UNIVERSITA
DEGLI STUDI
DI PADOVA

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

U@

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

“A programmatic approach to finding document edges in images”

Relatore: Prof. Migliardi Mauro

Laureando: Cescon Francesco

ANNO ACCADEMICO 2021 - 2022
Data di laurea 20 luglio 2022

SOMMARIO

WX 011 ¢ Tt SO OO SO POUPUP PSP 3
SOIMIMATIO ..ttt ettt et e st e e e it e et e e sateeabeeeaeeenbeesseeenbeenseeenbeesneeenseans 3
INEEOAUCTION ..ttt ettt e b e et e bt e et e e bt e eabeesbeeenteenneeenne 5
The Current aPPIrOACKHc..iiiiiiiiieiiecie ettt ettt et e et eesaaeebeesaaeenbeesaseenseenenas 5
ConteXt ANd TEQUITEIMEIIESeevieiieeieeriieeteeieeeteesteeeteeteesseesseessseeseessseeseesssesseesssesseessses 6
DOCUMENT AETECTIONc..eeuieiiieiieteeiee sttt ettt ettt se et et s b ettt esaee b e entesseenees 7
Image manipulation and Pre-ProCeSSING........coveeiierieriieeriieeieeree e esieesreesseesreeseessseeseesenas 7
Canny €dZE AELECLION......ccuiiriiieiieeieeieeeie ettt ettt et e et e e e sbeeteeesbeesseeease e saeesseessseensaens 10
Hough transformMation..........oceieiieiiiiiiieiecieeeeee ettt ebe e st eteesseeebeessneensaens 11
Quadrilateral dEtECHIONeeeuiiiiiie ettt e e e e e eeeaae e eeareeeaneas 12
Calculating corners and CIUSTETINGcc.eecuiriiriiriiniiiertereecet et 12
Quadrilateral construction and filtering..........c.ccocevieviriiiniiinieceeee e 13
Scoring and dEtECLIONcc.eiviiiiriiieiieiie ettt ettt et saee s seees 16
Integration and cloud deploOymEentcceiiiriiriiiiiiiiinic e 17
Results and cONSIAETALIONSeeiuiiiiieriieiiieiie ettt ettt et e aee b e seaesaeens 19
FUture adjustments.........coeeoiiiiiiiiieie ettt 19
310 U0 o4 e ¥ i - H RSO RSRRTSPRRPRI 21

ABSTRACT

It is very common that a valid ID is required when signing up for websites, services and apps.
As more and more of our daily tasks move to smartphones, users would find convenient it
having the ability to simply take a picture of their form of identification, regardless of the

background and orientation.

The proposed algorithm allows the user to process images coming from cameras, identifying
the borders of paper documents, to then crop and straighten the selected area to fit a rectangular

container.

The proposed solution would not use artificial intelligence models, as it would be extremely
difficult to gather a large enough dataset of valid IDs, even after considering data augmentation

techniques.

SOMMARIO

E molto comune che un documento d’identita valido sia richiesto per iscriversi a siti, servizi o

app. Nel frattempo, molte delle nostre attivita quotidiane si sono trasferite sugli smartphone,

L’algoritmo proposto permette di processare immagini provenienti da fotocamere,
identificando 1 bordi di un documento cartaceo, per poi ritagliare e allineare 1’area interessata

per poter essere contenuta in un rettangolo.

La soluzione proposta non fa uso di intelligenza artificiale, in quanto sarebbe estremamente
difficile comporre un dataset sufficientemente grande di documenti d’identita, anche dopo aver

preso in considerazione tecniche di generazione sintetica dei dati.

INTRODUCTION

Between 2014 and 2019 in Europe the share of people aged 16 to 74 who used mobile devices
connected to the internet grew from 48% to 73%, while in 2021 90% of EU households had

access to the internet via a broadband connection. [1]

This socioeconomic context has allowed for a fast and prominent shift to online digital services,

accompanied by an increased level of digital skills in the population. [2]

The digital nature of these services is in opposition to the physical form of identification and
official documents necessary to start using them. The usual process for providing such
documents is to simply take a picture or upload a scan of them. In mobile applications, the user
could also be asked to align them to an outline before taking the picture, in desktop solutions

handles can be provided to trace the outline.

The current approach

The solutions above, while functional, are certainly not as intuitive or as easy as handing the
document to a person. Despite the increasing number of people becoming familiar with online
services, some of them might still find current approaches hard to understand, leading to

incorrect or partial data and frustration for the final user.

Artificial intelligence is one of the go-to solutions for problems involving computer vision and
understanding, thanks to how a machine learning algorithm can autonomously understand and

achieve the required output by a process of trial an error.

This training period requires a large enough dataset of valid and correctly tagged documents,
which would need to be as sizeable as the precision required. Official documents, however,
tend not to be public, making the process of gathering enough of them very hard. Moreover,
each country’s document has a unique format and design, requiring a more general solution to

the problem, to avoid having to train multiple models with numerous types of documents.

On top of these considerations, privacy also needs to be considered when collecting and

processing any number of personal and potentially confidential information.

The algorithm proposed in the next chapter takes advantage of multiple mathematical concepts
to extract, from a generic image, the rectangular shape that most probably contains the intended

document.

Context and requirements

The software described in the following chapters was commissioned by a public institution for
higher education in Italy in an effort to update and modernize the admission and enrollment

processes.

The school noted that past students, as part of the information required, had to provide a
photocopy of their ID document. Although the ultimate goal was to digitize the whole process
for students, they were still legally obligated to provide such documents, prompting the

development team to look for a convenient solution.

While considering the possible approaches to solving this problem, uploading a photo or scan
of such documents appeared to still be the most convenient option. A list of the school’s
requirements was subsequently collected and extended with requirements for the students and

final users of the website.

One of the first characteristics mentioned by the school was the need for accessibility and ease
of use of the software, especially knowing that the target audience of such a system is,
theoretically, a vast group of people with various types of internet connectivity methods and
devices. It also needed to be reasonably fast, while not sacrificing on accuracy in order to limit
the amount of human intervention necessary to fix possible miss-detections. Lastly, it needed
to be flexible enough to accept and understand different types of file formats, image framing
and backgrounds. On top of these functional requirements, the solution needed to be ready and

functional before the beginning of the admission window for the new academic year.

DOCUMENT DETECTION

The document detection phase is responsible for identifying the borders of the document within
an image. The results can then be used to extract the shape from the image and straightening it

to fit within a rectangle.

The input image used in the following paragraphs is image 1, depicting a sample Italian ID

document on an irregular background.

Image 1: Original image

Image manipulation and pre-processing

Considering the possible variety in the size and quality of images that an online service can

receive, a pre-processing step is necessary to get a clear and usable input.

The first operation performed is resizing the given image. This is to reduce the amount of data
that needs to be processed and, also, to have more consistent results, as certain operations might

have different outputs based on the image dimensions.

An example of possible output differences is visible in the edge detection step described below,

where more edge details are exposed when using the full resolution image. These details are

not necessary to correctly detect the document edges and might even result in less accurate

predictions in subsequent operations.

Image 2: Edges detected in the full-resolution Image 3: Edges detected in the scaled image
image

For this implementation, the longest side is fixed at 1024px, while the shortest side is scaled

accordingly to preserve the original ratio.

To reduce noise in the image, a light Gaussian blur is applied, follow by a set of linear

morphological operations on the image pixels.

Morphological operations are used to remove imperfections and unnecessary details from the
image by looking at the shape and structure of the image itself. They are based purely on the
relative order of pixels, not their specific content. These operations are not performed on the

whole image, but are instead applied to smaller portions of a specific shape and size.

The operation used in this implementation is c/ose, which is a concatenation of erode and dilate

as follows:
close(4,B) = erode(dilate(A, B))

“Dilation is the morphological transformation which combines two sets using vector addition

of set elements.” [3] and is formally defined as:

Let A and B be subsets of EV. The dilation of A by B is denoted by A € B and is defined by
A©B=x€EN|x+beAforeveryb €B

Dilatation, represented by the symbol €, acts as a local maximum filter, creating a new image
where each pixel contains the maximum value within a region in the original image of specified

shape and size centered at that pixel.

Erosion, represented by the symbol ©, is the dual operation to dilation and it acts as a local
minimum filter, creating a new image where each pixel contains the minimum value within a

region in the original image of specified shape and size centered at that pixel.
The closing operation can be redefined as
close(A,B) = (A B)SB

Its most useful application is to remove small gaps and imperfections in an otherwise solid

shape.

These linear operations are iterated for 15 times, to obtain image 4.

Image 4: Pre-processing result

Canny edge detection

Edge detection is a fundamental step in numerous computer vision processes, as it “serves to
simplify the analysis of images by drastically reducing the amount of data to be processed,

while at the same time preserving useful structural information about object boundaries.” [4]

The resulting image is going to be the same sizes as the original, but it will have only 2 different

variants of pixels: non edges and edges, usually saved as black and white respectively.

The Canny edge algorithm was chosen as it is optimal according to three edge detection
parameters: low error rate, minimal distance of the detection to the actual edge and minimal
number of detected edges for each real one, ideally just one; additionally, the algorithm allows

a certain degree of customization using parameters.

The resulting image can be seen in image 5.

Image 5: Edges

10

Hough transformation

The Hough transformation is a method for estimating a shape characteristic from its boundary

points.

To achieve this, the Hough transformation creates a parallel domain in which to represent the
edge image. To detect straight lines a two-dimensional space R? is needed that has p as one

component and 8 on the other.
Each edge point (%, y) detected using the Canny algorithm is converted as follows
Hough(x,y) = (p,0) ER? |p=x-cosO+y-sinb

Essentially, each (p, 0) pair represents the line perpendicular to the segment of length p and
angle 6, which means that a given (x,y) pair is converted to all the possible (p,0) lines that

contain(x,y).

Image 6: Hough transformation of a single point Image 7: Hough transformation of a horizontal line
Image 7 represents the Hough transformation field of a horizontal line. There clearly is a point
at the center of the image where the lines intersect: that is the (p, @) pair that represents the
original line. Although there are infinite lines going through each single pixel that composed

the original line (each one represented by one point in the field), only one traverses them all.

By detecting the peaks in the Hough transformation plain, we can get a list of all the most

probable lines to be present in the original input image.

11

Image 8: Hough detected lines

Quadrilateral detection

Calculating corners and clustering

To detect where the corners of the document are in the image, the first step is to identify every
intersection between two lines. This task is quite trivial for a computer and it gives the
opportunity to exclude relatively acute angles, as rectangular documents have right angles

which, at most, can be affected by distortion caused by the camera perspective or lenses.

The Hough transformation will often detect multiple lines along the same edge of the document
due to noise and imperfections in the original image (image 8), resulting in a number of
neighboring intersection points. These are dealt with by combining together multiple points into

their average position based on their relative distance, in a process called clustering.

12

Image 9: Lines intersections and clusters

In image 9 the intersections are marked as green circles and the cluster average position is the
red circle. It is also notable how the diagonal line near the top left corner does not have any

intersections with other lines, as their angle was outside the acceptable range.

Quadrilateral construction and filtering

Given a set of possible corners and knowing that we are searching for convex shapes, it is
possible to compute all valid convex quadrilateral by identifying every set of 4 points having

intersecting diagonals.

As the number of corner points increases, so does the number of quadrilaterals. To decrease
the number of candidates, each side of the quadrilateral needs to fall within a range of
acceptable dimensions, based on the sides of all the other sides of that same rectangle, that

take into consideration how perspective may distort the shape of a rectangular document.

The first condition imposed is based on the average length of two opposite segments: this
needs to be, at most, double the average length of the other two segments. This prerequisite is

based on the assumptions that identity documents are generally not elongated.

The quadrilaterals considered valid based on this first condition, however, may still be outside

the subset of possibilities resulting from perspective distortion of a rectangle.

13

To further refine the list of viable candidates, the maximum difference between the
dimensions of two opposing edges needs to be within 5%. If this is not true for both pairs of
edges, the tolerance is increased to 10% for the most diverse pair, and left at 5% for the other.
This second criteria allows to select only shapes comparable to a square, rectangle,

parallelogram or trapezoid.

Analyzing an image that has more than 4 detected corner points, it is possible to see how
these two conditions on the quadrilateral sides can greatly reduce the number of candidates

passed to the next step.

Considering ¢ = 9 the number of corner points detected, the algorithm computes the d =
(;) = (z) = 36 possible diagonals. Each one of the q” = (g) = (326) = 630 pairs of

diagonals is a possible convex quadrilateral.

Analyzing image 10 as an example, this number quickly goes down to @' = 378 when
excluding quadrilaterals made of the same corners in different orders, and is further decreased
to q = 85 convex quadrilaterals where the intersecting point of the diagonals is inside the

quadrilateral itself.

The first condition, regarding the ratio of two pairs of sides of the quadrilateral, removes 13
candidates, like the one visible in image 11, while the second condition regarding the length
of opposite sides eliminates a further 83 candidates, similar to what is show in image 12. The

resulting list of valid candidates is, ultimately, composed of only 2 trapezoids.

14

Image 10: Detected lines, intersections and clusters Image 11: Quadrilateral excluded because of
elongation

Image 12: Trapezium excluded because sides are not within the tolerance ranges

15

Scoring and detection

Whenever the previous steps leave only one quadrilateral, it is easy to see how that would be

the final output, as show in image 13.

Image 13: Detected document in image 1 Image 14: Detected candidates with more than 4
corner points

In every other case, like in image 14, we are left with a list of multiple candidates from which

a single output needs to be picked.

To decide which quadrilateral is the final detection, each one is assigned a score based on two

criteria: position and size.

To begin, it is safe to assume that the document will be placed roughly near the center of the
image, allowing the algorithm to award less points further away from the center. This criterium
alone could lead to inexact results if there are multiple valid candidates overlapping, a problem
that can relatively easily be solved by taking area into account. This implies that the most

probable candidate is the one closest to the center and with the largest area.

These two points are then added together in a weighted sum to give the final score of each

candidate. The one with the highest value is picked.

16

INTEGRATION AND CLOUD DEPLOYMENT

The output of the software is nothing more than a series of coordinates, which is anything but

useful to the end user of the service.

The implementation described until now was developed in Python using primarily the OpenCV
library, “an open source computer vision and machine learning software library [...] built to
provide a common infrastructure for computer vision applications and to accelerate the use of
machine perception in the commercial products.” [5] This library allowed to quickly prototype
an initial working draft of the algorithm and was also fundamental in the final version, as it
contains numerous image manipulation algorithms like resizing, Canny edge detection and

Hough transformation.

Integration between this script and the online admission platform was achieved on Amazon
AWS using AWS Lambda functions, a service that allows for serverless and event-driven code
execution in the cloud'. The choice of using AWS as the cloud provider was quite straight-
forward as most of the workloads and storage for the school’s online services were already
hosted there. The Lambda function was deployed in the Milan datacenter, where the website’s

database and object storage are located, to eliminate latency.

When a user uploads an image to the website, that file is placed by the web server in a specific
folder on AWS S3, a very popular object storage service offered by AWS?. From here, thanks
to the deep integration between S3 and Lambda, an event is sent to the Python script indicating

which image needs to be processed and where to find it.

At this point the image has already been uploaded successfully to the website by the user, which
does not need to wait for any additional processing steps to be completed. The AWS Lambda
function works asynchronously in the background, taking the processing workload off the
server, which allows for increased traffic capacity. These characteristics of AWS Lambda also

allow to fulfill two functional requirements laid down during the initial phases of development:

! aws.amazon.com/lambda/
2 aws.amazon.com/s3/

17

accessibility and speed. The former since it’s able to accept many different file formats and
convert them to something the rest of the script can understand; the latter since the user is not
aware that additional processing is taking place and can continue to navigate the website

without any additional delays.

Once the processing is complete and the four corners are detected, these are saved alongside
the image information in the student’s database entry and a straightened version of the cutout

is generated and stored back in AWS S3.

In case of an error during the process or a miss-detection in the image, school staff reviewing
each student’s admission sees the document cutout and is able to manually adjust the corner

points should that be needed to improve the legibility or completeness of the image.

Considering the current load of the servers, each AWS Lambda execution is initiated by an
upload event. If the workloads become more intense it is possible to limit the number of
concurrent AWS Lambda executions, for which each AWS user has a hard limit, by utilizing
AWS SQS, a message queuing service’. In that case, each invocation is kept in a queue until it

is gradually processed.

3 aws.amazon.com/sqs/

18

RESULTS AND CONSIDERATIONS

The proposed algorithm allows automated systems to autonomously process document images,

extracting the interesting portion for further analysis and validation.

The implementation, as described in the preceding paragraphs and deployed in the cloud, was
utilized to process numerous photos during the last admission period and allowed to reduce the

amount of manual work needed on each candidate, while operating silently in the background.

Although most document pictures have been successfully processed, some of them required
manual adjustments, especially when presenting complex backgrounds or hard to make out
edges. The amount of corrections needed was, however, limited and the admission team

reported feeling confident that the system, overall, saved time.

Moreover, this time saving was achieved while the school could neglect the cost for the raw
processing and storage needs of this script; the relatively small number of cloud execution and

the limited size of each image account for less than $1 per month.

Future adjustments

Despite all the positive aspects listed above, the current version of this software still needs some

adjustments, specifically in the parameters used by the different steps of the process.

The most challenging images came out to be primarily ones with repeating or geometric
backgrounds, which can lead to spurious lines being detected which are not part of the
document; this can be especially problematic if they are detected multiple times, creating

additional corner points where there shouldn’t be any.

The opposite problem occurs when the image has a solid background that blends in easily with
the document edges, making it extremely difficult for the algorithm to distinguish between
edges and not-edges. This issue becomes even more challenging when the image gets
preprocessed to intentionally remove very fine details, which usually do not contribute in

finding the edges.

19

Finding a more suitable set of parameters will certainly make the algorithm more flexible and
adaptive to complex or unclear inputs and could also further limit the amount of manual

adjustment required.

20

BIBLIOGRAFIA

[1] “Digital economy and society statistics - households and individuals”. ec.europa.eu.
December 2021. Web. Accessed May 2022. https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Digital economy and society statistics -

_households_and _individuals

[2] “Digital Economy and Society Index 2021”. digital-strategy.ec.europa.eu. November 12,
2021. Web. Accessed May 2022. https://digital-strategy.ec.europa.eu/en/library/digital-

economy-and-society-index-desi-2021

[3] Haralick, R.M., Stenberg, S.R. and Zhuang, X. (1987) “Image analysis using mathematical
morphology”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, 532-550.
doi:10.1109/TPAMI.1987.4767941

[4] J. Canny. “A computational approach to edge detection”. IEEE (1986) 679-698

[5] “About OpenCV™. opencv.org. Web. Accessed May 2022. https://opencv.org/about

21

