95-mean
https://datascience.stackexchange.com/questions/16797/what-does-the-notation-map-5-95-mean
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://github.com/techwingslab/yolov5-net
https://github.com/techwingslab/yolov5-net
https://learn.microsoft.com/en-us/dotnet/api/system.random?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.random?view=net-8.0
%25https://roboflow.com/
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/#train-on-custom-data
https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/#train-on-custom-data
https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/#train-on-custom-data

REFERENCES

[11] Wikipedia. Blinn-Phong model. 2024. url: https://en.wikipedia.org/
wiki/Blinn%E2%80%93Phong_reflection_model.

[12] Wikipedia. Rendering Equation. 2024. url: https://en.wikipedia.org/
wiki/Rendering_equation.

66

https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model
https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model
https://en.wikipedia.org/wiki/Rendering_equation
https://en.wikipedia.org/wiki/Rendering_equation

Acknowledgments

Questa sezione la scriverò in italiano per tutti i miei cari che mi sono stati affi-
anco in questo quarto di secolo. Inizio dai miei genitori, mia mamma e mio papà.

Cara mamma, ti ringrazio infinitamente per il bene che mi vuoi anche se a
volte non ci capiamo, anche se a volte litighiamo sei sempre stata una persona
di fiducia. Spesso siamo di opinioni diverse, ai due lati estremi, e questo ci sta.
Sappiamo però che alla fine della giornata, quando andiamo a dormire, ognuno
può contare sull’altro. Nonostante i nostri spigoli sappiamo anche posizionarci
nel modo giusto per abbracciarci senza farci del male ma stando sereni ed in pace.

Caro papà, ti ringrazio infinitamente perchè hai continuato a combattere an-
che contro ogni probabilità ed alla fine ci siamo rincontrati. Quando penso a
quando mi sono trovato quel libro come regalo mi sembra ieri ed invece sono
passati anni. Il rapporto è saltato da genitore-figlio ad amico-amico e per me
non ci poteva essere cosa migliore. Ogni volta che mi vedi, anche se sono pas-
sate settimane o mesi, mi sento sempre accolto calorosamente e mi fa immenso
piacere sapere che ho un’altra parte di famiglia che mi attende e mi accoglie con
piacere.

Cari Matilde e Daniele, da quando siete andati ad abitare insieme il rapporto è
evoluto ma ogni sabato se riesco ci tengo ad essere a casa per mangiare la pizza
con voi. Vi auguro il meglio, che abbiate delle carriere di successo e delle vite
felici.

Cari Carlo, Samantha e Brunalba, quando arrivo a Peschiera non mancate mai
di farmi sentire sereno ed accolto. Mi sento ascoltato quando arrivo lì e spero di
far percepire lo stesso anche io. Vi auguro anche a voi una vita serena e piena

67

REFERENCES

di soddisfazioni

Cara Irene, non saprei nemmeno da dove cominciare. Potrei cominciare da
quando ti ho vista la prima volta in aula Ae il mio secondo giorno di università
con quegli occhiali che ti facevano gli occhi grandissimi, occhi di cui mi sono
innamorato dal primo secondo. Potrei iniziare da quando mi sono seduto di-
etro di te. Non conoscevo nessuno e volevo fare amicizia e te, leggendomi nel
pensiero, ti sei girata a salutarmi col tuo sorriso che non neghi a nessuno. Potrei
iniziare da quando abbiamo iniziato a scherzare come se ci conoscessimo da
una vita o da quando Ema ci ha chiesto "da quanto è che vi conoscete? sembra
che vi conosciate da anni". Potrei inizare da tutte queste cose qua ma preferisco
ringraziarti per tutto quello che siamo diventati. Una spalla l’uno per l’altra
e viceversa. Hai colmato un vuoto che sentivo da tempo e con te ho capito
veramente cosa significa amare ma soprattutto essere amati. Spero di essere in
grado di farti sentire come tu fai sentire me. Ti ringrazio per essermi vicino ogni
volta che le cose si fanno difficili. Ti voglio dire che la soluzione ad un problema
la troveremo sempre se stiamo insieme.

Caro Stassi, ti ringrazio per essermi stato vicino tutti questi anni. Siamo sempre
stati come il giorno e la notte, ovviamente te la notte con le uscite in Veronetta e
le discoteche, io il giorno con le passeggiate in montagna e le gite fuori porta in
generale. Condividiamo pochi interessi in comune ma condividiamo un affetto
reciproco creato nel tempo che ci fa restare amici a distanza di tempo e di spazio.
Ti auguro di raggiungere i traguardi che ti poni e di vivere una vità in serenità.

Caro Samuele, non mi sarei mai aspettato di legare così tanto in così poco
tempo con una persona eppure sei riuscito a farmi ricredere. Ti reputo una
delle persone più buone che conosca ed un amico fidato. So sempre che se ho
bisogno di parlare tu ci sei con i tuoi consigli dettati molto dalla tua empatia
che ammiro. Ti auguro di diventare un’ottimo infermiere ma so già che sarà così.

Caro Gianni, sei l’amico con cui ho il legame mentale più forte. So che ogni
volta che ci vediamo nasceranno dei pensieri profondi a prescindere dal tema,
brutto o bello che sia. Mi hai fatto scoprire molto fuori dalla mia comfort zone e
di questo te ne sono grato. Ti auguro di riuscire a vincere contro i tuoi demoni
perchè ti meriti una vita serena. Sappi che ci sono ogni qualvolta che ne avrai

68

REFERENCES

bisogno.

Cara Anastasia, nonostante tutte le difficoltà sei ancora a combattere. Sappi
che ci sono ogni volta che avrai bisogno ed in qualche modo cercherò di darti
una mano. Ti augoro di trovare la serenità che cerchi e di stare bene.

Cara Valentina, siamo sempre stati le due facce della stessa medaglia quando si
trattava di rapporti. C’è sempre stao il rispetto però e questo è quello che mi è
piaciuto di più. Ti sei sempre interessata a me e mi ascoltavi quando parlavo.
Spero di averti fatto percepire lo stesso. Ti auguro una vita felice ma so già che
sarà così

Caro Guarni, sei la persona più pazza che conosca e, anche se a volte un po’
spigoloso, rimani una delle persone più buone che abbia mai incontrato. Sono
molto orgoglioso dei percorsi che hai intrapreso e spero che tu riesca a trovare
quello che cerchi e a raggiungere i tuoi obiettivi.

Cari Giovanni, Giacomo, Valentina e Emanuele, nonostante il percorso diffi-
cile, con voi è stato bello. Mi mancheranno infinitamente le pause ed i pranzi
con voi. Sebbene questa laurea sia stato complicato non avete mai mancato
di farmi sorridere e ridere. Non potevo chiedere dei compagni di univeristà
migliori. Vi auguro il meglio.

69

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Brief machine learning historical background
	The lack of data problem in Machine Learning
	Thesis objective
	The starting point
	Light model used
	YoloV5
	MVVM paradigm

	Preliminary works
	Software analysis
	UI modification
	Automatisms
	Auto adjust camera position
	Synthetic dataset generation
	Yolo training

	Model deployment
	Real camera and real image dataset
	Image acquisition
	Image labelling

	Other consideration on the preliminary work

	Tests, results and future works
	Genetic algorithm
	General Genetic Algorithm
	Implementation of a genetic algorithm in the software

	Technical issues
	Random number generator
	Async methods

	Test and results
	Comments on the result and future works

	References
	Acknowledgments

