UNIVERSITA DEGLI STUDI DI PADOVA

DEPARTMENT OF MATHEMATICS “TurLio LEVI-CIviTA”

MASTER THESIS IN CYBERSECURITY

LLMs EVALUATION FOR ANDROID

VULNERABILITY REPAIR

SUPERVISOR MASTER CANDIDATE

Pror. ELEONORA LOSIOUK Erisa BRacoNARO

UNIVERSITA DEGLI STUDI DI PADOVA

STUDENT ID
2057063

ACADEMIC YEAR

2022-2023

LLMs Evaluation for Android Vulnerability Repair

ii

“StAY GRATEFUL.”

LLMs Evaluation for Android Vulnerability Repair

iv

Acknowledgments

I would like to thank my supervisor, Prof. Eleonora Losiouk, for guiding me and trusting
me from the beginning of this journey. For addressing all my questions with seriousness
and kindness, and giving me the opportunity to extend my knowledge and experiences.

LLMs Evaluation for Android Vulnerability Repair

vi

Abstract

Automated Program Repair (APR) aims to automate the process of fixing software de-
fects, including syntactic errors, semantic bugs, and vulnerabilities. Emergent studies
have explored the use of Large Language Models (LLMs) for APR related tasks, such
as code refinement and fault localisation, but they are mainly involved in the repair
of syntax and semantic bugs. The specific focus on vulnerability repair, especially in
the context of Android applications, remains limited. This project wants to take a step
further in this direction, by contributing a new dataset of real-world Android vulnera-
bilities and corresponding fixes and by evaluating three prominent LLMs (ChatGPT-3.5,
Google Bard, and Android Studio Bot) on such a dataset in a zero-shot scenario, to under-
stand their actual abilities in repair Android vulnerabilities. Notably, although Android
Studio Bot is strictly related to the Android Studio platform and should facilitate An-
droid code generation, its performance for the specific vulnerability repair task is to be
considered unsatisfactory, letting ChatGPT-3.5 and Google Bard stand out.

vil

LLMs Evaluation for Android Vulnerability Repair

viil

Contents

ACKNOWLEDGMENTS \Y
ABSTRACT vii
L1ST OF FIGURES xiii
L1ST OF TABLES b'q 4
1 INTRODUCTION 1
2 BACKGROUND 4
2.1 Automated Program Repair (APR) 4

2.2 Large Language Models (LLMs) 5

2.3 Vulnerability Repair 7

2.4 Android Operating System 8

3 RELATED WORKS 11
3.1 APRtechniques 11

3.2 LLMsfor APR 12

3.3 LLMs for Vulnerability Repair 13

3.4 LLMsfor Android 14

3.5 Android and Vulnerabilities 14

4 A NEW DATASET 15
4.1 Motivations 15

4.2 Requirements and Limitations 16

43 Design 16

4.4 Collection of Android applications 18

4.5 Vulnerability Detection ViaSPECK 19
4.5.1 Summary of vulnerabilities in the dataset 21

4.6 FixesGeneration. 23

4.7 FixesEvaluation 25

5 LLMs EVALUATION 27
5.1 ChatGPT, Bard and StudioBot 28

5.2 Prompt Engineering oL oL 28

ix

LLMs Evaluation for Android Vulnerability Repair

5.2.1 The Prompt
53 LLMsOutputs
5.4 Pre-processing Phase
5.4.1 Pre-processing Java-related outputs
5.4.2 Pre-processing XML-related outputs
6 REsuLTs
6.1 Metrics
6.2 Notes about Results Tables
6.3 CodeBLEU for Java-related comparison .
6.3.1 CodeBLEU for ChatGPT-3.5 Outputs
6.3.2 CodeBLEU for Bard Outputs . . .
6.3.3 CodeBLEU for Android Studio Bot Outputs
6.4 Metrics for XML-related comparison . .
6.4.1 Metrics for ChatGPT-3.5 Outputs
6.4.2 Metrics for Google Bard Outputs
6.4.3 Metrics for Android Studio Bot Outputs
6.5 Human Validation

6.5.1 Java-related Outputs
6.5.2 XML-related Outputs

7 DiscussioN

7.1
7.2
7-3
7-4

Discussion of Java-related repairs
Discussion of XML-related repairs

General discussion after Human Validation
How much reliable are the employed Metrics?

8 FuTUurRE WORKS

9 CoNcCLUSION

REFERENCES

A APPENDIX A

B ApPENDIX B

B
B.2
B.3
B4
B.g
B.6

Rule 1: Show an app chooser
Rule 3: Remove unused permissions . . .
Rule 4: Use intents to defer permissions .
Rule 5: Use SSL traffic
Rule 6: Use Javascript carefully
Rule 7: Whitelist URL loaded in WebView

30
31
33
33
34

37
37
39
40
40
41
42
43
43
44
45
46
46
46

47
47
49
52
53

56
58
60
67

69
69
71
72
74
75
77

LLMs Evaluation for Android Vulnerability Repair

B.7
B.8

B.1o
B.11
B.12
B.13
B.14
B.15
B.16

Rule 9: Share data securely across applications
Avoid custom dangerous permission
Erase data in WebView cache
Avoid SQL injections
Prefer explicitintents
Protect Services
Use SecureRandomGenerator
Protect Receivers
Set Hostname Verifier for SSLSockets

Rule 15:
Rule 16:
Rule 17:
Rule 18:
Rule 20:
Rule 22:
Rule 23:
Rule 26:
Rule 29:

Use recommended cryptography algorithms

xi

79
80

81
82
83
85
86
88
89
91

LLMs Evaluation for Android Vulnerability Repair

xii

5.1
5.2
53
5-4
55
5.6

Listing of figures

Template for a basic prompt. L. 30
Example of a basic prompt. 30
Typical outputforBard. 32
Typical output for ChatGPT. 32
Typical output for StudioBot. Lo oL 33
Prompt to ChatGPT for XML-related vulnerability. 34

xiii

LLMs Evaluation for Android Vulnerability Repair

Xiv

4.1
4.2
4.3

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Listing of tables

Summary of total number of apps with compilations problems or not. . 18
Summary of total number of apps with vulnerabilities. 22
Summary of vulnerability types in the dataset. 22

Metrics for evaluating CodeBLEU for repairs from ChatGPT-3.5 for Java-

related vulnerabilities. 40
Corresponding CodeBLEU scores from 6.1 for ChatGPT-3.5 for Java-related
vulnerabilities. 40
Metrics for evaluating CodeBLEU for repairs from Google Bard for Java-
related vulnerabilities. L 41
Corresponding CodeBLEU scores from 6.3 for Google Bard for Java-related
vulnerabilities. 41
Metrics for evaluating CodeBLEU for repairs from Android Studio Bot

for Java-related vulnerabilities. 42
Corresponding CodeBLEU scores from 6.5 for Google Bard for Java-related
vulnerabilities. 42
Metrics for evaluating repairs from ChatGPT-3.5 for XML-related vul-
nerabilities (with pre-process1). L. 43
Metrics for evaluating repairs from ChatGPT-3.5 for XML-related vul-
nerabilities (with pre-process2). L. 43
Metrics for evaluating repairs from Google Bard for XML-related vul-
nerabilities (with pre-process 1). 44
Metrics for evaluating repairs from Google Bard for XML-related vul-
nerabilities (with pre-process2). 44
Metrics for evaluating repairs from Android Studio Bot for XML-related
vulnerabilities (with pre-process 1). 45
Metrics for evaluating repairs from Android Studio Bot for XML-related
vulnerabilities (with pre-process2). 45
Number of True Positive (TP) and True Negative (TN) comparing LLMs
outputs to ground truth. Lo oL 46
Number of True Positive (TP) and True Negative (TN) comparing LLMs
Java-related outputs to ground truth. 000 46
Number of True Positive (TP) and True Negative (TN) comparing LLMs
XML-related outputs to ground truth. 0L 46

XV

LLMs Evaluation for Android Vulnerability Repair

7.1
7.2
7.3
7.4
7.5

7.6
7-7
7.8
79

7.10

7.11

Different weights for computing CodeBLEU. 48
Averages of the three CodeBLEU configurations for each LLM. 49
Standard deviation of the three CodeBLEU configurations for each LLM. 49
Average for Jaccard, Cosine and Levenshtein for XML snippets pre-processed

with word-tokenizer (pre-process type1). 50
Standard Deviation for Jaccard, Cosine and Levenshtein for XML snip-
pets pre-processed with word-tokenizer (pre-process type 1). 50
Average for Jaccard, Cosine and Levenshtein for XML snippets with pre-
processtype 2. e 51
Standard Deviation for Jaccard, Cosine and Levenshtein for XML snip-
pets with pre-process type 2. Lo 51
ROC-AUC values for CodeBLEU metric (all the configurations). 55
PR-AUC values for CodeBLEU metric (all the configurations). 55
ROC-AUC values for Jaccard, Levenshtein and Cosine (computed on out-
puts with pre-process type2). Lo 55
PR-AUC values for Jaccard, Levenshtein and Cosine (computed on out-
puts with pre-process type 2). 55

XVi

LLMs Evaluation for Android Vulnerability Repair

xXVvii

Introduction

Automated Program Repair (APR) is a widely recognised research field, whose goal is
to automate the process of fixing software defects, commonly known as bugs. Their
complexity may vary, starting from syntax errors which can be easy and quick to fix, to
semantic errors that may provoke unexpected behavior or logical inconsistencies in the
faulty program. More importantly, another type of software defect may be introduced
by developers: undesired vulnerabilities, which most of the time are not suddenly iden-
tifiable.

The reason why APR was born is tightly related to the idea - and the need - of having
automated tools coming to help developers in identify defects and fix them. The process
of localising the defect and then know exactly how to remove it, is in most cases expen-
sive (both at time spent and resources needed level). APR techniques evolved during
time, initially based on heuristics, they have been improved as soon as new technologies
were proposed. This is the case of Large Language Models (LLMs), a completely new
way to interact with machines which is considered revolutionary. From the moment
they emerged, many different research fields started to explore their abilities and limits,
and the same applies for APR. Thanks to the very large amount of data on which LLMs
are trained, their knowledge covers many and different knowledge domains.

Considering the world of automated program repair, plenty of researches are carried
out to answer one common question: “How good are LLMs in repairing software defects?”.

Several studies have been and are being published, trying to give an answer from various

LLMs Evaluation for Android Vulnerability Repair

point of views, such as syntax and semantic errors repairs, multi-language repair and
so on, but one particular aspect remains almost uncovered: vulnerability repair, with or
without the employment of large language models.

Many of APR related studies began to emerge from the early 2000s and started from
the basis, trying to develop tools which were able to repair standard syntactic errors,
moving then towards the fixing of semantic bugs, but, although much has been achieved,
there are still challenges to overcome and vulnerability repair is one of them. Only
in recent years, the problem of fixing vulnerabilities has been separated from the one
related to repair logic errors, and new studies have been proposed [1], [2], but still not
so many with respect to syntactic and semantic problems.

Considering that the problem of repairing vulnerability is a crucial aspect to cover
and that the investigation about LLMs is a central topic, this project wants to put the
two aspects together: “How good are already existing LLMs in repairing vulnerabilities?”.
Specifically speaking, the vulnerabilities taken under analysis come from real-world
Android applications. Reasons why this type of vulnerabilities has been chosen as the
core of the project are the following: (1) most of traditional APR tools are developed and
tested on datasets collecting bugs from Java, C/C++ and Python in the majority of the
cases (and only few of them contain vulnerabilities); (2) considering that LLMs started
to arise during the very last years and have been trained on most of the available digital
knowledge, and considering that the datasets used to test them are not so recent, it is
very likely that such datasets belong to their training data and, therefore, are known
to the LLMs; (3) at last, there are very few studies in which LLMs are involved to solve
Android-related problems, and none of them explore the abilities of LLMs to fix Android
vulnerabilities.

For these reasons, the contributions of this project are:

+ the realisation of a new dataset of Android vulnerabilities extracted from real-
word applications and corresponding fixes; in this way, the dataset can be used
for validating both new Android security tools and new APR tools focusing on
Android-related defects;

« three existing LLMs (ChatGPT-3.5, Google Bard and Android Studio Bot) are tested
on the new dataset in a zero-shot scenario, so that their abilities can be evaluated
on examples they never seen (at least, not identical and included in their training
set);

LLMs Evaluation for Android Vulnerability Repair

+ a general understanding of LLMs performances in repairing Android vulnera-
bilities.

In particular, this project evaluate ChatGPT-3.5, Google Bard and Android Studio Bot,
three LLMs that are free and easy to use. Moreover, considering the idea of a developer
who need to find a suggestion on how repair some vulnerabilities found in his or her
code, it is very likely that he or she is going to use an interactive LLM, such as the ones
chosen for this analysis. While Android Studio Bot is tightly related to the Android Stu-
dio platform and specifically designed with the aim of helping developers to generate
Android code, it has poor performances with respect to ChatGPT-3.5 and Google Bard

which are, on the contrary, general-purposes LLMs.

The rest of this thesis is divided as follows: Chapter 4 describes all the steps neces-
sary for the creation of the new dataset, including the collection of the applications to
be analysed, the detection of related vulnerabilities and the manual generation of the
fixes which serve as ground truth. Chapter 5 provides a general understanding of the
LLMs chosen for the analysis, how the prompt is structured and how the correspond-
ing outputs are pre-processed before evaluation against the ground truth. Chapter 6
describes the metrics employed to evaluate the models and contain the obtained results.
Chapter 7 provides a discussion about the overall evaluation, underlying the limits and
the abilities of the analysed models. Chapter 8 includes future directions for this project.
Chapter 3 briefly describes related studies with respect to the core topics of this thesis:
APR, vulnerability repair, LLMs, Android. Lastly, Chapter 9 concludes the thesis.

Background

2.1 AUTOMATED PROGRAM REPAIR (APR)

In recent years, software development went through a series of changes and improve-
ments, which lead not only to a higher quality of software delivered, but also to a con-
sistent increase in complexity of such products. The software development cycle is not
free of challenges and software defects are often around the corner. Defects may vary
from syntactic errors, due to a bad usage of the programming language, to semantic
errors, which result in flaws in the program logic, to the worst scenario which includes
critical vulnerabilities. In this regard, Automated Program Repair (APR) identifies a set
of techniques with the aim of “automatically find a solution to software bugs without hu-
man intervention” [3]; new researches in this direction have emerged a lot during the
last years. Aligned with the progress of APR techniques and research, there are other re-
lated research fields such as fault localization and patch assessment. In particular, fault
localization is a necessary first step to perform before conducting APR analysis, since
it aims to identify the software defect. Techniques on how to do so fall outside the core
scope of APR research field [4], but one strategy is to detect faults in programs is to run
the code against a set of test cases (test suites) and if at least one of them is failing, then
the program is not behaving as expected and therefore the fault can be identified. In

this case, the goal of APR is to suggest a fix which allows the whole test suite to pass —

LLMs Evaluation for Android Vulnerability Repair

not introducing new bugs. Hence, taking into consideration the process of patch evalu-
ation, the patch can be classified as: candidate, plausible, correct. The candidate patch
is the actual generated patch, as result of the modifications to the buggy code gives an
input; a plausible patch is a patch which successfully passes all the test cases. Finally,
the correct patch is the plausible patch which is considered correct with respect to a
particular metric (syntactically and/or semantically equal to the developer’s patch for
the same buggy code) [5]. In most cases, human validation is the latest step to guarantee
the accuracy of the results.

Latest APR techniques are learning-based, meaning that the process to suggest repairs
is automated thanks to the integration of Deep Learning models in the tools. Thanks
to DL-models capabilities, the development of new tools which overcome limitations of
previous techniques is now possible. In detail, the introduction of neural networks mod-
els enabled the automated learning process. Starting from tons of samples like pairs of
bugs and related fixes, the accuracy of the models continuously improved allowing bet-
ter suggested patches thanks to a more accurate prediction. Capabilities of such models
go now beyond what expected and this is the case of Large Language Models (LLMs).
Leveraging their abilities in generating code and considering their huge knowledge in
many different fields, LLMs can be tested and evaluated to perform tasks typical of the
APR world, including code refinement, defect detection and so on. For this reason, the
focus of this project is to evaluate large language models in performing repair tasks

against Android vulnerabilities.

2.2 LARGE LANGUAGE MODELS (LLMs)

Large Language Models (LLMs) are the latest advancement in the field of Language
Modeling, which has the objective of developing models able to enhance the capability
of machines in understanding, predicting and generating word sequences following the
common rules of human language.

Before coming up with LLMs solutions, many learning-based techniques consider
the problem of automated program repair as a Neural Machine Translation (NMT) task,
going from a code snippet containing the bug to its fixed version in an automated way,
therefore treating the repair task as a translation task. Most common NMT models
built for repair are based on an encoder-decoder architecture, which permits not only

to map the input (buggy code) to the output (patched code), but also to learn the hidden

LLMs Evaluation for Android Vulnerability Repair

features of the input. This aspect is fundamental in the APR scenario, since learning
hidden representations enables the model to also capture the semantic aspects of the
code.

A step forward has been taken by researchers when they start to include Language
Modeling in the scope of APR research problem. Early stages of studies about Language
Modeling include the development of Neural Language Models (NLMs) and Pre-trained
Language Models (PLMs). NLMs focus on optimising the prediction of word sequences
produced by Neural Networks (NN) and advancement in this direction resulted in new
research to try to consider not the single word but its surrounding context at the same
time [6]. In this regard, Transformer architecture [7] is now the most used one when it
comes to develop new models, thanks to the self-attention mechanism which allows a
model to understand the importance of each word in a sequence - so, in a sentence — and
how words are related to each-other, making it possible to highlight their relationships
and, therefore, the context.

Main differences between traditional DL models and LLMs include the amount of data
on which models are pre-trained, having LLMs pre-trained on an enormous amount of
unlabelled data and with a huge number of parameters. The most common architecture
for LLMs is indeed based on Transformers, due their capabilities in processing languages.
The first widely recognised and used LLM was GPT-2 by OpenAl [8], trained with 1.5
billions of parameters. What characterises the widespread usage of LLMs is their ability
to deal with complex tasks and being successful most of the time. They can be fine-
tuned on smaller amounts of data, to let them improve their solutions on a specific task.
In particular, there are two strategies to evaluate them, using zero-shot or few-shot
learning. In the first case, the LLM is tested and used as it was pre-trained; in the other
case, few pairs of input-output examples are given to the model before being tested.

Among most common architectures and models used to conduct program repair tasks
are T5 architecture [9], CodeTs [10] model based on it for processing code, CodeBERT
[11] and GraphCodeBERT [12], which is the first structure-aware pre-trained model,
able to learn how to represent code directly by source code and it is also based on a
transformer architecture. Built on these models, tools and studies have been published
to adapt the models for APR-related tasks, such as syntax, semantic and vulnerability
repair. As an example, AlphaRepair [13] uses CodeBERT as an underlying model to
predict the correct fix for a given bug and focuses on repairing bugs at semantic level.

AlphaRepair is one of the first studies exploring the usage of LLMs for APR and resulted

LLMs Evaluation for Android Vulnerability Repair

in outperforming all the traditional APR tools [5].
As of the latest updates, GPT-2 was one of the largest LLMs featuring 1.5 billion of

parameters, impressively surpassed by GPT-3 which counts 175 billion of parameters.
Updated version GPT-3.5 is fine-tuned using reinforcement learning from human feed-
back and counts fewer parameters; for GPT-4 the number of used parameters is not yet
published. Such a huge number of parameters allow LLMs to understand very compli-
cated patterns, relationships between data and reach results never seen before. In this
regard, the major LLMs chosen for evaluating their performance in the field of Android
vulnerability repair are ChatGPT-3.5, Google Bard [14] (trained on 137 billion parame-
ters) and Android Studio Bot [15].

2.3 VULNERABILITY REPAIR

Vulnerabilities are the most critical type of software defects, since they may lead to
possible security breaches and dangerous consequences for both users and companies.
However, they are often unconsciously introduced by developers and the repair process
can result expensive in terms of time spent to identify them and then apply the patch.
Software defects considered as a target for APR techniques are commonly categorised
into: syntax errors, programming (semantic) errors and security vulnerability errors.
Syntax errors are mainly due to lack of experience and knowledge in programming
from developers, but they can be easily fixed by themselves or with the help of new
tools, such as DeepFix [16], which can automate the process and repairs multiple bugs,
iteratively checking each one against an oracle to assert whether the produced patch
can be accepted or not. Programming or semantic errors are raised from a bad imple-
mentation of the logic behind the program, but they are not necessarily vulnerabilities.
After identifying the bug through the usage of fault localization techniques, and once
the patch is generated by an APR tool, if it passes all the test cases in the appropriate
test suite, then it can be considered correct and the logic of the program fixed.

Only in recent years, the automation of vulnerability repair has become a separate
research problem with respect to normal program repair (including syntactic and se-
mantic errors), due to the realisation that vulnerabilities are more urgent, critical and

dangerous to fix than a “normal” bug.

LLMs Evaluation for Android Vulnerability Repair

2.4 ANDROID OPERATING SYSTEM

The Android Operating System owned by Google is the most used operating system
on smartphones [17]. Its architecture is designed to enhance security and prevent the
direct interaction between the user and the kernel space. It is based on the Linux ker-
nel, which has been adapted for mobile devices and enforces mandatory access control
(MAC) through the use of SELinux. There are two fundamental principles that each

component follow:

1. separation: each application has its own sandbox, and cannot directly communi-
cate with other applications installed on the mobile device. It is defined at process
and file-system level, which means that each application runs its own process and
cannot access resources from others;

2. least privilege: each application has to declare the minimum number of permis-
sions.

If an application declares permissions for resources it does not need, a malicious ap-
plication can exploit it to perform harmful actions. Google suggests a series of best
practices [18] that should help developers in designing safe and secure applications and
that should reduce to the minimum the chances of introducing flaws in their code. How-
ever, developers may introduce vulnerabilities in an unconscious way through a poor
implementation of important Android components. Providing a short description of
them allows one to better understand how an attacker can exploit vulnerabilities target-

ing these components.

« Activity: used to manage graphical user interface; there is a “Main Activity”
which runs as soon as the user clicks on the app’s icon, but an application can
have several activities allowing the user to interact with it through the graphical
interface;

+ Service: do not provide a user interface; a service performs an action in back-
ground for a certain amount of time, without interrupting the user interaction
with the application;

« Broadcast receiver: it is called to respond to system-wide events and perform
a consequent action when they are received; a broadcast receiver register to an
event and waits for it to happen;

LLMs Evaluation for Android Vulnerability Repair

+ Content provider: it allows applications to share data indirectly through the us-
age of APIs. When an application needs to expose data, using a content provider
ensures that other applications do not have direct access to the data source. They
can access this data, if they have the necessary permissions, through the interac-
tion with the corresponding content provider.

If one of these components is badly implemented, vulnerabilities can arise and be
exploited. For instance, if an application is defining a new way to interact with its
data source creating a new class extending the content provider class, when overriding
sensitive methods such as “query()”, then depending on how queries are defined, SQL
injection may be a risk. Another vulnerability might be caused by exposing “to the
world” components managing sensitive data, making them public but not protected.
In the Android manifest file, which represents the most important file for an Android
application, all the components are defined and permissions declared. If a service has
the exported attribute set to “true”, then it is visible not only to other components of
the same application, but also to every other application. In order to protect it, it may
be necessary to add a permission, so that only applications declaring such a permission
can interact with the component.

Recalling that each application has its own sandbox and it is completely isolated from
all the others, the Android operating system introduced different solutions to make
them communicate with each other: inter procedure communication mechanisms (IPC).
Among them, there are Intents, messaging objects which simplify the communication
between components of the same application and toward another one; they can be de-
clared as implicit or explicit. If explicit, the intent shares data and / or communicates
with a target component; on the contrary, if an intent is declared as implicit, it is just
specifying which action should be performed when received. It is launched by a com-
ponent but it is the responsibility of the Android OS to understand which is the actual
destination, if more than one component is able to manage such an intent. Intent hijack-
ing may be a consequence of implicit intent: since they are not referring to a specific
component, a malicious application may declare a component to be able to manage an
intent with a particular action. When the Android OS has to choose which component
can handle the intent, it may choose the malicious application, resulting in having an
attacker dealing with potentially sensitive data. There are just a few of the many possi-
ble vulnerabilities that may arise from a weak implementation. As said in the previous

section, vulnerability repair is still a new area to explore and few studies have been

LLMs Evaluation for Android Vulnerability Repair

conducted on this problem; consequently, a specific sub-field such as repairing Android
vulnerability is even more unexplored.

To develop an Android application, it is possible to use both Java and Kotlin languages
and additionally, native libraries can be implemented using C or C++. Focusing on this
project, the vulnerabilities under analysis are written in the programming language
Java. There are some bugs in Android applications which may also fall into the general
category of Java vulnerabilities, but along with them, there are others due to specific
features of the Android OS.

10

Related Works

3.1 APR TECHNIQUES

The automation of program repair has always been a goal to achieve. Manual fixing of
software defects is a common and unavoidable part of the software development process,

which takes away a lot of time from developers.

The core objective of program repair is to generate a patch such that the defect is
fixed; how the patch is actually generated identifies the main four categories of APR
techniques: search- or heuristic-based, constraint-based, template- or pattern-based,
learning-based. From the early 2000s several tools started to emerge, which have been
then categorised into search-based techniques, since they shared the common strategy
in generating patches. The first proposed techniques are referred to search- or heuristic-
based, whose underlying idea is to look for the correct patch in a predefined patch
domain, using heuristic to generate candidate fixes and using techniques like mutation-
selection or test execution to understand which can be a good patch. This type of tech-
niques improved over the years but still present some negative aspects, among which
there is an usually easy explosion of the search space [5]. Limitations of these tech-
niques led to the development of constraint-based techniques, and then template-based
ones. Consequently, the need to change the way patches are generated derive from

such limitations of previous techniques; it was a natural and gradual process during the

11

LLMs Evaluation for Android Vulnerability Repair

years, considering the possibility of having new technologies able to take a step over
them. For instance, template-based techniques lack continuous learning and have a
limited domain of known bug-fix pairs; therefore, new learning-based techniques were
born, leveraging the advent of Deep Learning models. Huang, et al. [5] describe the
passage from one category to others, referencing the most significant tools for each of
them and also addressing their limitations.

Learning-based techniques are the current state of APR development, since they over-
come most of the challenges faced by the other techniques, such as a limited knowledge
domain, considering both the type of software defects and their programming languages,
which are commonly C/C++, Python and Java considering the available benchmarks.
Zhang, et al. [19] illustrate common features of learning-based tools for program repair
and keep track of most used datasets and metrics for evaluation. The survey also in-
troduces recent advancement in using LLMs for APR, which is the very new direction
followed by most studies in APR field at the moment.

A living review about APR techniques is maintained by M. Monperrus [20] and in-
cludes all the references to the most relevant studies in the APR research field up to

now.

3.2 LLMs For APR

Large language models are a central point in many research fields right now and auto-
mated program repair is one of them. Several studies have been recently published and
they keep the focus on one main research question, which is to understand how good
are LLMs in repairing software defects. Answers to such a question are vary since they
depend on the single study and the types of software defects which are under analysis;
in most cases, LLMs are fine-tuned to the specific task, either using a small dataset or
performing few-shot learning. A general evaluation has been carried out by [21], who
tested LLMs performances in three different repair settings: generation of the entire
patch, code completion given prefix and suffix and a single line fix. They evaluated
several LLMs, including Codex [22], CodeTs5, GPT-NEO and others, on common bench-
marks used for testing APR tools, which are Defects4], QuickBugs and ManyBugs. The
programming languages covered by these benchmarks are Python, Java and C. One limi-
tation for traditional APR tools is represented by their ability of fixing bugs for only one

programming language. Traditional DL models already gave the chance to overcome

12

LLMs Evaluation for Android Vulnerability Repair

the limitations of having multi-language tools of which traditional APR tools suffer, but
with the employment of LLMs multi-language repair is becoming even easier. The idea
of having a single tool which can perform program repair at multi-language level has
been explored by another study which proposes RING [23], a new tool based on Codex
which outperforms language-specific repair tools for three out of six languages under
analysis. Large language models demonstrated to be competitive against traditional
APR tools even when no fine-tuning strategy is adopted. The intuition of achieving
high performances when using LLMs for APR is confirmed by [24], where Code Lan-
guage Models (CLMs), like CodeT5 and PLBART, reach a greater number of fixed bugs
when fine-tuned; in particular, the best among the one analyses fixes about 70% bugs
more than the ones repaired by traditional tools. As in other works, the benchmarks
used are always the noted ones (Defects4], QuickBugs and HumanEval).

Moving even beyond the zero-shot or few-shot scenario, other studies tried another
approach which involves a sort of dialogue with the model. To avoid the generation
of patches already defined as incorrect, [25] suggest to initiate a "conversation”, where
after prompting the original input, the incorrect generated patch is given as input along
with its validation feedback. This solution resulted in being successful, having ChatGPT
as the best model in generating patches.

Results coming from these works highlight the potential that LLMs have as repairing
tools, outperforming traditional ones most of the time, even more when they are fine-

tuned.

3.3 LLMS FOR VULNERABILITY REPAIR

Vulnerability repair is a specific task from the broader scope of automated program re-
pair. Recently, studies are moving towards the implementation of new tools which are
precisely targeting the problem of fixing vulnerabilities. VRepair [1] is one of the first
approaches in this field; it is pre-trained on a large-scale dataset of bug-fixing samples
and then fine-tuned on smaller datasets to gain more knowledge and improve its accu-
racy on the specific tasks. In particular, LLMs are leveraged also in this scenario. For
instance, a new approach, VulRepair [26] which is based on CodeT5, has been evaluated
over CWEs against VRepair and CodeBERT and resulted in outperforming its prede-
cessor VRepair and also CodeBERT. Another work [27] focuses on evaluating existent

LLMs (Codex, Al21]Jurassic [28]) in a zero-shot scenario, to understand how much good

13

LLMs Evaluation for Android Vulnerability Repair

are already available LLMs in repairing vulnerabilities coming from programs written
in C or Python. LLMs still resulted in being successful.

The specific problem of repairing vulnerabilities is a central topic in new studies,
mainly thanks to the capabilities of LLMs, which can facilitate both the vulnerability

detection and repair at both levels of zero and few shot learning.

3.4 LLMS FOR ANDROID

If several studies explored the usage of large language models in many fields, these are
not including Android. Feng, et al. [29] propose a lightweight LLM approach, AdbGPT,
to perform reproduction of Android bugs using bug reports collected by ReCDroid [30]
and ANDROR2+ [31]. Another study [32] leverages GPT models to automate the de-
cision making process for the user interacting with an Android application. However,
there are no recent works about Android vulnerability repair through the use of LLMs,

which is the scope of this project.

3.5 ANDROID AND VULNERABILITIES

No recent studies leverage the usage of LLMs for repearing Android vulnerabilities and
there are few datasets collecting them. One of this dataset is AndroVul [33], which
attempts to put together possible vulnerabilities due to the usage of dangerous permis-
sions, security code smell from the smali code and other possible security related bugs
from AndroBugs [34], a testing tool for Android used to parse applications and look
for possible security issues. The dataset proposed by AndroVul contains 73 vulnerabil-
ity metrics extracted from the evaluation of a sample of Android APKs from AndroZoo
[35]. Inrecent years, a tool called Vulvet [36] tried to deal with both detection and repair
of Android vulnerabilities but not involving large language models. It focuses on detec-
tion of common vulnerabilities and automatically generates patches for some of them,
through control-flow instrumentation and reconstruction of methods and parameters.
However, patches sometimes require the need of the developer and, therefore they are

not completely automated.

14

A new dataset

4.1 MOTIVATIONS

The final goal of this project is to evaluate the performance of Large Language Models
(LLMs) in suggesting repairs for vulnerabilities that come from Android applications. To
accomplish this, a dataset composed of pairs vulnerability-fix is necessary and there is a
lack of datasets covering Android vulnerabilities which also include respective possible
fixings. For this reason, one of the main contributions of this project is a new dataset,

which collects 284 Android vulnerabilities.

The dataset wants to bring together several vulnerability examples coming from real-
world Android applications, covering different categories. To build the dataset, for each
vulnerability found, a manually generated fix is proposed and considered as ground
truth against which the output of evaluated LLMs will be compared. Reasonings and
explanations on how the fixes have been created are described in Section 4.6. Hence, the
dataset includes both defects extracted from the manifest file and from actual classes of
Android applications, with the corresponding ground truth fix. In Section 4.5.1, all the

statistics about data in the new dataset are shown and described.

15

LLMs Evaluation for Android Vulnerability Repair

4.2 REQUIREMENTS AND LIMITATIONS

With the aim of providing a clear explanation of each step made during the realisation
of the dataset, it is necessary to start from the initial requirements. Firstly, for each
application is necessary to have both the APK and the relative source code. The for-
mer is needed for the detection tool, SPECK, described in Section 4.5, while the latter is
required for testing the manually generated fix. Since fixes proposed for each vulnerabil-
ity found are considered as ground truth, it is mandatory to ensure that the application
can still be compiled after the integration of the repairs. To respect such a requirement,
only applications for which both APK and source code is available have been collected,
even if such a choice reflected in having at disposal a significantly reduced number of
applications to be analysed.

A consecutive and strictly related challenge is represented by the actual compilation
of applications source codes, since most of them, even without the integration of the
repair, resulted in having many dependency-related issues when compiling or they do
not come with the necessary files for the compilation. However, thanks to the cate-
gorization of vulnerabilities which allowed to consequently have a structured format
of fixes, such a limitation can be resolved by testing a smaller number of applications,
among the ones collected and able to compile, for each type of fix. If a vulnerability
comes from an application that cannot be compiled and the same applies for any other
application with the same vulnerability, this is implemented in a crafted application, so
that the fix proposed as ground truth for that vulnerability type can be tested and assert
that no compilation problems due to the integrated repair would arise in the original

application.

4.3 DESIGN

The criteria on which the vulnerability detection and extraction is based sees the viola-
tion of best practices at its core. Google highlights the guidelines that a developer should
implement when building an Android application; the used detection tool is based on
them and as soon as an application violates one of this guidelines, the corresponding
faulty line is extracted from the decompiled APK. Hence, vulnerabilities collected in the
dataset are all violating a defined best practice, identified by a unique number, which is

going to be referred to as "Rule”. All the best practices are described in Appendix B and

16

LLMs Evaluation for Android Vulnerability Repair

examples for each of them are included.

The final dataset collects 284 vulnerabilities with the respective ground truth which

has been manually generated. It contains three columns:

1.

2.

3.

4.

an id which is unique and identifies the vulnerability;
the language of the snippet (Java or XML);
the vulnerability and its context (e.g. a method);

the corresponding ground truth.

In addition, to keep track of the application from which the vulnerability is extracted

and the specific file (Java class or Android Manifest), another dataset is built and it

contains the following information, including the match between the vulnerability ex-

tracted from the decompiled APK and its mapping to the source code:

id: unique id which identifies the corresponding vulnerability;

apk: the name of the analysed APK, from which the vulnerable code has been
extracted;

language: the programming language of the vulnerability, which may be XML or
Java;

rule: a number identifying the violated best practice;

severity: indicates the severity of the vulnerability, which may be "warning” or
critical”;

dec-path: the file from the decompiled APK which contains the vulnerability;

dec-line-number: the number of the line introducing the vulnerability in decom-

piled file;
dec-vuln-line: the vulnerable line in decompiled file;

code-path: the path of the original source code inside the Android project from
which the vulnerable snippet has been extracted,;

line-number: the number of the line introducing the vulnerability in the source
code;

vuln-line: the actual content of the vulnerable line in source code.

17

LLMs Evaluation for Android Vulnerability Repair

Including in the dataset not only pairs composed by vulnerability and fix, but also cor-
responding information about the application analysed, the specific line number in the
source code wants to guarantee that everyone using the dataset can help in reproducing
bugs correctly and have a deeper level of information about the specific vulnerability,
taking it as a reference.

Sections below will guide through the explanation of each step made to the realisation
of the dataset, to understand how it has been constructed, to make clear each decision
and illustrate the challenges and limitations faced. To proceed with clarity, the following
section describes two remarkable limitations that have led to the adoption of initial

necessary assumptions.

4.4 COLLECTION OF ANDROID APPLICATIONS

Based on the necessary assumptions explained in Section 4.2, all the applications are
downloaded from F-Droid [37], an online repository which is free and open source. It
collects applications for different categories, including connectivity, phone & sms, sys-
tem, security and so on. For every application, both the link to the original source code
and the corresponding APK built on it are available. The total number of applications
that have been collected and analysed is 138, chosen randomly among the ones available
in the repository. Having to satisfy the requirement such that not only it is necessary to
get the source code, but it has also to be compiled without any errors, all the applications
have been tested for compilation and Table 4.1 shows a summary.

Only the 29% of the applications downloaded, successfully compiled. The other 71%
includes applications for which compilation is not possible, due to several problems.
This reflects in not having a compilable source code for each vulnerability extracted and
for which the corresponding ground truth is not being directly tested into the original

application, as described in 4.2.

failing no-files success | total

apps 40 58 40 138

7% apps 29% 42% 29% 100%

Table 4.1: Summary of total number of apps with compilations problems or not.

18

LLMs Evaluation for Android Vulnerability Repair

4.5 VULNERABILITY DETECTION ViA SPECK

The tool used to perform vulnerability detection is SPECK [38]. The core concept which
is at the foundation of the tool regards which vulnerabilities are considered and con-
sequently the types of patches proposed. Following Android Security Best Practices
defined by Google [18], 32 rules have been defined by the creators of the tool. Each rule
represents one best practice that the application should follow and it is implemented
in the tool to look for patterns which do not match such a guideline; when a match is
found, the line at issue is reported as a vulnerability since it does not implement the
best practice. For clarity purposes, an example of best practice definition and related
vulnerable code follows:

. public void performBackup(ParcelFileDescriptor oldState, BackupDataOutput data,
ParcelFileDescriptor newState) {
2 Log.d(TAG, "Performing backup");
ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
, MessageDigest digester = null;

5 Writer writer;

6 try {
digester = MessageDigest.getInstance("MD5");
8 writer = new OutputStreamWriter(new DigestOutputStream(byteStream,

digester),Charset.forName("UTF-8"));
5 } catch (NoSuchAlgorithmException e) {
10 writer = new OutputStreamWriter (byteStream, Charset.forName("UTF-8"));

Listing 4.1: Vulnerable Code for Rule 29.

The best practice related to Rule 29 says: ”Use a recommended cryptographic algorithm if
dealing with Cipher, Mac, MessageDigest, Signature objects.” which is not respected since
the algorithm used is MDj5 that cannot be considered as safe as SHA-256. (see all best
practices with vulnerable code examples in Appendix B).

The workflow of the tool is the following: given an APK as input, it decompiles the
APK using JADX [39] and statically analyses the decompiled version, looking for vio-
lations. The analysis of the tool is actually a starting point to extract the problematic
code, but it is not enough to directly obtain the vulnerabilities to put in the dataset and

other steps have been required. Considering that the manually generated fix has to be

19

LLMs Evaluation for Android Vulnerability Repair

tested before being declared as ground truth, it is essential to map the vulnerable code
found in the decompiled file to the vulnerable line in the project source code. The map-
ping has been done by using a Python script which finds the match between the two
through a similarity score, comparing the extracted vulnerable line to each line of the

corresponding file in the project. When performing the mapping, few challenges arised:

+ all decompiled classes are written in Java, but this is not always true for the source
code, which may be actually written in Kotlin; therefore, a vulnerability found
on decompiled file may correspond to a vulnerability in Kotlin which is outside
the scope of this project, focused on Android vulnerabilities but only taking into
account Java language;

+ decompiled code may include obfuscated code, for which is not possible to find
the reference code in the source;

« vulnerable code in a decompiled class may be actually included in a class of the
source code with a different name;

« since the tool analyse the whole decompiled APK, some violations come by “exter-
nal” files such as Java libraries which are reconstructed during the decompilation
and naturally, it is not possible to find a match in the source code.

Accordingly, obfuscated code from decompiled classes and vulnerable codes which
turned out to be written in Kotlin are excluded from the final dataset. On the other
hand, the third point has been bypassed looking for the most similar line in other classes
where the decompiled class is not present in the project. Obviously, each match between
the vulnerable line in decompiled class to the vulnerable line in source code found by
the script has been manually reviewed to be sure of the correctness of the match itself,
taking into account the surrounding context.

To produce a correct patch, the output of SPECK is not enough. When an application
is analysed and violations found, for each of them the line specifically recalling the
violation of the best practice is returned, without any additional context. For this reason,
it is necessary to include more context to the line and in most cases, the method in which
the faulty line is enough. Thus, the method needed to be extracted from source code
for each returned line; such an objective was reached by the development of a script
which makes use of libraries defined in the detection tool and adapts them to effectively

recover the method starting from a line.

20

LLMs Evaluation for Android Vulnerability Repair

Another step that has been done consisted in filtering all the extracted lines by viola-
tion. Not every violations from the ones implemented in the tool lead to vulnerabilities

which can be fixed, since:

« some of these best practices can be treated as warnings and as hints for developers;
thus, related faulty lines have been excluded from the analysis;

« the implementation of the guidelines needed complex modifications of applica-
tions at design-level; related vulnerabilities been excluded, but those will be cov-
ered in future.

Moreover, after manually analysing each final vulnerability (from source code and
with context) to include in the dataset, some of them resulted to be false positive (i.e.
code snippets which do not violate any rule) and others appear more than once, prob-
ably due to underlying relationships between collected applications. Hence, since the
final goal is to have an original dataset which presents several vulnerabilities but which
differs from each other, identical copies of faulty codes have been removed, with the aim
of providing then a clean dataset and prompting the LLMs with only prompts different

from each other.

4.5.1 SUMMARY OF VULNERABILITIES IN THE DATASET

After having considered the several steps done for detection and extraction of unique
vulnerabilities, Table 4.2 keeps a summary of the total number of applications which are
included in the final dataset, giving also insights on how many of them presented compi-
lation problems. Taking into account that not every downloaded application presented
vulnerabilities which violate the defined best practices, the amount of useful applica-
tions is smaller and if also considering that the dataset has been cleaned from identical
copies and false positives, only about 50% of the collected applications presented at least
one vulnerability which has been included in the dataset.

Almost 75% of the applications for which at least one violation is in the dataset can-
not be compiled. This means that for the majority of the vulnerabilities, the proposed
ground truth cannot be tested in the original application. However, as described in Sec-

tion 4.2, this limitation is overcome and a better explanation is provided in Section 4.7.

21

LLMs Evaluation for Android Vulnerability Repair

failing no-files success total with_vulns
apps 28 23 17 68
% apps over total with_vulns 41.2% 33.8% 25% 100%
% apps over total_collected’ 20.3% 16.7% 12.3% 49.3%

Table 4.2: Summary of total number of apps with vulnerabilities.

Table 4.3 provides an insights on how many best practices have been violated and a

summary of how the vulnerabilities are divided.

rule violated # vulnerabilities % vulnerabilities

1 21 7.39%
3 19 6.69%
4 1 0.35%
5 7 2.46%
6 10 3.52%
7 8 2.82%
9 1 0.35%
15 1 0.35%
16 8 2.82%
17 8 2.82%
18 91 32.04%
20 30 10.56%
22 2 0.70%
23 46 16.20%
26 6 2.11%
29 25 8.80%

284 100 %

Table 4.3: Summary of vulnerability types in the dataset.

'Total number of applications: 138. See Table 4.1

22

LLMs Evaluation for Android Vulnerability Repair

4.6 FIXES GENERATION

Once having the complete code snippet incorporating the faulty line, fixes can be devel-
oped. The reasoning behind the patch is to correctly implement the related best practice,
avoiding the introduction of new vulnerabilities, new bugs or a change in the logic of
the application; moreover, the developed patch must let the application compile. As
vulnerabilities come in categories, so do the patches. More vulnerable code snippets
violating the same best practice are likely to share the same code structure as shown in

the two codes below, which are of course extracted from two different applications:

/private void previewImageDraft(final @NonNull Slide slide) {

2 if (MediaPreviewActivity.isContentTypeSupported(slide.getContentType()) &&
slide.getUri() != null) {

; Intent 1intent = new Intent(context, MediaPreviewActivity.class);

4 intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
intent.putExtra(MediaPreviewActivity.SIZE_EXTRA, slide.asAttachment().

getSize());

6 intent.setDataAndType(slide.getUri(), slide.getContentType());

context.startActivity(intent);

Listing 4.2: Vulnerable code 1 for Rule 1.

v // rest of the code

> Intent installIntent = new Intent(Intent.ACTION_VIEW);

5 installIntent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

. installIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

s installIntent.putExtra(Intent.EXTRA_NOT_UNKNOWN_SOURCE, true);

o installIntent.setDataAndType(fileUri, downloadManager.
getMimeTypeForDownloadedFile(referenceld));

7 try {

8 Log.d(TAG, "onDownloadComplete startActivity(installIntent)");

0 startActivity(installIntent);

0 } catch(Exception ex) {

1 Log.d(TAG, "# onDownloadComplete startActivity(installIntent) ex="+ex);

12 Toast.makeText(activity,"APK downloaded. Cannot offer to install.", Toast.
LENGTH_LONG) . show() ;

13 } // rest of the code

Listing 4.3: Vulnerable code 2 for Rule 1.

23

2

LLMs Evaluation for Android Vulnerability Repair

As it is possible to notice, the two vulnerable snippets may be different at structure level,

but the suggested fix for both codes results to be very similar:

private void previewImageDraft(final @NonNull Slide slide) {
if (MediaPreviewActivity.isContentTypeSupported(slide.getContentType()) &&
slide.getUri() != null) {
Intent 1intent = new Intent(context, MediaPreviewActivity.class);
intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
intent.putExtra(MediaPreviewActivity.SIZE_EXTRA, slide.asAttachment().
getSize());
intent.setDataAndType(slide.getUri(), slide.getContentType());
// fix1
List<ResolveInfo> possibleActivitiesList = getPackageManager().
queryIntentActivities(intent, PackageManager .MATCH_ALL);
if (possibleActivitiesList.size() > 1) {
String title = getResources().getString(R.string.chooser_title);
Intent chooser = Intent.createChooser(intent, title);
startActivity(chooser);
} else { context.startActivity(intent); }

Listing 4.4: Ground truth for vulnerable code 1.

// rest of the code

> Intent installIntent = new Intent(Intent.ACTION_VIEW);

installIntent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);
installIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
installIntent.putExtra(Intent.EXTRA_NOT_UNKNOWN_SOURCE, true);
installIntent.setDataAndType(fileUri, downloadManager.
getMimeTypeForDownloadedFile(referenceld));

try {

Log.d(TAG, "onDownloadComplete startActivity(installIntent)");

// fixl

List<ResolveInfo> possibleActivitiesList = getPackageManager().

queryIntentActivities(installIntent, PackageManager .MATCH_ALL);

if (possibleActivitiesList.size() > 1) {
String title = getResources().getString(R.string.chooser_title);
Intent chooser = Intent.createChooser(installIntent, title);
startActivity(chooser);

} else { startActivity(installIntent); } } // rest of the code

Listing 4.5: Ground truth for vulnerable code 2.

24

N

LLMs Evaluation for Android Vulnerability Repair

The best practice associated with Rule 1 is the following: “Show an app chooser. Implicit
intents may be handled by more than one activity, therefore show an app chooser before
launching the intent.”. As a result, the common introduced fix to let the snippet be

compliant with the guideline is the one showed in

List<ResolveInfo> possibleActivitiesList = getPackageManager().

queryIntentActivities(<intent_name>, PackageManager .MATCH_ALL);

, 1f (possibleActivitiesList.size() > 1) {

String title = getResources().getString(R.string.chooser_title);
Intent chooser = Intent.createChooser(<intent_name>, title);

startActivity(chooser);

Listing 4.6: Ground truth for vulnerable code 2.

The above fix has been introduced in Listing 4.2 and Listing 4.3, respectively at line 7 and
9. The given example wants to suggest how structured the manually generated fixes are,
in order to be correctly introduced in the general structure of the vulnerable snippet.
Maintaining a coherence among the implementation of fixes from the same category
allowed to reach a common structure, which permits to affirm that if a fix is integrated
in a compilable application and does not introduce any compilation error, then with
very high probabilities the patch proposed for a different vulnerability from the same
category, will also compile. This is necessary to demonstrate what it has been stated
in Section 4.2 and that every manually generated fix which serves as ground truth, are
very likely not to introduce compilation errors when applied to the original application.

The same is done for vulnerabilities regarding the Android Manifest file.

4.7 FIXES EVALUATION

Fixes proposed serve as a ground truth for evaluating the abilities of LLMs in suggesting
patches for the same vulnerability in input. Since most fixes require final decisions from
developers of the original application, it is not possible to absolutely guarantee that the
integration of the patch will preserve the logic of the application. Furthermore, there
are fixes which necessarily will lead to a change in the application’s behaviour due to

the origin of a fix itself: modify the current behaviour to pursue the implementation of

25

LLMs Evaluation for Android Vulnerability Repair

best practice. On the other hand, it is possible to guarantee that proposed repairs do
not violate other rules (best practices) and that they fix the original source code.

Once the repair is done, SPECK has been used to check whether the previously de-
tected vulnerability is still present or not. The modified application is compiled into
APK and analysed by SPECK but, as stated in Section 4.5, not every application in the
considered analysis can be compiled, due to dependency problems or not having the
needed files. However, in light of the structured format of fixes, it is possible to state
that: if a repair for a certain vulnerability category is integrated into an application and
such an application compiles, then it will likely let every other application requiring
the same patch, compile. Hence, for each type of proposed repair, at least one appli-
cation that already comes with no compilation problems, is tested against SPECK after
the integration of the fix. In case of fix types for which none of the corresponding vul-
nerabilities has been extracted from an application that can successfully compile, then
a random application is chosen and a crafted project is created to recreate it, which now
can be compiled and the fix under analysis being tested. The crafted project includes
the exact vulnerability and recreates all the necessary information and classes of the
original source code, to be as close as possible to the true application. In addition, for
fixes that require the involvement of specific values as variable, abstract values have
been assigned just to assert that the fix does not introduce any error.

By doing so, every fix type has been tested, assuring that if introduced in the original
application, this can still be compiled without any new problem and, more importantly,

the previously detected vulnerability is no more present.

26

LLMs Evaluation

The collection of Android applications, the realisation of a new dataset of vulnerabilities
specifically of the Android OS can be certainly a contribution to the research community
in patching vulnerabilities, but it can also be considered as a prerequisite in order to
perform LLMs evaluation on Android vulnerabilities from real-word applications, which

is the core objective of this work.

The advancement of new large language models and the improvements of the already
existing ones is pushing every research field to explore them, trying to study how far
they can go in knowledge and, consequently, how good they are in ongoing research
problems. Among them, the APR research community has also shifted its direction
towards the world of pre-trained LLMs, to understand how well they can perform in
common APR tasks, such as code refinement and the related task of defect detection.
The power of LLMs lies in their ability to learn complex relationships among data and,
thanks to the very large amount of data they are pre-trained on, LLMs result in being
good even when facing new problems. To better say, given an APR problem, a general
purpose LLM can outperform traditional APR tools which were born with the specific
objective of being tools for repairing software defects. As a consequence, fine-tuned
LLMs can achieve higher accuracy in results and can only lead LLMs to be the best

option in solving such problems.

27

LLMs Evaluation for Android Vulnerability Repair

5.1 CHATGPT, BARD AND STUDIO BoT

For the sake of this project, three LLMs have been evaluated: ChatGPT-3.5, Google
Bard and Android Studio Bot. The last one, as stated by Google [40], is different from
other LLM-powered chatbots since “Studio Bot is tightly integrated within Android Stu-
dio, which means it can provide more relevant responses” and “Studio Bot leverages an
LLM that was designed to help with coding scenarios”. Hence, Android Studio Bot is
supposed to be the most accurate one in suggesting patches for Android vulnerabilities.

The reason why these three LLMs have been chosen to be evaluated is explained as
follows. Considering a developer working on an Android application, dealing with com-
pilation errors, bugs and doubts, it is very likely that he or she will choose an interactive
LLM, free to use and already well implemented. In case of vulnerabilities, they are invol-
untary most of the time, unconsciously introduced by the developers themselves; then,
they would not even use an LLM since they are unaware of the vulnerability. Now, sup-
pose there is a supported detection tool — SPECK, in this case — which is able to detect
whether a best practice is implemented or not and therefore if there is a possible vulner-
ability, then the developer will use an interactive LLM to know how to implement such
best practice with very high probability. Thus, imagining such a scenario, the choice of
LLMs came naturally. ChatGPT and Bard are the most used interactive LLMs, extremely
easy to use and make the interaction seem like chatting. In addition, Android Studio Bot
is analysed, since it not only has the interactive aspective but it is also strictly related
to Android.

Undoubtedly, in a different scenario where there is the actual need to integrate the
abilities of the LLMs in a wider context, then it would make sense to consider also other
LLMs, working at APIs level and fine-tuning them to reach better results for the specific

problem and scope.

5.2 PROMPT ENGINEERING

Prompt engineering is a new research field born along with the advancement of LLMs,
since their outputs resulted to be strictly correlated with the type of input (prompt)
they receive. A prompt can be defined as the starting point of the interaction with a
large language model and it is usually a natural description of the task the LLM has to

accomplish. Commonly, prompts are divided into three main categories: basic prompt,

28

LLMs Evaluation for Android Vulnerability Repair

in-context prompt, task-specific prompt [41]. In particular:

1. a basic prompt contains a general definition — the natural description of the task
— of the problem and the expected output, sometimes with an input code;

2. in-context prompt includes one or more examples of input and expected output,
within the basic prompt;

3. task-specific prompt: a different prompt is defined for each task type.

Basic prompt can be considered as a zero-shot learning scenario, where the LLM is
not learning anything new from the prompt, but it just returns an output based on
the already integrated knowledge. The in-context prompt involves a sort of in-context
learning, where the prompt also contains examples of input-output pairs which should
guide the LLM to return a more accurate output. This is a type of few-shot learning,
whose goal is the same as fine-tuning: both strategies aim to let the LLM become “clever”
with respect to the specific task and provide improved answers to the inputs; differences

lie in how such an objective is reached.

Regarding the goal of this project, the basic prompt is the chosen one to evaluate
LLMs. The rationale behind this choice is given by several motivations: firstly, con-
sidering once again the scenario described above (Section 5.1) and the developer who
is likely to ask his or her problems to an interactive LLM, such LLMs are also general-
purpose; consequently, the most common scenario involves the case of a basic-prompt.
Subsequently, in-context learning would require a bunch of examples including both
input and expected output. Taking into consideration the challenges and limitations
faced in gathering a relevant amount of vulnerabilities for the dataset, it would have
been quite challenging to find other examples to give as input. However, in-context
learning turned out not to be necessary, considering the final results described in detail
in Chapter 7.

Finally, a task-specific prompt is not suitable for this project since there is one main
task to be performed: vulnerability repair. Vulnerabilities found and analysed in this
study are yet divided in categories, but they still fall into the single domain of Android

vulnerabilities.

29

LLMs Evaluation for Android Vulnerability Repair

5.2.1 THE PROMPT

This subsection is dedicated to a brief description of the prompt used to test and then
evaluate the LLMs. The way LLMs performed is influenced by the type of input they
receive: a “poor” prompt can mislead the model to a different task and result in bad per-
formance, while an extremely detailed prompt can favour to obtain the desired output.

For this project, the evaluation of LLMs regards how accurate and correct the gener-
ated fix is, considering the vulnerable code snippet given as input. Since vulnerability
detection performed by LLMs is not an objective of this study, the vulnerable line is in-
cluded in the prompt along with the best practices that the line — or the whole snippet

- violates. The template used to generate the specific prompt is the following one:

e You

The code snippet below has a vulnerability at line [LINE_NUMBER]. It doesn’t follow the
best practice guideline: "[BEST_PRACTICE]"
Modify it to be consistent with the best practice.

[CODE_SNIPPET]

Figure 5.1: Template for a basic prompt.

which turns out to be like the example below, when considering a specific vulnerability:

e You

The code snippet below has a vulnerability at line 3. It doesn’t follow the best practice
guideline: "Show an app chooser. Implicit intents may be handled by more than one
activity, therefore show an app chooser before launching the intent."

Modify it to be consistent with the best practice.

1: private void sendEmailRecipe() {

2: J/ rest of the code

3: Intent sendIntent = new Intent(Intent. ACTION_SEND);

4. sendIntent.putExtra(intent. EXTRA_SUBJECT, Bites.mRecipeName);
5: sendintent.putExtra(intent.EXTRA_STREAM,
Uri.parse("file://"+file.getAbsolutePath()));

6: sendintent.setType("text/plain™);

T. startActivity(sendIntent);

8:}

Figure 5.2: Example of a basic prompt.

30

LLMs Evaluation for Android Vulnerability Repair

As it is possible to understand, the chosen basic-prompt includes a short description
for the best practice that wants to be as clear as possible and directly pointing out the

problem.

Once having generated complete prompts for each vulnerable code snippet, all the
three LLMs (ChatGPT, Bard and Studio Bot) have been tested with the same prompt for
each vulnerability. Using the same input for all the models allows an objective evalua-
tion: it permits a parallel analysis of three different suggested repair (one for each LLM)

against the reference fixed code.

For every new prompt, a new chat have been started, to avoid any involuntary learn-
ing and ensure that each output is obtained in a zero-shot scenario. Moreover, looking
at the output of Studio Bot (Figure 5.5), it is necessary to underlying that the generated
code is written in Kotlin, regardless of the code in input which is written in Java. Show-
ing this inability of directly understanding the language of the input code, its prompts
have been modified just by adding the specification "Use Java”, to allow a parallel com-

parison between the three LLMs.

Each prompt is, of course, given as input only once and the corresponding output is
directly taken as valid to be pre-processed and analysed, regardless of the possibility
of having a different output which may be correct or not, with respect to the previous
one. This is due to the non-deterministic nature of the models, since they are not pro-
viding always the same output for the same prompt given as input multiple times. A
more detailed analysis on this aspect may be considered as a future work, as stated in
Chapter 8.

5.3 LLMs OuTpPUTS

How well LLMs performed on generating patches for all the vulnerabilities in the dataset

will be described in Chapter 7, which gathers all the results obtained.

Generally speaking, outputs of all the three LLMs chosen for this analysis are a mix
of code and literal descriptions. For the objective of this project, only the generated
code is considered. Figures below show a typical output for Bard (Figure 5.3), ChatGPT
(Figure 5.4) and Studio Bot (Figure 5.5) which have been prompted with the prompt in
Figure 5.2.

31

LLMs Evaluation for Android Vulnerability Repair

4,

Here's the modified code snippet that follows the best practice guideline of showing an app chooser:

Java

{(intent,

Use code with caution. Learn more |_D

By using the o -() method, the system will display a chooser dialog allowing the user to select the app
they want to u the email. This ensures that the user has control over which app handles the intent and
prevents potential security vulnerabilities.

Figure 5.3: Typical output for Bard.

ChatGPT

To follow the best practice guideline and address the vulnerability at line 3, you should
explicitly check if there are activities that can handle the "Intent” and then use an app

chooser if there are multiple options. Here's the modified code:

java

= (Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_SUBJECT, Bites.mRecipeName);
sendIntent.putExtra(Intent.EXTRA_STREAM, Uri.parse(+ file
sendIntent.setType();

(sendIntent.resolveActivity(getPackageManager()) !=

ivity(Intent.createChooser(sendIntent,

Figure 5.4: Typical output for ChatGPT.

32

LLMs Evaluation for Android Vulnerability Repair

The code snippet below has a vulnerability at line 3. It doesn't follow the best practice guideline: "Show an app
chooser. Implicit intents may be handled by more than one activity, therefore show an app chooser before
launching the intent.”

Modify it to be consistent with the best practice.

1: private void sendEmailRecipe() {

[/ rest of the code

Intent sendintent = new Intent(Intent. ACTION_SEND);
sendintent.putExtra(Iintent.EXTRA_SUBJECT, Bites.mRecipeMName);
sendintent.putExtra(lntent.EXTRA_STREAM, Uri.parse("file://"+file.getAbsolutePath()));
sendintent.setType("text/plain");

startActivity(sendintent);

2=l

oo w

6:
7:
8:

ailRecipe() {

val sendIntent = Intent(Intent.ACTION_S

ndIntent.putEx
.absolutePath}
ndIntent.setType()

ity(Intent.createChooser(sendIntent,

Figure 5.5: Typical output for Studio Bot.

5.4 PRE-PROCESSING PHASE

As it is possible to notice from previous section, even if only the proposed code is ex-
tracted, it may also include comments to guide through the readability of the snippet
itself. Consequently, since the final goal is to evaluate the code they generated and
understand if it is a correct fix for the input vulnerability, all outputs have been pre-
processed before being compared with respective ground truth. Naturally, the same
pre-processing is applied to both prediction (LLM output) and reference (ground truth)
for consistency reasons.

This phase is also necessary in order to work with chosen metrics for evaluation,

which are described in Chapter 6.

5.4.1 PRE-PROCESSING JAVA-RELATED OUTPUTS

To extract only the relevant information, which is indeed the generated code, all outputs

have been cleaned from comments that came along with the code. For outputs related

33

LLMs Evaluation for Android Vulnerability Repair

to prompts with Java vulnerability, also additional methods which do not serve the pur-
poses of the evaluation (e.g. the main method) have been removed. In addition, some
of these generated codes resulted in not having balanced brackets and this can lead to
parsing errors and the unavailability of the code when it comes to be compared with
the ground truth, resulting in an undefined similarity score (see Section 6.3).

It is worth noting that the objective of this evaluation is to understand whether
the proposed code either repairs or not an input vulnerability, without taking into ac-
count syntax errors, which fall outside the scope of this project. For this reason, once
cleaned from comments and additional methods, all the outputs have been parsed and
unmatched brackets have been manually fixed; naturally, the proposed code has not
been modified at all. After having pre-processed all the outputs from the three LLMs,

each suggested repair is compared with the corresponding ground truth.

5.4.2 PRE-PROCESSING XML-RELATED OUTPUTS

In case of outputs related to the vulnerabilities extracted from the Android Manifest file,
pre-processing revealed to be fundamental and significant. The first step is the same of
the pre-processing phase for Java suggested repairs, which is the removal of natural
sentences and comments, to extract only the relevant snippet of code. To be as clear
as possible, an example of XML-related prompt, respective output (LLM proposed fix,

Listing 5.1) and corresponding ground (Listing 5.2) are shown as follows:

O You

- The code snippet below has a vulnerability at line 1. It doesn’t follow the best practice
guideline: "If a service is explicitly exported, declare a permission to protect access to
it. If a service declares a permission but it is not explicitly exported, set exported
attribute to true."

Modify it to be consistent with the best practice.

1: <service android:name=".MusicPlayerService" android:exported="true"
android:enabled="true" android:foregroundServiceType="mediaPlayback"/>

Figure 5.6: Prompt to ChatGPT for XML-related vulnerability.

34

LLMs Evaluation for Android Vulnerability Repair

<service android:name=".MusicPlayerService" android:exported="true"

android:enabled="true" android:foregroundServiceType="mediaPlayback">
> <intent-filter>
3 <action android:name="com.example.YOUR_ACTION" />
. </intent-filter>
5 <permission android:name="com.example.YOUR_PERMISSION" />
¢« </service>

Listing 5.1: Proposed fix for Android Manifest vulnerability by ChatGPT.

. <permission

2 android:name="custom_permission"

3 android:protectionLevel="normal" />

. <service

5 android:name=".MusicPlayerService"

6 android:exported="true" android:enabled="true"
7 android: foregroundServiceType="mediaPlayback"

8 android:permission="custom_permission" />

Listing 5.2: Ground truth for vulnerable code in prompt in Figure 4.6

Since the metrics used for the comparison with ground truth are commonly used for
text similarity (see Section 6.4), a first type of pre-processing can include the removal
of special characters and transforming the snippet into a sentence where all the words
are concatenated (having whitespaces as delimiter). The pre-processing is a “simple”
word-tokenizer and it will be referenced as ”pre-processing type 1”. The reason why this
type of metrics and pre-processing are considered is due to the structured format of the
XML snippets, whose structure is more consistent than a typical Java code.

However, this pre-processing can produce misleading results. Most outputs from
Bard and ChatGPT include additional tags in the proposed repair, which are not actually
requested for the aim of the fix. To provide a better understanding, with this pre-process

the codes in Listing 5.1 and Listing 5.2 are respectively turned in:

service android name .MusicPlayerService android exported true android enabled

true android foregroundServiceType mediaPlayback +intentfilter action
android name com.example.YOURACTION 1intentfilter permission android name
com.example.YOURPERMISSION service

permission android name custompermission android protectionLevel normal service

android name .MusicPlayerService android exported true android enabled
true android foregroundServiceType mediaPlayback android permission

custompermission

35

LLMs Evaluation for Android Vulnerability Repair

Once again, since the final goal is to understand whether the output is correct or not
in terms of fixing the specific vulnerability given as input, a different pre-processing
is also proposed and tested. Since metrics for text similarity are involved, differences
in the snippets lengths or in words composing the snippets are a crucial point when
computing the similarity score. Hence, another type of pre-processing is proposed and
it will be referred as “pre-processing type 2”. It sees the additional tags removed and
it includes the abstraction for attribute values which are commonly arbitrary. For in-
stance, the android:permission attribute value can be whatever, depending on the
permission to assign (e.g. custom permission name is chosen by the developer). More-
over, the whole snippet is parsed using an XML parser and is formatted, to allow a
consistent comparison between it and its respective ground truth; for instance, if the
component is a service and it has attributes such as android:name, then it becomes
service.name. Using pre-processing type 2, the codes in Listing 5.1 and Listing 5.2 are
respectively turned in:

service.name .MusicPlayerService service.exported true service.enabled true

service.foregroundServiceType mediaPlayback

permission.name custom_permission permission.protectionLevel normal service.
name .MusicPlayerService service.exported true service.enabled true service

.foregroundServiceType mediaPlayback service.permission custom_permission

In the first case, new tags added by the LLM which are not included in the original
prompt, are removed; consequently, the output of the LLM when pre-processed does
not show the <intent-filter> tag anymore. In addition, since the <permission>
tag is not placed as it is supposed to be (outside the declaration of the component), it
considered as missing and, therefore, not included in the final pre-processed output.

In conclusion, the comparison becomes more reliable than if performed with two

snippets pre-processed using pre-processing type 1.

36

Results

This Chapter gathers all the results of this evaluation. In order to understand them, all

the used metrics are described the following section.

6.1 METRICS

In general, the task of producing a patch starting from a vulnerable code can be usually
treated as a code generation task which, in this case, can be referred to as code refine-
ment task whose aim is exactly to automatically fix general bugs in the code. For the
scenario under analysis, models know in advance where the vulnerability is and the
natural description of what to do to produce a patch.

One of the most used metric also in learning-based techniques for APR is BLEU (Bilin-
gual Evaluation Understudy), even if it is commonly used for comparing natural lan-
guage sentences. In APR field, it is also widely used and measures the similarity between
the generated output (from a Large Language Model) and the corresponding reference,
usually made by humans. However, it is not the best option when it comes to compare

two code snippets, since there are several aspects that can mislead its output:

« different variable or methods names in references and output, due to the fact that
LLMs can introduce new variables or adding methods necessary to produce the
patch;

37

LLMs Evaluation for Android Vulnerability Repair

« BLEU only compares the sequence of words, which cannot be considered as an
accurate approach to check similarity between codes.

To catch also semantic information from a snippet of code and to base the comparison
also on this aspect and not only on similar sequence of words, only CodeBLEU is used.
Specifically speaking, it compares the similarity between generated patches and relative
references for vulnerabilities extracted from Java classes. It automatically parses the

Java code and computes the final score by evaluating four different aspects:

« n_gram match: an n-gram is a sequence of n words; the match is given by the
comparison of the n-grams of the two inputs sequences;

« weighted_n_gram match: given n-grams, they have a weight associated with
them which allow to focus on relevant aspect of the code as input. The match is
given by computing the similarity between weighted n-grams;

« syntactic_match: after parsing the two input codes, their syntax is extracted and
the structure of the two codes (their Abstract Syntax Tree) is compared without
taking into account semantic similarity;

« dataflow_match: when parsing the codes, the flow of data is extracted. The input
codes are compared on the basis of how data flows in them: if the structure is
different, but the data follows the same or a similar path, then there is match in
terms of code behaviour.

These values comes together in the CodeBLEU score as stated in the following equa-

tion:

CodeBLEU = o X n_gram_match + X weighted_n_gram_match

+ ¥ X syntactic_match + 9 X dataflow_match (6.1)

Modifying the weights associated to the different scores, it is possible to notice which
of them results in being more relevant a the specific task; the goal of the evaluation is to
measure how close the generated patches are to the corresponding reference in terms of
semantic similarity. Hence, in addition to the computation of CodeBLEU where all the
components have the same weight, other computations are performed to consider the
syntactic and dataflow match more than the other two. In the matter of vulnerabilities

extracted from the Android Manifest file which are therefore written using xml, other

38

LLMs Evaluation for Android Vulnerability Repair

metrics are considered, which are commonly used for comparing texts and compute
their similarity. They include:

« Jaccard Similarity: also known as "intersection over union”. The two sentences

in inputs are considered as a set of words and the similarity score is given by the

total number of common words between the two sentences over the total number
of words. The score is a value between o (completely different) and 1 (identical);

+ Cosine Similarity: texts in inputs are transformed in vectors and the cosine of
the related angle indicates how close this two vectors are; it ranges between o
(completely different) and 1 (identical);

« Levenshtein Distance: it computes the total number of modifications at character-
level (insertion, deletion, substitution) needed to transform one sentence into the
other; the score is a value between o (identical) and 1 (completely different).

For consistency reasons, the actual value considered from Levenshtein Distance is
1 — lev(a, b), to have all the three metrics following the same criteria. These metrics
provide a quantitative analysis of the number of plausible or implausible patches, where
the plausible patch is intended to be the one similar to the respective reference patch; the
implausible one is considered to be consistently different from ground truth. Naturally,
human validation is conducted for each generated patch of every LLM under analysis,

to assure a semantic equivalence and therefore, the correctness of the patch.

6.2 NOTES ABOUT REsuLTSs TABLES

To be as clear as possible, results are presented by separating the Java vulnerabilities
from the XML-related ones, also because the metrics used for the two categories are
different. At first, LLMs are going to be evaluated for their performances on suggest-
ing repairs for Java and for XML vulnerabilities, separately. At a later stage, general
considerations will be explained.

Now, let’s suppose that the original dataset has been divided in two, one for Java-
related vulnerabilities and one for XML-related ones. All the tables report the similarity
score between ground truths and proposed fixes by the language model considered, for
a specific class of vulnerabilities (either from Java or XML). In particular, given a vul-
nerability at index i in the considered original dataset (either from Java or XML), then
at index i in each one of these tables there is the similarity score computed between

corresponding ground truth and relative suggested fix, for the same vulnerability at i.

39

LLMs Evaluation for Android Vulnerability Repair

6.3 CODEBLEU FOR JAVA-RELATED COMPARISON

6.3.1

CopeEBLEU ror CHATGPT-3.5 OUuTPUTS

Table 6.1 reports the single scores needed to compute CodeBLEU.

index n_gram_match weighted n_gram_match syntactic_match dataflow_match
1 0.6122643512 0.6301058114 0.6785714286 0.8

2 0.5943198196 0.6034361302 0.7 0.8

3 0.7261813303 0.7313136731 0.8709677419 1

4 0.3934549377 0.6238986072 0.3333333333 0.6666666667
185 0.6177986464 0.6051414259 0.5555555556 0.6

186 0.6106491161 0.813061341 0.9038461538 1

187 0.3158397558 0.5311122703 0.8035714286 0.972972973
188 0.7016879391 0.7063197941 1 0.8

Table 6.1: Metrics for evaluating CodeBLEU for repairs from ChatGPT-3.5 for Java-related vulnerabilities.

Table 6.2 reports the actual scores of three CodeBLEU configurations (described in Sec-

tion 7.1).

index codeBLEU 1 codeBLEU 2 codeBLEU 3
1 0.6802353978 0.7038555244 0.7083957451
2 0.6744389874 0.7046633925 0.7052910145
3 0.8321156863 0.8734629602 0.8731884868
4 0.5043383862 0.5026030317 0.5453201456
185 0.594623907 0.5878854553 0.59195411

186 0.8318891527 0.8799027224 0.8902917853
187 0.6558741069 0.7488333445 0.7544440895
188 0.8020019333 0.84120116 0.8167487424

Table 6.2: Corresponding CodeBLEU scores from 6.1 for ChatGPT-3.5 for Java-related vulnerabilities.

40

LLMs Evaluation for Android Vulnerability Repair

6.3.2

CobpeBLEU ror BARD OuTPUTS

Table 6.4 reports the single scores needed to compute CodeBLEU.

index n_gram_match weighted_n_gram_match syntactic_match dataflow_match
1 0.6122643512 0.6301058114 0.6785714286 0.8

2 0.005516564421 0.09913646904 0.2333333333 0.2

3 0.2582326872 0.6099792108 0.8064516129 0.7142857143
4 0.1025673262 0.5219910253 0 0.6666666667
185 0.610714568 0.8264569367 0.7777777778 0.6

186 0.7799306703 0.813061341 0.8846153846 1

187 0.7518285148 0.7747623579 0.8392857143 0.8918918919
188 0.5954165059 0.5962483963 0.95 0.7

Table 6.3: Metrics for evaluating CodeBLEU for repairs from Google Bard for Java-related vulnerabilities.

Table 6.4 reports the actual scores of three CodeBLEU configurations (described in Sec-

tion 7.1).

index codeBLEU 1 codeBLEU 2 codeBLEU 3
1 0.6802353978 0.7038555244 0.7083957451
2 0.1344965917 0.1673646217 0.163669107
3 0.5972373063 0.6624898492 0.6656452604
4 0.3228062545 0.3270170861 0.4074211556
185 0.7037373206 0.6977979479 0.7021301354
186 0.869401849 0.8985641863 0.9024122484
187 0.8144421197 0.8349007931 0.8354516263
188 0.7104162256 0.7562497353 0.7261037497

Table 6.4: Corresponding CodeBLEU scores from 6.3 for Google Bard for Java-related vulnerabilities.

41

LLMs Evaluation for Android Vulnerability Repair

6.3.3 CopEBLEU rOR ANDROID STUDIO BOoT OUTPUTS

Table 6.5 reports the single scores needed to compute CodeBLEU.

index n_gram_match weighted n_gram_match syntactic_match dataflow_match
1 0.6122643512 0.6301058114 0.6785714286 0.8

2 0.6122643512 0.6301058114 0.7 0.8

3 0.7872223756 0.7899291974 0.8709677419 1

4 0.3573352482 0.7734940377 0.3333333333 0.6666666667
185 0.8115699932 0.8221184302 0.75 0.6

186 0.5978251158 0.6696373429 0.7884615385 0.8181818182
187 0.7518285148 0.7747623579 0.8392857143 0.8918918919
188 0.4779995354 0.4805622828 0.75 0.3

Table 6.5: Metrics for evaluating CodeBLEU for repairs from Android Studio Bot for Java-related vulnerabilities.

Table 6.6 reports the actual scores of three CodeBLEU configurations (described in Sec-

tion 7.1).

index codeBLEU 1 codeBLEU 2 codeBLEU 3
1 0.6802353978 0.7038555244 0.7083957451
2 0.6855025407 0.7113555244 0.713752888
3 0.8620298287 0.8914114456 0.8939464724
4 0.5327073215 0.5196243929 0.5791070343
185 0.7459221059 0.7175532635 0.7141866069
186 0.7185204538 0.7524445436 0.7515799592
187 0.8144421197 0.8349007931 0.8354516263
188 0.5021404546 0.5112842727 0.4754405242

42

Table 6.6: Corresponding CodeBLEU scores from 6.5 for Google Bard for Java-related vulnerabilities.

LLMs Evaluation for Android Vulnerability Repair

6.4 METRICS FOR XML-RELATED COMPARISON

This section reports the scores for each metric used to compare XML-related outputs

with respective ground truth after pre-processing both of them (see Subsection 5.4.2).

6.4.1

METRICS FOR CHATGPT-3.5 OUTPUTS

Table 6.7 reports the scores for similarity after pre-processing type 1.

index jaccard_1 levenshtein_1 cosine 1

1 1 0.98125 1

2 0.4 0.4691943128 0.7644707872
14 0.7 0.5885167464 0.9144009144
15 0.7 0.5625 0.9296696802
16 0.4666666667 0.3648208469 0.8620601237
95 0.9285714286 0.4157608696 0.8967442657
96 0.4210526316 0.4596577017 0.7980986476

Table 6.7: Metrics for evaluating repairs from ChatGPT-3.5 for XML-related vulnerabilities (with pre-process 1).

Table 6.8 reports the scores for similarity after pre-processing type 2.

index

jaccard_2 levenshtein 2 cosine 2
1 1 1 1
2 1 1 1
14 0.6666666667 0.6616915423 0.905807819
15 0.6666666667 0.6324324324 0.8892972918
16 0.5 0.4 0.785905248
95 1 0.4981549815 1
96 0.7 0.7745098039 0.9356014857

Table 6.8: Metrics for evaluating repairs from ChatGPT-3.5 for XML-related vulnerabilities (with pre-process 2).

43

LLMs Evaluation for Android Vulnerability Repair

6.4.2

METRICS FOR GOOGLE BARD OUTPUTS

Table 6.9 reports the scores for similarity after pre-processing type 1.

index jaccard_1 levenshtein_1 cosine_1

1 1 0.68125 1

2 1 0.9292929293 1

14 0.7 0.5980861244 0.9253627917
15 0.7 0.5052083333 0.9486832981
16 0.8888888889 0.7567567568 0.9360565811
95 0.7647058824 0.385 0.9289853059
96 0.7 0.6 0.9216805029

Table 6.9: Metrics for evaluating repairs from Google Bard for XML-related vulnerabilities (with pre-process 1).

Table 6.10 reports the scores for similarity after pre-processing type 2.

index jaccard_2 levenshtein 2 cosine 2

1 1 0.5869565217 1

2 1 1 1

14 0.6666666667 0.6616915423 0.905807819
15 0.6666666667 0.6324324324 0.8892972918
16 0.7 0.6114285714 0.907841299
95 0.6153846154 0.6088560886 0.8436958339
96 0.6666666667 0.6666666667 0.8892972918

Table 6.10: Metrics for evaluating repairs from Google Bard for XML-related vulnerabilities (with pre-process 2).

44

LLMs Evaluation for Android Vulnerability Repair

6.4.3 METRICS FOR ANDROID STUDIO BOoT OUTPUTS

Table 6.11 reports the scores for similarity after pre-processing type 1.

index jaccard_1 levenshtein_1 cosine_1

1 1 0.68125 1

2 1 0.7575757576 0.9594032236
14 0.3636363636 0.3732057416 0.8164965809
15 0.5 0.5416666667 0.8082903769
16 0.8 0.6687116564 0.8805874421
95 0.7857142857 0.4571428571 0.9324566031
96 0.5454545455 0.4761904762 0.9223309842

Table 6.11: Metrics for evaluating repairs from Android Studio Bot for XML-related vulnerabilities (with pre-process

1).

Table 6.12 reports the scores for similarity after pre-processing type 2.

index jaccard_2 levenshtein_ 2 cosine 2

1 1 0.5869565217 1

2 1 1 0

14 0.1818181818 0.2537313433 0.6625891564
15 0.3 0.4162162162 0.672213997
16 0.6363636364 0.5885714286 0.8819171037
95 0.7692307692 0.4686346863 0.9296696302
96 0.5 0.6470588235 0.8488746876

Table 6.12: Metrics for evaluating repairs from Android Studio Bot for XML-related vulnerabilities (with pre-process

2).

45

LLMs Evaluation for Android Vulnerability Repair

6.5 HUMAN VALIDATION

This section provides the number of correct (True Positive) and incorrect (True Nega-
tive), computed by manually validating one by one the patches proposed by the single

LLMs, to state if they are semantically equivalent (or not) to the relative ground truth.

#TP #TN #total | TP % TN % total
ChatGPT-3.5 240 44 284 84.5% 15.5% 100%

Google Bard 254 30 284 | 89.4% 10.6% 100%
Android Studio Bot 96 188 284 | 33.8% 66.2% 100%

Table 6.13: Number of True Positive (TP) and True Negative (TN) comparing LLMs outputs to ground truth.

6.5.1 JAVA-RELATED OUTPUTS

Table 6.14 reports the total number of correct (TP) and incorrect (TN) predictions for

Java-related vulnerabilities.

#TP #TN #total | TP % TN % total
ChatGPT-3.5 165 23 188 87.8% 12.2% 100%
Google Bard 165 23 188 | 87.8% 12.2% 100%
Android Studio Bot 86 102 188 | 45.7% 54.3% 100%

Table 6.14: Number of True Positive (TP) and True Negative (TN) comparing LLMs Java-related outputs to ground
truth.

6.5.2 XML-RELATED OUTPUTS

Table 6.15 reports the total number of correct (TP) and incorrect (TN) predictions for
XML-related vulnerabilities.

#TP #TN #total | 2TP % TN % total
ChatGPT-3.5 75 21 96 78.1% 21.9% 100%

Google Bard 89 7 96 92.7% 7.3% 100%
Android Studio Bot 10 86 96 10.4% 89.6% 100%

Table 6.15: Number of True Positive (TP) and True Negative (TN) comparing LLMs XML-related outputs to ground
truth.

46

Discussion

This Chapter describes all the results shown in the previous one.

7.1 DISCUSSION OF JAVA-RELATED REPAIRS

Starting from Java-related patches, they have been evaluated with CodeBLEU metric.
As briefly described in Section 6.1, CodeBLEU is a variation of BLEU metric which is
based on n-grams; in particular, CodeBLEU is computed by taking into account four
different scores: n-gram match, weighted n-gram match, syntactic match and dataflow
match. To give insights about how the final score is computed, in Table 6.2, Table 6.4
and Table 6.6 are reported also the single scores. CodeBLEU score is a value between
o and 1, where o means that the two codes given as input are completely different; on
the other hand, the maximum score means that the inputs are identical. The two codes
given as input to CodeBLEU are the reference (manually generated ground truth) and
the prediction (LLM output) and the resulting score measures the syntactic and semantic
similarity between the reference and the prediction. The higher is the similarity score,
the higher is the probability that the patch suggested by the large language model is
plausible, since it is closer to the ground truth.

To understand how the weights influence the final score, three different contributions

are evaluated and reported in Table 7.1 (see Equation 6.1). Starting from codeBLEU_1,

47

LLMs Evaluation for Android Vulnerability Repair

all four components have the same weight and equally contribute to the final score.
The focus of the evaluation sees the semantic similarity at its core so in codeBLEU_2
and codeBLEU_3, both n-gram and weighted n-gram weights are reduced to give more
importance to the syntactic and dataflow match. The three configurations have been
evaluated on the all the three LLMs under analysis (ChatGPT, Bard and Studio Bot).

a 8 y J
codeBLEU 1 0.25 0.25 0.25 0.25

codeBLEU 2 o0.15 o0.15 0.35 0.35
codeBLEU 3 0.15 0.15 0.3 0.4

Table 7.1: Different weights for computing CodeBLEU.

To grasp more about which can be considered the best trade-off and, more impor-
tantly, to define which is the model that performed better, the average and the standard
deviation are computed for codeBLEU_1, codeBLEU_2 and codeBLEU_3, for all the three
LLMs and showed in Table 7.2 and Table 7.3.

The comparison is always done between LLMs outputs with respect to the same
ground truth and the pre-processed outputs are also the same, regardless of the used
metric. Starting from Table 7.2, results show that all the three configurations of Code-
BLEU have, on average, a higher score for ChatGPT, suggesting that it is the best one
in proposing repairs for analysed vulnerabilities and not only in terms of generating
patches close to the references. ChatGPT presents the lowest standard deviation values
for all the three configurations; thus, its performance results in being stable considering
all the different types of vulnerabilities given as input. The distance between ChatGPT,
Bard and Studio Bot is consistent among the metrics, having ChatGPT at first place,
Bard at second and Studio Bot as the last one. However, there is not so much difference
among the evaluated LLMs, in particular between Bard and Studio Bot.

To define which one is the best option is not enough to define the average and the
standard deviation, since the dataset is small (188 Java examples) and the number of
examples per rule is varying. Enlarging the dataset through the inclusion of more vul-
nerabilities for rules which have now very few associated examples, may change the
final result considering the small difference between the average scores.

Focusing specifically on the evaluated dataset, the higher CodeBLEU score is reached

48

LLMs Evaluation for Android Vulnerability Repair

by ChatGPT in all the three different configurations with an average score of about
0.614 obtained with codeBLEU_2 with weights set accordingly as stated in Table 7.1. In
general, the average scores for codeBLEU_3, where the highest weight is assigned to the
dataflow_match, are not the the best ones, suggesting that balanced weights between
dataflow and syntactic match scores may be a valid trade-off. Still, the distance between

them is considered minimal and a deeper analysis has to be carried out.

AVG_codeBLEU_ 1 AVG_codeBLEU 2 AVG_codeBLEU 3

ChatGPT 0.5839074774 0.6179233126 0.6095366419
Bard 0.5576255635 0.5846699652 0.5763806717
Studio Bot 0.5487934192 0.5747148596 0.5683750365

Table 7.2: Averages of the three CodeBLEU configurations for each LLM.

STDEV _codeBLEU 1 STDEV codeBLEU 2 STDEV codeBLEU 3

ChatGPT 0.5839074774 0.6179233126 0.6095366419
Bard 0.5576255635 0.5846699652 0.5763806717
Studio Bot 0.5487934192 0.5747148596 0.5683750365

Table 7.3: Standard deviation of the three CodeBLEU configurations for each LLM.

To have a confirmation that actually patches produced by ChatGPT are the ones more
similar to ground truth, a human validation has been done to get the number of True
Positive (TP) and True Negative (TN) for each tested LLM. Although, ChatGPT and Bard
share the same number of correct and incorrect proposed patches (see Table 6.14), their
difference in scores is likely due to the similarity of the suggested repairs compared to
the ground truth; therefore, even if Bard has a lower CodeBLEU score, it is still a valid
solution to adopt for APR tasks.

7.2 DI1SCUSSION OF XML-RELATED REPAIRS

As done in previous section for Java-related repairs, this section highlights the most
relevant results obtained by the analysis carried on patches proposed by LLMs when

tested for repairing vulnerabilities extracted from the Android Manifest file.

49

LLMs Evaluation for Android Vulnerability Repair

First of all, a summary of the averages scores and standard deviation from Jaccard, Co-
sine and Levenshtein metrics are reported in Table 7.4, considering the pre-processing
type 1 described in Section 5.4.2. As a result, from the average scores of each metric
Android Studio Bot has the highest similarity score and a very low standard deviation
considering cosine similarity measure. All the three metrics evaluations are consistently
declaring Studio Bot as the one proposing patches closer to the respective ground truth
and the low standard deviation for each metric also confirms such a consistency. How-
ever, these results are not reflecting the expectations if the number of True Positive
and True Negative are taken into account. Recalling the summary done in Table 6.15,
Studio Bot is the worst in generating repairs for XML vulnerabilities, with 89% of in-
correct patches. The reason why the evaluation of the three metrics see Studio Bot has
the LLM with the best performance is due to the faulty pre-processing; tokenizing the
snippets in single words turned out to be a bad approach. Most of the outputs produced
by ChatGPT and Bard contain additional information which is useful both for fixing
the vulnerability but also for giving more context, which is not interesting for the final
objective. For this reason, the number of words composing the outputs by ChatGPT and
Bard is definitely higher than the one of Studio Bot, ending up in having fixes proposed

by the latter considered more similar to ground truth but only in terms of lengths.

AVG_jaccard_1 AVG_levenshtein 1 AVG_cosine_1

ChatGPT 0.6520373258 0.5240478429 0.8422516469
Bard 0.6144601183 0.4421176694 0.8037802712
Studio Bot 0.6771177744 0.5939802569 0.8938985725

Table 7.4: Average for Jaccard, Cosine and Levenshtein for XML snippets pre-processed with word-tokenizer (pre-
process type 1).

STDEV_jaccard_1 STDEV_levenshtein_1 STDEV_cosine_1

ChatGPT 0.2406173385 0.2288010077 0.2238715795
Bard 0.2572517797 0.1982541917 0.3013320102
Studio Bot 0.1902175079 0.1666187735 0.08027792161

Table 7.5: Standard Deviation for Jaccard, Cosine and Levenshtein for XML snippets pre-processed with word-
tokenizer (pre-process type 1).

50

LLMs Evaluation for Android Vulnerability Repair

To support this intuition (confirmed by human validation), another type of pre- pro-
cessing has been defined as better explained in Section 5.4.2. This focuses only on rel-
evant part of the snippets to be compared, removing useless information added by the
LLMs, abstracting arbitrary values and giving the snippets a common format. Table
7.6 and Table 7.7 respectively show the updated averages and standard deviations for
the Jaccard, Cosine and Levenshtein metrics after the pre-processing (type 2). The aver-
age scores and corresponding standard deviations are now reflecting the expectations,
with ChatGPT and Bard performing the same on average for all the three metrics, while
Studio Bot has the lowest scores. In particular, for Jaccard similarity and Levenshtein
distance, ChatGPT reaches on average the highest score; on the other hand, Bard "wins”
considering Cosine similarity. However, the difference is definitively small and results
can be considered consistent among the metrics and to confirm so, it is possible to no-
tice that the standard deviation for ChatGPT is a little bit higher than the Bard ones,
suggesting that even if ChatGPT ends up in having a higher similarity score, this affir-
mation may be not true if evaluated on more examples; on the other hand, Bard keeps

the lowest standard deviation.

AVG_jaccard_2 AVG_levenshtein_2 AVG_cosine_2

ChatGPT 0.742248233 0.7184974773 0.8983001031
Bard 0.7372446178 0.6687946861 0.901329177
Studio Bot 0.5800937064 0.6196332359 0.611488562

Table 7.6: Average for Jaccard, Cosine and Levenshtein for XML snippets with pre-process type 2.

STDEV_jaccard_2 STDEV_levenshtein_2 STDEV_cosine_2

ChatGPT 0.1901469383 0.2070744872 0.1514960852
Bard 0.1754537826 0.2011573124 0.1188467039
Studio Bot 0.2718670314 0.2367921633 0.3475562218

Table 7.7: Standard Deviation for Jaccard, Cosine and Levenshtein for XML snippets with pre-process type 2.

To confirm such a discussion, human validation has been performed. Considering

Table 6.15, Bard reaches a greater number of True Positive with respect to ChatGPT,

51

LLMs Evaluation for Android Vulnerability Repair

suggesting that even if for the latter the average scores are a higher, its higher standard

deviation let the results be not so reliable.

7.3 GENERAL DISCUSSION AFTER HUMAN VALIDATION

To have a wider set of results to understand the overall performances of the LLMs, the
general Table 6.13 is a summary of the total number of correct patches proposed by the

three different LLMs where both Java- and XML-related outputs are taken into account.

Bard results in being the best model for generating repairs because of its better perfor-
mances for Android Manifest vulnerabilities. Overall, Bard and ChatGPT demonstrated
to be able to correctly fix most of the vulnerabilities given as input in a zero-shot sce-

nario, since no fine-tuning and no few-shot learning were applied.

Unexpectedly, Android Studio Bot is not reliable and demonstrated its inability in
fixing code. Most of the time, its outputs were a repetition of the code given as input
or a natural text affirming that the Bot was not able to understand the code; in other
cases, the solution provided was not inherent to the best practice associated with the
vulnerable code and which was supposed to guide the LLMs towards the correct imple-
mentation of the fix. For instance, Rule 20 is associated with the following best practice:
”If a service is explicitly exported, declare a permission to protect access to it. If a service de-
clares a permission but it is not explicitly exported, set exported attribute to true.” and the
repair suggested by Studio Bot for most cases was to just set the android:exported
attribute to “false”. Although this solution may seem correct, since the access to the
component is limited to its own application, it is not what the best practice intended:
the component still have to be visible to other applications but accessed only by the

ones declaring a specific permission.

Google described Android Studio Bot as a "LLM-powered chatbot tightly integrated
with Android Studio” [40] and, for this reason, it was supposed to have the best perfor-
mance with respect to the other two LLMs, which are general-purposes and not even
fine-tuned on a specific set of Android vulnerability examples; on the contrary, it re-

sulted to be the worst one.

52

LLMs Evaluation for Android Vulnerability Repair

7.4 HOW MUCH RELIABLE ARE THE EMPLOYED METRICS?

To confirm that considered metrics (CodeBLEU, Jaccard similarity and so on) are actu-
ally reliable and related to the results obtain by human validation, a deeper analysis has
been conducted. Metrics such as precision and recall can be more informative regard-
ing the predictions. For instance, precision gives a measure on how many predicted
correct patches are actually correct; recall, how many of the True Positive are correctly
predicted. These metrics help to understand how well a classifier performs from several
point of views.

Focusing on the particular case, metrics used in this project can be treated as “classi-
fiers” whose role is to give a measure of the similarity between the prediction (output)
of the LLM and the ground truth, and state if the output is correct or not. However,
the value assigned by the metrics is not binary (e.g o for incorrect, 1 for correct), but
it is between o and 1, which does not allow to have a precise number of False Positive
(i.e. predictions considered correct, but are actually incorrect) and False Negative (i.e.
predictions considered incorrect, but are actually correct). One strategy may be to set
a threshold T and state that for every score greater than T, the prediction is considered
correct and incorrect otherwise. Consequently, a possible path to follow is to evaluate
the Area Under the Curve (AUC) for the ROC curve (Receiver Operating Characteristic)
and for the Precision-Recall curve. In particular, the ROC curve is defined by the True
Positive Rate (TPR) and the False Positive Rate (FPR) at different threshold values. The
higher is the value of the Area Under the Curve (AUC), the better the classifier is, which
means that the value of the area is closer to 1 (perfect classifier, TPR=1 and FPR=0) and
not 0.5 (random classifier). The AUC for Precision-Recall curve is, instead, mainly used
in a scenario where the performances of the classifier with respect to correct predictions
is more relevant. Using a Python library called sklearn, the values for ROC-AUC and
PR-AUC can be easily computed as shown below:

from sklearn import metrics

roc_auc_score = metrics.roc_auc_score(<y_true>, <y_scores>)

pr_auc_score = metrics.average_precision_score(<y_true>, <y_scores>)

Listing 7.1: ROC-AUC and PR-AUC computation.

»_»

where y_true represents the list of True Positive (i.e. 1”) and True Negatives (i.e. "0”)

obtained after human validation and y_scores are the outputs, in this case, of the metrics.

53

LLMs Evaluation for Android Vulnerability Repair

For instance, to get how well codeBLEU _1 performed on average, the following steps are

executed:
1. compute ROC-AUC and PR-AUC for each pair:

« (human_validation, codeBLEU_1_chatgpt)
o (human_validation, codeBLEU_1_bard)
o (human_validation, codeBLEU _1_studiobot)

where codeBLEU_1_<LLM-> is the list of all the similarity scores computed by Code-
BLEU (with configuration 1) for the <LLM> outputs with respect to the ground
truth.

2. once all the pairs have their ROC-AUC and PR-AUC scores, it is possible to com-
pute their average;

3. repeat the process at step 1 for each other metric (codeBLEU 2, codeBLEU._3, jac-
card_2, levenshtein_2, cosine_2).

As a note, metrics used for XML-related outputs, only the ones computed after pre-
process type 2 (i.e. jaccard_z, levenshtein_z, cosine_z) are evaluated in this analysis, since
they already resulted to be more reliable and accurate then the ones computed for LLM
outputs pre-processed with pre-process type 1. Table 7.8 and Table 7.9 show results about
the ROC-AUC and PR-AUC scores computed for each configuration of CodeBLEU and
for each LLM; with the same reasoning, Table 7.10 and Table 7.11 report results about
ROC-AUC and PR-AUC for metrics used for XML-related outputs.

After conducting such an analysis, it is possible to affirm that:

+ codeBLEU 2 has the highest ROC-AUC and PR-AUC values on average and, ac-
cordingly to what has been explained before in this section, this result suggests
that the metric has a lower rate of False Positive (from ROC-AUC score) and that
it has better performances in predicting the positive class (i.e. having correct
patches, more similar to the ground truth);

+ same reasoning applies to cosine_2z. It has, on average, the best value for both for
ROC-AUC and PR-AUC.

What is stated before can be considered as a confirmation of all the discussions car-
ried out in this Chapter, since from the previous analysis in Section 7.1 and Section 7.2,

codeBLEU_z and cosine_z were already considered as the most performing ones.

54

LLMs Evaluation for Android Vulnerability Repair

Note that in all the tables below _C stands for ChatGPT-3.5, B stands for Bard, S
stands for Studio Bot.

ROC-AUC_C ROC-AUC_B ROC-AUC_S | ROC-AUC_AVG
codeBLEU 1 0.6005 0.6585 0.6809 0.6466333333
codeBLEU 2 0.5989 0.6519 0.7041 0.6516333333
codeBLEU 3 0.5768 0.653 0.7046 0.6448

Table 7.8: ROC-AUC values for CodeBLEU metric (all the configurations).

PR-AUC_C PR-AUC_B PR-AUC_S | PR-AUC_AVG
codeBLEU 1 0.9251 0.931 0.6715 0.8425333333
codeBLEU_2 0.9211 0.931 0.6952 0.8491
codeBLEU 3 0.9173 0.931 0.6948 0.8477

Table 7.9: PR-AUC values for CodeBLEU metric (all the configurations).

ROC-AUC_C ROC-AUC_B ROC-AUC_S | ROC-AUC_AVG
jaccard_2 0.8133 0.5819 0.6442 0.6798
levenshtein_2 0.7571 0.4848 0.4587 0.5668666667
cosine_2 0.7971 0.4695 0.8523 0.7063

Table 7.10: ROC-AUC values for Jaccard, Levenshtein and Cosine (computed on outputs with pre-process type 2).

PR-AUC_C PR-AUC_B PR-AUC_S | PR-AUC_AVG
jaccard_2 0.9342 0.9258 0.1582 0.6727333333
levenshtein_2 0.9041 0.9114 0.1003 0.6386
cosine_2 0.9287 0.9093 0.6785 0.8388333333

Table 7.11: PR-AUC values for Jaccard, Levenshtein and Cosine (computed on outputs with pre-process type 2).

55

Future Works

This project can be considered as a starting point not only for a more accurate and
precise evaluation of LLMs, but also for a larger dataset on which to test them or to
build up (train, validate, test) new valuable tools.

Among several future directions and paths to explore, the most relevant ones are cited

below:

1. enlarging the dataset, by adding new vulnerabilities taken from real-world ap-
plication as much as it is possible to have more examples for each vulnerability
type already included in it. Furthermore, it may be enlarged by synthetically cre-
ating new vulnerabilities which violate the best practices not considered in this
project, so to cover the highest number best practices - violated and patched - de-
fined by Google for Android-based software implementation. Naturally, taking
into account the idea of a large dataset collecting general Android vulnerabilities,
examples from other domains can be integrated as well;

2. further exploring the full potentiality of LLMs and how better they can perform
in different scenarios such as in-context learning;

3. considering that the behaviour of LLMs is non-deterministic, the overall results
may vary; therefore, an additional analysis may include prompting the single LLM
with the same prompt multiple times, guaranteeing that no training is active (e.g.
in ChatGPT case) and a new chat is started every time. This may lead to a better
idea of how the LLM can fix the vulnerable code and if it is able to. For instance,

56

LLMs Evaluation for Android Vulnerability Repair

in the case of an incorrect proposed patch, this may be due to the LLM incapacity
or it may just be an isolated case.

4. analyse the performances of the LLMs on single categories of vulnerabilities and
not on their totality (all the ones from Java or XML). The analysis on one vul-
nerability type at a time can highlights their limits and more critical aspects in
repairing them, understanding the common underlying pattern of their mistakes
while producing the fix.

In general, research about large language models is to be considered promising. The
overall evaluation shows how general-purposes LLMs were able to repair most of the
vulnerabilities without any additional context; therefore, applying suggestions described
above only leads to positive expectations about their possible improvement in perfor-

mances.

57

Conclusion

In a scenario in which there is a lack of datasets collecting vulnerabilities examples, there
is a even deeper unavailability of datasets regarding vulnerabilities with their related
fixes and specific Android vulnerabilities. This project aims to fix this gap or, at least,
starting to build a new path to do so. A new dataset is proposed and it is based on
Android vulnerabilities; it has been developed not only to be a general contribution, but
mainly to test Large Language Models (LLMs) for code repair tasks from the field of
Automated Program Repair (APR); in particular, Android vulnerabilities.

The dataset created is not only a collection of several vulnerabilities, but it also con-
tains related fixes (considered as a ground truth when it comes to evaluate the models).
They have been manually implemented and tested, to ensure that for an already suc-
cessfully compiling application, no compilation errors are going to be introduced by the
fix. Once the ground truth for each vulnerability in the dataset has been implemented,
the three chosen LLMs (ChatGPT-3.5, Google Bard and Android Studio Bot) have been
evaluated by being prompted with the vulnerable code snippet and the respective best
practice that the code violates.

Through several similarity metrics, their outputs have been compared with the previ-
ously implemented ground truth. The overall results is positive for ChatGPT and Bard,
which were able to repair the majority of the vulnerabilities from the created dataset,
respectively, 85% and 89% of patches proposed by the two LLMs were set as corrected,

after manual validation; on the other hand, Android Studio Bot turned out to have the

58

LLMs Evaluation for Android Vulnerability Repair

lowest performances, not being able to correctly repair more than the half of the to-
tal vulnerabilities (only 34%). In particular, it has worse performances when trying to
fix vulnerabilities extracted from the Android Manifest file. These results suggest that
LLMs are not bullet-proof and have to be deeply explored in their limits and a possible
way to let their predictions improve. However, considering that they are already capa-
ble to understand the problem and to provide a correct solution most of the time even
in a zero-shot scenario, including few-shot scenario or fine-tuning them can only lead
to positive expectations, where they can achieve high levels of precision and probably

being officially a valid - or maybe better - alternative to traditional APR tools.

59

LLMs Evaluation for Android Vulnerability Repair

60

[1]

[2]

[6]

[7]

References

Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learning for
repairing security vulnerabilities in ¢ code,” IEEE Transactions on Software
Engineering, vol. 49, no. 1, pp. 147-165, 2022. [Online]. Available: https:
//doi.org/10.1109/TSE.2022.3147265

J. Chi, Y. Qu, T. Liu, Q. Zheng, and H. Yin, “Seqtrans: automatic
vulnerability fix via sequence to sequence learning,” IEEE Transactions on
Software Engineering, vol. 49, no. 2, pp. 564-585, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2022.3156637

M. Monperrus, “Automatic software repair: A bibliography,” ACM Computing
Surveys (CSUR), vol. 51, no. 1, pp. 1-24, 2018. [Online]. Available: https:
//doi.org/10.1145/3105906

W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software
fault localization,” IEEE Transactions on Software Engineering, vol. 42, no. 8, pp.
707-740, 2016. [Online]. Available: https://doi.org/10.1109/TSE.2016.2521368

K. Huang, Z. Xu, S. Yang, H. Sun, X. Li, Z. Yan, and Y. Zhang, “A survey
on automated program repair techniques,” arXiv preprint arXiv:2303.18184, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2303.18184

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al, “A survey of large language models,” arXiv preprint
arXiv:2303.18223, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2303.
18223

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017. [Online]. Available:
https://doi.org/10.5555/3295222.3295349

61

https://doi.org/10.1109/TSE.2022.3147265
https://doi.org/10.1109/TSE.2022.3147265
https://doi.org/10.1109/TSE.2022.3156637
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.48550/arXiv.2303.18184
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.5555/3295222.3295349

LLMs Evaluation for Android Vulnerability Repair

[8]

[10]

[14]

[15]

[16]

A.Radford,J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language mod-
els are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019. [On-
line]. Available: https://d4mucfpksywv.cloudfront.net/better-language-models/

language_models_are_unsupervised_multitask_learners.pdf

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp.
5485-5551, 2020. [Online]. Available: https://doi.org/10.48550/arXiv.1910.10683

Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeTs5: Identifier-aware Unified Pre-
trained Encoder-Decoder Models for Code Understanding and Generation,” 2021,
p- 8696 — 8708. [Online]. Available: https://doi.org/10.48550/arXiv.2109.00859

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al, “CodeBERT: A Pre-Trained Model for Programming and
Natural Languages,” arXiv preprint arXiv:2002.08155, 2020. [Online]. Available:
https://doi.org/10.48550/arXiv.2002.08155

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy,
S. Fu et al, “GraphCodeBERT: Pre-training Code Representations with

Data Flow,” arXiv preprint arXiv:2009.08366, 2020. [Online]. Available: https:
//doi.org/10.48550/arXiv.2009.08366

C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in Proceedings of the 3oth
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2022, pp. 959—971. [Online]. Available:
https://doi.org/10.1145/3540250.3549101

“Google Bard” [Online]. Available: https://blog.google/technology/ai/

bard-google-ai-search-updates/

“Android Studio Bot” [Online]. Available: https://developer.android.com/studio/

preview/studio-bot

R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common

c language errors by deep learning,’ in Proceedings of the aaai conference

62

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.48550/arXiv.1910.10683
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.1145/3540250.3549101
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://developer.android.com/studio/preview/studio-bot
https://developer.android.com/studio/preview/studio-bot

LLMs Evaluation for Android Vulnerability Repair

[20]

[21]

(23]

[24]

[25]

on artificial intelligence, vol. 31, no. 1, 2017. [Online]. Available: https:
//doi.org/10.1609/aaai.v31i1.10742

“Global Market Held By Mobile Operating Systems” [On-
line]. Available: https : // www . statista . com / statistics / 272698 /
global-market-share-held-by-mobile-operating-systems-since-2009/

“App Security Best Practices” [Online]. Available: https://developer.android.

com/privacy-and-security/security-tips

Q. Zhang, C. Fang, Y. Ma, W. Sun, and Z. Chen, “A survey of learning-based
automated program repair, ACM Trans. Softw. Eng. Methodol., 2023. [Online].
Available: https://doi.org/10.1145/3631974

M. Monperrus, “The Living Review on Automated Program Repair, 2020.
[Online]. Available: https://hal.science/hal-01956501

C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the era of large
pre-trained language models,” in Proceedings of the 45th International Conference
on Software Engineering (ICSE 2023). Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00129

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman et al, “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374, 2021. [Online]. Available:
https://doi.org/10.48550/arXiv.2107.03374

H. Joshi, J. C. Sanchez, S. Gulwani, V. Le, G. Verbruggen, and I. Radicek, “Repair
is nearly generation: Multilingual program repair with llms,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 37, no. 4, 2023, pp. 5131-5140.
[Online]. Available: https://doi.org/10.48550/arXiv.2208.11640

N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language models
on automated program repair, 2023, p. 1430 — 1442. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00125

C. S. Xia and L. Zhang, “Conversational automated program repair,” arXiv
preprint arXiv:2301.13246, 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2301.13246

63

https://doi.org/10.1609/aaai.v31i1.10742
https://doi.org/10.1609/aaai.v31i1.10742
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://developer.android.com/privacy-and-security/security-tips
https://developer.android.com/privacy-and-security/security-tips
https://doi.org/10.1145/3631974
https://hal.science/hal-01956501
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2208.11640
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.48550/arXiv.2301.13246
https://doi.org/10.48550/arXiv.2301.13246

LLMs Evaluation for Android Vulnerability Repair

[26]

[27]

[31]

(33]

M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vulrepair: a
t5-based automated software vulnerability repair, in Proceedings of the 3oth
ACM jJoint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2022, pp. 935-947. [Online]. Available:
https://doi.org/10.1145/3540250.3549098

H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining zero-shot
vulnerability repair with large language models,” in 2023 IEEE Symposium on
Security and Privacy (SP). IEEE, 2023, pp. 2339-2356. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179420

O. Lieber, O. Sharir, B. Lenz, and Y. Shoham, “Jurassic-1: Technical details and

evaluation,” White Paper. Alz1 Labs, vol. 1, 2021.

S. Feng and C. Chen, “Prompting is all your need: Automated android bug replay
with large language models,” arXiv preprint arXiv:2306.01987, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2306.01987

Y. Zhao, T. Su, Y. Liu, W. Zheng, X. Wu, R. Kavuluru, W. G. Halfond,
and T. Yu, “Recdroid+: Automated end-to-end crash reproduction from bug

2]

reports for android apps,”, ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 3, pp. 1-33, 2022. [Online]. Available:

https://doi.org/10.1145/3488244

J. Johnson, J. Mahmud, T. Wendland, K. Moran, J. Rubin, and M. Fazzini,
“An empirical investigation into the reproduction of bug reports for android
apps, in 202z IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2022, pp. 321-322. [Online]. Available:
https://doi.org/10.1109/SANERS53432.2022.00048

Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided test
input generator for android,” in zo17 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C). IEEE, 2017, pp. 23-26. [Online].
Available: https://doi.org/10.1109/ICSE-C.2017.8

Z. Namrud, S. Kpodjedo, and C. Talhi, “Androvul: A repository for android

security vulnerabilities,” in Proceedings of the 29th Annual International

64

https://doi.org/10.1145/3540250.3549098
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179420
https://doi.org/10.48550/arXiv.2306.01987
https://doi.org/10.1145/3488244
https://doi.org/10.1109/SANER53432.2022.00048
https://doi.org/10.1109/ICSE-C.2017.8

LLMs Evaluation for Android Vulnerability Repair

Conference on Computer Science and Software Engineering, 2019, pp. 64—71.
[Online]. Available: htpps://doi.org/10.5555/3370272.3370279

[34] “AndroBugs Framework as an Android Vulnerability Analysis System.” [Online].

Available: https://www.androbugs.com/

[35] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting millions
of android apps for the research community,” in Proceedings of the 13th interna-

tional conference on mining software repositories, 2016, pp. 468—471.

[36] J. Gajrani, M. Tripathi, V. Laxmi, G. Somani, A. Zemmari, and M. S. Gaur,
“Vulvet: Vetting of vulnerabilities in android apps to thwart exploitation,” Digital

Threats: Research and Practice, vol. 1, no. 2, pp. 1-25, 2020. [Online]. Available:
https://doi.org/10.1145/3376121

[37] “F-Droid: Free and Open Source Android App Repository.” [Online]. Available:
https://f-droid.org/

[38] “SPECK: From Google Textual Guidelines to Automatic Detection of
Android Apps Vulnerabilities” [Online]. Available: https://github.com/
SPRITZ-Research-Group/SPECK

[39] “JADX: Dex to Java Decompiler” [Online]. Available: https://github.com/skylot/
jadx

[40] “Android Studio Bot as a LLM-powered chatbot” [Online]. Available: https:

//developer.android.com/studio/preview/studio-bot#other-chatbots

[41] J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang, and H. Hemmati, “Prompt
engineering or fine tuning: An empirical assessment of large language models
in automated software engineering tasks,” arXiv preprint arXiv:2310.10508, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2310.10508

65

htpps://doi.org/10.5555/3370272.3370279
https://www.androbugs.com/
https://doi.org/10.1145/3376121
https://f-droid.org/
https://github.com/SPRITZ-Research-Group/SPECK
https://github.com/SPRITZ-Research-Group/SPECK
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://developer.android.com/studio/preview/studio-bot#other-chatbots
https://developer.android.com/studio/preview/studio-bot#other-chatbots
https://doi.org/10.48550/arXiv.2310.10508

LLMs Evaluation for Android Vulnerability Repair

66

Appendix A

Appendix A provides the list of all the applications analysed for the realisation of the

dataset.
Applications List

azdpvolume azlinux aagtl
aard2 addi adsdroid
agoradesk aGrep air_guard
airmessage alarmclock aLogCat
alovoa amazed androidomatic-keyer
anonymous-messenger | antennapod anycut
anymemo apg-master apk-mirror
appcachecleaner aruba-networks-login | arxiv-papers-mobile
audio-share autoanswer babyphone
barinsta basedcooking batterydog
bites blokish blood-pressure-monitor
bluepass bookcatalogue book-listing-app
camera-align canta catima
cfc-master clima collins-dictionary
content-blocker cryptomator dawdle
deepl destiny duckduckgo

67

LLMs Evaluation for Android Vulnerability Repair

Applications List

easy_xked

evmap

flipper

gpt-assist
homeassistant
keepass2android
librepass
lockpatterngenerator
lucia-app

mileage
mullvadvpn
myexpenses
notesnook
open-hub
opentrack
passwdsafe
paynoway
privacycell
remote-video-cam
seguime

silence
simplytranslate_mobile
sound-recorder
stoic_reading
telegram-foss
tiny-travel-tracker
unstoppable-wallet
watomatic
weight-chart

windscribe

ebook-downloader
fake-traveler
fluffychat

hacki

hotdeath
kpassnotes
linuxcommandlibrary
logmein
manpages
mininoteviewer
multismssender
mylock
omweather
open-in-wa
passport-reader
passwordmaker
pcapdroid
quickmsg

sanity
share-my-number
simple-login
sleepy-wifi
squawker

swiftp

tice
tracker-control
vigilante

webcall
whohasmystuff
word-of-the-day

element
fdroidclient
frozenbubble
hex-viewer

kg

leon

localsend
lolcatbuilder
midori
monocles-chat
munchlife
nectroid
opencamera-code
openrecipes
pass-store

passy

pincredible
recordyou
savertuner
sharex
simplex-chat-stable
smart-cookies-web
status-mobile
telegram-android
tinfoil-twitter
twire

water-me
webmon
wikipedia

worldclock

68

Appendix B

The Appendix B wants to illustrate examples of vulnerable code and respective ground
truth for each best practice such that a violation is included in the dataset. For each
"Rule” (best practice), two examples are shown; in case of rules for which only one

violation has been found, it is reported as well.

B.1 RULE 1: SHOW AN APP CHOOSER

Best practice: "Show an app chooser. Implicit intents may be handled by more than one

activity, therefore show an app chooser before launching the intent”

public void onCreate(Bundle -icicle) {
// rest of the code
final Intent dintent = getIntent();
if (intent.getData() == null) {
intent.setData(Provider.Recipes.CONTENT_URI);
}
action = dintent.getAction();
// rest of the code

Listing B.1: Vulnerable code for 1.

69

LLMs Evaluation for Android Vulnerability Repair

// fix1l: show an app chooser for implicit intent which may be handled by
more than one activity
// check 1if the number of possible activities that can manage the {intent 1s

greater than 1, if so, show an app chooser

public void onCreate(Bundle 1icicle) {
// rest of the code
final Intent dintent = getIntent();
if (intent.getData() == null) {
intent.setData(Provider.Recipes.CONTENT_URI);
}
action = dintent.getAction();
// fix1
List<ResolveInfo> possibleActivitiesList = getPackageManager().
queryIntentActivities(intent, PackageManager .MATCH_ALL);
if (possibleActivitiesList.size() > 1) {
String title = getResources().getString(R.string.chooser_title);
Intent chooser = Intent.createChooser(intent, title);
startActivity(chooser);
}
// rest of the code

Listing B.2: Ground truth for 1.

public void onClickFilesSelect() {
Intent i = new Intent(Intent.ACTION_GET_CONTENT);
i.setType("*x/x");
i.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, true);
mutipleFilesActivityResultLauncher.launch(i);
// rest of the code

Listing B.3: Vulnerable code for 1.

// fix1l: show an app chooser for implicit intent which may be handled by
more than one activity
// check if the number of possible activities that can manage the 1intent is

greater than 1, if so, show an app chooser

public void onClickFilesSelect() {
Intent i = new Intent(Intent.ACTION_GET_CONTENT);

70

LLMs Evaluation for Android Vulnerability Repair

6 i.setType("*x/x");

7 i.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, true);

5 /] fixl

9 List<ResolveInfo> possibleActivitiesList = getPackageManager().
queryIntentActivities(i, PackageManager.MATCH_ALL);

10 if (possibleActivitiesList.size() > 1) {

1 String title = getResources().getString(R.string.chooser_title);

12 Intent chooser = Intent.createChooser(i, title);

13 startActivity(chooser);

14 } else {

15 mutipleFilesActivityResultLauncher.launch(i);

16 }

17 // rest of the code

Listing B.4: Ground truth for 1.

B.2 RULE 3: REMOVE UNUSED PERMISSIONS

Best practice: "Remove unused permissions. They are declared in the manifest but there

are no components that need them.”

1 <uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE"
/>

Listing B.5: Vulnerable code 1 for Rule 3.

1 <!I--fix3: the permission is never called or used in the app, no need to declare
it-->
» <!--delete or comment the permission-->
;3 <!--<uses-permission android:name="android.permission.
CHANGE_WIFI_MULTICAST_STATE" />-->

Listing B.6: Ground truth 1 for Rule 3.

1 <uses-permission android:name="android.permission.WAKE_LOCK"></uses-permission>

Listing B.7: Vulnerable code 2 for Rule 3.
1 <!--fix3: the permission is never called or used in the app, no need to declare

it-->

> <!--delete or comment the permission-->

71

LLMs Evaluation for Android Vulnerability Repair

; <!-—<uses-permission android:name="android.permission.WAKE_LOCK"></uses-

permission>-->

Listing B.8: Ground truth 2 for Rule 3

B.3 RULE 4: USE INTENTS TO DEFER PERMISSIONS

Best practice: "Use intents to defer permissions. There are several dangerous permis-
sions that may be avoided just by using intents to perform the same operation”
public void sendMessage(Handler handler) {

// rest of the code
for (int i = message_sent; i < chunk_max; i++) {

4 message_sent++;

5 String newN = numbers[i];

6 Message msg = handler.obtainMessage();

7 Bundle b = new Bundle();

8 b.putInt("ORIGIN", DIALOG_PROGRESS);

9 b.putInt("total", (i * 100) / size);

10 msg.setData(b);

1 handler.sendMessage(msg);

12 ArrayList<PendingIntent> deliveryIntents = null;

13 ArraylList<PendingIntent> sentIntents = null;

14 if (haveDeliveryReports) {

15 deliveryIntents = new ArrayList<PendingIntent>(messageCount);

16 sentIntents = new ArraylList<PendingIntent>(messageCount);

) ContentValues values = new ContentValues();

18 values.put("address", newN);

19 values.put("body", message);

20 getContentResolver () .insert(Uri.parse("content://sms/sent"), values
)5

21 long entryId = deliveryIdMap.get(newN);

B for (int j = 0; j < messageCount; j++) {
. if (j == (messageCount - 1)) {
24 Uri entryURT = Uri.withAppendedPath(DeliveryDbAdapter.

CONTENT_DELIVERY_URI, "" + entryId);
Intent intent = new Intent(MessageReceiver.MESSAGE_RECEIVED

, entryURI, this, MessageReceiver.class);
26 deliveryIntents.add(PendingIntent.getBroadcast(this, 0,
intent, 0));

72

LLMs Evaluation for Android Vulnerability Repair

} else {
deliveryIntents.add(null);

}
manager.sendMultipartTextMessage(newN, null, messages, sentIntents,
deliveryIntents);

1
// rest of the code

Listing B.9: Vulnerable code for Rule 4.

// fix4: use intents instead of dangerous permission

public void sendMessage(Handler handler) {
// rest of the code
for (int i = message_sent; i < chunk_max; i++) {

message_sent++;

String newN numbers[i];

Message msg = handler.obtainMessage();
Bundle b = new Bundle();

b.putInt("ORIGIN", DIALOG_PROGRESS);
b.putInt("total", (i * 100) / size);
msg.setData(b);

handler.sendMessage(msg);

// rest of the code

/] fix4

Intent sendMsg = new Intent(this, MessageReceiver.class);
sendMsg.setAction(Intent.ACTION_SENDTO) ;
sendMsg.setData(Uri.parse("smsto:" + newN));
sendMsg.putExtra("sms_body", messages);

startActivity(sendMsg);

manager.sendMultipartTextMessage(newN, null, messages, sentIntents,
deliverylIntents);

}
// rest of the code

Listing B.10: Ground truth for Rule 4.

73

LLMs Evaluation for Android Vulnerability Repair

B.4 RULE 5: USE SSL TRAFFIC

Best practice: Do not use HttpURLConnection but its secure version HttpsURLConnec-
tion and handle possible risk of SSLHandshakeException.”

. private InputStream doPost2(String urlString, List<NameValuePair> values,

ByteArrayOutputStream content) throws IOException {

URL url = new URL(urlString);

HttpURLConnection con = (HttpURLConnection) url.openConnection();
// rest of the code

Listing B.11: Vulnerable code 1 for Rule 5.

v // fix5: do not use HttpURLConnection, but [its secure version

HttpsURLConnection

> // NOTE: add the necessary imports and handle SSLHandshakeException in a try-

catch block

; private InputStream doPost2(String urlString, List<NameValuePair> values,

ByteArrayOutputStream content) throws IOException {
URL url = new URL(urlString);
// fix5
try {
HttpsURLConnection con = (HttpsURLConnection) url.openConnection();
} catch (SSLHandshakeException e) {
e.printStackTrace();
}
// rest of the code

Listing B.12: Ground truth 1 for Rule 5.

. private StatusCode login_runner(String username, String password) throws

Exception {

// rest of the code

URL puServerUrl = new URL(request);

URLConnection puServerConnection = puServerUrl.openConnection();
// rest of the code

Listing B.13: Vulnerable code 2 for Rule 5.

74

LLMs Evaluation for Android Vulnerability Repair

1 // fix5: do not use HttpURLConnection, but its secure version
HttpsURLConnection

. // NOTE: add the necessary imports and handle SSLHandshakeException in a try-
catch block

3

. private StatusCode login_runner(String username, String password) throws
Exception {

5 // rest of the code

6 URL puServerUrl = new URL(request);

7 // fix5: declare "puServerConnection" as HttpsURLConnection and handle
SSLHandshakeException

8 try {

9 HttpsURLConnection puServerConnection = (HttpsURLConnection)
puServerUrl.openConnection();

10 } catch (SSLHandshakeException e) {

" e.printStackTrace();

12 }

13 // rest of the code

Listing B.14: Ground truth 2 for Rule 5.

B.5 RULE 6: USE JAVASCRIPT CAREFULLY

Best practice: Do not enable Javascript interface for a WebView if Javascript is not al-

lowed. Enable it only if the Javascript interface is safe to use.”

. public ArticleWebView(Context context, AttributeSet attrs) {

> super (context, attrs);
3 // rest of the code
4 WebSettings settings = this.getSettings();

5 settings.setJavaScriptEnabled(true);

6 // rest of the code

7 this.addJavascriptInterface(this, "$SLOB");
8 // rest of the code

Listing B.15: Vulnerable code 1 for Rule 6.

75

LLMs Evaluation for Android Vulnerability Repair

1 // fix6: pay attention when using Javascript interface along with a WebView

: // enable it only if necessary

s public class ArticleWebView extends WebView {

6 public ArticleWebView(Context context, AttributeSet attrs) {

1

6

2

super (context, attrs);
// rest of the code

WebSettings settings = this.getSettings();
// fix6: add an if block to check if the condition 1is satisfied and 3JS

is safe to use
if (isISAllowed()) {

settings.setJavaScriptEnabled(true);

// rest of the code

this.addJavascriptInterface(this, "$SLOB");

// rest of the code

// fix6: define here your condition

private boolean isJSAllowed() {
// condition

return true;

// rest of the code

Listing B.16: Ground truth 1 for Rule 6.

private void init(AttributeSet attrs)
// rest of the code

WebSettings settings = getSettings();

{

settings.setJavaScriptEnabled(true);

// rest of the code

Listing B.17: Vulnerable code 2 for Rule 6.

// fix6: pay attention when using Javascript interface along with a WebView

// enable it only if necessary

76

LLMs Evaluation for Android Vulnerability Repair

3

4 private void 1init(AttributeSet attrs) {

5 // rest of the code

6 WebSettings settings = getSettings();

7 // fix6: add an if block to check if the condition 1is satisfied and 3JS i1s
safe to use

8 if (isJSAllowed()) {

9 settings.setJavaScriptEnabled(true);

10 }
11 // rest of the code

y // fix6: define here your condition
15 private boolean isJSAllowed() {
16 // condition

17 return true;

Listing B.18: Ground truth 2 for Rule 6.

B.6 RULE 7: WHITELIST URL LOADED IN WEBVIEW

Best practice: Do not load urls into a WebView if they are not from a whitelist”

// rest of the code

> webView = findViewById(R.id.webView0);
webView.loadUr1("file:///android_asset/map.html");
// rest of the code

Listing B.19: Vulnerable code 1 for Rule 7.

// fix7: add the .setWebViewClient() to override the shouldOverrideUrlLoading
method and
> // check whether the URL is safe to load (it belongs to a whitelist)

webView = findViewById(R.id.webView0);

// rest of the code

// fix7: add .setWebViewClient
webView.setWebViewClient(new MyWebViewClient() {

8 @Override

5

N

77

LLMs Evaluation for Android Vulnerability Repair

public boolean shouldOverrideUrlLoading(WebView view, WebResourceRequest
request) {
String url = request.getUrl().toString();
// fix7: check if the URL 1is in a whitelist
if (isAllowed(url)) {
//the url to be loaded with webview 1is ok
return false;

} else { return true; } //blocking the url - overriding

// fix7: define here your whitelist
private boolean isAllowed(String url) {
Set<String> allowed_urls = new HashSet<>();
// add elements to the set
if (allowed_urls.contains(url)) {
return true;

} else { return false; }

7 1)

// rest of the code
webView.loadUr1("file:///android_asset/map.html");

Listing B.20: Ground truth 1 for Rule 7.

// rest of the code
myWebView.setVisibility(View.VISIBLE);
myNewWebView.setVisibility(View.INVISIBLE);
myNewWebView. loadUr1("about:blank");
return;

// rest of the code

Listing B.21: Vulnerable code 2 for Rule .

// fix7: add the .setWebViewClient() to override the shouldOverrideUrlLoading
method and
// check whether the URL is safe to load (it belongs to a whitelist)

// rest of the code
myNewWebView.setVisibility(View.INVISIBLE);

// fix7: add .setWebViewClient
myNewWebView.setWebViewClient(new MyWebViewClient() {

78

1

2

3

6

LLMs Evaluation for Android Vulnerability Repair

}

@Override
public boolean shouldOverrideUrlLoading(WebView view, WebResourceRequest
request) {
String url = request.getUrl().toString();
// fix7: check if the URL 1is in a whitelist
if (isAllowed(url)) {
//the url to be loaded with webview is ok
return false;
} else { return true; } //blocking the url - overriding

// fix7: define here your whitelist
private boolean isAllowed(String url) {
Set<String> allowed_urls = new HashSet<>();
// add elements to the set
if (allowed_urls.contains(url)) {
return true;
} else { return false; }

I
// rest of the code

myNewWebView. loadUr1("about:blank");

return;
// rest of the code

Listing B.22: Ground truth 2 for Rule .

B.7 RULE 9: SHARE DATA SECURELY ACROSS APPLICATIONS

Best practice: "When using intents, share data carefully”

public void onFileSelected(File file, boolean checked) {

}

Intent dintent = new Intent();
intent.setData(Uri.fromFile(file));
fragment.onActivityResult(requestCode, Activity.RESULT_OK, intent);

// rest of the code

Listing B.23: Vulnerable code 1 for Rule 9.

79

1

2

1

LLMs Evaluation for Android Vulnerability Repair

// fix9: guarantee one-time access to data by using

FLAG_GRANT_READ_URI_PERMISSION and FLAG_GRANT_WRITE_URI_PERMISSION flags

// and do not use file:// to access files, but content://

public void onFileSelected(File file, boolean checked) {

}

Intent intent = new Intent();

// fix9

Uri contentUri = FileProvider.getUriForFile(this, "file_provider", file);
Uri parse = Uri.parse(contentUri);
intent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION) ;
intent.addFlags(Intent.FLAG_GRANT_WRITE_URI_PERMISSION);
intent.setData(parse);

fragment.onActivityResult(requestCode, Activity.RESULT_OK, intent);

// rest of the code

Listing B.24: Ground truth 1 for Rule 9.

B.8 RULE 15: AVOID CUSTOM DANGEROUS PERMISSION

Best practice: Do not declare custom permissions with a dangerous protection level”

// rest of the code
android:name="${applicationId}.READ_CARDS"
android:protectionLevel="dangerous" />

Listing B.25: Vulnerable code 1 for Rule 15.

<I--fix15: do not declare custom permissions with protectionLevel '"dangerous",

choose "normal" or "sdignature" dinstead-->

<permission

android:description="@string/permissionReadCardsDescription"
android:protectionLevel="s1ignature" <!--fix15--> />

Listing B.26: Ground truth 1 for Rule 15.

80

LLMs Evaluation for Android Vulnerability Repair

B.9 RULE 16: ERASE DATA IN WEBVIEW CACHE

Best practice: "Always clean the WebView cache.”

public void onCreate(Bundle savedInstanceState) {
// rest of the code
WebView webView = (WebView)findViewById(R.id.about_webview);
// rest of the code

Listing B.27: Vulnerable code 1 for Rule 16.

// fix16: clear your webview cache
public void onCreate(Bundle savedInstanceState) {
// rest of the code
WebView webView = (WebView)findViewById(R.id.about_webview);
// rest of the code
// fix1é6

webView.clearCache(true);

Listing B.28: Ground truth 1 for Rule 16.

// rest of the code
myNewWebView.setVisibility(View.VISIBLE);
myNewWebView.setVisibility(View.INVISIBLE);
myNewWebView. loadUr1("about:blank");
return;

// rest of the code

Listing B.29: Vulnerable code 2 for Rule 16.

// fix16: clear your webview cache

// rest of the code
myWebView.setVisibility(View.VISIBLE);
myNewWebView.setVisibility(View.INVISIBLE);
myNewWebView. loadUr1("about:blank");

// fix16

myNewWebView.clearCache(true);

return;

// rest of the code

Listing B.30: Ground truth 2 for Rule 16.

81

LLMs Evaluation for Android Vulnerability Repair

B.10 RULE 17: AvoiD SQL INJECTIONS

Best practice: ”If query(), update(), delete() methods from ContentProvider interface
are overridden, check if selection is concatenated with user data and may cause SQL

injection.”

. public Cursor query(Uri uri, String[] projection, String selection, String[]

1

3

selectionArgs, String sortOrder) {
// rest of the code
case ALARM_ID:
alarmid = ContentUris.parseId(uri);
c = db.query(AlarmEntry.TABLE_NAME, projection, AlarmEntry._ID + " == "
+ alarmid, null, null, null, null);
c.setNotificationUri(getContext().getContentResolver(), uri);
return c;
// rest of the code

Listing B.31: Vulnerable code 1 for Rule 17.

// fix17: when overriding methods from ContentProvider class, pay attention not

to concatenate selection with user data

public Cursor query(Uri uri, String[] projection, String selection, String[]

selectionArgs, String sortOrder) {
// rest of the code
case ALARM_ID:
alarmid = ContentUris.parselId(uri);
// fix17: use placeholders
c = db.query(AlarmeEntry.TABLE_NAME, projection, AlarmEntry._ID + " = ?
", new String[] {String.valueOf(alarmid)}, null, null, null);
c.setNotificationUri(getContext().getContentResolver(), uri);
return c;
// rest of the code

Listing B.32: Ground truth 1 for Rule 17.

public int delete(Uri uri, String selection, String[] selectionArgs) {

// rest of the code
String id = uri.getPathSegments().get(1);

82

LLMs Evaluation for Android Vulnerability Repair

4 count = db.delete(DATABASE_DELIVERY_ENTRY_TABLE, KEY_DELIVERY_ENTRY_ROWID +
"=" + 4d + (!TextUtils.isEmpty(selection) ? " AND (" + selection + ')' : "

"), selectionArgs);

5 // rest of the code

Listing B.33: Vulnerable code 2 for Rule 17.

v // fix17: when overriding methods from ContentProvider class, pay attention not

to concatenate selection with user data

5 public int delete(Uri uri, String selection, String[] selectionArgs) {
4 // rest of the code

5 String id = uri.getPathSegments().get(1);

6 // fix17: use placeholders and merge with "selectionArgs" argument

7 try {

8 List<String> selArgs = new ArraylList<>(Arrays.stream(selectionArgs).

toList());

9 String args = !TextUtils.isEmpty(selection) ? " AND (" + selection + ')
1 9 llll);

10 selArgs.add(String.valueOf(id));

1 selArgs.add(args);

12 String[] new_selectionArgs = (String[]) selArgs.toArray();

13 count = db.delete(DATABASE_DELIVERY_ENTRY_TABLE,
KEY_DELIVERY_ENTRY_ROWID + " = ?", new_selectionArgs);

14 } catch(ClassCastException dignored) {}

15 count = db.delete(DATABASE_DELIVERY_ENTRY_TABLE,
KEY_DELIVERY_ENTRY_ROWID + " = 2", selectionArgs);

6 // rest of the code

Listing B.34: Ground truth 2 for Rule 17.

B.11 RULE 18: PREFER EXPLICIT INTENTS

Best practice: Do not use implicit intents for startService(), bindService(), startActiv-

ity() and sendOrderdBroadcast(); use explicit intents.”

. public void onCreate() {
2 // rest of the code
3 Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(st));

33

LLMs Evaluation for Android Vulnerability Repair

intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK) ;
startActivity(intent);
// rest of the code

Listing B.35: Vulnerable code 1 for Rule 18.

// fix18: 1if an intent is launched with startService(), startActivity(),
bindService(), sendOrderedBroadcast() set it as explicit intent

// Intent dintent = new Intent(<this_context>, <target_class.class>)

public void onCreate() {
// rest of the code
// fix18
Intent dintent = new Intent(this, target_class.class);
intent.setAction(Intent.ACTION_VIEW);
intent.setData(Uri.parse(st));
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(intent);
// rest of the code

Listing B.36: Ground truth 1 for Rule 18.

// rest of the code

Intent buttonUp = new Intent(Intent.ACTION_MEDIA_BUTTON) ;

buttonUp.putExtra(Intent.EXTRA_KEY_EVENT, new KeyEvent(KeyEvent.ACTION_UP,
KeyEvent.KEYCODE_HEADSETHOOK)) ;

context.sendOrderedBroadcast (buttonUp, "android.permission.CALL_PRIVILEGED");

// rest of the code

Listing B.37: Vulnerable code 2 for Rule 18.

// fix18: 1if an intent is launched with startService(), startActivity(),
bindService(), sendOrderedBroadcast() set it as explicit intent

// Intent dintent = new Intent(<this_context>, <target_class.class>)

// rest of the code

// fix18

Intent buttonUp = new Intent(this, target_class.class);

buttonUp.setAction(Intent.ACTION_MEDIA_BUTTON) ;

buttonUp.putExtra(Intent.EXTRA_KEY_EVENT, new KeyEvent(KeyEvent.ACTION_UP,
KeyEvent.KEYCODE_HEADSETHOOK)) ;

34

LLMs Evaluation for Android Vulnerability Repair

context.sendOrderedBroadcast (buttonUp, "android.permission.CALL_PRIVILEGED");
// rest of the code

Listing B.38: Ground truth 2 for Rule 18.

B.12 RULE 20: PROTECT SERVICES

Best practice: "If a service is explicitly exported, declare a permission to protect access
to it. If a service declares a permission but it is not explicitly exported, set exported

attribute to true.”

<service
android:name=".NotificationCatcher"
android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE">

</service>

Listing B.39: Vulnerable code 1 for Rule 20.

<!--fix20: if a service is declaring a permission, explicitely set it as
exported-->

<service

android:name=".NotificationCatcher"

android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE"

android:exported = "true" <!--fix20--> >

</service>

Listing B.40: Ground truth 1 for Rule 20.

<service
android:name=".onboarding.WearOnboardingListener"
android:exported="true">

</service>

Listing B.41: Vulnerable code 2 for Rule 20.

<!--fix20: if a service is declaring a permission, explicitely set it as
exported-->

<!I--define your permission here-->

<permission
android:name="custom_permission"
android:protectionLevel="normal"/>

<service

35

LLMs Evaluation for Android Vulnerability Repair

7 android:name=".onboarding.WearOnboardinglListener"
8 android:exported="true"
9 android:permission="custom_permission" <!--choose your permission here--> >

0 </service>

Listing B.42: Ground truth 2 for Rule 20.

B.13 RULE 22: USE SECURERANDOMGENERATOR

Best practice: "Use a Secure Random Generator to generate keys.”

. private static byte[] generateEncryptionSecret() {

> try {

3 KeyGenerator generator = KeyGenerator.getInstance("AES");
4 generator.init(128);

5 SecretKey key = generator.generateKey();

6 return key.getEncoded();

7 } catch (NoSuchAlgorithmException ex) {

8 Log.w("keyutil", ex);

9 return null;

Listing B.43: Vulnerable code 1 for Rule 22.

1 // fix22: use SecureRandom to initialise cryptographic keys generated by

KeyGenerator

5 private static byte[] generateEncryptionSecret() {

4 try {

5 /] fix22

6 SecureRandom secure_rnd = SecureRandom.getInstanceStrong();
7 // choose encryption algorithm

8 KeyGenerator key_gen = KeyGenerator.getInstance("AES");
9 // choose key size

10 key_gen.init (128, secure_rnd);

1 Key key = key_gen.generateKey();

12 } catch (NoSuchAlgorithmException ex) {

13 Log.w("keyutil", ex);

14 return null;

86

LLMs Evaluation for Android Vulnerability Repair

Listing B.44: Ground truth 1 for Rule 22.

public static int calcMaxKeySize() {
int[] keySizes = new int[]{256, 192, 128};
for (int keySize : keySizes) {
try {
KeyGenerator keyGenerator = KeyGenerator.getInstance(
INTERNAL_SYMMETRIC_ENCRYPTION_NAME) ;
keyGenerator.init(keySize);
SecretKey key = keyGenerator.generateKey();
Cipher cipher = Cipher.getInstance(
INTERNAL_SYMMETRIC_ENCRYPTION_ALGORITHM) ;
cipher.init(Cipher.ENCRYPT_MODE, key);

}

catch(Exception e) {
Log.d(GTG.TAG, '"can't use keysize " + keySize + ": " + e);
continue;

}

return keySize;

}
// rest of the code

Listing B.45: Vulnerable code 2 for Rule 22.

// fix22: use SecureRandom to initialise cryptographic keys generated by

KeyGenerator

public static int calcMaxKeySize() {
int [] keySizes = new int [] {256, 192, 128 };
for(int keySize : keySizes) {
try {

// fix22
SecureRandom secure_rnd = SecureRandom.getInstanceStrong();
// choose encryption algorithm
KeyGenerator key_gen = KeyGenerator.getInstance("AES");
key_gen.init(keySize, secure_rnd);
Key key = key_gen.generateKey ()
// rest of the code

87

LLMs Evaluation for Android Vulnerability Repair

catch(Exception e) {
Log.d(GTG.TAG, '"can't use keysize '"+keySize+'": "+e);

continue;

}

return keySize;
// rest of the code

Listing B.46: Ground truth 2 for Rule 22.

B.14 RULE 23: PROTECT RECEIVERS

Best practice: "If a receiver is explicitly exported, declare a permission to protect access

to it”
<receiver android:name=".ApplyMockBroadcastReceiver" android:exported="true">

Listing B.47: Vulnerable code 1 for Rule 23.

<I--fix23: if a receiver is exported, explicitely add a permission to protect
it-->
<!I--define your permission here-->
<permission
android:name="custom_permission"
android:protectionLevel="normal" />
<receiver
android:name=".ApplyMockBroadcastReceiver"
android:exported="true"
android:permission="custom_permission" <!--choose your permission here-->

/>

Listing B.48: Ground truth 1 for Rule 23.

<receiver
android:name="org.totschnig.myexpenses.widget.TemplateWidget"
android:exported="true"
android:label="@string/widget_title_templates" >
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>

88

LLMs Evaluation for Android Vulnerability Repair

<meta-data
android:name="android.appwidget.provider"

android:resource="@xml/widget_info_generic" />

</receiver>

Listing B.49: Vulnerable code 2 for Rule 23.

<I--fix23: if a receiver is exported, explicitely add a permission to protect
it-->

<!--define your permission here-->

<permission android:name="custom_permission" android:protectionLevel="normal"/>

<receiver

android:name="org.totschnig.myexpenses.widget.TemplateWidget"
android:exported="true"
android:label="@string/widget_title_templates"
android:permission="custom_permission" <!--choose your permission here--> >
<intent-filter>

<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data

android:name="android.appwidget.provider"

android:resource="@xml/widget_info_generic" />

s </receiver>

Listing B.50: Ground truth 2 for Rule 23.

B.15 RULE 26: SET HOSTNAME VERIFIER FOR SSLSOCKETS

Best practice: "Perform Hostname verification if using SSL Sockets, since they don’t do it
by default; perform the verification preferably by calling getDefaultHostnameVerifier()

with the expected hostname”

. public Socket createSocket() throws IOException {
SSLSocket result = (SSLSocket) factory.createSocket();
3 configureSocket(result);

) return result;

Listing B.51: Vulnerable code 1 for Rule 26.
1 // fix26: perfom HostName verification through HostNameVerifier

39

2

LLMs Evaluation for Android Vulnerability Repair

// NOTE: add necessary imports

public Socket createSocket() throws IOException {

SSLSocket result = (SSLSocket) factory.createSocket();

// fix26

HostnameVerifier hostname_verif = HttpsURLConnection.
getDefaultHostnameVerifier();

boolean is_verified = hostname_verif.verify(result, result.getSession());
if (is_verified) {

// write what to do

}
else {

// write what to do
}

configureSocket(result);

return result;

Listing B.52: Ground truth 1 for Rule 26.

public Socket createSocket(InetAddress varl, int var2, InetAddress var3, int

var4) throws IOException {

SSLSocket result = (SSLSocket) factory.createSocket(varl, var2, var3, var4)
5

configureSocket(result);

return result;

Listing B.53: Vulnerable code 2 for Rule 26.

// fix26: perfom HostName verification through HostNameVerifier

// NOTE: add necessary 1imports

public Socket createSocket(InetAddress varl, int var2, InetAddress var3, int

var4) throws IOException {

SSLSocket result = (SSLSocket) factory.createSocket(varl, var2, var3, var4)
5

// fix26

HostnameVerifier hostname_verif = HttpsURLConnection.
getDefaultHostnameVerifier();

90

LLMs Evaluation for Android Vulnerability Repair

8 boolean is_verified = hostname_verif.verify(result, result.getSession());
9 if (is_verified) {

10 // write what to do

n 3

12 else {

13 // write what to do
1 }

15 configureSocket(result);

16 return result;

Listing B.54: Ground truth 2 for Rule 26.

B.16 RULE 29: USE RECOMMENDED CRYPTOGRAPHY ALGORITHMS

Best practice: “Use a recommended cryptographic algorithm if dealing with Cipher, Mac,
MessageDigest, Signature objects.”

1+ byte[] salt = {(byte) 0xA9, (byte) 0x9B, (byte) 6xC8, (byte) 0x32, (byte) 0x56,
(byte) 0x34, (byte) OxE3, (byte) 0x03};

> int iterationCount = 19;

3

o try {

5 KeySpec keySpec = new PBEKeySpec(passPhrase.toCharArray(), salt,

iterationCount);
6 SecretKey key = SecretKeyFactory.getInstance("PBEWithMD5ANdDES").
generateSecret (keySpec);

8 ecipher = Cipher.getInstance(key.getAlgorithm());
° // rest of the code

11 ecipher.init(Cipher.ENCRYPT_MODE, key, paramSpec);
12 // rest of the code

Listing B.55: Vulnerable code 1 for Rule 29.

v // fix29: use only a recommended algorithm
. // choose between: "AES/CBC/NoPadding" or "AES/CBC/PKCS5Padding" or "AES/GCM/

NoPadding"
5 // Cipher <cipher> = <cipher>.getInstance(<recommended_algorithm>);

91

LLMs Evaluation for Android Vulnerability Repair

byte[] salt = {(byte) 0xA9, (byte) 0x9B, (byte) 0xC8, (byte) 0x32, (byte) 0x56,
(byte) 0x34,

(byte) OxE3, (byte) 0x03};

int diterationCount = 19;

try

{
KeySpec keySpec = new PBEKeySpec(passPhrase.toCharArray(), salt,
iterationCount);
// fix29: need to change SecretKeyFactory instance into "
PBKDF2WithHmacSHA256" and add IV (Initialization Value)
SecretKey key = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256").
generateSecret (keySpec);
byte[] iv = new byte[16];
new SecureRandom().nextBytes(iv);
IvParameterSpec 1iv_param = new IvParameterSpec(iv);

ecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
// rest of the code

// fix29: need to change how to encrypt following AES protocol
ecipher.init(Cipher.ENCRYPT_MODE, key, iv_param);
// rest of the code

Listing B.56: Ground truth 1 for Rule 29.

public String getInstallationId() {
String dinstallation_id = (Build.VERSION.SDK_INT >= Build.VERSION_CODES.0) ?
Settings.Secure.getString(mContext.getContentResolver(), Settings.Secure.
ANDROID_ID) : Build.SERIAL;

try {
MessageDigest md5 = MessageDigest.getInstance("MD5");
byte[] digest = md5.digest(installation_id.getBytes());
installation_id = "M" + Utils.byteArrayToHex(digest, 8);
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
installation_id = "D" + dnstallation_id;

return installation_id;

92

LLMs Evaluation for Android Vulnerability Repair

Listing B.57: Vulnerable code 2 for Rule 29.

1 // fix29: use only a recommended algorithm

> // MessageDigest <msg_digest> = MessageDigest.getInstance("SHA-256");

3

4 public String getInstallationId() {

5

String installation_id = (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) ?
Settings.Secure.getString(mContext.getContentResolver (), Settings.Secure.
ANDROID_ID) : Build.SERIAL;
try |
// fix29
MessageDigest md5 = MessageDigest.getInstance("SHA-256");
byte[] digest = md5.digest(installation_id.getBytes());
installation_id = "M" + Utils.byteArrayToHex(digest, 8);
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
installation_id = "D" + dinstallation_1id;
}

return installation_1id;

Listing B.58: Ground truth 2 for Rule 29.

93

	Acknowledgments
	Abstract
	List of figures
	List of tables
	Introduction
	Background
	Automated Program Repair (APR)
	Large Language Models (LLMs)
	Vulnerability Repair
	Android Operating System

	Related Works
	APR techniques
	LLMs for APR
	LLMs for Vulnerability Repair
	LLMs for Android
	Android and Vulnerabilities

	A new dataset
	Motivations
	Requirements and Limitations
	Design
	Collection of Android applications
	Vulnerability Detection Via SPECK
	Summary of vulnerabilities in the dataset

	Fixes Generation
	Fixes Evaluation

	LLMs Evaluation
	ChatGPT, Bard and Studio Bot
	Prompt Engineering
	The Prompt

	LLMs Outputs
	Pre-processing Phase
	Pre-processing Java-related outputs
	Pre-processing XML-related outputs

	Results
	Metrics
	Notes about Results Tables
	CodeBLEU for Java-related comparison
	CodeBLEU for ChatGPT-3.5 Outputs
	CodeBLEU for Bard Outputs
	CodeBLEU for Android Studio Bot Outputs

	Metrics for XML-related comparison
	Metrics for ChatGPT-3.5 Outputs
	Metrics for Google Bard Outputs
	Metrics for Android Studio Bot Outputs

	Human Validation
	Java-related Outputs
	XML-related Outputs

	Discussion
	Discussion of Java-related repairs
	Discussion of XML-related repairs
	General discussion after Human Validation
	How much reliable are the employed Metrics?

	Future Works
	Conclusion
	References
	Appendix A
	Appendix B
	Rule 1: Show an app chooser
	Rule 3: Remove unused permissions
	Rule 4: Use intents to defer permissions
	Rule 5: Use SSL traffic
	Rule 6: Use Javascript carefully
	Rule 7: Whitelist URL loaded in WebView
	Rule 9: Share data securely across applications
	Rule 15: Avoid custom dangerous permission
	Rule 16: Erase data in WebView cache
	Rule 17: Avoid SQL injections
	Rule 18: Prefer explicit intents
	Rule 20: Protect Services
	Rule 22: Use SecureRandomGenerator
	Rule 23: Protect Receivers
	Rule 26: Set Hostname Verifier for SSLSockets
	Rule 29: Use recommended cryptography algorithms

