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Abstract

Precise Orbit Determination (POD) has become more and more relevant over the past decades
due to the ever increasing requirements artificial satellites must satisfy. This is true for both com-
mercial and scientific missions that find applications in a wide variety of fields such as navigation,
communication and Earth observation. In most cases, the correct acquisition and interpretation
of data would not be possible without extremely accurate knowledge of the satellite’s orbit. This
is particularly true in the field of space geodesy, where centimeter-level accuracy is required to
measure delicate geophysical parameters. In this regard, the objective of this thesis is to analyze
and compare the main techniques used in statistical orbit estimation. Unlike Initial Orbit Deter-
mination (IOD), we add the realistic assumption that the model used for dynamic propagation is
inevitably erroneous, as are the measurements used to track the satellite. These estimation tech-
niques must therefore demonstrate their ability to filter these data in order to derive an optimal
estimate of the satellite’s state, along with other geometric and dynamic parameters. The compar-
ison is made by distinguishing real-time filtering techniques (Kalman filters) from offline processes
that are executed “a posteriori” after the measurements have been collected. In this second case,
we are referring to the least squares batch estimators or differential corrections algorithms. Finally,
the effects of smoothing techniques are studied as a post-processing solution that allows for the
improvement of the estimate previously made with a real-time filter. Furthermore, for the good
performance of an orbital estimator, a critical aspect is the correct and complete modeling of the
accelerations acting on a satellite in orbit. This is particularly true for offline estimators like the
batch, given that since they collect measurements over fairly long time arcs, they are sensitive
even to the smallest perturbations. In this regard, within the context of the numerical modeling of
forces, a significant part of the work involves analyzing the development and implementation of a
routine that allows for the calculation of the perturbation resulting from Earth Radiation Pressure
(ERP), considering the contribution of both visible (albedo) and Infrared (IR) components. The
entire work is conducted within the context of the Navigation and Space Geodesy group at the Uni-
versity of Padova, led by Professor Stefano Casotto. Here, the use of numerous previously available
Fortran libraries, along with independently developed routines and programs, yields results that
clearly confirm the validity of the implemented estimation techniques. Generally, sub-decimeter
level accuracies are achieved on synthetic data obtained from an estimated orbit of Sentinel-3A,
provided by the European Space Agency (ESA). A careful analysis of the results shows that real-
time filtering techniques tend to yield better results compared to batch estimation, for which it is
necessary to deepen and expand the currently available force model. Furthermore, even though
the data are satisfactory, the understanding is that only a test on real measurements can defini-
tively determine the performance of the developed software. Nonetheless, this work has allowed
for a deep dive into the issue of precise orbit determination, motivating further efforts aimed at
improving the current project.





Chapter 1

Introduction

1.1 Context

The orbit determination problem finds its roots back to the XVII century, with the first who
tackled the determination of celestial bodies trajectories being Kepler (c. 1610) and Legendre (c.
1750). However, a first formal, analytical and computational basis of the issue was given by Gauss
(c. 1810) who, along with Legendre, is claimed to be the father of the least squares method. The
rediscovery of the asteroid Ceres (1801) and the calculation of its orbit made by Gauss is considered
to be the first time astronomers had constructed and predicted an orbit through observations.
Thanks to the technological advances made in the last century in observational instruments, and
the more and more demanding precision requirements, needed especially for certain applications
such as geodesy, Earth observation and Global Positioning System, orbit determination has seen
an extensive improvement in determining the position and velocity of artificial satellites orbiting
the Earth, with missions that require centimeter-level accuracy. For example, TOPEX/Poseidon
launched in 1992 measured the ocean surface topography with an accuracy below 5 centimeters, a
result that would not be attainable if its orbit was not known with extreme accuracy. Neverthe-
less, besides the technological improvements, one major leap in estimation theory occurred when
Rudolf E. Kalman introduced the now called Kalman Filter in his work A New Approach to Linear

Filtering and Prediction Problems [11]. The sequential version of the least squares algorithm was
immediately recognised as a powerful tool suited for real time estimation and particularly appro-
priate for including process noise, laying the foundations for many modern applications in the most
varied fields and disciplines from navigation, tracking, economics up to medical monitoring and
many others. However, Orbit estimation remains one of the main fields of use.

When we talk about precise orbit determination (POD), we are distinguishing it from prelimi-

nary orbit determination, more recently known as Initial Orbit Determination (IOD), and even if
in both cases we are dealing with determining a particular trajectory, these two proceedings exhibit
significant differences. In preliminary orbit determination we are concerned with the determina-
tion of the six orbital elements with no a priori information about the dynamical state and the
assumption that bodies move under the influence of a point mass force only, but with the sufficient
number of observations that make the solution to the problem unique, which is clearly six, and
these observations often being two sets of range and angles or three direction vectors. Even if this
method is fairly accurate for large celestial bodies, it definitely isn’t satisfactory for small artificial
satellites that require high tracking accuracy and are more susceptible to non gravitational forces
and perturbations due to their small mass or high velocity in the vicinity of the planet’s atmo-
sphere, giving rise to the need of a more sophisticated method that accurately models the largest
number of perturbations, and includes the effects of random perturbations and measurements er-
rors. It is in this context that the concept of precise orbit determination becomes necessary.

Predicting, Filtering and Smoothing are the three main topics involved in POD applications.

1
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Predicting is the process by which future states are determined from current observations and a
priori information through propagation techniques; in other words, given an initial state at epoch,
the differential equations governing the motion are integrated to future times. However, the first
complications encountered lie in the fact that both the initial state and the mathematical model,
along with geometrical and dynamical parameters used to propagate the trajectory, are never
known exactly, meaning that sooner or later the actual path will diverge from the predicted one.
For this reason, periodic measurements are needed to update knowledge on the object state, but
these are themselves subject to systematic and random errors which must be accounted for when
performing orbit determination. This leads to the need of a Filtering procedure of these data,
which is getting a better estimate of the current state from current and previous observations.
Finally, Smoothing is the process of searching for a better estimate of the state at a time, including
future observations, making it suitable for improving the estimate in offline applications rather
than real-time tracking.

In summary, precise orbit determination is the process of determining a best estimate of the
state of an orbiting satellite considering that:

� we are not able to directly measure the state (position and velocity) of a satellite;

� the mathematical model might be more or less approximate and incomplete;

� both the mathematical model used for propagation and the observations-state relations pos-
sess nonlinear characteristics;

� the observations available at any time epoch are often less than the state vector components
to be determined;

� errors in numerical integration, computer truncation and roundoff errors are present;

� observations contain systematic and random errors.

In this thesis the orbit determination problem will be addressed through the application of two
main types of filtering techniques, the Batch estimation and the Kalman filter, then, the effects of
smoothing techniques are discussed.

1.2 Thesis outline

The aim of this thesis is to study, analyze, implement and compare the main techniques used for the
Precise Orbit Determination (POD) of low-Earth satellites, namely the batch estimation, Kalman

filters and smoothing. The work is carried out in the framework of the Navigation and Space
Geodesy group led by Professor Stefano Casotto at the University of Padova, and the main focus
is the development of a collection of routines and programs written in Fortran, whose purpose is
to test and validate orbit determination procedures on satellite data. First, an in-depth discussion
on the numerical modeling of the main accelerations acting on a satellite is carried out, given
that an effective POD software must primarily be able to simulate many acting perturbations as
precisely as possible, in order to increase the prediction accuracy during propagation. In doing
so, the numerical implementation of these accelerations is thoroughly examined with a special

perturbations approach, which is well-suited for numerical integration as every effect is modeled as
a single-point acceleration. Here, particular attention is given to the algorithmic implementation of
an Earth Radiation Pressure (ERP) model developed by Knocke (1988) [13] which, in the context
of precision modeling, is expected to have noticeable effects on the batch estimation results. Then,
the linearization of the orbit model is discussed as a preliminary requirement for the understanding
and development of subsequent chapters, that dive deep into the three major estimators used for
orbit determination. The first of these is the batch processor, which is immediately identified
as the off-line estimator as opposed to real-time filters. Here, the derivation of the nonlinear
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least squares approach, also known as differential correction, is thoroughly exposed as well as the
concepts of parameters segmentation and estimation of empirical accelerations, which are discussed
as useful tools when dealing with this kind of estimation. Next, the dissertation proceeds by
deriving the basic real-time filter from a sequential version of the batch processor, as in Tapley
[24], and a particular case of this sequential estimation happens to coincide with the famous
Kalman filter. This real-time filter is first presented in its conventional form, then, the Extended
Kalman Filter (EKF) is derived and proposed as an improved version of the conventional one as
its performances are better in the presence of high nonlinearities, which makes it suited for the
orbit determination problem. Subsequently, the inclusion of process noise in the Kalman filter
is addressed considering two main approaches: the State Noise Compensation algorithm (SNC)
and the Dynamic Model Compensation (DMC) [22, 8], where their differences and peculiarities are
highlighted in the context of avoiding filter divergence. Afterwards, the orbit determination through
Optimal Smoothing (OS) is shown and derived following two different approaches: the forward-

backward and the RTS smoothers. Here, it is shown how the forward-backward formulation consists
of two independent filters, with the forward one being a conventional Kalman, while the second is
a backward information filter. On the other hand, the RTS formulation is derived and presented as
an alternative that is more compact and lighter from an algorithmic implementation standpoint.
The last Chapter, contains the critic discussion and assessment of the results obtained from the
implementation in Fortran of these three orbit determination approaches. The simulations are
performed starting from available data of the Sentinel-3A satellite, provided by the European Space
Agency (ESA) in the form of inertial position and velocity components over a period of roughly
seven days. From these coordinates, a synthetic observations history is created with the Earth-
fixed coordinates of fifty existing ground stations, that are available from the International GNSS
Service (IGS). It’s important to highlight here that given the synthetic nature of the measurement
data, this is not a true precise orbit determination, which instead should use real measurements
that involve numerous complications. Nonetheless, the purpose of the thesis is not so much to
perform a true orbital determination, but to compare different methodologies, highlighting their
peculiarities, so, under such circumstances, the best outcome that can be achieved is not an
absolute orbital estimate, but the determination of the force and kinematic models that were used
for the generation of the input orbit data. In this regard, the use of synthetic data rather than real
data provides a controlled environment in which it is easier to draw detailed conclusions. First, the
results associated to the batch estimation are presented. A box-wing satellite model with simulated
attitude dynamics is firstly implemented during estimation, then, the results obtained from the
use of a cannon-ball model are shown as well as the beneficial effects of parameters segmentation
for this latter case. Next, the results obtained with the EKF algorithm are discussed showing its
properties of stability and convergence when a reduced-dynamics approach is used together with
the DMC algorithm, then, the adverse effects caused by the lack of process noise are displayed in
terms of filter divergence. Finally, the smoother results are exposed, showing the improvements
on the solution precision that are associated to a lower estimated covariance. This is done while
distinguishing dynamical and bias states as those components that are, or are not, affected by
smoothing procedures. Moreover, the effect of initial conditions on the smoother performance is
further analyzed, while exposing the major drawback that this estimator inherits from the forward
conventional filter: its sensitivity to initial position and velocity. The thesis is then concluded with
a critical evaluation of the results obtained, together with a reflection on the main limitations of
this work and possible further improvements.
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Chapter 2

Numerical Orbit Modeling

In the context of precise orbit determination a critical aspect is orbit propagation. Prediction of
future states is carried out by means of trajectory integration over time, based on the mathematical
models used to describe the forces acting on the spacecraft. For this reason, the importance of a
well defined dynamical model becomes clear, and the higher is the number of forces described, the
higher will be the prediction accuracy, at the expense, however, of computational effort. Except for
the gravity field of a central point mass, which alone leads to Keplerian orbits, other major forces
called perturbations that should be considered for precise orbit determination can be distinguished
into two main categories based on their nature: gravitational perturbations and non-gravitational

perturbations. The former are related to every dynamical effect on the satellite trajectory that
can be derived as the gradient of a gravitational field generated by different massive bodies or
any mass distribution, that being constant or time-varying, while the latter are due to different
physical phenomena whose effect does not depend on the satellite’s mass, but strongly depend
on its geometry. These latter perturbations often require the computation of integrals over the
satellite’s surfaces and the knowledge of their physical properties such as reflective coefficients
and temperature, for this reason, they are frequently called skin forces and their non-conservative
nature leads to variations in orbit energy. Hereafter, the main perturbations of interest for this
analysis on POD applications are listed with a brief description, and later on, their mathematical
modeling is described.

� Aspherical gravitational potential : the Earth, but also every celestial body in general, is not
a perfect homogeneous sphere, meaning that the central point mass is actually an approxi-
mation of reality, and if one were to neglect this fact a good trajectory prediction would not
be possible. In mathematical terms this effect can be considered using the expansion of the
gravitational potential in spherical harmonics, and the degree of this expansion determines
the accuracy of the representation. In addition to this, the aspherical and inhomogeneous
characteristics of the Earth are not of static nature, but periodic deformations of the geoid
occur due to the tidal forces exerted by other celestial bodies like the Sun and the Moon,
causing solid tides and ocean tides which make the geopotential variable over time.

� Atmospheric drag : for near Earth satellites, the drag force due to relative velocity between
the spacecraft and Earth’s atmosphere cannot be neglected for POD applications, even if the
atmospheric density at typical LEO altitudes can be fourteen orders of magnitude smaller
compared to sea-level. The border line below which atmospheric effects should be considered
is usually set at 1000 km, and here, if the right countermeasures are not taken, the satellite
experiences first a circularization phase due to higher velocity at perigee that quickly de-
creases apogee altitude, and then a spiraling phase that eventually leads to disintegration in
atmosphere or surface impact.

� Third body effects : considering that the Earth is the only boding attracting the spacecraft
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might be insufficient for many applications. For Earth orbiting satellites the other two main
attractors are the sun and the moon, whose perturbing effect becomes greater as orbit altitude
increases. For this reason, in LEO satellites applications that do not require high levels of
precision these effects might be neglected, but for missions requiring POD they certainly
become appreciable.

� Solar radiation pressure: when a satellite is exposed to solar radiation it experiences a
perturbing force due to the transfer in momentum between impinging photons and satellite’s
surfaces. Here, the optical characteristic of the materials covering the spacecraft become
important, as they influence the mechanism by which the photons are absorbed or reflected,
thus, the net force acting on the satellite.

� Earth radiation pressure: For Earth orbiting satellites another source of radiation pressure
is Earth itself. Even if for a wide variety of applications the previously mentioned pertur-
bations are sufficient to accurately propagate and predict a satellite’s trajectory, for other
missions such as the US/French TOPEX/Poseidon satellite altimeter whose purpose was the
mapping of oceans surface with an accuracy under 10 cm, neglecting the effect of earth radi-
ation would lead to insufficient performance in position and velocity estimation. Moreover,
since this effect becomes more tangible for LEO satellites over long periods of time, for orbit
estimation performed with a batch processor, the presence of this force model in the prop-
agation of the reference trajectory can surely benefit the estimation performance, for this
reason, particular attention will be given in the discussion of its mathematical model and
algorithm implementation. On the other hand, for real-time filters where the trajectory is
continuously updated after short time spans, earth radiation pressure can be neglected in
favor of a lower computational demand.

2.1 Equations of Motion

Considering a geocentric inertial reference frame the equations of motion of and Earth orbiting
satellite can be expressed as

r̈ = r̈kepl + r̈pert, (2.1.1)

where r̈kepl is the acceleration due to a central point mass while r̈pert encloses all remaining
accelerations acting on the satellite, i.e. the aforementioned perturbations. This latter term can
be further separated into gravitational and non-gravitational components:

r̈pert = r̈g + r̈ng, (2.1.2)

which in turn comprise different sources of acceleration distinguished by their nature, namely:

r̈g = r̈geo + r̈nb + r̈st + r̈ot

r̈ng = r̈drag + r̈SRP + r̈ERP + r̈emp

where

� r̈geo is the acceleration due to the non-spherical Earth’s gravitational potential,

� r̈nb is the acceleration due to n-body effects,

� r̈st is the acceleration associated to solid Earth tides,

� r̈ot is related to ocean tides,

� r̈drag is the acceleration caused by atmospheric drag,
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2.2. GEOPOTENTIAL

� r̈SRP is the acceleration given by the Solar Radiation Pressure,

� r̈ERP is the acceleration contribution from the Earth Radiation Pressure, both in the visible
(albedo) and InfraRed (IR) spectrum,

� r̈emp represents the empirical accelerations which have no physical counterpart, but are a
means of accounting for small unmodeled perturbative effects.

Then, the motion of a satellite around the Earth is completely modeled by the following equation

r̈ = r̈kepl + r̈geo + r̈nb + r̈st + r̈st + r̈ot + r̈drag + r̈SRP + r̈ERP . (2.1.3)

The following Sections discuss the derivation of mathematical models for the perturbative
accelerations, with considerations on their numerical and algorithmic implementation.

2.2 Geopotential

We know that, as a first approximation, Earth orbiting satellites move on Keplerian orbits that
are mathematically described by conic sections like ellipses, parabolas and hyperbolas. These
particular trajectories are obtained as solutions of the equations that govern the motion of a body
subjected to a radially symmetric force field, described by Newton’s law of universal gravitation,
according to which the force experienced by two point masses attracting each other is given by

|F| = G
m1m2

r2
, (2.2.1)

where r is the distance between m1 and m2, and G is the gravitational constant (G ≈ 6.6743 ×
10−11 Nm2/kg2). In terms of acceleration, the effect that m2 has on m1 cane be expressed as
follows

r̈1 =
F

m1
= −Gm2

r2
er, (2.2.2)

with er being the unit vector pointing from m2 to m1, and for a more general treatment, we recall
that the acceleration vector can be interpreted as the gradient of a scalar gravitational potential

function U . So, if m2 is replaced by the more general central mass M , the gravitational potential
at a distance r from M is

U = G
M

r
, ∇U = r̈. (2.2.3)

The potential described in (2.2.3) is clearly radially symmetric and often known as the Earth’s
spherical gravitational potential. However, as anticipated before, the Earth is not perfectly spher-
ical nor homogeneous in density distribution; in fact, it is well known that due to its constant
rotation it can be represented more like and oblate ellipsoid rather than a sphere, with the equa-
torial radius surpassing the polar radius by about 20 km. This oblateness has tangible effects on
Earth orbiting satellites which manifest themselves as a secular regression of the Right Ascension
of the Ascending Node (RAAN) for prograde orbits, that is actually a precession of the orbital
plane, given that the perturbing effect can be seen as a torque that tends to align the orbital
plane to the equator. The Earth’s flattening at the poles is certainly the strongest gravitational
perturbation acting on satellites, nevertheless, it is not the only one and for POD applications a
more realistic representation of the geopotential is necessary.

A more general formulation for the geopotential, that allows to model non-spherical and inho-
mogeneous masses, can be expressed as an integral over the volume of the central body

U = G

∫

V ol

ρ(s)

|r− s| ds
3, (2.2.4)
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2.2. GEOPOTENTIAL

cos γ = sinϕ′ sinϕ+ cosϕ′ cosϕ cos(λ− λ′), (2.2.11)

moreover, in (2.2.10), a compact formula for the degree n and order m associated function is given
similarly to (2.2.8) as

Pnm(x) = (1− x2)
m
2
dm

dxm
Pn(x). (2.2.12)

From the computational point of view, the Legendre polynomials and associated Legendre
functions are seldom computed using equations (2.2.8) and (2.2.12) since, although providing a
direct expression for Pn(x) and Pnm(x), they require the computation of several derivatives. For
this reason, a recursive algorithm is preferable and is given by the following relations [6]:

P̄nn

(
sinϕ

)
= fn cosϕP̄n−1,n−1

(
sinϕ

)
, n ≥ 1, (2.2.13)

P̄nm

(
sinϕ

)
= gnm sinϕP̄n−1,m

(
sinϕ

)
− hnmP̄n−2,m

(
sinϕ

)
, n ≥ m+ 1, (2.2.14)

where P̄ indicates that the Legendre function has been fully normalized with the normalizing
coefficients fn, gnm and hnm defined as

fn =

√

(1 + δ1n)(2n+ 1)

2n
(2.2.15)

gnm =

√

(2n+ 1)(2n− 1)

(n+m)(n−m)
(2.2.16)

hnm =
gnm
gn−1,m

=

√

(2n+ 1)(n−m− 1)(n+m− 1)

(2n− 3)(n+m)(n−m)
. (2.2.17)

Finally, by substitution of equation (2.2.10) into (2.2.7) and separating terms related to satel-
lite’s position to the ones associated to Earth mass distribution, we can arrive at the complete
expansion of the geopotential

U =
GM⊕

r

∞∑

n=0

n∑

m=0

(
R⊕

r

)n

P̄nm

(
sinϕ

)[

C̄nm cos(mλ) + S̄nm sin(mλ)
]

, (2.2.18)

and here,

� M⊕ is the Earth’s mass;

� R⊕ is the mean Earth radius and r is the geocentric satellite distance;

� P̄nm Are normalized associated Lagrange polynomials of degree n and order m;

� C̄nm and S̄nm are normalized harmonic Stokes coefficients;

� ϕ and λ are the satellite’s geocentric longitude and latitude.

The coefficients C̄nm and S̄nm describe the internal mass distribution of the central body as
well as its shape, and their expressions are given by Montenbruck (2000) [19]

C̄nm = Nnm
(2− δ0m)

M⊕

(n−m)!

(n−m)!

∫

V ol

(
s

R⊕

)n

Pnm

(
sinϕ′

)
cos(mλ′)ρ(s)ds3 (2.2.19)

S̄nm = Nnm
(2− δ0m)

M⊕

(n−m)!

(n−m)!

∫

V ol

(
s

R⊕

)n

Pnm

(
sinϕ′

)
sin(mλ′)ρ(s)ds3, (2.2.20)
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with Nnm being the normalizing coefficient defined as

Nnm =

√

(n+m)!

(2− δ0m)(2n+ 1)(n−m)!
. (2.2.21)

The purpose of the normalization procedure is to make the Lgenedre functions and Stokes coeffi-
cients more uniform by a numerical standpoint. Non-normalized vales would span over a range of
more than ten orders of magnitude, even for low degree and low order models, potentially leading
to a loss of precision in finite digit arithmetic.

Although the formulation for the geopotential in equation (2.2.18) completely describes the
gravitational potential of a generic mass, it is common to find another expression in literature
that highlights the structure and properties of the normalized Stokes coefficients in (2.2.19) and
(2.2.20). As mentioned earlier, they only contain terms related to the Earth shape and density
distribution, and interesting aspects arise when considering certain values for the degree n and
order m. First of all, it can be shown that if the center of the coordinate system used to define
all spatial quantities is located at the Earth’s center of mass, the coefficients C10, C11 and S11 all
vanish; also, S10 is zero by definition. This means that the first summation with respect to the
index n can start from n = 2 rather than from n = 0 and the 0-th degree term is factored out as
the newtonian potential. Moreover, given that every Sn0 vanish by definition, we can group the
contributions from every Cn0 in a summation of its own with the following definition

−Cnm = Jn, (2.2.22)

and we finally arrive at

U =
GM⊕

r

{

1−
∞∑

n=2

Jn

(
R⊕

r

)n

P̄n

(
sinϕ

)
+

+

∞∑

n=2

n∑

m=1

(
R⊕

r

)n

P̄nm

(
sinϕ

)[

C̄nm cos(mλ) + S̄nm sin(mλ)
]
}

. (2.2.23)

The trigonometric arguments of the associated Legendre polynomials represent spherical har-
monics in equation (2.2.23), where their degree and order actually represent lines over the Earth’s
surface where these polynomials are null. Based on the values of n and m, these spherical harmon-
ics can be grouped into three different types. The first infinite sum, in the index n and coefficients
Jn, gives the Geopotential part related to zonal harmonics that describe variations in potential
dependent on latitude only. In other words, the field associated to this components is symmetric
about the polar axis and can be represented as bands in latitude. The first of them, associated to
J2, separates the Earth’s surface into three regions with a large equatorial band of positive mass
concentration that describes the Earth’s oblateness mentioned before, which is by far the strongest
gravitational perturbation after the spherical term. The second sum in indexes n and m gives
sectoral harmonics and tesseral harmonics. Sectoral harmonics are found when n = m and unlike
zonal harmonics, they represent bands of longitude delimited by n circumferences passing through
the polar axis, dividing the Earth’s surface into 2n slices of alternating positive and negative mass
concentration sectors. The strongest perturbation associated to a sectoral harmonic is related to
the Legendre function of degree and order 2, that is C2,2. The physical explanation is the fact that
the Earth is more of an ellipse rather than a circle even considering its equatorial cross section,
with the major axis at 14.7◦ W to the Greenwich meridian. Geostationary satellites are the ones
particularly sensitive to this perturbation for they are fixed relative to the Earth’s surface and
thus, they do not average out this effect along their orbit, drifting towards stable regions of least
potential. Tesseral harmonics are obtained when n ̸= m ̸= 0, they divide the Earth’s surface into
tiles that extend both in latitude and longitude in a sort of chessboard-like fashion, and often,
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2.2. GEOPOTENTIAL

sectoral harmonics are considered a subset of them, as a special case in which n = m.
As was shown earlier in equation (2.2.3), once a mathematical formulation for the complete

scalar geopotential is available, the acceleration acting on an orbiting satellite can be computed by
taking its gradient, that is, to obtain the acceleration components in the inertial geocentric J2000
reference frame we must compute

ageo = ∇U

=
[
∂U
∂x

∂U
∂y

∂U
∂z

]

.
(2.2.24)

However, since the geopotential in (2.2.23) is expressed in spherical coordinates, we must use
the chain rule of derivation to get

ẍ =
∂U

∂r

∂r

∂x
+
∂U

∂ϕ

∂ϕ

∂x
+
∂U

∂λ

∂λ

∂x
, (2.2.25)

ÿ =
∂U

∂r

∂r

∂y
+
∂U

∂ϕ

∂ϕ

∂y
+
∂U

∂λ

∂λ

∂y
, (2.2.26)

z̈ =
∂U

∂r

∂r

∂z
+
∂U

∂ϕ

∂ϕ

∂z
+
∂U

∂λ

∂λ

∂z
, (2.2.27)

and the partial derivatives of the geopotential with respect to the spherical coordinates are

∂U

∂r
=
GM⊕

r2

{

1 +

∞∑

n=2

(
R⊕

r

)n

(n+ 1)

n∑

m=0

P̄nm

(
sinϕ

) [
C̄nm cos(mλ) + S̄nm sin(mλ)

]
}

, (2.2.28)

∂U

∂ϕ
=
GM⊕

r

∞∑

n=2

(
R⊕

r

)n[

C̄nm cos(mλ) + S̄nm sin(mλ)

]

×

×
[

P̄n,m+1

(
sinϕ

)
−m tanϕP̄n,m+1

(
sinϕ

)
]

,

(2.2.29)

∂U

∂λ
=
GM⊕

r

∞∑

n=2

(
R⊕

r

)n

mP̄nm

(
sinϕ

)
[

S̄nm cos(mλ)− C̄nm sin(mλ)

]

, (2.2.30)

while partial derivatives ∂r
∂r ,

∂φ
∂r and ∂λ

∂r are computed through transformations between Cartesian
inertial frame and spherical coordinates frame, that must account for temporal variations between
the two caused by various effects like polar motion, nutation, precession and sidereal rotation.

The expansion of the geopotential in spherical harmonics requires the knowledge of the Stokes
coefficients C̄nm and S̄nm, and as was shown earlier, these coefficients describe the Earth’s mass
distribution through integrals over a volume of arbitrary shape and arbitrary density distribution
ρ(s). Clearly, it is difficult to imagine how these coefficients could be derived by actual integration of
equations (2.2.19) and (2.2.20), for this reason, Stokes coefficient are actually obtained from satellite
measurements, where missions like GRACE (NASA-DLR) helped in developing a high definition
time-varying model for the Earth’s gravitational field. Furthermore, summation in (2.2.23) cannot
practically be computed since it is infinite, in reality, one considers terms up to a certain degree
and order depending on the particular mission that is considered, knowing that the effects of
higher order terms are progressively smaller and negligible. For POD applications in LEO orbits a
120× 120 (degree and order) geopotential can be enough to adequately recover orbital data from
measurements.

2.2.1 Solid Earth tides

The influence of third bodies on an Earth orbiting satellite’s dynamics is not only direct, as a third
body effect, but in a sense it can be indirect by means of Earth’s solid and ocean tides. This is
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CHAPTER 2. NUMERICAL ORBIT MODELING

the case for the lunisolar tidal perturbations, where the gravitational pull of the sun and moon are
strong enough to actually deform the Earth’s shape, and therefore its mass distribution, leading to
small periodical variations in the gravitational field of the Earth that may give insufficient accuracy
for POD applications if they are not accounted for.

Considering the case of solid Earth tides, these deformations can be accurately described by
the generating potential of the lunisolar tide, so that the tidal force acting on a point r located on
the surface of the Earth, can be computed as the gradient of this potential:

FT = ∇rU(r), (2.2.31)

moreover, considering a non rotating reference frame K centered at the Earth’s center of mass,
the tidal force acting on the point r generated by a perturbing body (Moon or Sun), can also be
defined as

FT (r) = F(r)− F(rE). (2.2.32)

Here, the second term F(rE) appearing on the RHS of equation (2.2.32) arises because K is a
non inertial frame. If we consider a co-rotating frame, the gravitational potential of the perturbing
body of mass Mp, gives a potential U on a point on the Earth’s surface r that can be expressed as
[19],

U =
GMp

|s− r| +
1

2
n2d2, (2.2.33)

where Mp is the mass of the perturbing body (Moon or Sun), s is its geocentric position, n is its
mean motion about an axis passing through the system’s center of mass and d is its distance from
this axis. A brief analysis shows that the perturbing potential Ut has the following form [2]:

Ut =
GMp

R⊕

∞∑

n=2

(
R⊕

s

)n+1

Pn

(
cosψ

)
, (2.2.34)

and here d is the distance of the tide generating body from the Earth’s center of mass and ψ is
its zenith angle, that is the angle between s and r. It is interesting to note how, considering the
first term in (2.2.34) for n = 2, the perturbing potential is proportional to GMp/s

3, meaning that
the solid Earth tide caused by the Moon is almost twice as strong as the one generated by the
Sun alone. Moreover, since this potential depends on ψ we can expect it to contain many different
periods due to the Earth’s rotation, also, depending on s both for the Sun and Moon, periodical
variations arise because of eccentric orbits. Going back to (2.2.34), it would be convenient to
express it in spherical coordinates similarly to what was done for the geopotential, and by means
of the spherical harmonics rotation theorem we get

Ut =
GMp

R⊕

∞∑

n=2

n∑

m=0

(
R⊕

s

)n+1

(2− δ0m)
4π

2n+ 1
Y m
n (ϕ, λ)Y ∗m

n (δ, α)eimθg , (2.2.35)

where (ϕ, λ) are the geocentric coordinates of the point of interest in the gravitational field, (δ, α)
are the equatorial coordinates of the perturbing body, Y m

n (ϕ, λ) is a surface spherical harmonic
with Y ∗ being its complex conjugate. Note that we are only interested on the real part of (2.2.35).
Similarly to what was done for the geopotential, where we separated terms related to the Earth
from terms related to the satellite position, here we need to separate geographic terms containing
(ϕ, λ) from the astronomical ones containing (δ, α), to do so, we introduce the following time
dependent function:

Bnm(t) = (2− δ0m)
4π

2n+ 1

MpR⊕

GM⊕

(
R⊕

s

)n+1

Y ∗m
n (δ, α)eimθg , (2.2.36)

which is useful to express the perturbing potential as:
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2.2. GEOPOTENTIAL

Ut(ϕ, λ, t) = g

∞∑

n=2

n∑

m=0

B∗
nm(t)Y m

n (ϕ, λ), (2.2.37)

with g being the gravitational acceleration on the Earth’s surface.
Even though the introduction of the time varying function Bnm(t) has drastically simplified the

expression for the perturbing tidal potential, that is expressed as a function of spherical coordinates
and time, the main difficulty lies precisely in determining Bnm(t). This function requires to
accurately model the perturbing bodies motion in order to know the evolution of δ(t), α(t) and
s(t), however, this is simplified if the motions are described in the ecliptic coordinate system,
whereas in first approximation and except for few cases, every body of the solar system lies on the
ecliptic plane, with the mean longitudes becoming linear functions of time allowing for an harmonic
representation of Bnm(t) and the tidal potential.

Besides these deeper considerations, the gist of this discussion on solid tides is that due to the
presence of perturbing bodies, the Earth’s mass distribution in not invariant in time, thus, the
geopotential alone cannot fully describe the effects of the Earth’s gravitational field on an orbiting
satellite. It has been demonstrated that, through spectral decomposition, the modeling of the tidal
perturbations really comes down to geopotential variations expressed through time-varying Stokes
coefficients, which are represented as a constant term plus a perturbation term:

C̄ ′
nm(t) = C̄static

nm +∆C̄nm, S̄′
nm(t) = S̄static

nm +∆S̄nm (2.2.38)

where

∆C̄nm =
knR

n+1
⊕

GM⊕

√

4(n+ 2)(n−m) !

(n+m) !
qnm (2.2.39)

∆S̄nm =
knR

n+1
⊕

GM⊕

√

4(n+ 2)(n−m) !

(n+m) !
unm (2.2.40)

with the q and u functions being respectively

qnm =
3∑

j=2

GMj

r1j

2(n−m) !

(n+m) !
Pnm

(
sinϕ′j

)
cos(mλ′j) (2.2.41)

unm =

3∑

j=2

GMj

r1j

2(n−m) !

(n+m) !
Pnm

(
sinϕ′j

)
sin(mλ′j), (2.2.42)

where the subscript j = 1, 2, 3 refers to Earth, Moon and Sun respectively, while coordinates ϕ′ and
λ′ are the geocentric earth-fixed latitude and longitude of the j-th perturbing body. Considering
that the Earth is elastic only to the first order, whereas rate-dependent constituents like fluids
dissipate energy, a more realistic model should also include a parameter that accounts for the
lag with which the solid tide arises due to perturbing forces. Finally, note that since the first
degree term (n = 2) of the tidal potential is proportional to 1/r3, the acceleration acting on a
satellite, computed as the gradient of this potential, falls down with at least 1/r4, meaning that
this perturbation is particularly important for low-orbiting satellites that require high accuracy in
POD applications, while it can be consciously neglected for higher satellites.

2.2.2 Ocean Tides

When considering the effects of tidal forces in the Earth’s mass distribution and the consequent
effects on an Earth orbiting satellite, one must consider also the displacement of liquid bodies over
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the surface of the Earth due to Sun and Moon perturbations. This phenomena is known as ocean
tides, and even if its treatment is similar to the case of solid tides it deserve a discussion on its own
given the different behaviour of fluids compared to solid constituents. In this case, the perturbing
potential is expressed as

Uot = 4πGρwR⊕

∑

µ

∞∑

n=0

n∑

m=0

−∑

+

1 + kn
2n+ 1

(
R⊕

r

)n+1

×

× Pnm

(
sinΦ

)
C̄±

µnm sin(η̄µβ̄(t)±mλ± ϵ̄±µnm),

(2.2.43)

where ρw is the seawater density, kn are the load deformation coefficients of degree n, µ is the har-
monic constituent coefficient of the ocean tide, β̄(t) = [τ, s, h, p, N ′, p1] are Doodson arguments
defining lunar and solar ephemeris, η̄ = [η1, η2, . . . , η6] are Doodson coefficients, C̄±

µnm are the
tidal constituents amplitudes and ϵ̄±µnm are the phase angles. Similarly to what was done for solid
Earth tides, we can conveniently represent the effects of ocean tides as variations over time of the
Stokes coefficients in the geopotential, where this formulation has the additional benefit of being
linear in the parameters. If we define

[
C±

S±

]

µnm

= C̄±
µnm

[
sin
cos

]

(η̄µβ(t)±mλ)

[
A
B

]

µnm

=

[
C+ + C−

S+ + S−

]

cos(η̄µβ(t)) +

[
S+ + S−

C+ + C−

]

sin(η̄µβ(t)),

and

Fnm =
4πR2

⊕ρw

M⊕

√

(n+m) !

(n−m) !(2n+ 1)(2− δ0m)

(
n+ k′n
2n+ 1

)

,

the total potential that includes gravitational and tidal (ocean) contributes can be written as

U =
GM⊕

r

∞∑

n=2

n∑

m=1

(
R⊕

r

)n

P̄nm

(
sinϕ

)
×

×
[(

C̄ ′
nm + Fnm

∑

µ

Aµnm

)

cos(mλ) +

(

S̄′
nm + Fnm

∑

µ

Bµnm

)

sin(mλ)

]

. (2.2.44)

Ocean tides have smaller effects on a satellite dynamics if compared to solid tides up to about
one order of magnitude, mainly because of the difference in the average density of saltwater that
is around five times smaller than the average density of solid Earth.

2.3 Third Body

Third body perturbations refer to the effects that massive celestial bodies, other than the Earth,
impose on geocentric satellites. This effect, in contrast to other perturbations, gets more intense
at higher altitudes where disturbances distinctive of the LEO environment like atmospheric drag
get weaker, however, for high precision applications like satellite geodesy it must be modeled even
for very-low orbiting satellites. A simple straightforward formulation for the third body effects
can be derived from Newton’s law of gravitation applied to a system of three bodies that we will
identify with their masses M⊕, ms and Mp, respectively the Earth’s mass, the satellite’s mass and
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M⊕

ms

mp
r⊕p

r⊕s rsp

ϕ

Figure 2.3.1: Schematic representation for the third body perturbation.

the perturbing body’s mass as in figure 2.3.1. We can now refer to an external inertial reference
frame Ixyz and consider the equations of motion for the Earth and the Satellite after identifying
their respective positions in this system with the vectors rE and rs, we have:

r̈⊕ = Gms
r⊕s

|r⊕s|3
+GMp

r⊕p

|r⊕p|3
(2.3.1)

r̈s = −GM⊕
r⊕s

|r⊕s|3
−GMp

rps

|rps|3
, (2.3.2)

but since we are interested in the satellite’s motion relative to the Earth we subtract (2.3.1) from
(2.3.2) and arrive at

r̈s − r̈⊕ = −G(M⊕ +ms)
r⊕s

|r⊕s|3
−GMp

[
rps

|rps|3
+

r⊕p

|r⊕p|3
]

= −G(M⊕ +ms)
r⊕s

|r⊕s|3
+GMp

[
rsp

|rsp|3
− r⊕p

|r⊕p|3
]

,

(2.3.3)

where we considered that rps = −rsp. We can extend equation (2.3.3) to the more general case of
N perturbing bodies noting that the first term on the RHS is always related to the satellite-Earth
interaction, and if we define r̈s⊕ = r̈s − r̈⊕ we can write

r̈s⊕ = −G(M⊕ +ms)
r⊕s

|rEs|3
+G

N∑

i=1

Mpi

[
rspi

|rspi
|3 − r⊕pi

|r⊕pi
|3
]

. (2.3.4)

For what concerns LEO satellites the summation in (2.3.4) can be safely extended to the Sun
and Moon only, knowing that the perturbative effect of other planets like Venus and Jupiter is
around five orders of magnitude weaker in terms of acceleration [19, p. 55], thus

r̈s⊕ = −G(M⊕ +ms)
r⊕s

|rEs|3
+G

2∑

i=1

Mpi

[
rspi

|rspi
|3 − r⊕pi

|r⊕pi
|3
]

, (2.3.5)

with i = 1 referring to the Moon and i = 2 for the Sun.
The derivation of equation (2.3.5) is suitable for numerical integration where the perturbative

acceleration is computed at every step once all variables involved are known, nevertheless, some
care is required when the perturbing body is significantly further away from the Earth and satellite,
which is especially the case for the Sun. In this situation r3sp and r3⊕p are very high and similar
to each other, leading to a considerably small value for the difference inside the brackets in (2.3.4)
that may cause numerical instability and errors. Considering this, an interesting insight into the
dynamics of an Earth orbiting satellite perturbed by a third massive body, that can also help in
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dealing with the just mentioned problem, can be obtained from a general perturbation approach
in which the aim is to develop analytical solutions for the changes in orbital element caused by a
perturbative function R. For the particular case of the two body dynamics perturbed by a third
body we can write

r̈s⊕ = −G(M⊕ +ms)
r⊕s

|rEs|3
+∇Rp, (2.3.6)

where the first term on the RHS of the equation is still the two-body component, while the
acceleration due to the third body is written as the gradient of a perturbative potential Rp whose
expression is [15]

Rp = GMp

[
1

|rsp|
− r⊕s · r⊕p

|r⊕p|3
]

. (2.3.7)

Now, let us redefine some quantities in order to simplify notation, referring to figure 2.3.1, as

rsp = ρ

r⊕s = r

r⊕p = rp,

then, the expression for the perturbation potential, knowing that r · rp = rrp cos(ϕ), can be
rewritten as

R = GMp

[
1

ρ
− rrp

r3p
cos(ϕ)

]

= GMp

[
(
r2 + r2p − 2rrp cos(ϕ)

)− 1
2 − rrp

r3p
cos(ϕ)

]

=
GMp

rp







[

1 +

(
r

rp

)2

− 2

(
r

rp

)

cos(ϕ)

]− 1
2

−
(
r

rp

)

cos(ϕ)






,

(2.3.8)

where cos(ϕ) = (r · rp)/(rrp) and we used the Law of Cosines for ρ =
√

r2 + r2p − 2rrp cos(ϕ). The

square brackets in the final step of equation (2.3.8) can be expanded using Legendre Polynomials
by recognising the generating function (see equation (2.2.5)) in the following manner

[

1 +

(
r

rp

)2

− 2

(
r

rp

)

cos(ϕ)

]− 1
2

=

∞∑

n=0

(
r

rp

)n

Pn

(
cos(ϕ)

)
, (2.3.9)

recalling that Pn

(
cos(ϕ)

)
is the Legendre Polynomial of degree n in the argument cos(ϕ). Then,

knowing that P0

(
cos(ϕ)

)
= 1 and P1

(
cos(ϕ)

)
= cos(ϕ) we arrive at

R =
GMp

rp

{

1 +

(
r

rp

)

cos(ϕ) +

[
∞∑

n=2

(
r

rp

)n

Pn

(
cos(ϕ)

)

]

−
(
r

rp

)

cos(ϕ)

}

=
GMp

rp

[

1 +
∞∑

n=2

(
r

rp

)n

Pn

(
cos(ϕ)

)

]

.

(2.3.10)

The formulation we have arrived at circumvents the obstacle of possible numerical instability
due to the differencing of small and similar values, but at the expense of introducing an infinite
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sum. Nonetheless, the series rapidly converges for r < rp, which is the case, allowing to adequately
approximate the solution with few terms. Interestingly, neglecting terms associated to degrees
greater than 2 we obtain the following approximated expression for the perturbing potential

R ≈ GMp

rp

[

1 +

(
r

rp

)2

P2

(
cos(ϕ)

)

]

=
GMp

rp

[

1 +

(
r

rp

)2
1

2

(
3 cos2(ϕ)− 1

)

]

=
GMp

rp

[

1 +
3

2

(
r

rp

)2

cos2(ϕ)− 1

2

(
r

rp

)2
]

=
GMp

rp
+
GMp

r3p

[
3

2
r2 cos2(ϕ)− 1

2
r2
]

.

(2.3.11)

Then, by taking the gradient of (2.3.11) with respect to r we get an approximated expression for
the perturbing acceleration caused by the third body, that is

∇rR ≈ ∇r

(
GMp

rp

)

+∇r

(
3

2

GMp

r3p
r2 cos2(ϕ)

)

−∇r

(
1

2
r2
)

, (2.3.12)

where for the first and third terms on the RHS of (2.3.12) we simply have

∇r

(
GMp

rp

)

= 0 (2.3.13)

∇r

(
1

2
r2
)

=
1

2
∇rr

2 =
1

2
2r = r = rêr, (2.3.14)

while, regarding the second term, let us rewrite it considering the following relation

r2 cos2(ϕ) = r2
(
r · rp
r rp

)2

=
(r · rp)2
r2p

(2.3.15)

so

∇r

(
3

2

GMp

r3p
r2 cos2(ϕ)

)

=
3

2

GMp

r3p
∇r

[
(r · rp)2
r2p

]

=
3

2

GMp

r3p
2
(r · rp)rp

r2p

= 3
GMp

r3p

rr2p(êr · êr′)êr′
r2p

= 3
GMp

r3p
r(êr · êr′)êr′ ,

(2.3.16)

and finally, using the results from (2.3.13), (2.3.14) and (2.3.16) into equation (2.3.12) we arrive at

∇rR = r̈ ≈ GMp

r3p
r
[
3(êr · êr′)êr′ − êr

]
. (2.3.17)
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The result we have just arrived at, gives an approximate expression for the acceleration due
to the influence of a third body Mp on the satellite’s motion and although being approximate,
it gives a more comprehensive insight if compared to equations (2.3.5) or (2.3.3). From equation
(2.3.17) we can see how the perturbing acceleration increases linearly with increasing distance from
the orbited body r, while it decreases with the cube of the satellite-perturbing body distance rp.
Moreover, we can further see how this equation tells us that the satellite is accelerated towards
the Earth when êr and êr′ are perpendicular, i.e. cos(ϕ) = 0, where (2.3.17) reduces to

r̈ ≈ −GMp

r3p
r, (2.3.18)

on the other hand, the satellite is accelerated away from the Earth for both êr = êr′ and êr = −êr′ ,
that is cos(ϕ) = ±1, and here (2.3.17) becomes

r̈ ≈ 2
GMp

r3p
r, (2.3.19)

and note how the perturbing acceleration directed away from the Earth is double in magnitude if
compared to the acceleration towards the Earth.

The determination of third body perturbations on Earth orbiting satellites caused by the Sun
and Moon requires the knowledge of their position at every time of interest. Considering that
the distance of perturbing bodies rp from the Earth is far greater than the geocentric satellite’s
distance r and it is also elevated to the third power at the denominator of (2.3.17), for many
applications it is sufficient to consider low-precision solar and lunar coordinates that come from
analytical theories of the motion of the Sun and the Moon, thus, the perturbing body coordinates
are computed from appropriate mean orbital elements that are considered to be valid around a
reference date. As an example, the following orbital elements approximate the Sun’s orbit relative
to the Earth with a validity of several decades around the year 2000 [19],

a = 149 600 000 km

e = 0.016709

i = 0.000◦

Ω+ ω = 282.94◦

M = 357.5256◦ + 35 999.049◦ · T
T = (JD− 2 451 545.0)/36 525.0

then, the position coordinates needed are computed using equations for Keplerian orbits. A similar
approach can be used for the Moon, whereas a larger number of terms is required since its orbit
is highly perturbed by the Earth and the Sun. Although this approximate method is sufficient
in many cases and it is suited for the derivation of analytical models for the satellite’s perturbed
motion, for high precision applications Sun and Moon coordinates might be required very frequently
and to a higher accuracy, in this case, the use of Development Ephemerides (DE) that are publicly
available from the Jet Propulsion Laboratory (JPL) is advised. These ephemerides are considered
a standard for high precision planetary coordinates and are available in the form of Chebyshev
approximations derived from detailed numerical integration of the equations of motion, considering
relativistic corrections, the influence of selected asteroids and other perturbations like the lunisolar
torque.

2.4 Atmospheric Drag

Atmospheric drag can be the strongest non-gravitational perturbation for low orbiting satellites.
Even though at typical LEO altitudes (700-800 km) the atmospheric density can be as low as
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2 × 10−14 kg/m3, the high relative velocity of the satellite with respect to the atmosphere gives
rise to noticeable accelerations that can not be ignored. In fact, this perturbation may become the
major factor in determining the End Of Life (EOL) of a particular mission, whereas GOCE (ESA
2009), that somehow represents a pathological case with an altitude of 255 km, had to compensate
for the atmospheric drag with a continuously active electric ion engine and its fixed solar panels
were shaped like aerodynamic fins to stabilize the spacecraft. Eventually, when it ran out of Xenon
propellant, it only took less than three weeks to re-enter and disintegrate near the Falkland Islands.
The force arising from satellite-atmosphere interaction can be separated into three orthogonal
components: drag, lift and binormal. For an orbiting satellite the major component will always
be the drag which is directed opposite to its relative velocity with the atmosphere as a braking
force, whereas lift and binormal forces are usually several orders of magnitude weaker and can
be safely neglected in most cases. The detailed modelling of this perturbation is a difficult task
and often requires many preliminary assumptions due to three main reasons. First, the complete
knowledge of the atmosphere physical properties is needed, and even if we know that in first
approximation its density decreases exponentially with altitude, it also depends on latitude, the
period of the year and geomagnetic and solar activity, leading to perceivable variations on its
value that can change from hour to hour. Secondly, computing the acceleration exerted by the
atmospheric drag requires the knowledge of the interaction between gas molecules, that can be
neutral or charged, and the satellite’s surfaces, where the two main scattering mechanisms involved
are specular elastic reflection and diffuse reflection of gas particles. Thirdly, as can be expected,
the satellite’s attitude law becomes relevant for non spherical satellites as their cross-section facing
the impinging atmosphere may not be constant over time, causing the resulting force to vary both
in magnitude and direction.

A fundamental expression for the drag force and the subsequent acceleration imparted on the
satellite can be simply obtained by considering the momentum exchange between a surface and a
mass-portion of the atmosphere. If we call this small mass of gas particles ∆m we can write

∆m = ρAvr∆t, (2.4.1)

where vr is the magnitude of the already mentioned relative velocity, ρ is the atmospheric density,
A is the satellite’s cross section and ∆t is the small time interval during which ∆m collides with
A. Then, the impulse ∆p experienced by the satellite can be expressed as

∆p = ∆mvr = ρAv2r∆t, (2.4.2)

and we know that the force is related to the impulse through F = ∆p
∆t , thus

F = ρAv2r , (2.4.3)

which gives the acceleration as

aD = ρ
A

m
v2r , (2.4.4)

with m being the satellite’s mass. In order to be consistent with common notation in aerodynamic
applications we introduce the factor 1

2 and we explicit the drag acceleration direction with the
relative velocity unit vector ev, but most importantly, we introduce the drag coefficient CD into
(2.4.4) that now becomes

aD = −1

2
CD

A

m
ρv2rev. (2.4.5)

Here, the minus sign underlines how this acceleration is always anti-parallel to the relative velocity,
and the CD coefficient is a dimensionless quantity that incorporates the effects related to the
satellite’s surface material and its interaction with the atmosphere molecules. Typical values of
this coefficient can range between 1 and 3, depending on the characteristic shape of the satellite and

19



CHAPTER 2. NUMERICAL ORBIT MODELING

the behaviour of the gas molecules flow. Regarding this last aspect, as altitude increases, so does
the mean free path λ of the molecules, and as λ gets greater than the satellite’s reference dimension
l, particles interactions with the body become independent from one another as collision between
them becomes more and more unlikely. This flow regime, characterised by a Knudsen number
K = λ/l > 10, is known as free molecular flow and here the typical CD value for a spherical body
is around 2.2. As altitude decreases and the Knudsen number gets lower than 0.1 the flow regime
behaves more like a continuum flow, where the gas molecules form a continuous stream of particles
that envelop and “shield” the body. In this case, the flow-satellite interactions change so much
that the drag coefficient for a sphere drops down to around 1.

2.4.1 Absorption and Diffuse Reflection of Molecules

A more detailed description of the mechanisms involved in modeling the atmospheric drag effects
can be obtained if we analyze in more depth the interaction of gas molecules with the satellite,
that is separated in a first absorption phase where the molecules collide and are trapped by the
surfaces and a subsequent diffuse reflection. The main hypothesis is that atmospheric molecules
are in free molecular flow so they interact with the satellite independently form each other, while
the second hypothesis is that their velocity follows a Maxwell distribution, that is:

f(u, v, w) =
ρ

m
(2πrT )−

3
2 e−

u2+v2+w2

2rT , (2.4.6)

where ρ is the atmospheric density, m is the mean molecular mass, r = R/m is the specific gas
constant and T is the absolute temperature.

Regarding the absorption process we start by considering an oriented surface element dS with
velocity v relative to the atmosphere and a system of axis where x1 is normal to the surface,
x2 is the projection of v on dS and x3 = x1 × x2, then, we can write the relative velocity

vr =
{
ur vr wr

}T
of molecules with respect to the surface as

ur = u− v sin(θ)

vr = v − v cos(θ)

wr = w.

Note that the knowledge of the relative velocity vr depends on the complex dynamics of the at-
mosphere, however, given the high velocities LEO satellites, a reasonable approximation is obtained
assuming that the atmosphere co-rotates jointly with the Earth’s surface, thus

vr = v − ω⊕ × r,

where r is the geocentric satellite position and ω⊕ is the Earth’s angular velocity. This assump-
tion has been shown to be in good agreement with reality, leading to uncertainties in the drag
perturbation of less than 5% [12]. Using (2.4.6) we can define a distribution of relative velocities:

fr(ur, vr, wr) =
ρ

m
(2πrT )−

3
2 e−

u2
r+v2

r+w2
r

2rT , (2.4.7)

then, the momentum imparted on the surface by a single gas particle of mass m with relative
velocity vr will be

dp = mvr

and we are able to calculate the number of molecules with velocity vr +∆vr that collide with the
surface over a time dt as

fr(ur, vr, wr)durdvrdwrV, (2.4.8)
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with V being the volume containing those molecules, that is

V = −vr · dSdt = −urdtdS.
Consequentially, the resulting force acting on dS can be computed as an integral over the

distribution of relative velocity components

dF =

∫ ∫ ∫

vel

−murdSfr(ur, vr, wr)durdvrdwrvr, (2.4.9)

and considering that only the frontal part of the satellite gets hit by the gas molecules, which is
especially true the case for free molecular flow regime, we can integrate (2.4.9) only for the relative
velocities with ur < 0, obtaining

dF1

dS
= − ρv2

2
√
πs2

[

s sin(θ)e−s2 sin2(θ) +
√
π

(
1

2
+ s2 sin2(θ)

)
(
1 + erf(s sin(θ))

)
]

dF2

dS
= −ρv

2 cos(θ)

2
√
πs

[

e−s2 sin2(θ) +
√
πs sin(θ)

(
1 + erf(s sin(θ))

)]

dF3

dS
= 0,

(2.4.10)

where the velocity factor s and the function erf(x) are defined as

s =
v√
2rT

erf(x) =
2√
π

∫ x

0

ex
2

dx.

As we can see, equations (2.4.10) express the effects of atmosphere-satellite interactions in terms
of pressures acting normal and parallel to the surface (directions 1 and 2 of the aforementioned
axes), we can then define the forces acting on the satellite due to absorption and separate them
into drag and lift components as

dD = −1

2
ρv2dS

[

e−s2 sin2(θ)

s
√
π

+ sin(θ)

(

1 +
1

2s2

)
(
1 + erf(s sin(θ))

)

]

êv

dL = −1

2
ρv2dS

[
cos(θ)

2s2
(
1 + erf(s sin(θ))

)
]

ên,

(2.4.11)

where the two unit vectors ev = v/v and en = êv×x3 represent the directions parallel and normal
to the relative velocity.

Let us now proceed with the process of diffuse re-emission. Here, the main hypothesis is that
absorbed molecules are trapped on the satellite’s surfaces for a period that is long enough to surpass
the time associated to the mean free path at that particular altitude, in other words, we can treat
the molecules on the satellite’s surface as an ideal gas in equilibrium. Then, if we also assume that
the emission is diffuse over an hemisphere, thus equal in all directions, the only aerodynamic force
arising will be given by the re-emission pressure pr, which will be half of the gas’ partial pressure
pp in contact with the surface. We start by computing the number of absorbed molecules per unit
of time and unit of area as

Na =

∫ ∞

−∞

dwr

∫ ∞

−∞

dvr

∫ 0

−∞

−urfr(ur, vr, wr)dUr

=
ρ

m

√

rT

2π

[

e−s2 sin2(θ) +
√
πs sin(θ)

(
1 + erf(s sin(θ))

)]

,

(2.4.12)
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then, if we assume that there are no chemical reactions and that mass is conserved the number of
absorbed molecules must be equal to the number of reflected molecules, which can be computed
from (2.4.12) with s = 0:

Nr =
ρp
m

√

rTp
2π

. (2.4.13)

Now, using the identity equation Na = Nr we can find the density ρp to be

ρp = ρ

√

T

Tp

[

e−s2 sin2(θ) +
√
πs sin(θ)

(
1 + erf(s sin(θ))

)]

, (2.4.14)

and we can obtain the re-emission diffuse pressure recalling that it is half of the partial pressure
pp, which in turn is computed with the ideal gas law pp = ρprTp, thus

pr =
1

2
ρr
√

TTp

[

e−s2 sin2(θ) +
√
πs sin(θ)

(
1 + erf(s sin(θ))

)]

. (2.4.15)

Finally, we can now combine equations (2.4.11) and (2.4.15) to get the total aerodynamic force
acting on the satellite due to absorption and diffuse reflection, which is compactly written as

Faero = −1

2
ρv2S (CDêv + CLên) , (2.4.16)

where CD is the aforementioned drag coefficient while CL is the lift coefficient. Equation (2.4.16)
highlights how the drag and lift coefficients are dimensionless parameters that enclose every process
that is related to the atmosphere-surface interaction and for simple geometrical shapes, like planes,
spheres and cylinders, they can be calculated analytically. As a first approximation for preliminary
studies, artificial satellites subjected to atmospheric drag are often modelled as spheres, referred
to as the cannonball model, while for demanding application a more suitable box-wing model
should be implemented in which the satellite complex geometry is approximated as a collection
of several simpler shapes (planes, spheres and cylinder precisely). Here, the total aerodynamic
force is computed as the sum of every single element contribution and considering that for most
applications the lift component can be neglected, we arrive at the following expression for the drag
acceleration

r̈D = −1

2
ρv2r

(
CDA

m

)

êv

=
1

2
ρv2rBêv,

(2.4.17)

and note how the ballistic coefficient has been introduced as

B =
CDA

m
.

This coefficient is a typical parameter used to give and idea of the satellite’s susceptibility
to the drag perturbation and is often estimated in POD applications. If a satellite has a high
ballistic coefficient it means that its surface area or drag coefficient is high compared to his mass,
meaning that aerodynamic forces can have a strong effect over its inertia and can greatly affect
its trajectory. Moreover, if the satellite is not spherical and follows a particular attitude law, the
ballistic coefficient becomes a function of time B(t) which leads to significant complications in
predicting and estimating its orbit.

Lastly, as was mentioned at the beginning, other than the atmosphere-surface interaction and
the variability of B(t), another major challenge in precise modelling of the drag perturbation is the
knowledge of the atmosphere’s physical properties, and for what concerns the computation of drag
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acceleration using equation (2.4.17), it really comes down to the determination of the atmosphere
density ρ, which in itself is a considerably onerous task. Changes in atmospheric density values are
mainly due to the combined effect of three different aspects [18]. The first is related to the nature
of the atmosphere’s molecular composition and properties arising from the ideal gas law and the
hydrostatic equation, from which a simple constant exponential model for the atmosphere can be
derived where the density decreases exponentially with altitude:

ρ = ρ0e
−

hellp−h0

H , (2.4.18)

where ρ0 is a reference density at a reference altitude h0, hellp is the altitude above the ellipsoid
and H is a scale factor that changes along different altitude bands. Equation (2.4.18) describes
the exponential model and although it might be a good approximation for design studies it is far
from being sufficient for POD applications. Besides the fact that even a constant time invariant
atmospheric model should account for latitudinal and longitudinal variations, mainly because of
the equatorial bulge and massive mountain groups, a more sophisticated model must also con-
sider temporal variations of the atmospheric properties, that can be summarized in the following
categories:

� Diurnal variations: This variation occurs daily and it’s caused by the heating of atmosphere
portion under direct sunlight, which causes an atmospheric bulge that elevates high density
layers to higher altitudes. Note that due to Earth rotation, this bulge is not directly under
the sun but is found at longitudes where the local time is around 2 p.m.

� Incident solar flux: The incident radiation emitted by the Sun directly affects the up-
per atmosphere that is nearly instantaneously heated by the Extreme Ultra-Violet radiation
(EUV) causing a variation in its density. Consequentially, it becomes essential to determine
the intensity of the solar activity, but since the Earth’s atmosphere blocks these EUV radia-
tion, it is not possible to directly measure it from the surface. Nonetheless, the atmosphere
is transparent to incident solar radiation with a wavelength of 10.7 cm which is actually cor-
related to EUV, for this reason, the solar flux is quantified in terms of the F10.7 index which
is measured in Solar Flux Units, where

1 SFU = 1× 10−22 W

m2 Hz
.

Typical values for F10.7 can range from 70 to more than 300 SFU.

� Geomagnetic activity: The Earth’s magnetic field acts as a barrier that shields the surface
from high energy ionizing particles emitted by the Sun. However, this charged particles still
collide with the upper layers of the atmosphere, which again, translates into heating that
increases the atmospheric density at higher altitudes. These density variations can then be
related to temporal variations in the Earth and Sun magnetic field, that must be measured
to determine the heat generated, for this purpose, the planetary index Kp is used as an
indicator of the geomagnetic activity especially below the auroral zones where ionization is the
strongest. Kp is quasi-logarithmic, and its linear counterpart, the planetary amplitude ap, is
measured every three hours, then, eight ap values are averaged to compute the daily planetary

amplitude Ap. This effect is particularly noticeable for satellites at altitudes between 300 km
and 1000 km.

� Sun spots cycle: Often known as the Solar Cycle, this is the most notable periodicity in
the solar activity with solar maxima and minima repeating roughly every 11 years.

� Solar rotation cycle: Within the 11 years cycle, considerable variations in the F10.7 value
occur at higher frequencies due to the 27 day synodic rotation of the Sun, that drags different
active solar regions with itself, increasing the variability of the observed incident flux.
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In addition to these fluctuations, other minor and difficult to predict changes in the atmospheric
density are caused by winds, random fluctuations like solar flares or magnetic storms, ocean tides
and even atmospheric tides.

This brief discussion already suggests the difficulty in determining an atmospheric density model
that is suitable for POD applications. From the beginning of the space age, the atmosphere density
has been inferred from observations in the evolution of satellites motion, but rapid technological
development in satellite and ground system instrumentation allowed direct measurements of the
upper atmosphere composition and temperature, as well as ionic and electron content. This col-
lection of data allowed the development of several high spatial and temporal resolution models for
the atmosphere such as the Jacchia-Roberts (1971) or the more recent NRLMSISE-00, which gives
several atmospheric properties like temperature and composition depending on the given temporal
and geographical information as well as daily F10.7 and Ap indices.

2.5 Solar Radiation Pressure Model

Solar Radiation Pressure (SRP) is another non-conservative perturbation acting on Earth orbiting
satellites whose detailed modeling is decisive for POD applications. Unlike other perturbations this
effect is essentially constant for all altitudes given that the Earth-Sun distance is by far greater
than typical semi-major axis values for Earth satellites. Furthermore, its value is highly influenced
by probable periods of eclipse in which the satellite is shadowed by the Earth, passing through
regions of penumbra where the radiation pressure is significantly fainter, to regions of umbra where
it is completely absent. Considering typical altitudes for GNSS satellites and a representative mag-
nitude of 10−8 m/s2, SRP can lead to perturbations in the range of 100m over one orbital period
[20], and for LEO satellites it becomes comparable to the drag perturbation around altitudes of
600 km (with F10.7 = 150 SFU and ρ = 1.2× 10−13 kg/m3).

The mechanism by which this radiation pressure is able to produce such perturbations is that
of momentum exchange between the impinging photons and the satellite’s surfaces, and this in-
teraction can be classified into three different processes that together give the total perturbation:
absorption, specular reflection and diffuse reflection. We start by considering that from Einstein’s
theory of special relativity the energy of a particle can be expressed as

E =
√

(cp)2 + (m0c2)2, (2.5.1)

where:

� c is the speed of light in vacuum;

� p is the particle’s momentum;

� m0 is its rest mass;

and since for a photon m0 = 0:

E = cp. (2.5.2)

Moreover, from the Planck-Einstein relation we know that a photon’s energy is proportional to
its frequency f :

E = hf, (2.5.3)

thus, comparing (2.5.2) and (2.5.3) we get an expression for its momentum p

p =
hf

c
, (2.5.4)
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that dictate the nature of the photon-satellite interaction, and the spacecraft’s orientation that
exposes variable cross sections to the striking radiation. In any case we begin with a few important
assumptions that will guide the development of the SRP model:

1. The optical surface properties are completely defined by the tree dimensionless coefficients
α, δ and ρ which are respectively the coefficient of absorption, diffuse reflectivity and spec-

ular reflectivity, whereas no transmissivity coefficient is present since we assume that no
component of the incident radiation gets transmitted through the surface;

2. Regarding the diffusive reflection the surface behaves like a perfect Lambertian body, meaning
that the reflected radiation scatters equally in all directions reduced by a factor of cos(θ),
with θ being the angle between the incident direction and the normal to the surface, hence
obeying the Lambert’s cosine law.

Note that the coefficients α, δ and ρ represent respectively the fraction of incident radiation that
is absorbed, diffusively reflected and specularly reflected, and since these are assumed to be the
only three types of interaction involved it must be true that

α+ δ + ρ = 1. (2.5.9)

Now, if we consider a surface element dA whose normal unit vector is identified by n̂ and
forms an angle θ with the surface-Sun direction identified by ê⊙, we are able to write the SRP
contributions from absorption and reflection components separately. For the absorbed fraction the
entire momentum is transferred to the surface, hence the resulting force is directed anti-parallel to
ê⊙, that is (figure 2.5.2):

dFα = −E⊙

c
dA cos(θ)α ê⊙, (2.5.10)

n̂

−ê⊙

dFα

θ

Figure 2.5.2: Absorbed incident radiation.

while for the case of perfectly specular reflection no momentum exchange occurs in the direction
parallel to the surface, so the resulting force is directed anti-parallel to the surface’s normal and
from simple considerations in conservation of momentum we get (figure 2.5.3)

dFρ = −E⊙

c
dA cos(θ)2 cos(θ)ρ n̂. (2.5.11)

The diffuse reflection modeling is a little more complicated since the force that stems from it
is directed along both n̂ and ê⊙ directions, where this happens because the incoming radiation is
first absorbed by the surface and later re-emitted equally in all directions. In order to evaluate the
effect of the diffuse reflection alone we start by assessing the total diffuse radiation intensity over
an hemisphere centered at the surface element. Keeping in mind that this intensity will always be
reduced by the factor cos(θ) we can expect it to be proportional to the following integral:
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dFδ = −E⊙

c
dA cos(θ)δ

(

ê⊙ +
2

3
n̂

)

, (2.5.14)

n̂

−ê⊙

dFα

θ

Figure 2.5.5: Diffusely reflected incident radiation.

and finally, equations (2.5.10), (2.5.11) and (2.5.14) can now be grouped into a single equation for
the force acting on a surface element dA due to solar radiation pressure accounting for all the three
interactions involved:

dFSRP = −E⊙

c
dA cos(θ)

[

(α+ δ) ê⊙ +

(

2ρ cos(θ) +
2

3
δ

)

n̂

]

. (2.5.15)

The previous equation is a good representation of the force acting on an infinitesimal planar
surface dA due to the momentum exchange with the impinging photons, and we saw how different
surface properties in terms of the coefficients α, ρ and δ lead to different results. The remaining
step would be to compute the finite total force FSRP acting on the satellite and conceivably this
can be done by integrating (2.5.15) over the entire satellite surface, which may be trivial for simple
shapes like spheres and cylinders, but becomes unimaginable for satellites of complex geometries
composed of several different materials all with their own optical properties. In practice, the
best workaround to this complex task is the development of a suitable box-wing model (already
mentioned in Section 2.4.1), also known as macro-model, where the intricate satellite aspect is
approximated by a six-faced box in place of the main body and two rectangles representative
of the solar panels. Even more detailed representations, known as micro-model, may discretize
complex features as an ensemble of several simple shapes like small planar surfaces Ai of arbitrary
dimension each identified by its normal unit vector n̂i and its optical properties αi, ρi and δi, so
the finite force becomes

FSRP = −E⊙

c

N∑

i=1

Ai cos(θi)

[

(αi + δi)ê⊙ +

(

2ρi cos(θi) +
2

3
δi

)

n̂i

]

. (2.5.16)

Interestingly, we may perform integration of (2.5.15) for a spherical satellite, whereas only an
hemispherical portion is directly illuminated by the Sun. If we denote the satellite’s radius with
R and assume that optical properties are uniform everywhere, using spherical coordinates θ and λ
as shown in figure 2.5.4 we can write

F
sph
SRP = −E⊙

c

∫ π/2

0

∫ 2π

0

[

(α+ δ) ê⊙ +

(

2ρ cos(θ) +
2

3
δ

)

n̂

]

R2 cos(θ) sin(θ) dθ dλ, (2.5.17)

however, due to the symmetry of the spherical model we expect every component of the reflected
radiation (both specular and diffuse) that is perpendicular to the satellite-Sun direction to cancel
out, thus, the resulting force will be directed along the ê⊙ direction and we multiply the reflective
terms by cos(θ) before performing integration
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F
sph
SRP = −E⊙

c

∫ π/2

0

∫ 2π

0

[

(α+ δ) +

(

2ρ cos2(θ) +
2

3
δ cos(θ)

)]

ê⊙R
2 cos(θ) sin(θ) dθ dλ, (2.5.18)

note that the term related to absorption has remained unchanged since it was already directed
along ê⊙. We now proceed to perform integration considering the terms in brackets one at a time.
Regarding the absorption component we have

(α+ δ)

∫ π/2

0

∫ 2π

0

R2 cos(θ) sin(θ) dθ dλ = (α+ δ)2πR2

∫ π/2

0

cos(θ) sin(θ) dθ

= (α+ δ)2πR2

[

−cos(2θ)

2

]
∣
∣
∣
∣
∣

π/2

0

= (α+ δ)πR2,

(2.5.19)

the specular reflection part leads to

2ρ

∫ π/2

0

∫ 2π

0

R2 cos3(θ) sin(θ) dθ dλ = 4ρπR2

∫ π/2

0

cos3(θ) sin(θ) dθ

= 4ρπR2

[

−cos4(θ)

4

]
∣
∣
∣
∣
∣

π/2

0

= ρπR2,

(2.5.20)

and the diffuse reflection gives

2

3
δ

∫ π/2

0

∫ 2π

0

R2 cos2(θ) sin(θ) dθ dλ =
4

3
δπR2

∫ π/2

0

cos2(θ) sin(θ) dθ

=
4

3
δπR2

[

−cos3(θ)

3

]
∣
∣
∣
∣
∣

π/2

0

=
4

9
δπR2,

(2.5.21)

we then combine the results from (2.5.19), (2.5.20) and (2.5.21) into equation (2.5.18) obtaining

F
sph
SRP = −E⊙

c
πR2

[

α+ δ + ρ+
4

9
δ

]

ê⊙, (2.5.22)

which can be further simplified considering that from equation (2.5.9) we have α+ δ = 1− ρ, so

F
sph
SRP = −E⊙

c
πR2

[

1 +
4

9
δ

]

ê⊙

= −E⊙

c
AcCRê⊙.

(2.5.23)

This equation we just derived is a very common form for the modeling of solar radiation
pressure effects on satellites and we introduced the radiation pressure coefficient CR, also know as
the satellite reflectivity. Even though equation (2.5.23) has been derived for the particular case of
a spherical satellite, in which we found that CR = 1+ (4/9)δ, this result is still useful for satellites
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with arbitrary constant or time-varying cross-section Ac. In fact, for a more general case, the
CR coefficient becomes a scaling factor for the SRP acceleration that encapsulates all the effects
related to surface properties, shapes and orientation, with the benefit of having the resulting force
acting only along ê⊙, and for this reason, this parameter is often estimated as a result of the orbit
determination process. Given these considerations, we can write the acceleration due to SRP on a
satellite of arbitrary cross-section Ac once its mass is known as

r̈SRP = −E⊙

c

1AU2

r2⊙

Ac

m
CRê⊙, (2.5.24)

where we also introduced the ratio between 1 Astronomical Unit and the actual Sun-satellite
distance r⊙ since we assume that E⊙ is the fixed value for the solar constant at 1AU, where
variations in the distance due to the Earth’s eccentric orbit, can lead to variations in solar radiation
pressure of about ±3%.

2.5.1 Eclipse Condition

As mentioned at the beginning of this Section, during the evolution of its orbit, a satellite may pass
trough periods of partially or totally absent solar illumination as it gets obscured by the Earth or,
less frequently, by the Moon, and this is true for most LEO satellites with the evident exception
represented by constantly illuminated sun-synchronous ones. There exist two main approaches to
the modeling of eclipses, the cylindrical model and the conical model. In the first case, the sun
is assumed to be infinitely distant, so that all incoming rays are parallel and the Earth forms a
cylindrical shadow, while for the latter case the finite Sun’ dimension and distance are taken onto
account, and a conical shadow arises. A simple scheme depicting the situation is given in figure
2.5.6, where inside the cone generated by the Earth’s Shadow we can identify regions of completely
absent illumination called umbra and regions of partial illumination called penumbra. Here, we
focus mainly on the conical model since it is the one implemented when modeling the SRP with
the Fortran libraries.

SUN EARTH Umbra

Penumbra

Penumbra

Figure 2.5.6: Schematic representation of the conical eclipse model. Note
how there are both umbra and penumbra regions.

If a satellite encounters frequent and relatively long periods of eclipse, equation (2.5.15) becomes
insufficient to accurately model the effects of SRP since it assumes that the spacecraft is constantly
hit by rays of light, to fix this, a simple solution is to add a shadow function τ to the equation

r̈SRP = −τ E⊙

c

1AU

r⊙2

Ac

m
CRê⊙, (2.5.25)

where

� τ = 0 if the satellite is in umbra regions,

� 0 < τ < 1 for regions of penumbra,

� τ = 1 if the satellite is completely illuminated.
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2.6 Earth Radiation Pressure Model

The Earth Radiation Pressure (ERP) model described here, is based on the work carried out by
Knocke, Ries and Tapley [13] for the University of Texas Orbit determination program (UTOPIA),
where precision modeling was aimed at explaining the anomalous mean secular decrease of 1.1
mm/day in semi-major axis of the LAGEOS satellite. Unexplained mean secular motions in the
determination of a satellite’s orbit can lead to undesirable inaccuracies in parameters estimation,
since these unmodeled effects are inevitably absorbed by parameters that are estimated through
filtering techniques. For this reason, a force model as detailed as possible is certainly preferable. It
is interesting to note how the model proposed by Knocke, and here described in detail, dates back
to 1988, but it is still widely used today to assess the ERP impact on the dynamics of an earth
orbiting satellite. Rodriguez-Solano et al. [23], deeply investigated the non-negligible effects that
earth radiation pressure has on the orbit determination of GPS satellites, where the comparison
between precise Satellite Laser Range (SLR) measurements and the orbit predicted without ERP,
showed a consistent radial bias of several centimeters as well as biases in the estimated position of
ground stations, whereas the inclusion of ERP recovered this radial bias up to 1−2 cm. Considering
that GPS orbits are way over the LEO upper boundary (at more than 20000 km in altitude), for
LEO satellites the effects of ERP can be expected to be much higher. Wyatt, Lochry and others
predicted in 1963 that the magnitude of earth radiation pressure could be as high as 35% of the
solar radiation pressure (SRP) for very low satellites (200− 300 km), while it can be expected to
reach values around 10% to 25% of SRP for the majority of LEO satellites. Another aspect that
can affect the sensitivity to this perturbation is orbit eccentricity. For orbits with low eccentricity
the effects of ERP acceleration can average out along the orbit and can be largely absorbed by
the estimation of other model parameters, while for highly eccentric orbits the effects can give
rise to along-track accelerations that do not average out during one orbit, thus compromising the
estimation and recovery of certain parameters. These values suggest that accelerations due to ERP
can be higher than expected, and along with empirical evidences of its relevance thanks to onboard
accelerometers, motivate the efforts in developing an effective mathematical model to account for
this dim force in the overall propagation of the satellite’s trajectory.

For LEO satellites the Earth itself represents the major source of radiant flux after the sun, but
while the latter can be considered as an infinitely distant and almost uniform source of energy, the
former must be treated as an extended radiating body at a finite distance, which radiant flux may
be significantly variable. This variability is based on the angle of incidence of the Sun relative to
the earth surface, but also on the reflective and emissive properties of the Earth-atmosphere system
that depends on season, geography, atmospheric composition, cloud coverage and surface type that
is being considered as the source of radiant energy. From this it follows that while the mechanism
behind the origin of the accelerations imparted to the satellite still consists in impinging photons
and their momentum exchange, as for Solar radiation pressure, the main aspects peculiar to Earth
radiation pressure arise from the difference in the source of this radiant energy. ERP involves two
main fluxes related to two different wavebands as a consequence of the mechanism that regulates
the balance of the energy incident on the Earth. The first waveband is related to the percentage
of radiation from the sun that is immediately reflected by the Earth surface, consequently, this
radiant flux displays a spectrum that is similar to the Sun spectral irradiance, figure 2.5.1, meaning
that this source of radiant energy comprises wavelengths from 0.2 up to 4 µm which is referred
to as the broadband shortwave or just shortwave radiation. It is important to underline how this
waveband not only comprises the entire visible band (0.38 − 0.75 µm), but also a small portion
of the UV spectrum (0.2− 0.38 µm) and a consistent portion of the infrared radiation called near

infrared (0.75− 4 µm), which distinguishes it from the classical definition of albedo that considers
the visible radiation only. The second waveband involved in this mathematical model is related to
the portion of the incident energy from the sun that is absorbed by the Earth and later re-emitted
in the infrared spectrum, which comprises wavelengths from 4 µm up to 50 µm and is therefore
known as the longwave infrared radiation or heat radiation that is considered separately from the
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infrared portion contained in the aforementioned shortwave band. The differences between these
two waveband not only rise from the different physical phenomenon from which they are generated,
but also from the fact that while the shortwave radiation is clearly present only at the Earth
surface under direct sunlight and exhibit variations due to surface-atmosphere characteristics and
anisotropic effects, the longwave radiation is always present even when the satellite experiences
periods of eclipse, and is almost constant due to the high thermal inertia of the Earth. The
mathematical model based on the distinction between shortwave and longwave wavebands that
will be described in detail below, has the advantage to exhibit a particular adaptability to a wide
variety of Earth orbits, thanks to its generality and flexibility if compared to many analytical
solutions that were developed even decades before the work of Knocke. These analytical solutions
were based on simplifying assumptions, like constant albedo, radial acceleration only (Wyatt) or
independence from solar position (Levin), whose purpose is to simplify the surface integrals that
one encounters in determining the radiative exchange from a three dimensional extended body to
the satellite, but drastically reduce their field of applicability.

2.6.1 Diffuse Earth Radiation Pressure Model

The main feature of the presented method, that also contributes to its generality and flexibility, is
the fact that the total acceleration on the satellite due to Earth radiation pressure is computed as
the vector sum of all elements in which the instantaneously visible Earth surface is subdivided into.
These elements are approximated as planar surfaces orthogonal to the Earth mean-radius passing
through their center, and here, the satellite is approximated as a constant cross-section sphere,
often referred to as the cannonball model. It is readily highlighted how a more detailed satellite
model such as a box-wing becomes crucial for more detailed analyses, where studies like Rodriguez-
Solano et al. already show how such model can give deep insight in the effects of ERP that could not
be perceived with a simpler cannonball model, where the presence of solar panels with a particular
attitude profile leads to consequent dynamical effects. The other significant feature of the model
is that it assumes that both shortwave and longwave components obey Lambert’s law of diffuse
radiation, which may sound quite restrictive at first, but it is actually a rather justified assumption.
As a matter of fact the only portions of earth surface that really act in an almost purely specular
reflective manner, as opposed to pure diffusion, are bodies of calm water that certainly are a
negligible part of the total earth surface, in addition, satellite radiometric measurements confirm
that most surfaces including snow, oceans, clouds and ice, behave mostly in a diffusive fashion.
Only at high solar zenith angles some particular surfaces tend to behave more specularly than
diffusively, but high solar zenith angles also correspond to very low magnitude of Earth radiation
pressure, all of which support the assumption of a purely diffusive radiation model.

First, let’s begin with the assumption that every surface element in which the total visible
surface is divided, has the same albedo and emissivity properties of the corresponding true Earth
portion of the surface-atmosphere system with the same area. Let us call this planar element as
dA, and Ai the surface that intercepts the flux radiated by dA. Consider its radiance L, associated
with the shortwave or longwave component, that can be written as

L =
dΦ

dΩdAcosα
, (2.6.1)

where

� dΦ is the portion of the total power [Watts] radiated by the surface element dA, that is
intercepted by Ai,

� dΩ is the solid angle defined as the ration between the intercepting surface Ai and the square
of its distance r2 from dA: dΩ = Ai/r

2 measures in steradians [sr],

� α is the angle between the normal to the element dA and the line connecting dA to Ai also
called the viewing angle,
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thus, the radiated flux (power) intercepted by the area Ai is

dΦ = LdΩdAcosα

= L
Ai

r2
dAcosα.

(2.6.2)

As mentioned before, we wish to consider the effects of ERP on a satellite which is assumed to
behave like a constant cross-section sphere. In this case, let the radius of this sphere be Rs and As

its total area that is subdivided into smaller elements called ∆As. If the normal to this satellite’s
element makes an angle αs with the line from dA to ∆As, following equation (2.6.2), the portion
of the flux intercepted by ∆As is

∆(dΦ) = L
∆As

r2
cosαsdAcosα, (2.6.3)

and the total portion of the flux intercepted by the satellite can be determined by integrating
(2.6.3) over the hemisphere visible to dA under the hypothesis that r ≫ Rs. Using spherical
coordinates with constant radius Rs, polar angle αs and azimuth angle θ, the infinitesimal area
element ∆As can be expressed as

∆As = R2
s sinαsdαsdθ, (2.6.4)

thus, the total flux emitted by the Earth surface element dA intercepted by the satellite is found
by performing the following integration:

dΦ =

∫ 2π

θ=0

∫ π/2

αs=0

L

r2
R2

s sinαs cosαsdAcosαdαs dθ, (2.6.5)

that factoring out constants leads to

dΦ = L
R2

s

r2
dAcosα

∫ 2π

θ=0

dθ

∫ π/2

αs=0

sinαs cosαs dαs

= L
R2

s

r2
dAcosα 2π

∫ π/2

αs=0

sinαs cosαs dαs

= L
R2

s

r2
dAcosα 2π

∫ π/2

αs=0

sin 2αs

2
dαs

= L
R2

s

r2
dAcosαπ

[

−cos 2αs

2

]π/2

0

= L
πR2

s

r2
dAcosα,

(2.6.6)

but πR2
s is the satellite cross sectional area Ac, so

dΦ = L
Ac

r2
dAcosα. (2.6.7)

and here, even if the satellite is modeled as a sphere of constant radius, the result is more general
and can be applied to any satellite of cross sectional area Ac.

Now, considering that radiance is a quantity dependent on wavelength, and recalling that in
this model the Earth radiates in shortwave and longwave components, the total flux intercepted
by the satellite’s visible hemisphere can be expressed as

dΦ = (LSW + LLW )
Ac

r2
dA cosα, (2.6.8)

where
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� LSW represents shortwave radiance of the Earth’s surface element dA,

� LLW is the longwave radiance of the Earth’s surface element dA,

and the following steps will be focused on finding proper expressions for these two quantities in
terms of albedo and emissivity.

2.6.2 Shortwave Radiance LSW

In this Section, the component of the total radiance given by the Earth surface element dA asso-
ciated to the shortwave band 0.2− 4 µm, is written in terms of albedo. The classical definition for
albedo is

a =
Φhem

Φin
(2.6.9)

where

� Φhem is the total flux out of dA in the shortwave band,

� Φin is the solar flux in the shortwave band incident on dA.

Now, Φhem can be thought as the integral of the infinitesimal portion of flux dΦ over an
hemisphere centered at dA with radius r equal to the element-satellite distance, and since we are
only interested in the shortwave component, the integral becomes

Φhem =

∫

dΦSW , (2.6.10)

where, following equation (2.6.8)

dΦSW = LSW
dAhem

r2
dAcosα, (2.6.11)

in which the satellite’s cross sectional area Ac has been replaced by the infinitesimal element of
hemisphere surface dAhem, since we are interested in computing the total flux intercepted by the
whole hemisphere centered at dA. Considering spherical coordinates α and θ similarly to (2.6.6),
the infinitesimal hemisphere area becomes

dAhem = r2 sinαdθdα (2.6.12)

and the integral in (2.6.10) leads to

Φhem =

∫ 2π

θ=0

∫ π/2

α=0

LSW dA
r2

r2
sinα cosαdα dθ

= LSW dA

∫ 2π

θ=0

∫ π/2

α=0

sinα cosαdα dθ

= LSW dA2π

∫ π/2

0

sinα cosαdα

= LSW dAπ

[− cos 2α

2

]π/2

0

(2.6.13)

that finally gives

Φhem = πLSW dA. (2.6.14)
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It is interesting to highlight how the integral calculation was performed assuming that LSW is
constant over α and θ, meaning that it does not depend on the particular direction considered,
in accordance with what has been said above regarding the pure diffusive nature of the radiation
encountering the satellite’s surface. If one wish to improve the model admitting the effects of
specular reflection, a particular analytical dependence of the radiance LSW on the directions α
and θ must be defined.

Now, going back to equation (2.6.9), an expression for the total shortwave solar flux Φin incident
on dA can be simply determined by means of the local solar irradiance Es

Es =
Φsun

4πr2ES

, (2.6.15)

where

� Φsun is the total solar flux,

� rES is the Earth-Sun distance,

and the Sun is considered as a source of diffuse radiation. Notice that rES is intended as the local
distance between the Earth and the Sun, thus the local solar irradiance is different from the solar

constant since the latter considers a sphere of fixed radius equal to 1 A.U., and if the normal to
the Earth’s surface element dA makes an angle θs with the line from dA to the sun, then the total
incident shortwave solar flux can be expressed as

Φin = Es cos θsdA. (2.6.16)

At this point, equations (2.6.14) and (2.6.16) can be used in (2.6.9) to obtain

a =
πLSW dA

Es cos θsdA

=
πLSW

Es cos θs
,

(2.6.17)

that finally gives an expression for the shortwave radiance in terms of albedo as

LSW =
aEs cos θs

π
. (2.6.18)

2.6.3 Longwave Radiance LLW

Now that the shortwave radiance has been defined in terms of albedo, in the following Section,
the objective is to define the longwave radiance LLW in terms of emissivity of the Earth’s surface
element dA. In general, the emissivity e indicates how a certain body is effective in emitting
energy in the form of thermal radiation, and it is expressed as the dimensionless ration between
the radiant exitance of the particular surface and the radiant exitance of a black body at the same
temperature, which represents the perfect thermal radiation emitter. By this definition

e =
MLW

MBB
, (2.6.19)

where in this case

� MLW is the longwave exitance of the surface element dA,

� MBB represents the exitance of dA if Earth was a black body, thus a perfect absorber that
re-emits all incident solar radiation equally in all directions.
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Similarly to the proceedings of the previous Section, the two exitance appearing in equation
(2.6.19) will be expressed in relation to various assumptions in order to obtain an expression for
LLW . Knowing that the definition of exitance M for a surface A is the ratio between the total flux
exiting the surface and the surface itself

M =
Φ

A
, (2.6.20)

the black body exitance MBB can be defined as the solar flux intercepted by Earth divided by the
total surface of the Earth

MBB =
EsπR

2
E

4πR2
E

=
Es

4
,

(2.6.21)

where at the numerator the local solar irradiance Es is multiplied by the Earth’s cross sectional
area that intercepts the solar flux, thus RE is the Earth radius, while at the denominator we
find the total Earth’s spherical surface reflecting the fact that all this incident energy is entirely
re-emitted as thermal radiation in all directions.

Now, the longwave exitance of dA must be rewritten in terms of the longwave radiance, which
is the quantity we are interested in, and again, following the definition of exitance we can write

MLW =
ΦLW

dA
. (2.6.22)

Considering that from equation (2.6.8) we have

dΦLW = LLW
Ac

r2
dAcosα, (2.6.23)

the term ΦLW can be computed similarly to (2.6.13) by integrating (2.6.23) over and hemisphere
centered at dA with radius r equal to the surface element-satellite distance, thus, also in this case
Ac is replaced by the infinitesimal surface element dAhem = r2 sinαdθ dα, leading to

ΦLW =

∫ 2π

θ=0

∫ π/2

α=0

LLW dAcosα sinαdα dθ

= LLW dA

∫ 2π

θ=0

∫ π/2

α=0

cosα sinαdα dθ

= LLW dAπ

[
cos 2α

2

]π/2

0

= πLLW dA,

(2.6.24)

and substituting this result into (2.6.22) gives

MLW = πLLW , (2.6.25)

that allows to write the longwave radiance in terms of longwave exitance

LLW =
MLW

π
. (2.6.26)

Finally, using (2.6.19) and (2.6.21) into (2.6.26), gives

LLW =
eMBB

π
, (2.6.27)
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or, considering that MBB = Es/4,

LLW =
eEs

4π
. (2.6.28)

As with shortwave radiance, the nature of the radiated energy is assumed to be diffuse, allowing
to bring LLW out of the integral in (2.6.24). Here, the reason in favour of this hypothesis is the
fact that when Earth intercepts the solar flux it does not re-emits this energy immediately in a
particular direction, but energy is absorbed and re-emitted in a delayed fashion in all directions,
making it nearly isotropic.

Now that both longwave and shortwave radiances have been defined in terms of albedo and
emissivity, it is possible to write the total flux exiting the Earth surface element dA intercepted
by the satellite’s visible hemisphere as

dΦ =

(
aEs cos θs

π
+

eMBB

π

)
Ac

r2
dAcosα, (2.6.29)

where, we recall that

� dA is the planar surface element that approximates a small portion of Earth surface with
same area and same properties,

� a and e are the albedo and emissivity of the element of Earth surface dA,

� Es and MBB = Es/4 are the local solar irradiance and the Earth black body exitance respec-
tively,

� Ac is the satellite’s cross sectional area,

� r is the area element-satellite distance,

� θs is the Sun azimuth angle, that is the angle between the normal to dA and the line con-
necting dA to the Sun,

� α is the viewing angle, that is the angle between the normal to dA and the line connecting
dA to the satellite.

2.6.4 Satellite Model and Total Acceleration due to Earth Radiation

Now that the radiant properties of a single Earth surface element have been conveniently defined
in the shortwave and longwave bands, the following steps aim at quantify the dynamical effects
that this radiation has on the satellite in terms of total imparted acceleration from all the visi-
ble surface elements, but also depending on the assumed optical and emissive properties of the
satellite’s surfaces. Regarding the satellite model, based on the properties of the surfaces that get
radiated, three main different mechanism of surface-radiation interaction can be identified, and the
total effect can be modeled as a combination of these three components, similarly to what hap-
pens for solar radiation pressure. The first interaction mechanism is associated to the black body

component, which represents the fraction of incident radiation that is absorbed as if the satellite
was an ideal perfect absorber. The related force, always follows the direction of the incident flux,
regardless of the particular shape of the impinged surface or its optical properties. The second
component is associated to reflection, and the interesting aspect is that the relater force does not
generally follow the direction of incidence. The two extremes are represented by perfectly specu-
lar reflection, in which the arising force is along the direction of the specularly reflected ray, and
diffuse reflection that gives a force acting along the normal to the surface. In this case, unlike for
absorption, the assumed satellite geometry and surface properties become relevant in determining
the dynamical effects on the trajectory. The last component is related to the portion of incoming
energy that is absorbed and later re-emitted as thermal radiation, and even in this case, the force

37



CHAPTER 2. NUMERICAL ORBIT MODELING

generating from this mechanism is dependent on satellite geometry and surfaces properties.
In describing the development of this Earth Radiation Pressure model (ERP), Knocke in-

troduces the satellite model proposed by Lochry (1966), in which the mentioned mechanisms of
surface-radiation interaction are elegantly collected in a single parameter called the augmentation

factor defined as follows

K = 1 + asR+ bsξ, (2.6.30)

where

� the unity term refers to the force associated to perfect absorption, i.e. the black body com-
ponent,

� as and bs are the fractions of total incident flux reflected and re-emitted respectively, where
as + bs = 1,

� R and ξ are called reflection law effectiveness coefficient and emission law effectiveness coef-

ficient respectively,

also, in many cases the portions of K related to reflection and emission are gathered in a single
parameter ηs improperly called satellite reflectivity, so that

K = 1 + ηs, (2.6.31)

with

ηs = asR+ bsξ. (2.6.32)

The effectiveness coefficients R and ξ, are so called because they represent the efficiency to
which the combined effects of surface properties, satellite geometry and orientation, produce a net
force that is oriented along the line of incident radiation, that is, along the direction of r. Under
these circumstances, it is useful to identify some extreme cases that help in understanding the
range of values that K can assume. Consider for example a perfect specularly reflective planar
surface normal to the incident flux, in this case, it is clear that all the incident flux is reflected
so as = 1 and bs = 0. Also, thanks to the orientation and surface properties, this configuration
has maximum efficacy in exerting a force that is directed along the line of incidence, meaning
that R = 1. Regarding the emission law effectiveness coefficient, the two extreme situations are
related to two different re-emission processes. First, considering the case is which the satellite
is a poor thermal conductor, the incoming energy will be re-emitted almost immediately before
any heat transfer can occur, leading to a diffuse thermal emission that is similar in nature to a
diffuse reflection. On the other hand, if the satellite can be represented as a perfect conductor, the
intercepted radiation will be evenly spread across the body as thermal energy that will be later
re-emitted evenly in all directions, and the total dynamical effect is null.
On the basis of these considerations it becomes clear that the ranges of values covered by the
effectiveness coefficients are given by

0 ≤ R ≤ 1 (2.6.33)

0 ≤ ξ ≤ Rd, (2.6.34)

where Rd represents the reflection law effectiveness coefficient of a diffusely reflective body whose
geometry, orientation and surface properties ensure that the resulting force will act along the line
of incident radiation, and finally, the range for the augmentation factor is given by

1 ≤ K ≤ 2, (2.6.35)
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with K = 1 corresponding to total absorption, and K = 2 represents perfect specular reflection
along the line of incidence.

Having defined the augmentation factor as a parameter that allows to describe the satellite-
radiation interaction accounting for surface properties, satellite geometry and orientation, the
acceleration imparted by the flux exiting an Earth surface element dA with albedo a and emissivity
e, can now be computed. First, let us recall that if radiation impinges a surface A with a flux Φ,
here intended as power and measured in Watts, the surface experiences a radiation pressure that
for electromagnetic waves is generally given by

P =
Φ

cA
, (2.6.36)

where P is the radiation pressure
[
N/m2

]
and c is the speed of light in vacuum ≈ 299 792 458 m/s.

Now we can exploit (2.6.36) to evaluate the Earth radiation pressure generated by the surface
element dA simply by replacing the flux Φ with dΦ from equation (2.6.29), and the impinged area
becomes the satellite’s cross section Ac, thus

dP =
dΦ

cAc
, (2.6.37)

or

dP =
1

c r2

(
aEs cos θs

π
+

eMBB

π

)

dAcosα, (2.6.38)

and note that P becomes dP, representing a small portion of the total radiation pressure since it
is associated to a single visible surface element dA.

Once the radiation pressure is available, the acceleration is promptly computed as

da = KdP
Ac

m
r̂, (2.6.39)

where m is the satellite mass and r̂ is the unit vector of the Earth element-satellite distance vector
r, that follows the direction of impinging radiation. Equation (2.6.39) can be explicitly written
substituting dP with its expression from (2.6.38)

da = K(aEs cos θs + eMBB)
Ac cosα

πmr2 c
dA r̂, (2.6.40)

and in this expression the role and convenience of the augmentation factor K becomes clear, as
it allows to write the acceleration as a single component that always acts along r̂. The use of
this parameter, and the consequence it has on the direction of acceleration, might sound like a
particularly restrictive modelling technique, however, as Knocke (1988) highlights in his work, most
satellites are likely to behave much more as absorbers rather than reflectors, with typical values
of as being around 0.1 − 0.13, meaning that only a small fraction of the incident radiation gets
reflected. Therefore, given that most of the acceleration components acting out of the direction
of r̂ are due to reflection, and that the force associated to the black body term is always along r̂

regardless of satellite geometry or orientation, the Lochry’s satellite model is actually well suited
for most cases, but must be used wisely if the satellite displays a highly reflective behaviour.

The final step in evaluating the effect of Earth radiation pressure on the satellite dynamics, is
the extension of equation (2.6.40) from the effect of a single Earth element dA, to the effect of the
whole portion of Earth surface that is instantaneously visible from the satellite, referred to as the
effective cap. A rigorous approach should define a particular albedo and emissivity model for the
entire Earth, then, equation (2.6.40) could be integrated in the variable dA over the whole effective
cap, however, fixing a particular model could lead to a loss of generality since any needed variation
in the aforementioned model leads to a substantially different result. The complications associated
with the computation of the aforementioned integral, can be circumvented in the implementation
of the model as a numerical algorithm, by replacing integration with simple summation of the
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contribution from every single discrete Earth element. Thus, the total acceleration on the satellite
due to Earth radiation pressure from the current effective cap is

acap =

N∑

j=1

daj

=
K

πmc

N∑

j=1

(
τajEs cos θsj + ejMBB

) Acj cosαj

r2j
dAj r̂j ,

(2.6.41)

where every quantity with the subscript j is associated to a particular Earth element dAj , for
a total of N elements, and the parameter τ is equal to zero if the jth element is not lit, and it
is unitary otherwise. Notice that the satellite cross section Acj is also associated to a particular
jth element, to account for the general case of a non-spherical satellite. If the satellite is instead
modelled as a cannonball, Ac is constant and equal for all elements.

2.6.5 Earth Radiation Model

In the Earth radiation pressure model proposed by Knocke, particular attention is given to the
development of a model for Earth radiation that is capable of considering geometrical and temporal
variations of albedo and emissivity values without severe discontinuities. The proposed solution,
is the use of purely zonal spherical harmonics with time dependent coefficients, so that albedo and
emissivity values are computed as

a = a0 + a1P1(sinϕ) + a2P2(sinϕ) (2.6.42)

e = e0 + e1P1(sinϕ) + e2P2(sinϕ), (2.6.43)

with

a1 = c0 + c1 cos [ω(JD − t0)] + c2 sin [ω(JD − t0)] (2.6.44)

e1 = k0 + k1 cos [ω(JD − t0)] + k2 sin [ω(JD − t0)] , (2.6.45)

and

� JD is the Julian Date,

� t0 is a reference epoch,

� ϕ is the latitude of the Earth surface element,

� ω is the frequency associated to temporal variations,

� Pn(sinϕ) is the Legendre polynomial of degree n with argument sinϕ.

Here, it is important to underline how ω is a frequency [rad/s] associated to a period of 365.25
days, thus representing seasonal variations in the values of albedo and emissivity that repeats
every solar year. Moreover, the other significant aspect is the fact that the harmonics describing
the geometrical variations are somehow similar to what happens for the geopotential, but here,
only zonal harmonics are considered, meaning that albedo and emissivity values depend only on
latitude ϕ. This simplification that might sound restrictive at first, is nevertheless confirmed by
satellite radiometric measurements, also, effects due to any longitudinal variation are likely to
average out thanks to earth rotation, especially in the long term.
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moreover, following this line of reasoning, it is clear that the EPA associated to the surface element
directly under the satellite, called sub-satellite cap, is computed using equation (2.6.49) with ζi−1 =
ζ0 = 0, ζi = ζ1 and Nri = 1 since it is a single element, giving the following alternate expression
for A∗

A∗ = 2 (1− cos ζ1) . (2.6.50)

Interestingly, the total EPA of the effective cap is always given by equation (2.6.49), but can be
computed following two different approaches. The effective cap can be seen as a large sub-satellite
cap that spans from ζ0 = 0 to ζE , where the latter is the angle ζ associated to the upper limit of
the visible Earth surface, and is given by

ζE = sin−1 RE

rs
, (2.6.51)

so, calling A∗
TOT the EPA of the effective cap we have

A∗
TOT = 2 (1− cos ζE) , (2.6.52)

but this projected attenuated area can also be computed as the sum of the total number N of EPA
elements, thus, if equation (2.6.50) represents the EPA of a single element:

A∗
TOT = 2N (1− cos ζ1) , (2.6.53)

then, equating (2.6.52) and (2.6.53) leads to

cos ζ1 =
N − 1 + cos ζE

N
. (2.6.54)

The above expression for cos ζ1 represents a fundamental aspect for the Earth radiation pressure
algorithm presented here, based on the equal projected attenuated area method. This equation
shows that for a fixed value of ζE , that is a function of the satellite’s position, and a given number
of total surface elements N , which is arbitrary, the sub-satellite cap dimension will follow directly
in terms of its viewing angle ζ1. Then, once ζ1 is known, the value of EPA is obtained with equation
(2.6.50), and the interesting aspect is that this value will be the same for all Earth surface elements,
allowing to drastically simplify the calculations that would be involved in integrating equation
(2.6.41). As a matter of fact, the acceleration caused by the radiation coming from the entire
effective cap can be rewritten as follows

acap = A∗ K

mc

N∑

j=1

(
ajEs cos θsj + ejMBB

)
Acj r̂j , (2.6.55)

where it can be noticed how the term in (2.6.41)

dAcosα

πr2
,

that would require integration over the effective cap, is now collected in the equal projected atten-
uated area A∗ that is factored out of the summation.

The remaining step needed to completely define the the effective cap discretization, consists in
determining the distribution of EPA elements in the rings between the sub-satellite cap, identified
by ζ1, and the effective cap, delimited by ζE . In doing so, the guiding principle is that every
element must have the same value of A∗, meaning that there must be some sort of relationship
between the number of elements in a ring and its width ∆ζ, therefore, the two quantities cannot
be chosen independently. Clearly, it is advisable to fix the number of elements per ring Nri and
get a distribution of angles ζi rather than the opposite, since we want Nri to be an integer while
no particular restriction is present on the values for the rings width. A practice that is suitable for
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numerical implementation is the definition of a recursion that assigns the number of elements of a
certain ring as a fixed increment from the previous ring, that is

Nri = Nri−1
+ n, (2.6.56)

and proceeds from the sub-satellite cap with Nr1 = 1, up to the final ring delimited by ζE . Here,
n will be referred to as the incremental parameter. This recursion allows to determine every ζi
using equation (2.6.54) in which cos ζE is replaced by cos ζi, and the total number of elements N
is replaced with the cumulative number of elements K up to ζi. So, if the total number of rings,
excluding the sub-satellite cap, is nring the recursion goes as follows

for i = 2, 3, . . . , nring

K = K + n(i− 1)

cos ζi = K cos ζ1 −K + 1

end,

(2.6.57)

and the relation between the total number of elements N , the number of rings nrings and the
incremental parameter n is

N = 1 + n
nring

2
(nring + 1) , (2.6.58)

so, for example, a discretization with 2 rings and an incremental parameter of 6 would give a total
of 19 surface elements.

Now that the distribution of rings is defined as well as the number of elements in each of them,
in order to compute the ERP acceleration, the knowledge of every satellite-to-element direction is
needed and requires the computation of every element’s center coordinates. These are described
by vectors whose origin is in the Earth’s center and have magnitude equal to the Earth’s radius
RE , expressed in the local radial-transverse-normal (RTN) reference frame through the angles β
and λ as follows (see figure 2.6.2)

RRTN
Ei

= RE cosβ∗
i R̂+RE sinβ∗

i

(

cosλiT̂+ sinλiN̂
)

, (2.6.59)

where

� β∗
i is the RTN zenith angle of the ith element’s center given by βi−1+βi

2 ,

� λi is the RTM azimuth angle of the ith element’s center,

then, (2.6.59) is transformed into inertial coordinates to obtain RI
Ei
, and the element-to-satellite

vector is simply

ri = rs −RI
Ei

(2.6.60)

recalling that rs is the satellite inertial position. It is appropriate to say a few words about the
computation of the local zenith and azimuth angles β and λ. The zenith angle is obtained through
the angle γ, that relates ζ and β as follows, see figure 2.6.3,

RE sin γ = rs sin ζ

γ = sin−1

(
rs sin ζ

RE

)

,
(2.6.61)

then

β = γ − ζ, (2.6.62)
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T̂

N̂

R̂

rEi

λi

rs

ri

sat

β

ζ

Figure 2.6.2: Angles and vectors arisign from the Earth’s surface dis-
cretization for the ERP algorithm.

rE

r

rs

ζ

β

γ

Figure 2.6.3: Schematic representation of the angles γ, β and ζ.
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while the azimuth angles along the same ring λri are somehow arbitrary to the extent in which the
first λr1 can either start from 0 or π/Nri , in other words, the ring can be rotated but must always
contain Nri elements. Here, the distribution of element centers along the same ring in terms of
local azimuth in the RTN frame will be defined by

λri = k
2π

Nri

− π

Nri

, k = 1, 2, 3, . . . , Nri . (2.6.63)

2.6.7 The Earth Radiation Pressure Algorithm

In this Section, the main steps involved in the algorithm structure of the Earth radiation pressure
model are outlined, then a flowchart is provided at the end.

The required information at the beginning is satellite position and velocity as well as its pa-
rameters like mass, cross section and reflectivity, the solar distance, the number of Earth surface
rings and incremental parameter, respectively:

rs, vs, m, Ac, ηs, rsun, nring, n,

then, the total number of elements is obtained

N = 1 + n
nring
2

(nring + 1) .

From now on, the process repeats the following steps:

1. Compute the dimension of the effective cap visible from the satellite:

ζE = sin−1

(
RE

rs

)

βE =
π

2
− ζE

2. Calculate limits of sub-satellite cap and β angle:

ζ1 = cos−1 (N − 1 + cos ζE)

γ1 = sin−1

(
rs sin ζ1
RE

)

β1 = γ1 − ζ1

3. Calculate remaining ring limits:

for i = 2, 3, . . . , nring

K = K + n(i− 1)

ζi = cos−1 (K cos ζ1 −K + 1)

γi = sin−1

(
rs sin ζi
RE

)

βi = γi − ζi

4. Calculate ring centers:

for i = 2, 3, . . . , nring + 1

β∗
i =

βi−1 + βi

2
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5. Radiation pressure due to sub-satellite cap:

A∗ = 2 (1− cos ζ1)

cos θs = r̂s · r̂sun (if cos θs < 0 then cos θs = 0)

ϕ = sin−1
(

Ẑ · r̂s
)

, Ẑ = normal to Earth equator

a = a0 + a1P1(sinϕ) + a2P2(sinϕ)

e = e0 + e1P1(sinϕ) + e2P2(sinϕ)

FluxSW = A∗K
AcEs

mc

FluxLW = A∗K
AcMBB

mc
dassc = (aFluxSW cos θs + eFluxLW) r̂s

6. Compute and accumulate contribution from each element:

for i = 2, 3, . . . , nring + 1

Nri = n(i− 1)

r =
√

R2
E + r2s − 2rsRE cosβ∗

i

(a) Compute element-satellite vector:

for j = 1, 2, . . . , Nri

RRTN
Ej

= RE cosβ∗
i R̂+RE sinβ∗

i

(

cosλjT̂+ sinλjN̂
)

Transform RRTN
Ej

into inertial coordinates obtaining RI
Ej

R̂I
Ej

= RI
Ej
/RE

rj = rs −RI
Ej

r̂j = rj/r

(b) Accumulate accelerations:

ϕ = sin−1
(

Ẑ · R̂E

)

a = a0 + a1P1(sinϕ) + a2P2(sinϕ)

e = e0 + e1P1(sinϕ) + e2P2(sinϕ)

cos θs = R̂E · r̂sun (if cos θs < 0 then cos θs = 0)

da = da+ (aFluxSW cos θs + eFluxLW) r̂j

and the process continues until the contribution from every element is calculated.

2.7 Empirical Accelerations

In the context of orbit determination and parameters estimation the objective is to obtain the
best accordance between observed and calculated measurements. In an ideal case, these quantities
become indistinguishable once the mathematical model used to propagate the satellite’s reference
orbit and to compute measurements completely and perfectly describes reality, but this is never
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the case. Even when the major perturbations are accurately described and the estimation process
has reached its best solution, residuals in the computed values may still be present if compared
to the actual measurements, and these are often caused by unmodeled forces as well as inevitable
uncertainties. For this reason a common practice is to introduce a fictitious acceleration model
which has no counterpart in the physical world, but can rather be thought as a mathematical tool
that absorbs these unknown effects and its parameters are estimated during the orbit determination
process.

The most common model for empirical accelerations is based on a Fourier expansion with
constant and cyclical terms expressed in the Radial-Transverse-Normal (RTN) frame, in which the
fundamental frequency is related to the orbital period ωo = 2π/T and the summation is often
carried up to the second term, namely

aRTN
emp = A+

2∑

i=1

Di cos(iωo(t− t0)) + Si sin(iωo(t− t0)), (2.7.1)

that in components is

aR = AR +

2∑

i=1

DRi cos(iωo(t− t0)) + SRi sin(iωo(t− t0))

aT = AT +
2∑

i=1

DTi cos(iωo(t− t0)) + STi sin(iωo(t− t0))

aN = AN +

2∑

i=1

DNi cos(iωo(t− t0)) + SNi sin(iωo(t− t0)).

(2.7.2)

Here, the idea of using the orbital period as the fundamental frequency reflects the fact that
perturbing accelerations are always “slow” and often cyclical with a frequency content that is
explainable first of all with the satellite motion around the Earth as once-per-rev components,
and even though the summation may be arbitrarily extended to higher frequencies, it is seldom
necessary to go above the twice-per-rev terms. The constant terms AR, AT and AN are instead
associated to acceleration biases that often result in secular deviations from a Keplerian orbit,
whereas unpredictable changes in the atmospheric drag force, which is clearly a secular term, may
be absorbed by the AT component, or, for the case of Earth Radiation Pressure, by the AR term.
From this consideration, the advantage of expressing this acceleration in the RTN frame is clear,
giving a more comprehensible insight into the situation and an easier interpretation of the results
since this reference system is intrinsically fixed to the satellite trajectory, whereas expressing it in
other coordinate systems would make it harder to draw conclusions due to the relative motion of
the satellite.

An alternative expression for the empirical accelerations makes use of the argument of latitude

rather than the orbital angular velocity ωo so that no prior knowledge of the orbital period T is
necessary, which in any case may vary due to perturbations. Recall that the argument of latitude
u is give by the sum of the argument of perigee ω and the true anomaly f , u = ω + f , thus

aRTN
emp = A+

2∑

i=1

Di cos(i u) + Si sin(i u), (2.7.3)

and note that although being more consistent, equation (2.7.3) requires the calculation of osculating
orbital elements at every time of interest.
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2.8 Numerical Integration of the Equations of Motion

Once the values of all the accelerations acting on the satellite are available, depending on all the
necessary parameters, it is necessary to derive the orbit in terms of position and velocity. To do
this, with the special perturbation approach described here, it is necessary to adopt numerical
integration, and a multitude of methods have been developed over the decades. The three main
categories of numerical integrators can be identified as follows [19]:

� Runge-Kutta Methods: These are a family of implicit and explicit iterative methods, which
include the Euler method, used in temporal discretization for the approximate solutions of
simultaneous nonlinear equations. The most widely known member of the Runge-Kutta
family is generally referred to as “RK4”, the “classic Runge-Kutta method” or simply as
“the Runge-Kutta method”.

� Multistep Methods : These methods are used for the numerical solution of ordinary differential
equations. They use information from previous steps to calculate the next value, attempting
to gain efficiency by keeping and using the information from previous steps rather than dis-
carding it. Three families of linear multistep methods are commonly used: Adams–Bashforth
methods, Adams–Moulton methods, and the backward differentiation formulas (BDFs).

� Extrapolation Methods: Extrapolation is a statistical technique used in data science to esti-
mate values of data points beyond the range of the known values in the data set. There are
different types of extrapolation for predicting and evaluating trends in data. The two most
widely used extrapolation methods are Linear Extrapolation and Polynomial Extrapolation.

Each of these methods has its own strengths and weaknesses, and the choice of which to use
depends on the specific problem at hand. It’s important to understand the underlying assumptions
and limitations of each method to ensure accurate and reliable results.
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Chapter 3

The Linearized Orbit Model

As mentioned previously, the orbit determination problem involves nonlinearities both in the math-
ematical model, described by the differential equations governing the spacecraft motion, and the
observation equations that relate the state to the measurements. Given the circumstances, the
linearization procedure becomes necessary for the application of the various estimation techniques
discussed in this thesis. With this in mind, this chapter aims to briefly introduce the basic concepts
and main terminologies that will be common to the subsequent discussions.

3.1 Linearization Procedure

The general relations describing the orbital dynamics can be written in the following compact form
[3]:

Ẋ(t) = F (X,P, t) , X(t0) ≡ X0, (3.1.1)

with X being the n-dimensional state vector and P is a vector of constant dynamical parameters
involved in the force model like gravitational parameters, drag and solar radiation coefficients and
many others.

The observation equation relating the state to measurements at discrete times is:

Yi = G (X,Q, ti) + εi, E
[
εiε

T
i

]
= Ri, (3.1.2)

where Yi is the p-dimensional vector of measurements at time ti, εi is the vector containing mea-
surements errors, which is assumed to have zero mean and covariance matrix Ri, and Q is a vector
of constant geometrical parameters. Notice that having p measurements for l discrete observation
times leads to a total of m = p × l ≫ n measurements, making the problem overdetermined and
allowing the least squares method to average out the effects of errors.

The linearization of equations (3.1.1) and (3.1.2) requires the knowledge of a reference trajectory
X∗(X∗

0,P
∗, t) that reasonably resembles the true trajectory X, meaning that deviations

δX = X−X∗ (3.1.3)

should be fairly small. Having also reference values for the parameters P∗,Q∗ and introducing the
deviations δY, δP, δQ similarly to equation (3.1.3), we can expand the dynamical and observation
equations to the first order as:

F (X,P, t) = F (X∗,P∗, t) +

[
∂F

∂X

]∗

δX(t) +

[
∂F

∂P

]∗

δP, (3.1.4)

G (Xi,Q, ti) = G (X∗
i ,Q

∗, ti) +

[
∂G

∂X

]∗

i

δX(ti) +

[
∂G

∂Q

]∗

i

δQ, (3.1.5)
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and substituting into equations (3.1.1) and (3.1.2) leads to:

δẊ(t) =

[
∂F

∂X

]∗

δX(t) +

[
∂F

∂P

]∗

δP, (3.1.6)

δYi =

[
∂G

∂X

]∗

i

δX(ti) +

[
∂G

∂Q

]∗

i

δQ, (3.1.7)

where the partial derivatives in square brackets are the Jacobian matrices

A(t) =

[
∂F

∂X

]∗

, B(t) =

[
∂F

∂P

]∗

, (3.1.8)

H̃i =

[
∂G

∂X

]∗

i

, K̃i =

[
∂G

∂Q

]∗

i

, (3.1.9)

and the superscript * indicates that the derivatives are evaluated along the reference trajectory.
Finally, taking advantage of the above definitions the linearized form of equations (3.1.1) and

(3.1.2) can be written in the following compact manner:

ẋ(t) = A(t)x(t) +B(t)p, (3.1.10)

yi = H̃ixi + K̃iq+ εi, i = 1, . . . , l, (3.1.11)

in which the definitions x = δX, y = δY, p = δP, q = δQ are used.

3.2 The State Transition Matrix

In many filtering applications, such as the batch filter that will be discussed later, the estimation
of the state occurs at particular instants of time or often at a single epoch, thus we need a mean
to relate all measurements to that particular epoch. A linearized homogeneous system is described
by the following system of differential equations:

ẋ(t) = A(t)x(t), (3.2.1)

and the solution can be expressed as

x(t) = Φ(t, t0)x0, (3.2.2)

where Φ(t, t0) is the state transition matrix, that for linearized systems can be defined as

Φ(t, t0) =
∂X

∂X0
. (3.2.3)

The state transition matrix, as we can clearly see from equation (3.2.2), allows us to relate states
at generic times t, to the state at epoch t0, or in the more general case at any time tk, and it
satisfies the following relevant properties:

Φ(tk, tk) = I , (3.2.4)

Φ(tk, tj) = Φ(tj , tk)
−1, (3.2.5)

Φ(tk, tj) = Φ(tk, ti)Φ(ti, tj). (3.2.6)

There are several ways to compute the state transition matrix for a linearized systems. In the
case of orbit determination equation (3.2.1) represents a system of linear differential equations with
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time-dependent coefficients, and the most practical way to compute Φ is to differentiate equation
(3.2.1) noting that x0 is a constant. This yields

ẋ(t) = Φ̇(t, t0)x0. (3.2.7)

We now substitute (3.2.7) and (3.2.2) into (3.2.1) to obtain

Φ̇(t, t0)x0 = A(t)Φ(t, t0)x0, (3.2.8)

and since it must be true for all xk, it follows that

Φ̇(t, t0) = A(t)Φ(t, t0). (3.2.9)

Equation (3.2.9) can then be integrated with initial condition Φ(t0, t0) = I , with I being the
identity matrix.

3.3 Observations and Measurement Deviations

In orbit determination the role of observations is crucial, as a means by which the state of an
orbiting object is periodically monitored and updated. In the linearization of the orbit model, the
concept of measurement deviations was introduced as the difference between the actual measure-
ments and computed measurements, i.e. measurements calculated from the mathematical model
describing the reference trajectory, thus a brief insight of these concepts is needed.

There exist plenty of observation techniques, from radar ranging, radar doppler and altimeter
data to satellite-to-satellite tracking with GPS and many others, but here we will discuss the two
most common and useful by an intuitive standpoint: the instantaneous range and instantaneous

range rate. First of all, the term instantaneous underlines the fact that the measurement is purely
geometrical and does not contain any temporal bias, as would be the case for real observations,
meaning that physical effects such as the speed of light, atmospheric influence but also the specific
position of the receiving or emitting point are ignored. Instead, the observer and the observed
objects are considered as geometrical points that instantaneously communicate. A more realistic
model of measurement should at least account for the so-called ‘time-of-light’ principle [24] and the
fact that the synchronization between transmitter and receiver clocks is never perfect. However,
these aspects go beyond the scope of this thesis and a more simplified model is favored for its ease
of implementation and understanding.

3.3.1 Instantaneous Range

Under these hypothesis the ideal range is simply the magnitude of the vector ρ that connects the
ground station to the satellite. Considering an inertial reference frame centered in the planet, if the
cartesian coordinates of the ground station are represented by the vector ρgs and the coordinates
of the spacecraft are contained in the vector ρsc, the instantaneous ideal range at time ti can be
expressed as

ρci =
∣
∣ρsc − ρgs

∣
∣

=

√

(Xsc −Xgs)
2
+ (Ysc − Ygs)

2
+ (Zsc − Zgs)

2
,

(3.3.1)

which is clearly a scalar quantity, and the subscript c indicates that this ideal range is the measure-
ment computed from the spacecraft coordinates obtained with the reference trajectory. Now, if we
call ρoi the actual range measurement given by the ground station, the corresponding measurement
deviation yi at time ti can be computed as

yi = ρoi − ρci. (3.3.2)
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3.3.2 Instantaneous Range Rate

In some cases a measure of the time rate of change of the ideal range can be captured giving the
range rate. The mathematical expression can be derived by differentiation with respect to time of
the ideal range

ρ̇ =
(Xsc −Xgs)

(

Ẋsc − Ẋgs

)

+ (Ysc − Ygs)
(

Ẏsc − Ẏgs

)

+ (Zsc − Zgs)
(

Żsc − Żgs

)

ρ
, (3.3.3)

that is also

ρ̇ =
ρ · ρ̇
ρ

, (3.3.4)

and the associated measurement deviation is defined similarly to equation (3.3.2)

yi = ρ̇oi − ρ̇ci. (3.3.5)

Notice that from equation (3.3.4) the range rate can be interpreted as the component of the
relative velocity vector between the spacecraft and the ground station, along the line-of-sight
direction ρ.
Finally, from a practical point of view, it must be considered that in both equations (3.3.1) and
(3.3.3), the ground station coordinates must account for the planet’s rotation, that is







Xgs

Ygs
Zgs






=







Rp cos δ cos (λ+ ωpt)
Rp cos δ sin (λ+ ωpt)

Rp sin δ






, (3.3.6)

where Rp is the planet’s mean radius, ωp is the planet’s rotation angular velocity and δ, λ are the
ground station’s latitude and longitude respectively.
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Chapter 4

Batch Estimation

The Batch Filter or Batch Processor in orbit determination is a direct application of the least
squares method, in particular, since the orbit determination problem involves nonlinear differential
equations, nonlinear least squares must be used.

The name Batch underlines how the available measurements are all processed at once, precisely
as a single batch of data to obtain the best estimate at a single reference time called epoch, making
it an offline estimator as opposed to a real-time estimator, since the estimate is obtained only after
a certain amount of observations are collected.

4.1 Relating Observations to an Epoch State

As mentioned before, the batch filter requires all measurements to be related to the particular
epoch in which the state estimation occurs, in other words, we need to relate the measurements
deviations yi (3.1.11) at time ti, to the state deviation x0 at epoch t0, but also to the parameter
deviations p. To do so, taking a cue from Section 3.2, we can map the linear state deviations
through the following relationship

δX =
∂X

∂X0
δX0 +

∂X

∂P
δP. (4.1.1)

Here, the aforementioned state transition matrix ∂X/∂X0 is recognized, and we will call it dynam-

ical state transition matrix to distinguish it from the parameter state transition matrix defined by
∂X/∂P, and they both can be combined in the system state transition matrix Φ(t, t0) through
Kroneker sum:

Φ(t, t0) = Φxx(t, t0)⊕Φxp(t, t0). (4.1.2)

This result allows to write the solution to equation (3.1.10) as

x(t) = Φxx(t, t0)x0 +Φxp(t, t0)p, (4.1.3)

that can be inserted into the observation equation (3.1.11) to obtain

yi = H̃iΦxx(t.t0)x0 + H̃iΦxp(t, t0)p+ K̃iq+ εi. (4.1.4)

Equation (4.1.4) maps state deviation x0 at epoch, along with parameters deviation p and q,
to every measurement deviation at any time ti, and it can be written in a more compact form by
using the following definitions:
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Hx
i = H̃iΦxx(t, t0), (4.1.5)

H
p
i = H̃iΦxp(t, t0), (4.1.6)

and

x̃0 =





x0

p

q



 , (4.1.7)

then

yi =
(

Hx
i H

p
i K̃i

)





x0

p

q



+ εi, (4.1.8)

that finally leads to

yi = Hix̃0 + εi, (4.1.9)

where we have defined

Hi =
(

Hx
i H

p
i K̃i

)

. (4.1.10)

4.1.1 Computing the State Transition Matrix for the Batch Filter

The computation of the state transition matrix has already been discussed previously in a general
sense in Section 3.2, where equation (3.2.9) was derived considering that the state transition
matrix is a mean of relating the dynamical state (position and velocity) at epoch to the state at
different times. However, in Chapter 3, we introduced the fact that the state vector may also
contain dynamical and geometrical parameters other than position and velocity only, and Section
4.1 showed the distinction between the dynamical state transition matrix and the parameter state

transition matrix, and this Section describes how these two are computed.
For what concerns the dynamical state transition matrix, related to position and velocity only,

the differential equations can be shown to be the same as in equation (3.2.9), that is

Φ̇xx(t, t0) = A(t)Φxx(t, t0), Φxx(t0, t0) = I , (4.1.11)

where Φxx(t, t0) = ∂X(t)/∂X0.
For the parameter state transition matrix we take the gradient of equation (3.1.1) with respect

to the dynamical parameters vector P:

∂Ẋ(t)

∂P
=

[
∂F

∂X

]∗
∂X(t)

∂P
+

[
∂F

∂P

]∗

, (4.1.12)

changing the order of operations and recalling that A(t) = [∂F/∂X]
∗

d

dt

(
∂X

∂P

)

= A(t)
∂X

∂P
+B(t), (4.1.13)

where we have defined

B(t) =

[
∂F

∂P

]∗

, (4.1.14)

finally, the differential equations for the parameter state transition matrix are
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Φ̇xp(t, t0) = A(t)Φxp(t, t0) +B(t), Φxp(t0, t0) = 0. (4.1.15)

Equations (4.1.11) and (4.1.15) could be integrated considering the fact that they exhibit the
property of being column-decoupled. However, since they must be integrated together with the
dynamical equations the decoupled integration may turn into a tiresome effort.

4.2 The Weighted Least Squares Solution - Differential Cor-

rection

Trough linearization and the state transition matrix we have arrived at equation (4.1.9), that lays
the foundations for the Batch processor by mapping state vector deviations ad epoch into computed
measurement deviations at time ti.

At this point we must consider the fact that with the batch algorithm a total number ofm = p×l
measurements is processed at once, where p is the number of observations at a single time, that is
the dimension of the measurement deviations vector yi, and l is the total number of observation
instants, meaning that we can formulate the problem as follows:

y =







y1

y2

...
yl







, H =








H1

H2

...
Hl







, ε =







ε1

ε2

...
εl







, (4.2.1)

meaning that y and ε are m × 1 vectors of measurement deviations and measurement errors
respectively, and H is a m× n matrix. If we use x instead of x̃0 for shortness we obtain

y = Hx+ ε. (4.2.2)

Moreover, as the name suggests, the observations are not treated equally but a certain weighting
factor is considered, because y is generally composed of different measurement types from different
sources, and we may wish to give more relevance to the more accurate measurements over the ones
subjected to higher errors.

Under the hypothesis that measurements are unrelated in time, which may sound restrictive
but is often the case, and that measurement errors obey a multivariate normal distribution with
zero mean E [εi] = 0, a suitable choice for the weighting matrix Wi at ti is the inverse of the
measurement error covariance matrix Ri = E

[
εiε

T
i

]
, so that every measurement is pondered with

the inverse of its respective variance,

Wi = R−1
i , (4.2.3)

then, by combining every Wi matrix into a single block diagonal matrix, we get the complete
weighting matrix for the batch processor:

W =









W1 0 . . . 0

0 W2 0
...

... 0
. . . 0

0 . . . 0 Wl









. (4.2.4)

The fact that the weighting matrix is presented in a block diagonal shape is the consequence
of the assumption that measurements are unrelated in time; however, correlation might still be
present between observation occurring at the same time, meaning that submatrices Wi may not
be diagonal.

Going back to equation (4.2.2), the state vector x of dimension n containing position, velocity
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and parameters deviations is the unknown of this matrix equation. In practice the total number m
of measurements is way larger than the dimension of the state vector since, in many applications,
orbiting objects are periodically tracked by multiple measurement sources over long periods of time.
This ensures that the system is overdetermined, meaning that there are more scalar equations than
there are unknowns, and the weighted least squares solution gives the value x̂ of x as the one that
minimizes the sum of the squares of the calculated observation residuals y weighted by the matrix
W. Considering that the observation residuals are the difference between observed measurement
deviations and calculated measurement deviations, often referred to as O - C (“o minus c”), the
weighted least squares solution is the value of x that minimizes the following scalar performance
index:

J(x) =
1

2
ε
TWε =

l∑

i=1

1

2
ε
T
i Wiεi. (4.2.5)

Here ε represents observation residuals, and from equation (4.2.2) J(x) can also be written as

J(x) =
1

2
(y −Hx)

T
W (y −Hx) , (4.2.6)

and by performin calculations we can expand it into

J(x) =
1

2

(
yTWy − yTWHx− xTHTWy + xTHTWHx

)
, (4.2.7)

moreover, considering that all terms in the RHS of equation (4.2.7) must be scalar, we can perform
a transposition of xTHTWy knowing that the resulting equation will be equivalent. This results
in

J(x) =
1

2

(
yTWy − 2yTWHx+ xTHTWHx

)
. (4.2.8)

Now, a first necessary condition for the solution x̂ to minimize J(x), is that the derivative of
the performance index with respect to x must be zero,

∂J

∂x
=

1

2

∂

∂x

(
yTWy − 2yTWHx+ xTHTWHx

)
= 0. (4.2.9)

In order to perform the derivation we recall the following useful matrix properties. Being z a
column vector of dimension n, A a matrix with n rows and arbitrary number of columns, and B

a square n× n matrix:

∂

∂z

(
AT z

)
= AT ,

∂

∂z

(
zTBz

)
= 2zTB, (4.2.10)

and applying these properties in the computation of the derivative in equation (4.2.9) we get

∂J

∂x
= −yTWH+ xTHTWH = 0, (4.2.11)

or

xTHTWH = yTWH, (4.2.12)

finally, by transposing both sides of equation (4.2.12) considering that WT = W, we arrive at the
so called normal equations in the least squares formulation:

(
HTWH

)
x = HTWy. (4.2.13)

If the normal matrix is positive definite it is also invertible and the weighted leas squares
solution is
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x̂ =
(
HTWH

)−1
HTWy, (4.2.14)

representing the best estimate of the state vector deviations as the one that minimizes the sum of
the squared measurement residuals (O - C ).

Remembering that the measurement equation, eq. (4.2.2) for the batch processor, is the result
of a stochastic process since it contains measurement errors ε, and remembering that we assumed
E [ε] = 0 and E

[
εε

T
]
= W−1, it follows that the weighted least squares solution x̂ is also a

random variable with:

E [x̂] =
(
HTWH

)−1
HTWE [ε] = 0, (4.2.15)

and

E
[
x̂x̂T

]
= E

[(
HTWH

)−1
HTWyyTWTH

(
HTWH

)−1
]

=
(
HTWH

)−1
HTWE

[
εε

T
]
WH

(
HTWH

)−1

=
(
HTWH

)−1
HTWW−1WH

(
HTWH

)−1

=
(
HTWH

)−1
.

(4.2.16)

Equation (4.2.15) shows that in the application of a batch filter the expected value of the
least squares solution is zero, which is reasonable since x̂ represents state vector deviations from
a reference solution, that clearly should be as small as possible to indicate a good estimation.
Equation (4.2.16) instead shows that the matrix

P =
(
HTWH

)−1
, (4.2.17)

corresponds to the variance-covariance matrix of the least squares solution, meaning that it is
related to the accuracy of the estimate x̂ and is called solution covariance matrix. In general, high
magnitude for the elements of the matrix P indicates a poorly accurate estimate, however some
care must be taken in using these information as a valuation of the orbit determination accuracy.
The expected value and the covariance from equations (4.2.15)-(4.2.16), actually represent the
distribution of x̂ values that would be obtained by a repeated orbit determination experiment for
the same orbit but with randomly generated measurements, however it’s still true that the interval
described by the covariance of x̂ most likely contains the real solution.

Another important aspect emerging from equations (4.2.13)-(4.2.14), is that in order for a
solution to exist, the matrix

Λ = HTWH, (4.2.18)

also called information matrix, must be invertible, and if this is the case, it will also be positive
definite. Moreover, its rank is related to parameters observability. If the information matrix is not
full rank, it will not be invertible, meaning that the matrix Λ contains linearly dependent rows
or columns, which translates into the impossibility to obtain a unique parameters estimation from
the observation set y, no matter how large it is or how accurate the measurements are. This kind
of problem may arise from an inappropriately configured tracking systems or from an inconvenient
formulation of the state vector; the number of parameters to be estimated should always be as
small as possible, and parameters that do not appear in separate force functions should not be
estimated separately, meaning that they should not appear separately in the state vector, rather
their product or quotient may be estimated as a single quantity.

Going back to the least squares solution in equation (4.2.14), it must be remembered that x̂

is not a final estimate of the parameters contained in the state vector, but it is an estimate of
the state vector deviations from the reference a priori values, that is a direct consequence of the
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linearization procedure. These state deviations can then be seen as corrections that should be
applied to the a priori state vector

X∗
0new = X∗

0old + x̂, (4.2.19)

so that a new a priori value is obtained, and a new reference trajectory can be propagated. Clearly,
the approximation occurred in the linearization procedure has originated the need for this iterative
process, where the initial a priori values are corrected untill convergence, and that’s the reason
why the batch filter is also referred to as the differential correction method.

4.2.1 Estimation with a Priori Information

In many cases a priori values for the state vector deviation x̄ and the associated a priori covariance
matrix P̄ are available, and they may come from a priori initial conditions or the processing of a
previous batch of data. In practice they can be treated as additional information in the guise of
additional observations, so that x̄ can be interpreted as an observation of x at epoch,

y = Hx+ ε (4.2.20)

x̄ = x+ η. (4.2.21)

Here, the a priori value for the state deviation at epoch contains an associated random error η
with the following characteristics

E [η] = 0, E
[
ηη

T
]
= P̄, E

[
ηε

T
]
= 0, (4.2.22)

meaning that it has zero mean, covariance matrix corresponding to P̄ and it is not correlated to
measurement errors ε.

Consequently, equations (4.2.20) and (4.2.21) can be combined in a single observation equation
using the following definitions:

y =







y1

...
yl

x̄







, ε =







ε1

...
εl

η







, H =








H1

...
Hl

I







, R =









R1 0 . . . 0

0
. . .

...
... Rl

...
0 . . . . . . P̄









, (4.2.23)

then, using these in equation (4.2.14) and recalling that W = R−1 we get

x̂ =

{

[HT
i

... I]





Wi 0
. . . . . .
0 P̄−1









HT
i

. . .
I





}−1

[HT
i

... I]





Wi 0
. . . . . .
0 P̄−1









yi

. . .
x̄



 , (4.2.24)

that leads to

x̂ =
(
HTWH+ P̄−1

)−1 (
HTWy + P̄−1x̄

)
, (4.2.25)

where the solution covariance and information matrices are

P =
(
HTWH+ P̄−1

)−1
, (4.2.26)

Λ =
(
HTWH+ P̄−1

)
. (4.2.27)

Unlike the unweighted least squares case, here the solution form equation (4.2.25) actually
minimizes the following performance index, that other than the measurements residuals, contains
also the residuals related to the a priori estimate x̄,
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J(x) =
1

2
(y −Hx)

T
W (y −Hx) +

1

2
(x̄− x) P̄−1 (x̄− x) . (4.2.28)

Equation (4.2.25) is the least squares estimate with a priori information for the batch filter,
where the measurement vector y contains the entire batch of data and is merged with the a priori
estimate of the state deviations x̄. In this sense it represents a more general case compared to the
least squares solution in equation (4.2.14), however, in both situations, the n × n normal matrix
must be inverted and if n is large the inversion can lead to computational problems. This is why
the use of more accurate algorithms is often preferred, such as Cholesky decomposition, rather
than direct matrix inversion.

4.3 The Batch Processor Algorithm

This Section summarizes the algorithm developed to implement the batch filter for orbit determina-
tion. Let’s start by recalling the problem statement: suppose that we wish to estimate the position
and velocity of an orbiting spacecraft at a certain reference time t0, called epoch, along with other
dynamical and non-dynamical parameters, given a reference initial condition X∗(t0) = X∗

0, an a
priori estimate of the state deviations x̄0, an associated a priori covariance matrix P̄0, and a set
of observations Y such as range, range-rate or others. The solution to this problem is found by
solving the normal equations

(
HTWH+ P̄−1

0

)
x̂0 = HTWy + P̄−1

0 x̄0, (4.3.1)

where t0 is an arbitrary epoch and y is a vector of measurement deviations, that is the difference
between observation data contained in Y and computed observations, previously called (O - C).

First, the reference initial condition X∗
0 allows the propagation of the reference trajectory X∗,

that is integrated up to every observation time ti along with the differential equations for the
system state transition matrix

Φ̇xx(ti, t0) = A(t)Φxx(ti, t0), Φxx(t0, t0) = I , (4.3.2)

Φ̇xp(ti, t0) = A(t)Φxp(ti, t0) +B(t), Φxp(t0, t0) = 0, (4.3.3)

which gives a total of nd + nd × nd + nd × p differential equations, where nd is the dimension
of the dynamical system (the subscript d is used to distinguish from n which is often used for
the dimension of the state vector) and p is the dimension of the dynamical parameters vector.
For example, if we wish to estimate a satellite position and velocity along with the gravitational
constant G, a total of 48 differential equations must be integrated simultaneously.

Having the reference trajectory enables us to evaluate the partial derivatives contained in the
matrices

A(t) =

[
∂F

∂X

]∗

, B(t) =

[
∂F

∂P

]∗

, (4.3.4)

H̃i =

[
∂G

∂X

]∗

, K̃i =

[
∂G

∂Q

]∗

, (4.3.5)

that together with the state transition matrix in equation (4.1.4), relate measurement deviations at
any time ti to state vector deviations at epoch. Moreover, as the reference trajectory is propagated
to subsequent observation times ti, the measurement deviations vector y can be computed as
described in Section 3.3, as the difference between observed and computed measurements

yi = Yoi −Yci, (4.3.6)
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where Yoi is the available measurement and Yci is the computed measurement, both at time ti.
Now, going back to equation (4.3.1), it can be noticed that the information matrix

Λ = HTWH+ P̄−1
0 , (4.3.7)

is of n× n size, where n is the size of the state vector, while the RHS

HTWy + P̄−1
0 x̄0, (4.3.8)

is n× 1. If the weighting matrix W is a block diagonal matrix, the most convenient way to build
up these equations is to simply accumulate the matrices at every observation time as:

HTWH =

l∑

i=1

HT
i WiHi (4.3.9)

HTWy =

l∑

i=1

HT
i Wiyi, (4.3.10)

where the definitions for Hi, Wi and yi are coherent with the ones described in Section 4.1 and
4.2. Notice that each time of observation can have a different number of concurrent measurements,
which translates into the dimension p, of the measurement vector yi, being variable. However,
equations (4.3.9) and (4.3.10) can also be used ignoring the fact that some measurements may
happen at the same time, and if this is the case, the matrix Hi will always be 1×n, the weighting
matrix Wi will actually be a 1 × 1 scalar quantity containing the variance of the corresponding
observation, and yi will also be a scalar measurement deviation.

At this point the least squares solution x̂0 can be computed

x̂0 =
(
HTWH+ P̄−1

0

)−1 (
HTWy + P̄−1

0 x̄0

)
, (4.3.11)

and the reference initial conditions are corrected

X∗
0new = X∗

0old + x̂0, (4.3.12)

yet, before iterating, some considerations on the new value for the a priori estimate x̄new must be
discussed. The role of x̄0 and P̄0, as discussed in Section 4.2.1, is that of additional information that
is merged with observation data, consequently the value of X∗

0 + x̄0 should be held constant at the
beginning of each iteration. Considering that the reference initial conditions X∗

0 are corrected by
the quantity x̂0 as in equation (4.3.12), the need to hold the quantity X∗

0 + x̄0 constant, translates
into the following condition for the value of x̄new

0 :

X∗
0
new + x̄new

0 = X∗
0
old + x̄old

0

= X∗
0
old + x̂old

0 + x̄new
0 ,

(4.3.13)

that gives

x̄new
0 = x̄old

0 − x̂old
0 . (4.3.14)

Nonetheless, in practice, P̄0 is generally not a realistic representation oh the accuracy of x̄0,
but it is rather used to better condition the matrix P. Consequently, the value of x̄0 is set to
zero for each iteration and P̄0 is constructed as a diagonal matrix with large diagonal values, so
that the second term in equation (4.2.28), related to a priori estimate residuals is small, and more
importance is given to the observations residuals.

The entire process is then iterated with the new values for X∗
0, x̄0 and P̄0 until convergence,

and a common stopping criteria is based on the RMS value of the observation residuals:
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RMS =

√
√
√
√
√

l∑

i=1

ε̂
T
i Wiε̂i

m
, (4.3.15)

where m = p× l is the total number of observations and ε̂i = yi−Hix̂0. When the RMS no longer
changes the batch filter has converged, i.e. chosen an arbitrarily small value for ϵ, iterations are
stopped when:

∣
∣
∣RMSnew − RMSold

∣
∣
∣

RMSold
≤ ϵ. (4.3.16)

A flow chart summarizing the batch processor algorithm is shown in figure 4.3.1.

4.4 Parameters Segmentation

When a batch filter is used to fit measurements over significantly long periods of time (on the
order of several days), the incompleteness of the force model can easily lead to relatively large
observation residuals, even if the major perturbations such as geopotential, third body and solar
radiation pressure are adequately modeled. This happens because unlike real-time estimators,
that update their estimate as new information is available, the batch processor as described in the
previous Section, fits the entire batch of data with a single set of constant parameters at a certain
epoch, which are then considered valid for the entire estimation arc. Nonetheless, in the presence
of unpredictable disturbances like spacecraft venting or the complex atmospheric dynamics, it
would be desirable for some parameters to exhibit a sort of variability over time in order to reflect
and capture these variations, something that a fixed-parameter model is unable to do. A first
straightforward solution to this problem is to subdivide certain constant dynamical parameters
into a collection of independent sub-parameters, which are constant over shorter spans inside the
whole estimation arc, a technique that goes under the name of parameters segmentation. For
example, to capture the unpredictable atmospheric dynamics whose information is contained in
measurement data, even for highly accurate mathematical model for the drag acceleration it might
be insufficient to estimate a single CD value over long arcs, thus, multiple CDi are estimated, each
valid for a shorter period of time, usually on the order of few hours. Catania et al. [4] showed how
having a time history for the drag coefficient rather than a single fixed value, allowed to detect
and absorb unpredictable phenomena during the Launch and Early Operations Phase (LEOP) of
Sentinel-3A, like exceptionally high solar activity, that manifested as a peak in CD values, or even
out-gassing during instruments heating that led to negative CD values, suggesting that is acted as
a positive acceleration. As a matter of fact, the process of parameters segmentation augments the
estimation state vector dimension, giving a sort of increase in the degrees of freedom with which the
filter is able to fit measurement data. Moreover, the time profile of these segmented parameters
and their variations from a priori values, provides a powerful tool for understanding the force
model accuracy and interpreting anomalous results. This Section provides a detailed insight into
the mechanization of parameter segmentation for batch estimation. We focus on the implications
this has on the structures and handling of matrices during the propagation of the state transition
matrix. Additionally, we discuss the accumulation of information prior to the computation of the
least squares solution.

4.4.1 Propagating the State Transition Matrix

The batch filter gives the best estimate of the state through nonlinear least squares. The method
is also known as differential correction since the nonlinear model is approximated by its linearized
counterpart, where the estimated values are deviations from a reference solution rather than the
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Initialize starting values

i = 1, ti−1 = t0, X
∗(ti−1) = X∗

0, Φ(ti−1, t0) = I .
If there is a priori information set Λ = P̄−1

0 and N = P̄−1
0 x̄0,

else Λ = 0 and N = 0.

Read next observation

ti, Yi, Wi

Propagate reference trajectory

Integrate Ẋ∗ = F(X∗(t), t) with initial conditions X∗(ti−1),
Integrate Φ̇xx(t, t0) = A(t)Φxx(t, t0) and Φ̇xp(t, t0) = A(t)Φxp(t, t0) +B(t)

with initial conditions Φxx(ti−1, t0) and Φxp(ti−1, t0).

Compute matrices A(t), B(t), H̃i, K̃i

Accumulate observations

Hi =

[

H̃iΦxx

... H̃iΦxp

... K̃i

]

yi = Yi −G(X∗
i , ti)

Λ = Λ+HT
i WiHi

N = N+HT
i Wiyi

Have all observations
been read?

i = i+ 1

Solve normal equations

Λx̂0 = N

Has process converged?

Stop

Iterate

X∗
0i−1

= X∗
0i−1

+ x̂0i

x̄0i−1
= x̄0i−1

− x̂0i

Use original value of P̄0.

yes

no

yes

no

Figure 4.3.1: Flow chart for the batch processor algorithm.
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solution itself and the process is then iterated to convergence. For a conventional orbit deter-
mination problem solved with a batch processor, we saw how the state vector usually comprises
the satellite’s position r, velocity v and a set of constant geometrical and dynamical parameters

P, i.e, X =
[
r v P

]T
, whose estimated values refer to a reference epoch t0. For a general

treatment of the parameters segmentation approach, we first need to address the new structure of
the state vector X. Now, we must assume that certain parameters contained in P are segmented,
meaning that they occupy more than one “slot” in the state vector, precisely one for each of their
sub-parameters. In other words, the parameter vector P is further subdivided into a portion of
constant parameters Pc and a portion of parameters that are segmented, that we will identify
as Psk, where the index s = 1, . . . , S indicates the particular parameter that is considered (CD,
CR, . . . ), while k = 1, . . . , K refers to the single sub-parameter that derives from segmentation.
Consequentially, the state vector X becomes:

X =







r

v

Pc

Psk






=














r

v

Pc

P11

P12

...
PSK














(4.4.1)

and we recall that if X∗ is a reference solution, the deviations state vector x will be defined as

x = X−X∗ =







r− r∗

v − v∗

Pc −P∗
c

Psk −P∗
sk






. (4.4.2)

As an example, consider the case in which over an arc of 24 hours, a single CR parameter is esti-
mated, meaning that its validity corresponds to the whole estimation arc, while the CD parameter
is segmented into twelve 2-hours validity CD’s. Here, the state vector is structured as follows:

X =














r

v

CR

CD1

CD2

...
CD12














.

Next, we recall that the state transition matrix Φ(ti, t0) in the batch filter, plays the important
role of mapping state deviations x0 at epoch t0 to deviations xi of the state at each observation
time ti, which are then mapped into measurement deviations yi with the observation-state mapping
matrix Hi as described in Chapter 3. If X is the state vector, the state transition matrix can be
defined as

Φ(t, t0) =

[
∂X(t)

∂X(t0)

]

=

[
∂X

∂X0

]

, (4.4.3)

whereX0 is the state vector at epoch t0 and the equation above describes the system state transition

matrix. For the orbit determination problem, if we partition the state vector into dynamical and
parameter components as

Xd =

[
r

v

]

, Xp = P =

[
Pc

Psk

]

, (4.4.4)
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this matrix can be partitioned into dynamical state transition matrix Φxx(ti, t0) and parameter

state transition matrix Φxp(ti, t0), where

Φxx(ti, t0) =

[
∂Xd

∂Xd0

]

, Φxp(ti, t0) =

[
∂Xd

∂P0

]

, (4.4.5)

meaning that the system state transition matrix can be written as

Φ(ti, t0) =

[
Φxx Φxp

0 I

]

, (4.4.6)

where, if P is of dimension p, Φxx is 6×6, Φxp is 6×p, the lower left part is a p×6 null matrix and
the lower right part is an p× p identity matrix. The structure highlighted in (4.4.6) motivates the
partition into dynamical and parameter components and the differential equations for propagating
the state transition matrices in (4.4.5) are the following (see Chapter 3):

Φ̇xx(t, t0) = A(t)Φxx(t, t0), Φxx(t0, t0) = I, (4.4.7)

Φ̇xp(t, t0) = A(t)Φxp(t, t0) +B(t), Φxp(t0, t0) = 0. (4.4.8)

t
0 P1 P2 P3 P4 · · ·

t
0 P1 P2 P3 P4 · · ·

t
0 P1 P2 P3 P4 · · ·

Figure 4.4.1: Schematic representation of the parameters segmentation
procedure. Note how the parameter P is segmented into N Pi piecewise
constant sub-parameters, each active during subsequent periods of va-
lidity.

For what concerns the parameter segmentation procedure, no particular considerations are
needed for the dynamical state transition matrix Φxx, as its algorithmic implementation remains
unchanged from the conventional least squares estimation. However, if some parameters are seg-
mented, the propagation of the parameter state transition matrix Φxp requires careful consider-
ations on its computational implementation. As mentioned earlier, in the linearized orbit model
the state transition matrix allows to map deviations of the state at epoch t0 to deviations of the
state at epoch ti. For the dynamical part (position and velocity) this means that along the en-
tire estimation arc, information contained in every measurement up to the last observation, will
contribute at improving the estimate of the satellite’s initial position and velocity at epoch t0. If
parameters were not segmented, this would also be true for them and the state transition matrix
propagation would proceed unhindered without any particular regard. However, when segmenta-
tion is performed for some of the parameters contained in P, the resulting sub-parameters have a
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certain period of validity as schematically shown in figure 4.4.1, thus, they are active only during
that period. This means that a particular sub-parameter Psk, valid throughout the interval ∆tsk,
should not be influenced by the information content of measurements outside its span of validity,
that is to say, the forcing term B(t) of equation (4.4.8) must be structured so that it properly forces
the currently active parameters only. If we follow the definition of P in (4.4.4) and assume that Pc

has dimensions c× 1, while Psk is composed of s parameters each with its own k sub-parameters
and k1 + k2 + · · · + ks = p, then, the parameter state transition matrix Φxp has the following
structure:

Φxp =





∂r
∂Pc

∂r
∂P1k1

∂r
∂P2k2

· · · ∂r
∂PSks

∂v
∂Pc

∂v
∂P1k1

∂v
∂P2k2

· · · ∂v
∂PSks





6× c
︷︸︸︷

6× k1
︷ ︸︸ ︷

6× k2
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

, (4.4.9)

where the first c columns are related to those parameters that are not segmented, i.e., their period
of validity corresponds to the whole estimation arc, while all other groups of ki columns, i =
1, 2, . . . , S, are occupied by the segmented parameters. Note how every parameter Psks

has its own
number of sub-parameters ks, depending on the length of its validity period. We now proceed to
examine the form of equation (4.4.8) during its integration over time, given all the considerations
above and the structure highlighted in (4.4.9). We recall that the definitions for matrices A(t) and
B(t) are:

A(t) =

[
∂F(t)

∂Xd

]∗

6×6

, B(t) =

[
∂F(t)

∂P

]∗

=




0

∂a
∂P





6×p

, (4.4.10)

in particular, note how the forcing term B(t) contains the partial derivatives of acceleration a with
respect to the parameters P. Then, given the initial conditions, as integration begins we have that
Phixp(t0, t0) is the null matrix, while B(t0) has non-null columns only in correspondence of the
non-segmented parameters Pc and all the first sub-parameters that are active at t0, namely

Φxp(t0, t0) = 0, (4.4.11)

and

B(t0) =




0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

∂a
∂Pc

∂a
∂P11

0 · · · 0 ∂a
∂P21

0 · · · 0 · · · ∂a
∂PS1

0 · · · 0





6× c
︷︸︸︷

6× k1
︷ ︸︸ ︷

6× k2
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

,

(4.4.12)
For the sake of clarity we will assume that every segmented parameter has been divided into

the same number of sub-parameters, that is to say, they all have equal periods of validity and
k1 = k2 = · · · = ks, furthermore, all these periods will be indicated by ∆t1, ∆t2,. . . , ∆ts. As
propagation continues, for t > t0 we will eventually reach the end of the first validity period ∆t1
and fall into ∆t2. Here, we need to activate propagation for all the second sub-parameters by
properly placing the forcing terms and by zeroing out the previously populated columns of B(t).
So, for tk ∈ ∆t2 the parameter state transition matrix and e forcing matrix are:

Φxp(tk, t0) =





∂r
∂Pc

∂r
∂P11

∂r
∂P12

0 · · · 0 · · · ∂r
∂PS1

∂r
∂PS2

0 · · · 0

∂v
∂Pc

∂v
∂P11

∂v
∂P12

0 · · · 0 · · · ∂v
∂PS1

∂v
∂PS2

0 · · · 0





6× c
︷︸︸︷

6× k1
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

,

(4.4.13)
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and

B(tk) =




0 0 0 0 · · · 0 · · · 0 0 0 · · · 0

∂a
∂Pc

0 ∂a
∂P11

0 · · · 0 · · · 0 ∂a
∂PS1

0 · · · 0





6× c
︷︸︸︷

6× k1
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

, (4.4.14)

note how in B(t), only the second column of every 6 × ki sub-matrix contains the forcing term,
underlining that propagation has arrived to the ∆t2 interval. The transition matrix Φxp on the
other hand, still preserves columns associated to previously active parameters, the ones valid
throughout ∆t1 in the current case. This latter aspect illustrates the fact that the evolution
of Φxp columns associated to now inactive sub-parameters, does not terminate with the end of
the corresponding period of validity, it simply continues freely without any forcing term. As a
matter of fact, keeping the free evolution of these columns during integration is necessary to keep
“memory” of all the past sub-parameters history. All these past values will inevitably influence
future states as integration is never reinitialized in the batch processor and every information is
mapped to the same reference epoch t0, thus, every sub-parameter estimation is the result of a
proper combination of information from measurements contained in its validity period and the past
history of all previous ones. Referring to equations (4.4.11), (4.4.12), (4.4.13) and (4.4.14), the
integration goes on likewise for every subsequent column along the whole estimation arc, until every
∆tk has been covered and the parameter state transition matrix is entirely populated. Accordingly,
when integration falls into the last validity period, i.e., tk ∈ ∆ts the structures are

Φxp(tk, t0) =





∂r
∂Pc

∂r
∂P11

∂r
∂P12

· · · ∂r
∂P1k1

· · · ∂r
∂PS1

∂r
∂PS2

· · · ∂r
∂PSks

∂v
∂Pc

∂v
∂P11

∂v
∂P12

· · · ∂v
∂P1k1

· · · ∂v
∂PS1

∂v
∂PS2

· · · ∂v
∂PSks





6× c
︷︸︸︷

6× k1
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

,

(4.4.15)

and

B(tk) =




0 0 · · · 0 0 · · · 0 · · · 0 0

∂a
∂Pc

0 · · · 0 ∂a
∂PSk1

· · · 0 · · · 0 ∂a
∂PSks





6× c
︷︸︸︷

6× k1
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

. (4.4.16)

4.4.2 Accumulating Matrices

Section 4.2 showed how we can arrive at a compact form for the observation equation (4.2.2). The
total number l of elements in the measurement deviations vector y can be quite high for long
estimation arcs and if one were to build the normal equations (4.2.13) by matrix multiplications,
which involve the l×n observation-state map H, the process could become highly demanding by a
computational standpoint. For this reason, Section 4.2 also shown how it is surely more convenient
to accumulate both sides of the normal equations as propagation and measurement deviations are
processed in sequence (we assume that W is the identity matrix for simplicity):
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HTH =

m∑

i=1

HT
i Hi

=

m∑

i=1

[

H̃iΦxx(ti, t0) H̃iΦxp(ti, t0)
]T [

H̃iΦxx(ti, t0) H̃iΦxp(ti, t0)
]

(4.4.17)

HTy =

m∑

i=1

HT
i yi

=
m∑

i=1

[

H̃iΦxx(ti, t0) H̃iΦxp(ti, t0)
]T

yi,

(4.4.18)

where, if every measurement is processed individually, the size of H̃i is 1× 6, Φxx(ti, t0) is 6× 6,
Φxp(ti, t0) is 6 × p and the measurement deviation vector is actually a scalar, but for clarity,
it will still be treated as 1 × 1 vector yi. Another important assumption, that simplifies the
following treatment, is that only dynamical parameters are considered, which signifies that there
is no need for a K matrix, see equation (4.1.4). Note that this simplification is backed up by
the fact that segmented parameters are always dynamical (CD, CR, . . . ) rather than geometrical
(station coordinates, phase center offset, . . . ). Accumulating matrices in this manner allows to
handle multiplications in a more effective way. While the dynamical part of the state vector is
always composed of six elements like position and velocity, in batch filter applications it is not
uncommon for the parameter vector P to be very large and sparsely populated, especially when
segmentation is performed and what was once a single parameter has now transformed into multiple
sub-parameters. For example, we might need to estimate a satellite position and velocity over a
week, along with the coordinates of tens of ground stations and several dynamical parameters with
a relatively short validity period. In such situations the state vector dimension n quickly becomes
very large, and the HTH matrix will most likely be sparse. Under these circumstances, it becomes
clear how not only it is convenient to accumulate matrices as in (4.4.18) and (4.4.17), but every
multiplication involved for each i-th measurement should be performed to favor computational
efficiency, while also ensuring that information related to segmented parameters is accumulated,
thereby preserving the history of all previous values.

To do so, using the terminology developed for the parameter segmentation process, let us start
by examining the matrix structures involved when the propagation has led us to time tk ∈ ∆tk,
and to lighten the treatise, we assume that all dynamical parameters are segmented, so there is no
Pc. Here, the state transition matrices are available as

Φxx(tk, t0) =




Φrr(tk, t0) Φrv(ti, t0)

Φvr(tk, t0) Φvv(ti, t0)





6×6

(4.4.19)

and

Φxp(tk, t0) =





∂r
∂P11

· · · ∂r
∂P1k

0 · · · 0 · · · ∂r
∂PS1

· · · ∂r
∂PSk

0 · · · 0

∂v
∂P11

· · · ∂v
∂P1k

0 · · · 0 · · · ∂v
∂PS1

· · · ∂v
∂PSk

0 · · · 0





6× k1
︷ ︸︸ ︷

6× ks
︷ ︸︸ ︷

6×p

,

(4.4.20)
Note that for the parameter state transition matrix Φxp the time indices are (tk, t0) indicating

that this matrix is used to map from the current time of observation tk to the beginning of the
whole estimation arc t0. As we can see, Φxp is composed of S submatrices, one for every Psk, and
each is populated up to the k− th column, since all previous ones, up to the (k− 1)-th, have been
evolving unforcedly, see (4.4.13) and (4.4.14). Now, every Hi matrix is formally computed as
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Hi =
[

H̃iΦxx(ti, t0) H̃iΦxp(ti, t0)
]

1×n
, (4.4.21)

however, considering that Φxp has many null columns due to segmentation, it in not convenient to

perform the product H̃iΦxp(ti, t0) directly, rather it is more advisable to multiply H̃i with only the
non-null columns of Φxp, which is made possible the row-by-column product. If we then identify
every non-null portion of Φxp associated to each set of parameters Psk with

Φsk
xp =





∂r
∂Ps1

∂r
∂Ps2

· · · ∂r
∂Psks

∂v
∂Ps1

∂v
∂Ps2

· · · ∂v
∂Psks





6×k

, (4.4.22)

and omitting time indices (ti, t0) for compactness, equation (4.4.21) can be rewritten as

Hi =
[
H̃iΦxx H̃iΦ

1k
xp 0 H̃iΦ

2k
xp 0 · · · H̃iΦ

Sk
xp 0

]

1× 6
︷ ︸︸ ︷

1× k1
︷ ︸︸ ︷

1× k2
︷ ︸︸ ︷

1× ks
︷ ︸︸ ︷

︸ ︷︷ ︸

1× k

︸ ︷︷ ︸

1× k

︸ ︷︷ ︸

1× k

. (4.4.23)

where this matrix has dimensions 1 × n, with Φxx being related to the position-velocity portion
of the state vector, while every H̃iΦ

sk
xp is associated to every segmented parameter that was or is

currently active at time tk ∈ ∆tk.
Following from the definition of Hi given above, the next step focuses on the implications it

has on the structure of the resulting product HT
i Hi that is computed in equation (4.4.18) for every

observation. This product gives the normal matrix, which is often referred to as HTH, pronounced
“h-t-h”. If, for compactness, we use the definitions:

H̃iΦxx = Hxx

H̃iΦ
sk
xp = Hsk,

then, through simple row-by-columns product rules applied to the structure highlighted in (4.4.23),
we arrive at

HTH = HT
i Hi =




















HT
xxHxx HT

xxH1k 0 HT
xxH2k 0 · · · HT

xxHsk 0

HT
1kHxx HT

1kH1k 0 HT
1kH2k 0 · · · HT

1kHsk 0

0 0 0 0 0 · · · 0 0

HT
2kHxx HT

2kH1k 0 HT
2kH2k 0 · · · HT

2kHsk 0

0 0 0 0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

HT
skHxx HT

skH1k 0 HT
skH2k 0 · · · HT

skHsk 0

0 0 0 0 0 · · · 0 0




















n×n

. (4.4.24)

As can be seen, due to symmetry of the product and sparseness that arises from segmentation,
only the highlighted portion must be computed and then accurately positioned inside the HTH

matrix, thereby avoiding multiplication by zero and increasing computational efficiency. Hence,
the number of operations to be carried out in equation (4.4.24) is not n× n, as would be the case
for direct execution of HT

i Hi, but it is drastically reduced considering that
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HT
xxHxx = 6× 6

HT
xxHsk = 6× k

HT
ski

Hskj
= ki × kj ,

which is true especially at the beginning, when only few parameters are active and the matrix
is highly sparse. Examples of the HTH structure deriving from parameter segmentation can be
found in R. Kroes (2006) [14]. Only when enough time has passed so that all sub-parameters have
been activated, the matrix becomes entirely populated and the only computational advantage we
can take derives from symmetry.

When dealing with segmentation of parameters, particular attention should be posed to their
observability. Clearly, the idea is that the more a parameter gets segmented, the more it will be
able to absorb time-varying unmodeled or unpredictable effects, nevertheless, as its validity period
gets shrunk, it becomes less observable as fewer observation may be available for every single sub-
parameter estimation. Additionally, considerable attention is required when the validity period is
not and integer sub-multiple of the whole estimation arc. In this situation, the “trailing” periods
close to the arc’s end might be so truncated as to become too small to provide a sufficient number of
observation that ensures parameter’s observability, thus, detailed check on the consistency between
validity duration and observation density is advised.

4.5 Empirical Accelerations in Batch Estimation

In the context of precise orbit determination using nonlinear least squares estimators such as
the Batch filter, a crucial aspect is the completeness and precision of the force model that is
used to propagate the dynamical and variational equations. Unlike real-time filters, where new
information is processed as soon as it is available over short periods of time, the batch filter collects
observations over a long arc and subsequently processes them to obtain an estimate of the state
at a single reference epoch t0. This characteristic makes it more sensitive to the lack of precision
modeling or approximations in certain forces, especially for perturbations that exhibit tangible
effects in the long term, whereas a real-time filter would be rather insensible to them, since it is
periodically updating the state estimate along the trajectory. For this reason, batch filters usually
exploit very accurate models for the accelerations acting on a satellite, where accounting for weaker
perturbations like Earth radiation pressure and thermal re-radiation, can lead to better fits of the
observed data and lower observation residuals. However, when dealing with real data, even when
every possible effort has been made to accurately represent the forces acting on a satellite, the
observation residuals may still not be satisfactory enough, or may still exhibit some information
content, suggesting that there are perturbative effects that the model is not able to capture. In
these circumstances, a powerful tool that can help in absorbing these unexplained behaviours is
the addition of an empirical acceleration. The general model has been introduced in Section 2.7
and as the name suggests, these accelerations has no physical counterpart, meaning that it is
not used to model the effects of a particular natural phenomena. Instead, its purpose is to take
the place of every unknown acceleration that comes from unmodeled forces or approximations,
leading to a better fitting of data through estimation of its parameters. For a satellite orbiting
near Earth, it is reasonable to expect that the perturbations acting on it, will show a somewhat
periodic behavior, with frequencies mostly proportional to the orbital period, if not constant. For
this reason, empirical accelerations are often modeled as a Fourier series as follows

aRTN
emp = A+

2∑

i=1

Di cos(iu) + Si sin(iu). (4.5.1)

Here, the summation is truncated at the second term as it is common practice to model the
empirical acceleration with frequencies up to half the orbital period, moreover, the harmonic terms
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contain the argument of latitude u, as described in equation (2.7.3). As indicated by the super-
script RTN , these accelerations are modeled in Radial, Transverse and Normal components. This
orthogonal reference system follows the satellite motion and gives a more intuitive insight on the
nature of the acting perturbations, making it easier to interpret results. Consequently, equation
(4.5.1) can be expanded in its components as follows

aRemp = AR +
2∑

i=1

DRi
cos(iu) + SRi

sin(iu) (4.5.2)

aTemp = AT +

2∑

i=1

DTi
cos(iu) + STi

sin(iu) (4.5.3)

aNemp = AN +

2∑

i=1

DNi
cos(iu) + SNi

sin(iu), (4.5.4)

and we define the following vectors of parameters

A =







AR

AT

AN






, Ci =







DR

DT

DN







i

, Si =







SR
ST
SN







i

, (4.5.5)

that are estimated in the batch processor to completely define the empirical acceleration aemp.
Note that if i = 1, 2 and the bias A is present, a total of 15 parameters must be estimated.

4.5.1 Empirical Accelerations - Parameters Estimation

Concerning the estimation of parameters contained in the empirical acceleration model through
batch processing, we must focus on the structure of the Parameter State Transition Matrix Φxp

(PSTM) and the consequences it has on assembling the matrices for the normal equations in the
least squares formulation. In addition, leveraging the results obtained in the previous Section, the
estimation of such parameters is also discussed in the perspective of parameter segmentation. This
is because, in addition to implementing a model for empirical accelerations, it can be beneficial to
segment the same parameters that compose it, attributing to each a certain validity period. First,
we recall that the variational equations for the PSTM are given by

Φ̇xp(t, t0) = A(t)Φxp(t, t0) +B(t), Φxp(t, t0) = 0, (4.5.6)

where

A(t) =

[
∂F

∂X

]∗

, B(t) =

[
∂F

∂P

]∗

. (4.5.7)

Here, F(X,P, t) represents the functional of the nonlinear dynamical state X and P is the
vector of dynamical parameters to be estimated. Note that, as usual, both A(t) and B(t) are
evaluated along the reference trajectory X∗. At first, for simplicity, we will assume that the
parameters related to the empirical acceleration model are the only dynamical parameters to be
estimated in the state vector, and that their validity is equal to the entire estimation arc. Equation
(4.5.6) shows the importance of the term B(t) as a forcing function that represents sensitivity of
the dynamical state to variations in the parameters values. The structure of this matrix, in the case
of empirical accelerations, depends on the order of the parameters within the vector P. Therefore,
if we choose to gather them in (4.5.5) such that the constant terms are at the beginning and the
cyclical terms are ordered according to the harmonic order i, we obtain the following:

P =
[
AR AT AN

{
DR SR DT ST DN SN

}

i

]T

1×15
, (4.5.8)
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where the curly braces highlight how parameters D and S for radial, transverse and normal com-
ponents, are gathered within their harmonic order i. Recall that usually i = 1, 2, but it can be
arbitrarily extended to any order. Then, the forcing matrix B(t) can be interpreted as

B(t) =





∂v
∂P

∂a
∂P



 =




0

∂a
∂P



 , (4.5.9)

with v and a being the velocity and acceleration vectors. Accordingly, we proceed by examining the
structure of the lower 3×15 portion, where a will be the empirical acceleration alone since it is the
only one depending on the estimated parameters. Furthermore, since the acceleration components
are orthogonal and each dependent on different sets of parameters, we note that partial derivatives
for each of them will be non-zero only when taken with respect to corresponding parameters in the
RTN system. Thus, if we partition the parameter vector P as

PA =







AR

AT

AN






, PCDSi

=







DR

SR
DT

ST
DN

SN







i

, (4.5.10)

we can write

∂a

∂PA
=






∂aR
∂AR

0 0

0 ∂aT
∂AT

0

0 0 ∂aN
∂AN






=





1 0 0
0 1 0
0 0 1



 ,

(4.5.11)

∂a

∂PDSi

=






∂aR
∂DRi

∂aR
∂SRi

0 0 0 0

0 0 ∂aT
∂DTi

∂aT
∂STi

0 0

0 0 0 0 ∂aN
∂DNi

∂aN
∂SNi






=





cos(iu) sin(iu) 0 0 0 0
0 0 cos(iu) sin(iu) 0 0
0 0 0 0 cos(iu) sin(iu)



 ,

(4.5.12)

and the structure of the complete matrix B(t), considering cyclical terms up to twice-per-rev,
becomes

B(t) =




03×3 03×6 03×6

(
∂a

∂PA

)

3×3

(
∂a

∂PDS1

)

3×6

(
∂a

∂PDS2

)

3×6





6×15

. (4.5.13)

The above expression for B(t), when used in equation (4.5.6), enables the propagation of the
parameter state transition matrix when the empirical acceleration model is implemented, as well
as the estimation of its parameters when their validity period coincides with the entire estimation
arc.
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4.5.2 Empirical Accelerations - Parameter Segmentation

We will now proceed to extend the results to the case in which every parameter involved in the
empirical acceleration model has a period of validity that is shorter than the whole estimation
arc, thus, they are segmented into a certain number of sub-parameters. For clarity, we assume
that every parameter undergoes the same segmentation process, i.e., for every RTN component,
A, D and S are divided into the same number N of sub-parameters. In this instance, using a
terminology similar to the one of Section 4.4, we rewrite equation (4.5.1) as

aRTN
emp (tk) = Ak +

2∑

i=1

Dik cos(iu) + Sik sin(iu), k = 1, 2, 3, . . . , N, (4.5.14)

where tk indicates that the expression for aRTN
emp is valid for every t ∈ ∆tk, which is the k-th validity

period and the parameter vector P of equation (4.5.8) becomes

P =
[
P1 P2 P3 · · · PN

]
, (4.5.15)

whose dimension is 1× (15×N), and each Pk of dimension 1× 15 is given by

Pk =
[
AR AT AN

{
DR SR DT ST DN SN

}

i

]T

k
. (4.5.16)

Note how the segmentation of empirical acceleration parameters quickly increases the state
vector dimension, as they are present in groups of 15 for each sub-interval of validity. As a result,
if the estimation state vector X contains position, velocity and empirical acceleration parameters
only, its dimension goes from n = 6+15 for the case of non-segmentation, to n = 6+(15×N) when
those parameters are segmented into N sub-parameters. Consequently, the integration of (4.5.6)
must follow the considerations derived in Section 4.4, where we shown how the PSTM is gradually
populated as consecutive sub-intervals are covered during propagation, and the forcing matrix
B(t), properly “activates” parameters as soon as they become valid whilst preserving memory of
the past. For this particular case this means that, from equation (4.5.13), the matrix B(t) of
dimension 6× p, with p = 15×N , can be generally represented as

B(tk) =
[
0 · · · 0 Bk 0 · · · 0

]
(4.5.17)

underlining the already established fact that at time tk ∈ ∆tk only the set of parameters Pk are
forced by their corresponding partial derivatives contained in Bk, that is

Bk =




03×3 03×6 03×6

(
∂a

∂PAk

)

3×3

(
∂a

∂PDS1k

)

3×6

(
∂a

∂PDS2k

)

3×6





6×15

, (4.5.18)

where

PAk =







AR

AT

AN







k

, PCSik
=







DR

SR
DT

ST
DN

SN







ik

, i = 1, 2 , k = 1, 2, 3, . . . , N. (4.5.19)

At the same time, the parameter state transition matrix Φxp has also dimension 6 × p, with
p = 15×N , and it can be represented as the collection of N sub-matrices each of dimension 6×15.
Moreover, it is populated up to the k-th 6× 15 sub-matrix, for the same reasons explained in the
previous Section, i.e.,
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Φxp(tk, t0) =





∂r
∂P1

∂r
∂P2

· · · ∂r
∂Pk

0 · · · 0

∂v
∂P1

∂v
∂P2

· · · ∂v
∂Pk

0 · · · 0





6× (15× k)
︷ ︸︸ ︷

6×(15×N)

. (4.5.20)

In this case, similarly to what happened in Section 4.4.2, the observation-state mapping matrix
Hi referring to the i-th observation yi of the m total, is again given by

Hi =
[

H̃iΦxx(ti, t0) H̃iΦxp(ti, t0)
]

1×n
, (4.5.21)

and if we identify the non-null portion of Φxp(tk, t0) in equation (4.5.20) as

Φk
xp =





∂r
∂P1

∂r
∂P2

· · · ∂r
∂Pk

∂v
∂P1

∂v
∂P2

· · · ∂v
∂Pk





6×(15×k)

, (4.5.22)

equation (4.5.21) can be rearranged to give

Hi =
[
H̃iΦxx H̃iΦ

k
xp 0 · · · 0

]

1× 6
︷ ︸︸ ︷

1× p
︷ ︸︸ ︷

︸ ︷︷ ︸

1× (15× k)

. (4.5.23)

Then, the structure of HT
i Hi for the segmentation of empirical accelerations is

HT
i Hi =












HT
xxHxx HT

xxHk 0 · · · 0

HT
kHxx HT

kHk 0 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0












n×n

, (4.5.24)

where the following definitions have been used

Hxx = H̃iΦxx

Hk = H̃iΦ
k
xp,

and again, we note how the segmentation of parameters leads to matrices that are sparse, partic-
ularly at the beginning of propagation where only few sub-parameters have been activated. As
a matter of fact, HT

i Hi is gradually populated and only when the last parameters are activated
it becomes full-rank and ready for least squares estimation, since we recall that HTH must be
eventually inverted. Finally, accumulation for the RHS of normal equations, can also benefit from
considerations on the sparseness of Hi in terms of computational efficiency. In fact, when per-
forming the product HT

i yi only the non-zero components of Hi should be involved, thus, at time
tk ∈ ∆tk we have

HT
i yi =

[
Hxx Hk 0 · · · 0

]T
yi,

=
[
Hxxyi Hkyi 0 · · · 0

]T
,

(4.5.25)

with yi being the i-th scalar measurement deviation from the total of l simultaneous observations
at tk.
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Chapter 5

The Kalman Filter

The batch filter, or least squares method, gives an estimate of the state at epoch by processing the
entire batch of measurements over the considered observation span all at once, and then iterates
to convergence, making it unsuitable for real-time applications. Moreover, the fact that the single
estimate at epoch must adequately fit the entire observation data, makes it sensitive to errors
or approximations in the dynamical model, as well as the presence of measurement biases. An
alternative approach that handles these problems can be derived by a sequential formulation of
the batch filter, which in turns leads to the same structure of the Kalman filter, referring to the
work of Rudolf E. Kalman, whose treatment of the problem received more popular acclaim. This
alternative formulation processes observations as soon as they are received, making it suitable for
real-time tracking and less susceptible to model errors.

Here, two main formulations of this filter will be discussed: the Kalman filter and the extended
Kalman filter, where the two differ in the usage of the reference trajectory. The former keeps the
same reference over the entire estimation, while the latter updates it after every observation is
processed.

5.1 Derivation of Sequential Estimation

Consider two different times of observation, the first being tj and the second tk. At time tj an
estimate x̂j of the state vector deviations and its associated covariance matrix Pj are available,
whether it is from a previous batch of data or from a priori information. For the linearized orbit
model discussed in Chapter 3, these two quantities can be propagated to time tk as:

x̄k = Φ(tk, tj)x̂j (5.1.1)

P̄k = Φ(tk, tj)PjΦ
T (tk, tj), (5.1.2)

where x̄k and P̄k become a priori information for the time of observation tk. Now, if an additional
observation is performed at tk we have

yk = Hkxk + εk, (5.1.3)

and before going on, some clarifications about the observation-state mapping matrix Hk are nec-
essary. Differently from the batch processor, where we needed to map measurement deviations at
a generic time tk to a specific epoch t0, for the Kalman filter, measurement deviations at time tk
are usually mapped to the state deviations at the same time tk, meaning that the multiplication
of H̃k with the state transition matrices Φxx(t, tk) and Φxp(t, tk) in equations (4.1.5) and (4.1.6),
is not needed. Consequently, when referring to the Kalman filter, the matrix Hk is intended to be:
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Hk =
[

H̃k 0 K̃k

]
(5.1.4)

where the definitions from equation (3.1.9) are used. Note the presence of 0 in the position
corresponding to the parameter state transition matrix. This happens because now we are no
more mapping observation deviations at a generic time t to state deviations at the reference epoch
t0, now the state transition matrix is reinitialized at every observation instant, and the initial
condition for the PSTM is the null matrix.

From the results obtained in Chapter 4, the best estimate of the state deviations at time tk is
given by

x̂k =
(
HT

kWkHk + P̄−1
k

)−1 (
HT

kWkyk + P̄−1
k x̄k

)
, (5.1.5)

where again, the measurement error vector εk is assumed to satisfy E [εk] = 0, and E
[
εε

T
]
=

Rkδkj with Wk = R−1
k . However, equation (5.1.5) directly comes from the least squares method

for the batch processor, and the major computational problem is related to the inversion of the
n× n information matrix

Λk = HT
kWkHk + P̄−1, (5.1.6)

that we recall being related to the solution covariance matrix Pk at time tk as

Pk = Λ−1
k

=
(
HT

kWkHk + P̄−1
k

)−1
.

(5.1.7)

and from equation (5.1.7) it follows that

P−1
k = HT

kWkHk + P̄−1
k . (5.1.8)

Now, premultiplying equation (5.1.8) by Pk and then postmultiplying it by P̄k gives:

P̄k = PkH
T
kWkHkP̄k +Pk, (5.1.9)

but also

Pk = P̄k −PkH
T
kWkHkP̄k. (5.1.10)

Now, postmultiplying equation (5.1.9) by the quantity HT
kWk:

P̄kH
T
kWk = PkH

T
kWkHkP̄kH

T
kWk +PkH

T
kWk

= PkH
T
kWk

[
HkP̄kH

T
kWk + I

]

= PkH
T
kWk

[
HkP̄kH

T
k +W−1

k

]
Wk,

(5.1.11)

and solving for PkH
T
kWk gives

PkH
T
kWk = P̄kH

T
k

[
HkP̄kH

T
k +W−1

k

]−1
, (5.1.12)

and substituting the expression just obtained into equation (5.1.10) to eliminate the termPkH
T
kWk,

results into

Pk = P̄k − P̄kH
T
k

[
HkP̄kH

T
k +W−1

k

]−1
HkP̄k. (5.1.13)

Equation (5.1.13), relates the a priori covariance P̄k to the a posteriori covariance Pk, similarly
to what equation (5.1.7) does for the batch filter. In fact, equations (5.1.13) and (5.1.7) are two
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alternative way of computing the a posteriori solution covariance matrix Pk. However, the matrix
to be inverted in equation (5.1.13) is of dimension p × p instead of n × n as in equation (5.1.7),
meaning that if at time tk there is only one observation, or if all the observations are processed as
scalar quantities, matrix inversion becomes scalar division, which is a remarkable computational
convenience.

In equation (5.1.13) the following definition is used

Kk ≡ P̄kH
T
k

[
HkP̄kHk +Rk

]−1
, (5.1.14)

and the weighting matrix Kk is referred to as the Kalman gain. Then, equation (5.1.13), can be
expressed in a much more compact form as

Pk = [I−KkHk] P̄k. (5.1.15)

Now, considering that equation (5.1.5) can be written as

x̂k = Pk

(
HT

kWkyk + P̄−1
k x̄k

)

= PkH
T
kWkyk +PkP̄

−1
k x̄,

(5.1.16)

and recognizing from equations (5.1.12) and (5.1.14) that Kk = PkH
T
kWk, (5.1.16) becomes

x̂k = Kkyk +PkP̄
−1
k x̄, (5.1.17)

then, using equation (5.1.15) into (5.1.17) leads to

x̂k = Kkyk + [I+KkHk] P̄kP̄
−1
k x̄k

= Kkyk + x̄k +KkHkx̄k,
(5.1.18)

and finally, collecting terms

x̂k = x̄k +Kk [yk −Hkx̄k] . (5.1.19)

Equation (5.1.19) along with (5.1.14), (5.1.1), (5.1.2) and (5.1.15), can be used in a sequential
algorithm to obtain a best estimate at time tk, having a priori information at time tk−1 incorporated
with observations yk.

5.1.1 The Kalman Filter Algorithm

In this Section a brief summary of the Kalman filter algorithm and its flow chart are outlined.
The problem statement in this case goes as follows: given the estimates for the state deviations
x̂k−1, solution covariance matrix Pk−1, the observation Yk at time tk and associated measurement
error covariance matrix Rk, find the best estimate of the state at time tk.

First, the equations of motions are integrated along with the state transition matrix equations
from tk−1 to tk, where X∗ still indicates the reference trajectory about which the linearization is
made,

Ẋ = F(X∗,P∗, t), X∗(tk−1) = X∗
k−1 (5.1.20)

Φxx(t, tk−1) = A(t)Φxx(t, tk−1), Φxx(tk−1, tk−1) = I (5.1.21)

Φxp(t, tk−1) = A(t)Φxp(t, tk−1) +B(t), Φxp(tk−1, tk−1) = 0. (5.1.22)

Then, the estimates at time tk−1 are propagated to time tk through the state transition matrix,
and become a priori values
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Initialize starting values

i = 1, ti−1 = t0, X
∗(ti−1) = X∗

0.
x̂i−1 = x̄0

Pi−1 = P̄0.

Read next observation

ti, Yi, Wi

Propagate reference trajectory

Integrate Ẋ∗ = F(X∗(t), t) with initial conditions X∗(ti−1),
Integrate Φ̇xx(t, t0) = A(t)Φxx(t, t0) and Φ̇xp(t, t0) = A(t)Φxp(t, t0) +B(t)

with initial conditions Φxx(ti−1, ti−1) = I and Φxp(ti−1, ti−1) = 0.

Compute matrices A(t), B(t), H̃i, K̃i

Time update

x̄i = Φ(ti, ti−1)x̂i−1

P̄i = Φ(ti, ti−1)Pi−1Φ
T (ti, ti−1)

Compute measurement deviations and gain matrix

yi = Yi −G(X∗, ti)

Hi =
(

H̃i 0 K̃i

)

Ki = P̄iH
T
i

(
HiP̄iH

T
i +Ri

)−1

measurement update

x̂i = x̄i +Ki (yi −Hix̄i)

Pi = (I −KiHi) P̄i

Have all observations
been read?

i = i+ 1
X∗(ti) = X∗(ti−1)

stop

yes

no

Figure 5.1.1: Flow chart for the Kalman filter algorithm.
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x̄k = Φ(tk, tk−1)x̂k−1

P̄k = Φ(tk, tk−1)Pk−1Φ(tk, tk−1).
(5.1.23)

Next, the measurement deviation vector and observation-state mapping matrices are computed

yk = Yk −G(X∗, tk), H̃k =

[
∂G

∂X

]∗

, K̃k =

[
∂G

∂Q

]∗

, (5.1.24)

and the Kalman gain, state deviations estimate and solution covariance matrix at time tk can
be calculated

Kk = P̄kH
T
k

[
HkP̄kH

T
K +Rk

]−1

x̂k +Kk [yk −Hkx̄k]

Pk = [I −KkHk] P̄k.

(5.1.25)

Finally, the process is repeated by replacing k with k + 1, so that the estimate becomes the a
priori value for the next observation that is being read, and the estimate of the state at tk is give
by

X̂k = X∗
k + x̂k. (5.1.26)

The phase described by equations (5.1.23) is called the time update, where the state estimate
and its covariance matrix are updated to the next observation time, while equations (5.1.25) are
known as the measurement update. One major characteristic that distinguish this filter from the
batch processor lies in the way the state transition matrix is handled. Unlike the batch filter,
here, the state transition matrix is the mean by which the estimate and covariance matrix are
propagated one step forward to the next observation, thus, after every measurement update, the
state transition matrix is reinitialized. This translates into the fact that if every measurement is
processed as a scalar, regardless of the size of yk, the state transition matrix is set to Φ(tk, tk) = I

after reading the first measurement at each time of observation.
Another main difference from the batch filter is that the Kalman filter is more sensitive to

computer round-off errors and this sensitivity is found especially in equation (5.1.15), where the
solution covariance matrix Pk is computed from the a priori covariance matrix P̄k. In finite digit
arithmetic this may lead to the loss of symmetry and positive definiteness of Pk, especially when
a large a priori covariance meets very accurate measurements, that is small values for R and large

values for P̄. In other words the term HP̄H
T
+ R in the Kalman filter, eq. (5.1.14), will tend

to ignore the contribution of new data, while the batch filter will tend to ignore P̄−1 and give
more relevance to the strength of new observations in HTWH + P̄−1. A common alternative to
equation (5.1.15), that deals with this problem is given by Bucy and Joseph,

Pk = (I −KkHk) P̄k (I −KkHk)
T
+KkRkK

T
k , (5.1.27)

that clearly always yields a symmetric matrix, and ensures the positive definiteness for well observed
problems.

Moreover, an unfavorable characteristic of the Kalman filter described so far, is that the state
estimation error covariance matrix may approach zero as the number of observations processed
increases. By analyzing equation (5.1.15), we can see how the quantity P̄ is reduced by KHP̄

at every measurement update, and this decrease is governed by the density, information content
and accuracy of the observations. The consequence of the matrix Pk approaching zero is that
the kalman gain will also approach zero, making the filter insensitive to new observations and
eventually the algorithm will diverge due to the approximations in the linearization process, or
the incompleteness of the mathematical model. In order to overcome this problem the addition of
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process noise is often used to compensate for approximations, and will be discussed in Section 5.3.
A flow chart for the conventional Kalman filter algorithm is presented in figure 5.1.1.

5.2 Extended Kalman Filter

One shortcoming that is common both to the batch and conventional Kalman filters described
previously, arises from the fact that divergence can be encountered if the reference trajectory
used for linearization isn’t sufficiently near the true trajectory, making the assumption of small
deviations used in Chapter 3 no more valid. This, moreover, is the reason why the batch filter
needs to be iterated and the Kalman filter may take some time before converging to a satisfactory
solution. The sequential filter is well suited for a formulation that helps overcoming this neglect of
higher order terms, and this modified version is referred to as the Extended Kalman Filter (EKF),
which nowadays is much more used over the conventional formulation.

The peculiarity lies in the fact that the reference trajectory is not held constant for the entire
estimation process, but it is updated after each observation has been processed, so that the effects
of the best estimates of the state deviations are reflected on the estimate of the true trajectory,
that is

X∗
knew

= X̂k = X∗
k + x̂k. (5.2.1)

Notice that using X̂k for the reference trajectory implies that x̂k = 0, since the previous
trajectory has been corrected by the very estimation x̂k at the same time tk, and this results in
having x̄k+1 = 0 which is clear from equation (5.1.23). All of this leads to the estimate x̂k+1 being
simply:

x̂k+1 = Kkyk+1, (5.2.2)

where the Kalman gain and measurement deviations are computed through the updated reference
trajectory. The rest of the algorithm remains similar to the conventional Kalman filter discussed
in Section 5.1, but convergence is more rapid thanks to the reduction in linearization errors.

The only major drawback of the EKF algorithm is that the differential equation for the orbit
propagation must be reinitialized after each observation time has been processed, and the consid-
erations about process noise and convergence, previously made for the conventional Kalman filter,
still hold true. A flow chart for the Extended Kalman Filter is shown in figure 5.2.1.

5.3 Process Noise for Kalman Filter

As previously stated, the Kalman filter (also known as sequential filter) processes new observations
as soon as they are available, making it a real-time estimator rather than an offline estimator like
the batch processor. One major problem that can be encountered when applying a Kalman filter
to a non-linear physical system is due to the incompleteness or approximation of the mathematical
model that is being used to linearize the equations, leading to filter saturation and divergence.

In other words, in the absence of process noise, the state estimation error covariance matrix
Pk becomes smaller and smaller as new data are processed in the measurement update phase:

Pk = [I−KkHk] P̄k. (5.3.1)

Equation (5.3.1) clearly shows how the covariance matrix is reduced by the quantity KkHkP̄k

at each measurement update depending on the density, information content and accuracy of the
observations, which in turn makes the Kalman gain approach zero:

Kk = P̄kH
T
k

[
HkP̄kH

T
k +Rk

]−1 → 0, (5.3.2)
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Initialize starting values

i = 1, ti−1 = t0, X
∗(ti−1) = X∗

0.
x̂i−1 = x̄0

Pi−1 = P̄0.

Read next observation

ti, Yi, Wi

Propagate reference trajectory

Integrate Ẋ∗ = F(X∗(t), t) with initial conditions X∗(ti−1),
Integrate Φ̇xx(t, t0) = A(t)Φxx(t, t0) and Φ̇xp(t, t0) = A(t)Φxp(t, t0) +B(t)

with initial conditions Φxx(ti−1, ti−1) = I and Φxp(ti−1, ti−1) = 0.

Compute matrices A(t), B(t), H̃i, K̃i

Time update

P̄i = Φ(ti, ti−1)Pi−1Φ
T (ti, ti−1)

Compute measurement deviations and gain matrix

yi = Yi −G(X∗, ti)

Hi =
(

H̃i 0 K̃i

)

Ki = P̄iH
T
i

(
HiP̄iH

T
i +Ri

)−1

measurement and reference orbit update

x̂i = Kiyi

X∗
i = X∗

i + x̂i

Pi = (I −KiHi) P̄i

Have all observations
been read?

i = i+ 1
X∗(ti) = X∗(ti−1)

stop

yes

no

Figure 5.2.1: Flow chart for the Extended Kalman Filter (EKF) algo-
rithm.
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and it is in this situation that the filter becomes insensitive to new observations. This can be
further seen by looking at the measurement update equation for the state estimation, where as Kk

becomes smaller the state deviation estimate x̂ remains the same as the a priori state deviation x̄:

x̂k = x̄k +Kk [yk −Hkx̄k] ≃ x̄, (5.3.3)

here the filter behaves like it reached a steady-state solution by ignoring new information and
simply propagating the reference trajectory from one time to another following its equations of
motion. Eventually, the estimated trajectory diverges from the true solution due to the aforemen-
tioned non-linearities, model approximations or incompleteness.

To overcome this problem, after recognizing that the linearized equations used for the propaga-
tion of the state estimate will always be in error to some extent, process noise is added to account
for the effects of unmodeled or inaccurately modeled accelerations acting on the system, and it is in
this context that various techniques have been developed. These techniques differentiate for their
complexity and adaptability, but in every case their main purpose is to avoid filter saturation by
ensuring that the solution covariance matrix Pk will never approach zero at least on its diagonal.
This is accomplished with the determination of a proper process noise covariance matrix Qk that
is added to the second of time update equations in (5.1.23), that is

P̄k+1 = Φ(tk+1, tk)PkΦ(tk+1, tk) +Qk, (5.3.4)

where the matrix Qk is properly determined according to the particular mathematical model that
is chosen to represent process noise. This addition allows to compensate the reduction in Pk that
arises from the information content of new observations during the measurement update described
before, and figure 5.3.1, schematically shows the trend of the trace of P over time.

t

P time update

measurement update

Figure 5.3.1: Schematic representation of the reduction of P values that
occurs at every measurement update in the absence of process noise.

5.3.1 State Noise Compensation

A first and simple possibility is to assume that these accelerations can be described by a Gaussian
white noise, and we refer to this method as the State Noise Compensation (SNC) which has been
investigated by Myers (1974) [21] and is also widely described by Tapley (2004) [24]. Here, the
dynamics of an Earth-orbiting satellite are assumed to be governed by the following set of equations:

ṙ = v (5.3.5)

v̇ = am(r,v, t) +w(t), (5.3.6)

where am is a three dimensional functional representing modeled accelerations, while w(t) is the
three-dimensional vector of white Gaussian noise representing unknown or poorly modeled accel-
erations that satisfies the following properties
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E[w(t)] = 0

E[w(t)wT (τ)] = Q′δ(t− τ),

meaning that it is unbiased (zero mean) and its covariance matrix Q′ is diagonal and has no
correlation in time.

In order to determine the process noise covariance matrix Q to be used in equation (5.3.4) we
need to compute the integrated effect of w(t) in the velocity and position components, to do so,
let us rewrite the equations of motion in state vector form considering the propagation from tk−1,
namely

Ẋ(t) = F(X,w, t), X(tk−1) = Xk−1, (5.3.7)

where X contains all the n parameters to be estimated and note how these equations contain a
stochastic term. In general, we can expect an integral form of (5.3.7) to be like the following

X(t) = Π(Xk−1, tk−1, t) + ηk−1, (5.3.8)

where Π is an n-dimensional deterministic functional, while ηk−1 represents the integrated effect
of the white process noise w(t) from time tk−1 to t or, in other words, it is the random portion of
the integral solution to the equations of motion. Nonetheless, in the context of sequential filters
for orbit determination a linearized solution is adopted rather than an actual integral formulation,
and we saw how linearization occurs in terms of state deviations from the true trajectory, that is,
we can linearize (5.3.8) about a reference orbit X∗:

x(t) =

[
∂Π

∂X

]∗

x(tk−1) + ηk−1 (5.3.9)

where again, the superscript ∗ indicates evaluation along the reference trajectory. We can then
recognize that the partial derivative of Π with respect to X is a state transition matrix Φ(t, tk−1)
by definition, so we can write the state deviation at time t as

x(t) = Φ(t, tk−1)xk−1 + ηk−1, (5.3.10)

and its associated covariance becomes

P̄(t) = E
{[

Φ(t, tk−1) + ηk−1

] [
Φ(t, tk−1) + ηk−1

]T
}

= Φ(t, tk−1)Pk−1Φ
T (t, tk−1) + E[ηk−1η

T
k−1],

(5.3.11)

where we have taken advantage of the fact that xk−1 and ηk−1 are independent.
At this point we can note how arriving at (5.3.11) we actually found the expression of the

covariance time update in the Kalman filter, and by comparing it with (5.3.4) we conclude that
the process noise covariance matrix can be computed as

Qk−1 = E[ηk−1η
T
k−1]. (5.3.12)

Note that the result we have arrived at is general meaning that it is not valid for SNC only,
and it tells that the process noise covariance can be obtained from η, the random portion of the
integrated equations. Another general result that is useful in determining a proper expression for
η is shown by Ingram (1970) [8], where the equations of motion of a dynamical system of the form

ṙ = v (5.3.13)

v̇ = a(r,v, t), (5.3.14)
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can be integrated by parts to obtain

r(t) = rk−1 + vk−1∆t+

∫ t

tk−1

a(τ)(t− τ)dτ (5.3.15)

v(t) = vk−1 +

∫ t

tk−1

a(τ)dτ. (5.3.16)

Now, for the case of SNC the expression for the acceleration we simply apply the results of
(5.3.15) and (5.3.16) to equations (5.3.5) and (5.3.6) which gives

r(t) = rk−1 + vk−1∆t+

∫ t

tk−1

am(τ)(t− τ)dτ +

∫ t

tk−1

w(τ)(t− τ)dτ (5.3.17)

v(t) = vk−1 +

∫ t

tk−1

am(τ)dτ +

∫ t

tk−1

w(τ)dτ, (5.3.18)

then, recognizing that the rightmost integrals in the above equations are indeed the components
of η needed to compute Q, i.e.,

ηk−1 =





∫ t

tk−1
w(τ)(t− τ)dτ

∫ t

tk−1
w(τ)dτ



 , (5.3.19)

and if we partition Qk−1 into four 3× 3 submatrices as

Qk−1 =

[

Q11 Q12

Q21 Q22

]

, (5.3.20)

equation (5.3.12) leads to the following results:

Q11 = E

[
∫ t

tk−1

∫ τ

tk−1

w(τ)wT (ν)(t− τ)(t− ν)dνdτ

]

(5.3.21)

Q22 = E

[
∫ t

tk−1

∫ τ

tk−1

w(τ)wT (ν)dνdτ

]

(5.3.22)

Q12 = Q21 = E

[
∫ t

tk−1

∫ τ

tk−1

w(τ)wT (ν)(t− τ)dνdτ

]

. (5.3.23)

We now recall that w(t) has been defined as a stationary white noise process, so the expectation
operator is brought inside the integrals, and given that this process is also uncorrelated in time,
that is E[w(τ)wT (ν)] = Q′δ(τ − ν), we arrive at the following final result for the process noise
covariance matrix for the SNC algorithm

Qk−1 =

[ 1
3Q

′∆t3 1
2Q

′∆t2

1
2Q

′∆t2 Q′∆t

]

, (5.3.24)

where ∆t is the time interval between two subsequent observations.
The SNC algorithm described here is a simple and straightforward method to avoid filter

saturation and divergence in the presence of unknown or unmodeled accelerations. By properly
tuning the white noise process, through the choice of its variance Q′, it is possible to set a lower
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bound for the solution covariance matrix P and obtain good estimates. Myers and Tapley [22]
show an application where the SNC algorithm is applied with a “controlled environment”. Here,
measurements are generated through the propagation of a true orbit, with a fairly refined force
model, and then the estimation is performed with a reduced model containing the Newtonian and
J2 terms only. This is done in order to simulate the effects of unknown accelerations and they
emphasize how in the case of no process noise (Q′ = 0) estimated results rapidly diverge to large
values, while the solution covariance approaches zero. On the other hand, when process noise is
included, the solution is stable and bounded with average root sum square position errors of a few
tens of meters, showing that SNC is able to counteract the hundred-meters deviations that occur
during propagation periods of absent visibility.

Despite this, the SNC method is seldom used nowadays, particularly when orbit determination
requirements are more stringent. Its main disadvantage lies in its inability to capture unknown or
unpredictable dynamics that exhibit some degree of correlation over time. Additionally, being a
purely random process, its parameters cannot be estimated during filtering, meaning that it lacks
any sort of adaptive capabilities. For this reasons different process noise structures in the form
of colored noise are frequently adopted and the simplest of these, the first-order Gauss-Markov
process, is presented in the Section below.

5.3.2 Dynamic Model Compensation - Estimating Unmodeled Acceler-

ations

Dynamical Model Compensations algorithms (DMC), also known as structural methods, differen-
tiate from SNC for their ability to capture and estimate time-correlated unmodeled accelerations
during filtering. This is accomplished by assuming that unknown dynamics can be described by
a certain structure modeled as a colored noise process, and through the estimation of its charac-
terizing parameters, adaptive capabilities are enabled allowing not only to avoid filter divergence
but also to quantitatively retrieve the collective effects of unknown accelerations or unpredictable
events, like spacecraft venting and unbalanced attitude control torques. Many different structures
have been studied, but here, we will focus on one of the most used in the orbit determination prob-
lem, the first-order Gauss-Markov process. Investigations by Ingram and Tapley [9] demonstrated
its successful performance for both Earth and Lunar orbiters.

The first-order Gauss-Markov process

The first-order Gauss-Markov process is so called because it obeys a Gaussian probability density
function and displays the Markov property. This latter aspect tells that the conditional probability
of its future states depends only on the present state X, i.e.,

pr (Xk+1|Xk, Xk−1, . . . , Xk−n) = pr (Xk+1|Xk) , (5.3.25)

which also underlines its first-order characteristic, whereas for a second order process the condi-
tional probability of future states would depend not only on the present but also on the previous
state, and this pattern repeats for higher orders. If we consider a one-dimensional system, the differ-
ential equation governing the first-order Gauss-Markov process, also known as Langevin equation,
is

ε̇(t) = −βε(t) + u(t), (5.3.26)

where u(t) is a white Gaussian noise with

E[u(t)] = 0

E[u(t)u(τ)] = σ2δ(t− τ),
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and β is related to the correlation time constant τ as β = τ−1. Here we can clearly see how the
dynamics of this process are regulated by a deterministic component and a purely random part,
which indeed makes the process correlated in time as we demonstrate below.

The solution of equation (5.3.26) can be found using the method of variation of parameters
[24], from which we get

ε(t) = ε(t0)e
−β(t−t0) +

∫ t

t0

e−β(t−τ)u(τ) dτ, (5.3.27)

where again, the right hand side is composed of a deterministic integrated part plus a stochastic
integral. The salient feature of the Gauss-Markov process can be highlighted by computing its
autocorrelation function:

E[ε(ti)ε(tj)] = E

[

ε(ti)

(

ε(ti)e
−β(tj−ti) +

∫ tj

ti

e−β(tj−τ)u(τ) dτ

)]

= E[ε(ti)ε(ti)]e
−β(tj−ti) + E

[(∫ tj

ti

e−β(tj−τ)u(τ) dτ

)

ε(ti)

]

= E[ε(ti)ε(ti)]e
−β(tj−ti),

(5.3.28)

where the expectation containing the stochastic integral is zero since it represents independent
increments, that is

E [u(t)ε(t)] = 0,

because the noise u(t) has no instantaneous effect on the process ε(t) for the same time t. The
remaining term contains the autocorrelation function of ε(t) at ti that can be computed as:

E[ε(ti)ε(ti)] = Ψ(ti, ti)

= E

[

ε(t0)
2e−2β(ti−t0) + 2ε(t0)

∫ ti

t0

e−β(ti−τ)u(τ) dτ +

∫ ti

t0

e−2β(ti−τ)u(τ)2 dτ

]

= ε(t0)
2e−2β(ti−t0) + σ2

∫ ti

t0

e−2β(ti−τ) dτ

= ε(t0)
2e−2β(ti−t0) +

σ2

2β

[

1− e−2β(ti−t0)
]

.

(5.3.29)

Equations (5.3.28) and (5.3.29) show the main characteristic of the Gauss-Markov process for
which its autocorrelation function fades exponentially with time, and the rate of fade is guided by
the correlation time constant τ = 1/β.

Once the process noise characteristics are clear we can properly incorporate it in the orbit
estimation procedure as a means of representing unmodeled accelerations, and here, two main
procedures are discussed. The first is based mainly on the work from Ingram [8] and is thoroughly
discussed also by Myers and Tapley [24, 21] which follows from the same general results obtained
in Section 5.3.1, while the second derives from linear dynamical systems theory [26, 7].

Equivalent stochastic process

The main difficulty encountered in using a first-order Gauss-Markov process lies in the presence of
a stochastic integral in equation (5.3.27) which cannot be solved with conventional deterministic
methods. The solution proposed by Ingram exploits the fact that this integral is Gaussian, so
it can be replaced by and equivalent same mean and same variance process. In particular, this
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equivalent process if found by assuming that the white noise process u(t) is constant over each
time interval ∆t = tj − ti, and if we define

Lk =

∫ t

ti

e−β(t−τ)u(τ) dτ,

we have

E[Lk] = E

[∫ t

ti

e−β(t−τ)u(τ) dτ

]

= 0 (5.3.30)

by definition, while its variance is [8, 10]

E
[
L2
k

]
= E

[∫ t

ti

∫ τ

ti

e−β(2t−τ−ν)u(τ)u(ν)dτdν

]

=
σ2

2β

[

1− e−2β(tj−ti)
]

,

(5.3.31)

thus, for the reasons previously stated, the integral Lk can be replaced by the following equivalent
stochastic process:

Lk(ti) = uk

√

σ2

2β

[
1− e−2β(tj−ti)

]
, (5.3.32)

where uk is a random sequence with zero mean and unitary variance,

E[uk] = 0, E[ukiukj ] = δij .

From this result, we can write rewrite (5.3.27), describing the integral solution of the Langevin
equation, as:

ε(t) = ε(ti)e
−β(tj−ti) + Lk(ti)

= ε(ti)e
−β(tj−ti) + uk(ti)

√

σ2

2β

[
1− e−2β(tj−ti)

]
,

(5.3.33)

and the random component will contribute to the definition of the process noise covariance matrix
Q. The value of ∆t = tj − ti should be restricted to a sufficiently small and finite interval, so that
the equivalent process is a good approximation of the actual one. In any case, it is desirable for
ε(t) to be as constant as possible over this interval and this is accomplished by ensuring that

e−β(tj−ti) ≈ 0.9. (5.3.34)

Adding a first-order Gauss-Markov process to the accelerations acting on a spacecraft in order
to compensate for unmodeled forces leads to the following set of differential equations governing
the spacecraft motion:

ṙ = v

v̇ = am + ε

ε̇ = Bε+Gu,

(5.3.35)

where am are the modeled accelerations and ε is a three-dimensional Gauss-Markov process rep-
resenting unmodeled accelerations. Here, B and G are 3× 3 diagonal matrices defined as:
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B =





−βx 0 0
0 −βy 0
0 0 −βz



 , G =





qx 0 0
0 qy 0
0 0 qz



 ,

where qx = σx/
√
2βx and βx = 1/τx with similar definitions for βy, βz, qy, qz and, u(t) is a three

components white Gaussian noise with E[u(t)] = 0 and E[Gu(t)uT (τ)GT ] = Q′δ(t− τ).
Making use of the equivalent stochastic process described in (5.3.32) we note that an integral

solution for the third of equations (5.3.35) can be written as

ε = E(t)εk−1 + Lk−1, (5.3.36)

where

E =





αx 0 0
0 αy 0
0 0 αz



 =





e−βx∆t 0 0
0 e−βy∆t 0
0 0 e−βz∆t



 , (5.3.37)

and

Lk−1 =










qx
√

1− α2
xux(k−1)

qy
√

1− α2
yuy(k−1)

qz
√

1− α2
zuz(k−1)










, (5.3.38)

then, following the same procedure adopted in Section 5.3.1, to find a proper formulation for
the process noise covariance matrix Qk−1, we start by writing an integral solution for equations
(5.3.35), i.e.,

r(t) = rk−1 + vk−1∆t+

∫ t

tk−1

[
am(τ) +E(τ)εk−1

]
(t− τ)dτ +

∫ t

tk−1

Lk−1(t− τ)dτ (5.3.39)

v(t) = vk−1 +

∫ t

tk−1

[
am +E(τ)εk−1

]
dτ +

∫ t

tk−1

Lk−1dτ (5.3.40)

ε(t) = E(t)εk−1 + Lk−1. (5.3.41)

As for SNC, only the stochastic portions of the above equations will contribute to the determi-
nation od the process noise covariance, and referring to equation (5.3.8) we have that

ηk−1 =








∫ t

tk−1
Lk−1(t− τ)dτ

∫ t

tk−1
Lk−1dτ

Lk−1







, (5.3.42)

then, we can solve the integrals considering that Lk−1 is constant over the time interval ∆t arriving
at

ηk−1 =








1
2∆t

2Lk−1

∆tLk−1

Lk−1







. (5.3.43)
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At this point, the definition of the process noise covariance matrix Qk−1 for the DMC algorithm
still follows from equation (5.3.12), which gives:

Q11 =
1

4
∆t4E

{
Lk−1L

T
k−1

}
(5.3.44)

Q12 = Q21 =
1

2
∆t3E

{
Lk−1L

T
k−1

}
(5.3.45)

Q13 = Q31 =
1

2
∆t2E

{
Lk−1L

T
k−1

}
(5.3.46)

Q22 = ∆t2E
{
Lk−1L

T
k−1

}
(5.3.47)

Q23 = Q32 = ∆tE
{
Lk−1L

T
k−1

}
(5.3.48)

Q33 = E
{
Lk−1L

T
k−1

}
, (5.3.49)

and if we define the 3-dimensional diagonal covariance matrix Λ, following equation (5.3.31), as

Λ = E
{
Lk−1L

T
k−1

}

=








q2x
(
1− α2

x

)
0 0

0 q2y
(
1− α2

y

)
0

0 0 q2z
(
1− α2

z

)







,

(5.3.50)

the process noise covariance matrix for the DMC algorithm can be written as follows

Qk−1 =








Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33







=








1
4Λ∆t4 1

2Λ∆t3 1
2Λ∆t2

1
2Λ∆t3 Λ∆t2 Λ∆t

1
2Λ∆t2 Λ∆t Λ







. (5.3.51)

Estimating Unmodeled Accelerations

As opposed to the SNC algorithm, where unknown accelerations are purely random, the DMC
algorithm enables the estimation of these unmodeled effects through the use of a time-correlated
model and the estimation of its parameters. In this Section, we discuss this aspect from a compu-
tational point of view, considering the main implications it has on the structure of the equations
involved, both for the state propagation and estimation with an extended Kalman filter.

Let us begin by assuming that in a typical orbit determination problem we want to estimate
the satellite’s position r and velocity v, as well as different geometrical and dynamical parameters
that here will be indicated by the p-dimensional vector P. In this case, the n-dimensional state
vector X would be:

X =







r

v

P






. (5.3.52)

The estimation of unmodeled accelerations is performed by including the process noise parame-
ters inside the state vector, which means that both ε and the time correlation coefficients βx, βy, βz
may be added. However, for this study we consider the inclusion of ε only since it is the parameter
that actually represents accelerations, whereas in many studies for Earth-orbiting satellites the βi
parameters are fixed to a proper value. For example, Darugna et al. (2022) [5] use a fixed value of
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βi = 600 s for the orbit determination of Sentinel-6A. In view of this, the estimation state vector
is extended as follows

X =







r

v

ε

P







, (5.3.53)

and now comprises 9×1 components for r, v and ε, while the last p×1 part contains the estimated
model parameters P. The dimension of X will still be referred to as n. To apply the Kalman filter
algorithm in this case, we need to integrate a system of 9 × 1 equation of motion plus n × n
variational equations for the state transition matrix, that is

ṙ = v

v̇ = am + ε

ε̇ = Bε+Gu

Φ(t, t0) = A(t)Φ(t, t0),

(5.3.54)

with initial conditions

X(t0) = X0

Φ(t0, t0) = I.

Regarding the first 9 equations of motion we can see how the differential equation for ε contains
a random term u (see equation (5.3.35)) that cannot be integrated with conventional methods,
however, we can consider the deterministic portion only, whereas the random effects will be taken
into account in the process noise covariance matrix Q as was shown in the previous Section. This
consideration leads to a new form for the equation of motions that contains only the time-correlated
portion of ε that we indicate with ε

′, i.e.,

ṙ = v

v̇ = am + ε
′

ε̇
′ = Bε

′

(5.3.55)

and these are often known as the filter-world equations. Note that actually, the equation for ε
′

has its own analytical solution given by

ε
′
k+1 = E(∆t)ε′k

where E defined in (5.3.37) acts as a state transition matrix. Nonetheless, its numerical integration
is simple and does not drastically compromise the computational cost, for this reason we choose
to follow this latter approach.

For what concerns the variational equations for the state transition matrix we proceed by
examining the structure of A(t) and Φ(t, t0). In terms of r, v, ε and P these matrices can be
written as

A(t) =

[

∂Ẋ

∂X

]∗

=











∂ṙ
∂r

∂ṙ
∂v

∂ṙ
∂ε′

∂ṙ
∂P

∂v̇
∂r

∂v̇
∂v

∂v̇
∂ε′

∂v̇
∂P

∂ε̇′

∂r
∂ε̇′

∂v
∂ε̇′

∂ε′

∂ε̇′

∂P

∂Ṗ
∂r

∂Ṗ
∂v

∂Ṗ
∂ε′

∂Ṗ
∂P











, (5.3.56)
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where again the superscript ∗ indicates evaluation along the reference trajectory, and

Φ(t, t0) =
∂X

∂X0
=











Φrr Φrv Φrε Φrp

Φvr Φvv Φvε Φvp

Φεr Φεv Φεε Φεp

Φpr Φpv Φpε Φpp











. (5.3.57)

From the way these matrices are written, we see how they form a system of n × n equations.
Nevertheless, we shall not actually perform n × n integrations since both A and Φ contain some
null entries. In fact, for what concerns Φ we have that

Φεr = Φεv = Φεp = Φpr = Φpv = Φpε = 0, Φpp = I,

while for matrix A(t)

∂ṙ

∂r
=

∂ṙ

∂ε′
=

∂ṙ

∂P
=
∂ε̇′

∂r
=
∂ε̇′

∂v
=
∂ε̇′

∂P
=
∂Ṗ

∂r
=
∂Ṗ

∂v
=
∂Ṗ

∂ε′
=
∂Ṗ

∂P
= 0

and

∂ṙ

∂v
=
∂v̇

∂ε′
= I

∂ε̇′

∂ε′
= B.

This means that A(t) and Φ reduce to

A(t) =

[

∂Ẋ

∂X

]∗

=











0 I 0 0

∂v̇
∂r

∂v̇
∂v I ∂v̇

∂P

0 0 B 0

0 0 0 0











, Φ(t, t0) =











Φrr Φrv Φrε Φrp

Φvr Φvv Φvε Φvp

0 0 Φεε 0

0 0 0 I











, (5.3.58)

and the system of variational equations for computing the state transition matrix in the DMC
algorithm, following le last of equations (5.3.54), becomes:

Φ̇rr = Φvr

Φ̇rv = Φvv

Φ̇vr =
∂v̇

∂r
Φrr +

∂v̇

∂v
Φvr

Φ̇vv =
∂v̇

∂r
Φrv +

∂v̇

∂v
Φvv

Φ̇rε = Φvε

Φ̇vε =
∂v̇

∂r
Φrε +

∂v̇

∂v
Φvε +Φεε

Φ̇εε = BΦεε

Φ̇rp = Φvp

Φ̇vp =
∂v̇

∂r
Φrp +

∂v̇

∂v
Φvp +

∂v̇

∂p
.

(5.3.59)
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By properly examining the structure of the matrices involved, the system of equations to be
solved for the DMC algorithm has been reduced from 9+n×n equations to just 9+ 9× 7+ 6× p.
Other than these considerations for the propagation of the state equations, the filter structure
involved for the parameters estimations remain essentially the same described for the extended
Kalman filter in Section 5.2, the only necessary precaution concerns the formulation of the process
noise covariance Q. In Section 5.3.2, we arrived at an expression for Q that is of dimension 9× 9,
however, for a more general case, as the one we just discussed, the state vector may also include
constant geometrical or dynamical parameters represented by p, and to maintain dimensional
consistency with the solution covariance P, as dictated by the time-update equation (5.3.4), the
matrix Q must be extended from 9× 9 to n× n, thus accounting for the parameters vector size p.
This is achieved by considering that these parameters are constant for every propagation interval
between two subsequent observations, so, the process noise has no direct effect on them and they
are treated as bias states [7]. In other words, the entries in Q associated to these constant states are
simply null and, referring to equation (5.3.51), the process noise covariance for the time updated
of P will have only the upper left portion populated, i.e.,

Qk−1 =











1
4Λ∆t4 1

2Λ∆t3 1
2Λ∆t2 0

1
2Λ∆t3 Λ∆t2 Λ∆t 0

1
2Λ∆t2 Λ∆t Λ 0

0 0 0 0











n×n

, (5.3.60)

where every 0 entry is adequately added to satisfy dimensional consistency.

5.3.3 Computing matrix Q through linear systems theory

In this approach, the process noise is still assumed to obey the Lagevin equation (5.3.26), but this
time, the covariance matrix Q is computed through the similarity relation that involves the state
transition matrix of the process noise itself.

Recalling that a linearized system without control but subjected to a continuous random dis-
turbance qC(t) can be described by the following equation:

ẋ = F(t)x(t) +G(t)qC(t), (5.3.61)

where qC(t) is assumed to be a white random noise with zero mean and variance-covariance
E[qC(t)q

T
C(τ)] = Qsδ(t− τ). The solution of equation (5.3.61) at discrete measurement times can

be obtained as the sum of the homogeneous solution and a particular or forced solution,

x(ti+1) = Φ(ti+1, ti)x(ti) + qD(ti+1, ti), (5.3.62)

where Φ(ti+1, ti) is the state transition matrix of the system, and qD(ti+1, ti) is the discrete form
of the process noise given by:

qD(ti+1, ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)qC(τ) dτ. (5.3.63)

Now, the process noise covariance matrix QD(ti+1, ti) can be computed as [7]:
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QD(ti+1, ti) = E[qD(t)qT
D(τ)]

= E

([∫ ti+1

ti

Φ(ti+1, τ)G(τ)qC(τ) dτ

] [∫ ti+1

ti

qT
C(τ)G

T (τ)ΦT (ti+1, τ) dτ

])

=

∫ ti+1

ti

Φ(ti+1, τ)G(τ)E
[
qC(τ)qC(τ)

T
]
GT (τ)ΦT (ti+1, τ) dτ

=

∫ ti+1

ti

Φ(ti+1, τ)G(τ)QsG
T (τ)ΦT (ti+1, τ) dτ,

(5.3.64)

where the expectation was moved within a single integral since the only random variable is qC(t),
and E[qC(t)q

T
C(τ)] = 0 for t ̸= τ .

To compute the elements of the process noise covariance matrix needed for the orbit estimation
problem, we can consider a simple position-velocity-acceleration system in which the acceleration
is modelled as a first-order Gauss-Markov process. In this case the system of equations describing
the dynamical system is:







ṙ
v̇
ȧ






=





0 1 0
0 0 1
0 0 −β











r
v
a






+







0
0

qC(t)






. (5.3.65)

Note that for the sake of simplicity this equation is written for a unidimensional system. Equa-
tion (5.3.65) clearly represents a linear time-invariant system in the form

ẋ(t) = Fx(t) +GqC(t), (5.3.66)

with F and G being constant matrices, in particular for this case

F =





0 1 0
0 0 1
0 0 −β



 , G =





1 0 0
0 1 0
0 0 1



 , (5.3.67)

and x and qC are the time dependent state vector and noise vector respectively

x(t) =







r(t)
v(t)
a(t)






, qC(t) =







0
0

qC(t)






. (5.3.68)

Now, in order to obtain the state transition matrix Φ needed in equation (5.3.64), we make
use of the Laplace transform and its main properties, that allows the reformulation of equation
(5.3.66) in the frequency domain, that is, we change from the time variable t to the complex
Laplace variable s = σ + jω. The transform for a scalar variable is defined as:

L [x(t)] = x(s) =

∫ ∞

0

x(t)e−st dt (5.3.69)

while the inverse Laplace transform is given by

L−1 [x(s)] = x(t) =
1

2πj

∫ σ+j∞

σ−j∞

x(s)est ds. (5.3.70)

In linear system theory, rather than the direct calculation of these integrals, we are more
interested in selected applications of this transform, such as the fact that it is a linear operator,
then

93



CHAPTER 5. THE KALMAN FILTER

L [x1(t) + x2(t)] = L [x1(t)] + L [x2(t)] = x1(s) + x2(s)

L [ax(t)] = aL [x(t)] = ax(s),
(5.3.71)

and the Laplace transform of the time derivative of x(t)

L [ẋ(t)] = sx(s)− x(0), (5.3.72)

where x(0) is the numerical initial value of x(t) immediately before any input acts on it. Moreover,
Laplace transforms of vectors and matrices can be defined similarly, for the n-vector v and the
n×m matrix M we can write

L [v(t)] = v(s) =







v1(s)
v2(s)
...

vn(s)







, L [M(t)] = M(s) =









M11(s) M12(s) . . . M1m(s)

M21(s) M22(s)
...

...
. . .

...
Mn1(s) . . . . . . Mnm(s)









.

(5.3.73)

Making use of equations (5.3.69) and (5.3.72), the system differential equation (5.3.66) can be
rewritten as

sx(s)− x(0) = Fx(s) +GqC(s) (5.3.74)

that can be rearranged to give

sx(s)− Fx(s) = x(0) +GqC(s)

[sI− F]x(s) = x(0) +GqC(s)

x(s) = [sI− F]
−1

(x(0) +GqC(s)) ,

(5.3.75)

and if we consider the initial condition response only we get

x(s) = [sI− F]
−1

x(0). (5.3.76)

Finally, given that x(0) is a constant we can take the Laplace antitransform of equation (5.3.76),
that gives

x(t) = L−1
[

(sI− F)
−1
]

x(0) (5.3.77)

from which it is clear that

Φ(t) = L−1
[

(sI− F)
−1
]

. (5.3.78)

The matrix inverse (sI− F)−1 can be easily found to be:

(sI− F)
−1

=






1
s

1
s2

1
s2(s+β)

0 1
s

1
s(s+β)

0 0 1
s+β




 , (5.3.79)

then, by using the following common Laplace antitransforms
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L−1

[
1

sn

]

=
tn−1

(n− 1)!
(5.3.80)

L−1

[
1

(s− a)

]

= eat, (5.3.81)

the following expression for the state transition matrix for the system described in equation (5.3.65)
is obtained:

Φ(∆t) =






1 ∆t ∆t
β + 1

β2

(
e−β∆t − 1

)

0 1 1
β

(
1− e−β∆t

)

0 0 e−β∆t




 , (5.3.82)

and here, ∆t is the time interval between subsequent discrete samples of the continuous dynamical
model.

From equation (5.3.65) we can see that G(t) = I, and since the white random noise is acting
only on the acceleration component,

Qs = E
[
qC(t)q

T
C(t)

]
=





0 0 0
0 0 0
0 0 Qs



 , (5.3.83)

and we can compute the process noise covariance matrix using equation (5.3.64) as:

QD(ti+1, ti) =

∫ T

0

Φ(∆t)QsΦ
T (∆t) d(∆t)

= Qs

∫ T

0







∆t
β + 1

β2

(
e−β∆t − 1

)

1
β

(
1− e−β∆t

)

e−β∆t







[
∆t
β + 1

β2

(
e−β∆t − 1

)
1
β

(
1− e−β∆t

)
e−β∆t

]

d(∆t).

(5.3.84)

Equation (5.3.84) allows us to compute every component of the matrix QD as a function of the
time interval ∆t, the time constant of the process noise τ = 1/β, and the strength of the driving
white noise represented by Qs.

Hereafter, the computations of every matrix element following the integrals that derive from
equation (5.3.84) are reported. Notice that integration by parts is required.

QD(T )11 = Qs

∫ T

0

(
∆t

β
+

1

β2

(
e−β∆t − 1

)
)2

d(∆t)

=
Qs

β2

[
∆t3

3
− ∆t2

β
+

∆t

β2
− 1

2β3
e−2β∆t +

2

β3
e−β∆t − 2

β2
e−β∆t

(

∆t+
1

β

)]T

∆t=0

=
Qs

β2

[
T 3

3
− T 2

β
+
T

β2
− 1

2β3

(
e−2βT − 1

)
− 2

β2
Te−βT

]

;

(5.3.85)
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QD(T )12 = Qs

∫ T

0

[
∆t

β
+

1

β2

(
e−β∆t − 1

)
]
1

β

(
1− e−β∆t

)
d(∆t)

=
Qs

β2

[
∆t2

2
+

∆t

β
e−β∆t − ∆t

β
+

1

2β2
e−2β∆t − 1

β2
e−β∆t

]T

∆t=0

=
Qs

β2

[
T 2

2
+

(
T

β
− 1

β2

)
(
e−βT − 1

)
+

1

2β2

(
e−2βT − 1

)
]

;

(5.3.86)

QD(T )13 = Qs

∫ T

0

[
∆t

β
+

1

β2

(
e−β∆t − 1

)
]

e−β∆t d(∆t)

=
Qs

β2

[

−∆te−β∆t − 1

2β
e−2β∆t

]T

∆t=0

=
Qs

β2

[

−Te−βT − 1

2β

(
e−2βT − 1

)
]

;

(5.3.87)

QD(T )22 = Qs

∫ T

0

(
1

β

(
1− e−β∆t

)
)2

d(∆t)

=
Qs

β2

[

∆t+
2

β
e−2β∆t − 1

2β
e−2β∆t

]T

∆t=0

=
Qs

β2

[

T +
2

β

(
e−βT − 1

)
− 1

2β

(
e−2βT − 1

)
]

;

(5.3.88)

QD(T )23 = Qs

∫ T

0

1

β

(
1− e−β∆t

)
e−β∆t d(∆t)

=
Qs

β2

[

−e−β∆t +
1

2β
e−2β∆t

]T

∆t=0

=
Qs

β2

[

1− e−βT +
1

2

(
e−2βT − 1

)
]

;

(5.3.89)

QD(T )33 = Qs

∫ T

0

e−2β∆t d(∆t)

=
Qs

2β

(
1− e−2βT

)
;

(5.3.90)

QD(T )21 = QD(T )12, QD(T )31 = QD(T )13, QD(T )32 = QD(T )23 for simmetry.

So far, the process noise covariance matrix has been constructed considering a unidimensional
poistion-velocity-acceleration dynamical system, eq. (5.3.65), and therefore its dimension is 3× 3.
We now need to extend these results to the orbit estimation problem in which the dimension of
the system of equations may be as large as the estimation requires, considered that we may have
a large number of geometrical and dynamical parameters we want to estimate. We recall that for
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the general case, the dimension of QD(T ) will be n×n, where n = 6+ p+ q, that is 6 components
comprising position and velocity, p dynamical and q geometrical parameters. Since the process
noise is added to the system as an unmodelled acceleration it will affect only position and velocity
components, meaning that the same considerations made in Section 5.3.2 about the structure of
the matrix Q still holds here. Specifically, the matrix QD(T ) for the orbit estimation problem
will only have non-zero elements in the upper-left 6 × 6 or 9 × 9 portion, depending on whether
we are also estimating the deterministic portion of the Gauss-Markov process or not. In the case
we are not estimating the time constants of the process, nor its deterministic part, the process
noise covariance matrix will contain components related to position and velocity only, in which the
upper-left 6× 6 matrix is composed of four 3× 3 diagonal sub-matrices, each associated to one of
the elements from equations (5.3.85) to (5.3.90). Namely,

QD(T ) =











Qrr Qrv 0 . . . 0
Qvr Qvv 0 . . . 0

0 0 0
...

...
...

. . .
...

0 0 . . . . . . 0











n×n

, (5.3.91)

where Qrr,Qrv,Qvr,Qvv are 3× 3 diagonal matrices:

Qrr =





QD(T )x11 0 0
0 QD(T )y11 0
0 0 QD(T )z11



 ,

and the superscripts x, y, z indicate that the element is associated with a particular component
of the position or velocity vector, while the subscripts indicate which element we are considering
from equations (5.3.85) - (5.3.90). Similarly:

Qrv = Qvr =





QD(T )x12 0 0
0 QD(T )y12 0
0 0 QD(T )z12



 ,

Qvv =





QD(T )x22 0 0
0 QD(T )y22 0
0 0 QD(T )z22



 ,

and once computed, QD(T ) can be used in equation (5.3.4) to propagate the solution covariance
matrix accounting for the influence of process noise, allowing to overcome filter divergence.
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Chapter 6

Optimal Smoothing

In the previous Sections we discussed how the Kalman filter, or sequential filter, is not only an
optimal real-time estimator of the state at every time of observation, but it is also a predictor

that computes optimal estimates at future times by propagating the last a posteriori values. In
particular, the a priori estimate of the state at time ti is the estimate given all observations from
t0 up to ti−1, meaning that information in the observation yi has not been included yet, while
the a posteriori estimate at ti, is the one given all measurements up to time ti, thus including yi,
namely

x̄i = E (xi|y0,y1, . . . ,yi−1) (6.0.1)

x̂i = E (xi|y0,y1, . . . ,yi) . (6.0.2)

It may happen however, that at time ti we have availability of measurements up to a later time,
say for example tN > ti, and in this situation it is reasonable to think that we should obtain an
even better estimate of the state xi, compared to the estimate given by (6.0.2), by including these
additional observations. Specifically, we want to find an optimal way of computing the estimate

x̂ti|tN = E (xi|y0,y1, . . . ,yi, . . . ,yN ) , tN > ti, (6.0.3)

where the subscript ti|tN is used precisely to indicate that the estimate occurs at time ti considering
all measurements from t0 to tN .

Depending on the availability of measurement data and how they are handled, three different
classes of smoothing techniques can be identified:

� Fixed Point Smoother : in this type of smoother the estimate of the state is obtained at a
fixed time ti or several fixed times, meaning that as time passes by and new measurements
are available, they are only used to keep improving the estimate of xi. This technique can
be implemented as a real-time estimator for applications in which the system state at a
particular time is considered critical, such as engine burnout for rocket boosters or orbital
maneuvers for spacecrafts.

� Fixed Lag Smoother : here, the idea is that measurements are still acquired in a real-time
fashion, but it is not crucial to obtain the estimate of xi exactly at time ti. Instead, a
certain delay in estimation is admitted, so that xi can be estimated using all measurements
up to time ti+N , with N being a fixed integer, thus taking advantage of the N additional
observations. This technique is particularly suitable for communications and telemetry data
reduction.

� Fixed Interval Smoother : in this case, measurements are collected throughout a fixed time
interval [t0, tN ], and are subsequently processed to obtain a smoothed estimate of the state
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at every observation time, meaning that every estimate is based on information contained
in all measurements inside this particular interval. This is inherently an offline technique,
particularly used for post-flight analysis to obtain estimates of trajectory parameters and to
assess the validity of control inputs.

For precise orbit determination, the smoothing technique of greater interest is the fixed-interval
formulation that is described hereafter.

6.1 Fixed-Interval Forward-Backward Smoother

Given a time interval [t0, tN ], in fixed-interval smoothing we search for the estimate of the state
x̂ti|tN at every time t0 ≤ ti ≤ tN based on the knowledge of all observations from t0 up to tf , that
is

x̂ti|tN = E (xi|y0,y1, . . . ,yN ) . (6.1.1)

In the forward-backward formulation, this estimate is obtained as a suitable combination of two
optimal filters, one that operates in a forward manner from t0 to the time of estimation ti, and the
other going backward in time from tN to ti. In particular, the forward filter at time ti will give

x̂if = E (xi|y0,y1, . . . ,yi) , (6.1.2)

that is the a posteriori estimate of xi with associated covariance matrix Pif , meaning that a
measurement update at ti is performed, while the backward filter gives

x̄ib = E (xi|yi+1,yi+2, . . . ,yN ) , (6.1.3)

which is clearly an a priori estimate of xi since the measurement yi at time ti has not been included,
and its associated covariance matrix is indicated by P̄ib. Moreover, the fact that the two filters
always consider different sets of measurements ensures that the forward a posteriori and backward a
priori estimates are independent, and no correlation will be present between forward and backward
filter errors

E
(
x̂if x̄

T
ib

)
= 0. (6.1.4)

The smoothed estimate is then obtained as an optimal weighted combination of the output of
these two filters at time ti,

x̂ti|tN = Kf x̂if +Kbx̄ib (6.1.5)

with Kf and Kb being the weighting matrices for the forward and backward estimates respectively.
If x̂if and x̄ib are obtained from optimal Kalman filters they must be unbiased estimates, and if we
wish the smoothed estimate to be also unbiased, the weighting matrices must satisfy the following
condition:

Kf +Kb = I, (6.1.6)

from which

x̂ti|tN = Kf x̂if + (I−Kf )x̄ib, (6.1.7)

that clearly corresponds to an unbiased smoothed estimate given that
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E
[
x̂ti|tN

]
= E [Kf x̂if + (I−Kf )x̄ib]

= KfE [x̂if ] + (I−Kf )E [x̄ib]

= Kfxi + xi −Kfxi

= xi.

(6.1.8)

Now, in order for the smoothed estimate to be optimal besides being unbiased, it should
correspond to a minimum variance condition. We begin by computing the covariance matrix of
the smoothed estimate as [17]:

Pti|tN = E
[
(xi − x̂ti|tN )(xi − x̂ti|tN )T

]

= E
[
(xi −Kf x̂if − (I−Kf )x̄ib)(xi −Kf x̂if − (I−Kf )x̄ib)

T
]

= E
[

((xi − x̄ib +Kf (xi − x̂if − xi + x̄ib)) ((xi − x̄ib +Kf (xi − x̂if − xi + x̄ib))
T
]

= E
[
(εb +Kf (εf − εb))(εb +Kf (εf − εb))

T
]

= E
[
εbε

T
b −Kfεbε

T
b − εbε

T
b K

T
f +Kf (εbε

T
b + εfε

T
f )K

T
f

]

= Pb −KfPb −PbK
T
f +Kf (Pb +Pf )K

T
f ,

(6.1.9)

where εb = xi − x̄ib and εf = xi − x̂if represent estimation errors for the backward and forward

filter, while Pb = E
[
εbε

T
b

]
and Pf = E

[

εfε
T
f

]

are the related covariance matrices.

The minimum variance smoother solution is found minimizing the trace of the covariance matrix
for x̂ti|tN described by equation (6.1.9), in other words, we need to minimize the scalar performance
index J defined by:

J = tr(Pti|tN )

= tr(Pb −KfPb −PbK
T
f +Kf (Pb +Pf )K

T
f ),

(6.1.10)

with respect to the weighting matrix Kf , that translates into taking the following derivative

∂J

∂Kf
=
∂tr(Pti|tN )

∂Kf

= −2Pb + 2Kf (Pb +Pf ),

(6.1.11)

then, by setting equation (6.1.11) equal to zero, the value of Kf that minimizes the trace of the
covariance matrix Pti|tN , and the subsequent value of Kb can be computed:

Kf = Pb(Pb +Pf )
−1 (6.1.12)

Kb = Pf (Pb +Pf )
−1. (6.1.13)

Taking the value for Kf in equation (6.1.12) and substituting it into equation (6.1.9), will give
the expression for the covariance matrix of the minimum variance smoothed estimate, namely

Pti|tN = Pb −Pb(Pb +Pf )
−1Pb −Pb(Pb +Pf )

−1Pb+

+Pb(Pb +Pf )
−1(Pb +Pf )(Pb +Pf )

−1Pb,
(6.1.14)
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where the symmetry of the matrices Pb and Pf was considered. Now, multiplying out the last term,
and using the following matrix inversion identity (A +B)−1 = B−1(AB + I)−1 for (Pb + Pf )

−1

leads to

Pti|tN = Pb − (PfP
−1
b + I)−1Pb − (PfP

−1
b + I)−1Pb + (PfP

−1
b + I)−1Pb

= Pb − (PfP
−1
b + I)−1Pb,

(6.1.15)

then, for the last term on the RHS of equation (6.1.15) we can apply the matrix inversion lemma
(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 to finally obtain

Pti|tN = Pb −Pb + (P−1
f +P−1

b )−1

= (P−1
f +P−1

b )−1,
(6.1.16)

that is the expression for the covariance matrix of the minimum variance unbiased smoothed es-

timate of x̂ti|tN . Moreover, combining equations (6.1.7), (6.1.12) and (6.1.13) gives the following
expression for x̂ti|tN

x̂ti|tN = Pb(Pb +Pf )
−1x̂if +Pf (Pb +Pf )

−1x̄ib

= (I+PfP
−1
b )−1x̂if + (PbP

−1
f + I)−1x̄ib

= (P−1
f +P−1

b )−1P−1
f x̂if + (P−1

f +P−1
b )−1P−1

b x̄ib

= (P−1
f +P−1

b )−1
[

P−1
f x̂if +P−1

b x̄ib

]

= Pti|tN

[

P−1
f x̂if +P−1

b x̄ib

]

.

(6.1.17)

An alternative simple derivation of equations (6.1.16) and (6.1.17), can be achieved by analogy
with previous discussed filters. Recalling that equation (6.1.2) for the forward filter is equivalent
to

x̂if = Pif

(

HT
i R

−1
i yi + P̄−1

if x̄if

)

=
(

HT
i R

−1
i Hi + P̄−1

if

)−1 (

HT
i R

−1
i yi + P̄−1

if x̄if

)

,
(6.1.18)

which, as stated before, is the a posteriori estimate of the state at time ti coming from the forward
filter, and this, should be properly combined with x̄ib from the backward filter to obtain the
smoothed estimate. To do so, we can see the backward filter output as an additional ”measurement”
of the state at ti, with associated uncertainty described by its matrix P̄ib, thus equation (6.1.18)
can be modified to include this new ”measurement” in the following way:

� x̄ib is seen as a new measurement and replaces yi;

� P̄ib takes the place of Ri since it represents errors associated with the measurement x̄ib;

� Hi = I because x̄ib can be treated as a direct measurement of the state, so there is no need
for an observation-state mapping matrix;

� x̂if and Pif become a priori information for the smoothed estimate;

from these considerations equation (6.1.18) becomes
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x̂ti|tN =
(

P̄−1
ib +P−1

if

)−1 (

P̄−1
ib x̄ib +P−1

if x̂if

)

= Pti|tN

(

P̄−1
ib x̄ib +P−1

if x̂if

)

,
(6.1.19)

from which we clearly see the smoothed estimate as a weighted combination of the forward and
backward filter outputs. Moreover, the covariance matrix associated with the smoothed estimate
is given by

Pti|tN =
(

P̄−1
ib +P−1

if

)−1

, (6.1.20)

that if rewritten as

P−1
ti|tN

=
(

P̄−1
ib +P−1

if

)

, (6.1.21)

shows that the smoothed estimate is at least as good as the estimate obtained by conventional
filtering. In fact it will generally improve estimation accuracy except for the final time tN , where by
definition the smoothed estimate is the same as the filtered estimate, which is clear from equations
(6.1.1) and (6.1.2) since at tN ,

x̂tN |tN = x̂Nf = E (xN |y0,y1, . . . ,yN ) . (6.1.22)

6.1.1 Forward-Backward smoother algorithm

The forward filter is usually formulated as a conventional Kalman filter, that is initialized with the
known a priori values

x̄f (t0) = x̄0f (6.1.23)

P̄f (t0) = P̄0f . (6.1.24)

Then, for every time ti a measurement update is performed as

Ki = P̄ifH
T
i

[
HiP̄ifH

T
i +Ri

]−1
(6.1.25)

x̂if = x̄if +Ki (yi −Hix̄if ) (6.1.26)

Pif = [I−KiHi] P̄if , (6.1.27)

and the subsequent time update as

x̄i+1f = Φ(ti+1, ti)x̂if (6.1.28)

P̄i+1f = Φ(ti+1, ti)PifΦ
T (ti+1, ti) +Qif . (6.1.29)

At every time ti the quantities x̂if and Pif from equations (6.1.26) and (6.1.27) are stored, and
will be later combined with the backward filter results so, computationally speaking, the smoothing
process consists of two subsequent data sweeps, one forward and one backwards.

The backward filter runs backwards in time, and requires some considerations on its starting
conditions at tN . Theoretically, we have no a priori information for the backward filter at the final
time tN , reflecting the fact that no information used in the forward filter is allowed to enter the
backward filter, thus making them independent. The absence of a priori information translates
into a covariance matrix being infinite
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P̄Nb → ∞, (6.1.30)

which clearly is inconvenient to handle. For this reason, the backward filter is usually formulated
as an information filter, where the quantity to be propagated is not the estimate of the state x̂,
but rather

D̂ = P−1x̂ = Λ̂x̂. (6.1.31)

The fact that we are considering the information matrix Λ instead of the covariance matrix,
and considering equation (6.1.30), leads to a zero a priori value rather than an infinite value

Λ̄Nb = P̄−1
Nb → 0, (6.1.32)

which then gives the following starting conditions for the backward information filter:

P̄−1
Nb = 0 (6.1.33)

D̄Nb = 0. (6.1.34)

So, for every ti going from tN to t0, the backward measurement update is performed as follows,

D̂i = D̄i +HT
i R

−1
i yi (6.1.35)

Λ̂i = Λ̄i +HT
i R

−1
i Hi (6.1.36)

x̂i = Λ̂−1
i D̂i, (6.1.37)

where actually, equation (6.1.37) cannot be used until Λ̂i becomes non-singular. This may look
like a serious flaw, but in reality the information filter propagates D̂ instead of x̂, making equation
(6.1.37) somewhat useless. Then, the time update is given by the following equations considering
that we are propagating backwards from ti+1 to ti,

Mi = ΦT (ti+1, ti)Λi+1Φ(ti+1, ti) (6.1.38)

Li = MiΓ(ti+1, ti)
[
Q−1

i+1 + ΓT (ti, ti+1)MiΓ(ti, ti+1)
]−1

(6.1.39)

D̄i =
[
I− LkΓ

T (ti, ti+1)
]
ΦT (ti+1, ti)D̂i+1 (6.1.40)

Λ̄i =
[
I− LiΓ

T (ti, ti+1)
]
Mi, (6.1.41)

where Qi is the process noise covariance matrix and Γ(ti, ti+1) is the process noise transition

matrix.
The process described by equations (6.1.35) to (6.1.41) is iterated for every observation time

from tN to t0, and at every ti, x̂i and Pi (previously stored from the forward filter) are combined
with Λ̄i and D̄i from the backward filter to obtain the smoothed estimate as:

Xi =
[
I+PiΛ̄i

]
(6.1.42)

Wi = PiXi (6.1.43)

Yi = I−WiΛ̄i (6.1.44)

Pti|tN = YiPiT
T
i +WiΛ̄iW

T
i (6.1.45)

x̂ti|tN = Xix̂i +Pti|tf D̄i. (6.1.46)

In equation (6.1.45), we can notice how the formulation for the backward information filter
described above does not require the inversion of the matrix Pi coming from the forward filter,
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unlike the computation for Pti|tN in euquation (6.1.20). However, equation (6.1.39) still requires
Qi to be non-singular, otherwise Li will not be computable, and in practice this problem is worked
around making small modification to Qi to ensure invertibility.

As we saw earlier, the backward filter should be implemented in the form of an information

filter, due to the fact that no a priori information nor measurements processed during the forward
sweep should enter in the backward process, thus ensuring the absence of correlation between the
two phases. In this regard a relevant consideration on the reference trajectory is necessary, since we
should not forget that in reality we are not dealing with a linear system, but rather with a linearized
orbit around a reference solution that is fairly near to the actual trajectory, meaning that besides
discussing the a priori information the backward filter starts with, we must also discuss the initial
values for the backward reference trajectory propagation. If we were to use and extended Kalman
filter in the forward sweep and then use the final updated value as the starting condition for the
backward reference trajectory, correlation between the two filters will surely be present because
the updated forward trajectory not only contains a priori information from the forward sweep, it
contains the information from the entire set of measurements in the fixed interval, making the two
filters strongly dependent. To avoid this, the reference trajectory for the forward Kalman filter
should never be updated with observational data, instead it should be simply propagated up to
the final time tN using only the available a priori values at the initial time t0, then, the backward
trajectory will start from the forward final value.

6.2 Fixed-Interval RTS Smoother

Several alternatives for the fixed-interval smoother have been developed, and one of the most
common is named after Rauch, Tung and Striebel usually called the RTS smoother [25]. This
formulation is attractive due to its greater computational efficiency compared to the forward-
backward form discussed in the previous Section, since it doesn’t require the direct computation
of the backward estimate and covariance in order to obtain the smoothed values. In particular,
the RTS smoother stores values coming from the forward filter only, and then applies a backward
recursion starting from the last estimate and covariance obtained at the end of the forward sweep.
It should be noted from the beginning that the forward Kalman filter, used to generate values
that are stored for later backward recursion, must be optimal, thus, a consider filter cannot be
used since it gives suboptimal estimates, introducing correlations between forward and backward
solutions.

From a Maximum Likelihood standpoint we wish to find the smoothed estimate of xk at time
tk as a backward recursive expression in terms of x̂N

k+1, where x̂
N
k+1 is the smoothed estimate, that

is the estimate of the state at time tk+1 given all measurements up to the final time tN [24]:

x̂N
k+1 = E(xk+1|YN ). (6.2.1)

In other words, we need to maximize the following conditional probability density function:

p(xk,xk+1|YN ), YN = y0,y1, . . . ,yN . (6.2.2)

Form Bayes rule we can write (6.2.2) as

p(xk,xk+1|YN ) =
p(xk,xk+1,YN )

p(YN )

=
p(yk+1, . . . ,yN |xk,xk+1,Yk)

p(YN )
p(xk,xk+1,Yk)

=
p(Yk)

p(YN )
p(yk+1, . . . ,yN |xk,xk+1,Yk)p(xk,xk+1|Yk),

(6.2.3)
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Perform conventional Kalman filter

From t0 to tN :

Ki = P̄ifH
T
i

[
HiP̄ifH

T
i +Ri

]−1

x̂if = x̄if +Ki (yi −Hix̄if )

Pif = [I−KiHi] P̄if

x̄i+1f = Φ(ti+1, ti)x̂if

P̄i+1f = Φ(ti+1, ti)PifΦ
T (ti+1, ti) +Qif .

Store the values:

x̂if and Pif

Initialize backward information filter:

P̄−1
Nb = 0

D̄Nb = 0

Perform backward information filter:

Measurement update

D̂i = D̄i +HT
i R

−1
i yi

Λ̂i = Λ̄i +HT
i R

−1
i Hi

x̂i = Λ̂−1
i D̂i

Time update

Mi = ΦT (ti+1, ti)Λi+1Φ(ti+1, ti)

Li = MiΓ(ti+1, ti)
[
Q−1

i+1 + ΓT (ti, ti+1)MiΓ(ti, ti+1)
]−1

D̄i =
[
I− LkΓ

T (ti, ti+1)
]
ΦT (ti+1, ti)D̂i+1

Λ̄i =
[
I− LiΓ

T (ti, ti+1)
]
Mi,

Perform smoothing:

Xi =
[
I+PiΛ̄i

]

Wi = PiXi

Yi = I−WiΛ̄i

Pti|tN = YiPiT
T
i +WiΛ̄iW

T
i

x̂ti|tN = Xix̂i +Pti|tf D̄i.

ti = tN ?

ti = t0 ?stop

no

yes

yes no

Figure 6.1.1: Flow chart for the forward-backward smoother algorithm.
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But

p(yk+1, . . . ,YN |xkxk+1,Yk) = p(yk+1, . . . ,yN |xk+1), (6.2.4)

because measurements from time tk+1 onwards are independent from all previous measurements
Yk and xk, also

p(xk,xk+1|Yk) =
p(xk,xk+1,Yk)

p(Yk)

=
p(xk+1|xk,Yk)

p(Yk)
p(xk,Yk)

= p(xk+1|xk)p(xk|Yk),

(6.2.5)

and using (6.2.4) and (6.2.5) into (6.2.3) gives

p(xk,xk+1|YN ) =
p(Yk)

p(YN )
p(yk+1, . . . ,yN |xk+1)p(xk+1|xk)p(xk|Yk). (6.2.6)

Note that in equation (6.2.6) only the last two pdf in the RHS are dependent of xk, thus
in the maximization process we are concerned only with p(xk+1|xk) and p(xk|Yk). Under the
hypothesis that these probability density functions are Gaussian and the process noise is zero mean,
the conditional distributions are completely characterized by their mean and variance-covariance,
namely

p(xk+1|xk) ∼ N
(
Φ(tk+1, tk)xk,Γ(tk+1,tk)QkΓ

T (tk+1, tk)
)

(6.2.7)

p(xk|Yk) ∼ N (x̂k,Pk) , (6.2.8)

and notice how the covariance in (6.2.8) does not contain the term Φ(tk+1, tk)PkΦ
T (tk+1, tk) since

Pk is associated to errors in the estimate x̂k, but here in terms of conditional probability, xk has
occurred and it’s known, so its covariance must be a null matrix. In other words, errors in xk+1

are due to process noise only.
Now that the normal distributions of interest are completely defined, we can proceed to maxi-

mize the probability density function (6.2.6) by maximizing its logarithm, since the logarithm is a
strictly increasing function. Recalling that for a random vector v of dimension x with associated
n×n variance-covariance matrix P and mean vector x̄, its multivariate normal probability density

function is given by

p(x) =
1

(2π)n/2|P|1/2 e
− 1

2
(x−x̄)TP−1(x−x̄), (6.2.9)

with |P| indicating the determinant of P, taking the logarithm of p(x) gives

ln p(x) = −1

2
ln ((2π)n|P|)− 1

2
(x− x̄)TP−1(x− x̄). (6.2.10)

Now, as mentioned before, to maximize (6.2.6) we need to consider only the terms that depends
on xk, so we need to maximize the probability density function

L = p(xk+1|xk)p(xk|Yk), (6.2.11)

taking the logarithm of L following equations (6.2.7), (6.2.8) and (6.2.10) leads to
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lnL = −1

2
ln
{
(2π)n|Γ(tk+1, tk)QkΓ(tk+1, tk)|

}
+

− 1

2
(xk+1 −Φ(tk+1, tk)xk)

T
Γ(tk+1, tk)QkΓ

T (tk+1, tk) (xk+1 −Φ(tk+1, tk)xk)+

− 1

2
ln
{
(2π)n|Pk|

}
− 1

2
(xk − x̂k)

TP−1
k (xk − x̂k), (6.2.12)

then, differentiating with respect to xk ignoring terms that are independent of xk, and assum-
ing that x̂N

k+1 is known from previous backward recursion (time identifiers for Φ(tk+1, tk) and
Γ(tk+1, tk) are dropped for the sake of compactness)

∂ lnL

∂xk
=

∂

∂xk

[
xT
kΦ

T (ΓQkΓ
T )−1Φxk − 2xT

kΦ
T (ΓQkΓ

T )−1xk+1 + xT
kP

−1
k xk − 2xT

kP
−1
k x̂k

]

= 2xT
kΦ

T (ΓQkΓ
T )−1Φ− 2xT

k+1(ΓQkΓ
T )−1 + 2xT

kP
−1
k − 2x̂T

kP
−1
k ,

(6.2.13)

finally, using proper notation and setting (6.2.13) equal to zero performing appropriate transposi-
tions,

[
ΦT (ΓQkΓ

T )−1Φ+ (Pk
k)

−1
]
xk = ΦT (ΓQkΓ

T)−1x̂N
k+1 + (Pk

k)
−1x̂k

k, (6.2.14)

gives the following expression for the smoothed estimate x̂N
k

x̂N
k =

[
ΦT (ΓQkΓ

T )−1Φ+ (Pk
k)

−1
]−1 [

ΦT (ΓQkΓ
T )−1x̂N

k+1 + (Pk
k)

−1x̂k
k

]
. (6.2.15)

However, the expression obtained above is not quite common. A more conventional form can
be obtained using the following matrix identity for the inverse in (6.2.15)

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (6.2.16)

with

A = (Pk
k)

−1

B = ΦT

C = (ΓQkΓ
T )−1

D = Φ,

thus obtaining

x̂N
k =

[
Pk

k −Pk
kΦ

T (ΓQkΓ
T +ΦPk

kΦ
T )−1ΦPk

k

] [
ΦT (ΓQkΓ

T )−1x̂N
k+1 + (Pk

k)
−1x̂k

k

]
, (6.2.17)

recognising that

(ΓQkΓ
T +ΦPk

kΦ
T ) = Pk

k+1 (6.2.18)

is the propagation of the estimation error covariance matrix Pk
k up to time tk+1 under the influence

of process noise, that is the a priori covariance at tk+1, and performing multiplications we can write

x̂N
k =x̂k

k −Pk
kΦ

T (Pk
k+1)

−1Φx̂k
k +Pk

kΦ
T (ΓQkΓ

T )−1x̂N
k+1+

−Pk
kΦ

T (Pk
k+1)

−1ΦPk
kΦ

T (ΓQkΓ
T )−1x̂N

k+1,
(6.2.19)
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or

x̂N
k =x̂k

k −Pk
kΦ

T (Pk
k+1)

−1Φx̂k
k+

+Pk
kΦ

T
[
(ΓQkΓ

T )−1 − (Pk
k+1)

−1ΦPk
kΦ

T (ΓQkΓ
T )−1

]
x̂N
k+1.

(6.2.20)

Now, the term in brackets in the RHS of the above equation can be rewritten considering that
from

Pk
k+1 = Φ(tk+1, tk)P

k
kΦ

T (tk+1, tk) + Γ(tk+1, tk)QkΓ
T (tk+1, tk) (6.2.21)

we can obtain

Pk
k = Φ−1(tk+1, tk)

[
Pk

k+1 − Γ(tk+1, tk)QkΓ
T (tk+1, tk)

]
Φ−T (tk+1, tk), (6.2.22)

so, using (6.2.22) inside the square brackets in equation (6.2.20) gives

x̂N
k = x̂k

k −Pk
kΦ

T (Pk
k+1)

−1Φx̂k
k+

+Pk
kΦ

T
[
(ΓQkΓ

T )−1 − (Pk
k+1)

−1ΦΦ−1(Pk
k+1 − ΓQkΓ

T )Φ−TΦT (ΓQkΓ
T )−1

]
x̂N
k+1, (6.2.23)

and performing multiplications leads to

x̂N
k = x̂k

k −Pk
kΦ

T (Pk
k+1)

−1Φx̂k
k +Pk

kΦ
T (Pk

k+1)
−1x̂N

k+1, (6.2.24)

finally, collecting terms we arrive at the conventional RTS smoother algorithm

x̂N
k = x̂k

k + Sk

[
x̂N
k+1 −Φx̂k

k

]
, (6.2.25)

with

Sk = Pk
kΦ

T (Pk
k+1)

−1, (6.2.26)

being the smoothing estimator gain matrix.
Equation (6.2.25) clearly shows how the RTS algorithm is a backward recursion since every

smoothed estimate at tk is based on the knowledge of the future estimate and covariance at tk+1,
and the starting value is the final value obtained at the end of the forward sweep, confirming the
fact that the smoothed solution is generally better than the filtered solution, except for the final
time of the fixed interval.

For the propagation of the smoothed covariance we begin by showing how, in a general sense,
it can be computed as

PN
k = E

[
(x̂N

k − xk)(x̂
N
k − xk)

T
]
, (6.2.27)

where xk represents actual state and x̂N
k is the smoothed estimate of xk. Now, taking equation

(6.2.25) and subtracting xk from both sides yields:

x̂N
k − xk = x̂k

k − xk + Skx̂
N
k+1 − SkΦx̂k

k, (6.2.28)

then, rearranging terms and using the definitions

x̃N
k ≡ x̂N

k − xk

x̃k
k ≡ x̂k

k − xk,

gives
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x̃N
k − Skx̂

N
k+1 = x̃k

k − SkΦx̂k
k. (6.2.29)

In order to write everything in terms of covariances we multiply both sides of equation (6.2.29)
by the respective transposes and take expected values:

E
[
(x̃N

k − Skx̂
N
k+1)(x̃

N
k − Skx̂

N
k+1)

T
]
= E

[
(x̃k

k − SkΦx̂k
k)(x̃

k
k − SkΦx̂k

k)
T
]
, (6.2.30)

and for more clarity in the passages, we will address the two expectations above one by one. Let’s
start by considering the LHS of the above equation that can be expanded as:

E
[

x̃N
k x̃NT

k

]

− SkE
[

x̂N
k+1x̃

NT

k

]

− E
[

x̃N
k x̂NT

k+1

]

ST
k + SkE

[

x̂N
k+1x̂

NT

k+1

]

ST
k , (6.2.31)

here, the firs expectation is clearly the smoothed covariance at time tk

E
[

x̃N
k x̃NT

k

]

= PN
k , (6.2.32)

while for the second and third expectations coming from the cross product

E
[

x̂N
k+1x̃

NT

k

]

= x̂N
k+1E

[
x̂N
k − xk

]

= x̂N
k+1x̂

N
k − x̂N

k+1E [xk|YN ]

= x̂N
k+1x̂

N
k − x̂N

k+1x̂
N
k = 0

(6.2.33)

where we have considered the fact that x̂ is not a random quantity, but it expresses a conditional
mean coming from properly assumed probability density functions (see (6.2.7) and (6.2.8)), and
the expectation is conditioned on the knowledge of all measurements up to time tN , that is YN .
Accordingly, the fourth expectation gives

E
[

x̂N
k+1x̂

NT

k+1

]

= x̂N
k+1x̂

NT

k+1, (6.2.34)

however, it is more useful for later to consider the following expression:

PN
k+1 = E

[
(x̂N

k+1 − xk+1)(x̂
N
k+1 − xk+1)

T
]

= x̂N
k+1x̂

NT

k+1 − x̂N
k+1E

[
xT
k+1|YN

]
− E [xk+1|YN ] x̂NT

k+1 + E
[
xk+1x

T
k+1

]

= −x̂N
k+1x̂

NT

k+1 + E
[
xk+1x

T
k+1

]

(6.2.35)

so that

x̂N
k+1x̂

NT

k+1 = E
[
xk+1x

T
k+1

]
−PN

k+1. (6.2.36)

Moreover, considering that xk+1 is the propagation of the actual state xk to time tk+1 under
the influence of process noise uk, we can write

xk+1 = Φ(tk+1, tk)xk + Γ(tk+1, tk)uk, (6.2.37)

and substituting in equation (6.2.36) yields

x̂N
k+1x̂

NT

k+1 = ΦE
[
xkx

T
k

]
ΦT + ΓQkΓ

T −PN
k+1. (6.2.38)

Now that the first expectation in equation (6.2.30) has been completely expanded, it is time
to perform similar passages for the expectation in the right hand side, so we begin by performing
multiplications:
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E
[

x̃k
kx̃

kT

k

]

− SkΦE
[

x̂k
kx̃

kT

k

]

− E
[

x̃k
kx̂

kT

k

]

ΦTST
k + SkΦE

[

x̂k
kx̂

kT

k

]

ΦTST
k , (6.2.39)

then, for the first expectation we have

E
[

x̃k
kx̃

kT

k

]

= Pk
k, (6.2.40)

the second and third expectations are null, similarly to equation (6.2.33)

E
[

x̂k
kx̃

kT

k

]

= x̂k
kE
[
(x̂k

k − xk)
T
]

= x̂k
kx̂

kT

k − x̂k
kE
[
xT
k |Yk

]

= x̂k
kx̂

kT

k − x̂k
kx̂

kT

k = 0

(6.2.41)

where again x̂ is not a random quantity but it is a conditional mean, and the expectations are
conditioned on thre knowledge of all measurements up to time tk, that is Yk. The last expectation
in (6.2.40) is

E
[

x̂k
kx̂

kT

k

]

= x̂k
kx̂

kT

k (6.2.42)

but again, we should consider a more convenient expression for later computations given by

Pk
k = E

[
(x̂k

k − xk)(x̂
k
k − xk)

T
]

= x̂k
kx̂

kT

k − x̂k
kE
[
xT
k |Yk

]
− E [xk|Yk] x̂

kT

k + E
[
xkx

T
k

]

= −x̂k
kx̂

kT

k + E
[
xkx

T
k

]
,

(6.2.43)

from which we get

x̂k
kx̂

kT

k = E
[
xkx

T
k

]
−Pk

k. (6.2.44)

At this point, using equations (6.2.44) and (6.2.40) inside (6.2.39), and equations (6.2.38) and
(6.2.32) inside (6.2.31) to rewrite equation (6.2.30), we arrive at

PN
k + Sk

(
ΦE

[
xkx

T
k

]
ΦT + ΓQkΓ

T −PN
k+1

)
ST
k = Pk

k + SkΦ
(
E
[
xkx

T
k

]
−Pk

k

)
ΦTST

k ,

PN
k + Sk

[
ΓQkΓ

T −Pk
k+1

]
ST
k = Pk

k − SkΦPk
kΦ

TST
k ,

PN
k = Pk

k + Sk

[
PN

k+1 − ΓQkΓ
T −ΦPk

kΦ
T
]
ST
k ,

(6.2.45)

and recognising that the square brackets contain Pk
k+1 given that

ΦPk
kΦ

T + ΓQkΓ
T = Pk

k+1, (6.2.46)

finally yields:

PN
k = Pk

k + Sk

[
PN

k+1 −Pk
k+1

]
ST
k . (6.2.47)

Equations (6.2.47) and (6.2.25) are used together in the backward recursion to compute the
smoothed estimates and covariances at every observation time tk.
One interesting feature of the RTS smoother algorithm is the fact that unlike the forward-backward
smoother, during the backward phase, no information from measurements seems to appear, which
is also suggested by the absence of any observation-state mapping matrix Hi. Nevertheless, this
absence of information is only apparent, since it is implicitly contained is the probability density
functions (6.2.2) - (6.2.6) and the backward RTS recursive algorithm is a proper combination
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of a priori and a posteriori information from the forward filter, which clearly, already contains
information from the entire set of measurements. On the other hand, the backward phase of the
forward-backward smoother, explicitly processes information from measurements one at a time
just like the forward filter, in fact, here the smoother is a proper combination of the results from
two independent filters rather than a recursive combination of results from one forward filter.

6.2.1 RTS Smoother Algorithm

The RTS smoother algorithm begins with a conventional Kalman filter that processes all observa-
tions from t0 to tN . Thus, the equations for this phase remain the same as the ones described in
(6.1.25) up to (6.1.29), however, using current notation where the subscript indicates the time of
interest and the superscript indicates the conditioning measurements, we can rewrite them as

Ki = P
(i−1)
i HT

i

[

HiP
(i−1)
i HT

i +Ri

]−1

(6.2.48)

x̂i
i = x̂i−1

i +Ki

[

yi −Hix̂
(i−1)
i

]

(6.2.49)

Pi
i = [I−KiHi]P

(i−1)
i (6.2.50)

x̂i
i+1 = Φ(ti+1, ti)x̂

i
i (6.2.51)

Pi
i+1 = Φ(ti+1, ti)P

i
iΦ

T (ti+1, ti), (6.2.52)

and now, the quantities x̂i
i+1, P

i
i+1, x̂

i
i and Pi

i are stored. As previously discussed, the forward
filter ends at time tN giving the following a posteriori values after incorporating measurements at
the final time,

x̂N
N

PN
N ,

(6.2.53)

and this values are used as the starting conditions for the backward smoothing from tN to t0, that
is performed as

x̂N
i = x̂i

i + Si

[
x̂N
i+1 −Φx̂i

i

]
, (6.2.54)

PN
i = Pi

i + Si

[
PN

i+1 −Pi
i+1

]
ST
i . (6.2.55)

where the smoothing estimate gain matrix Si is

Si = Pi
iΦ

T (ti+1, ti)
(
Pi

i+1

)−1
. (6.2.56)

One relevant aspect on smoothing that emerge from equation (6.2.56) is the fact that in the
absence of process noise, the smoothed estimate will be the same as the filtered one. In fact, we
can rewrite Si considering that

Pi
i = Φ−1(ti+1, ti)

[
Pi

i+1 − Γ(ti+1.i)QiΓ
T (ti+1, i)

]
Φ−T (ti+1, ti) (6.2.57)

and substituting (6.2.57) into (6.2.56) gives

Si = Φ−1(ti+1, ti)
[
I−QiP̄

−1
i+1

]
, (6.2.58)

which, for the case of Q = 0 becomes

S = Φ−1(ti+1, ti), (6.2.59)
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leading to

x̂N
i = Φ−1(ti+1, ti)x̂

N
i+1

= Φ(tk, tk+1)x̂
N
k+1,

(6.2.60)

and

PN
i = Φ−1(ti+1, ti)P

N
i+1Φ

−T (ti+1, ti)

= Φ(ti, ti+1)P
N
i+1Φ

T (ti, ti+1),
(6.2.61)

where we have used the property of the state transition matrix for which Φ−1(ti, tj) = Φ(tj , ti).
Equations (6.2.60) and (6.2.61) show that in the absence of process noise, smoothing simply be-
comes backward propagation, and while additional measurements are still helpful to get better
estimates of constant states, there is no point in using smoothing techniques in the absence of ran-
dom components. This result can be extended to the case in which the state vector is composed
of dynamical components affected by process noise and bias components that are not affected by
process noise, here, the latter will not be smoothable. Moreover, the dynamical components in the
state vector may not all be directly affected by process noise. For example one may introduce noise
only in the acceleration component, meaning that velocity and position are still under the influence
of noise but separated by integration, and in general the more a component is directly affected
by noise the more it is smoothable. An important consequence of these considerations is the fact
that in the absence of process noise, meaning that there is no random component in the dynamical
model used for propagation, the batch estimate will actually give the smoothed solution. However,
as noted before, the batch processor gives rise to important difficulties in trying to include the
effects of process noise, and so, if one wish to consider its effects a smoothing algorithm is the right
choice to overcome this trouble.
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Perform conventional Kalman filter
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i = x̂i−1
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Figure 6.2.1: Flow chart for the RTS smoother algorithm.
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Chapter 7

Simulations and Test Cases

In this Chapter, the results of the simulations conducted to test the various POD techniques dis-
cussed in this dissertation are presented and analyzed, in particular, all POD algorithms are tested
on the Sentinel-3A satellite. The code used to generate these results have been written in Fortran,
utilizing a variety of pre-existing libraries and subroutines developed, and made available for this
work, by the Navigation and Space Geodesy Group led by Professor Casotto of the University of
Padova. These libraries contain sophisticated subroutines that are able to model various forces
acting on a satellite, as well as managing coordinate and time transformations which are crucial
in precise orbit determination applications. Nonetheless, all the routines associated to the filtering
techniques discussed in this thesis have been developed independently, along with an Earth radi-
ation pressure force model and other various utilities. The post-processing phase, which involves
managing the output data and formatting it into graphs, was instead carried out in MATLAB. As
for the pre-processing phase, the official data for the Sentinel-3A satellite used as input for all the
simulations are generated at ESOC and provided by ESA. Brief information about the satellite and
its representation are given in table 7.1 and figure 7.0.1. These data are in the form of estimated
inertial position and velocity every 10 seconds over and arc of 7 days starting from 2017-06-03
,22:00:51 (TT) or 2 457 908.41725907 (JD). The following Section, after providing general informa-
tion about Sentinel-3A, discusses the pre-processing phase of generating measurement data, while
subsequent Sections delve into a detailed discussion and analysis of the results obtained.

Table 7.1: Sentinel-3A general information.

Item Description

S3A orbit

near-polar sun-synchronous LEO orbit
Repeat cycle: 27 days
Period: 100.99 min

Mean altitude: 814.5 km
eccentricity: 0.000309
Inclination: 98.65 deg

S3A
spacecraft parameters

Mass: 1128.0 kg
CoM position: (1.533 m, -0.007 m, 0.037 m)

Reference area Drag: 7 m2

Reference area Rad: 12 m2
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Figure 7.1.1: Number of visible ground stations vs time. As we can
see observability is adequately distributed over the estimation arc, with
a mode of 2 visible ground stations. The gray vertical bands indicate
periods of non-observability.

Figure 7.1.2: Locations and identifiers of the 50 ground stations used to
generate observations.
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7.2 Sentinel-3A Orbit Determination through Batch Pro-

cessing

The first results we are going to discuss, are related to the batch processing technique which we
have detailed in Chapter 4. We recall that the main peculiarity of this approach lies in the fact
that measurements are processed after they have been collected during the whole observation arc,
hence the name batch estimation. As previously stated, the observations are generated in the form
of instantaneous ranges using the methods described in Section 3.3. These, are computed from an
available estimated orbit of Sentinel-3A and the coordinates of fifty Ground Stations distributed
over the Earth’s surface (Figure 7.1.2). The general computational algorithm used in the Fortran
code follows the structure shown in figure 4.3.1, where estimation is performed through non-linear
least squares with a priori information in the form of an iterative differential corrections process.
Here, every iterations computes corrections to state vector at epoch and we recall that the process
terminates when convergence is achieved. In general, the initial guess for the state vector at epoch
for every estimation process in this Section is perturbed to some extent in order to further stress
the estimation algorithm and test its convergence. We now proceed to examine the results obtained
for various formulations of the batch processor, where both the box-wing and cannon-ball satellite
models are tested, and the discussion of the parameters segmentation procedure is studied as a
means of improving the cannon-ball model estimation.

7.2.1 Box-Wing Model

The first results shown in this Section are related to the batch orbit determination using a so called
box-wing model. In this case, when performing numerical propagation of the reference trajectory,
it was possible to account for the satellite’s attitude law and its cross-sectional variations over
time thanks to the available Sentinel-3A box-wing model and attitude law in the form of Fortran
libraries, provided by the Navigation and Space Geodesy Group of Professor Casotto at University
of Padova.

When discussing results in this Section we will often refer to initial values and nominal value,
where tables 7.2 and 7.3 provide values for the initial settings of every batch estimation that is
discussed here. Note how for position and velocity we have an initial value, that is the one used as
the initial guess of the state vector at epoch t0 and a nominal value, that is the true dynamical state
at epoch corresponding to the true orbit model from which observations are generated. Moreover,
a priori information is represented by x̄ and σ̄, that is respectively the initial correction guess and
its associated uncertainty, then, ∆X is the magnitude of the aforementioned perturbation that is
added to the nominal value to obtain the initial state with which the reference orbit is propagated.
Similar considerations are valid for the parameters table, but here, only an initial value is present
and x̄ is set to 0, knowing that this choices are less influential than the position and velocity
initialization.

Table 7.2: Dynamical initial conditions and a priori information.

Parameter Initial Value Nominal Value ∆X x̄ σ̄

X (m) −3 198 972.3572464 −3 199 072.3572464 100 10 1000

Y (m) −1 651 187.851021800 −1 651 087.8510218 −100 −10 1000

Z (m) 6 205 796.0563044 6 205 596.0563044 200 20 1000

Ẋ (m/s) 4 459.970115317 4 459.870115317 0.1 0.01 1

Ẏ (m/s) 4 790.627269888 4 790.577269888 0.05 −0.005 1

Ż (m/s) 3 565.497695423 3 565.427695423 0.07 0.007 1
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Table 7.3: Parameters initial values and a priori information.

Parameter Initial Value x̄ σ̄

CR 1 0 0.5

CD 2.2 0 0.5

ARTN (m/s2) 0 0 10−10

DRTNi
(m/s2) 0 0 10−10

SRTNi
(m/s2) 0 0 10−10

First of all, we begin by considering the effects of the initial reference state X∗
0 on the first batch

iterations in order to assess the convergence capability of the algorithm. As the previous tables
shown, the initial state value is perturbed by hundreds of meters in position and centimeter per
second level in velocity. This disturbance might not seem so drastic, however, its effects become
more appreciable as propagation evolves over time. Figure 7.2.1 shows the trend of the observation
residuals (difference between observed and computed ranges) and the orbit residuals (difference
between true and estimated orbit) over time for the first bacth iteration. Note how this apparently
harmless initial perturbation leads to observation residuals of more than 60 km and orbit residuals
of tens of kilometers in radial and transverse direction, which remarkably stresses the algorithm to
some extent.
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Figure 7.2.1: Ranges residuals (left) and difference between true and
estimated orbit (right) at first iteration. Vertical gray bands represent
periods of non-observability. Note how a perturbation on initial condi-
tion of hundreds of meters in position and few centimeters per second
in velocity, lead to tens of kilometers in measurement residuals after one
day.

On the other hand, figures 7.2.2 and 7.2.3 show the observation and orbit residuals at conver-
gence. Here we note how the observation residuals have dropped down to few centimeters, 6.86 cm
of RMS exactly, which is true also for the orbit residuals that now display centimeter-level values
in radial and transverse direction, while the normal component shows an RMS value of 6.1 cm.
These two figures alone demonstrate that the developed batch algorithm has good stability and
convergence, where as few as 5 iterations lead to satisfying results in the face of the strong initial
perturbations. In this regard, tables 7.4 and 7.5 illustrate the result obtained when a cannon-ball
satellite model is used in batch estimation. Regarding the dynamical state, it is interesting to note
how the difference between the initial value and the estimated value, indicated by ∆X, actually
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compensates for the initial added perturbation, which is a sign of good algorithm performance.
In fact, since we have the true orbit at our disposal, it is reasonable to expect that an adequate
estimation would eventually lead to an absorption of all the perturbing effects that has been su-
perimposed to the true solution, net of force modeling shortcomings and measurement noise. With
regard to the estimated parameters it is interesting to note how especially the drag coefficient CD

approaches the unitary value starting from the 2.2 drag coefficient of a sphere. Knowing that this
parameter is a scale factor for the drag acceleration, this fact indicates that the modeled attitude
law, together with the box-wing model, is able to properly emulate the true dynamics of the satel-
lite interaction with the higher atmosphere. On the other hand, the CR parameter goes from 1 to
1.38 and for the empirical accelerations only the bias and once-per-rev parameters are estimated,
with the twice-per-rev coefficients being numerical zeros. Regarding these last parameters, we
should underline how the empirical accelerations have been constrained with a properly low value
of their σ̄ to be lower than the lowest modeled acceleration. This is done to ensure that these
“artificial” perturbation will not absorb effects related to already modeled force.

Figure 7.2.4 shows the modeled accelerations profile over time for the whole estimation arc of 1
day. These accelerations are computed from the orbit propagated with the estimated initial condi-
tions after the batch algorithm has converged, an here, we focus on the SRP and drag profiles that
will be a subject of discussion ih the next Section. In particular, note how the SRP acceleration
exhibits periodical downward cusps which are the result of the satellite’s attitude law, as well as
gaps in between period of illumination caused by eclipses.

Figure 7.2.2: Difference between Observed and Computed ranges (O-C)
at convergence (last iteration). vertical gray bands represent periods of
non-observability. As we can see, the measurement residuals RMS value
for this case is 6.86 cm against the 1 cm of σ error added when generating
measurements.

One last aspect that must be addressed before proceeding with other batch estimation results,
is related to the obtained orbit residuals in RTN components (figure 7.2.3). In general, their distri-
bution and information content can be a good measure of the estimation algorithm performance.
In fact, if one were able to perfectly model the real dynamics describing the satellite motion, the
estimated residuals should behave as close as possible to a white random sequence with zero mean
and standard deviation reflecting the measurements noise strength, however in this case, their pro-
file clearly exhibit some information content. Figure 7.2.5 shows the amplitude spectral analysis
of the orbit residuals, confirming that they all contain signals with characteristic frequencies in
proximity first of all to the orbital rate, whereas radial and transverse components exhibit peaks
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Figure 7.2.3: Difference between true and estimated orbit in RTN. Note
how every component clearly contains signal, especially in the orbital
period (once-per-rev), while the other evident frequency appears to be
of near-diurnal nature.

also near the diurnal frequency. This behavior might find its explanation in the lack of a model for
the ocean tides in the overall force model that is used to propagate the satellite’s orbit, however,
deeper investigation is needed to confirm this hypothesis, requiring a thorough study of current
theories on ocean tides. In fact, even though we have a general knowledge of the frequency content,
the orbit itself acts as a filter with its periodic motion, masking and distorting the true frequencies
associated with a particular perturbing acceleration, making it extremely difficult to trace these
signals back to the actual source.

Table 7.4: Batch Estimation results: position and velocity.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

X (m) −3 198 972.3572464 −3 199 072.3572464 −99.972 0.027

Y (m) −1 651 187.851021800 −1 651 087.8510218 100.029 0.029

Z (m) 6 205 796.0563044 6 205 596.0563044 −200.009 0.025

Ẋ (m/s) 4 459.970115317 4 459.870115317 −0.10001 0.0000218

Ẏ (m/s) 4 790.627269888 4 790.577270892 −0.04999 0.0000173

Ż (m/s) 3 565.497695423 3 565.427776769 −0.06991 0.0000369
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Figure 7.2.4: Trend of accelerations over time. Note the presence of the
empirical accelerations which have been constrained to be weaker than
every other modeled effect.
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Figure 7.2.5: Amplitude spectral analysis of difference between true and
estimated orbit in RTN coordinates. Note how every component ex-
hibits peaks near the orbital frequency, whereas the transverse direction
displays a strong peak in the near-diurnal frequency.

122



7.2. SENTINEL-3A ORBIT DETERMINATION THROUGH BATCH PROCESSING

Table 7.5: Batch Estimation results: parameters.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

CR 1 1.38 0.38 0.0064

CD 2.2 0.92 −1.28 0.0452

AR (m/s2) 0 0.1× 10−12 0.1× 10−12 10−12

AT (m/s2) 0 1.59× 10−11 −6.7× 10−12 10−12

AN (m/s2) 0 −0.43× 10−12 −2.1× 10−12 10−12

DR1
(m/s2) 0 1.7× 10−11 1.7× 10−11 10−10

SR1
(m/s2) 0 3.2× 10−11 3.2× 10−11 10−11

DT1
(m/s2) 0 6.4× 10−11 6.4× 10−11 10−11

ST1
(m/s2) 0 −3.6× 10−11 −3.6× 10−11 10−11

DN1
(m/s2) 0 −1× 10−11 −1× 10−11 10−11

SN1
(m/s2) 0 −2× 10−11 −2× 10−11 10−11

DRTN2
(m/s2) 0 ≈ 0 ≈ 0 −

SRTN2
(m/s2) 0 ≈ 0 ≈ 0 −
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7.2.2 Cannon Ball Model and Parameters Segmentation

This Section discusses and analyzes the results of batch estimation using a cannon-ball satellite
model in contrast to the previously discussed box-wing model. In particular, the effects of parameter
segmentation is addressed as a possible solution to improve the orbit determination when a box-
wing model is not available.

The batch algorithm initialization for the cannon-ball case is identical to the one used in
the previous Section, thus, we still refer to tables 7.2 and 7.3 for the initial values and a priori
information. The only difference is that the CR and CD parameters now start from the estimated
values previously obtained with the box-wing model. First, we consider the case in which the batch
estimation is performed with single constant values for CD and CR, i.e., they are not segmented.
Figure 7.2.6 and tables 7.6-7.7 show the resulting estimated orbit residuals and initial state vector,
where again, convergence is achieved in 5 iterations. By examining the observation residuals we
see how even for this case the RMS vale is under 10 cm, however, as can be expected, it has
increased of about 2 cm. This quantity might seem irrelevant at first, but at these levels, it
represents a remarkable worsening of the orbit determination performances. The behavior of the
CD and CR parameters is also worth noting. We can see how, starting from the values estimated
with the box-wing model, the SRP coefficient grows to 1.59, while the CD parameter exhibits an
exceptional increase from 0.92 to 2.83, reflecting the significant effect of properly modeling or not
the actual satellite’s shape and attitude law. Finally, figure 7.2.7 shows the accelerations profile
for the cannon-ball satellite model. Here, in contrast to the box-wing case, we see how estimating
a single CR value does not allow the modeled SRP to capture the actual dynamics arising from
the satellite motion. In fact, by comparing this results with figure 7.2.4, we can see how the SRP
profile has flattened out and the characteristic cusps are not present. The Drag acceleration profile
on the other hand, remains almost the same, indicating that a properly estimated single CD value
is able to capture the fundamental dynamics involved in the satellite-atmosphere interaction.

Figure 7.2.6: Observation residuals for the batch estimation with
cannon-ball satellite model.

We now proceed to examine the result that are obtained with the segmentation of CR and CD

parameters, which has been performed following the techniques described in Section 4.4. First, we
can see in figure 7.2.8 how there is a conspicuous improvement in the observation residuals RMS
value which has decreased to 4.73 cm, which is even lower that the 6.86 cm value for the bow-wing
model. However, care is required when drawing conclusions from the observation residuals, in fact,
a low RMS value is not always an indicator of good orbit determination since an instantaneous
range measurement is geometrically “weak” under certain circumstances. As a matter of fact, hav-
ing the “real” orbit at our disposal, allows for a better performance assessment. In confirmation of
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Table 7.6: Batch Estimation results: position and velocity for the
cannon-ball satellite model.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

X (m) −3 198 972.3572464 −3 199 072.2164357 −99.861 0.027

Y (m) −1 651 187.8510218 −1 651 088.0261696 99.925 0.029

Z (m) 6 205 796.0563044 6 205 596.0571736 −199.992 0.025

Ẋ (m/s) 4 459.970115317 4 459.870082856 −0.09998 0.0000218

Ẏ (m/s) 4 790.627269888 4 790.577278232 −0.04995 0.0000173

Ż (m/s) 3 565.497695423 3 565.427799766 −0.06996 0.0000369

Table 7.7: Batch Estimation results: parameters for the cannon-ball
satellite model.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

CR 1.30 1.59 0.292 0.0064

CD 0.92 2.87 1.956 0.0452

this, a careful interpretation of figure 7.2.11, reveals that in terms of orbit residuals the cannon-ball
model with segmented parameters has not led to an improvement in overall orbit determination if
compared to the box-wing case, in fact, every RTN component displays a higher RMS value.

Nonetheless, the process of parameter segmentation has remarkably improved the orbit estima-
tion if compared to the previous cannon-ball model with single parameters. This improvement is
not only suggested by a decrease in residuals RMS values, but also from the amplitude spectral anal-
ysis shown in figure 7.2.12. Here, we compare the spectrum of the segmented and non-segmented
case, and as we can see, the parameter segmentation process leads to an overall decrease in ampli-
tude, especially near the orbital frequency, suggesting that segmentation is able to absorb effects
that the cannon-ball model alone is too “rigid” to capture. This is further confirmed by examining
the CR and CD estimated values, as well as the consequent acceleration profiles. Figures 7.2.9 and
7.2.10 demonstrate how these parameters are no longer constrained to a single vale that is valid
throughout the whole estimation arc, now, they are a collection of independent parameters each
valid during a certain period along the orbit. We can note how they exhibit a somewhat period-
ical behavior suggesting that the segmentation is trying to compensate both the lacking modeled
attitude law and the variable cross-section associated to a box-wing model. As a consequence,
from figures 7.2.13 and 7.2.14, we can appreciate how the segmented parameters, especially the
SRP coefficient CR, is approaching the acceleration profile that would be obtained with a box-wing
model, further suggesting that parameter segmentation is a powerful tool for orbit determination
when we lack of a detailed satellite geometry and attitude.
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Figure 7.2.7: Trend of modeled acceleration vs time with cannon-ball
satellite model. Note how the SRP profile is flat during period of illumi-
nation, in contrast to the acceleration profile obtained with the box-wing
model.

Table 7.8: Batch Estimation results: position and velocity for the pa-
rameters segmentation case.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

X (m) −3 198 972.3572464 −3 199 072.2151322 −99.857 0.027

Y (m) −1 651 187.8510218 −1 651 087.9043893 99.946 0.029

Z (m) 6 205 796.0563044 6 205 596.0641031 −199.992 0.025

Ẋ (m/s) 4 459.970115317 4 459.870131903 −0.09998 0.0000218

Ẏ (m/s) 4 790.627269888 4 790.577313108 −0.04995 0.0000173

Ż (m/s) 3 565.497695423 3 565.427731181 −0.06996 0.0000369

Figure 7.2.8: Observation residuals for the batch estimation through
parameter segmentation.
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Figure 7.2.9: Estimated CR values through parameter segmentation.
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Figure 7.2.10: Estimated CD values through parameter segmentation.
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Figure 7.2.11: Orbit residuals for the batch estimation through param-
eter segmentation.

0 1 2 3 4 5 6

f (Hz) 10
-4

0

0.01

|R
(f

)|
 (

m
) single

segmented

orbital period

half period

day

0 1 2 3 4 5 6

f (Hz) 10
-4

0

0.01

0.02

|T
(f

)|
 (

m
) single

segmented

orbital period

half period

day

0 1 2 3 4 5 6

f (Hz) 10
-4

0

0.05

|N
(f

)|
 (

m
) single

segmented

orbital period

half period

day

 Amplitude Spectrum of orbit residuals: Segmentation

Figure 7.2.12: Orbit residuals spectrum for the batch estimation through
parameter segmentation.
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Figure 7.2.13: SRP and Drag acceleration profiles. Comparison between
parameters segmentation and cannon-ball model with single parameters.
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Figure 7.2.14: SRP and Drag acceleration profiles. Comparison between
parameters segmentation and box-wing model with true attitude law.
Note how the CR segmentation enables the SRP acceleration to approach
the true profile arising from the satellite’s attitude motion.
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7.2.3 Earth Radiation Pressure Effects

A good part of the research work carried out for this thesis has been dedicated to the analysis and
development of an Earth Radiation Pressure model. This model is intended to expand the already
available set of Fortran routines that compute the major accelerations acting on a satellite, and
its details and algorithmic implementation has been discussed in Section 2.6. As explained there,
the importance of being able to account for fine and weak accelerations associated to precision
modeling, is a crucial aspect for a bacth estimation process rather than a real-time estimator. This
is due to the fact that when dealing with a batch processor, we are estimating the state vector at
a certain reference epoch, then, we want this single set of parameters to be able to fit an entire
batch of measurements over a more or less extended temporal arc, making it particularly sensitive
to model incompleteness and approximations. Accordingly, this Section investigates the effects
of the inclusion of an ERP model, and the estimation of its parameters, when performing orbit
determination through batch processing.

The simulations in this case are performed with a non-segmented box-wing model, in view
of this, the ERP results will be compared to the ones obtained in Section 7.2.1, whereas the
initialization remains the same. Here, however, the satellite reflectivity parameter ηE associated to
the ERP model is added to the estimation state vector as shown in table 7.9. First, by examining
the observation residuals (figure 7.2.15), we can see that there is a reduction in the RMS value
of about 2 mm if compared to the box-wing case without ERP. This reduction has shown to
be consistent during many different simulations. Moreover, figure 7.2.17 compares the spectrum
of orbit residuals for the box-wing model with and without ERP, here, we can see how slight
reductions in the peaks near the orbital frequency are visible, especially for the radial and transverse
components, suggesting that the added acceleration is benefiting the orbit determination process,
albeit only to a low extent.

Another aspect that suggests the correct modeling and implementation of the earth radiation
pressure acceleration lies in its comparison with the SRP perturbation. As stated in Section 2.6,
when well implemented, the ERP should be around 15% to 25% of the SRP acceleration, with
exceptional values of 35% for very low satellites. Figure 7.2.19, shows that the estimated orbit
gives an acceleration profile for the SRP with an RMS of 6.1 × 10−8 m/s2, while the RMS for
ERP is 1.23× 10−8 m/s2, whereas their ratio gives an approximate value of 20%, which is in good
accordance with the expected result.

Finally, tables 7.10 and 7.11 show the results of the batch estimation with the inclusion of ERP.
As we can see, the ηE parameter does not deviate much from its starting value, whereas the CD

and CR parameters remains substantially the same as the ones estimated in section 7.2.1, as the
ERP effect is too weak to cause substantial changes in parameters estimation.

Table 7.9: Parameters initial values and a priori information. ERP case

Parameter Initial Value x̄ σ̄

CR 1 0 0.5

CD 2.2 0 0.5

ηE 0.13 0 0.05
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Figure 7.2.15: Observation residuals for the batch estimation when ERP
is modeled and estimated.

Table 7.10: Batch Estimation results: position and velocity. ERP case.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

X (m) −3 198 972.3572464 −3 199 072.3448428 −99.987 0.027

Y (m) −1 651 187.851021800 −1 651 087.8541227 99.996 0.029

Z (m) 6 205 796.0563044 6 205 596.0326844 −200.023 0.025

Ẋ (m/s) 4 459.970115317 4 459.870091958 −0.10002 0.0000218

Ẏ (m/s) 4 790.627269888 4 790.577264603 −0.05000 0.0000173

Ż (m/s) 3 565.497695423 3 565.427784770 −0.06991 0.0000369
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Figure 7.2.16: Orbit residuals in RTN components for the case of mod-
eled ERP acceleration.
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Figure 7.2.17: Comparison of orbit residuals spectrum with and without
the modeled ERP acceleration. Note how there is a general reduction
in amplitude around the orbital frequency, especially for the radial and
transverse components.
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Figure 7.2.18: Trend of modeled acceleration vs time. Note the presence
of the ERP acceleration below the SRP profile.

Table 7.11: Batch Estimation results: parameters. ERP case.

Parameter Initial Value X̄0 Estimated Value X̂0 ∆X σ̂

CR 1 1.42 0.424 0.0064

CD 2.2 0.93 −1.269 0.0452

ηE 0.13 0.134 0.004 0.0498
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Figure 7.2.19: ERP vs SRP acceleration.
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Figure 7.2.20: Estimated ERP acceleration in RTN components.
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7.3 Sentinel-3A Real-Time Orbit Determination

In this section the orbit determination process is carried out with real-time estimators. In par-
ticular, the Extended Kalman Filter and the effect of process noise are the focus of the following
presented results, which still come from the orbit estimation of Sentinel-3A with generated range
measurements as was the case for the batch estimation. The difference here, is that observations
are not processed all at once as a single batch of data to estimate the state at a reference epoch
t0, instead, measurements are read and processed sequentially one instant at a time, providing
a state estimate at every time of observation. This characteristic makes the Kalman filter suit-
able for on-line applications such as the Precise Onboard Orbit Determination (P2OD), where the
state estimate is carried out directly onboard the satellite and is continuously updated by periodic
measurements.

7.3.1 The Extended Kalman Filter

Here we illustrate and discuss the results obtained with the EKF algorithm developed in Fortran
as described in figure 5.2.1, with the addition of process noise and estimation of its parameters
as illustrated in Section 5.3.2. We recall that the Extended formulation of the Kalman filter uses
each new estimate as the new reference trajectory, while the estimation of process noise is peculiar
to the Dynamic Model Compensation approach (DMC), where the unmodeled accelerations are
represented by a first-order three-dimensional Gauss-Markov process. Before going on with the
discussion of the results, we must underline how every simulation related to real time estimation,
including the forward filter in the smoothing process discussed in the next Section, will use a
reduced dynamical model (reduced-dynamic approach) compared to the case of batch estimation.
The reason for this, is the already mentioned suitability of the EKF to onboard applications,
whereas computational budget is always strictly limited to a low extent, meaning that there are
not enough resources to compute complex and detailed force models. Moreover, as the state is
periodically updated by new measurements, the Kalman filter is less subjected to long propagation
periods as is the case for the batch estimator. This suggests that other than reducing the modeled
dynamics, a less sophisticated integrator can be used, usually a Runge-Kutta-Hull(2)4 is sufficient
for most applications.

Figures 7.3.1 and 7.3.2 show the observation and orbit residuals for the EKF algorithm applied
to the Sentinel-3A satellite. At first, we immediately notice how in both cases the real-time filter
outperforms the batch estimator with an RMS in observation residuals of 1.32 cm, and RMS in
orbit residuals of 1.94 cm for position and 33.4 µm/s for velocity. It is noted that here, the EKF
begins with the same initial values and a priori information used in the previous batch estimates.
this means that the filter exhibit very good stability and convergence, even in the face of numerous
periods of low or absent visibility. With this regard it is interesting to note how a correlation can
be identified between higher peaks in residuals and periods in which fewer or none stations are in
sight, highlighting the real-time nature of the EKF algorithm whose estimation capability strongly
depends on currently available information density and content (recall the measurement update
phase).

Regarding the parameters estimation we refer to figures 7.3.3 and 7.3.4. In view of the reduced-
dynamics approach and the reduced computational cost associated to real-time filters, the use of a
box-wing model in an EKF approach is seldom implemented. For this reason, a cannon-ball model
is used in every EKF simulation presented here and interestingly, after an initial transient, both the
CD and CR approach values that are in good accordance with the estimated parameters obtained
in batch estimation with the cannon-ball satellite model, thus suggesting a sort of consistency
between both orbit determination procedures.

Finally, figure 7.3.5 shows the profile of the estimated process noise acceleration. Remember
that this is the deterministic part of the process noise, whereas the random part contributes in
preventing filter saturation as will be shown later on. Note how every estimated process noise
component is on the order of few nm/s2 except for the y component that reaches an RMS value of

134



7.3. SENTINEL-3A REAL-TIME ORBIT DETERMINATION

roughly 10 nm/s2, which is still in good accordance with typical process noise value for this type
of satellites.

Figure 7.3.1: Observation residuals for the Extended Kalman Filter esti-
mation (above) and number of visible round stations (below). Note how
there is a correlations between high peaks in O-C values and periods of
low or absent visibility.
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Figure 7.3.2: Orbit residuals (position and velocity) for EKF estimation.
Note how there is a correlation between high peaks in residuals and
periods of low or absent visibility.
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Figure 7.3.3: CR parameter value over time during EKF estimation.
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Figure 7.3.4: CD parameter value over time during EKF estimation.
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Figure 7.3.5: Deterministic process noise ε(t) estimation with EKF.
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7.3.2 The Effect of Process Noise

This Section demonstrates the crucial role of the process noise in a real-time filter like the EKF
algorithm. As explained in Section 5.3 the importance of this added noise lies in its capacity
to avoid the so called filter divergence. In the absence of process noise we have shown how the
Kalman gain K approaches zero as time passes, meaning that the filter becomes insensitive to new
observations and will solely rely on the a priori estimate x̄. This a priori value in turn, comes
from the reference trajectory propagation which will always be in error to some extent, eventually
leading to divergence and filter saturation. From another point of view, this divergence is caused by
the the solution covariance matrix P approaching zero, which indicates that the computed estimate
has no uncertainty, thus erroneously leading to the assumption that the estimated state represents
the true exact solution. Here, the EKF algorithm results without the inclusion of process noise are
shown, validating its vital importance when using a real-time approach to the orbit determination
problem.

Figures 7.3.6 and 7.3.7 evidently demonstrate the detrimental effects arising from the lack of
process noise in a Kalman filter. Both observation and orbit residuals exhibit a divergent trend,
with values that are now of meter-level magnitude in contrast to the stable centimeter-level values
obtained with the inclusion of process noise. In addition, if the estimation arc gets longer, higher
residual values can be expected.

However, it is interesting to note how from figures 7.3.8 and 7.3.9 the trend for CR and CD

parameters seems to stabilize somehow near the expected values after a long time, nonetheless, high
magnitude initial transients still confirm the negative performance of EKF without the inclusion
of process noise.

Figure 7.3.6: Observation residuals for the Extended Kalman Filter es-
timation (above) and number of visible round stations (below) without
process noise. Note how there is a clear divergent trend over time.
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Figure 7.3.7: Orbit residuals (position and velocity) for EKF estimation
without process noise. Note how there is a clear divergent trend over
time.
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Figure 7.3.8: Estimated CR parameter without process noise.
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Figure 7.3.9: Estimated CD parameter without process noise.
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7.4 Sentinel-3A Orbit Determination with Smoothing

The last orbit determination technique that have been studied and implemented in Fortran for
this thesis work is the smoother. Chapter 6 showed the algorithm derivation of two main types of
fixed-interval smoothers: the forward-backward and the RTS. The latter has been chosen for the
orbit determination of Sentinel-3A given its more simple and direct implementation that does not
require the use of a backward information filter. For a complete comprehension of the results that
will be shown here, we recall that the general structure of the RTS smoother algorithm consists of a
forward Conventional Kalman Filter (CKF) and then a backward recursion based on stored values
from the forward processing as detailed in figure 6.2.1, in fact, the majority of graphs in this section
compare these two phases to highlight the beneficial effects of smoothing. Moreover, we remember
that the CKF is a Kalman filter where the reference trajectory is not updated after processing each
observation, but is simply propagated for the entire estimation arc. This is necessary to ensure
that the backward recursion is completely independent from the forward filter, or in other words,
it must be assured that observational information does not influence a priori values before the
backward recursion begins. Hereafter, the smoothing process results are discussed and compared
with the Kalman estimation, then, the effects of initial conditions on the smoother algorithm are
shown.

7.4.1 The Smoothed Solution

As usual, we begin by assessing the orbit estimation performance by looking at the observation
and orbit residuals. Figures 7.4.1, 7.4.2 and 7.4.3 demonstrate that a general improvement in the
residuals RMS values is obtained with the smoothed solution when compared to the CKF results,
even if slight (on the order of few millimeters), and note that this is also true when compared
with the EKF results of the previous section (see figures 7.3.1 and 7.3.2). Besides the RMS values,
by looking at these figures it is worth noting how the smoothing process has a greater impact
on reducing the peaks exhibited by the forward filter solution, whereas peaks of 5 cm have been
reduced to around 2 cm for position residuals, while in terms of velocity, peaks of more than
50 µm/s drop down to less than 40 µm/s. This results indicate that a first noticeable impact
of smoothing is that of decreasing the dispersion of residuals around their mean value. As a
matter of fact, the smoothing procedure does not necessarily provides more accurate results, but
rather reduces their uncertainty thus increasing their accuracy, and it is by examining the solution
covariance matrix P that the smoothing effects become more evident. Figures 7.4.8 and 7.4.9 show
a comparison between the trace of P for the forward filter and the smoothed solution separated
into position, velocity and parameters components to ensure dimensional consistency. For position
and velocity we can see that the smoothed covariance is always lower than the filter covariance,
but still follows the evident peaks pattern correlated to periods of poor observability as indicated
by the usual gray vertical bands. This is true everywhere except for the end of the estimation arc
when the backward recursion begins. Here, as explained in Chapter 6, the filter covariance and
the smoothed covariance coincide by definition, see equation (6.1.22). It is also noteworthy how all
the smoother solutions tend to be less jagged, more smooth indeed, which is highlighted in figure
7.4.10, where we see a detail of the comparison between the forward filter solution and smoother
solution for the X position component, but is even more evident for the estimated process noise
in figures 7.4.6 and 7.4.7.

The fact that smoothing seems to have the highest impact on the estimated process noise
parameters actually reflects a crucial aspect that was discussed in Chapter 6 and is here validated
by the results. When treating the theoretical derivation of the smoothing algorithm, we illustrated
how a distinction between some estimation state vector components should be made based on
their nature, in particular, we distinguished dynamical states and bias states as those components
which are, or are not, subjected to the effect of process noise. This difference becomes meaningful
in the current context of smoothing as we demonstrated how bias states are not smoothable, i.e.,
for these components the backward smoothing process become simple backward propagation and
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no beneficial effects can be appreciated. Actually, the more a state is subjected to process noise
the more it is smoothable and this is the reason why the process noise itself is strongly smoothed,
as well as position and velocity, which are subjected to the integrated effects of process noise. On
the other hand, figures 7.4.5 and 7.4.9 show that for the bias states CD and CR, the smoothed
solution is simply the last forward filter solution propagated backwards as a constant, both for
their estimated values and covariances.

Figure 7.4.1: Observation residuals for the smoother algorithm. Above,
the observation residuals for the forward filter are also displayed.
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Figure 7.4.2: Orbit residuals for the forward conventional Kalman filter.

Figure 7.4.3: Orbit residuals for the backward RTS smoother.
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Figure 7.4.4: Estimated values of CD and CR parameters during the
forward Kalman filter.
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Figure 7.4.5: CR and CD parameters during backward smoothing. Since
they are bias states they are not smoothed.
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Figure 7.4.6: Estimated process noise parameters during the forward
Kalman filter.
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Figure 7.4.7: Estimated process noise parameters during the backward
RTS smoother. Since the deterministic portion of the process noise ε(t)
is subjected to process noise itself it is a smoothable dynamical state.
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Figure 7.4.8: Effects of smoothing on the solution covariance matrix P.
Here, the trace of the P matrix elements related to position is shown.

Figure 7.4.9: Effects of smoothing on the solution covariance matrix P.
Here we can see the trace of the P matrix that are related to velocity and
the parameters CR and CD. Note how the velocity is smoothable, being
a dynamical state subjected to noise, while the other two parameters are
not.
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Figure 7.4.10: Filtered corrections vs Smoothed corrections. The figure
on the bottom provides a detail of the whole image where it is possible
to appreciate the effects of smoothing on the computed orbit corrections.
Here, the X coordinate is considered as an example.
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7.4.2 The Effect of Initial Conditions

The last relevant characteristic of the smoother estimate that is worth noting is actually a drawback
inherently present due to the forward filter’s nature. As has been well established, the forward
Kalman filter is used in the conventional form, in contrast to the extended formulation where the
reference orbit is update after each observation has been processed. Nonetheless, the extended
Kalman filter has been described as a better alternative to the conventional one, as it is more
resilient and stable in the presence of high nonlinearities in the mathematical model. This means
that, since the various orbit determination techniques presented here are based on a first order
linearization about a fairly near reference trajectory, one may expect the conventional Kalman
filter’s performances to worsen when initial conditions are highly perturbed or way off the true
orbit. This is exactly what the following results show, where we can see that if the smoother was to
be initialized with the same position and velocity perturbations used for the previous estimations,
a clear divergence would arise over time. Figures 7.4.11, 7.4.12 and 7.4.13 show the observation
and orbit residuals when the initial position and velocity perturbations are the same as the ones in
table 7.2. The detrimental effect is clear as high residuals, on the order of kilometers, are present
for the forward filter and even though the smoothed solution is still somehow better, it surely isn’t
satisfying since after one day it is still on the hundred-meters level. This consideration leads to the
conclusion that smoothing generally improves the estimate in terms of precision, but requires the
“guessed” initial conditions to be fairly near the actual ones. To generate the successful smoothed
results in the previous section, the magnitude of both the position and velocity perturbations had
to be decreased of about two orders of magnitude.

Figure 7.4.11: Effects of initial conditions on the forward Kalman filter
and the backward recursive smoother. Clearly, deviations on the order
of hundreds of meters in position cannot be handled by the forward
conventional filter.
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Figure 7.4.12: Effects of initial conditions on the orbit residuals of the
forward conventional Kalman filter.

Figure 7.4.13: Effects of initial conditions on the orbit residuals of the
backward RTS smoother.
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Chapter 8

Conclusions and Future Work

This research work aimed to develop and test various algorithms for Precise Orbit Determination
(POD) applications, specifically, the batch estimation, the Kalman filter, and the smoother. The
results achieved are somewhat satisfactory as they clearly indicate that all the developed algorithms
are able to perform orbit estimation to a sub-decimeter level, despite the force model incomplete-
ness, the measurement noise and the perturbed a priori initial conditions. In particular, the batch
estimation reaches observation residuals of about 6 cm, as well as few centimeters of RMS in orbital
residuals. The Kalman filter and the smoother, on the other hand, arrive to the centimeter-level,
outperforming the batch estimation in terms of observation and orbit residuals. In any case, all
estimators show good stability as their solutions remain bounded during the estimation arc, and
while convergence is excellent for both batch and EKF, that can overcome initial perturbation of
many hundreds of meters, it is not entirely true for the smoother, where due to the presence of
the forward conventional Kalman filter, perturbations to the initial conditions must be bounded
to few meters in position and few millimeters per second in velocity. Nonetheless, the benefits
of a smoothing procedure as a means of improving the estimate of a forward Kalman filter are
undeniable, whereas the reduction in the solution covariance is evident as well as a slight reduction
in residuals. These facts suggest that the force and kinematic models used to model the satellite
dynamics are in good agreement with those that have been used to generate the available orbital
data from which measurements are computed, although they are not yet perfectly coincident. In
batch estimation, the parameters segmentation procedure showed promising results, improving the
orbit determination in the case of a cannon-ball satellite model where the true attitude law is not
modeled. It has been demonstrated that a good segmentation of the CR parameter has resulted
in a significant improvement in orbital determination performance, as well as a better representa-
tion of the accelerations acting on the satellite, with a visible similarity between the SRP profiles
for the box-wing case and the segmented cannon-ball model. The simulations with the extended
Kalman filter, in turn, have shown promising results. In particular, it was noted here how a good
implementation of the process noise helps to avoid filter saturation and the consequent divergence
of both observation and orbit residuals. Furthermore, the DMC approach allowed the estimation of
the deterministic parameters of the process noise itself, recalling that for this case it is represented
as a first-order Gauss-Markov process.

As for the batch estimation, future developments will certainly have to move towards the def-
inition of a more refined force model, since it is clear that this type of estimator is particularly
sensitive to even the smallest perturbation, especially when used on very wide estimation arcs. As
a matter of fact, the weaker performance of the batch estimator in comparison to the filter and
smoother might be mainly due to this fact alone. In this regard, it is first necessary to implement
and appropriately calibrate the ocean tides model, which is currently not active in the various
available Fortran subroutines. Furthermore, regarding the ERP modeling, the benefits of using a
box-wing model for this acceleration should be investigated. From the point of view of parameter
segmentation for the batch processor, it would be appropriate to evaluate the development of a
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piecewise linear model in addition to a piecewise constant one, whereas segmented parameters
modeled as linear instead of constant can certainly improve the estimate performance without the
need of a strong overparametrization. Other possible future developments should move towards
a more realistic representation of the situation. In these terms, a consider covariance analysis
approach should be deepened. The point is that the covariances obtained from an estimate carried
out following the methods outlined in this research work are not a true index of the precision
with which the state estimate is known, in most cases they are overly optimistic estimates. The
consider covariance analysis not only admits that the estimation parameters are somehow in error,
but assumes that even the non-estimated parameters are not known exactly. This ultimately leads
to an increase in the covariance of the estimated parameters that is certainly more realistic.

In summary, future developments should move towards a more detailed representation of the
forces acting on the satellite, moreover, the use of real measurements in contrast to synthetic mea-
sures could really give a decisive verdict on the performance of the developed Fortran routines for
POD applications. However, it is not that simple and straightforward since real observational data
significantly increase the level of difficulty and considerations. In any case, the results achieved
here in a somewhat controlled environment of synthetic data, are motivating and have allowed to
have a clear vision of the general picture on the precise orbit determination of Earth satellites.

152



Bibliography

[1] International gnss service (IGS). URL: https://network.igs.org/.

[2] S. Casotto. Nominal ocean tide models for TOPEX precise orbit determination. The University
of Texas at Austin, 1989.

[3] S. Casotto. Introduzione alla meccanica celeste. Lecture Notes in Celestial Mechanics, 2012.

[4] M. Catania, C. Dietze, and J. Klein. Sentinel-3a flight dynamics LEOP operational experience.

[5] Francesco Darugna, Stefano Casotto, Massimo Bardella, Mauro Sciarratta, and Paolo Zoc-
carato. Sub-decimeter onboard orbit determination of LEO satellites using SSR corrections:
A Galileo-based case study for the Sentinel-6a satellite. Remote Sensing, 14(23):6121, 2022.

[6] E. Fantino and S. Casotto. Methods of harmonic synthesis for global geopotential models and
their first-, second and third-order gradients. Journal of Geodesy, 83:595–619, 2009.

[7] B. P. Gibbs. Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook.
Wiley, 2011.

[8] D. S. Ingram. Orbit determination in the presence of unmodeled accelerations. The University
of Texas at Austin, 1970.

[9] D. S. Ingram and B. D. Tapley. Lunar orbit determination in the presence of unmodeled
accelerations. Celestial mechanics, 9(2):191–211, 1974.

[10] J. F. JORDAN JR. Optimal stochastic control theory applied to interplanetary guidance. The
University of Texas at Austin, 1966.

[11] R. E. Kalman. A new approach to linear filtering and prediction problems. 1960.

[12] D. G. King-Hele. Satellite Orbits in an Atmosphere: Theory and application. Springer Nether-
lands, 1987.

[13] P. Knocke, J. Ries, and B. Tapley. Earth radiation pressure effects on satellites. In Astrody-

namics conference, page 4292, 1988.

[14] R. Kroes. Precise relative positioning of formation flying spacecraft using GPS. Publications
on Geodesy, 61, 61, 01 2006. doi:10.1117/12.855923.

[15] J. M. Longuski, F. R. Hoots, and G. E. Pollock. Introduction to Orbital Perturbations. Space
Technology Library. Springer International Publishing, 2022.

[16] R. H. Lyon. Geosynchronous orbit determination using space surveillance network observations

and improved radiative force modeling. PhD thesis, Massachusetts Institute of Technology,
2004.

[17] P.S. Maybeck. Stochastic Models, Estimation, and Control. ISSN. Elsevier Science, 1982.

153



BIBLIOGRAPHY

[18] W. D. McClain and D. A. Vallado. Fundamentals of Astrodynamics and Applications. Space
Technology Library. Springer Netherlands, 2001.

[19] O. Montenbruck and E. Gill. Satellite Orbits: Models, Methods, and Applications. Physics
and Astronomy online library. Springer Berlin Heidelberg, 2000.

[20] O. Montenbruck, P. Steigenberger, and U. Hugentobler. Enhanced solar radiation pressure
modeling for Galileo satellites. Journal of Geodesy, 89:283–297, 2015.

[21] K. A. Myers. Filtering theory methods and applications to the orbit determination problem for

near-earth satellites. The University of Texas at Austin, 1974.

[22] K. A. Myers and B. D. Tapley. Dynamical model compensation for near-earth satellite orbit
determination. AIAA Journal, 13(3):343–349, 1975.

[23] C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, and S. Lutz. Impact of earth radi-
ation pressure on GPS position estimates. Journal of geodesy, 86:309–317, 2012.

[24] B. Schutz, B. Tapley, and G. H. Born. Statistical Orbit Determination. Elsevier Science, 2004.

[25] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley,
2006.

[26] R. F. Stengel. Optimal Control and Estimation. Dover Books on Mathematics. Dover Publi-
cations, 2012.

154


	Abstract
	Introduction
	Context
	Thesis outline

	Numerical Orbit Modeling
	Equations of Motion
	Geopotential
	Solid Earth tides
	Ocean Tides

	Third Body
	Atmospheric Drag
	Absorption and Diffuse Reflection of Molecules

	Solar Radiation Pressure Model
	Eclipse Condition

	Earth Radiation Pressure Model
	Diffuse Earth Radiation Pressure Model
	Shortwave Radiance LSW
	Longwave Radiance LLW
	Satellite Model and Total Acceleration due to Earth Radiation
	Earth Radiation Model
	Earth Surface Discretization
	The Earth Radiation Pressure Algorithm

	Empirical Accelerations
	Numerical Integration of the Equations of Motion

	The Linearized Orbit Model
	Linearization Procedure
	The State Transition Matrix
	Observations and Measurement Deviations
	Instantaneous Range
	Instantaneous Range Rate


	Batch Estimation
	Relating Observations to an Epoch State
	Computing the State Transition Matrix for the Batch Filter

	The Weighted Least Squares Solution - Differential Correction
	Estimation with a Priori Information

	The Batch Processor Algorithm
	Parameters Segmentation
	Propagating the State Transition Matrix
	Accumulating Matrices

	Empirical Accelerations in Batch Estimation
	Empirical Accelerations - Parameters Estimation
	Empirical Accelerations - Parameter Segmentation


	The Kalman Filter
	Derivation of Sequential Estimation
	The Kalman Filter Algorithm

	Extended Kalman Filter
	Process Noise for Kalman Filter
	State Noise Compensation
	Dynamic Model Compensation - Estimating Unmodeled Accelerations
	Computing matrix Q through linear systems theory


	Optimal Smoothing
	Fixed-Interval Forward-Backward Smoother
	Forward-Backward smoother algorithm

	Fixed-Interval RTS Smoother
	RTS Smoother Algorithm


	Simulations and Test Cases
	Generating Observations
	Sentinel-3A Orbit Determination through Batch Processing
	Box-Wing Model
	Cannon Ball Model and Parameters Segmentation
	Earth Radiation Pressure Effects

	Sentinel-3A Real-Time Orbit Determination
	The Extended Kalman Filter
	The Effect of Process Noise

	Sentinel-3A Orbit Determination with Smoothing
	The Smoothed Solution
	The Effect of Initial Conditions


	Conclusions and Future Work

