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Abstract

This research examines two models, Decoding and Re-encoding (DREC) and
Joint Coding With Re-amplification (JCWR), specifically designed for two-hop
wireless communication networks. The main goal is to investigate challenges
caused by noise and interference in multi-hop communication scenarios. DREC
uses two autoencoders and two communication channels, making it adaptable
to different channel conditions and allowing for flexible resource utilization. In
contrast, JCWR uses a single autoencoder with an amplifier, making it simpler
and more adaptable for resource allocation. The study includes a thorough
examination of these models’ performance under various conditions, such as
different compression ratios and signal-to-noise ratios, using the COCO 2017
image dataset. Additionally, the study explores extending both models to multi-
link scenarios, providing insights into their scalability and performance. Future
research directions include enhancing security measures, addressing latency
issues, and investigating advanced amplification techniques.





Sommario

Questa ricerca esamina due modelli, DREC e JCWR, specificatamente progettati
per reti di comunicazione wireless a due salti. L’obiettivo principale è indagare
le sfide causate dal rumore e dalle interferenze negli scenari di comunicazione
multi-hop. DREC utilizza due codificatori automatici e due canali di comuni-
cazione, rendendolo adattabile alle diverse condizioni del canale e consentendo
un utilizzo flessibile delle risorse. Al contrario, JCWR utilizza un singolo au-
tocodificatore con un amplificatore, rendendolo più semplice e più adattabile
per l’allocazione delle risorse. Lo studio include un esame approfondito delle
prestazioni di questi modelli in varie condizioni, come diversi rapporti di com-
pressione e rapporti segnale-rumore, utilizzando il set di dati di immagini COCO
2017. Inoltre, lo studio esplora lestensione di entrambi i modelli a scenari multi-
link, fornendo approfondimenti sulla loro scalabilità e prestazioni. Le direzioni
future della ricerca includono il miglioramento delle misure di sicurezza, la
risoluzione dei problemi di latenza e lo studio di tecniche di amplificazione
avanzate.
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1
Introduction

Communication systems are essential for sending information across different
means, making it possible for people, businesses, and the world at large to share
ideas, data, and multimedia content. These systems involve a sender, who
creates the message, and a receiver, who understands it. To make sure the
message gets through correctly and quickly, communication systems use source
coding and channel coding techniques.

Source encoding, also known as data compression, changes the original
message into a smaller form. This process tries to make the message smaller
while keeping all the important information. The main goal of source encoding
is to get rid of the extra information in the message so that it can be sent and
stored more easily. Source encoding algorithms use the patterns and statistics
in the data to compress it. For example, in normal language, some letters or
words are more common than others. Source encoding algorithms can use
these patterns to make the message smaller.

Channel encoding, also known as error-control coding, is a technique
used to protect data from being corrupted during transmission. It works by
adding redundant information to the data, which allows the receiver to detect
and correct errors that occur during the transmission process. Data can be cor-
rupted for various reasons, including noise, interference, and other transmission
errors. Noise refers to random disturbances in the transmission channel that can
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alter the data, while interference refers to external signals that can overlap with
the data and cause distortion.

Claude Shannon, a pioneer in information theory, established the sepa-
ration theorem, a fundamental result in communication theory. This theorem
states that, under certain conditions, source encoding and channel encoding
can be performed independently without sacrificing the optimality of the rate.
In essence, Shannon’s separation theorem implies that it is possible to design
separate source and channel codes that achieve the best possible performance
in terms of error rate and compression efficiency. This separation simplifies the
design process and allows for modularity in communication system design [11].

However, the optimality of separation in Shannons theorem assumes no
limitations on the complexity of source and channel code design and is based
on idealized conditions, such as the use of an AWGN channel and perfect source
coding [11]. In practical settings, using very large block lengths may not be
feasible due to complexity and delay constraints [8]. Furthermore, it’s crucial to
note that even under these assumptions, the separation theorem breaks down in
multi-user scenarios [5], or for non-ergodic source or channel distributions [8].
These limitations highlight the importance of considering Joint Source-Channel
Coding (JSCC) in practical communication systems.

Nevertheless, many upcoming situations, including applications like
the Internet of Things, self-driving vehicles, and the tactile Internet, require the
transfer of image and video data under strict constraints on time delay, data
capacity, and energy consumption. These limitations make it impractical to use
complex long-blocklength source and channel coding methods [1]. In practical
scenarios, it has been observed that JSCC tends to have superior performance
compared to when they are used separately [1][16]. JSCC algorithms consider
both the source and the channel to design a coding scheme that is both small and
can withstand errors. The research community has put forward several specific
designs for JSCC. One approach in JSCC uses techniques like resource assign-
ment, information interaction, and unequal error protection [14]. Another JSCC
strategy combines source coding and channel coding into a single process to
optimize the communication system [16]. Recently, due to its impressive perfor-
mance in areas like computer vision, speech processing, and natural language
processing, researchers have started employing Deep Learning (DL) methods to
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CHAPTER 1. INTRODUCTION

support either source or channel coding [6].

DL is a new and powerful way to design JSCC schemes. Deep Neural
Networks (DNN) can learn the complex relationships between the source, the
channel, and the encoded message. This allows them to design JSCC schemes
that are more efficient and robust than traditional methods. DL-based JSCC
offers several advantages over traditional methods:

• Adaptive Coding: DL models can adapt to changing channel conditions
and source statistics, making them suitable for dynamic communication
environments [14].

• End-to-End Design: DL allows for end-to-end optimization of the commu-
nication system, considering both source encoding and channel encoding
jointly [15].

• Improved Performance: DL-based JSCC schemes can achieve better com-
pression efficiency and error resilience compared to traditional methods,
especially in scenarios with strong source-channel interactions [10].

However, it is important to highlight that most previous research on JSCC
has mainly focused on single-link scenarios. When a second hop is introduced,
or in cases with multiple wireless hops (as seen in drone networks), the features
of the channel undergo significant changes, bringing forth new possibilities and
challenges. In this research, the emphasis will be on investigating different
strategies suitable for two-hop channels. This includes examining decoding and
re-encoding techniques, as well as exploring joint coding approaches, both with
and without re-amplification.

The thesis is organized into six chapters, each with a specific purpose
of presenting a thorough examination of the research topic. Chapter 1, the
Introduction, provides a general overview of the study, highlighting its impor-
tance and goals. Chapter 2, Background, explores the fundamental concepts
and relevant literature that support the research. In Chapter 3, State of the
Art, a detailed examination of current developments and existing knowledge
in the field is conducted. Chapter 4, Model, is dedicated to the development
and description of the proposed model or methodology. Chapter 5, Results,
presents the findings and outcomes derived from the application of the model.
Finally, Chapter 6, Conclusion, summarizes the key insights, discusses their
implications, and outlines avenues for future research.
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2
Background

2.1 Simple Communication System

Claude Shannon’s 1948 paper [11], "A Mathematical Theory of Commu-
nication," is a landmark in the field of information theory. It laid the foundation
for the theoretical understanding of communication and has had a profound
impact on the development of communication technologies. The concepts of
source and channel encoding are now widely applied in various fields, includ-
ing digital broadcasting, mobile communications, and computer networks.

Source encoding, also known as data compression, aims to reduce the
redundancy inherent in the message to make it more compact and efficient
for transmission. Shannon introduced the concept of entropy, which measures
the average uncertainty or information content of a message. This concept
allowed for the development of algorithms that can compress data without
losing essential information. Channel encoding, also known as error-correction
coding, aims to protect the encoded message from noise and interference that
can occur during transmission.

Claude Shannon’s groundbreaking research established fundamental
principles in information theory. He demonstrated that the amount of infor-
mation in a message can be quantified based on its surprise or unpredictability,
introducing the concept of entropy. Furthermore, Shannon demonstrated that
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reliable communication over noisy channels is possible without compromising
data transmission speed. This insight led to the development of source and
channel coding techniques, enabling nearly error-free communication as long
as the data rate remains within the channel’s capacity. Shannon’s work laid the
foundation for achieving optimal communication over noisy channels, as long
as data transmission adheres to the channel’s capacity constraints. His contri-
butions, particularly in data compression (source coding) and error correction
(channel coding), have become indispensable components of modern communi-
cation systems, influencing digital broadcasting, mobile communications, and
computer networks.

The fundamental stages in the communication process include:

• The sender creates a message.

• The sender encodes the message to facilitate transmission.

• The encoded message is transmitted over a communication channel, such
as a phone line or computer network.

• The message is decoded upon reaching the receiver.

• The receiver reproduces the original message.

Shannon’s diagram remains relevant in contemporary times, serving as
a foundation for the design and enhancement of communication systems.

Figure 2.1: Block diagram of general communication system [11]

Modern communication systems are indeed intricate and multilayered
structures, involving a diverse range of devices, entities, and software and hard-
ware components operating over various physical media. They encompass
a variety of information sources and endpoints, handling a vast spectrum of
data types, transmission rates, and communication protocols. To manage this
complexity, system designers adopt a modular approach where the design con-
siderations for source coding are physically and logically separate from those for
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CHAPTER 2. BACKGROUND

channel coding. Each module in modern communication systems has a specific
task, such as compressing the message, adding redundancy to the message, or
correcting errors in the message. These modules are designed to be indepen-
dent of one another, simplifying the design, construction, and maintenance of
complex communication systems.

2.2 Communication Channels

Shannon’s communication model highlights the significance of the chan-
nel, which is the pathway for transmitting information from the sender to the
receiver. The process of source-channel coding transforms the source messages
into signals that align with the channel’s properties, underlining the channel’s
vital role in the design of the source-channel code. There are various channel
models available, each unique in the physical conditions they represent, their
abstraction level, and the simplifying assumptions they make.

Effective communication systems rely on the functionality and character-
istics of communication channels, which facilitate the exchange of information
through various mediums. In the realm of communication engineering and
information theory, two fundamental channel models have emerged as signifi-
cant components in this process: the Additive White Gaussian Noise (AWGN)
channel and the slow fading channels.

The AWGN channel is a fundamental and widely used model in commu-
nication engineering and information theory. It is characterized by the presence
of white Gaussian noise, which adds to the transmitted signal during transmis-
sion. This noise arises from random processes and exhibits a constant power
spectral density, making it "white" across all frequencies. AWGN channels are
often used to simulate real-world scenarios, where noise can corrupt the sig-
nal during transmission. The noise is represented as a vector of Independent
Identically Distributed (I.I.D.) samples following a circularly symmetric com-
plex Gaussian distribution. In mathematical terms, the transfer function of the
AWGN channel is denoted as equation 2.1, where 𝑛 represents the noise vector,
and 𝑧 is the input signal.

𝜂𝑛(𝑧) = 𝑧 + 𝑛 (2.1)
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2.3. Joint Source-Channel Coding (JSCC)

In contrast, the slow fading channel accounts for the dynamic nature
of wireless channels, influenced by factors like multipath propagation and en-
vironmental conditions. The widely adopted model for this scenario is the
Rayleigh slow fading model. In this context, the impact of the channel on the
transmitted signal is described as a multiplicative effect through the transfer
function equation 2.2, where ℎ is a complex random variable representing the
channel gain.

𝜂ℎ(𝑧) = ℎ𝑧 (2.2)

To encapsulate the combined influence of channel fading and Gaussian
noise, the transfer functions 𝜂ℎ and 𝜂𝑛 are combined into a composite function,
𝜂(𝑧) = 𝜂𝑛(𝜂ℎ(𝑧)), which reflects the overall distortion caused by the channel on
the transmitted signal, encompassing the complexities of real-world communi-
cation channels.

𝜂(𝑧) = 𝜂𝑛(𝜂ℎ(𝑧)) = ℎ𝑧 + 𝑛 (2.3)

2.3 Joint Source-Channel Coding (JSCC)

Shannon’s separation theorem, a cornerstone of communication theory,
asserts that source and channel coding can be optimized independently for
memoryless and ergodic channels when using codes with infinite block lengths.
However, this theoretical optimality comes with practical limitations [1].

The optimality of separation breaks down when dealing with non-
ergodic source or channel distributions, which are common in real-world com-
munication scenarios. Additionally, Achieving optimality using Shannon’s ap-
proach requires infinitely long codewords, which are often impractical due to
computational and memory constraints.

In light of these limitations, JSCC emerges as a promising alternative for
practical communication systems. JSCC abandons the assumption of indepen-
dent source and channel coding and instead considers them jointly, aiming to
optimize the overall communication system rather than individual components.
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This holistic approach has demonstrated significant gains in various schemes,
including vector quantization and index assignment [16]. On the other hand,
JSCC, which coordinates source and channel coding or combines them into a
single step, may offer substantial improvements over the tandem coding ap-
proach.

2.4 Deep Learning

JSCC has long been recognized for its potential to outperform separate
source compression followed by channel coding. However, the practical design
of joint coding schemes has been a significant challenge due to the complexity
involved in optimizing both source and channel coding simultaneously.

The emergence of DL has brought a paradigm shift in JSCC, enabling
the development of more efficient and effective joint coding schemes. DL-based
JSCC methods, such as deep JSCC, leverage the ability of DNN to extract complex
features from training data while implicitly incorporating channel characteristics
into their encoding process. This implicit incorporation of channel character-
istics allows DL-based JSCC methods to adapt to various channel conditions
without explicit channel modeling [9].

An autoencoder is a type of neural network that attempts to learn a com-
pressed representation of its input data. It is similar to a traditional encoder-
decoder model, but instead of trying to reconstruct the input exactly, the au-
toencoder aims to capture the essential features of the input. This compressed
representation, known as the latent code, can then be used for various tasks,
such as dimensionality reduction, anomaly detection, and image generation [3].

The autoencoder consists of two main components: an encoder and a
decoder. The encoder takes the input data and transforms it into the latent code.
The decoder then takes the latent code and attempts to reconstruct the original
input. The autoencoder is trained by minimizing the difference between the
original input and the reconstructed output.

Autoencoders are typically trained on unlabeled data, meaning that they
do not require any prior knowledge of the data. This makes them a useful tool
for unsupervised learning tasks, where the goal is to discover patterns and
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structure in the data without any explicit guidance.

In the context of image compression using an autoencoder, the process
involves feeding an input image into an encoder, which transforms the image
into the latent code. This code retains the essential features of the image in a
much smaller form. Subsequently, the latent code is fed into a decoder, which
reconstructs the image. While the reconstructed image may not be an exact
replica of the original, it encapsulates the most important features. This se-
quential transformation from input to compressed representation and then to
reconstruction constitutes the fundamental mechanism of image compression
using an autoencoder.

Autoencoders are a powerful tool for unsupervised learning that can be
used for a variety of tasks. They are a relatively simple type of Neural Network
(NN), but they can be surprisingly effective at learning complex representations
of data. Autoencoders have a wide range of applications, including:

• Dimensionality reduction: Autoencoders can be used to reduce the dimen-
sionality of data, which can be useful for data visualization and Machine
Learning (ML) tasks.

• Anomaly detection: Autoencoders can be used to detect anomalies in data,
such as fraudulent transactions or outliers in a dataset.

• Image generation: Autoencoders can be used to generate new images that
are similar to the images they were trained on.

Convolutional Neural Networks (CNN) are a type of Artificial Neural
Network (ANN) that are particularly well-suited for image recognition and other
image-based tasks. CNNs were first introduced in the 1980s by Yann LeCun, but
they have only recently become popular due to the availability of large datasets
and powerful computing hardware [3].

CNNs work by using a series of filters to extract features from an image.
These filters are convolved, or slid, across the image, and the results are com-
bined to produce a feature map. The feature map is then passed to another layer
of filters, and the process is repeated until a final classification is made.

CNNs have been shown to be very effective for a variety of image-based
tasks, including image recognition, object detection, and image segmentation.
They are now widely used in a variety of applications, such as facial recognition,
medical imaging, and autonomous vehicles. One of the key advantages of
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CHAPTER 2. BACKGROUND

CNNs is that they are able to learn features from data without being explicitly
programmed. This makes them well-suited for tasks where the features of
interest are not well-defined, such as image recognition. CNNs are also very
efficient in terms of computation. This is because they can take advantage of the
locality of information in images. For example, a filter that is designed to detect
edges will only need to be applied to a small region of the image.

Despite their many advantages, CNNs also have some limitations. One
limitation is that they can be sensitive to noise in the input image. Another
limitation is that they can be difficult to interpret. This is because the features
that a CNN learns are not always easy to understand.
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3
State of the Art

The paper [4] presents a study on the problem of joint source-channel cod-
ing for Multiple Input, Multiple Output (MIMO) block-fading channels. The
authors considered a scenario where only the Channel State Information at the
Receiver (CSIR) is available at the receiver. Therefore, Shannon’s source-channel
separation theorem does not apply, making a joint source-channel approach nec-
essary. The authors focus on the high Signal to Noise Ratio (SNR) regime and
define a figure of merit called the distortion exponent, which measures the rate
at which the average distortion decreases with increasing SNR. They derive
an upper bound on the distortion exponent and three different lower bounds.
The authors also present three different transmission schemes, namely progres-
sive superposition, hybrid digital/analog transmission, and progressive layered
source coding. Each scheme is optimized for different bandwidth ratios and
channel configurations. It is shown that progressive layered source coding with
unequal error protection is a crucial technique for adapting to variable channel
conditions without CSIR. For the proposed transmission schemes, the authors
show that progressive or simultaneous transmission of the layers performs bet-
ter, depending on the bandwidth ratio. For single-block Multiple Input, Single
Output (MISO)/Single Input, Multiple Output (SIMO) channels, the authors
show that the hybrid digital/analog transmission scheme outperforms all other
strategies and meets the upper bound, implying that the distortion exponent is
optimal for MISO/SIMO channels.
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A new method for training autoencoders for lossy image compression is
proposed in [12]. Autoencoders are a type of neural network that can be used
to compress images by learning to encode them into a smaller representation
and then reconstruct them from that representation. The proposed method is
based on using a simple but effective way to deal with the non-differentiability
of the compression loss. This non-differentiability makes it difficult to train
autoencoders directly for lossy compression. The proposed method also uses
an incremental training strategy, which helps to improve the performance of the
autoencoder. The results show that the proposed method can achieve better
performance than JPEG 2000 in terms of Structural Similarity Index (SSIM)
and Mean Opinion Score (MOS) scores. This performance is achieved using
an efficient convolutional architecture, combined with simple rounding-based
quantization and a simple entropy coding scheme. The paper also discusses
the advantages of using an end-to-end trained autoencoder for lossy image
compression. An end-to-end trained autoencoder can be optimized for arbitrary
metrics, which makes it possible to optimize the autoencoder for perceptual
quality. The paper concludes by discussing future work, such as exploring
the optimization of compressive autoencoders for different metrics and using
Generative Adversarial Networks (GANs) to train autoencoders for lossy image
compression.

In the paper titled "Deep Convolutional AutoEncoder-based Lossy Im-
age Compression" a novel approach to lossy image compression is introduced.
They utilize a Convolutional Autoencoder (CAE) to enhance coding efficiency,
replacing traditional transforms and training the CAE with a rate-distortion loss
function. To create a more energy-efficient representation, they employ Principal
Component Analysis (PCA) to transform feature maps generated by the CAE,
followed by quantization and entropy coding for compression. Their method
outperforms traditional image coding algorithms, achieving a 13.7% BD-rate re-
duction compared to JPEG2000 for Kodak database images, while maintaining
similar complexity. The authors plan to further improve their approach by in-
corporating perceptual quality metrics and exploring the use of GANs in future
research [2].

In [1] a novel technique for wireless image transmission is introduced.
This technique eliminates the need for explicit compression or error correction
codes by combining source and channel coding. This method directly maps
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image pixel values to complex-valued channel input symbols using two CNNs
for encoding and decoding. The networks are jointly trained, resembling an
autoencoder with an untrainable intermediate layer that simulates the noisy
communication channel. Their results demonstrate the superiority of this deep
JSCC scheme over traditional digital transmission methods that employ JPEG or
JPEG2000 compression followed by channel coding, especially in low SNRs and
limited channel bandwidth scenarios, and it exhibits a graceful performance
degradation as channel SNR varies. Additionally, deep JSCC excels in the pres-
ence of slow Rayleigh fading channels, outperforming separation-based digital
communication in various SNR and channel bandwidth conditions .

The authors highlight that the deep JSCC architecture is not limited to
reliable channel communication but also efficient image compression. They
emphasize the ability of the network to map salient features to nearby rep-
resentations for noise-resilient reconstruction in the presence of channel noise.
Furthermore, it acts as a regularizer for the autoencoder. In their future work, the
authors plan to enhance the deep JSCC system by exploring more advanced NN
architectures in the autoencoder to improve compression performance. They
also aim to test the system’s performance in non-Gaussian channels and channels
with memory, where capacity-approaching channel codes are unavailable, ex-
pecting that the advantages of the proposed neural network-based JSCC scheme
will be even more apparent in such non-ideal settings.

The authors of [7] address the challenge of image retrieval over wire-
less channels, especially in surveillance scenarios involving wireless cameras
and drones. Traditional methods employ lossy image compression for query
images to reduce data transmission over bandwidth and power-limited wire-
less links. However, the authors propose a novel approach by introducing a
DNN-based compression scheme tailored for retrieval tasks, eliminating the
need for full image reconstruction. Furthermore, they present a JSCC approach
using DNNs, which not only enhances end-to-end accuracy but also simpli-
fies and accelerates the encoding process, particularly advantageous for power
and latency-constrained Internet of Things (IoT) applications. The authors con-
clude that their autoencoder-based JSCC scheme outperforms digital and JSCC
schemes lacking feature decoding, highlighting the importance of DNN-based
JSCC methods to address the stringent latency and bandwidth constraints in
wireless image retrieval applications.
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In the paper titled "DeepJSCC-f: Deep Joint Source-Channel Coding
of Images With Feedback" [8] the authors tackle the challenge of wireless im-
age transmission in the presence of channel output feedback. They recognize
that, from a theoretical perspective, feedback doesn’t enhance asymptotic end-
to-end performance, and conventional methods using separate source coding
followed by capacity-achieving channel coding are optimal. However, in practi-
cal finite block length scenarios, separation is not ideal. The authors introduce
DeepJSCC-f, an autoencoder-based JSCC scheme that leverages channel output
feedback. This innovative approach significantly improves end-to-end recon-
struction quality for fixed-length transmission or reduces the average delay for
variable-length transmission, surpassing traditional coding-based methods. It
is a pioneering practical implementation of a JSCC scheme exploiting channel
output feedback, showcasing how modern machine learning techniques can lead
to efficient communication methods that outperform structured coding-based
designs. Additionally, the authors highlight the scheme’s adaptability, graceful
degradation in varying channel conditions, and potential applicability to other
data types beyond images, such as audio or video.

The limitations of deep learning-based JSCC for wireless communica-
tions are addressed in [14], which often operate within specific SNRs regimes,
making them inefficient when dealing with varying SNR levels during deploy-
ment. To tackle this challenge, they introduce a novel approach called Attention
DL-based JSCC (ADJSCC) inspired by traditional JSCC’s resource assignment
strategy. ADJSCC dynamically adjusts CR and channel coding rates according
to channel SNR by employing attention mechanisms, which allocate computing
resources effectively. Extensive experiments show that ADJSCC outperforms ex-
isting DL-based JSCC methods in terms of adaptability, robustness, and storage
efficiency. It requires less storage and is more resilient in the presence of chan-
nel mismatch. In conclusion, the authors propose the ADJSCC method, which
automatically adapts to various channel conditions and offers improved perfor-
mance, computational complexity, and storage efficiency compared to existing
approaches. They evaluate ADJSCC on various scenarios and datasets, demon-
strating its adaptability and efficiency. Future work may include extending this
method to high-definition images and real wireless channels, further promot-
ing deep learning-based JSCC technology for practical wireless communication
systems.
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The paper [13] introduces a collection of neural network-based full-
resolution lossy image compression techniques. These methods provide the
flexibility to adjust compression rates during use without the need for retraining.
The architectures include an Recurrent Neural Network (RNN)-based encoder
and decoder, a binarizer, and a NN for entropy coding. The paper explores
different RNN types (Long Short-Term Memory (LSTM), associative LSTM)
and introduces a new hybrid of Gated Recurrent Unit (GRU) and ResNet. It
also compares "one-shot" and additive reconstruction architectures, presenting
a new scaled-additive framework. Their results demonstrate improvements of
4.3% to 8.8% Area Under Curve (AUC) in the rate-distortion curve, depend-
ing on the perceptual metric used when compared to previous work. Notably,
their models outperform JPEG for image compression across most bitrates on
the Kodak dataset, both with and without entropy coding. In the discussion,
the authors acknowledge the challenge of selecting a single best model due to
the varying performance of their models based on different perceptual metrics.
They emphasize the benefit of adding entropy coding, particularly in the early
iterations where recurrent encoder models generate spatially correlated codes.
The authors plan to continue their work by competing with compression meth-
ods derived from video codecs and by exploring joint training of the entropy
coder and patch-based encoder. They also highlight the evolving nature of per-
ceptual differences and the need for better metrics that correlate with human
vision for all types of distortions.
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4
Model

4.1 Problem Defenition

Wireless communication networks are now an essential part of modern
society, making it easy to send and receive multimedia data like images, videos,
and audio. Even though these networks are everywhere, they face challenges
with the quality of the data they send. This is often caused by noise and
interference in the wireless channels. To solve this problem, researchers have
turned to JSCC, which is a promising technique that aims to keep the quality of
multimedia data high through semantic communication.

Although most of the research on JSCC has focused on single-hop com-
munication links, where data is sent directly from the source to the destination,
wireless networks often use multi-hop communication. One particular scenario
is the two-hop wireless communication network, which involves two commu-
nication links between the source and the destination. This configuration is
common in a variety of applications, such as multi-hop wireless ad hoc net-
works, sensor networks, and emerging technologies such as drone networks.
The addition of an intermediate node in this setup makes it more difficult to
maintain data quality and manage the effects of channel noise. In these cases,
data travels through multiple nodes before reaching its final destination, which
creates a more complex channel scenario and introduces new opportunities and

19



4.2. Decoding and Re-encoding (DREC)

challenges for JSCC. In this research we explore extending JSCC to two-hop
wireless communication networks by investigating solutions such as decoding
and re-encoding, joint coding with re-amplification, and joint coding with map-
ping. The study aims to provide valuable insights into the adaptability and
effectiveness of these techniques in more complex communication scenarios.

4.2 Decoding and Re-encoding (DREC)

The DREC model is a complex system that works in a two-hop wireless
communication network. It uses two autoencoders in a cascade to achieve high-
quality data transmission. The model has several parts, including two encoders,
two decoders, and two communication channels. These parts work together to
send and rebuild encoded data.

The DREC model shown in Figure 4.1 works as follows:

1. The input data is first encoded by the first encoder.

2. The encoded data is then transmitted through the first communication
channel.

3. Upon reaching the end of the first communication channel, the encoded
data is decoded by the first decoder.

4. The decoded data is then passed to the second encoder for a secondary
encoding.

5. The second encoder encodes the decoded data and transmits it through
the second communication channel.

6. The second decoder decodes the received data and reconstructs the origi-
nal image.

The DREC is flexible because its two autoencoders can be either iden-
tical or different. This allows the model to be adapted to different needs and
requirements. For example, if the two communication channels have differ-
ent bandwidth or noise characteristics, different autoencoders can be used to
improve the model’s performance.

When the autoencoders are similar, each node can decide whether to be
a sender, receiver, or intermediate node. This flexibility makes the model easier
to use, as a single model design and training process is sufficient for all nodes.
This reduces additional costs such as memory and computational capacity.
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Figure 4.1: Decoding and Re-encoding (DREC) model

One practical enhancement that can be incorporated into the DREC
model is to add an enhancement block between first decoder and second encoder.
This additional block would improve the image quality before the decoded im-
age is fed into the second encoder. While this would incur some additional
costs, it would also present an opportunity to improve the overall performance
of the communication process.

The DREC model has many advantages, but it also has some potential
challenges. One of the main challenges is security and privacy. Nodes between
the two communication channels can decode and encode images, which could
lead to unauthorized access to image content. Another security and privacy
concern is the potential for data leakage. The DREC model involves double
encoding and decoding images, which could potentially introduce new vul-
nerabilities that could be exploited by malicious actors to steal or modify the
transmitted data. Additionally, the double encoding and decoding processes
can increase latency.

This research employs autoencoders that are grounded in the framework
put forth by Bourtsoulatze et al. (2019) [1]. The JSCC scheme they suggested is
depicted in Figure 4.2. Using a JSCC approach, the transmitter transforms the
input image 𝑥, represented by 𝑛 real numbers, into a vector of 𝑘 complex-valued

21



4.2. Decoding and Re-encoding (DREC)

Figure 4.2: Architecture of the encoder and decoder for the JSCC scheme pro-
posed in [1].

channel input symbols 𝑧. In line with JSCC terminology, the image dimension
𝑛 is referred to as the source bandwidth, while the channel dimension 𝑘 is
termed the channel bandwidth. Since 𝑘 is typically smaller than 𝑛, this process
is known as bandwidth compression. The ratio 𝑘/𝑛 is defined as the bandwidth
compression ratio. In real-world communication systems, practical limitations
such as energy constraints and interference necessitate that the transmitter’s
output adheres to specific power constraints, including peak and average power
limits. The average power constraint is formulated as follows:

1
𝑘
𝐸[𝑧∗ · 𝑧] ≤ 𝑃 (4.1)

This change is made possible by a specific encoding function, represented
as 𝑓𝜃 : R𝑛 → C𝑘 , which is directed by a group of parameters known as 𝜃. The
function of the encoder, 𝑓𝜃, is carried out using CNN, which also uses the
parameters 𝜃.

The structure of the CNN in the encoder is made up of a series of
convolutional layers. Each of these layers is followed by a Parametric Rectified
Linear Unit (PReLU) activation function and a normalization layer. Every part
of this system has a specific job. The main job of the convolutional layers is to
pull out important features from the input image. These features are key for the
coding process that comes next. These features are then put together to make the
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channel input samples. The PReLU activation functions allow for a nonlinear
mapping from the source signals domain to the coded signals domain. The final
result, �̃� ∈ C𝑘 , which comes from the last convolutional layer of the encoder,
goes through a normalization process.This normalization process is described
as follows:

𝑧 =
√
𝑘 · 𝑃 ×

(
�̃�√
�̃�∗ · �̃�

)
(4.2)

In this scenario, �̃�∗ is the conjugate transpose of �̃�. This makes sure that
the channel input, 𝑧, follows the set average transmit power limit, 𝑃. By using
this normalization process, we can keep the average power limit in check within
the transmitted channel input samples. This way, we meet the required power
standards.

Once the encoding process is complete, the combined source-channel
coded sequence, denoted as 𝑧, is sent over the communication channel. This
is done by directly using the real and imaginary parts of the channel input
samples across the In-phase (I) and Quadrature (Q) components of the digital
signal. However, the channel introduces random distortions to the transmitted
symbols, which is represented by 𝜂 : C𝑘 → C𝑘 .

The receiver includes a joint source-channel decoder. This decoder uses
a decoding function, 𝑔𝜙 : C𝑘 → R𝑛 , to map the distorted complex-valued signal,
�̂� = 𝜂(𝑧) ∈ C𝑘 , to an estimate of the original input, �̂� ∈ R𝑛 . The decoding
function, like the encoding function, is parameterized by the decoder CNN with
the parameter set 𝜙. The NN decoder undoes the operations carried out by
the encoder. It does this by passing the received (and possibly distorted) coded
signal, �̂�, through a series of transpose convolutional layers (which include non-
linear activation functions). This maps the image features to an estimate, �̂�, of
the image that was originally transmitted.

For a comprehensive end-to-end optimization of the communication
system, it’s imperative to integrate the communication channel into the overall
NN architecture. The communication channel is represented as a series of non-
trainable layers, depicted by the transfer function �̂� = 𝜂(𝑧). A slow fading
channel with AWGN is modeled using equation 2.2. Although it’s feasible to
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employ distinct layers for each of the autoencoders and their internal blocks,
this research opts for a consistent structure across all components.

The second autoencoder has the flexibility to be either similar to the
first one or have a completely different structure. The same goes for the second
channel - it can be identical or different from the first one. However, in this
study, both the autoencoders and channels are considered to be similar.

In the DREC model, the core objective revolves around minimizing the
average distortion between the original input image (denoted as 𝑥) and its re-
construction (�̂�) produced by the decoder. This process involves optimizing
the encoding and decoding functions, where different approaches for this min-
imization can be considered.

Joint Minimization Approach: One way to handle this minimization
is to view the entire network, comprising encoders, channels, and decoders, as
one interconnected system. This holistic perspective leads to the minimization
of the joint probability distribution (𝑝(𝑥, �̂�)) of the original and reconstructed
images, aiming to minimize the distortion measure (𝑑(𝑥, �̂�)). Mathematically,
this can be expressed as:

(𝜃∗, 𝜙∗) = arg min
𝜃,𝜙
E𝑝(𝑥,�̂�)[𝑑(𝑥, �̂�)] (4.3)

However, this method faces a challenge often, the true distribution of
the input data (𝑝(𝑥)) remains unknown. Consequently, an analytical form of the
expected distortion in 4.3 is also indeterminable due to the unknown probability
distribution.

Independent Autoencoder Approach: Alternatively, one can treat each
autoencoder as a separate and independent network, leading to individual min-
imization functions for each. This results in distinct minimization objectives:

(𝜃∗
1, 𝜙

∗
1) = arg min

𝜃1 ,𝜙1
E𝑝(𝑥,�̂�1)[𝑑(𝑥, �̂�1)] (4.4)

(𝜃∗
2, 𝜙

∗
2) = arg min

𝜃2 ,𝜙2
E𝑝(𝑥,�̂�)[𝑑(𝑥, �̂�)] (4.5)
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In 4.4, the focus is on the first autoencoder, optimizing the distortion
measure between the original image 𝑥 and the output of the first decoder (�̂�1).
In 4.5, the second autoencoders objective is to minimize the difference between
the final decoded image (�̂�) and the original image (𝑥), even though its input is
�̂�1, the output of the first decoder.

Its important to note that the distortion measure in 4.5 for the second
autoencoder is strategically designed to facilitate tuning. The measure serves as
a guide, ensuring that the second encoder and decoder are adjusted in a manner
that minimizes the distortion compared to the original image. This approach
assumes that by measuring the discrepancy between the final decoded image
and the original input, the second autoencoder can adapt to generate output
that closely resembles the original image.

Choosing the Optimal Approach: The choice between joint optimiza-
tion and independent optimization depends on several factors, including the
complexity of the network, the availability of computational resources, and the
desired level of performance. In the joint approach, the entire network needs
training for different combinations of two channel types. On the other hand, the
independent approach offers flexibility. It involves developing separate autoen-
coders for different channel models and combining two based on the preferred
channel condition. In this thesis, the independent autoencoder approach is
employed.

4.3 Joint Coding With Re-amplification (JCWR)

JCWR is a model for two-hop wireless communication networks that
uses a single autoencoder. In this model, the encoder acts as the sender, and
the decoder acts as the receiver. The unique feature of JCWR is that it uses
an amplifier at the end of the first communication channel (Figure 4.3). This
amplifier boosts the noisy signal before it is transmitted through the second
communication channel. The decoder at the end of the second communication
channel then processes the amplified signal and decodes it to reconstruct the
original image.

It is possible to implement JCWR in a way that enables each node to act
as a sender, receiver, or amplifier. This flexibility depends on the presence of all

25



4.3. Joint Coding With Re-amplification (JCWR)

Encoder 
I

Channel I

Decoder 
I

Channel II

Source

Node I

Destination

𝑍1𝑋 

𝑍2

መ𝑍1

መ𝑍2
𝑋 

Amplifier

Figure 4.3: Joint Coding With Re-amplification (JCWR)

three functional blocks in each node. Conversely, assigning a specific role to each
node introduces an alternative dimension of flexibility. In this scenario, nodes
can have a more profound network structure for their designated roles with the
same memory and computational capacity. As a result, this configuration has
the potential to improve the overall quality of data at the final destination.

In situations where each node can do all three jobs, the system is very
adaptable. It can easily switch roles. For example, a node could start as a
sender in one session and then act as an amplifier or receiver in the next session.
This adaptability makes sure resources are used well and can make the network
stronger when communication needs change.

On the other hand, giving each node a specific role makes the network
more structured. Each node becomes an expert in one job, making the network
run smoother. This can be good in situations where certain nodes need to always
do the same job. For instance, in a surveillance network, some nodes may always
act as senders, while others are always receivers or amplifiers.

It is important to note that the amplifier in the JCWR model only pro-
cesses encoded data and does not have access to the actual content of the image.
This feature helps address security and privacy concerns that may arise during
the transmission process. The inherent separation of the amplifier from the
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image content ensures a level of data privacy, as the amplifier only interacts
with encoded information rather than the explicit image content. This is espe-
cially important in applications where the data being sent may be private, like
in healthcare, surveillance, or military communications.

The JCWR model is designed to be simple, with a single autoencoder
responsible for both encoding and decoding tasks. The amplifier can be ei-
ther a straightforward device that re-sends its input with increased power or a
more intricate mechanism. The latter option enables the utilization of advanced
transmission and signal enhancement techniques, tailored based on the unique
characteristics of the communication channels. This compensation mechanism
ultimately aims to elevate the overall quality of the final image at its destination.

The JCWR model may have limitations, especially when the noise in the
first communication channel is severe. In these cases, amplifying the signal
alone may not be enough to overcome the complexities of complex interfer-
ence patterns. The model’s effectiveness depends on the amplifier’s ability to
sufficiently neutralize noise and boost the signal, which can be difficult in envi-
ronments with significant channel-induced distortions.

In this model, the encoder and decoder are constructed following the
structure outlined in the DREC model. The amplifier is incorporated as an
untrainable layer throughout the entire network. The entire structure is trained
as a single network with the objective of minimizing the distortion between
the input image 𝑥 and the final output �̂�. The optimization goal, as specified
in equation 4.3, is to ensure that the original image 𝑥 closely aligns with the
final received image �̂�. Despite the potential for more sophisticated amplifiers
with noise-filtering capabilities, this study focuses on the effectiveness of a basic
amplifier that amplifies all inputs by a constant gain factor.

4.4 Multi-Link models

In this section, the scope is expanded to multi-link scenarios where there
are more than two communication channels between the sender and receiver. In
practical situations, having additional channels introduces complexity, and each
channel may exhibit different characteristics and SNRs. As the number of links
increases, the combinations of parameters among all nodes grow exponentially,
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making it impractical to investigate every situation. Despite these challenges,
it is valuable to explore certain combinations. To address this, the DREC and
JCWR models are extended to accommodate three channels and two nodes
between the source and destination. For simplicity and comparability with the
previous two-link models, all nodes and channels are considered identical. The
expanded models are illustrated in Figure 4.4 and Figure 4.5.
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Figure 4.4: DREC model with three channel links between source and destina-
tion.
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5
Results

5.1 Evaluation Method

In this study, the effectiveness of the proposed models is evaluated using
the COCO 2017 image dataset. Although the COCO dataset is extensive and
covers object detection, segmentation, key-point detection, and captioning, this
research doesn’t utilize its annotations. The dataset consists of 118,000 images
for training, 5,000 for validation, and 41,000 for testing. For this study, a subset
of 50,000 training images and 10,000 test images are randomly chosen. To
standardize the data, all images, which vary in size, are resized to 64x64 pixels.

Since the decoder typically lacks knowledge about the input data’s statis-
tics, the input images are normalized by the maximum pixel value of 255. This
normalization process ensures that pixel values fall within the range of [0, 1].

The final output from the last convolutional layer in the encoder com-
prises 2𝑘 real values. To transform these values into 𝑘 complex values, the
first 𝑘 values are interpreted as the real part, while the subsequent 𝑘 values
are perceived as the imaginary part. Conversely, the output from the channels
is converted from the complex space back to the real space using the inverse
process.

All the models were developed using PyTorch. During the training
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phase, the Adam optimization algorithm was employed, with a learning rate
set to 10−3. The loss function used was the average Mean Square Error (MSE)
between the original input image (𝑥) and the reconstructed image (�̂�) at the
decoder’s output. This loss function is denoted as 𝐿 and is defined by equation
5.1. The MSE distortion, 𝑑(𝑥, �̂�), which is a measure of the difference between
the original image (𝑥) and the reconstructed image (�̂�), is defined in equation
5.2. In simpler terms, it calculates the average squared difference between the
corresponding pixels of the two images. This formula aligns with the loss
function described for each model in chapter 4.

𝐿 =
1
𝑁

𝑁∑
𝑖=1

𝑑(𝑥𝑖 , �̂� 𝑖) (5.1)

𝑑(𝑥, �̂�) = 1
𝑛
| |𝑥 − �̂� | |2 (5.2)

The performance of all models and benchmark schemes is assessed using
the Peak Signal-to-Noise Ratio (PSNR) metric. PSNR measures the quality of a
reconstructed image in comparison to the original image. A higher PSNR value
signifies a better quality reconstruction. The PSNR metric is calculated as:

PSNR = 10 · log10

(
MAX2

MSE

)
(dB) (5.3)

Where:

• MSE is the average squared difference between corresponding pixels in
the original and reconstructed images.

• MAX represents the maximum possible value of image pixels. For 24-bit
RGB images (8 bits per pixel per color channel), MAX is 255.

Consequently, a higher PSNR value suggests a lower MSE, indicating a
closer resemblance between the reconstructed and original images.

The Channel SNR (CSNR) measures the proportion between the average
power of the intended signal (in this case, the coded image) and the average
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power of the unwanted noise. The calculation is expressed as:

SNR = 10 · log10

(
𝑃
𝜎2

)
(dB) (5.4)

Where:

• SNR represents the CSNR in decibels (dB).

• 𝑃 denotes the average power of the coded signal (channel input signal).

• 𝜎2 signifies the average noise power.

A higher SNR value suggests a stronger signal and lower noise level,
indicating a greater likelihood for the signal to be accurately detected and de-
coded.

All the schemes’ performance is evaluated under the premise of a slow
Rayleigh fading channel with AWGN. In this scenario, the channel transfer
function is expressed as𝜂(𝑧) = ℎ𝑧+𝑛, where ℎ ∼ 𝒞𝒩(0, 𝐻𝑐) and 𝑛 ∼ 𝒞𝒩(0, 𝜎2𝐼𝑘).

In this experiment, we do not make any assumptions about channel state
information at either the receiver or the transmitter, and the transmission of pilot
signals is not taken into account. Assuming slow fading, the channel gain ℎ is
randomly selected from the complex Gaussian distribution 𝒞𝒩(0, 𝐻𝑐) for each
transmitted image. This value remains constant throughout the entire transmis-
sion of the image and changes independently for each subsequent image. 𝐻𝑐 is
set to 1, and the noise variance 𝜎2 is adjusted to simulate varying average CSNR.
During training, both channels’ SNR is assumed to be identical. The channels
are also considered identical during testing, except when explicitly mentioned.

All models were trained for a variety of CRs and SNRs. The CRs used
were 1

12 , 1
6 , 1

3 , and 1
2 , while the SNRs used were 0 dB, 10 dB, and 20 dB. The input

images were 64 × 64 pixels in size, and the value of 𝑘, which is related to the
desired CR, was set to 4, 8, 16, and 24 for the respective CRs. During training,
the SNR of both channels was considered to be the same. The training loop was
run for 100 epochs.

After the training process is complete, the trained model’s performance
is assessed using a test dataset. To mitigate the effect of randomness introduced
by the communication channel, each testing image from the test dataset is passed
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Figure 5.1: Performance of the trained DREC model with respect to compression
ratio for different CSNR𝑡𝑟𝑎𝑖𝑛 values (CSNR𝑡𝑒𝑠𝑡=CSNR𝑡𝑟𝑎𝑖𝑛)

through the trained networks ten times, and the average PSNR of the received
images is calculated. This process helps to smooth out the effects of noise and
interference, providing a more accurate measure of the network’s performance.

5.2 Decoding and Re-encoding (DREC)

Figure 5.1 displays the performance of the trained DREC model on test
images concerning CRs for various CSNR𝑡𝑟𝑎𝑖𝑛 values. All curves associated
with AE2 pertain to the received images at the destination. Additionally, the
figure illustrates the performance of AE1 to showcase the impact of the second
channel. The second channel leads to approximately a 1 dB decrease in PSNR
for lower CRs (higher compression) and around a 2 dB decrease for higher CRs.
Moreover, it is evident from Figure 5.1 that training with lower SNR exhibits
more robustness against the second channel. Conversely, the decrease in PSNR
for SNR𝑡𝑟𝑎𝑖𝑛 = 0 dB remains nearly constant across CRs, while for SNR𝑡𝑟𝑎𝑖𝑛 = 10
dB and SNR𝑡𝑟𝑎𝑖𝑛 = 20 dB, it increases with decreasing compression levels.

In Figure 5.2, the performance of DREC on test images concerning CRs
for various CSNR𝑡𝑒𝑠𝑡 values is depicted. For CSNR𝑡𝑟𝑎𝑖𝑛 values of 10/20 dB,
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Figure 5.2: Performance of the trained DREC model with respect to compression
ratio for different CSNR𝑡𝑒𝑠𝑡 values
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Figure 5.3: Performance of the trained DREC model with respect to different
CSNR𝑡𝑒𝑠𝑡 values for different CRs

there is a 50% decline in performance when CSNR𝑡𝑒𝑠𝑡 is less than CSNR𝑡𝑟𝑎𝑖𝑛 ,
reducing from 20 dB to 10 dB. Conversely, for CSNR𝑡𝑟𝑎𝑖𝑛 of 0 dB, this decline is
1.5 dB. However, when CSNR𝑡𝑒𝑠𝑡 is greater than or equal to CSNR𝑡𝑟𝑎𝑖𝑛 , the over-
all performance remains nearly the same as when CSNR𝑡𝑒𝑠𝑡 equals CSNR𝑡𝑟𝑎𝑖𝑛 .
This trend is further evident in Figure 5.3 and Figure 5.4, which illustrate the
performance of DREC on test images considering CSNR𝑡𝑒𝑠𝑡 values for various
CRs and the performance of DREC on test images concerning CSNR𝑡𝑒𝑠𝑡 values
for different CSNR𝑡𝑟𝑎𝑖𝑛 values.

The results support the model design and training approach. As ex-
plained earlier, AE1, the first autoencoder, is trained on the original images
from the training set, while AE2, the second autoencoder, is trained on the out-
put of AE1. Because AE1’s decoding is not perfect and error-free, AE2 is trained
on noisy reconstructed images. As a result, the errors caused by the first channel
and the imperfect encoding-decoding steps tend to carry over to the second AE,
leading to an expected drop in quality. However, the observations show that the
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Figure 5.4: Performance of the trained DREC model with respect to different
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degradation is not too significant.

In addition, the results show that the model can handle changes in chan-
nel quality. Specifically, when SNR𝑡𝑒𝑠𝑡 is lower than SNR𝑡𝑟𝑎𝑖𝑛 , which means
the channel conditions are worse than those for which the encoder/decoder
were originally designed, the model is resistant to changes in channel quality.
It shows a gradual decline in performance as the channel gets worse. In other
words, the model is robust to the "cliff effect" seen in digital systems. In digital
communication, the "cliff effect" occurs when the performance of a system sud-
denly drops sharply when the received signal quality becomes too weak. It is
as if the system works well up to a certain strength or quality of the signal, but
after that point, there is a sudden and severe decrease in performance [1] [8].
This effect is especially important in systems that use digital modulation and
encoding, like wireless communication networks.

5.3 Joint Coding With Re-amplification (JCWR)

In Figure 5.5, we illustrate the performance of JCWR on test images
concerning CRs for various amplification factors and CSNR𝑡𝑟𝑎𝑖𝑛 values. The
figure indicates that amplifying the received signal between the two channels
is more beneficial when CSNR𝑡𝑟𝑎𝑖𝑛 is lower. For instance, with CSNR𝑡𝑟𝑎𝑖𝑛 at
0 dB, amplifying the signal by a factor of 2 increases the final PSNR by 2 dB,
and by a factor of 4, it increases by 3 dB (for CR= 1

12 ). However, this results
in a decrease of 0.3 dB for an amplification factor of 2 and an increase of 0.8
dB for an amplification factor of 4. Nevertheless, for higher CRs, the impact of
amplification is less pronounced.

To investigate the impact of amplification based on CSNR𝑡𝑒𝑠𝑡 , Figure 5.7
is presented. Each row corresponds to one CSNR𝑡𝑟𝑎𝑖𝑛 value, and each column
represents one amplification factor. Amplification generally enhances the final
performance (the same color on each row from left to right). The improvement
is more noticeable when CSNR𝑡𝑒𝑠𝑡 is lower than CSNR𝑡𝑟𝑎𝑖𝑛 (different color on
each plot). For instance, with CSNR𝑡𝑟𝑎𝑖𝑛 at 20 dB (bottom row), for CR= 1

12 and
CSNR𝑡𝑒𝑠𝑡 at 0 dB (blue curve), amplification factor 4 improves the final PSNR
from 10 dB (left plot) to 13 dB (right plot). However, this improvement for
CSNR𝑡𝑒𝑠𝑡 at 30 dB (pink curve) is less than 1 dB. This enhancement is more
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noticeable when CSNR𝑡𝑒𝑠𝑡 is less than CSNR𝑡𝑟𝑎𝑖𝑛 , and is more evident in this
figure and Figures 5.6 and 5.8.
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Figure 5.5: Performance of the trained JCWR model with respect to different
amplification factors for different CSNR𝑡𝑟𝑎𝑖𝑛 values (CSNR𝑡𝑒𝑠𝑡=CSNR𝑡𝑟𝑎𝑖𝑛)

Figure 5.9 illustrates the shift in the performance trend of the entire
system when changing the amplification factor from 1 (no amplification) to 4.
Amplification makes both the encoded signal and noise stronger and the whole
network tries to learn how to balance them out. To gain a deeper understanding
of the signal propagation through two channels with an intervening amplifier,
we can represent the transfer function of the second channel with an amplifier
as �̂�2 = 𝜂𝑇(𝑧1), as expressed in Equation 5.7. Here 𝛼 denotes the amplification
factor (refer to Figure 4.3).

�̂�1 = ℎ1𝑧1 + 𝑛1 (5.5)

𝑧2 = 𝛼�̂�1 = 𝛼ℎ1𝑧1 + 𝛼𝑛1 (5.6)
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�̂�2 = ℎ2𝑧2 + 𝑛2 = (𝛼ℎ2ℎ1)𝑧1 + (𝛼ℎ2𝑛1 + 𝑛2) = ℎ𝑇𝑧1 + 𝑛𝑇 (5.7)

These equations suggest that the combination of channel 1, the ampli-
fier, and channel 2 behaves similarly to a single channel but with new noise
properties. During training, the entire network adapts to these characteristics,
explaining the observed shift-like behavior. However, it’s important to note that
networks can train until these new noise characteristics make it impossible to
understand the signal.
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Figure 5.6: Performance of the trained JCWR versus CSNR𝑡𝑒𝑠𝑡 for different CR
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38



CHAPTER 5. RESULTS

0.1 0.2 0.3 0.4 0.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

PS
NR

Amp=1 SNRtrain = 0dB

0.1 0.2 0.3 0.4 0.5

21.0

21.5

22.0

22.5

23.0

23.5

Amp=2 SNRtrain = 0dB

0.1 0.2 0.3 0.4 0.5

22.0

22.5

23.0

23.5

24.0

24.5
Amp=4 SNRtrain = 0dB

0.1 0.2 0.3 0.4 0.5

14

16

18

20

22

24

PS
NR

Amp=1 SNRtrain = 10dB

0.1 0.2 0.3 0.4 0.5

14

16

18

20

22

24

Amp=2 SNRtrain = 10dB

0.1 0.2 0.3 0.4 0.5

16

18

20

22

24

Amp=4 SNRtrain = 10dB

0.1 0.2 0.3 0.4 0.5
Compression Ratio

10.0

12.5

15.0

17.5

20.0

22.5

25.0

PS
NR

Amp=1 SNRtrain = 20dB

0.1 0.2 0.3 0.4 0.5
Compression Ratio

12

14

16

18

20

22

24

26
Amp=2 SNRtrain = 20dB

0.1 0.2 0.3 0.4 0.5
Compression Ratio

14

16

18

20

22

24

26
Amp=4 SNRtrain = 20dB

SNRtest = 0dB

SNRtest = 5dB

SNRtest = 10dB

SNRtest = 15dB

SNRtest = 20dB

SNRtest = 25dB

SNRtest = 30dB

Figure 5.7: Performance of the trained JCWR model with respect to different
amplification factors for different CSNR𝑡𝑟𝑎𝑖𝑛
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Figure 5.9: Performance of the trained JCWR for each CR and CSNR𝑡𝑟𝑎𝑖𝑛 con-
cerning CSNR𝑡𝑒𝑠𝑡 and amplification factor

5.4 Multi-Link Models

To compare the impact of having more channels between two end nodes
of the network for DREC and JCWR models, the same training conditions as
the two-channel modes are followed. For both models, the previously trained
two-link models are used as the starting point, and they are further trained for
an additional 50 epochs.

For the 3-channels DREC model, an additional autoencoder is created.
All three autoencoders of the model are initialized with the trained parameters
of AE1 from the previously trained DREC model. Then, they are trained inde-
pendently for 50 additional epochs. As depicted in Figure 4.4, the input of each
encoder is the decoded image from the previous decoder. The first encoder is
fed with the original image, and the loss function of each autoencoder calculates
the difference between its output and the original image, similar to the DREC
model.

For the 3-channels JCWR model, three channels with two amplifiers, one
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Figure 5.10: Performance of the trained 3-link DREC model with respect to
compression ratio for different CSNR𝑡𝑟𝑎𝑖𝑛 values (CSNR𝑡𝑒𝑠𝑡=CSNR𝑡𝑟𝑎𝑖𝑛)

amplifier between each consecutive pair of channels, are considered. Since these
layers are non-trainable, it is possible to load the parameters of the trained JCWR
model to the 3-channels JCWR encoder and decoder. Then, the entire network
is trained for an additional 50 epochs.

The performance of the two 3-link DREC model is presented in Figures
5.10 - 5.11. Figure 5.10 indicates, as expected, a decrease in performance after
each node (decoding and encoding). However, for 3-link DREC, the degradation
is small, suggesting that decoding and re-encoding the image helps mitigate the
distortion caused by the channel. Figure 5.11 shows how the final performance
changes for different combinations of CRs and CSNR𝑡𝑟𝑎𝑖𝑛 values, compared
to CSNR𝑡𝑒𝑠𝑡 . It is clear that the decrease in performance from AE2 to AE3 is
smaller than the decrease from AE1 to AE2. This indicates that the additional
autoencoders act like denoising autoencoders.

The negligible reduction in performance leads to the conclusion that
it might be possible to use the parameters from AE1 for all other nodes in a
multi-link network without re-training each autoencoder for its position in the
network. To investigate this scenario, a 5-link DREC model is simulated. The
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Figure 5.11: Performance of the trained 3-link DREC model for different CR and
CSNR𝑡𝑒𝑠𝑡 values.

entire network structure is expanded in the same way as the 3-link expansion
from the base DREC model. Parameters from AE1 are loaded into all five au-
toencoders without any extra training or tuning. Thus, all encoders are identical,
and channels are considered the same as well. As illustrated in Figures 5.12 and
5.13, the difference between the final performance (AE5) and the first step (AE1)
is around 2.5 dB for all cases. This means that by designing and training one
optimal JSCC network (in this case, one autoencoder with one communication
channel between encoder and decoder), it is possible to have a multi-link net-
work with cascading the same nodes without requiring any extra actions like
retraining or tuning.

The performance of the two 3-link JCWR model is presented in Figures
5.14 - 5.15. Figure 5.14 illustrates the cumulative effect of noise in the 3-channels
JCWR. The result is in complete contrast to the JCWR model (5.5). In this
model, amplification not only fails to improve the final performance but also
significantly decreases it, especially for 𝐶𝑅 ≤ 1

3 . Similar to the representation
in 5.7, the transfer function of the combination of three channels with two
amplifications can be obtained as shown in 5.8. It is evident that the noise
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Figure 5.12: Performance of the 5-link DREC model with respect to compression
ratio for different CSNR𝑡𝑟𝑎𝑖𝑛 values (CSNR𝑡𝑒𝑠𝑡=CSNR𝑡𝑟𝑎𝑖𝑛).
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Figure 5.13: Performance of the 5-link DREC model for different CR and
CSNR𝑡𝑒𝑠𝑡 values.
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Figure 5.14: Performance of the trained 3-link JCWR model with respect to
compression ratio for different CSNR𝑡𝑟𝑎𝑖𝑛 values (CSNR𝑡𝑒𝑠𝑡=CSNR𝑡𝑟𝑎𝑖𝑛)

increases rapidly with the growing number of channels and amplifiers. At
higher compression levels, where all features of the image need to be encoded
into a lower amount of symbols, distortions caused by this cumulative noise can
hinder the entire system, ultimately affecting the decoder’s ability to adapt.

�̂�3 = ℎ3𝑧1 + 𝑛3 = (𝛼2𝛼1ℎ3ℎ2ℎ1)𝑧1 + (𝛼2𝛼1ℎ3ℎ2𝑛1 + 𝛼2ℎ3𝑛2 + 𝑛3) (5.8)

Figure 5.15 shows how amplification affects the performance for different
combinations of CRs and CSNR𝑡𝑟𝑎𝑖𝑛 values, compared to CSNR𝑡𝑒𝑠𝑡 . It is clear that
the performance gets worse as the amplification factor increases. This indicates
that the amount of accumulated noise grows so much that it completely hides
the original signal.
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Figure 5.15: Performance of the trained 3-link JCWR model for different CR and
CSNR𝑡𝑒𝑠𝑡 values.
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6
Conclusions and Future Works

In conclusion, this research presented and discussed two models, namely
the DREC and JCWR, designed for two-hop wireless communication networks.
These models aim to address the challenges posed by noise and interference in
wireless channels, particularly in scenarios involving multi-hop communication.
The DREC model utilizes two autoencoders and two communication channels,
demonstrating flexibility in adapting to different channel characteristics. On the
other hand, the JCWR model employs a single autoencoder with an amplifier
at the end of the first communication channel to enhance the signal before it
undergoes the second channel.

The DREC model, with its dual autoencoders, allows for various con-
figurations, providing adaptability to different channel conditions. It enables
nodes to switch roles between sender, receiver, and intermediate nodes, allow-
ing for efficient resource utilization. The model’s core objective involves joint
optimization, minimizing the average distortion between the original input im-
age and its reconstruction. Security and privacy challenges arise due to potential
unauthorized access and data leakage, which need careful consideration.

The JCWR model, employing a single autoencoder and an amplifier,
presents an alternative approach. Each node can act as a sender, receiver, or
amplifier, offering adaptability and flexibility in resource allocation. Security
and privacy concerns are addressed by ensuring the amplifier only interacts with
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encoded information, preserving data privacy. While the model’s simplicity is
advantageous, its effectiveness may be limited in scenarios with severe noise in
the first communication channel.

The extension of both models to multi-link scenarios, accommodating
three channel links, expands their applicability. The models’ scalability and per-
formance under various conditions need further exploration. In future works,
the focus could shift towards enhancing security measures, mitigating latency
introduced by double encoding and decoding processes, and investigating more
sophisticated amplifiers for the JCWR model. Additionally, the models could
benefit from optimization approaches such as reinforcement learning to dynam-
ically adapt to changing channel conditions in real-time.

The evaluation of all models is done using the JSCC structure proposed
in [1]. The study uses the COCO 2017 image dataset, with a subset of 50,000
training images and 10,000 test images. Models are developed using PyTorch,
and evaluated using PSNR. Two main models, DREC and JCWR, are discussed,
and their performance is analyzed under various conditions, including different
compression ratios and signal-to-noise ratios.

For DREC, the impact of a second channel is explored, revealing a de-
crease in PSNR with higher compression and lower SNR. The model exhibits
robustness to changes in channel quality. JCWR involves signal amplification
between channels, and its performance is shown to vary based on the amplifi-
cation factor and SNR. The cumulative noise effect in multi-channel systems is
also examined.

The evaluation concludes by expanding these models to multiple links,
indicating that additional channels in DREC have a minimal impact on perfor-
mance, suggesting potential parameter sharing. However, JCWR with multiple
links experiences a significant decrease in performance due to amplified noise
accumulation.

The models’ scalability and performance under various conditions need
further exploration. In future works, the focus could shift towards consid-
ering security and privacy concepts, mitigating latency introduced by double
encoding and decoding processes, reliability analysis of JSCC models, and in-
vestigating more sophisticated amplifiers for the JCWR model. Additionally,
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the models could benefit from optimization approaches such as reinforcement
learning to dynamically adapt to changing channel conditions in real-time.

Developing more sophisticated amplifiers for the JCWR model could
enhance its performance, particularly in scenarios with severe noise in the first
communication channel. Research could focus on adaptive amplification tech-
niques that dynamically adjust the amplification factor based on channel condi-
tions and noise levels.

Incorporating reinforcement learning algorithms into both models would
enable them to dynamically adapt to changing channel conditions in real-time.
This would allow the models to optimize their parameters and strategies based
on the current network environment, leading to improved performance and
efficiency.

A comprehensive analysis of the models’ performance in multi-link sce-
narios is necessary to determine their scalability and effectiveness in more com-
plex communication networks. This would involve evaluating the impact of
additional channels on the models’ ability to handle increased data transmis-
sion and varying network topologies.
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