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Abstract

In this thesis we present all the techniques needed for the functional reconstruction
of univariate rational functions over finite fields and apply them to tree-level scattering
amplitudes. In particular the reconstruction of scattering amplitudes on finite fields using
the BCFW recursion as black-box algorithm is presented here for the first time. Further-
more, as a second novel result, we discuss some new aspects of the relation among BCFW
tree-level recursion and the maximum-cut of multi-loop diagrams.

Given a black-box algorithm which computes numerical values of a rational function at
given values of the variable, the reconstruction procedure allows to obtain the associated
analytical expression. We begin by describing the reconstruction on the field Q of uni-
variate polynomials, via Newton’s polynomial representation, and of univariate rational
functions, via Thiele’s interpolation formula. Then we define finite fields Zp along with
the addition and multiplication operations characterizing them and the map Q→ Zp, dis-
cussing the hypothesis under which the latter map can be inverted. We describe how the
reconstruction procedure can be performed on Zp, and discuss how the map Zp → Q can
be complemented by the use of the Chinese remainder theorem, allowing for numerical
calculations to be always performed in the domain of machine-size integers.

The application of rational reconstruction to tree-level scattering amplitudes is then
presented, using as black-box algorithm the Berends-Giele and BCFW recursions, which
are both described in detail. While the second is the main focus of our work, the first is used
as a comparison and for cross-checks. We introduce the momentum-twistor parametriza-
tion for the amplitude, describing also how the latter can be factorized and how the
recurrence relations adapted in order for rational reconstruction to be applicable. An
example reconstruction of a four-point amplitude using BCFW recursion is then given.

Finally we explore some of the relations among BCFW tree-level recurrence and multi-
loop maximum-cut graphs. In particular we present a novel strategy allowing the direct
construction of all the multi-loop graphs related to BCFW recursion, starting only from
the number of external legs.
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Introduction

Among the many fascinating mysteries of nature, the microscopic structure of matter is
one of the most intriguing ones. More than one hundred years after Rutherford’s “gold foil
experiment”, which led to the discovery of the atomic nucleus and laid the foundations for
the modern atomic model, the investigation techniques are based on the same principle:
particle scattering. However what has changed are the length and energy scales of the
processes physicists are interested in, the first extremely small and the second extremely
large.

At the Large Hadron Collider (LHC) high precision experiments based on colliding
hadrons are performed, in order to investigate the nature of subnuclear constituents of
those which once were thought to be the most fundamental building blocks of matter.
High precision experiments require high precision theoretical predictions, which will either
be confirmed or rejected shaping as a consequence the mathematical model of nature
we accept as true. The theoretical framework for these predictions is Quantum Field
Theory (QFT), which combines the founding principles of Quantum Mechanics and Special
Relativity, allowing to describe objects as small as subatomic particles moving almost
at speed of light. In QFT the probability of a certain particle collision to take place
is described by the scattering amplitude, an analytical function of the momenta of the
involved particles. A part from special cases, the exact expression of a scattering amplitude
cannot be found, thus it is expanded in terms of a small perturbative parameter and then
computed through successive approximation until the required precision of the result is
achieved.

Even when the determination of the leading order contribution is simple, the calcu-
lation of higher order corrections becomes soon more and more involved, its complexity
growing exponentially with the number of particles involved and the order of the correc-
tion one wants to compute. This is due to the fact that many different but quantum-
mechanically indistinguishable processes contribute to each scattering amplitude, and at
each order of the perturbative expansion many new such processes appear involving not
only the real but virtual particles as well. Since the latter are not bound to have physical
mass or specific momenta one needs to sum over all the infinitely many possibilities, i.e.
integrate over what is called loop-momentum.

These integrals are often highly non-trivial, and powerful techniques have been devel-
oped to deal with them. Among these, striking results were obtained by expressing the
amplitude in terms of a universal integral basis, whose elements are called Master Inte-
grals (MIs). However, writing scattering amplitudes as linear combinations of integrals is
currently one of the main bottlenecks of high-multiplicity multi-loop calculations.

An issue which is common to analytic calculations in high-energy physics is the large
size of intermediate expressions, which can often be orders of magnitude larger than the
final result. The latter in fact often enjoys properties, in particular satisfies certain sym-
metries, which are not shared by the intermediate step of the computation. Moreover
these are in general described also by a larger number of variables (such as loop momenta)
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which do not appear in the result. The problem can be mitigated through the use of
unitarity based methods [7], which involve gauge-invariant intermediate expressions which
are thus simpler.

Unitarity as well as analiticity are qualitative properties of scattering amplitudes which,
when combined with complex momenta for propagating particles, can be turned into
powerful tools for computing them. Analiticity yields the possibility of identifying in
each amplitude sub-reactions that correspond to simpler collisions, and unitarity, the
probability conservation across each of these sub-processes. In particular, for diagrams
containing just one loop, these ideas proved to be very effective.

It is in this framework that the so called on-shell methods originated. They owe their
name to the fact that the appearance of unphysical degrees of freedom, whose effects are
not observable in the final physical result, are avoided by restricting the propagating states
to the physical ones, i.e. particles which are on mass-shell. Diagrams which present com-
mon kinematic structures, as for example multi-particle poles at tree-level or branch-cuts
at loop-level, can be treated simultaneously using on-shell techniques. These allow the ex-
traction of analytic information from simpler amplitudes in a recursive fashion, since the
singularity structure defining a scattering amplitude is determined by lower-point on-shell
amplitudes, in the case of poles, and by lower-loop ones, in the case of cuts. The price
to pay for intermediate states of tree-level amplitudes to go on-shell, is the introduction
of suitable external complex momenta. More precisely, starting from a set of real mo-
menta, associated to a given tree-level scattering amplitude, a corresponding amplitude
can be defined where some of the external momenta get an appropriate complex compo-
nent injected in their spinorial representation. The use of complex momenta combined
with the residue theorem, allows to determine the tree-level amplitude from its singularity
structure, which in turn leads to a factorization into lower-point on-shell amplitudes cor-
responding to simpler processes with complex external momenta. Each sub-process can
then again be constructed from simpler amplitudes, all the way down until only three-point
functions remain. Noticeably these three-point amplitudes are allowed to be non-vanishing
only because complex kinematics is involved. In other words glueing together amplitudes
corresponding to simpler processes, connected by on-shell, complex propagating parti-
cles, allows to reconstruct the given parent amplitude. The recursive application of this
technique is known as BFCW recurrence relation [9].

Complex kinematics is also useful for the fulfilment of generalized unitarity conditions.
Generalized unitarity is an extension of the idea behind the optical theorem, and at one-
loop corresponds to requiring more than two internal particles to be on-shell. In general
such constraints cannot be realized with real Minkowski momenta. The application of
unitarity as an on-shell method of calculation is based on two principles [6, 7]:

1. Sewing tree amplitudes together to form one-loop amplitudes. The products of tree-
level amplitudes produces functions with the correct branch cuts in all channels.
Using (on-shell) amplitudes inside the cuts, instead of cutting Feynman diagrams,
offers the advantage of working with simplified expressions which contain only phys-
ical degrees of freedom, resulting in compact and clean expressions.

2. Decomposing loop-amplitudes in terms of a basis of loop-integrals (Master Integrals).
Matching the generalized cuts of the amplitude with the cuts of the basic integrals
provides an efficient way to extract the coefficients of the decomposition in terms of
MI.

On the more mathematical side, in the framework of on-shell and unitarity-based methods,
the theory of multivariate complex fuctions can be seen to play an important role in order
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to compute the generalized cuts efficiently.
Combining unitarity and analyticity with the idea of reduction under the integral sign,

integrand-decomposition methods are born. These allow the extractions of the coefficients
of the MI by exploiting the multi-particle pole expansion for the integrand of the scat-
tering amplitude, i.e. a representation where the numerator of each Feynman integral is
expressed as a combination of products of the corresponding denominators, with polyno-
mial coefficients. The crucial aspect is the shape of the residue on the multi-particle pole.
Each residue is a multivariate polynomial in the irreducible scalar products (ISPs) of loop
momenta and either external momenta or polarization vectors. In the residues reducible
scalar products, i.e. products which can be written in terms of denominators, are not
allowed to appear: else further simplification would be possible, and this contradicts the
definition of residue. In the context of an integrand-reduction, any explicit integration
procedure and/or any matching procedure between cuts of amplitudes and cuts of MIs
is replaced by polynomial fitting, which is a simpler operation. The parametric form of
the polynomial residues is process-independent and can be determined once and for all
from the structure of the corresponding multiple cut. The actual value of the coefficients
which appear in the residues is instead process-dependent and, in the framework of the
integrand-reduction their determination is achieved by sampling the known integrand at
values of the loop-momenta fulfilling the cut conditions. Decomposing the amplitudes
in terms of MIs amounts to reconstructing the full polynomiality of the residues, i.e. it
amounts to determining all the coefficients of each polynomial [18, 23].

In [21], it is shown that the shape of the residues is uniquely determined by the on-shell
conditions alone, without any additional constraint. A simple integrand recurrence rela-
tion can then be derived, which generates the required multi-particle pole decomposition
for arbitrary amplitudes, independently of the number of loops. The algorithm treats the
numerator and the denominators of any Feynman integrand, as multivariate polynomials
in the components of the loop variables. The method uses both the weak Nullstellensatz
theorem and the multivariate polynomial division modulo Gröbner basis, two powerful
tools of algebraic geometry, the first allowing a simple formulation of a reducibility crite-
rion of the integrand, and the second granting that the residues of polynomial division are
uniquely defined. More recently, an improved integrand decomposition algorithm has been
proposed, called Adaptive Integrand Decomposition [19]. This exploits the simplifications
arising when splitting the space-time dimensions of dimensionally regulated Feynman in-
tegrals into parallel and orthogonal dimensions. The splitting is performed basing on the
number of legs of the individual diagram, hence the name Adaptive Integrand Decompo-
sition.

Besides the so far addressed techniques, in [25] a novel approach to high-energy physics
calculations is presented, which allows to side-step the issue of large intermediate expres-
sions , by reconstructing analytic results from their numerical evaluation, where each
intermediate step is a relatively small number (or a set of numbers). This is done by
the use of finite fields, a tool quite commonly adopted in computer algebra, but whose
application to a realistic problem in high energy physics involving the reconstruction of
multivariate rational functions, was presented in [25] for the first time. Any algorithm
which can be implemented via a sequence of rational elementary operations is suited for
the use of these reconstruction techniques. Multi-loop integrand reduction via generalized
unitarity falls into this category, but we will focus on its application to tree-level ampli-
tudes, which can be shown to be rational functions when expressed in terms of so called
momentum-twistor variables [3, 14, 32].

The functional reconstruction of an amplitude requires many numerical evaluations,
which in principle could be performed in various ways. The most obvious choice would
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be a floating-point calculation, however this would be affected by numerical inaccuracies.
To perform exact computations rational numbers should be used, however by doing so
the typically large (analytic) intermediate step expressions mentioned above traduce into
rationals whose numerator and denominator are generally described by a large number of
digits. This requires extensive use of arbitrary-precision arithmetic, which is computation-
ally expensive. What one can do is to perform the numerical evaluation over a finite field
called Zp, i.e. a field composed of a finite number of elements represented by consecutive
integers [16]. This allows for exact computations but at the same time, keeping the order
of the field under machine-size, no arbitrary-precision arithmetic is needed.

Once the functional reconstruction over finite fields was performed, the resulting an-
alytical expression on Zp needs to be mapped back to the field Q. Clearly the mapping
among these fields cannot be bijective, since Zp has only a finite number of elements
whereas Q has infinitely many. Nevertheless under appropriate hypothesis [30] a unique
rational corresponding to the reconstructed result can be identified.

The first aim of this thesis is the presentation of all the tools and methods needed
for the univariate rational reconstruction over finite fields, the transposition of the results
to Q, and its application to tree-level scattering amplitudes. In particular our goal is to
perform a complete reconstruction of a tree-level scattering amplitude over finite fields
using as black-box algorithm the BCFW recursion, which will be one of the novel results
of this thesis.

The BCFW recursion is particularly interesting because it presents a link to the leading
singularity of appropriate one-loop amplitudes [7]. What is still to be explored is the link it
may have with the residue of the maximum-cut graphs appearing in integrand reduction
methods [21]. As has been shown [21] this residue can be expressed as an univariate
polynomial of degree ns− 1, where ns is the number of solutions of the system defined by
the cut conditions. Considering the similarities among the analytic structure of BCFW
tree-level recursion and multi-loop maximum-cut graphs, the result of the recurrence may
present some form of connection (yet to be uncovered) in particular with the constant term
of this polynomial. In the last part of this thesis we started to explore this connection,
obtaining as a second main result a general strategy allowing the direct construction of
the maximum-cut graphs related to the BCFW recursion.

This thesis is organised as follows. First of all a brief review of computation techniques
for scattering amplitudes is given in chapter 1. In particular the so called spinor-helicity
formalism is introduced [13, 27] which allows to write amplitudes in terms of left- and right-
handed Weyl spinors. Then color-ordered amplitudes are presented [13], gauge invariant
objects from which the color structure has been factorized allowing for simpler computa-
tions. From there on we will always consider color-ordered amplitudes only. Among these
a special class is represented by the Maximum Helicity Violating (MHV) amplitudes [24,
28], whose analytic expressions in the so far presented formalism are simple and known
for an arbitrary number of legs. Then we move on to discuss rational parametrizations
of the amplitude [1–3, 26], without which rational reconstruction methods could not be
applied. In the last section of the chapter the Berends-Giele [4] and BCFW [9] tree-level
recurrence relations are treated. These will provide the black-box algorithm for the suc-
cessive rational reconstruction procedure. While the second relation is the main focus of
the thesis, the first is used for comparison and cross-checks.

In chapter 2 the mathematical tools needed for rational reconstruction over finite
fields are introduced. First we review functional reconstruction algorithms for univariate
polynomials and rational functions [12, 25]. These algorithms allow to reconstruct the
analytic expression of functions from their repeated numerical evaluation, and they are
independent of the specific algorithm used for the evaluation. More specifically we will be
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using Newton’s polynomial representation for the reconstruction of univariate polynomials
and Thiele’s interpolation formula for univariate rational functions. Then we will briefly
outline the reconstruction procedure for multivariate polynomials and rational functions
[25], whose implementation was however beyond the scope of this thesis. In the second
half of the chapter finite fields will be defined [16] and the mapping from Q to them will
be described. Operations over finite fields are introduced immediately after the mapping,
and finally the so called Chinese remainder theorem (e.g. [25]) is reported along with its
proof.

In chapter 3 we start discussing how the so far presented theoretical machinery is put
to work. First our code implementation of the reconstruction of univariate polynomials
and rational functions on the field Q is described in detail, followed by the description of
the analogous procedure over a finite field. This is then complemented by the descrip-
tion of how the Chinese remainder theorem can be used to effectively convert multiple
reconstructions over different finite fields into the sought analytic expression over Q of the
unknown function.

The goal of chapter 4 is the application of rational reconstruction on finite fields to a
tree-level scattering amplitude computed via BCFW recursion, which represents the first
main result of the thesis. We describe how the Berends-Giele and BCFW tree-level re-
currences can be adapted so that only rational numbers appear in the intermediate step
expressions as well as in the output, thus becoming rational functions. At this point
numerical evaluation of scattering amplitudes over finite fields is discussed, i.e. the trans-
position of Berends-Giele and BCFW recursions over finite fields. The chapter ends with
a description of how all the presented tools are put together to achieve the reconstruction
of the analytic expression of a tree-level color-ordered scattering amplitude. A four-point
example is then presented.

In chapter 5 we present a novel idea about the relation between on-shell recurrence
relations and maximum-cuts of multi-loop amplitudes [21], which constitute the second
main result of this work. First analogies among the analytical structure of the BCFW
recursion and the quadruple-cut of a one-loop amplitude are explored. These analogy is
then converted into a new diagrammatic representation of the recursion relation. Finally,
after some explicit examples are presented, we outline a general strategy which allows
the direct determination of the multi-loop diagrams whose poles contribute to the BCFW
tree-level recursion.
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Chapter 1

Scattering amplitudes in gauge
theories

In this chapter we are going to review some powerful methods for calculations of scattering
amplitudes in QCD. The first topic we are going to discuss is the so called spinor-helicity
formalism which allows to represent scattering amplitudes in terms of the spinor compo-
nents instead of mandelstam invariants or scalar products of the momenta of the external
particles. Then follows a short section on color-ordered and MHV amplitudes. These tech-
niques are well known and an exhaustive introduction to them can be found for example
in [27] and [13].

Finally we will be discussing momentum-twistor variables, a particular parametriza-
tion in which the amplitude is a rational function and thus suitable for the functional
reconstruction algorithms presented in chapter 2.

1.1 Spinor-helicity formalism

Perturbative QCD is primarily concerned with the interactions of quarks and gluons at
momentum scales for which the masses of these particles can be ignored. Considering
massless states we have that the helicity of the particles becomes a definite Lorentz-
invariant quantity, and is thus an intrinsic property of the particles themselves. What we
are going to compute are scattering amplitudes in the massless limit and thus in terms of
definite helicity states.

1.1.1 General idea

Recall first of all that given a spin-1
2 particle described by the field

ψ(x) =

∫
d3p

(2π)3

1√
2Ep

∑

spin=s

(aspU
s(p)e−ip·x + bspV

s(p)eip·x) (1.1)

the massless Dirac equation in momentum space reads

i/∂ψ(x) = 0⇒
{
/pU

s(p) = 0

/pV
s(p) = 0

(1.2)

(1.3)

and for the conjugate field

i∂µψ̄(x)γµ = 0⇒
{
U
s
(p)/p = 0

V
s
(p)/p = 0

(1.4)

(1.5)
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Now we are going to choose an explicit representation for the gamma matrices. Since we
are dealing with massless particles, for which spin and helicity (and chirality) eigenstates
coincide, a particularly well suited choice is the Weyl representation in which

γµ =

(
0 σµ

σ̄µ 0

)
γ5 =

(
−1 0
0 1

)
(1.6)

where σµ = (12, ~σ), σ̄µ = (12,−~σ) and the solutions to the above equations, which can
be shown to be unique, appear in a particularly simple form. In this representation the
chirality projectors

PR =
1 + γ5

2
PL =

1− γ5

2
(1.7)

project respectively onto the first two and the second two of the four components of the
Dirac spinors, and since in the considered limit chirality and helicity coincide we get a
simple form for the helicity eigenstates. Labeling the different eigenstates in terms of
helicity left and right we will call the solutions to eq. (1.2):

UR(p) =

(
0

uR(p)

)
UL(p) =

(
uL(p)

0

)
(1.8)

From here on we will use the upper vs lower case notation to distinguish the four-
component Dirac spinors, e.g. UL(p), from the two-component Weyl spinors, e.g. uL(p).
In terms of uL and uR eq. (1.2) reads

{
p · σuR = 0

p · σ̄uL = 0

(1.9)

(1.10)

Notice that there is a relation between the two solutions uL and uR, in fact, if eq. (1.10)
is satisfied

pµσ̄
µuL(p) = 0 (1.11a)

iσ2(p012 − p1σ
1 − p2σ

2 − p3σ
3)uL(p) = 0 (1.11b)

(−i(−σ2))(p012 − p1σ
1 − p2(−σ2)− p3σ

3)u∗L(p) = 0 (1.11c)

i(p012σ
2 + p1σ

1σ2 + p2σ
2σ2 + p3σ

3σ2)u∗L(p) = 0 (1.11d)

pµσ
µ(iσ2u∗L(p)) = 0 (1.11e)

where we multiplied eq. (1.11a) by iσ2 and expanded the contracted µ index, then we took
the complex conjugate of both members of eq. (1.11b) , and using the anticommutation
relations {σi, σj} = 2δij12 we get eq. (1.11e). From uniqueness of the solution to eq. (1.9)
we have that

uR(p) = iσ2u∗L(p) (1.12)

which can easily be recognized as the charge conjugation relation.
In order to describe antiparticles the same reasoning applies to eq. (1.3) leading to a

general solution for V (p). However, considering the massless case the equation satisfied
by V (p) is identical to that satisfied by U(p), so we already now the two unique solutions:
uL(p) and uR(p). In any case one has to be careful because for antiparticles in the massless
case chirality left coincides with helicity right and vice versa, so we have

VL(p) =

(
0

uR(p)

)
= UR(p) VR(p) =

(
uL(p)

0

)
= UL(p) (1.13)
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Keeping this in mind all the building blocks we need to describe a scattering amplitude
with only external fermions are UL,UR, UL and UR for which we will use the compact
notation

UR(p) = |p〉 , UL(p) = |p] , UL(p) = 〈p| , UR(p) = [p| (1.14)

Given these the only non-vanishing Lorentz-invariant spinor products are those of the form

UL(p)UR(q) = 〈p|q〉 , UR(p)UL(q) = [p|q] (1.15)

which will be simply called angle brackets and square brackets respectively. The scattering
amplitudes will be products of these quantities.

Before proceeding further there is another simplification that can be made. It consists
in considering all the external particles as outgoing (or incoming), and then in order
to recover the physical amplitude flip the sign of the time component of the incoming
(outgoing) particles. Moreover the three-momentum we assign to these particles for the
computation needs to be opposite to their physical three-momentum, thus leading the
physical helicity to be opposite to the assigned one1.

From here on we are going to consider all the external particles as outgoing.

1.1.2 Useful identities

In this section we are going to present some identities which will allow us to reduce complex
spinor expressions to functions of angle brackets and square brackets.

Since it will prove useful in the following we are going to rewrite eq. (1.15), expanding
the product on the left hand side, as

〈p|q〉 = u†L(p)uR(q) [p|q] = u†R(p)uL(q) (1.16)

First of all notice that the angle and square brackets are antisymmetric

〈p|q〉 = u†L(p)uR(q) (1.17a)

= uTR(q)u∗L(p) (1.17b)

= (iσ2u∗L(q))T (−iσ2uR(p)) (1.17c)

= u†L(q)(−σ2σ2)uR(p) (1.17d)

= −〈q|p〉 (1.17e)

where we used the fact that 〈p|q〉 being a number is equal to its own transpose and then
eq. (1.12). Similarly one gets the analogous result for the square brackets.

〈p|q〉 = −〈q|p〉 [p|q] = −[q|p] (1.18)

Moreover there is a relation between 〈p|q〉 and [p|q]:

[p|q]∗ = (u†R(p)uL(q))∗ (1.19a)

= uTR(p)u∗L(q) (1.19b)

= u†L(q)uR(p) (1.19c)

= 〈q|p〉 (1.19d)

1For a more technical though brief discussion of this aspect see for example [29] page 365.
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having again used the fact that [p|q] is a number and so invariant under transposition,
leading to

[p|q]∗ = 〈q|p〉 (1.20)

Recalling now that
U(p)U(p) = /p (1.21)

we can easily see that

|p〉[p|= /p

(
12 − γ5

2

)
|p]〈p|= /p

(
12 + γ5

2

)
(1.22)

Take for example the first relation, using {γµ, γ5} = 0 and the idempotence of the chirality
projectors we have

|p〉[p| = UR(p)UR(p) (1.23a)

= PRU(p)U(p)PL (1.23b)

= /p(PL)2 (1.23c)

= /p

(
12 − γ5

2

)
(1.23d)

As an immediate consequence one gets

/p = |p〉[p|+|p]〈p| (1.24)

Instead if we want to express pµ in terms of the angle and square brackets:

〈p|γµ|p] = UL(p)γµUL(p) (1.25a)

= (U(p)PR)iγ
µ
ij(PLU(p))j (1.25b)

= U(p)i(PRγ
µPL)ijU(p)j (1.25c)

= /pji(γ
µ(PL)2)ij (1.25d)

= pνTr

[
γνγµ

(
1− γ5

2

)]
(1.25e)

= pνTr[γ
νγµ] (1.25f)

= 2pµ (1.25g)

with i and j spinor indexes and having used again the anti-commutation of γ5 with γµ

and the idempotence of the projectors. So

pµ =
1

2
〈p|γµ|p] (1.26)

This expression for pµ can be cast into a different form using another identity:

〈p|γµ|q] = u†L(p)σ̄µuL(q) (1.27a)

= u†L(p)(−(iσ2)2)σ̄µuL(q) (1.27b)

= u†L(p)(−iσ2)(σµ)T (iσ2)uL(p) (1.27c)

= uTR(p)(σµ)Tu∗R(q) (1.27d)

= u†R(q)σµuR(p) (1.27e)

= [q|γµ|p〉 (1.27f)

12



where we used the relation σ2σ̄µ = (σµ)Tσ2 and then simply rearranged terms. So

〈p|γµ|q] = [q|γµ|p〉 (1.28)

leading to the alternative expression for the four momentum

pµ =
1

2
[q|γµ|p〉 (1.29)

Equation (1.28) can be generalized, for an odd number of γ matrices

〈p|γµ1γµ2 · · · γµ2nγµ2n+1 |q] = [q|γµ2n+1γµ2n · · · γµ2γµ1 |p〉 (1.30)

and
〈p|γµ1 · · · γµ2n+1 |q〉 = 0 (1.31)

[p|γµ1 · · · γµ2n+1 |q] = 0 (1.32)

whereas, for an even number of gamma matrices, one has

〈p|γµ1 · · · γµ2n |q〉 = −〈q|γµ2n · · · γµ1 |p〉 (1.33)

[p|γµ1 · · · γµ2n |q] = −[q|γµ2n · · · γµ1 |p] (1.34)

From eq. (1.22) we get, by tacking the trace of |p〉[p| multiplied with |q]〈q|

〈p|q〉[q|p] = Tr

[
/q/p

(
1 + γ5

2

)]
= 2p · q (1.35)

and considering eq. (1.20) we have

|〈p|q〉|2= |[q|p]|2= 2p · q (1.36)

and defining the invariant sij

sij ≡ (pi + pj)
2 = 2pi · pj = 〈i|j〉[j|i] (1.37)

Another very useful identity is called Fierz rearrangement, basing on the identity of
sigma matrices

(σ̄µ)ab(σ̄µ)cd = 2(iσ2)ac(iσ
2)bd (1.38)

one has

〈p|γµ|q]〈k|γµ|l] = UL(p)γµUL(q)UL(k)γµUL(l) (1.39a)

= u†L(p)a(σ̄
µ)abuL(q)bu

†
L(k)c(σ̄µ)cduL(l)d (1.39b)

= u†L(p)auL(q)bu
†
L(k)cuL(l)d2(iσ2)ac(iσ

2)bd (1.39c)

= 2u†L(p)aiσ
2
acu
∗
L(k)cu

T
L(q)biσ

2
bduL(l)d (1.39d)

= −2u†L(p)auR(k)au
†
R(q)buL(l)b (1.39e)

= −2UL(p)UR(k)UR(q)UL(l) (1.39f)

= 2〈p|k〉[l|q] (1.39g)

where we used eq. (1.38), eq. (1.12) and eq. (1.12), the latter in the rearranged form

uTL(q)iσ2 = (−iσ2uL(q))T = (−iσ2u∗L(q))† = −u†R(q) (1.40)
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Using eq. (1.28) we can cast it also in a different form, so the Fierz identity reads

〈p|γµ|q]〈k|γµ|l] = 2〈p|k〉[l|q] 〈p|γµ|q][k|γµ|l〉 = 2〈p|l〉[k|q] (1.41)

Finally, spinor products obey the Schouten identity

〈i|j〉〈k|l〉+ 〈i|k〉〈l|j〉+ 〈i|l〉〈j|k〉 = 0 (1.42)

[i|j][k|l] + [i|k][l|j] + [i|l][j|k] = 0 (1.43)

this can be shown noticing that the expressions on the left are totally antisymmetric in
j, k, l, but totally antisymmetrizing three two-component objects gives zero.

1.1.3 Polarization vectors

Until now we only focused on spin-1
2 particles, i.e. quarks, but in order to describe QCD

using spinor-helicity formalism we also need an expression for the polarization vectors of
the gluons.

First of all, one may wonder if it is even possible to write the polarization vectors
in terms of angle and square brackets. The answer is yes, the proof of this statement
comes from group theory: |p〉 and |p] correspond to elements respectively of the (1

2 ,0) and
(0,1

2) representation of the proper Lorentz group. It can be shown that all other finite
dimensional representations of the Lorentz group can be obtained from direct products
of these two “fundamental” representations, e.g. four vectors transform in the (1

2 ,
1
2) rep-

resentation. We already implicitly used this fact when writing the 4-momentum pµ as
eq. (1.26), so we expect the polarization vectors to have a similar form, and in fact they
can be written as2

ε∗µR (k, r) =
1√
2

〈r|γµ|k]

〈r|k〉 ε∗µL (k, r) =
1√
2

〈k|γµ|r]
[k|r] (1.44)

Here r is an arbitrary fixed lightlike 4-vector called reference vector. The reference vector
cannot be collinear with k, as if it was eq. (1.44) would be singular. We will show later
that the choice of r does not influence the value of the physical amplitude, as it should
be since we claimed r to be arbitrary. This freedom of choice will prove quite powerful in
the following.

It is easy to see that eq. (1.44) satisfy all the properties of polarization vectors:

[ε∗R(k)]∗ = ε∗L(k) kµε
∗µ
R,L(k) = 0 (1.45)

having used the Dirac equation in the form /k|k] = 0 in the second and γ0γµγ0 = (γµ)† in
the first.Using this last identity one can see that

(〈r|γµ|k])∗ = 〈k|γµ|r] (1.46)

and from this and eq. (1.41)

|ε∗R(k)|2=
1

2

〈r|γµ|k]〈k|γµ|r]
〈r|k〉[k|r] =

2〈r|k〉[r|k]

2〈r|k〉[k|r] = −1 (1.47)

Similarly, using also the antisymmetry of the angle and square brackets

|ε∗L(k)|2= −1 ε∗L(k) · (ε∗R(k))∗ = ε∗R(k) · (ε∗L(k))∗ = 0 (1.48)

2From here on we are going to use interchangeably the notation R,L and +,−.
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as required for polarization vectors.
Furthermore for an appropriate choice of the reference vector it is possible to see

that computing the polarization vector’s components explicitly3, for example for ε∗R(k), it
reduces to the well known form

ε∗R(k) = − 1√
2

(0, 1,−i, 0) (1.49)

and analogously for ε∗L(k).
Now let us turn to the issue of what happens if we change the reference vector r to

another vector s. Computing the difference of the resulting polarization vectors, consider
for example ε∗R(k, r), we get

ε∗R(k, r)− ε∗R(k, s) =
1√
2

(〈r|γµ|k]

〈r|k〉 −
〈s|γµ|k]

〈s|k〉

)
(1.50a)

=
1√
2

1

〈r|k〉〈s|k〉(−〈r|γ
µ|k]〈k|s〉+ 〈s|γµ|k]〈r|k〉) (1.50b)

=
1√
2

1

〈r|k〉〈s|k〉(−〈r|γ
µ/k|s〉+ 〈s|γµ/k|r〉) (1.50c)

=
1√
2

1

〈r|k〉〈s|k〉〈s|(/kγ
µ + γµ/k)|r〉 (1.50d)

=
1√
2

1

〈r|k〉〈s|k〉2k
µ〈s|r〉 (1.50e)

where in eq. (1.50c) we used eq. (1.33) and in eq. (1.50d) the anticommutation relation
{γµ, γν} = 2ηµν defining the Clifford algebra of the gamma matrices. We see that the
difference of the two polarization vectors is a scalar function of r and s times kµ

ε∗R(k, r) = ε∗R(k, s) + f(r, s)kµ (1.51)

This means that as soon as we contract eq. (1.51) with an on-shell amplitude, due to
Ward identity which leads to cancellation of the f(r, s)kµ term, the two different reference
vectors will lead to physical indistinguishable results. Stated differently, gauge-invariant
quantities do not depend by any means on the chosen reference vector.

Finally we are going to prove, using the formalism presented so far, the completeness
relation ∑

λ=±
ε∗µλ (k, q)(ε∗ρλ (k, q))∗ = −ηµρ +

kµqρ + kρqµ

k · q (1.52)

which we will need when discussing the BCFW recurrence relation. Notice that

εµ+(k, q)ερ−(k, q) = −1

2

〈qγµk][qγρk〉
〈qk〉[qk]

(1.53a)

=
1

4

[kγµ/q
(
1− γ5

)
γρk〉

2q · k (1.53b)

=
1

2

qν
2q · k [kγµγνγρk〉 (1.53c)

=
1

2

qν
2q · kUR(k)i (γµγνγρ)ij UL(k)j (1.53d)

=
1

2

qν
2q · kU(k)i

(
γµγνγρ

(
1− γ5

2

))

ij

U(k)j (1.53e)

3The needed formulae will be presented in the following and can be found for example in [13].
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=
1

2

qνkα
2q · kTr

[
γαγµγνγρ

(
1− γ5

2

)]
(1.53f)

= −1

2

(
ηµρ − 1

q · k (qρkµ + qµkρ)− i

q · kqνkαε
αµνρ

)
(1.53g)

where in eq. (1.53a) we used eq. (1.28) and in eq. (1.53b) eq. (1.22), then in eq. (1.53c)
the anticommutation of γ5 and γµ and the fact that PR|k〉 = |k〉, and in eq. (1.53f) we
substituted eq. (1.21). From this we can immediately get the analogous expression with
opposite helicity simply renaming the µ and ρ indexes

εµ−(k, q)ερ+(k, q) = −1

2

(
ηµρ − 1

q · k (qρkµ + qµkρ) +
i

q · kqνkαε
αµνρ

)
(1.54)

and finally adding eq. (1.53) and eq. (1.54) one gets eq. (1.52).

Alternative proof of the completeness relation

A more elegant way of getting to eq. (1.53) is through Lorentz-invariance arguments.
Defining

Fµρ = εµ+(k, q)ερ−(k, q) (1.55)

the most general form of Fµρ allowed by its Lorentz structure is4

Fµρ = Aηµρ +Bkµkρ + Cqµqρ +D1q
µkρ +D2q

ρkµ + Eεµρνσkνqσ (1.56)

Using then the Dirac equation in momentum space and eq. (1.47),eq. (1.48) it can be
easily seen that

kµkρF
µρ = 0 (1.57a)

qµqρF
µρ = 0 (1.57b)

kµqρF
µρ = 0 (1.57c)

qµkρF
µρ = 0 (1.57d)

ηµρF
µρ = −1 (1.57e)

FµρF
ρµ = +1 (1.57f)

Solving this system of equations we get the value of the constants A,B,C,D1,D2 and E.
Now due to the antisymmetry of the Levi-Civita tensor the E contribution vanishes in the
first five equations which then can be solved independently leading to

A = −1

2
B = C = 0 D1 = D2 = − A

k · q (1.58)

Solving the final one leads to

FµρF
ρµ = −A+ E2kνqσkαqβεµρνσε

ρµαβ

= −A+ 2E2(δαν δ
β
σ − δβν δασ )kνqσkαqβ

= −A− 2E2(k · q)2

!
= 1

(1.59)

4We considered also the fact that ε± are Lorentz vectors and so no terms containing γ5 are allowed.
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where we used εµρνσε
µραβ = −2(δαν δ

β
σ − δβν δασ ). Using the value of A previously found we

get

E2 = − 1

4(k · q)2
⇒ E = ± i

2k · q (1.60)

As can be seen there is an indetermination left in the sign of E due to the fact that
eq. (1.57f) is quadratic in E. However it is possible to find another linear relation instead
of eq. (1.57f): one can project out the E component by contracting Fµρ with εµραβk

αqβ,
we then get

εµραβk
αqβFµρ = 2E(k · q)2 (1.61)

Then using the identity
εµραβk

αqβFµρ = ik · q (1.62)

we can completely fix E and get the desired result, eq. (1.52).

1.1.4 2-component vs 4-component spinors

Up until now we used the four component Dirac spinors to describe a spin 1
2 particle.

However, as could already be seen looking at the proofs of many of the identities presented
in section 1.1.2, there are instances where the two component Weyl spinors may be better
suited in order to deal with the task at hand. Since the introduction of momentum-twistor
variables is precisely one of these instances, from here on we are going to use Weyl spinors.

In terms of the angle and square brackets we are then going to write

uR(p) = |p〉 , uL(p) = |p] , uL(p) = 〈p| , uR(p) = [p| (1.63)

This redefinition can be easily related back to the previous one in terms of Dirac spinors
through eq. (1.8).

The identities derived in section 1.1.2 do not undergo major changes, one simply has
to substitute the γµ with σµ or σµ ≡ (1,−−→σ ), depending on the situation. For example
eq. (1.28) becomes

〈p|σµ|q] = [q|σµ|p〉 (1.64)

which can be easily read of from eq. (1.27).
Most of the time though what we know about a given particle is neither the Dirac nor

the Weyl form of the spinor components, but its momentum. So we need the expression
relating spinor components to momentum components. This expression for a massive par-
ticle can be obtained by first solving the equation of motion in the particle’s rest frame
and then performing a Lorentz transformation to a generic reference frame. Consider-
ing massless particles one has also to take the massless limit, having chosen a suitable
normalization condition.

Because of the fact that uL,R belong to the dual space of uR,L we only need to know
two of the |p〉, |p],〈p|, [p| as a function of pµ = (p0, p1, p2, p3), recovering the two remaining
expression through the εij tensor which gives the mapping to the dual space. We have for
example

p+ = p0 + p3 , p− = p0 − p3 (1.65)

|p〉 =

(√
p+

p1+ip2√
p+

)
|p] =

(
p1−ip2√

p+

−
√
p+

)
(1.66)

It should be pointed out that, as can be seen from eq. (1.66), the spinor components
are not rational functions of the momentum. Since we will be concerned with rational
reconstruction of amplitudes, this factor of

√
p+ needs to be removed. This can be achieved

through a little group transformation, but we will come back to this issue later on.
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1.2 Color-ordered and MHV amplitudes

Color-ordered amplitudes

When computing scattering amplitudes usually a great number of diagrams contributes to
any single process. Some of these diagrams are topologically independent, but others can
be obtained from one another by simply switching the momenta of two or more particles
and if needed reversing helicities or particle states (incoming/outgoing): this is called
crossing. So not all of the diagrams associated to a given process need to be computed, but
only the topologically independent ones, the remaining then can be immediately obtained
by crossing. When dealing with QCD any particle carries also a color charge which results
in some color structure inside the amplitude, and when performing either a computation
from scratch or the crossing procedure one needs to consider that additional structure
to. Fortunately the color structure of an amplitude always factorizes from the remaining
kinematic part, moreover it has the same form for each diagram contributing to a given
process5. Typically it is a product of the form T a1 · · ·T an or a product of traces of the
form Tr[T a1 · · ·T an ] with T a generators of the SU(3) group 6. Why this is the case and
the exact form of the color structure can be seen most efficiently in a diagrammatic way,
starting from the Feynman rules of the theory. Considering only the color factors we have

i j ∝ δij (1.67a)

a b ∝ δab (1.67b)

i j

a

∝ (T a)ij

(1.67c)

a c

b

∝ fabcT a(kinematics)

+fabcT b(kinematics)

+fabcT c(kinematics)
(1.67d)

a b

cd

∝ fabef cde(kin.) + facef bde(kin.) + fadef bce(kin.)

(1.67e)

with fabc structure constants of the group, i,j transforming in the fundamental/antifundamental
representation (the upper vs lower index notation is used to distinguish among the two
cases) and a,b,c,d,e transforming in the adjoint representation.

The first manipulation one can perform is the substitution of fabcT c in the three-gluon
vertex with a combination of products of T ’s using the fundamental relation of this Lie
algebra

[T a, T b] = i
√

2fabcT c (1.68)

5For a proof of these statements see for example [29].
6These generators are normalized in order to have Tr[T aT b] = δab.
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Moreover we have that

fabc = − i√
2

(
Tr[T aT bT c]− Tr[T aT cT b]

)
(1.69)

which allows us to rewrite fabef cde in the four-gluon vertex as a product of traces. Another
useful identity is

(T a)i1j1(T a)i2j2 = δi2j1δ
i1
j2
− 1

Nc
δi1j1δ

i2
j2

(1.70)

Using eq. (1.69) and eq. (1.70) we can act directly on the Feynman diagrams to get the
color structure. 7

For an n gluon tree-level amplitude for example we get

Mtree
n ({ki, λi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr[T aσ(1) · · ·T aσ(n) ]Mtree
n (σ(1λ1), · · · , σ(nλn)) (1.71)

Here g is the gauge coupling and ki, λi, ai are the gluon momenta, helicities and colors
respectively. Mtree

n (1λ1 , · · · , nλn) are the partial amplitudes which contain all the kine-
matic information and are color ordered, meaning that they receive contributions only
from diagrams with a particular cyclic ordering of the gluons. The sum runs over all the
non-cyclic permutations of the n colors. The amplitudes we are going to compute are the
independent partial amplitudes.

The partial amplitudes satisfy a number of properties and relationships, some of which
are:

• Mtree
n (1λ1 , · · · , nλn) is gauge invariant

• cyclic invariance:
Mtree

n (1, 2, · · · , n) = Mtree
n (2, · · · , n, 1) (1.72)

• reflection invariance:

Mtree
n (n, n− 1 · · · , 2, 1) = (−1)nMtree

n (1, 2, · · · , n− 1, n) (1.73)

• the so called photon decoupling identity:

Mtree
n (1, 2, 3, · · · , n) + Mtree

n (2, 1, 3, · · · , n) + · · ·+ Mtree
n (2, 3, · · · , 1, n) = 0 (1.74)

The fact that the partial amplitude is still gauge invariant is very important because it
allows us to use all the tools available for the computation of the complete amplitude on
the partial amplitudes as well. In particular the Ward identity holds for gauge invariant
amplitudes and ensures, among other things, that if we use the spinor-helicity formalism
the value of the amplitude is independent from the reference vectors chosen to represent
the polarization vectors of the gluons through eq. (1.44).

Finally one can rederive the Feynman rules for the partial amplitudes, which will have
a simpler form because of the missing color structure. For the three-point and four point
gluon self-interaction we have

V µνρ
3 (P,Q) =

i√
2

(ηνρ(P −Q)µ + 2ηρµQν − 2ηµνP ρ) (1.75)

V µνρσ
4 =

i

2
(2ηµρηνσ − ηµνηρσ − ηµσηνρ) (1.76)

Notice that in the three-point vertex momentum conservation has been used to get rid of
the dependence on one of the three gluon momenta, leaving only the dependence on the
two independent ones.

7For further details see for example [13].
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Maximally Helicity Violating amplitudes

Maximally helicity violating (MHV) amplitudes were first discovered in 1986 by Parke
and Taylor [24]. They are tree-level amplitudes in certain specific helicity configurations
having as external particles either all gluons or one quark, one antiquark and all the rest
gluons.

Taking an all gluon color-ordered amplitude one has that:

M(1+, 2+, · · · , n− 1+, n+) = 0 (1.77a)

M(1−, 2−, · · · , n− 1−, n−) = 0 (1.77b)

M(1+, · · · , i−, · · · , n+) = 0 (1.78a)

M(1−, · · · , i+, · · · , n−) = 0 (1.78b)

M(1+, · · · , i−, · · · , j−, · · · , n+) =
〈i|j〉4

〈1|2〉〈2|3〉 · · · 〈n− 1|n〉〈n|1〉 (1.79a)

M(1−, · · · , i+, · · · , j+, · · · , n−) = (−1)n
[i|j]4

[1|2][2|3] · · · [n− 1|n][n|1]
(1.79b)

Equation (1.77) can be easily proved reasoning on the Lorentz structure of the ampli-
tude: in each three-gluon vertex we have a linear dependence in the momentum meaning
that each internal three-gluon vertex adds a Lorentz index to the amplitude. These in-
dexes need to be saturated with the external polarization vectors, but since in an n-gluon
amplitude there are at most n − 2 of these internal vertexes we are always left with at
least two external polarizations which saturate among themselves. In other words any
tree-level n-gluon amplitude must contain at least one scalar product of two polarization
vectors εi · εj , independently of the helicities. However if all of gluons have positive (nega-
tive) helicity than this scalar product will be proportional to 〈ri|rj〉 ([ri|rj ]) for every i, j
and were ri,rj are the reference vectors of the i-th and j-th gluon respectively. Being the
reference vectors arbitrary we can choose all of the ri for i = 1, · · · , n to be equal, then
due to the antisymmetry of the angle and square products εi · εj = 0 meaning that the
whole amplitude must vanish.

Proving the other identities is far less simple and can be done for example by induction
using either the Berends-Giele or the BCFW recursion.8 Similar results can be obtained
for the case of an amplitude containing one quark, one antiquark and the rest gluons.
Notice that the helicity of the quark and antiquark is opposite due the convention we
adopted of choosing all particles as incoming.

M(q(1)−, g(2)+, · · · , g(n− 1)+, q(n)+) = 0 (1.80a)

M(q(1)−, g(2)−, · · · , g(n− 1)−, q(n)+) = 0 (1.80b)

M(q(1)−, g(2)+, · · · , g(i)−, · · · , g(n−1)+, q(n)+) =
〈1|i〉3〈n|i〉

〈1|2〉〈2|3〉 · · · 〈n− 1|n〉〈n|1〉 (1.81a)

8For a proof of the MHV formulas see for example [28].
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M(q(1)−, g(2)−, · · · , g(i)+, · · · , g(n− 1)−, q(n)+) = (−1)n−1 [1|i][n|i]3
[1|2][2|3] · · · [n− 1|n][n|1]

(1.81b)

The corresponding relations with the helicities of the quark and antiquark interchanged
can be obtained by charge conjugation.

1.3 Parametrizations of an n-point function

Considering any given amplitude Mn(1, · · · , n), we have that |Mn|2 can be described in
terms of 3n − 10 independent variables: given n particles we have 4n parameters (the
momentum components), n are fixed by the on-shellness conditions, 4 are fixed by overall
momentum conservation, and finally other 6 by Lorentz invariance. Let us call these
variables xi, i ∈ {1, · · · , 3n− 10}.

The amplitude itself however may depend on all of the 4n variables, so this means that
it can be factored as follows

Mn(1, · · · , n) = ΦnMn(x1, · · · , x3n−10) (1.82)

where Φn is a phase depending on all the dependent and independent 4n variables and
Mn(x1, · · · , x3n−10) is the part depending only on the 3n−10 independent variables which
contributes to the cross section.

1.3.1 Little group transformations and scaling of the amplitude

The little group is the subgroup of the Lorentz group which leaves a given on-shell mo-
mentum invariant. Recalling eq. (1.26) one can easily see that

|p〉 7→ t|p〉 , |p] 7→ 1

t
|p] (1.83)

is a little group transformation. For real momenta t has to be a complex phase in order
for eq. (1.20) to be preserved.

Since amplitudes that contain massless particles can always be written in terms of
spinor products we need to scale external lines under the rule eq. (1.83) as well (inter-
nal lines are made of invariant momenta). As can be seen from the expressions of the
momentum and the polarization vectors in terms of angle and square brackets we have
that:

• scalar particles do not scale under the transformation

• angle and square spinors for fermions scale as t−2h for h = ±1
2 , which is simply a

restatement of eq. (1.83)

• polarization vectors for spin-1 bosons scale as t−2h for h = ±1. They do not trans-
form under scaling of the reference momentum

Thus we have that transforming under the i-th particle’s little group

Mn

(
{|1〉, |1], h1}, · · · , {ti|i〉,

1

ti
|i], hi}, · · · , {|n〉, |n], hn}

)
=

t−2hi
i Mn

(
{|1〉, |1], h1}, · · · , {|i〉, |i], hi}, · · · , {|n〉, |n], hn}

)
(1.84)

The amplitude can now be factorized into a phase transforming under the little group and
a part invariant under this scaling. Notice that the phase depends only on the helicity of
the external particles.
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Factoring out the phase

It will be convenient to extract the Φn factor. There is no unique choice for it, but
depending only on the transformation properties of Mn under the little group it then only
depends on the helicities of the external particles and can thus be built without any other
knowledge about the amplitude itself. A general expression for Φn valid for any number
of external legs can be found in [2]

Φn(1h1 , · · · , nhn) =

( 〈1|3〉
[1|2]〈2|3〉

)h1 n∏

i=2

(〈1|i〉2[1|2]〈2|3〉
〈1|3〉

)−hi
(1.85)

The function which we will be computing through rational reconstruction is the phase-free
ratio Mn(1, · · · , n)/Φn i.e. the function Mn(x1, · · · , x3n−10).

The xi can be chosen in different ways depending on the task at hand. For example
a possible choice are the kinematic invariants sij···k = (pi + pj + · · · pk)2. Among these
one may then choose to parametrize an n-point amplitude only through double-invariants
sij , or some combination of double, triple, etc. invariants in terms of which all the others
can be expressed. The relations among dependent and independent variables is given by
overall momentum conservation and (for n ≥ 6) by geometrical conditions connected with
the four-dimensionality of space.9

The choice of the parametrization for the amplitude is crucial for what follows. We
need the amplitude to be a rational function in order to apply rational reconstruction
methods. In general amplitudes are not rational functions of the momenta. However it is
a rational function of the angle and square spinors, so what we are looking for is a suitable
parametrization for the spinor components. These are the so called momentum-twistor
variables.

1.3.2 Momentum-twistor variables

Before dealing with momentum-twistor variables, which provide the parametrization needed
for rational reconstruction, we will briefly review some concepts about momentum twistors.
A detailed description of these can e found for example in [14] or [32].

Momentum twistors

Momentum conservation can be represented geometrically. The fact that pµi sum to zero
means that the vectors close into a contour, an example for a six particle scattering is
represented in figure 1.1.

So instead of defining this contour by its edges (momenta) we could define it by its
cusps, points of the dual space which we will be calling yµi . They can be related to the
momenta by

pµi = (yi+1 − yi)µ (1.86)

The dual coordinates are not space-time coordinates and have mass dimension 1. The
momentum conservation in dual space corresponds to the periodicity condition yn+1 = y1.
As can be seen the ordering of the external particles matters in this picture, so we restrict
our attention to color-ordered amplitudes where we can define

yµij ≡ (yi − yj)µ = (pj + · · ·+ pi−1)µ (1.87)

9For a detailed treatment see [1].
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Figure 1.1: Relation between the momenta pi and the dual coordinates yi.

We can also provide a definition of the dual coordinates in terms of spinors by taking into
account the Dirac equation

0 = /pi|i〉 = (/yi+1
− /yi)|i〉 (1.88)

This relation, called incidence relation, allows to define a new variable |µi]

|µi] = /yi|i〉 = /yi+1
|i〉 (1.89)

With this definition we have that

yµi =
1

2

〈i|γµ|µi−1]− 〈i− 1|γµ|µi]
〈i|i− 1〉 (1.90)

since, using eq. (1.33) and the Clifford algebra relation {γµ, γν} = 2ηµν

〈i|γµ|µi−1]− 〈i− 1|γµ|µi] = 〈i|γµ|/yi|i− 1〉 − 〈i− 1|γµ|/yi|i〉
= (〈i|γµγν |i− 1〉 − 〈i− 1|γµγν |i〉)yi,ν
= −〈i− 1|(γνγµ + γµγν)|i〉yiν
= −2〈i− 1|i〉yµi

(1.91)

In other words we translated the dual coordinates yi into Zi ≡ (|i〉, |µi]). These new four
component spinor variables Zi are called momentum twistors.10

Under little group transformation the Zi undergo a uniform scaling

Zi 7→ tiZi(|i〉, |µi]) = Zi(ti|i〉, ti|µi]) (1.92)

Furthermore, the relation between yi and pµi = 1
2〈i|γµ|i] implies that |i] can be expressed

in terms of |i〉 and |µi]:

[i|= 〈i+ 1|i〉[µi−1|+〈i|i− 1〉[µi+1|+〈i− 1|i+ 1〉[µi|
〈i− 1|i〉〈i+ 1|i〉 (1.93)

This relation can be easily checked:

〈i+ 1|i〉[µi−1|+〈i|i− 1〉[µi+1|+〈i− 1|i+ 1〉[µi|=
/pi〈i+ 1|i〉〈i− 1|+/pi+1

〈i|i− 1〉〈i+ 1|+/pi〈i− 1|i+ 1〉〈i| (1.94)

using the Schouten identity

〈i+ 1|i〉〈i− 1|+〈i− 1|i+ 1〉〈i|= −〈i|i− 1〉〈i+ 1| (1.95)

10See [15].
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we have

eq. (1.94) = (/pi+1
− /pi)〈i|i− 1〉〈i+ 1| (1.96)

= 〈i|i− 1〉〈i+ 1|(1 + γ5

2
)(/pi+1

− /pi) (1.97)

= 〈i|i− 1〉〈i+ 1|(|i+ 1〉[i+ 1|−|i〉[i|) (1.98)

= −〈i|i− 1〉〈i+ 1|i〉[i| (1.99)

Starting from n momentum twistors (Zi, · · · , Zn), we see that the momenta pi satisfy
by definition the massless condition and momentum conservation. This means that all
momentum twistors can be freely chosen without any constraint. Notice that providing a
rational parametrization for the twistor space, also provides one for the momentum space
through eq. (1.93).

A rational parametrization of the amplitude

Now we are going to present some possible parametrizations of the amplitude in momentum
space. Define the components of angle and square spinors as

|i〉 =

(
ξi
ηi

)
, |i] =

(
ξi
ηi

)
(1.100)

Through the two dimensional ε tensor we can map these to the dual space getting

〈i|=
(
ηi
−ξi

)
, [i|=

(−ηi
ξi

)
(1.101)

The anti-symmetric spinor products read

〈i|j〉 = −ξiηj + ξjηi (1.102)

[i|j] = ξiηj − ξjηi (1.103)

Now imposing the momentum conservation in each of the space-time components leads to
a system of four equations in terms of {ξi, ηi, ξi, ηi}

∑

i

pµi =
1

2

∑

i

〈i|σµ|i] = 0 (1.104)





∑

i

(ηiξi − ξiηi) = 0

∑

i

(ηiηi − ξiξi) = 0

∑

i

(ηiηi + ξiξi) = 0

∑

i

(ηiξi + ξiηi) = 0

which is equivalent to

∑

i

ηiξi =
∑

i

ξiηi =
∑

i

ηiηi =
∑

i

ξiξi = 0 (1.105)
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At this point one needs to find 3n − 10 variable for the {ξi, ηi, ξi, ηi} to depend on, such
that these equations are satisfied. Clearly since we want the amplitude to be a rational
function of the xi, the spinor components need to be as well rational functions of them.
Notice that, in general, because we are free to choose the normalization and the phase of
the spinor components, there is no unique way to rewrite them in terms of the xi.

One simple case is that of n = 4, we have only two independent variables and choose
them as:

x1 = s12 x2 =
s23

s12
(1.106)

The spinor components can be chosen to be

ξ1 = 1 , ξ2 = 0 , ξ1 =
1

x1
, η1 = 0 , η2 = η3 = η4 = 1

ξ1 = −1 , ξ4 = 0 , η2 = 0
(1.107)

The remaining variables ξ4, ξ2, ξ3, η1, η3, η4 are then fixed from eq. (1.105) and eq. (1.106).
For n ≥ 5 we will present two explicit choices.

A possible explicit parametrization

This first parametrization we are reporting is drawn from Simon Badger et al. (cfr. e.g.
[2, 3]).

The first set of equations presented are the relations between the xi and the angle and
square spinors (recall that sij = 〈i|j〉[j|i]), the second set relates the spinor components
to the xi.

x1 = s12 (1.108)

xi = −〈i|i+ 1〉〈i+ 2|1〉
〈1|i〉〈i+ 1|i+ 2〉 for i = 2, · · · , n− 2 (1.109)

xn−1 =
s23

s12
(1.110)

xi =
i−n+4∑

j=2

〈i− n+ 5|j|2]

[1|2]〈1|i− n+ 5〉 for i = 2, · · · , 2n− 6 (1.111)

xi =

i−2n+9∑

j=2

〈1|p2 + p3|j|i− 2n+ 10〉
s23〈1|i− 2n+ 10〉 for i = 2n− 5, · · · , 3n− 11 (1.112)

x3n−10 =
s123

s12
(1.113)

and the spinor components in terms of the xi

ξ1 = 1 , ξ2 = 0 , ξi =
∑i−2

j=1
1∏j

k=1 xk
for i = 3, · · · , n

η1 = 0 , ηi = 1 for i = 2, · · · , n
ξ1 = −1 + x3n−10

xn−1
, ξ2 = −x1 , ξ3 = x1

η1 = 1 , η2 = 0 , η3 = x1xn−1

(1.114)

This parametrization satisfies eq. (1.108),eq. (1.109),eq. (1.110) and eq. (1.113) automat-
ically. The remaining 2n − 6 spinor components yet unspecified, namely ξi and ηi for
i = 4, · · · , n, are completely determined by the 2n−6 constrains of eq. (1.111), eq. (1.112)
and eq. (1.105).

In figure 1.2 and figure 1.3 we provide an example of this parametrization for a 6-point
amplitude generated through our Mathematica code. Because of the length of the output
we split it into two figures.
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In[19]:= TwiSts[6, x]

Out[19]= {1, 0}, -1 +
x[8]

x[5]
, 1, {0, -1}, -1, -1 +

x[8]

x[5]
,

{{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[5]}, 1, -

1

x[1]
, {-x[1] x[5], x[1]},


1

x[1]
+

1

x[1] x[2]
, 1,

-
1

x[2] 1 + x[2] x[3]
x[1] x[2]2 x[3] + x[5] + 2 x[3] x[5] + 2 x[2] x[3] x[5] +

x[3]2 x[5] + 2 x[2] x[3]2 x[5] + x[2]2 x[3]2 x[5] - x[2] x[3] x[6] - x[2]2 x[3] x[6] -

x[2] x[3]2 x[6] - 2 x[2]2 x[3]2 x[6] - x[2]3 x[3]2 x[6] + x[1] x[2]2 x[3] x[7],

-x[1] x[5] - x[1] x[3] x[5] + x[1] x[2] x[3] x[6],

1, -
1

x[1]
-

1

x[1] x[2]
, x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[3] x[6],

-
1

x[2] 1 + x[2] x[3]
x[1] x[2]2 x[3] + x[5] + 2 x[3] x[5] + 2 x[2] x[3] x[5] +

x[3]2 x[5] + 2 x[2] x[3]2 x[5] + x[2]2 x[3]2 x[5] - x[2] x[3] x[6] - x[2]2 x[3] x[6] -

x[2] x[3]2 x[6] - 2 x[2]2 x[3]2 x[6] - x[2]3 x[3]2 x[6] + x[1] x[2]2 x[3] x[7],


1

x[1]
+

1

x[1] x[2]
+

1

x[1] x[2] x[3]
, 1, -

1

x[2] 1 + x[2] x[3] x[5]

-x[1] x[2]2 x[3] x[5] - x[1] x[2]2 x[3] x[4] x[5] - x[5]2 - 2 x[3] x[5]2 -

2 x[2] x[3] x[5]2 - x[3]2 x[5]2 - 2 x[2] x[3]2 x[5]2 - x[2]2 x[3]2 x[5]2 -

x[4] x[5]2 - 2 x[3] x[4] x[5]2 - 2 x[2] x[3] x[4] x[5]2 - x[3]2 x[4] x[5]2 -

2 x[2] x[3]2 x[4] x[5]2 - x[2]2 x[3]2 x[4] x[5]2 + x[2] x[3] x[5] x[6] +

x[2]2 x[3] x[5] x[6] + x[2] x[3]2 x[5] x[6] + 2 x[2]2 x[3]2 x[5] x[6] +

x[2]3 x[3]2 x[5] x[6] + x[2] x[3] x[4] x[5] x[6] + x[2]2 x[3] x[4] x[5] x[6] +

x[2] x[3]2 x[4] x[5] x[6] + 2 x[2]2 x[3]2 x[4] x[5] x[6] + x[2]3 x[3]2 x[4] x[5] x[6] -

x[1] x[2]2 x[3] x[5] x[7] - x[1] x[2]2 x[3] x[4] x[5] x[7] -

x[1] x[2]2 x[3]2 x[4] x[8] - x[1] x[2]3 x[3]2 x[4] x[8],

x[1] x[2] x[3] x[4] + x[1] x[3] x[5] - x[1] x[2] x[3] x[6] - x[1] x[2] x[3] x[4] x[6],

1, -
1

x[1]
-

1

x[1] x[2]
-

1

x[1] x[2] x[3]
,

-x[1] x[2] x[3] x[4] - x[1] x[3] x[5] + x[1] x[2] x[3] x[6] + x[1] x[2] x[3] x[4] x[6],

-
1

x[2] 1 + x[2] x[3] x[5]
-x[1] x[2]2 x[3] x[5] - x[1] x[2]2 x[3] x[4] x[5] - x[5]2 -

2 x[3] x[5]2 - 2 x[2] x[3] x[5]2 - x[3]2 x[5]2 - 2 x[2] x[3]2 x[5]2 - x[2]2 x[3]2 x[5]2 -

x[4] x[5]2 - 2 x[3] x[4] x[5]2 - 2 x[2] x[3] x[4] x[5]2 - x[3]2 x[4] x[5]2 -

2 x[2] x[3]2 x[4] x[5]2 - x[2]2 x[3]2 x[4] x[5]2 + x[2] x[3] x[5] x[6] +

x[2]2 x[3] x[5] x[6] + x[2] x[3]2 x[5] x[6] + 2 x[2]2 x[3]2 x[5] x[6] +

x[2]3 x[3]2 x[5] x[6] + x[2] x[3] x[4] x[5] x[6] + x[2]2 x[3] x[4] x[5] x[6] +

x[2] x[3]2 x[4] x[5] x[6] + 2 x[2]2 x[3]2 x[4] x[5] x[6] + x[2]3 x[3]2 x[4] x[5] x[6] -

x[1] x[2]2 x[3] x[5] x[7] - x[1] x[2]2 x[3] x[4] x[5] x[7] -

x[1] x[2]2 x[3]2 x[4] x[8] - x[1] x[2]3 x[3]2 x[4] x[8],


1

x[1]
+

1

x[1] x[2]
+

1

x[1] x[2] x[3]
+

1

x[1] x[2] x[3] x[4]
, 1,

-
1

x[2] 1 + x[2] x[3] x[5]

x[4] x[1] x[2]2 x[3] x[5] + x[5]2 + 2 x[3] x[5]2 + 2 x[2] x[3] x[5]2 + x[3]2 x[5]2 +

2 x[2] x[3]2 x[5]2 + x[2]2 x[3]2 x[5]2 - x[2] x[3] x[5] x[6] - x[2]2 x[3] x[5] x[6] -

Printed by Wolfram Mathematica Student EditionFigure 1.2: Example of momentum-twistor parametrization for a six-point function

26



[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

x[2] x[3]2 x[5] x[6] - 2 x[2]2 x[3]2 x[5] x[6] - x[2]3 x[3]2 x[5] x[6] +

x[1] x[2]2 x[3] x[5] x[7] + x[1] x[2]2 x[3]2 x[8] + x[1] x[2]3 x[3]2 x[8],

-x[1] x[2] x[3] x[4] + x[1] x[2] x[3] x[4] x[6],

1, -
1

x[1]
-

1

x[1] x[2]
-

1

x[1] x[2] x[3]
-

1

x[1] x[2] x[3] x[4]
,

x[1] x[2] x[3] x[4] - x[1] x[2] x[3] x[4] x[6], -
1

x[2] 1 + x[2] x[3] x[5]

x[4] x[1] x[2]2 x[3] x[5] + x[5]2 + 2 x[3] x[5]2 + 2 x[2] x[3] x[5]2 + x[3]2 x[5]2 +

2 x[2] x[3]2 x[5]2 + x[2]2 x[3]2 x[5]2 - x[2] x[3] x[5] x[6] - x[2]2 x[3] x[5] x[6] -

x[2] x[3]2 x[5] x[6] - 2 x[2]2 x[3]2 x[5] x[6] - x[2]3 x[3]2 x[5] x[6] +

x[1] x[2]2 x[3] x[5] x[7] + x[1] x[2]2 x[3]2 x[8] + x[1] x[2]3 x[3]2 x[8]

In[20]:= TwisTs[6, x]

Out[20]= {{{1, 0}, {x[8], 1}}, {{0, -1}, {-1, x[8]}}},

{{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[5]}, 1, -

1

x[1]
, {-x[1] x[5], x[1]},


x[2]

x[1]
, 1, {x[1] x[6], x[1] x[7]}, 1, -

x[2]

x[1]
, {-x[1] x[7], x[1] x[6]},


x[3]

x[1]
, 1, 

x[1] -1 - x[2] x[6] + x[4] x[6] - x[8]

x[3] - x[4]
,

x[1] -1 - x[5] + x[4] x[5] - x[2] x[7] + x[4] x[7]

x[3] - x[4]
,

1, -
x[3]

x[1]
, -

x[1] -1 - x[5] + x[4] x[5] - x[2] x[7] + x[4] x[7]

x[3] - x[4]
,

x[1] -1 - x[2] x[6] + x[4] x[6] - x[8]

x[3] - x[4]
,


x[4]

x[1]
, 1, -

-x[1] - x[1] x[2] x[6] + x[1] x[3] x[6] - x[1] x[8]

x[3] - x[4]
,

-
-x[1] - x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[7] + x[1] x[3] x[7]

x[3] - x[4]
,

1, -
x[4]

x[1]
, 

-x[1] - x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[7] + x[1] x[3] x[7]

x[3] - x[4]
,

-
-x[1] - x[1] x[2] x[6] + x[1] x[3] x[6] - x[1] x[8]

x[3] - x[4]

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Figure 1.3: Example of momentum-twistor parametrization for a six-point function

Another equivalent choice of variables

The following is an equivalent choice by Tiziano Peraro drawn from [26].

x1 = s12 (1.115)

xi−2 =
〈1|3〉〈2|i〉
〈2|3〉〈1|i〉 for i = 4, · · · , n (1.116)

xn−1 =
s23

s12
(1.117)

xn+i−4 =
(s12 + s13)〈1|i|2]

s12〈1|3|2]
− si1
s12

for i = 4, · · · , n− 2 (1.118)

x2n+i−9 =
〈1|i|2|3〉
s12〈1|3〉

for i = 4, · · · , n− 2 (1.119)

x3n−10 =
s12 + s13

s23
(1.120)

and the spinor components in terms of the xi:

ξ1 = 1 , ξ2 = 0 , ξ3 = 1
x1
, ξi = xi−2

x1
for i = 4, · · · , n

η1 = 0 , ηi = 1 for i = 2, · · · , n
ξ1 = x3n−10 , ξ2 = −x1 , ξ3 = x1 , ξi = x1xn−4+i for i = 4, · · · , n− 2
η1 = 1 , η2 = 0 , η3 = x1xn−1, ηi = x1x2n−9+i for i = 4, · · · , n− 2

(1.121)

This fixes all the spinor components but ξn−1,ξn,ηn−1 and ηn, and satisfies automatically
all the definitions of the xi. The remaining four spinor components are fixed by eq. (1.105).

In figure 1.4 a 6-point amplitude parametrization using Peraro’s choice of variables is
shown.
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

x[2] x[3]2 x[5] x[6] - 2 x[2]2 x[3]2 x[5] x[6] - x[2]3 x[3]2 x[5] x[6] +

x[1] x[2]2 x[3] x[5] x[7] + x[1] x[2]2 x[3]2 x[8] + x[1] x[2]3 x[3]2 x[8],

-x[1] x[2] x[3] x[4] + x[1] x[2] x[3] x[4] x[6],

1, -
1

x[1]
-

1

x[1] x[2]
-

1

x[1] x[2] x[3]
-

1

x[1] x[2] x[3] x[4]
,

x[1] x[2] x[3] x[4] - x[1] x[2] x[3] x[4] x[6], -
1

x[2] 1 + x[2] x[3] x[5]

x[4] x[1] x[2]2 x[3] x[5] + x[5]2 + 2 x[3] x[5]2 + 2 x[2] x[3] x[5]2 + x[3]2 x[5]2 +

2 x[2] x[3]2 x[5]2 + x[2]2 x[3]2 x[5]2 - x[2] x[3] x[5] x[6] - x[2]2 x[3] x[5] x[6] -

x[2] x[3]2 x[5] x[6] - 2 x[2]2 x[3]2 x[5] x[6] - x[2]3 x[3]2 x[5] x[6] +

x[1] x[2]2 x[3] x[5] x[7] + x[1] x[2]2 x[3]2 x[8] + x[1] x[2]3 x[3]2 x[8]

In[20]:= TwisTs[6, x]

Out[20]= {{{1, 0}, {x[8], 1}}, {{0, -1}, {-1, x[8]}}},

{{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[5]}, 1, -

1

x[1]
, {-x[1] x[5], x[1]},


x[2]

x[1]
, 1, {x[1] x[6], x[1] x[7]}, 1, -

x[2]

x[1]
, {-x[1] x[7], x[1] x[6]},


x[3]

x[1]
, 1, 

x[1] -1 - x[2] x[6] + x[4] x[6] - x[8]

x[3] - x[4]
,

x[1] -1 - x[5] + x[4] x[5] - x[2] x[7] + x[4] x[7]

x[3] - x[4]
,

1, -
x[3]

x[1]
, -

x[1] -1 - x[5] + x[4] x[5] - x[2] x[7] + x[4] x[7]

x[3] - x[4]
,

x[1] -1 - x[2] x[6] + x[4] x[6] - x[8]

x[3] - x[4]
,


x[4]

x[1]
, 1, -

-x[1] - x[1] x[2] x[6] + x[1] x[3] x[6] - x[1] x[8]

x[3] - x[4]
,

-
-x[1] - x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[7] + x[1] x[3] x[7]

x[3] - x[4]
,

1, -
x[4]

x[1]
, 

-x[1] - x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[7] + x[1] x[3] x[7]

x[3] - x[4]
,

-
-x[1] - x[1] x[2] x[6] + x[1] x[3] x[6] - x[1] x[8]

x[3] - x[4]


2     
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Figure 1.4: Another equivalent parametrization for a six-point function
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1.4 Berends-Giele recurrence relation

The Berends-Giele recurrence relation [4] allows to generate tree-level amplitudes recur-
sively in the number of legs. Even if one cannot simplify analytically the expressions
obtained in this way, the recursive approach lends itself to efficient numerical evaluation.

We will be treating only the case of amplitudes involving solely gluons, but a general-
ization to theories with fermions is easily accomplished following exactly the same steps
here presented.

First of all one has to introduce an auxiliary quantity with one leg off-shell, a current
which we will denote Jµ(1, · · · , n).

Jµ(1, · · · , n) = µ Tree

1

n

Figure 1.5: Graphical representation of the Berends-Giele current

Jµ is the sum of color-ordered n+1-point tree-level Feynman graphs, where legs 1, · · · , n are
on-shell gluons and leg µ is off-shell. Finally an appropriate off-shell propagator attached
to the uncontracted µ leg is defined to be included in the current. Notice that since Jµ is an
off-shell quantity it is gauge dependent, for example it depends on the reference momenta
chosen for the polarization vectors, which thus must be kept fixed until an on-shell result
has been extracted.

At this point the recursion relation is easily established. Being at tree-level and con-
sidering only gluons, if we follow the off-shell line µ back inside the graph there are only
two possible scenarios, either we encounter a three-point or a four-point gluon vertex.
Attached to these vertexes there will be subgraphs with exactly the same form as the
initial Jµ we constructed but with a lower number of on-shell legs, see figure 1.6. Thus the
n-point amplitude will be expressible in terms of a sum over all the possible lower-point
currents contracted with the three and four-point vertex.

Jµ(1, · · · , n) =
−i
P 2

1,n

[ n−1∑

i=2

V µνρ
3 Jν(1, · · · , i)Jρ(i+ 1, · · · , n)

+

n−2∑

i=2

n−1∑

j=i+1

V µνρσ
4 Jν(1, · · · , i)Jρ(i+ 1, · · · , j)Jσ(j + 1, · · · , n)

]
(1.122)

where Pl,m =
∑m

i=l pi and the Vi are the color-ordered gluon self-interactions 1.75 and
1.76.
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µ J

1

n

=

n−1∑

i=1

µ

J

1

i

J i+ 1

n

+

n−2∑

i=1

n−1∑

j=i+1

µ

J

J

J

1

i

i+ 1

j

j + 1

n

Figure 1.6: Graphical representation of the Berends-Giele recursion relation

The recursion terminates when only currents of the form Jµ(i), i ∈ {1, · · · , n} are left.
By definition we set

Jµ(i) ≡ εµ(pi) (1.123)

where εµ(pi) is the polarization vector associated to the i-th gluon.

Finally in order to get the Mn+1 partial amplitude associated to Jµ one first amputates
the off-shell propagator, then contracts with the appropriate polarization vector and takes
the limit P 2

1,n = p2
n+1 → 0.

Some propeties of the current Jµ

The Berends-Giele current satisfies the following identities:

• photon decoupling relation

Jµ(1, 2, 3, · · · , n) + Jµ(2, 1, 3, · · ·) + · · ·+ Jµ(2, 3, · · · , n, 1) = 0 (1.124)

• reflection identity

Jµ(1, 2, · · · , n) = (−1)n+1Jµ(n, · · · , 2, 1) (1.125)

• current conservation

Pµ1,nJµ(1, · · · , n) = 0 (1.126)
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Equation 1.124 and 1.125 descend from the fact that gluonic currents and partial ampli-
tudes can be obtained from one another, so they share these properties. 11 In order to
prove eq. (1.126) one can proceed by induction. By definition J(1) · p1 = 0, and for a
two-gluon current

Pµ1,2Jµ(1, 2) = (p1 + p2)µ
−i
P 2

1,2

V3µνρ(p1, p2)εν1ε
ρ
2

=
1√

2P 2
1,2

[ε1 · ε2(p2
1 − p2

2) + 2p1 · ε2p2 · ε1 − p2 · ε1p1 · ε2]

= 0

(1.127)

having used the masslessness of gluons. Assuming now its validity for n < m we prove the
current conservation for n = m. We have that

Pµ1,mJµ(1, · · · ,m) =
−i
P 2

1,m

(A1 +A2) (1.128)

with

A1 ≡
m−1∑

i=1

i√
2

(P 2
1,i − P 2

i+1,m)J(1, · · · , i) · J(i+ 1, · · · ,m) , (1.129)

A2 ≡
m−2∑

i=1

m−1∑

j=i+1

i

2

[
(P1,i + Pj+1,m) · J(i+ 1, · · · , j)J(1, · · · , i) · J(j + 1, · · · ,m)

− Pi+1,m · J(1, · · · ,m)J(i+ 1, · · · , j) · J(j + 1, · · · ,m)

− P1,j · J(j + 1, · · · ,m)J(1, · · · , i) · J(i+ 1, · · · , j)
]

(1.130)

where we already used eq. (1.126) for n < m. The term in eq. (1.130) arising from the
four point vertex can be expressed in terms of three-point vertexes as

A2 =

m−2∑

i=1

m−1∑

j=i+1

1√
2

[
Jµ(1, · · · , i)V µνρ

3 (Pi+1,j , Pj+1,m)Jν(i+ 1, · · · , j)Jρ(j + 1, · · · ,m)

− Jµ(j + 1, · · · ,m)V µνρ
3 (P1,i, Pi+1,j)Jν(1, · · · , i)Jρ(i+ 1, · · · , j)

]
(1.131)

Now we can see that

m−2∑

i=1

m−1∑

j=i+1

V µνρ
3 (Pi+1,j , Pj+1,m)Jν(i+ 1, · · · , j)Jρ(j + 1, · · · ,m)

= iP 2
i+1,mJµ(i+ 1, · · · ,m)

−
m−2∑

k=i+1

m−1∑

l=k+1

V µνρσ
4 Jν(i+ 1, · · · , k)Jρ(k + 1, · · · , l)Jσ(l + 1, · · · ,m) (1.132)

11See eq. (1.73) and eq. (1.74)
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and re-expressing the sum
∑m−2

i=1

∑m−1
j=i+1 as

∑j−1
i=1

∑m−1
j=2 in the second term of eq. (1.131)

we have

j−1∑

i=1

V µνρ
3 (P1,i, Pi+1,j)Jν(1, · · · , i)Jρ(i+ 1, · · · , j)

= iP 2
i,jJ

µ(1, · · · , j)

−
j−2∑

k=1

j−1∑

l=k+1

V µνρσ
4 Jν(1, · · · , k)Jρ(k + 1, · · · , l)Jσ(l + 1, · · · , j) (1.133)

Then substituting everything12 back in A2 we have that A2 = −A1 which completes the
proof.

The auxiliary current Jµa

As already mentioned, once we computed the current Jµ, in order to get the amplitude we
need to amputate the off-shell propagator, then contract with the appropriate polarization
vector and take the limit P 2

1,n = p2
n+1 → 0 which takes the leg µ on-shell:

Mn+1(1, · · · , n+ 1) = lim
P1,n→0

εµ(n+ 1)Jµ(1, · · · , n)P 2
1,n (1.134)

However, once we agree on the validity of the established recursive relation, in terms
of a numerical evaluation there is no need to add the off-shell propagator −i

P 2
1,n

. In fact

it would only be a multiplicative factor which cancels when taking the limit to extract
the amplitude from the current. Furthermore, that propagator is the only reason why
the current needs to be off-shell, otherwise due to carrying momentum P1,n it would be
singular. Thus we will omit that propagator, so we can take all momenta to be on-shell
and no limit procedure is needed. So we will be considering two different currents, Jµ

defined as in eq. (1.122), and another auxiliary current Jµa defined as in eq. (1.122) but
without the −i

P 2
1,n

propagator. Jµ will be used through out the entire recursion, except for

the last step where it will be substituted by Jµa . In other words, if we want to compute
the amplitude Mn+1(1, · · · , n+ 1), we define:

Mn+1(1, · · · , n+ 1) = εµ(n+ 1)Jµa (1, · · · , n) (1.135)

with

Jµa (1, · · · , n) =

[ n−1∑

i=2

V µνρ
3 Jν(1, · · · , i)Jρ(i+ 1, · · · , n)

+
n−2∑

i=2

n−1∑

j=i+1

V µνρσ
4 Jν(1, · · · , i)Jρ(i+ 1, · · · , j)Jσ(j + 1, · · · , n)

]
(1.136)

1.5 Britto-Cachazo-Feng-Witten recurrence relation

The Britto-Cachazo-Feng-Witten (BCFW) recursion [9] is a tree-level on-shell recurrence
relation which allows the complete factorization of n-point amplitudes into three-point on-
shell amplitudes and propagators. This is made possible by the analytic continuation of the

12Notice that the double sum term in eq. (1.132) and eq. (1.133) is absent respectively for i = m − 2
and j = 2.
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amplitudes to complex momenta: massless onshell three-point amplitudes are identically
zero, but through complex kinematics they become nonvanishing. This in turn can be
achieved by considering the tree-level color-ordered amplitudes as analytic functions of
the angle brackets and square brackets, basing on an original idea of Cachazo, Svrcek and
Witten [11]

So first we will focus on the three-point amplitude and complex kinematics, turning
then to the recurrence relation itself. We will be concerned with all gluon amplitudes only,
but the same arguments with slight modifications leads to a generalization for theories
including scalar and spin 1

2 particles as well.

1.5.1 Three-point amplitudes and complex kinematics

Consider first of all writing an on-shell three-point scattering amplitude in terms of the
massless momenta p1, p2, p3, supposing these to be real, as of course they should in order
to have physical meaning. Because of momentum conservation p1 +p2 +p3 = 013 we have:

sij ≡ (pi + pj)
2 = 0 (1.137)

for any choice of i,j as can be easily seen taking for example i = 1 and j = 2:

s12 = (p1 + p2)2 = (−p3)2 = 0 (1.138)

This is also equivalent to:

p1 · p2 =
1

2
(p2

1 + 2p1 · p2 + p2
2) =

1

2
s12 = 0 (1.139)

So apparently there aren’t any non-vanishing invariants for the amplitude to depend on,
so we expect it to be zero.

Consider then the amplitude to be an analytic function of the angle and square brack-
ets. All possible helicity configurations lead to MHV amplitudes, since only three particles
are involved. Take then equations eq. (1.79a) and write:

iM(1−, 2−, 3+) = i
〈1|2〉4

〈1|2〉〈2|3〉〈3|1〉 (1.140)

iM(1+, 2+, 3−) = −i [1|2]4

[1|2][2|3][3|1]
(1.141)

The on-shell condition implies:

0 = sij = 〈i|j〉[j|i] (1.142)

So either 〈i|j〉 = 0 or [j|i] = 0, but because of:

〈i|j〉 = [j|i]∗ (1.143)

both need to be true. Thus as expected eq. (1.140) and eq. (1.141) both vanish.

The key point is now to allow the external momenta to be complex. If we do so
eq. (1.143) does not hold any more. This means that if we take [i|j] = 0 then 〈i|j〉 is
allowed to be non-zero. In fact now it is possible to choose all three left-handed spinors

13We are considering all particles as outgoing.
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to be proportional: |1] = c1|3], |2] = c2|3] and from momentum conservation one gets
c1|1〉+ c2|2〉+ |3〉 = 0. Then:

[1|2] = [2|3] = [3|1] = 0 (1.144)

while 〈1|2〉, 〈2|3〉 and 〈3|1〉 are all non-vanishing. This means that now eq. (1.140) is
nonsingular even though all the invariants sij still vanish, which is equivalent to all three
particles beeing still on-shell.

There is a class of conjugate momenta for which instead:

〈1|2〉 = 〈2|3〉 = 〈3|1〉 = 0 (1.145)

with [1|2], [2|3] and [3|1] all non-vanishing and then of course eq. (1.141) becomes non-
singular. If either of the amplitudes of eq. (1.140) or eq. (1.141) appears in the “wrong”
kinematics, so respectively when eq. (1.145) or eq. (1.144) apply, then it should be set
to zero because more vanishing spinor products appear in the numerator than in the
denominator [5]. In the case of on-shell complex momenta, the all-plus as well as the all-
minus amplitudes still vanish. Again this can be seen by choosing all reference momenta
for the polarization vectors to be equal.

Given these building blocks we can now turn to the BCFW recurrence.

1.5.2 Complex kinematics and factorization

The strategy we are going to present is based on [9].
Consider a color-ordered amplitude iM(1, · · · , n) and choose two legs i, j. Then take

the complex variable z and define the shifted angle and square brackets:14

|̂i〉 = |i〉 |̂i] = |i] + z|j]
|ĵ〉 = |j〉 − z|i〉 |ĵ] = |j]

(1.146)

From these we get the associated momenta:

p̂µi = pµi +
1

2
z〈i|σµ|j]

p̂µj = pµj −
1

2
z〈i|σµ|j]

(1.147)

Notice that p̂i+ p̂j = pi+pj so momentum conservation is respected, moreover p2
i = 0 = p2

j

so both particles are still on-shell.15 The amplitude is now a function of this complex
variable z, iM(z) = iM(1, · · · , î(z), · · · , ĵ(z), · · · , n). Consider then the integral

1

2πi

∮

CR

iM(z)dz

z
(1.148)

taken around a large circle CR of radius R in the complex z plane. As known from complex
analysis as R = |z|→ ∞ eq. (1.148) equals to the sum of the residues of all the poles in
the complex z plane of the integrand function, including the one in z =∞. Moreover the
value of this sum is zero. Stated differently

Res
z=0

iM(z)

z
= −

∑

poles α

Res
z=zα

iM(z)

z
−Res

z=∞

iM(z)

z
(1.149)

14From here on we are going to use the hat for shifted quantities which carry a z dependence.
15To prove this the Fierz rearrangement eq. (1.41) and antisymmetry of the spinor product is used.
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with the sum running over all the poles α at finite values of z excluding the one in z = 0
which was explicitly isolated. Notice that the residue in z = 0 is none other than the
physical amplitude iM(z = 0).

If now

iM(z)

z
−−−−→
|z|→∞

0 ⇒ Res
z=∞

iM(z)

z
= 0 (1.150)

and we get the simple relation

iM(z = 0) = −
∑

poles α

Res
z=zα

iM(z)

z
(1.151)

So, provided eq. (1.150) holds, if we are able to locate all of the poles and evaluate their
residues we will immediately get the value of the physical amplitude. It can be shown that
given a certain helicity configuration it is always possible to choose the particles i and j
whose spinor components are to be shifted such that eq. (1.150) is true. For the proof of
this fact see section 1.5.3. As long as we are not concerned with this matter we are not
going to assign explicitly the helicity of the external particles, as done so far.

Tackling first the issue of where the poles are, the successive evaluation of the residues
will be straight forward. Since we are dealing with tree-level amplitudes the only place
were poles can come up are the denominators of the propagators. This means that what
we are interested in are the values of z for which intermediate states go on-shell and these
denominators vanish.

Consider a propagator carrying momentum Q, we can write the amplitude with respect
to this propagator as 16

iM(z) = iM̃α
L(b+ 1, · · · , î(z), · · · , a− 1)

−iηαβ
Q̂(z)2

iM̃β
R(a, · · · , ĵ(z), · · · , b) (1.152)

L R

a− 1

b+ 1

î

1

n

ĵ

a

b

Q̂←−

Figure 1.7: Posible factorization of one of the terms in BCFW recursion

as depicted more diagrammatically in figure 1.7. The tilde above Mα
L and Mβ

R is there to
remind us that these are just some subdiagrams of the complete amplitude. They are not
proper amplitudes if considered on their own, or at least not yet.

Lets compute the value z∗ for which this propagator leads to a (simple) pole in the
amplitude. Defining Q = −(pb+1 + · · ·+ pa−1) we have

16We are using the Feynman gauge for the propagator.
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Q̂(z)2 = (−pb+1 · · · − p̂i · · · − pa−1)2

= (Q− 1

2
z〈i|σ|j])2

= Q2 − z〈i|Q1···l|j]
!

= 0

(1.153)

where we used the Fierz identity eq. (1.41) and the antisymmetry of the angle-angle and
bracket-bracket product which lead to cancellation of the term proportional to z2. And
so we get

z∗ =
Q2

〈i|Q|j] (1.154)

The associated residue can now easily be computed using the general expression

Res
z=z∗

f(z) =
1

(n− 1)!
lim
z→z∗

[
dn−1

dzn−1
(z − z∗)nf(z)

]
(1.155)

where n is the order of the pole in z∗. In our case n = 1, so we get

Res
z=z∗

iM(z)

z
= lim

z→z∗
(z − z∗)1

z
iM̃α

L(z)
−iηαβ
Q̂2(z)

iM̃β
R(z) (1.156)

= lim
z→z∗

[
z〈i|Q|j]−Q2

〈i|Q|j]

]
1

z
iM̃α

L(z)
−iηαβ
Q̂2(z)

iM̃β
R(z) (1.157)

= − 1

z∗
iM̃α

L(z∗)
−iηαβ
〈i|Q|j] iM̃

β
R(z∗) (1.158)

= iM̃α
L(z∗)

iηαβ
Q2

iM̃β
R(z∗) (1.159)

where in eq. (1.157) and eq. (1.159) we substituted the value of z∗. Using then the
completeness relation eq. (1.52) in the form

− ηµρ = εµ+(k, q)ερ−(k, q) + εµ−(k, q)ερ+(k, q)− qρkµ + qµkρ

q · k (1.160)

where q is some reference momentum, we can substitute the metric tensor with a combina-
tion of polarization vectors plus a term proportional to kµ. Since the internal momentum
Q̂(z∗) is on-shell we have that

M̃α
L(b+1, · · · , î(z∗), · · · , a−1)εα(Q̂(z∗), q) = M(b+1, · · · , î(z∗), · · · , a−1, Q̂(z∗)) (1.161)

εβ(Q̂(z∗), q)M̃β
R(a, · · · , ĵ(z∗), · · · , b) = M(Q̂(z∗), a, · · · , ĵ(z∗), · · · , b) (1.162)

are proper on-shell amplitudes. Moreover the contraction of k with both M̃L and M̃R

vanishes due to Ward identity

kµM̃
µ
R(a, · · · , ĵ(z∗), · · · , b) = 0 (1.163)

kµM̃
µ
L(b+ 1, · · · , î(z∗), · · · , a− 1) = 0 (1.164)
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This leads to the final form of the residue in z∗

Res
z=z∗

iM(z)

z
=

iM(1, · · · , î(z∗), · · · , l, Q̂+(z∗))
i

Q2
iM(Q̂−(z∗), l + 1, · · · , ĵ(z∗), · · · , n)

+ iM(1, · · · , î(z∗), · · · , l, Q̂−(z∗))
i

Q2
iM(Q̂+(z∗), l + 1, · · · , ĵ(z∗), · · · , n) (1.165)

As can be see a factorization of the n-point amplitude into lower point amplitudes hap-
pened. Equation (1.165) is just one contribution to the complete amplitude. Considering
all the poles arising from the denominators and the associated residues we have

iM(z = 0) =
∑

a,b

[
iM(b+ 1, · · · , a− 1, Q̂+(za,b))

−i
Q2

iM(Q̂−(za,b), a, · · · , b)

+ iM(b+ 1, · · · , a− 1, Q̂−(za,b))
−i
Q2

iM(Q̂+(za,b), a, · · · , b)
]

(1.166)

with za,b value of the pole associated to a given choice of a and b which identify uniquely
a certain propagator. If î and ĵ are on the same side of the propagator, Q carries no
z dependence since no complex momentum “flows” through this propagator and so this
channel gives no contribution to the amplitude being its residue zero.

In the end we are left with the amplitude expressed in terms of products of lower
point amplitudes, which can now be computed in a completely independent way. It is
possible to keep applying the BCFW mechanism to each of this lower point amplitudes,
until we end up with a sum of products of three-point amplitudes and propagators. Being
complex kinematics involved these three-point amplitudes will be non vanishing and easily
computable as discussed in section 1.5.1.

1.5.3 Helicity configurations and border condition

In order to complete the computation and evaluate the three-point amplitudes appearing
in the final factorization of the BCFW recursion, we need to reintroduce the helicity labels
suppressed so far. These are important also for another reason: eq. (1.150) always holds
if the shift of the spinor components is performed in the appropriate way, and this is
determined by the helicity configuration of the particles involved in the shift.

We want to study the behaviour of the amplitude in the limit z → ∞. The z de-
pendence of any diagram is relatively simple, if we shift the two external legs (i, j) we
can follow the flow of the complex momentum from leg i to leg j through the diagram.
Thus only the two polarization vectors ε(i, r) and ε(j, s), with r, s reference vectors, and
the propagators and vertexes interested by this momentum flow contribute to the z →∞
limit, see figure 1.8.

Using the shift of eq. (1.146) the complex part of the momenta is given by zlµ ≡
z 1

2〈i|σµ|j], as displayed in eq. (1.180). Since l2 = 0, given any generic q momentum
representing the real part of the propagator

(q + zl)2 = q2 + z〈i|q|j] (1.167)

so the propagators will go as 1
z , and recalling that the three-point vertexes depend linearly

on the momentum they will go as z. Notice that there will always be exactly one z
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Figure 1.8: A possible graph in the z →∞ limit, the thicker line represents the complex
momentum flow

dependent vertex more than the z dependent propagators,17 thus all of these together will
contribute as O(z). The dependence of the polarization vectors on z is related to the
helicities of the particles. Being the reference vectors arbitrary we may choose them as we
please provided the polarization vector does not become singular. Exploiting this fact we
take:

ε+(̂i, r) ∝ 〈r|γ |̂i]〈r|i〉 =
〈r|γ|(|i] + z|j])

〈r|i〉 (1.168)

=
〈j|γ|i] + z〈j|γ|j]

〈j|i〉 ∝ O(z)

ε−(̂i, r) ∝ 〈̂i|γ|r]
[̂i|r]

=
〈i|γ|r]

([i|+z[j|)|r] (1.169)

=
〈i|γ|i]
z[j|i] ∝ O

(
1

z

)

ε+(ĵ, s) ∝ 〈s|γ|ĵ]
〈s|ĵ〉

=
〈s|γ|j]

〈s|(|j〉 − z|i〉) (1.170)

= −〈j|γ|j]
z〈j|i〉 ∝ O

(
1

z

)

ε−(ĵ, s) ∝ 〈ĵ|γ|s]
[ĵ|s]

=
(〈j|−z〈i|)|γ|s]

[j|s] (1.171)

=
〈j|γ|i]− z〈i|γ|i]

[j|i] ∝ O(z)

where we chose r, s = i in eq. (1.169) and eq. (1.171), whereas r, s = j in eq. (1.168) and
eq. (1.170).

17This can be seen analysing the final completely factorized expression of the amplitude.
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As can be seen the helicity configuration (i, j) = (−,+) leads to a z dependence of the
whole amplitude of the form O(1

z ). Considering the case (i, j) = (−,−) instead we would
have M of order O(z), however notice that

ε−(̂i) · ε−(ĵ) = 0 , l · ε−(̂i) = l · ε−(ĵ) = 0 (1.172)

thus similar terms cannot even arise. The first non-zero contraction is given by ε−(̂i) and
ε−(ĵ) both dotted into an order O(1) term, i.e. a real part of the momentum. But these
terms are down by a factor of two in z leading again to an order O(1

z ) dependence. A
similar reasoning applies to the (+,+) configuration.

The only truly problematic term is the (+,−) one, which is irremediably of order
O(z3). Thus in the case we found such a helicity configuration the shift we chose is not
suitable. In such a situation one can simply invert the roles of i and j getting a new shift
that cancels the border term as desired.

1.5.4 A possible momentum shift convention

Summing up, referring to figure 1.9, one may choose the following shift convention:

L R

a− 1

b+ 1

î

1

n

ĵ

a

b

Q̂←−

Figure 1.9: Generic term in the BCFW recurrence factorization.

Qk,m ≡ −(pk + pk+1 + · · ·+ pm−1 + pm) (1.173)

(i, j) = (−,+), (−,−), (+,+):

|̂i〉 = |i〉 |̂i] = |i] + z|j]
|ĵ〉 = |j〉 − z|i〉 |ĵ] = |j] (1.174)

The pole is then located at

z∗ =
Q2
b+1,a−1

〈i|Qb+1,a−1|j]
(1.175)

defining

lµ(z∗) ≡ 1

2
z∗〈i|σµ|j] (1.176)

For the last possible helicity configuration (i, j) = (+,−) instead

|̂i〉 = |i〉 − z|j〉 |̂i] = |i]
|ĵ〉 = |j〉 |ĵ] = |j] + z|i] (1.177)
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z∗ = −
Q2
b+1,a−1

〈j|Qb+1,a−1|i]
(1.178)

defining

lµ(z∗) ≡ −1

2
z∗〈j|σµ|i] (1.179)

The shifted momenta are given by

p̂µi = pµi + lµ(z∗)

p̂µj = pµj − lµ(z∗)

Q̂b+1,a−1 = Qb+1,a−1 − lµ(z∗)

(1.180)

We assigned a specific momentum shift also to the configurations (+,+) and (−,−),
but as shown in the preceding section they may be shifted in either way, in none of the
two situations border terms arise.
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Chapter 2

Functional reconstruction and
finite fields

In this and the next chapter we are going to present a Mathematica language implemen-
tation of the functional reconstruction over finite fields and its application to tree-level
scattering amplitudes.

2.1 Reconstruction of rational functions

Now we are going to talk about the reconstruction of rational functions. This topic can be
divided in two relevant cases, the univariate case and the multivariate case. In our work
so far we implemented a code only for the former one leaving the latter to a later stage
of our studies, since an implementation of multivariate reconstruction is technically more
involved and outside the scope of this thesis.

What we are going to say is true for any kind of rational function and does not need
any modification in order to be applied to scattering amplitudes.

2.1.1 Univariate polynomials

Before dealing with univariate rational functions we start with the reconstruction of uni-
variate polynomials, since the idea behind the two techniques is pretty much the same.

Consider the unknown polynomial G(z) whose analytic form

G(z) = c0 + c1z + · · ·+ cRz
R (2.1)

we want to determine. The only information we have is an algorithm that takes as input
a numerical value of the variable z = z∗ and returns as output the value G(z∗): this is
usually called the black-box interpolation problem. 1 If we knew the degree R of the
polynomial we could get its analytic form simply by solving a system of R + 1 equations
in the R+ 1 variables {a0, a1, · · · , aR}:





c0 + c1z1 + · · ·+ cRz
R
1 = G(z1)

...

c0 + c1zR + · · ·+ cRz
R
R = G(zR)

c0 + c1zR+1 + · · ·+ cRz
R
R+1 = G(zR+1)

(2.2)

1From here on we will often say “evaluate G at z∗”, what we actually mean by that is to run the above
mentioned algorithm, which in our specific case will be either BCFW or Berends-Giele recursion, for the
given value z∗.
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However there is no way of knowing beforehand the degree R. Moreover even if there was
one, despite being efficient for simple functions depending on one or two variables, this
method has a bad scaling behaviour when increasing the number n of variables involved
and the total degree. In fact write the individual monomials as strings of R+n terms with
n multiplications × and supply the missing powers of the variables with 1’s. For example
for R = 12, n = 5 a possible term is

z3
1z

2
2z3z

2
4z5 = 111× z1z1z1 × z2z2 × z3 × z4z4 × z5 (2.3)

Then it is easy to see that each monomial is uniquely defined by the position of the
multiplications ×, so the total possible monomials in a polynomial of total degree R and n
variables is given by N =

(
R+n
R

)
. It is thus evident how the dimension of the system grows

fast. Moreover solving an N ×N dense system of linear equations is an O(N3) operation,
thus this method becomes rather quickly unefficient.

Newton’s polynomial representation

A simple reconstruction method for univariate polynomials is based on Newton’s polyno-
mial representation. One may rewrite eq. (2.1) as

G(z) =

R∑

i=0

ai

i−1∏

j=0

(z − yj)

= a0 + (z − y0)

(
a1 + (z − y1)(a2 + (z − y2)(· · ·+ (z − yR−1)aR)))

) (2.4)

Through this differently factorized form we can get the coefficients ai simply by evaluating
the function at the yi:

a0 = G(y0)

a1 =
G(y1)− a0

y1 − y0

a2 =

(
(G(y2)− a0)

1

y2 − y0
− a1

)
1

y2 − y1

...

aR =

(
((G(yR)− a0)

1

yR − y0
− a1)

1

yR − y1
− · · · − aR−1

)
1

yR − yR−1

(2.5)

The values of the yi are arbitrary and basing on the choice of these we get different
values for the ai(y0, y1, · · · , yi−1) defined through eq. (2.5). Once the sequence of yi is fixed
the Newton form of the polynomial is unique. Notice that each ai also depends on aj but
only with j < i, thus each time a new coefficient is evaluated none of the before computed
ones needs to be changed. This clearly differs from the standard representation and is made
possible by the fact that the r-th term of the sum in eq. (2.4) contributes to all the powers
of z from zero up to r. This is ideal for the case where the total rank of the polynomial is
unknown a priori, and may be considered the main reason for preferring this method over
other alternatives. Computing the ai as in eq. (2.5) at some value i = R we will get that
the coefficients start evaluating to zero. After getting a sufficiently large set of consecutive
vanishing coefficients one may assume that R is the degree of the polynomial and end the
computation. Notice that, because of how each term in the summation of Newtons form
contributes to the single monomials appearing in the canonical form, eq. (2.1), even if the
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latter presents several vanishing entries, the former will in general present non-vanishing
entries. This fact makes the termination criterion described above robust, and an incorrect
determination of G is highly unlikely. Equivalently one may evaluate the reconstructed
function G′(z) and the black-box algorithm corresponding to G(z) at some z each time
a new coefficient ai is computed. If the two values match2 then i = R and we stop the
computation. Else we compute a new coefficient and keep going until the test evaluations
match each other.

The transposition from Newton’s form to the canonical one is simple, one only needs
to perform all the multiplications and then sum the like terms. However the analytic form
of the ci expressed in terms of the ai is not trivial at all.

Example 1

Consider the following function to be reconstructed using Newton’s polynomial represen-
tation:

G(x) = 1 + 2x+ 3x2 + 4x5 (2.6)

We proceed by comparing the test function ftest(x∗) with G(x∗) after computing each of
the single ai coefficients, if they agree (on different x∗) we stop the computation.

First consider the arbitrary yi as successive numbers starting with 1, then we get:

y0 = 1

a0 = 10

ftest(x) = 10

y1 = 2

a1 = 135

ftest(x) = 10 + 135(−1 + x)

y2 = 3

a2 = 363

ftest(x) = 10 + (135 + 363(−2 + x))(−1 + x)

y3 = 4

a3 = 260

ftest(x) = 10 + (135 + (363 + 260(−3 + x))(−2 + x))(−1 + x)

y4 = 5

a4 = 60

ftest(x) = 10 + (135 + (363 + (260 + 60(−4 + x))(−3 + x))(−2 + x))(−1 + x)

y5 = 6

a5 = 4

ftest(x) = 10 + (135 + (363 + (260 + (60 + 4(−5 + x))(−4 + x))(−3 + x))(−2 + x))×
(−1 + x)

and performing all the multiplications and summations this yields the canonical form

ftest(x) = 1 + 2x+ 3x2 + 4x5 (2.7)

2Of course if the evaluation of G and G′ matches for the tested value of z one checks the correspondence
also on several other values in order to be sure it was not a mere coincidence.
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which is the sought-for polynomial.

Example 2

Consider now the same function as before but different sampling points yi: this will affect
the ai and thus the intermediate and final expressions of ftest in Newton’s form, but of
course at the end of the computation the canonical form will be just the same. Consider
for example taking yi as multiples of 7:

y0 = 7

a0 = 67390

ftest(x) = 67390

y1 = 14

a1 = 297789

ftest(x) = 67390 + 297789(−7 + x)

y2 = 21

a2 = 123483

ftest(x) = 67390 + (297789 + 123483(−14 + x))(−7 + x)

y3 = 28

a3 = 12740

ftest(x) = 67390 + (297789 + (123483 + 12740(−21 + x))(−14 + x))(−7 + x)

y4 = 35

a=420

ftest(x) = 67390 + (297789 + (123483 + (12740 + 420(−28 + x))(−21 + x))(−14 + x))×
(−7 + x)

y5 = 42

a5 = 4

ftest(x) = 67390 + (297789 + (123483 + (12740 + (420 + 4(−35 + x))(−28 + x))(−21 + x))×
(−14 + x))(−7 + x)

which in canonical form is again equal to eq. (2.7).

2.1.2 Univariate rational functions

Consider now the black-box interpolation problem for G(z) univariate rational function

G(z) =
n0 + n1z + · · ·+ nRz

R

d0 + d1z + · · · dR′zR′
(2.8)

with the degrees of numerator and denominator, R and R′, unknown.
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Thiele’s interpolation formula

As for the univariate polynomial there is an alternative form for G(z) called Thiele’s
interpolation formula, which expresses it as a continued fraction:

G(z) = a0 +
z − y0

a1 +
z − y1

a2 +
z − y2

...

aN−1 +
z − yN−1

aN

= a0 + (z − y0)

(
a1 + (z − y1)

(
(z − y2)

(
· · ·+ z − yN−1

aN

)−1
)−1

)−1

(2.9)

The yi are just arbitrary rationals, and again the ai depend on the coefficients already
computed (as well as on the yj with j ≤ i):

a0 = G(y0)

a1 = (G(y1)− a0)−1(y1 − y0)

...

ar =

((
(G(yN )− a0)−1(yN − y0)− a1

)−1
(yN − y1)− · · · − aN−1

)−1

(yN − yN−1)

(2.10)
As in the univariate polynomial case no previous knowledge about R and R′ is needed,
however things become a little more involved in this case because of the form of Thiele’s
formula. Being G expressed as a continued fraction many spurious singularities arise, i.e.
singularities which are only present due to the specific representation chosen and do not
appear in the canonical form. These singularities are present in eq. (2.10) as well. Thus it
may happen that at a certain step j of the computation of the coefficients an yj is chosen
whose value is such that aj diverges. In such a case we simply discard that problematic
value of y and compute aj through a different yj , which is perfectly fine because as we
said the choice of any single y is arbitrary.

The termination criterion will be given again by the coincidence of the reconstructed
function G′ and the black-box algorithm when evaluated at several different values of z.

Notice that each time we compute a new coefficient aj the reconstructed function G′

gains a new power of z either in the numerator (if j is odd) or in the denominator (if
j is even). So in the Thiele form we will always have that the degree of the numerator
R coincides with that of the denominator R′ or that R = R′ + 1. However their actual
degree may be whatever, this means that some, or potentially many, of the higher degree
coefficients nj and dj are vanishing. In other words part of our efforts were devoted
to reconstruct zeros. This is why if the degrees R and R′ were known a priori, using
the system solving approach may be preferred since it would involve a lower number of
evaluations of the function G.

Example

Consider the following function:

G(x) =
1 + 2x+ 3x2

9− x2
(2.11)
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using again consecutive numbers for the yi we have:

y0 = 1

a0 =
3

4

ftest(x) =
3

4
y1 = 2

a1 =
20

53

ftest(x) =
3

4
+

53

20
(−1 + x)

y2 = 4

a2 = −4399

1572

ftest(x) =
3

4
+

−1 + x

20

53
− 1572(−2 + x)

4399
y3 = 5

a3 = −87639

9911

ftest(x) =
3

4
+

−1 + x
20

53
+

−2 + x

−4399

1572
− 9911(−4 + x)

87639
y4 = 6

a4 = −374

393

ftest(x) =
3

4
+

−1 + x
20

53
+

−2 + x

−4399

1572
+

−4 + x

−87639

9911
− 393

374
(−5 + x)

which in canonical form is

ftest(x) =
1 + 2x+ 3x2

9− x2
(2.12)

The evaluation point y = 3 was skipped because of the singularity which G presents at
this value.

Notice that even though the coefficients of the canonical form are all order 10, there
are coefficients in the Thiele form even of order 105. The size of the coefficients becomes
relevant when performing the reconstruction over finite fields, for further details see sec-
tion 3.4.

2.1.3 Multivariate polynomials and rational functions

In this section we will be using multi-index notation. Define the vector of n variables
z = (z1, z2 · · · , zn), and an n-dimensional multi-index α = (α1, · · · , αn) with αi ∈ N, then
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any monomial can be written as

zα =

n∑

i=1

zαii (2.13)

Its total degree is given by

|α|=
∑

i

αi (2.14)

A multi-variate polynomial can then be written as

G(z) =
∑

α

cαzα (2.15)

and a multi-variate rational function as a ratio of two polynomials:

G(z) =

∑
α nαzα∑
β dβz

β
(2.16)

Multivariate polynomials

Consider a polynomial G(z) as in eq. (2.15). The idea behind the reconstruction of such a
function is to reduce the problem again to an univariate reconstruction which we already
know how to perform. Thus first of all fix {z2, · · · , zn} then G(z) reduces to a function of
z1:

G(z1, z2, · · · , zn) = G(z1) =

R∑

i=0

ai(z2, · · · , zn)

i−1∏

j=0

(z1 − yj) (2.17)

where the ai(z
, · · · , zn) are numerical coefficients determined through eq. (2.5) with the

substitutions
G(yi)→ G(yi, z2, · · · , zn) , ai → ai(z2, · · · , zn) (2.18)

However the ai are actually polynomial functions of the remaining n− 1 variables, whose
form we need to determine so to get the dependence of G on all the n variables. Consider
then for example a1(z2, · · · , zn): after the first reconstruction we got one numerical value
for it for assigned values of {z2, · · · , zn}. If we now perform the reconstruction of G in
z1 multiple times changing only the value assigned to z2, we will eventually end up with
enough numerical values of a1 in order to reconstruct its dependence on z2, over which we
kept sampling:

a1(z2, z3, · · · , zn) = a1(z2) =
R′∑

i=0

bi(z3, · · · , zn)
i−1∏

j=0

(z2 − yj) (2.19)

where the coefficients bi are given by eq. (2.5) with the substitutions

G(yi)→ a1(yi, z3, · · · , zn) , aj → bj(z3, · · · , zn) (2.20)

And similarly for all the other a2, · · · , aR.
Again the bi are actually polynomial functions of the n−2 variables {z3, · · · , zn}. Now

sampling on z3 we can reconstruct the dependence of each bi in some other coefficients,
say ci, polynomial functions in n−3 variables. We can thus go on like this until we end up
with the coefficients being univariate polynomials in zn, and after this last reconstruction,
putting all together we get G(z).

Notice that in order to reconstruct the z2 dependence of ai(z2, z3, · · · , zn) one needs
many numerical values of each of these ai, which are obtained performing each time a new
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reconstruction of G(z1, z2, z3, · · · , zn) in z1. Then to reconstruct bi(z3, z4, · · · , zn) in z3 one
needs many numerical values of bi for fixed z3, which are extrapolated from many different
reconstructions of ai in z2 which again are extracted from many reconstructions of G in
z1. And similarly for all the successive coefficients. Thus reducing the multivariate case
of z variables to an univariate reconstruction implies a great proliferation of evaluations
of the black-box algorithm, since the reconstruction of each of the single coefficients does
entail further reconstructions, each of which needs itself many evaluations of the whole G.
It follows that all the evaluations performed for the computation of each coefficient should
be reused as often as possible for the computation of the other coefficients, and need thus
to be appropriately stored.

Multivariate rational functions

The reconstruction of multivariate rational functions is closely related to that of multivari-
ate polynomials, in fact it can be reduced to a sequential application of it, just as this is a
nested application of the univariate polynomial reconstruction. There are some subtleties
to take care of, for a clear treatise of which we refer to [25].
Given a multivariate rational function G(z) as in eq. (2.16), the trick consists of introduc-
ing a new variable, call it s, and define

H(s, z) ≡ G(sz) = G(sz1, · · · , szn) (2.21)

Clearly H can be written in terms of s in canonical form as:

H(s, z) =

∑R
i=0 pi(z)si

∑R′

i=0 qi(z)si
(2.22)

where

pi(z) =
∑

|α|=i

nαzα , qi(z) =
R′∑

|β|=i

dβz
β (2.23)

with α and β multi-indexes. In other words pi and qi are multivariate polynomials of
degree i in z. Thus we can first reconstruct the dependence of H in s fixing all the
z1, · · · , zn, then through multivariate polynomial reconstruction get the dependence of the
polynomial coefficients pi, qi in z and finally set s = 1 obtaining G(z) = H(1, z). In order
to perform the reconstruction of each multivariate polynomial pi and qi we need numerical
values for these functions at given values z∗ of the coefficient, these are extrapolated from
different reconstructions of H(t, z∗) in t. So multivariate rational reconstruction is given
by several multivariate polynomial reconstructions to which a previous step given by an
univariate rational reconstruction is added. It is possible to reduce by one the number of
variables on which pi(z) and qi(z) depend on, somehow making up for the introduction of
s. In fact being the degree of these polynomials known one could drop the dependence on
one of the given variables, setting say zn = 1, reconstruct the polynomials in z1, · · · , zn−1

and then restore the zn dependence simply by homogenizing the result.

Normalization of rational functions

An issue we did not address yet is the normalization of the rational functions. Whereas the
coefficients of polynomials are uniquely determined, those of a rational function can be de-
termined only up to a normalization. It can be shown that through Thiele’s interpolation
formula the obtained result is minimal with respect to the degrees of the numerator and
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denominator, hence no greatest common divisor simplification is needed when converting
the result in canonical form. However an ambiguity over an overall constant factor still
remains. In our specific case Mathematica itself provided the normalisation when convert-
ing to canonical form, since the output is given by default such that the coefficients are all
integers. In general however one may deal with the ambiguity by requiring for example
the lowest order term in the denominator of the canonical form to be equal to 1. If the
constant term is non-vanishing eq. (2.16) will take the form

G(z) =

∑
α nαzα

1 +
∑

|β|>0

dβz
β

(2.24)

Identifying this term before the reconstruction is in general not possible, but if the lowest-
order non-vanishing term of the denominator is the constant one then this issue can be
easily solved. In cases where this is not the constant term, one can always identify a
suitable shift h = (h1, · · · , hn) in the arguments z such that the vanishing constant becomes
non-vanishing. For further explanations about this see [25] or [12].

2.2 Finite fields

So far we focused on how a rational function can be reconstructed knowing its numerical
values for some (many) given evaluation points.Now we are going to deal with a major
problem arising through the usage of this reconstructional approach: intermediate ex-
pressions in the computation usually contain rationals whose numerator and denominator
are huge numbers which may exceed the machine-size integers. Thus arbitrary-precision
arithmetic is needed and this slows down considerably the calculation.

However, as explained e.g. in [25], one can circumvent this problem using finite fields
which we will denote with Zp, i.e. fields comprised of only a finite number p of integers.
One can map Q over one of these fields, making sure that p and thus all the elements of
Zp are machine-size integers, perform the computation and then map the result back to
Q.

Seemingly a new problem has appeared: clearly the mapping from Q to any given finite
field cannot be invertible, since we are mapping an infinite set over a finite one. However
it can be shown that if the prime p defining the field Zp is big enough with respect to
the numerator and denominator of the rational z ∈ Q, then z can be identified uniquely
starting from its image in Zp. In other words if p is big enough the mapping is invertible
for rationals which are small enough, but this takes us back to the initial problem of not
exceeding machine-size integers.

The final solution lies in the so called Chinese remainder theorem.

2.2.1 Mapping from Q to Zp

The field Zp

First of all what is Zp? The fields we are interested in are the so called Galois fields of order
p, also known as finite fields because they contain only a finite number of elements. Giving
a mathematically rigorous definition of the general structure we are taking advantage of
is far beyond the scope of this thesis,3 we will thus only briefly discuss the idea and the
practical aspects we need.

3Zp is a particular case of field defined by residue classes of a ring R induced by an ideal of R, see [16].
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One can define a finite field of order p as the set

Zp = {0, 1, · · · p− 1} (2.25)

endowed with suitable addition and multiplication operations.
In a more rigorous way, starting from Z the field Zp can be constructed by defining

the following equivalence classes over Z: for a given natural number p ∈ N, we say that a
is equivalent to b modulo p if a− b = np for some n ∈ Z.

a ∼p b⇔ ∃ n ∈ Z | a− b = np (2.26)

we say then that a, b belong to the same equivalence class, call it [a]p, or simply b = a
mod p. Taking the set of equivalence classes S ≡ {[0]p, [1]p, · · · , [p− 1]p} we see that the
group structure (under addition) of Z induces a group structure on S as well, in other
words the map

F : Z→ S

a 7→ [a]p
(2.27)

is a group homomorphism. S can be seen to be the cyclic group of order p which is usually
indicated as Zp. In eq. (2.25), with a slight abuse of notation, we used representatives
of the equivalence classes instead of the classes themselves as elements of Zp. Now one
needs to show that Zp can be endowed with a multiplication operation under which it
becomes a field. This can be done provided that p is a prime number. The main idea
is the following: Z itself admits a multiplication under which however it only becomes a
ring, since all requirements to be a field are satisfied a part from the inverse elements of
this multiplication being defined inside Z. We thus may use the multiplication induced by
Z on Zp to endow the latter with a ring structure. Now one needs to define the inverse
elements for this operation.

Multiplicative inverse

Given a ∈ Zp its multiplicative inverse is of the form

a−1 ∈ Zp | aa−1 = a−1a = 1 mod p (2.28)

In order to prove the existence of such an inverse one can make use of the so called
Bezout’s identity, which states that given any two numbers a, b ∈ Z and their greatest
common divisor g, there are two integers m,n such that

an+ bm = g (2.29)

Suppose now to take b = p such that p and a are co-primes, which means that their
greatest common divisor is 1. We then have

an+ pm = 1 ⇒ an = 1 mod p (2.30)

Thus n is exactly the inverse we were looking for. However we had to assume that a
and p were co-primes in order for a to admit a multiplicative inverse, so as to fulfil this
requirement for any a ∈ Zp we will have to take p to be a prime number. Notice that this
reasoning may seem to have a flaw, since multiples of p itself4 would admit no inverse.
However all of these numbers are mapped to the identity element of the addition in Zp:

a ≡ np = 0 mod p (2.31)

but the zero element, i.e. the identity element for the addition, is the only element of a
field which admits no inverse under multiplication.5

4These are the only possible numbers that are not co-prime with p.
5See definition of field A.3.
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Further remarks on the multiplicative inverse in Zp

The fact that p needs to be a prime in order for Zp to be a field can also be shown without
neither the use of Bezout’s identity, nor the introduction of more involved mathematical
structures like ideals as it is done in [16]. All we need is the following

Proposition 2.2.1. Given a generic p ∈ N defining the ring Zp of integers modulo p, and
an element a ∈ Zp such that a and p are coprimes, we have that the product · maps a
over the entire ring. In other words for any c ∈ Zp there exists b ∈ Zp such that a · b = c
mod p, furthermore b is unique.

Proof. First prove the uniqueness, i.e. given

ab = c mod p, ab′ = c′ mod p

if b 6= b′ then c 6= c′. Suppose we had c = c′ mod p then

c− c′ = 0 mod p ⇒ a(b− b′) = 0 mod p

meaning that a(b − b′) is a multiple of p. Being a and p coprimes their least common
multiple is ap, however clearly (b − b′) < p, which would lead to a contradiction. Thus
a(b− b′) can’t be a multiple of p so c 6= c′.

It follows that the image of the map Pa : Zp → Zp defined by Pa(b) = ab must be the
whole Zp in order for no product to yield the same result.

Due to proposition 2.2.1 if a ∈ Zp and p are coprimes, there exists a unique b ∈ Zp
such that ab = 1 mod p, i.e. a admits a uniquely defined inverse under multiplication.
In order for Zp to be a field such an inverse must be defined for every element of Zp so p
must be coprime with {0, 1, · · · , p− 1} meaning that p must be a prime.

The different behaviour of multiplication in Zp for p generic and p prime can be seen
using the Cayley table6 for the product operation. Take as an example the ring Z8 and
the field Z7:

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Table 2.1: Cayley table for the product in Z8

6A Cayley table for a given operation is a table reporting the outcome of that operation when applied
to any possible pair of elements of the group, ring or field. Notice that we introduce Cayley tables for
demonstration purpose only, they are not used to perform any calculation here after.

51



· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 2.2: Cayley table for the product in Z7

As can be seen 2, 4, 6 ∈ Z8, which are not coprime with 8, are not mapped over the entire
ring, moreover they are mapped several times over 0: each of these zeros is a common
multiple of the given element a ∈ Z8 and 8 smaller than a · 8.

This second proof may seem redundant but it is important to stress the fact that
even for p non prime there are many elements in Zp which admit a unique inverse un-
der multiplication. This fact will prove crucial when introducing the Chinese remainder
theorem.

The mapping from Q to Zp

At this point, for p prime, we can define a mapping

F : Q→ Zp
a

b
7→ (a · (b−1 mod p) mod p)

(2.32)

This map is not well defined for all elements of Q, in fact if b is a multiple of p then its
multiplicative inverse does not exist because b = 0 mod p. Thus also the image of z
is not defined. There is no analytic solution to this. However recall that our goal is to
perform the reconstruction of a rational function over finite fields, meaning that we need
to evaluate the black-box algorithm G(z) at several different values of the variable z. If
during the evaluation at one of these values the above scenario presented itself, i.e. F
failed to provide a proper image, our algorithm would simply skip that value of z, take a
new one and keep running. A more detailed discussion of this is provided in chapter 4.

2.2.2 Map from Zp to Q and Euclidean algorithm

On the uniqueness of the inverse element

The mapping F : Q → Zp is clearly not invertible, in the sense that it is not possible to
properly define an inverse function F−1. This is due to the fact that the map F is not
injective, starting from an element c ∈ Zp there are infinite possible rationals x = a

b ∈ Q
that are mapped to that c. Notice however that there are only finitely many such that
a, b < p simply because p is finite. The crucial fact7 is that there is only one such that
a2, b2 < p

2 :

Proposition 2.2.2. Given an element c ∈ Zp, there is only one possible x = a
b ∈ Q such

that a2, b2 < p
2 and x = c mod p

7See for example [30].
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Proof. Suppose that there were another pair of values a′, b′ such that a′

b′ = c mod p and
(a′)2, (b′)2 < p

2 , then we would have

a

b
=
a′

b′
mod p ⇒ ab′ = ba′ mod p

meaning that there is an integer n such that ab′ − ba′ = np. However |ab′|< p
2 and same

goes for |ba′|< p
2 , thus

−p < np < p

which fixes n = 0 and so ab′ = ba′, then a
b = a′

b′ and x is thus uniquely determined.

Given a certain rational z = a
b there is then an infinite set of growing primes {p1, p2, · · ·},

which we will call Iz, such that c = F (z) and c is not the image of any other rational
z′ = a′

b′ with (a′)2, (b′)2 < p
2 . Suppose then to have chosen p ∈ Iz, how to determine the

uniquely defined z starting from c? Again the answer can be found in Bezout’s identity, in
particular in the extended Euclidean algorithm which allows to compute the coefficients
m,n in eq. (2.29).

Euclidean algorithm

The Euclidean algorithm is a recursive technique which allows to determine the greatest
common divisor (g.c.d.) of two given numbers.

Suppose we were looking for gcd(a, b) with a > b, that is the biggest number g such that
a = cag and b = cbg for some positive integers ca and cb. Clearly, since a− b = (ca − cb)g,
g will also divide a − b and on the same footing it will also divide r0 = a − q0b where q0

is the quotient of a and b and r0 the remainder. So consider now the pair (b, r0), since
g divides both of them it also divides r1 = b − q1r0 with q1 quotient of b and r0. We
can then repeat the argument for (r, r1) and then (r1, r2) and so on until we get to a pair
(rN−1, rN ) whose remainder is zero:

a = q0b+ r0

b = q1r0 + r1

...

rN−3 = qN−1rN−2 + rN−1

rN−2 = qNrN−1 + 0

(2.33)

Notice that the recursion terminates after a number of steps N that must be finite because
there are only finitely many integers in the interval [0, a] and 0 ≤ ri < |ri−1|. So we found
that g divides all the non-zero ri and in particular it divides rN−1, thus we must have
that rN−1 ≥ g. However starting from the bottom of eq. (2.33) and substituting back the
remainders we see that

rN−2 = qNrN−1

rN−3 = qN−1rN−2 + rN−1 = (qN−1qN + 1)rN−1

...

b = (· · ·)rN−1

a = (· · ·)rN−1

(2.34)

where the (· · ·) stands for some combination of products of qi. So rN−1 divides both a
and b, then we must have rN−1 ≤ g. So ultimately rN−1 = g.
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The Euclidean algorithm defines a succession {ri} whose last non-zero term is the
greatest common divisor we were looking for. In order to incorporate also a and b in
this succession and define the algorithm in a completely recursive way we can relabel the
remainders and set:

r0 ≡ a
r1 ≡ b
r2 = r0 − q1r1

...

ri+1 = ri−1 − qiri
...

rN−2 = qNrN−1

(2.35)

where 0 ≤ ri+1 < |ri|.

Extended Euclidean algorithm

One can easily extend the algorithm in order to compute not only the g.c.d but also the
coefficients m,n of Bezout’s identity

am+ bn = gcd(a, b) (2.36)

Introduce other two successions {si} and {ti} defined by:

s0 ≡ 1 t0 ≡ 0
s1 ≡ 0 t1 ≡ 1

...
...

si+1 = si−1 − qisi ti+1 = ti−1 − qiti
...

...

(2.37)

these satisfy

asi + bti = ri (2.38)

which can be shown by induction: for i = 0, 1 it is true by construction, assuming it to be
true for i = k we have

rk+1 = rk−1 − rkqk
= (ask−1 + btk−1)− (ask + btk)qk

= (ask−1 − askqk) + (btk−1 − btkqk)
= ask+1 + btk+1

(2.39)

and this proves the identity. When the recursion terminates at step N having rN = 0, we
get gcd(a, b) = rN−1 and n = sN−1, m = tN−1. If a and b are positive and gcd(a, b) 6=
min(a, b), it can be shown that

|si|<
b

gcd(a, b)
|ti|<

a

gcd(a, b)
(2.40)
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The inverse mapping

The extended Euclidean algorithm can be used to invert the map of eq. (2.32). If we take
eq. (2.38) and set b = p we have

asi = ri mod p ⇒ ri
si

= a mod p (2.41)

Thus given an element c ∈ Zp, by running the extended Euclidean algorithm for (c, p) we
get at each step of the recursion a possible rational xi = ri

si
whose image in Zp is c, so each

step of the recursion provides us with a possible candidate for the rational we are seeking.
Among these candidates there will be at most one such that r2

i , s
2
i <

p
2 , because due to

proposition 2.2.2 only one such rational exists. As a result, if the prime p defining Zp is
big enough with respect to the numerator and denominator of the rational z whose image
is c, i.e. p ∈ Iz, we will be able to determine z without ambiguity through the extended
Euclidean algorithm. The fact that, supposing a z = n

d such that n2, d2 < p
2 exists i.e.

p is large enough, this z can be found among the candidates provided by the extended
Euclidean algorithm is proven in [31].

Notice however that in the choice of p we are bound to the machine-size numbers,
otherwise we will fall back into the problem we tried to solve by introducing the mapping
over Zp. In order to be able to invert the mapping from Q to Zp uniquely for rationals
of any given size we need somehow to access “larger” finite fields but still working with
machine-size integers. This can be done through the Chinese remainder theorem.

2.2.3 Chinese remainder theorem

The Chinese remainder theorem states that given the image of a number X ∈ Q over the
fields Zp1 , · · · ,Zpn defined by the primes p1, · · · , pn, one can always compute the image of
X over the ring defined by P = p1 · · · pn. Actually one can prove a more general statement:

Theorem 2.2.3 (Chinese remainder). Let n1, · · · , nm be integers greater than 1 and pair-
wise coprime, let a1, · · · , ak be integers such that 0 ≤ ai < ni for every i, then there exists
only one 0 ≤ X < N with N =

∏
i ni such that





X = a1 mod n1

...

X = ak mod nk

(2.42)

Proof. Uniqueness: In order to prove the uniqueness of the solution suppose that two
numbers x and y both solve all the congruences. When divided by ni they give the same
remainder ai, so their difference x−y is a multiple of each of the ni. As the ni are pairwise
coprime x − y must also be a multiple of N , say x − y = cN . But x < N and y < N so
we must have c = 0 and x = y.

Existence: The existence can be proven constructing a solution. Consider the first
two equations of eq. (2.42), these are equivalent to

{
X = a1 mod n1 = a1 + l1n1

X = a2 mod n2 = a2 + l2n2

(2.43)

for some l1, l2 ∈ Z. Thus

a1 + l1n1 = a2 + l2n2 (2.44)
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Since n1 and n2 are co-prime, one can write Bezout’s identity eq. (2.29) for them as8

m1n1 +m2n2 = 1 (2.45)

using this equation we can solve eq. (2.44) with respect to l1:

l1n1 = a2 − a1 + l2n2 (2.46)

multiply both sides by m1

l1(1−m2n2) = m1(a2 − a1) + l2m1n1

⇓
l1 = m1(a2 − a1) + (m1l2 +m2l1)︸ ︷︷ ︸

≡L∈Z

n2

(2.47)

Then X can be written as

X = a1 + l1n1 = a1 +m1n1(a2 − a1)︸ ︷︷ ︸
≡A1

+Ln1n2 (2.48)

in other words

X = A1 mod n1n2 (2.49)

in a similar fashion one could have solved eq. (2.44) in l2 obtaining:

l2 = m2(a1 − a2) + (m1l2 +m2l1)︸ ︷︷ ︸
L

n1 (2.50)

X = a2 + l2n2

= a2 +m2n2(a1 − a2) + Ln1n2

= a2 + (1−m1n1)(a1 − a2) + Ln1n2

= a1 +m1n1(a2 − a1) + Ln1n2

= A1 mod n1n2

(2.51)

Again using m1n+m2n2 = 1 we can write A1 in a more symmetric form:

A1 = a1m2n2 + a2m1n1 (2.52)

The fact that this A1 solves the system eq. (2.43) can be seen immediately from eq. (2.48)
and eq. (2.51):

X = a1 +m1n1(a2 − a1) + Ln1n2

= a1 + [m1(a2 − a1) + Ln2]n1

= a1 mod n1

(2.53)

X = a2 +m2n2(a1 − a2) + Ln1n2

= a2 + [m2(a1 − a2) + Ln1]n2

= a2 mod n2

(2.54)

where the terms between square brackets are integers.

8 The coefficients m1 and m2 may be computed for example using the extended Euclidean algorithm.
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At this point we have reduced eq. (2.42) from being a system of k equations to the
system of k − 1 equations 




X = A1 mod n1n2

...

X = ak mod nk

(2.55)

Take now the first two equations of this new system
{
X = A1 mod n1n2

X = a3 mod n3

(2.56)

Defining:

N =
∏

j

nj (2.57)

Ni =
N

ni
(2.58)

since Ni and ni are co-primes Bezout’s identity reads

MiNi +mini = 1 (2.59)

for some integers Mi,mi. Following the same steps as above we find

X = A2 mod n1n2n3

= x1N1M1 + x2N2M2 + x3N3M3 mod n1n2n3
(2.60)

which leads to the system of k − 2 equations




X = A2 mod n1n2n3

...

X = ak mod nk

(2.61)

Repeating the procedure other k − 3 times one ends up with

X = Ak−1 mod n1 · · ·nk

=

k∑

i=1

aiMiNi mod N
(2.62)

It can be easily seen that Ak−1 defined as above solves all the congruences in eq. (2.42).
In fact notice that Nj is a multiple of ni for i 6= j in particular

Nj =
Ni

nj
ni

then isolating the i-th term and using MiNi = 1−mini

X =
m∑

j=1

ajMjNj

= ai(1−mini) +
∑

j 6=i
ajMj

Ni

nj
ni

= ai +

(∑

j 6=i
ajMj

Ni

nj
− aimi

)
ni

= ai mod ni
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being the term in parenthesis an integer. This is true for every i and completes the
proof.

This theorem can also be stated saying that given {n1, · · · , nm} pairwise coprime there
is a ring isomorphism between the ring of integers modulo N =

∏
i ni and the direct

product of the rings of integers modulo ni:

C : Zn1 × · · · × Znm → ZN
(X mod n1, · · · , X mod nm) 7→ X mod N

(2.63)

This means that one may perform independently a same computation over each of the
ni getting then through the Chinese remainder the value of the same computation if it
were performed over ZN . As can be seen the Chinese remainder theorem exactly fits
our needs. Consider z = a

b ∈ Q which is the rational result of a computation we are
actually performing over finite fields, and suppose a2, b2 are beyond machine size. We
then still consider p of machine size, but perform the calculation over several of these
fields {Zp1 , · · · ,Zpm}. Then we use the map of eq. (2.63) to obtain the image of z in
ZP with P = p1 · · · pm, if P ∈ Iz we can compute z uniquely. Else compute z over a
new field defined by pm+1, then use the Chinese remainder to map to the ring defined by
P ′ = p1 · · · pmpm+1. If P ′ ∈ Iz find the unique z, else keep going until the product of all
the pi is in Iz.

Notice that the isomorphism C defined by the Chinese remainder theorem is a ring
isomorphism which may be extended using the mapping over finite fields to a ring homo-
morphism

Z → Zp1 × · · · × Zpm → ZP (2.64)

However it cannot be extended to a field homomorphism

Q → Zp1 × · · · × Zpm → ZP (2.65)

since P = p1 · · · pm is clearly not a prime number and thus ZP cannot be endowed with
a suitable product operation because not all the elements in ZP admit a multiplicative
inverse. The problematic elements are those that are not coprime with P , but since
p1, · · · , pm are all primes, only multiples of the pi do not admit an inverse.9 In other words
the problem may arise only if one of the ai in eq. (2.42) was zero, but this can be easily
recognized by the code, the associated pi excluded from computation and then inversion
becomes defined for the value computed.

9See proposition 2.2.1 and subsequent reasoning.
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Chapter 3

Rational functions from finite
fields

3.1 Polynomial reconstruction

As mentioned in section 2.1.1 we will use the Newton’s form for univariate polynomials
for the reconstruction process.

The first input the routine needs is the black-box algorithm, call it Fin, which returns
the numerical value of the polynomial to be reconstructed given a value of the variable,
call it x.

x = rational
inputfor−−−−−→ Fin[x]

returns−−−−→ rational (3.1)

As a second input one can also specify an integer which will be used for the checking
procedure of the reconstructed function. We will come back into this later in more detail.
Finally the output will be the analytic form of the reconstructed function.1

Before starting the reconstruction itself we need to define some functions which the
routine will be making use of:

• a local function called F which stores the values of Fin computed along the process

• a function called h generating the sampling points

• a local function f which is the function we are reconstructing. Once the computation
is terminated correctly f will be given as output.

• a recursive function called l which allows to generate the analytic form of f in terms
of the coefficients we called ai in section 2.1.1

• a recursive function called g which generates the analytic form of the coefficients ai
in terms of aj with j < i and of the sampling points h[i]

• a function called a[i] storing the numerical value computed for each of the coef-
ficients ai. These are the actual coefficients used by l to construct the function
f.

Storing the values of Fin

The most time-expensive part of the reconstruction is the evaluation of Fin. It is thus
useful to store the values one computed, in order not waste time in repeating a same

1The variable name of the output may be specified through a third optional input to the routine.

59



calculation more than once. This strategy comes at handy mainly in the result checking
procedure. To accomplish this we define a local variable F as:

F[x_] := F[x] = Fin[x];

g[x_, 0] := F[x];

g[x_, n_] := g[x, n] = g[x, n - 1] - a[n - 1]  x - h[n - 1];

a[n_] := a[n] = g[h[n], n];

l[z_, n_, 0] := a[n];

l[z_, n_, m_] := a[n - m] + z - h[n - m] * l[z, n, m - 1];

f[z_] := l[z, j, j];

h[0] = 1;

h[i_] := h[i] = h[i - 1] + 1;

Printed by Wolfram Mathematica Student Edition

Sampling points h[i]

Throughout the computation the black-box algorithm needs to be evaluated several times
over different sampling points generated by the function h[i]. These points are completely
arbitrary provided they do not repeat themselves. If the i-th sampling point were chosen to
be the same as a preceding one, a singularity would inevitably appear in the computation
of the coefficient a[i]. This can be clearly seen from the coefficients reported in figure 3.3,
consider for example choosing h[3]=h[2] and computing a[3]. Since in the polynomial
reconstruction no infinities may arise at any step of the computation, there is no built-in
recovery mechanism from such a scenario. Thus an artificial infinite of this type would
blow up the entire computation and must be avoided.

h has been defined in order to be as simple as possible. We chose to take consecutive
integers starting from 1:

F[x_] := F[x] = Fin[x];

g[x_, 0] := F[x];

g[x_, n_] := g[x, n] = g[x, n - 1] - a[n - 1]  x - h[n - 1];

a[n_] := a[n] = g[h[n], n];

l[z_, n_, 0] := a[n];

l[z_, n_, m_] := a[n - m] + z - h[n - m] * l[z, n, m - 1];

f[z_] := l[z, j, j];

h[0] = 1;

h[i_] := h[i] = h[i - 1] + 1;

Printed by Wolfram Mathematica Student Edition

Notice that h is defined in order to store its values once computed.

The test function f

The polynomial f is the test function one builds during the reconstruction process. It
is built step by step computing successive coefficients a[i] until a given number of test
evaluations of f and Fin match. f will be computed in Newton form, thus recursively
with respect to the a[i]. To generate it an auxiliary function l is used. In figure 3.1,
alongside the definitions, three examples of f[x] are reported. They show f at the step
j=1,3,5 of the computation, i.e. after coefficients up to a[1],a[3] and a[5] have been
determined. If the computation was actually performed the a[i] would all be replaced
by the appropriate rational numbers.

The coefficients a and the function g

Similarly to f, the coefficients ai are computed recursively. The recursion itself is per-
formed by the auxiliary function g. The definition of g with some examples is shown in
figure 3.2. The g[x, n] is the an coefficient computed at x expressed in terms of all the ai
with i < n. The printed example outputs correspond to a1,a2,a3 and a6. The expressions
shown still display their analytical dependence on F and h, because these have not been
specified when printing the examples in order for the latter to be as general as possible.

The numerical value of the n-th coefficient computed at the n-th sampling point h[n]
is stored in a[n], defined as in figure 3.3. The examples printed correspond to a1,a2,a3

previously shown in the examples of g. We did not display the value for i = 6 because of
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In[1]:= l[z_, n_, 0] := a[n];

l[z_, n_, m_] := a[n - m] + z - h[n - m] * l[z, n, m - 1];

f[z_] := l[z, j, j];

In[4]:= j = 1;

In[5]:= f[x]

Out[5]= a[0] + a[1] x - h[0]

In[6]:= j = 3;

In[7]:= f[x]

Out[7]= a[0] + x - h[0] a[1] + x - h[1] a[2] + a[3] x - h[2]

In[8]:= j = 5;

In[9]:= f[x]

Out[9]= a[0] +

x - h[0] a[1] + x - h[1] a[2] + x - h[2] a[3] + x - h[3] a[4] + a[5] x - h[4]

Printed by Wolfram Mathematica Student Edition

Figure 3.1: Definition of the test function f in terms of the auxiliary function l.

In[10]:= g[x_, 0] := F[x];

g[x_, n_] := g[x, n] = g[x, n - 1] - a[n - 1]  x - h[n - 1];

In[23]:= g[x, 1]

Out[23]=
-a[0] + F[x]

x - h[0]

In[13]:= g[x, 2]

Out[13]=

-a[1] +
-a[0]+F[x]

x-h[0]

x - h[1]

In[14]:= g[x, 3]

Out[14]=

-a[2] +

-a[1]+
-a[0]+F[x]

x-h[0]
x-h[1]

x - h[2]

In[22]:= g[x, 6]

Out[22]=

-a[5] +

-a[4]+
-a[3]+

-a[2]+
-a[1]+

-a[0]+F[x]
x-h[0]

x-h[1]
x-h[2]

x-h[3]
x-h[4]

x - h[5]

Printed by Wolfram Mathematica Student Edition

Figure 3.2: Auxiliary function g, definition and examples.
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In[24]:= a[n_] := a[n] = g[h[n], n];

In[25]:= a[1]

Out[25]=
-F[h[0]] + F[h[1]]

-h[0] + h[1]

In[26]:= a[2]

Out[26]=

-
-F[h[0]]+F[h[1]]

-h[0]+h[1]
+

-F[h[0]]+F[h[2]]
-h[0]+h[2]

-h[1] + h[2]

In[27]:= a[3]

Out[27]=

-

-
-F[h[0]]+F[h[1]]

-h[0]+h[1]
+

-F[h[0]]+F[h[2]]
-h[0]+h[2]

-h[1]+h[2]
+

-
-F[h[0]]+F[h[1]]

-h[0]+h[1]
+

-F[h[0]]+F[h[3]]
-h[0]+h[3]

-h[1]+h[3]

-h[2] + h[3]

Printed by Wolfram Mathematica Student Edition

Figure 3.3: Definition of the numerical coefficients a in terms of the auxiliary function g

and some examples.

the large size of the output. Again all the values are analytical since nor the function F

nor h have been specified.
In the denominators of each of the fractions defining the coefficients ai there are always

only differences among evaluation points. It is thus impossible that any a[i] diverges
unless we chose two coinciding sampling points. But we require h to be a sequence of non-
repeating numbers and thus no infinity can appear anywhere through out the computation.
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The reconstruction algorithm

Once all these definitions have been given the routine proceeds as shown in algorithm 1 and
the associated flowchart figure 3.4. The input parameter n is an integer which defines for
how many different values of z the test function and the black-box algorithm are required
to coincide before declaring the reconstruction to be successful and exit the routine. This
last condition is tested by the check algorithm which is shown in algorithm 2 and figure 3.5.
Its inputs are the two functions f and F whose coincidence is to be checked and the integer
n,2 which is again the number of points on which the two functions are required to coincide
before terminating the check.

On the following pages we displayed some examples of polynomial reconstruction. In
Mathematica x // f means applying the function f to x, and the symbol % stands for
the last output.

input : Fin=black-box algorithm, n=integer
output: f=analytic form of reconstructed function

F[x]=Fin[x];
j=0;
while True do

compute and store F[h[j]];
if F[h[j]]=∞ then

h[j]=h[j+1];
clear stored value h[j+1];

else
compute and store a[j];
if a[j]=∞ then

h[j]=h[j+1];
clear stored value h[j+1];
clear stored value a[j];

else
compute analytic form of f with the a[j] so far evaluated;
if check[F,f,n]=True then

Break;
else

j=j+1;
end

end

end

end
Algorithm 1: Univariate polynomial reconstruction algorithm polyrec. The func-
tions g,a,l,f,h were defined in the preceding subsections.

2As an optional argument the user can also define the name of the output variable. We did so for all
the examples in the following pages.
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black-box algorithm
F and number
of test points n

j = 0

compute F at h[j]

compute the co-
efficient a[h[j]]

boolean=check[F,f,n]

boolean=True? j = j + 1

return
f[x]

No

Yes

Figure 3.4: Flowchart of the polynomial reconstruction algorithm. The functions a,f,h

were defined in the preceding subsections. The flowchart of the algorithm check which
checks the coincidence of the original and the reconstructed function is given in 3.5.
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input : F,f functions to be compared, n=integer
output: out=Boolean variable

track=h[j];
h[j]=h[j+1];
clear stored value of h[j+1];
count=0;
while count < n do

compute F[h[j]];
compute f[h[j]];
if F[h[j]]=f[h[j]] then

count=count+1;
h[j]=h[j+1];
clear stored value of h[j+1];

else
Break;

end

end
if count=n then

out=True;
else

out=False;
end
h[j]=track;

Algorithm 2: Coincidence check function, check, for univariate polynomial recon-
struction algorithm.
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f, F and n

Set track=j
and count=0

j = j + 1

count=n?

compute F[h[j]]

and f[h[j]]

f[h[j]]=F[h[j]]?

j=track

return
False

count=count+1

return
True

Yes

No

No

Yes

Figure 3.5: Flowchart of the algorithm which checks the coincidence of the reconstructed
polynomial and the results given by the black-box algorithm.
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In[47]:= F[x_] := 3 + 12 x^3 + 17 x^5 + 9 x^9

In[48]:= F[x]

Out[48]= 3 + 12 x3 + 17 x5 + 9 x9

In[49]:= polyrec[F, z, 4]

Out[49]= 363 472 301 +

26 513 589242 + 69 153431 004 + 36 111 826 462 + 6 432 460 860 + 493 268 660 + 18 151560 +

330 750 + 2835 + 9 -63 + z (-56 + z) -49 + z -42 + z

-35 + z -28 + z -21 + z -14 + z (-7 + z)

In[50]:= % // Simplify

Out[50]= 3 + 12 z3 + 17 z5 + 9 z9

In[51]:= F[x_] := 1  2 + 3  5 x^2 + 4 / 7 x^6 + 23  41 x^13

In[52]:= F[x]

Out[52]=
1

2
+
3 x2

5
+
4 x6

7
+
23 x13

41

In[53]:= polyrec[F, z, 4]

Out[53]=
22 284 499 969349

410
+

13 038 008 222328 208

205
+

179 405 920333 501 033

205
+

67 514 447 400461 215

41
+

37 194 960 896889 355

41
+

8 411 055 529659 223

41
+

6 540 590 101485 604

287
+

56 587 211 320640

41
+

1 985 040 987930

41
+

41 569 223 696

41
+

521 194 674

41
+

3 794 609

41
+

14 651

41
+
23

41
-91 + z -84 + z (-77 + z)

-70 + z -63 + z (-56 + z) -49 + z

-42 + z -35 + z -28 + z -21 + z -14 + z (-7 + z)

In[54]:= % // Simplify

Out[54]=
1

2
+
3 z2

5
+
4 z6

7
+
23 z13

41

Printed by Wolfram Mathematica Student Edition

Figure 3.6: Example of polynomial reconstruction. A simple function.

In[47]:= F[x_] := 3 + 12 x^3 + 17 x^5 + 9 x^9

In[48]:= F[x]

Out[48]= 3 + 12 x3 + 17 x5 + 9 x9

In[49]:= polyrec[F, z, 4]

Out[49]= 363 472 301 +

26 513 589242 + 69 153431 004 + 36 111 826 462 + 6 432 460 860 + 493 268 660 + 18 151560 +

330 750 + 2835 + 9 -63 + z (-56 + z) -49 + z -42 + z

-35 + z -28 + z -21 + z -14 + z (-7 + z)

In[50]:= % // Simplify

Out[50]= 3 + 12 z3 + 17 z5 + 9 z9

In[51]:= F[x_] := 1  2 + 3  5 x^2 + 4 / 7 x^6 + 23  41 x^13

In[52]:= F[x]

Out[52]=
1

2
+
3 x2

5
+
4 x6

7
+
23 x13

41

In[53]:= polyrec[F, z, 4]

Out[53]=
22 284 499 969349

410
+

13 038 008 222328 208

205
+

179 405 920333 501 033

205
+

67 514 447 400461 215

41
+

37 194 960 896889 355

41
+

8 411 055 529659 223

41
+

6 540 590 101485 604

287
+

56 587 211 320640

41
+

1 985 040 987930

41
+

41 569 223 696

41
+

521 194 674

41
+

3 794 609

41
+

14 651

41
+
23

41
-91 + z -84 + z (-77 + z)

-70 + z -63 + z (-56 + z) -49 + z

-42 + z -35 + z -28 + z -21 + z -14 + z (-7 + z)

In[54]:= % // Simplify

Out[54]=
1

2
+
3 z2

5
+
4 z6

7
+
23 z13

41

Printed by Wolfram Mathematica Student Edition

Figure 3.7: Example of polynomial reconstruction. A sparse polynomial, i.e. with many
vanishing coefficients.
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In[55]:= F[x_] := Sumi  i + 1^2 x^i, {i, 10}

In[56]:= F[x]

Out[56]=
x

4
+
2 x2

9
+
3 x3

16
+
4 x4

25
+
5 x5

36
+
6 x6

49
+
7 x7

64
+
8 x8

81
+
9 x9

100
+
10 x10

121

In[57]:= polyrec[F, z, 4]

Out[57]=
433 651 533715 589

15 681 600
+

1 757 932 749710 413

475 200
+

2 039 644 978689 001

142 560
+

195 676 471540 327

19 008
+

585 680 015804 141

237 600
+

20 143 149 353681

79 200
+

14 996 223 324059

1 164 240
+

2 154 849 109

6336
+

83 855 957

17 820
+

35 099

1100
+

10

121
-70 + z -63 + z (-56 + z) -49 + z

-42 + z -35 + z -28 + z -21 + z -14 + z (-7 + z)

In[58]:= % // Simplify

Out[58]=
z

4
+
2 z2

9
+
3 z3

16
+
4 z4

25
+
5 z5

36
+
6 z6

49
+
7 z7

64
+
8 z8

81
+
9 z9

100
+
10 z10

121

2     

Printed by Wolfram Mathematica Student Edition

Figure 3.8: Example of polynomial reconstruction. A dense polynomial with all non-
vanishing coefficients up to the power 10 of the variable.

In[62]:= F[x_] := Sumi  i + 1^2 x^i, {i, 99}

In[63]:= F[x]

Out[63]=
x

4
+
2 x2

9
+
3 x3

16
+
4 x4

25
+
5 x5

36
+
6 x6

49
+
7 x7

64
+
8 x8

81
+
9 x9

100
+
10 x10

121
+
11 x11

144
+
12 x12

169
+
13 x13

196
+
14 x14

225
+

15 x15

256
+
16 x16

289
+
17 x17

324
+
18 x18

361
+
19 x19

400
+
20 x20

441
+
21 x21

484
+
22 x22

529
+
23 x23

576
+
24 x24

625
+
25 x25

676
+

26 x26

729
+
27 x27

784
+
28 x28

841
+
29 x29

900
+
30 x30

961
+
31 x31

1024
+
32 x32

1089
+
33 x33

1156
+
34 x34

1225
+
35 x35

1296
+
36 x36

1369
+

37 x37

1444
+
38 x38

1521
+
39 x39

1600
+
40 x40

1681
+
41 x41

1764
+
42 x42

1849
+
43 x43

1936
+
44 x44

2025
+
45 x45

2116
+
46 x46

2209
+
47 x47

2304
+

48 x48

2401
+
49 x49

2500
+
50 x50

2601
+
51 x51

2704
+
52 x52

2809
+
53 x53

2916
+
54 x54

3025
+
55 x55

3136
+
56 x56

3249
+
57 x57

3364
+
58 x58

3481
+

59 x59

3600
+
60 x60

3721
+
61 x61

3844
+
62 x62

3969
+
63 x63

4096
+
64 x64

4225
+
65 x65

4356
+
66 x66

4489
+
67 x67

4624
+
68 x68

4761
+

69 x69

4900
+
70 x70

5041
+
71 x71

5184
+
72 x72

5329
+
73 x73

5476
+
74 x74

5625
+
75 x75

5776
+
76 x76

5929
+
77 x77

6084
+
78 x78

6241
+

79 x79

6400
+
80 x80

6561
+
81 x81

6724
+
82 x82

6889
+
83 x83

7056
+
84 x84

7225
+
85 x85

7396
+
86 x86

7569
+
87 x87

7744
+
88 x88

7921
+

89 x89

8100
+
90 x90

8281
+
91 x91

8464
+
92 x92

8649
+
93 x93

8836
+
94 x94

9025
+
95 x95

9216
+
96 x96

9409
+
97 x97

9604
+
98 x98

9801
+
99 x99

10 000

In[65]:= AbsoluteTiming[polyrec[F, z, 4]][[1]]

Out[65]= 0.331909

Printed by Wolfram Mathematica Student Edition

Figure 3.9: Example of polynomial reconstruction. A dense polynomial with all non-
vanishing coefficients up to the power 99 of the variable. The reconstruction output could
not be displayed since in Newton’s form it would cover several pages. Instead we displayed
the time it took Mathematica to execute the reconstruction.

68



3.2 Univariate rational functions

The reconstruction process follows along the same line as that for univariate polynomials
using the Thiele interpolation formula instead of Newton’s form for polynomials. For
rational functions however particular care is needed at each evaluation of any quantity,
since either real or spurious singularities may appear. These need to be recognized and the
associated evaluation point be discarded in order for the computation to yield the correct
result.

The notation used in this section is the same as in section 2.1.2.

The ingredients needed to perform the reconstruction are again

• a local function called F which stores the values of Fin computed along the process

• a function h generating the sampling points

• a local function f which is the function we are reconstructing

• an auxiliary function l which allows to generate the analytic form of f

• an auxiliary function g which generates recursively the analytic form of the coeffi-
cients ai

• a function a[i] storing the numerical value computed for each of the coefficients ai

There is nothing new to add about the function F, the definition used is the same as
in section 3.1.

Sampling points

Also in the case of rational function reconstruction, due to how Thiele’s interpolation
formula is constructed, the sampling points are arbitrary and are thus generated in the
simplest way possible, i.e. as successive integers

F[x_] := F[x] = Fin[x];

g[x_, 0] := F[x];

g[x_, n_] := g[x, n] = g[x, n - 1] - a[n - 1]  x - h[n - 1];

a[n_] := a[n] = g[h[n], n];

l[z_, n_, 0] := a[n];

l[z_, n_, m_] := a[n - m] + z - h[n - m] * l[z, n, m - 1];

f[z_] := l[z, j, j];

h[0] = 1;

h[i_] := h[i] = h[i - 1] + 1;

Printed by Wolfram Mathematica Student Edition

For polynomials we pointed out that the sampling points could not be repeated, else a
singularity would appear in some coefficient ai. This was a problem due to the fact that
in the polynomial reconstruction algorithm we do not expect infinities to appear, so in the
code no means of dealing with a singularity is included.

Considering the analytic expressions of the coefficients defining a rational function in
Thiele form, we see that repeated sampling points this time lead to indeterminate forms
0
∞ .Consider for example figure 3.11, taking h[1]=h[0] leads to F[h[1]]=F[h[0]] and
a[1] = 0

∞ . Thus also for Thiele’s interpolation formula repeated sampling points must be
avoided.

The issues related to the repeating h[i] may have been inferred a priori, and this
is most clear if we consider reconstructing any given function using a system-solving ap-
proach. Suppose to be a given an unknown univariate polynomial of degree 5, then one
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would need to solve a system of 6 independent equations of the form





a0 + a1(h[1])1 + a2(h[1])2 + a3(h[1])3 + a4(h[1])4 + a5(h[1])5 = F[h[1]]
...

a0 + a1(h[6])1 + a2(h[6])2 + a3(h[6])3 + a4(h[6])4 + a5(h[6])5 = F[h[6]]

(3.2)

Considering two coinciding sampling points means that two of these equations coincide and
the system cannot be solved. Redundant sampling points means redundant information,
and this does not change for any reconstruction method used.

Despite being easily avoidable on Q, the repetition of sampling points may be a problem
impossible to overcome on a finite field Zp. Consider for example a function which has
ten non-vanishing coefficients, then we need at least ten sampling points. If we tried to
perform the reconstruction on Z7 we had only seven sampling points at our disposal, since
the entire field is composed of only seven elements. So repetition could not be avoided and
the reconstruction would be impossible. This means that given a certain function, and
so a certain number of coefficients to be computed, there is a lower bound on the size of
the field we can use to perform reconstruction. However in this work we usually consider
fields of order 253 and so there are no redundancy issues.

The test function f

To generate the analytic expression of the function f in Thiele form we use the auxiliary
function l. This is defined recursively and depends on the coefficients a[i] and sampling
points h[i]:

In[67]:= l[z_, n_, 0] := a[n];

l[z_, n_, m_] := a[n - m] + z - h[n - m]  l[z, n, m - 1];

f[z_] := l[z, j, j];

In[71]:= j = 1;

In[72]:= f[x]

Out[72]= a[0] +
x - h[0]

a[1]

In[73]:= j = 3;

In[74]:= f[x]

Out[74]= a[0] +
x - h[0]

a[1] +
x-h[1]

a[2]+
x-h[2]
a[3]

In[75]:= j = 5;

In[76]:= f[x]

Out[76]= a[0] +
x - h[0]

a[1] +
x-h[1]

a[2]+
x-h[2]

a[3]+
x-h[3]

a[4]+
x-h[4]
a[5]

Printed by Wolfram Mathematica Student Edition
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In[78]:= g[x_, 0] := F[x];

g[x_, n_] := g[x, n - 1] - a[n - 1]^-1 * x - h[n - 1];

In[80]:= g[x, 1]

Out[80]=
x - h[0]

-a[0] + F[x]

In[81]:= g[x, 2]

Out[81]=
x - h[1]

-a[1] +
x-h[0]

-a[0]+F[x]

In[82]:= g[x, 3]

Out[82]=
x - h[2]

-a[2] +
x-h[1]

-a[1]+
x-h[0]

-a[0]+F[x]

In[83]:= g[x, 6]

Out[83]=
x - h[5]

-a[5] +
x-h[4]

-a[4]+
x-h[3]

-a[3]+
x-h[2]

-a[2]+
x-h[1]

-a[1]+
x-h[0]

-a[0]+F[x]

Printed by Wolfram Mathematica Student Edition

Figure 3.10: Definition of the auxiliary function g and some examples.

Alongside the definitions three examples of f[x] are reported. They show f at the step
j=1,3,5 of the computation, i.e. after coefficients up to a[1],a[3] and a[5] have been
determined. If the computation was actually performed the a[i] would all be replaced
by the appropriate rational numbers.

The coefficients a and the function g

The coefficients ai define the function f. Their analytic form is computed recursively using
the auxiliary function g as shown in figure 3.10. The g[x, n] is the an coefficient expressed
in terms of all the ai with i < n. The printed example outputs correspond to a1,a2,a3 and
a6. The expressions shown still display their analytical dependence on F and h, because
these have not been specified when printing the examples in order for the latter to be as
general as possible.

The numerical value of the n-th coefficient computed at the n-th sampling point h[n]
is stored in a[n], see figure 3.11. The examples printed correspond to a1,a2,a3 previously
shown in the examples of g. We did not display the value for i = 6 because of the large
size of the output. Again all the values are analytical since nor the function F nor h have
been specified.

Vanishing denominators

Along the computation singularities due to vanishing denominators may appear.

There are three types of infinities:
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In[84]:= a[n_] := a[n] = g[h[n], n];

In[85]:= a[1]

Out[85]=
-h[0] + h[1]

-F[h[0]] + F[h[1]]

In[86]:= a[2]

Out[86]=
-h[1] + h[2]

-
-h[0]+h[1]

-F[h[0]]+F[h[1]]
+

-h[0]+h[2]
-F[h[0]]+F[h[2]]

In[87]:= a[3]

Out[87]=
-h[2] + h[3]

-
-h[1]+h[2]

-
-h[0]+h[1]

-F[h[0]]+F[h[1]]
+

-h[0]+h[2]
-F[h[0]]+F[h[2]]

+
-h[1]+h[3]

-
-h[0]+h[1]

-F[h[0]]+F[h[1]]
+

-h[0]+h[3]
-F[h[0]]+F[h[3]]

Printed by Wolfram Mathematica Student Edition

Figure 3.11: Definition of a in terms of g and some examples.

• singularities arising from the evaluation of the input function Fin in one of its poles

• singularities arising from the evaluation of the test function f in one of its poles

• spurious singularities appearing in the coefficients a[i] which are by construction
continuous fractions

Divergences are associated to specific sampling points. Since these are completely
arbitrary, each time an infinite is encountered the currently selected sampling point is
discarded. Then the computation is repeated on h[i+1].
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The reconstruction algorithm

The complete reconstruction is performed by algorithm 3 whose flowchart is represented in
figure 3.12. The termination condition, i.e. the coincidence of the reconstructed function
and the black-box algorithm, is tested by check. This function requires three arguments:
the two functions f and F whose coincidence needs to be tested and the number of points
n on which to check coincidence before declaring the two functions to be the same. The
check function is given by algorithm 4 and its flowchart in figure 3.13.

input : Fin=black-box algorithm, n=integer
output: f=analytic form of reconstructed function

F[x]=Fin[x];
j=0;
while True do

compute F[h[j]];
if F[h[j]]=∞ then

h[j]=h[j+1];
clear stored value of h[j+1];

else
compute a[j];
if a[j]=∞ then

h[j]=h[j+1];
clear stored value of h[j+1];
clear stored value of a[j];

else
compute analytic form of f with the a[j] so far evaluated;
if check[F,f,n]=True then

Break;
else

j=j+1;
end

end

end

end
Algorithm 3: Univariate rational function reconstruction algorithm rationalrec.
The functions a,f,h were defined in the previous subsections.
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black-box algorithm
F and number
of test points n

j = 0

compute F at h[j]
F[h[j]] =
∞?

h[j]=h[j+1];

h[j+1]=.

compute the co-
efficient a[h[j]]

a[h[j]] =
∞?

boolean=check[F,f,n] boolean=True? j = j + 1

return
f[x]

Yes

No

No

Yes

No

Yes

Figure 3.12: Flowchart of the univariate rational reconstruction algorithm, the definitions
of f,h,a have been given in the previous subsections.
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input : F,f functions to be compared, n=integer
output: out=Boolean variable

track=h[j];
h[j]=h[j+1];
clear stored value of h[j+1];
count=0;
while count < n do

compute F[h[j]];
compute f[h[j]];
if F[h[j]]=∞ or f[h[j]]=∞ then

h[j]=h[j+1];
clear stored value of h[j+1];

else
if F[h[j]]=f[h[j]] then

count=count+1;
h[j]=h[j+1];
clear stored value of h[j+1];

else
Break;

end

end

end
if count=n then

out=True;
else

out=False;
end
h[j]=track;

Algorithm 4: Coincidence check function, check, for univariate rational function
reconstruction algorithm.
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f, F and n

Set track=h[j], count=0

Set h[j]=h[j+1]

compute F[h[j]]
F[h[j] =
∞?

compute f[h[j]]
f[h[j] =
∞?

f[h[j]]=
F[h[j]]?

h[j]=track

return
False

count=count+1 count=n?

return
True

Yes

Yes

No

No

No

Yes

Yes

No

Figure 3.13: Flowchart of the check routine for the univariate rational reconstruction.

In figure 3.14 and figure 3.15 we displayed two examples of univariate rational re-
construction. Notice that the size of the coefficients involved in the Thiele form of the
function is huge compared to the size of coefficients in the corresponding canonical form.
This will be important when performing the reconstruction over finite fields, since the size

76



In[65]:= F[x_] := 1 + x^2 + 13 x^4  3 + x^2 + x^6

In[66]:= F[x]

Out[66]=
1 + x2 + 13 x4

3 + x2 + x6

In[67]:= rationalrec[F, z, 4]

Out[67]= 3 + -1 + z 

-
741

580
+ -3 + z  -

17 400

1637
+ (-4 + z) 

140 600 293

657 044 880
+ (-5 + z) 

2 467 158 210960

327 086 106887
+

(-6 + z) 
615 564 163571 358 245

5 995 432 842109 296
+ (-7 + z) 

128 795 531544 061 251 840

1 474 536 242413 473 730 979
+

-8 + z  -
30 717 868 632058 486 438 134 999

3 713 653 815285 726 138 460
+

-9 + z  -
119 452 926980 939 870 886 866

120 679 006462 873 659 811 540 965
+

-10 + z 
638 117 589 910 825534 294 864 815

217 541 179 828 791209 956
+

(-11 + z)
17 994 283 078 074524

5 602 084 863 015 834085 935
+

-12 + z

-
124 839 340 988 342 589

1 550 113 748
-

342 578 411
71

(-13 + z)

In[68]:= % // Simplify

Out[68]=
1 + z2 + 13 z4

3 + z2 + z6

Printed by Wolfram Mathematica Student Edition

Figure 3.14: Example of rational reconstruction, a function without real poles

of the coefficients determines the size of the field3 over which one needs to perform the
reconstruction in order for this to be successful.

3or equivalently the number of fields if using the Chinese remainder theorem.
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In[69]:= F[x_] := Sum[i * x^i, {i, 6}]  Producti - x, {i, 7}

In[70]:= F[x]

Out[70]=
x + 2 x2 + 3 x3 + 4 x4 + 5 x5 + 6 x6

1 - x 2 - x 3 - x (4 - x) (5 - x) (6 - x) (7 - x)

In[71]:= rationalrec[F, z, 4]

Out[71]= -
2089

6
+

-8 + z 
13 440

3 508 529
+ -9 + z 

6 622 716 883045

17 069 755 584
+ -10 + z  -

7 811 622 176750 125 440

73 787 030 930304 288 613
+

-11 + z  -
3 101 303 313331 827 420 957 550 607

73 072 001 222178 810 406 974 720
+

-12 + z 
13 057 271 681309 719 753 629 273640 704

4 279 196 513422 167 180 117 486 010285
+

-13 + z 
163 224 814023 321 233 078 002 809614 863 985

60 654 312 726219 401 665 942 189890 153 216
+ -14 + z 

-
6 509 663 050064 374 821 386 887 613663 755 549 248

35 103 934 410570 756 587 603 819692 075 605 295
+ -15 + z 

-
11 736 167 905128 692 715 872 356716 838 163 017 654 319

187 298 777306 262 235 621 915 042890 418 867 777 041 600
+

-16 + z 

37 639 702 372892 020 482 433 319177 038 460 021 314 177387 200

1 059 826 024775 411 085 259 185 714903 299 286 560 607133
+

-17 + z 

23 724 800 336487 050 134 360 942259 519 990 606 088 991738

967 

57 867 122 452650 794 110 190 120295 704 658 072 036 911

261 452 800 +

-18 + z 

-1 375268 878 640 360 287 330950 309 390 053 928 891

578 248 886838 136 320 

45 785 863 858553 644 487 212 646987 508 262 188

495 942 069743 +

-19 + z 

-1 407030 480 443 311 601 240101 849 156 655 126

716 930 491746 117 

2 444 481 478436 901 238 608 133 116595 292 570

955 275 622663 392 494 080 +

-20 + z 

Printed by Wolfram Mathematica Student Edition

897 130 892102 893 330 923 891 262233 739 914

532 183 196546 537 379 840 

4 247 270 086179 442 134 591 920 615429 180 489

492 269 351 +

6 000 475 719404 084 491 251 549 361920 -21 + z

569 855 202833 762 012 179

In[72]:= % // Simplify

Out[72]= -
z 1 + 2 z + 3 z2 + 4 z3 + 5 z4 + 6 z5

-5040 + 13 068 z - 13 132 z2 + 6769 z3 - 1960 z4 + 322 z5 - 28 z6 + z7

In[73]:= % // Factor

Out[73]= -
z 1 + 2 z + 3 z2 + 4 z3 + 5 z4 + 6 z5

(-7 + z) (-6 + z) (-5 + z) (-4 + z) -3 + z -2 + z -1 + z

2     

Printed by Wolfram Mathematica Student Edition

Figure 3.15: Example of rational reconstruction, a function with seven real poles.
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3.3 Operations over finite fields

Before talking about operations over finite fields we will deal with the extended Euclidean
algorithm, since this will be needed when computing the multiplicative inverse of an ele-
ment in Zp as well as when trying to invert the mapping.

Extended Euclidean algorithm

Recall that the extended Euclidean algorithm allows to compute the greatest common
divisor g of two numbers a, b, and at the same time the coefficients m,n such that

am+ bn = c (3.3)

Starting first only with the greatest common divisor, considering a > b we set

{
r[0]=a

r[1]=b
(3.4)

where the succession r[i] of the remainders is defined by

r[i+1]=r[i-1]-q[i]r[i] (3.5)

and the successive quotients q[i] by4

q[i]=

⌊
r[i-1]

r[i]

⌋
(3.6)

The termination condition is given by

r[n]=0 (3.7)

and the output, which is the greatest common divisor, will be r[n-1].

The integers m and n can be computed by adding other two successions, called s[i]

and t[i] as in eq. (2.37), defined by the initial conditions

{
s[0]=1

s[1]=0

{
t[0]=0

t[1]=1
(3.8)

and the recursive relations

s[i+1]=s[i-1]-q[i]s[i] (3.9)

t[i+1]=t[i-1]-q[i]t[i] (3.10)

once the termination condition eq. (3.7) is reached the output will be gcd(a, b) = r[n-1]

and m = s[i-1], n = t[i-1], where

am+ bn = gcd(a, b) (3.11)

4bxc is the integer part of x.
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In[19]:= gcd[58, 7]

r[0]= 58

r[1]= 7

q[2]= 8

r[2]= 2

q[3]= 3

r[3]= 1

q[4]= 2

r[4]= 0

Out[19]= 1

Printed by Wolfram Mathematica Student Edition

(a) g.c.d.(58,7)

In[20]:= gcd[15 255, 235]

r[0]= 15 255

r[1]= 235

q[2]= 64

r[2]= 215

q[3]= 1

r[3]= 20

q[4]= 10

r[4]= 15

q[5]= 1

r[5]= 5

q[6]= 3

r[6]= 0

Out[20]= 5

Printed by Wolfram Mathematica Student Edition

(b) g.c.d.(15255,235)

In[21]:= gcd[987 322, 4562]

r[0]= 987 322

r[1]= 4562

q[2]= 216

r[2]= 1930

q[3]= 2

r[3]= 702

q[4]= 2

r[4]= 526

q[5]= 1

r[5]= 176

q[6]= 2

r[6]= 174

q[7]= 1

r[7]= 2

q[8]= 87

r[8]= 0

Out[21]= 2

Printed by Wolfram Mathematica Student Edition

(c) g.c.d.(987322,4562)

Figure 3.16: Some examples of application of the Euclidean algorithm to compute the
greatest common divisor.

In[52]:= extendedgcd[138, 96]

r[0]= 138

s[0]= 1

t[0]= 0

r[1]= 96

s[1]= 0

t[1]= 1

r[2]= 42

s[2]= 1

t[2]= -1

r[3]= 12

s[3]= -2

t[3]= 3

r[4]= 6

s[4]= 7

t[4]= -10

r[5]= 0

Out[52]= {6, 7, -10}

Printed by Wolfram Mathematica Student Edition

(a)

In[53]:= extendedgcd[2585, 25]

r[0]= 2585

s[0]= 1

t[0]= 0

r[1]= 25

s[1]= 0

t[1]= 1

r[2]= 10

s[2]= 1

t[2]= -103

r[3]= 5

s[3]= -2

t[3]= 207

r[4]= 0

Out[53]= {5, -2, 207}

Printed by Wolfram Mathematica Student Edition

(b)

In[54]:= extendedgcd[9999, 369]

r[0]= 9999

s[0]= 1

t[0]= 0

r[1]= 369

s[1]= 0

t[1]= 1

r[2]= 36

s[2]= 1

t[2]= -27

r[3]= 9

s[3]= -10

t[3]= 271

r[4]= 0

Out[54]= {9, -10, 271}

Printed by Wolfram Mathematica Student Edition

(c)

Figure 3.17: Some examples of application of the extended Euclidean algorithm. The
output has the form {r[n-1],s[n-1],t[n-1]} where r[n]=0.
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Map from Q to Zp

The first operation which needs to be implemented is the mapping from Z to Zp, which
will be called FZ.

Recall that Zp = {1, · · · , p− 1} and each of its elements is an equivalence class defined
by the relation

a ' b ⇔ a = b+ np ∃n ∈ Z (3.12)

in other words a belongs to the equivalence class [b]p ∈ Zp if the remainder of the division
a
p is b. In eq. (3.13) we reported some simple examples.

p a bapc remainder a = b mod p

7 15 2 1 15 = 1 mod 7

10 9 0 9 9 = 9 mod 10

17 51 3 0 51 = 0 mod 17

23 106 43478 6 106 = 6 mod 23

23 109 4.3478× 107 4 109 = 4 mod 23

23 132546879841 5762907819 4 132546879841 = 4 mod 23

(3.13)

The associated routine will be called mod[p_,z_] and takes as input the order p of the
ring Zp and an element of Z. So far p needs not to be a prime number.

Now we need to extend this definition to a map from Q to Zp. This will be achieved
in two steps, consider the rational z = n

d = n× d−1, first one computes the multiplicative
inverse of d over Zp, then we can simply multiply it by n and taking the modulo of this
quantity will give us the image of z in Zp. The multiplicative inverse is defined as

c = d−1 ⇔ c× d = 1 mod p (3.14)

Recall that p needs to be a prime number for the multiplicative inverse to be defined for
any element of Zp, see section 2.2.1. So starting from 1

d ∈ Q we first map d onto Zp, then
look for the element c ∈ Zp such that eq. (3.14) is true. To compute c we start from the
Bezout identity eq. (3.3), take a = d, b = p then the greatest common divisor becomes
g = 1 being p prime. We then get

dm+ np = 1 ⇔ dm = 1− np ⇒ d×m = 1 mod p (3.15)

thus the coefficient m is the multiplicative inverse of d over Zp. Call the associated routine
multinv[p_,d_], it takes as input the integer d and the order of the field p and returns
as output the coefficient m after running the extended Euclidean algorithm for d and p.

Now we can build the map from Q to Zp

FQ : Q→ Zp
n

d
7→ (n · (d−1 mod p) mod p)

(3.16)

calling the associated routine ffmap[p_,z_] with z = n
d we have:

ffmap[p_,z_]=mod[p,mod[p,n]×multinv[p,mod[p,d]]] (3.17)

We will define this map symbolically as ffmap[p,x] = [x]p.
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Let us compute for example the image of
[

25
12

]
7

on Z7:

mod[p,d]=mod[7,12]=5;

multinv[p,mod[p,d]]=multinv[7,5]=3;

mod[p,n]=mod[7,25]=4;

ffmap[p,z]=mod[7,4×3]=5;

(3.18)

Consider as an another example
[

96
275

]
31

on Z31:

mod[p,d]=mod[31,275]=27;

multinv[p,mod[p,d]]=multinv[31,27]=23;

mod[p,n]=mod[31,96]=3;

ffmap[p,z]=mod[31,3×23]=7;

(3.19)

We remark again that it may happen that the denominator of the rational to be mapped
to Zp is a multiple of p, thus d = 0 mod p. This is a problem since the identity under
addition, i.e. 0, does not admit a multiplicative inverse on any field. So this particular
class of rationals cannot be mapped to Zp. However, as will be explained in section 3.4
this does not represent a problem when performing the reconstruction.

Addition over Zp

Once the mapping to Zp has been performed, we need to implement the two binary
operations characterizing the field, addition and multiplication mod p. We want to
build them in terms of ordinary addition and multiplication. To do so, one needs to use
the fact that the map FQ is a ring homomorphism and does preserve these two operations.5

This means that performing for example the addition of two elements a, b ∈ Q and then
mapping the outcome to Zp yields the same result as directly mapping a, b to Zp, and then
using the addition defined on Zp to sum their images. Calling + the addition over Q and
+p the addition over Zp:

FQ(a+ b) = FQ(a) +p FQ(b) (3.20)

Suppose then to be given x, y ∈ Zp we want to compute

c = x+p y (3.21)

what we know is that
c = FQ(a+ b) (3.22)

where a, b are two arbitrary elements of Q such that
{
FQ(a) = x

FQ(b) = y
(3.23)

In other words a, b are simply two arbitrary representatives of the equivalence classes
x mod p and y mod p. We may, and will, thus choose x ∈ Q and y ∈ Q as these
representatives, perform the addition on Q and then map the result to Zp.

For example consider 9, 11 ∈ Z13:

c = 9 +13 11 (3.24)

5See definition A.5.
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take then as representatives 9, 11 ∈ Q and perform the sum in Q

9 + 11 = 20 ∈ Q (3.25)

and then map the result to Z13:

c = FQ(20) = 7 ∈ Z13 (3.26)

Or again considering 15, 17 ∈ Z23

15 + 17︸ ︷︷ ︸
∈ Z23

= FQ(15 + 17︸ ︷︷ ︸
∈ Q

) = 9 ∈ Z23 (3.27)

The associated routine will look like

ffsum[p_,a_,b_]=mod[p,a+b] (3.28)

This can then be extended to an arbitrary number of addenda {a, · · · , n} in two different
ways, either

ffsum[p_,a_, · · · ,n_] = mod[p,a+ · · · +n] (3.29)

or

ffsum[p_,a_, · · · ,n_]=mod[p,a+mod[p,b+mod[p, · · · +mod[p,(n-1)+n]] · · · ]] (3.30)

the difference being that in eq. (3.29) depending on the number and size of addenda huge
numbers over Q may arise, whereas taking a module operation after each single addition
keeps the size of involved numbers always below 2p. Since the whole point of introducing
finite fields was to keep the size of the numbers small, in order for the computation not to
need arbitrary precision arithmetics, eq. (3.32) is to be preferred.

Multiplication over Zp

All the same reasoning presented for the addition applies to the product on Zp called ×p,
which will thus be defined as:

ffprod[p_,a_,b_]=mod[p,a×b] (3.31)

and extending to an arbitrary number of factors

ffprod[p_,a_, · · · ,n_]=mod[p,a×mod[p,b×mod[p, · · · ×mod[p,(n-1)×n]] · · · ]]
(3.32)

Actually we already used implicitly the product over finite fields in ffmap which could be
rewritten as

ffmap[p_,z_]=ffprod[p,mod[p,n],multinv[p,mod[p,d]]] (3.33)

with z = n
d .
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Map from Zp to Q

Once the amplitude has been computed over finite fields, one needs to recover the result
in Q. As already mentioned, the extended Euclidean algorithm can provide a number of
different possible rationals that are mapped to a given element c in Zp. The algorithm
produces three successions ri, si, ti which satisfy

asi + bti = ri ∀ i (3.34)

where a, b are the two numbers whose greatest common divisor we are computing. Running
the algorithm for a = c and b = p at each step of the iteration we get

csi + pti = ri ⇒ ri
si

= c mod p (3.35)

Thus, if it took the algorithm N steps to compute the g.c.d., we will have N possible
candidate fractions whose image in Zp is c. Among these candidates we want to pick the
one such that

r2
i , s

2
i <

p

2
(3.36)

since this will be the unique fraction whose numerator and denominator satisfy eq. (3.36)
and whose image in Zp is c.

We can then build the algorithm invmap[p_,c_] which computes the inverse of FQ.
It runs the extended Euclidean algorithm with c,p as inputs, termination condition given

by eq. (3.36) and the output will be r[i]
s[i]

. As already mentioned in section 2.2.2, the fact

that if p is big enough, among the possible candidates provided by the extended Euclidean
algorithm there is always one satisfying eq. (3.36) is proven in [31].

As an example consider z = 15
7 , we displayed the output of the inverse mapping for the

fields Z101, Z503, Z1009 and Z5003, see figure 3.18. As can be seen for p = 503 the inverse
map returns the correct result, this is due to the fact that 503 > 2 × 152 and of course
503 > 2× 72. And similarly for p = 1009, 5003. Since 101 is far smaller than 2× 152 the
chances of obtaining the correct result are very low, in fact we get the wrong one.

Considering the examples shown in figure 3.19, one can see that even if eq. (3.36) is
not satisfied, there is none the less a chance to get the correct result. This is due to the
fact that given z = n

d such that FQ(z) = c ∈ Zp, the more the order p of the field grows,
the less rationals there are which are mapped to c and whose numerator and denominator
have comparable size to n, d. As soon as eq. (3.36) is satisfied there is only one left. The
chances of picking the correct inverse among the possible candidates thus grows as the
order p grows, and it seems to become relevant when

r2
i , s

2
i < p (3.37)

Thus we will be considering this relaxed condition eq. (3.37) instead of eq. (3.36).
As mentioned in section 2.2.3, the finite fields reconstruction is performed over multiple

fields whose order is of machine size. Then the results are combined through the Chinese
remainder theorem in order to get the image over the global field ZP with P = p1 · · · pn
whose order is hopefully big enough for the map ZP → Q to assign to all the coefficients
of the function to be reconstructed their correct images. This means that if one needs
the size of P to grow, one has to perform the entire reconstruction again over a different
field defined by pn+1. Thus considering the relaxed condition eq. (3.37), having noticed
that often the correct result is returned anyway, may greatly reduce the time needed to
obtain the final result since less reconstructions are to be performed, because the size of
P is smaller.
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In[5]:= prime = 101

Out[5]= 101

In[6]:= test = ffmapprime, 15  7

Out[6]= 31

In[7]:= invmap[prime, test]

i= 2

possible candidate= 31

i= 3

chosen candidate= -
8

3

Out[7]= -
8

3

Printed by Wolfram Mathematica Student Edition

(a) The prime 101 is too small

In[8]:= prime = 503

Out[8]= 503

In[9]:= test = ffmapprime, 15  7

Out[9]= 74

In[10]:= invmap[prime, test]

i= 2

possible candidate= 74

i= 3

possible candidate= -
59

6

i= 4

chosen candidate=
15

7

Out[10]=
15

7

Printed by Wolfram Mathematica Student Edition

(b) The prime 503 is big enough

In[34]:= prime = 1009

Out[34]= 1009

In[35]:= test = ffmapprime, 15  7

Out[35]= 867

In[36]:= invmap[prime, test]

i= 2

possible candidate= 867

i= 3

possible candidate= -142

i= 4

chosen candidate=
15

7

Out[36]=
15

7

Printed by Wolfram Mathematica Student Edition

(c) The prime 1009 is more than big enough

In[38]:= prime = 5003

Out[38]= 5003

In[39]:= test = ffmapprime, 15  7

Out[39]= 2861

In[40]:= invmap[prime, test]

i= 2

possible candidate= 2861

i= 3

possible candidate= -2142

i= 4

possible candidate=
719

2

i= 5

possible candidate= -
704

5

i= 6

chosen candidate=
15

7

Out[40]=
15

7

Printed by Wolfram Mathematica Student Edition

(d) The prime 5003 is more than big enough

Figure 3.18: Examples of map from Zp to Q.
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In[11]:= prime = 173

Out[11]= 173

In[12]:= test = ffmapprime, 15  7

Out[12]= 101

In[13]:= invmap[prime, test]

i= 2

possible candidate= 101

i= 3

possible candidate= -72

i= 4

possible candidate=
29

2

i= 5

possible candidate= -
14

5

i= 6

chosen candidate=
1

12

Out[13]=
1

12

Printed by Wolfram Mathematica Student Edition

(a) p = 173 < 152, the inverse is wrong

In[19]:= prime = 223

Out[19]= 223

In[20]:= test = ffmapprime, 15  7

Out[20]= 34

In[21]:= invmap[prime, test]

i= 2

possible candidate= 34

i= 3

possible candidate= -
19

6

i= 4

possible candidate=
15

7

i= 5

chosen candidate= -
4

13

Out[21]= -
4

13

Printed by Wolfram Mathematica Student Edition

(b) p = 223 < 152, the inverse is wrong

In[30]:= prime = 233

Out[30]= 233

In[31]:= test = ffmapprime, 15  7

Out[31]= 102

In[32]:= invmap[prime, test]

i= 2

possible candidate= 102

i= 3

possible candidate= -
29

2

i= 4

chosen candidate=
15

7

Out[32]=
15

7

Printed by Wolfram Mathematica Student Edition

(c) p = 233 > 152 but p = 233 < 2 × 152, the
inverse is correct

In[27]:= prime = 401

Out[27]= 401

In[28]:= test = ffmapprime, 15  7

Out[28]= 174

In[29]:= invmap[prime, test]

i= 2

possible candidate= 174

i= 3

possible candidate= -
53

2

i= 4

chosen candidate=
15

7

Out[29]=
15

7

Printed by Wolfram Mathematica Student Edition

(d) p = 401 > 152 but p = 401 < 2 × 152, the
inverse is correct

Figure 3.19: Example of map from Zp to Q for different fields. Notice that the relaxed
condition gives the correct result even though a priori it could not be predicted to be so.
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3.4 Reconstruction over finite fields

In this section we will be describing the few modifications one needs to apply to the
reconstruction algorithm in order to perform all the internal operations over a finite field
Zp.

First we consider a single Zp. Then we will combine the information provided by the
reconstruction over m different fields {Zp1 , · · · ,Zpm} to get the analytic expression of the
input function on Q, using the Chinese remainder theorem. In principle one could perform
rational reconstruction over finite fields without introducing this auxiliary tool, since it
is completely unrelated to the reconstruction process itself. This is true if one needs not
to worry about the size of the primes defining the fields Zp. However since we are bound
to machine size integers we need the Chinese remainder theorem in order to access larger
fields, so that the map ZP → Q becomes uniquely defined for all coefficients present in the
analytic expression of the reconstructed function. This topic will be treated in the next
section.

Reconstruction algorithm on a single Zp

When going to finite fields the definitions of h, l and g in section 3.2 must be replaced
with the following:

h[0] = 1;

h[i_] := h[i] = ffsum[p, h[i - 1], 1];

Printed by Wolfram Mathematica Student Edition

l[z_, n_, 0] := a[n];

l[z_, n_, m_] := ffsump, a[n - m], ffmapp, ffsum[p, z, -h[n - m]]  l[z, n, m - 1];

Printed by Wolfram Mathematica Student Edition

g[x_, 0] := Fin[x];

g[x_, n_] := ffmapp, ffsum[p, x, -h[n - 1]]  ffsum[p, g[x, n - 1], -a[n - 1]];

Printed by Wolfram Mathematica Student Edition

These are obtained by the previous ones by replacing standard addition and multi-
plication with +p and ×p. Divisions a

b are considered as the product a ×p b−1, which is
performed internally by ffmap. The prime p needs to be specified before running these
functions.

The new routine performing the reconstruction over finite fields will be called Recoverff

and will take an additional argument with respect to rationalrec, being the order p of
the field over which the reconstruction is to be performed. The black-box algorithm called
Fin, which is given as an input to Recoverff is different than that given to rationalrec.
On Q we had:

x ∈ Q
inputfor−−−−−→ Fin[x_]

returns−−−−→ out ∈ Q (3.38)

and

Fin[x_]
inputfor−−−−−→ rationalrec[Fin[x_]]

returns−−−−→

→ analytic expression of Fin on Q

(3.39)
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Whereas on Zp we have

(p = prime, x ∈ Zp)
inputfor−−−−−→ Fin[p_,x_]

returns−−−−→ out ∈ Zp (3.40)

we want Fin to be still function of x only and thus fix p beforehand:

fix p=prime→ Fin[p,x_]=Fin[x_]
inputfor−−−−−→ Recoverff[p,Fin[x_]]

returns−−−−→ coefficients of analytic expression of Fin[p,x_] on Zp

(3.41)

The output returned is the list of coefficients ai computed and sampling points used yi,
{{a1, · · · , aN}, {y1, · · · , yN}}. This is equivalent to giving the Thiele form of the function,
but it is more suitable for our purposes. After reconstructing on Zp we need to map the
result to Q, and this is done mapping the single coefficients one by one. Once we are on
Q the analytic expression of the function can be constructed through thieleform.

Vanishing denominators

As seen in section 3.2 fractions with vanishing denominators may appear throughout the
calculation. On Q these give rise to an infinity. On Zp infinity does not even exist, instead
vanishing denominators lead to a problem related to the definition of division itself, which
is inverse multiplication. [

1

0

]

p

= 1×p 0−1 (3.42)

By definition of field the identity element of addition, i.e. zero, does not admit a multiplica-
tive inverse.6 Thus the operation in eq. (3.42) cannot be performed. The reconstruction
algorithm on Zp checks each division for vanishing denominators and each time one is
found the associated sampling point is discarded.

Example

An example of reconstruction on a single Zp is reported in figure 3.20. The prime chosen
for the order p of the finite field is the first prime greater than 106. Compare the output
of the reconstruction over Zp mapped back to Q with that computed directly over Q. It
can be seen that all coefficients are correct a part from the highlighted one. This means
that the map Zp → Q associated the wrong rational to the coefficient 184333 ∈ Zp, whose
correct image would have been 4774

255 . The reason is that 47742 = 20016676 which exceeds
p = 1000003, and thus not even the relaxed condition eq. (3.37) is satisfied, so guessing
the correct inverse is highly unlikely. All other coefficients have been obtained correctly
since none of their numerators or denominators squared exceeds p. Notice that another
coefficient contains 885, and 8852 = 783225 < p but 2 × 8852 = 1566450 > p. The
relaxed condition is satisfied but the uniqueness condition eq. (3.36) is not, none the less
the coefficient was computed correctly, which is again in favour of considering the relaxed
condition as sufficient. Consider a new Zp defined by the prime p = 1000000000039, which
is the smallest prime greater than 1012. The function can be seen to be reconstructed
correctly on this field, or more properly the map Zp → Q yields the correct image for all
coefficients, see figure 3.21.

6Notice that also on Q exact zeros would lead to an inversion problem rather than an infinity.
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In[29]:= F[x_] := 1 + 2 x + 3 x^2  1 - x 2 - x

(*Reconstruction of the function over Q*)

In[30]:= rationalrec[F, x, 4]

Out[30]= 17 +
-3 + x

-
2
15

+
-4+x

-
885
62

+
-5+x

4774
255

+
62
17

(-6+x)

(*Map F to the field Zp*)

In[31]:= G[x_] := ffmap[p, F[x]]

(*choose a prime*)

In[32]:= p = NextPrime[10^6]

Out[32]= 1 000 003

(*perform reconstruction over the field defined by p*)

In[33]:= Recoverff[p, G, x, 4]

Out[33]= {{17, 933 336, 854827, 184 333, 145 162}, {3, 4, 5, 6}}

(*map the result to Q*)

In[34]:= invmap[p, %]

Out[34]= 17, -
2

15
, -

885

62
,
141

217
,
17

62
, {3, 4, 5, 6}

(*build the function in Thiele form*)

In[35]:= thieleform[%, x]

Out[35]= 17 +
-3 + x

-
2
15

+
-4+x

-
885
62

+
-5+x

141
217

+
62
17

(-6+x)

Printed by Wolfram Mathematica Student Edition

Figure 3.20: Example of rational reconstruction of a simple function over Zp. The prime
p chosen is too small and the reconstructed function is wrong.
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(*take a bigger prime and retry*)

In[36]:= p = NextPrime[10^12]

Out[36]= 1 000 000 000039

In[37]:= Recoverff[p, G, x, 4]

Out[37]= {{17, 533 333 333 354, 564 516 129 040, 878 431 372 602, 435 483 870985}, {3, 4, 5, 6}}

In[38]:= invmap[p, %]

Out[38]= 17, -
2

15
, -

885

62
,
4774

255
,
17

62
, {3, 4, 5, 6}

In[39]:= thieleform[%, x]

Out[39]= 17 +
-3 + x

-
2
15

+
-4+x

-
885
62

+
-5+x

4774
255

+
62
17

(-6+x)

Printed by Wolfram Mathematica Student Edition

Figure 3.21: Example of rational reconstruction of a simple function over Zp. The prime
p chosen is big enough and the reconstructed function is correct.

Termination condition for the reconstruction

In the example of figure 3.20 in order to check whether the reconstruction was performed
correctly, we compared the coefficients obtained over Zp and mapped to Q with the co-
efficients of the Thiele form of the function which was already known. Clearly when
performing a reconstruction we do not know the correct coefficients in advance. What we
do then is evaluate the reconstructed function and the black-box algorithm over Zp′ , where
p′ 6= p, and compare them. If the evaluations agree on all the values of the variable tested,
the reconstructed function is considered to be the correct one. More in detail, assign the
following names to the functions:

• F pBB is the black-box algorithm when evaluated over Zp

• F ptest is the function given by the reconstruction over the field Zp, which is a function
from Zp to Zp

• F is the function obtained by mapping the coefficients of F ptest to Q, F goes from Q
to Q.

• F p is the function F when evaluated over the finite field Zp

In order to compute F ptest one needs to evaluate F pBB many times. The reconstruction of
F ptest only terminates when its evaluations agree with those of F pBB on several consecutive
sampling points, in other words when its analytical form on Zp exactly reproduces the
values given by F pBB, meaning the two functions overlap completely, i.e. they are the
same function on Zp. Thus there would be no point in checking for further agreement of
the black-box algorithm and the reconstructed function over that same field since they
would tautologically match. One thus maps (the coefficients of) F ptest to Q obtaining a
function F , and then maps the function over a new field defined by the prime p′, F p

′
.

Now we can compare the values of F p
′

BB and of F p
′

for several different sampling points.
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These two functions now have no reason to agree any more, unless they coincide on Q
and thus coincide also on any finite field they are mapped to. If one gets only positive
matches, take F and map it to a third field defined by p̃ and compare F p̃ and F p̃BB.
After getting only positive matches on m different fields, were m is arbitrary,7 one may
terminate the reconstruction. If instead there is no agreement, take the field Zp′ over
which at least one evaluation has already been performed in the checking procedure, and

start the reconstruction over that field. By using the already computed values of F p
′

BB to
identify the first coefficients one saves some evaluations and thus time.

The routine performing this complete reconstruction needs to run Recoverff multiple
times, it is shown in algorithm 5 and its flowchart is represented in figure 3.22. The two
integers given as an input define respectively the number of evaluation points over which
we require two functions to coincide before recognizong them as the same, and the number
of fields over which to check the reconstructed function before terminating the algorithm.8

Recall that thieleform transforms the coefficients defining a function in Thiele form, into
the function itself. The routine checkff works exactly like check in algorithm 4, but
takes as additional argument the prime p defining the field over which the functions must
be evaluated.

The function GenerateNewPrime can be any function generating increasing prime num-
bers. Since the size of the coefficients of a function in Thiele form is typically huge, it is
convenient to start already with a large prime for the first reconstruction and generate
successive primes which are at least one order of magnitude larger that the preceding one.

7Clearly the larger m the less chances there are of accepting the wrong function as the correct one.
8This argument is optional and fixed by default to 4.

91



Black-box
algorithm

Fin, and two
integers m,n

p1=NewPrime;count=0;

testff=function reconstructed on Zp1

testQ=testff mapped to Q

count=m?
output=
testQ

p2=NewPrime

testff2=testQ mapped to Zp2

boolean=checkff[p2,Fin,testff2,n]

boolean=True?

p1=p2; count=0;

count=count+1;

Yes

No

No

Yes

Figure 3.22: Flowchart of the reconstruction procedure on finite fields without using the
Chinese remainder theorem.
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input : Fin=black-box algorithm, n=integer, m=integer
output: f=analytic form of reconstructed function

count=0;
prime=GenerateNewPrime;
while True do

testff=Recoverff[prime,Fin,n];
; /* Recoverff returns a list of coefficients defining a function

*/

test=maptoQ[prime,testff];
; /* the coefficients are mapped to Q */

while count < m do
prime2=GenerateNewPrime;
testff2=ffmap[prime2,test];
; /* the coefficients are mapped to a new finite field */

ftest=thieleform[testff2];
; /* the coefficients are converted into the function */

if checkff[prime2,ftest,Fin,n]=True then
count=count+1;

else
count=0;
Break;

end

end
prime=prime2;

end
Algorithm 5: Rational function reconstruction algorithm over finite fields without
Chinese remainder theorem.
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3.5 Analytic reconstruction via Chinese remainder theorem

The function used in the example of figure 3.20 was a really simple one, so the coefficients
appearing in its Thiele form are not huge numbers, nevertheless one already has to consider
primes of order 108 to perform a correct reconstruction. One can easily see how important
it is to access larger fields when dealing with more involved functions, and for this purpose
we need the Chinese remainder theorem.

Once the reconstruction was performed over N different fields Zpi with pi of machine
size, we end up with N lists of coefficients and sampling points which identify uniquely
a function in Thiele’s form over Zpi . We can then use the Chinese remainder theorem to
merge these results into new coefficients over a ring whose order is the product of all the
pi.

Merging {Zp1 , · · · ,Zpn} into Zp1···pn

The merging procedure is the same adopted for the constructive proof of theorem 2.2.3.
Recall that given the following n congruences





X = x1 mod p1

...

X = xn mod pn

(3.43)

and introducing the following notation:

P =
∏

i

pi (3.44)

Ni =
P

pi
(3.45)

Ni and pi are pairwise co-prime thus we write the Bezout identities

MiNi +mipi = 1 (3.46)

and X defined as in eq. (3.47) solves the system eq. (3.43).

X ≡
n∑

i

xiMiNi mod P (3.47)

In our case the images xi are lists of coefficients. The routine which computes eq. (3.47)
will thus only need to compute all the Mi via extended Euclidean algorithm, given the
list of images of X, {x1, · · · , xn}, and the list of primes {p1, · · · , pn}. This algorithm will
be called chremainder and its output will be a list of integers, one corresponding to each
set of images {x1, · · · , xn} given as an input. An example is displayed in figure 3.23, the
notation f[#]&/@List applies the function f to all the elements of List.

A more efficient reconstruction procedure

The Chinese remainder theorem can be used to make the reconstruction algorithm 5 much
more efficient. The corresponding flowchart is depicted in figure 3.24. First one performs
the reconstruction over a given Zp1 and checks the reconstructed function over another
field Zp2 as already explained. If this test fails, one reconstructs the function over Zp2 .
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(*set of primes defining three finite fields*)

In[13]:= primes = {23, 31, 101}

Out[13]= {23, 31, 101}

(*compute images of 5114 over each of the defined fields*)

In[14]:= images1 = ffmap#, 51  14 & /@ primes

Out[14]= {2, 28, 83}

(*compute images of 127 over each of the defined fields*)

In[15]:= images2 = ffmap[#, 127] & /@ primes

Out[15]= {12, 3, 26}

(*compute images of 743 over each of the defined fields*)

In[16]:= images3 = ffmap#, 7  43 & /@ primes

Out[16]= {13, 29, 26}

(*apply the chinese remainder theorem to each set of images*)

In[17]:= chremainder[#, primes] & /@ {images1, images2, images3}

Out[17]= {15 435, 127, 66989}

(*compute the product of all the primes which defines a new ring*)

In[18]:= primeproduct = 23 * 31 * 101

Out[18]= 72 013

(*obtain rational values corresponding to

the elements of the ring defined by primeproduct*)

In[19]:= MaptoQ[primeproduct, #] & /@ {15435, 127, 66 989}

Out[19]= 
51

14
, 127,

7

43


Printed by Wolfram Mathematica Student Edition

Figure 3.23: Example application of the Chinese remainder theorem. Starting from three
rationals we map them to different finite fields and verify that the inverse image obtained
using the Chinese remainder theorem is correct.
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input : Fin=black-box algorithm, n=integer, m=integer
output: f=analytic form of reconstructed function

count=0;
primeproduct=1;
primelist={};
testfflist={};
prime=GenerateNewPrime;
while True do

testff=Recoverff[prime,Fin,n] ; /* Recoverff returns a list of

coefficients defining a function */

testfflist=Append[testfflist,testff] ; /* add the list of coefficients to

the list of those already computed over the preceding fields */

chlist=tochineseform[testfflist];
primelist=Append[primelist,prime];
testchinese=chremainder[chlist,primelist] ; /* apply Chinese remainder

th. to the coefficients computed over different fields */

primeproduct=primeproduct*prime;
test=maptoQ[primeproduct,testchinese] ; /* the coefficients are mapped

to Q */

while count < m do
prime2=GenerateNewPrime;
testff2=ffmap[prime2,test] ; /* the coefficients are mapped to a new

finite field */

ftest=thieleform[testff2] ; /* the coefficients are converted into

the function */

if checkff[prime2,ftest,Fin,n]=True then
count=count+1;

else
count=0;
Break;

end

end
prime=prime2;

end
Algorithm 6: Rational function reconstruction algorithm over finite fields using the
Chinese remainder theorem. All the functions used have been defined in the preceding
subsections a part from tochineseform which is defined by eq. (3.48).
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Black-box
algorithm

Fin, and two
integers m,n

prime1=NewPrime;count=0;

testff=function reconstructed on Zprime1

testchinese=testff mapped
to ZP with P = p1 · · · pk, and
pi primes considered so far

testQ=testchinese mapped to Q

count=m?
output=
testQ

prime2=NewPrime

testff2=testQ mapped to Zprime2

boolean=checkff[prime2,Fin,testff2,n]

boolean=True?

prime1=prime2; count=0;

count=count+1;

Yes

No

No

Yes

Figure 3.24: Flowchart of the reconstruction procedure on finite fields with Chinese re-
mainder theorem.
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Now we map the coefficients, defining the reconstructed function , to Zp1p2 and from there
to Q and then to Zp3 for the check. Since p1p2 is clearly much larger than p2 itself the
chances of getting the correct image of all coefficients on Q, and thus getting the correct
function, are far greater.

The function tochineseform performs the replacement shown in eq. (3.48)

{{{a1
1, · · · , a1

n}, {y1
1, · · · , y1

n}}, · · · , {{am1 , · · · , amn }, {ym1 , · · · , ymn }}}y
{{{a1

1, · · · , am1 }, {y1
1, · · · , ym1 }}, · · · , {{a1

n, · · · , amn }, {y1
n, · · · , ymn }}}

(3.48)

where aji is the i-th coefficient of the function when reconstructed over the j-th field, and

same goes for the sampling points yji .
When performing the reconstruction of a rational function over a finite field, the re-

construction itself will never be wrong.9 What may lead to an incorrect analytic form of
the function over Q is the mapping from ZP to Q. The larger the rational coefficients of
the function and the larger the order of the field P must be so that the map FQ returns
the correct values. Using the Chinese remainder theorem, the value of P is given by the
product of all the orders of the fields over which the reconstruction has been performed
so far. Thus after each new reconstruction, P grows of the same order of magnitude of
the new prime p considered. This means that even with few reconstructions very large
P ’s can be accessed. Of course it is also convenient to choose the single pi as large as
possible. Thus one may consider for the first reconstruction the largest representable ma-
chine size prime, and then generate through GenerateNewPrime the successively smaller
primes in decreasing order. For a 64-bit double precision floating-point system the largest
representable prime is

9007199254740881 = 253 − 111

= (253 − 1)− 110 = M53 − 110
(3.49)

where Mn ≡ 2n−1 is called n-th Mersenne number. It has been found that many Mersenne
numbers are primes. M53 is not, else it would have been the largest representable prime.

An example computation is shown in figure 3.25. The input function Fin is the black-
box algorithm for the evaluation over Zp of the function:

F (x) =

1

2
+

1

3
x+

1

7
x2

7

13
− 13

7
x2

=
273 + 182x+ 78x2

294− 1014x2

(3.50)

which over Zp becomes

F p(x) =




[
1

2

]

p

+p

[
1

3

]

p

×p x+p

[
1

7

]

p

×p x×p x
[

7

13

]

p

+p

[−13

7

]

p

×p x×p x



p

(3.51)

9Provided the order of the field is larger than the number of sampling points needed for the reconstruc-
tion to properly terminate. Otherwise the reconstruction will always inevitably fail, see section 3.2.
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where [x]p stands for ffmap[p,x], and +p and ×p for addition and multiplication over Zp.
The size of the coefficients of F in Thiele form is such that the correct result is obtained

after reconstructing the function over two different finite fields. Notice how fast the size
of the ring ZP grows using the Chinese remainder theorem. In general starting from the
prime eq. (3.49) and generating new primes in decreasing order, we get that for example
after reconstructing over five fields P ∼ 1075.

Arbitrary-precision arithmetic

The whole point of introducing finite fields in the reconstruction procedure was so that
we could bypass the use of arbitrary precision arithmetic in the calculations, since this is
quite time expensive. Arbitrary-precision arithmetic must be used nonetheless:

• when applying the Chinese remainder theorem to map the results over {Zp1 , · · · ,Zpm}
to ZP with P = p1 · · · pm
• when mapping the coefficients from ZP to Q

In both these processes integers beyond machine size are involved. Even so, the subroutine
of the Chinese remainder theorem is called only few times and the operations it performs
are few and simple, so the time invested in this operation is irrelevant compared to that
necessary for the reconstructions themselves. The same is true for the map ZP → Q.
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In[73]:= Fin[p_, x_] := ffmapp, ffsump, ffmapp, 1  2,

ffprodp, ffmapp, 1  3, x, ffprodp, ffmapp, 1  7, x, x 

ffsump, ffmapp, 7  13, ffprodp, -13  7, x, x

In[74]:= Recoverff[Fin, x, 4]

List of primes: {9 007 199 254 740 881}

Coefficients computed over Zp: {{7 668 629365 494 666}, {8 205 790 701 416 579},

{3 554 088 257 003599}, {3 102985 790 911 459}, {6 098 819 405 849 583}}

Sampling points over Zp: {{1}, {2}, {3}, {4}}

Product of all primes: 9 007 199 254 740881

Coefficients and sampling points after applying Chinese remainder th. :

{{7 668 629 365 494666, 8 205790 701 416 579, 3 554 088 257 003 599,

3 102 985 790 911 459, 6 098 819405 849 583}, {1, 2, 3, 4}}

Coefficients defining the function on Q:

-
533

720
,
50 160

24 479
,
20 244 133

29 791 920
, -

85 091 986

7 566 799
,
77 415 580

6 603 019
, {1, 2, 3, 4}

Check output: False

Repeat reconstruction on another finite field

List of primes: {9 007 199 254 740 881, 9 007 199 254740 847}

Coefficients computed over Zp: {{7 668 629365 494 666, 738 089 938 930 152},

{8 205 790 701 416579, 2 379 204639 942 578}, {3 554 088 257 003 599, 8 360 131 896 148 914},

{3 102 985 790 911459, 4 886 455064 153 822}, {6 098 819 405 849 583, 6 837 592 231 000 894}}

Sampling points over Zp: {{1, 1}, {2, 2}, {3, 3}, {4, 4}}

Product of all primes: 81 129 638 414604 375 852 779 791 466 207

Coefficients and sampling points after applying Chinese remainder th. :

{{69 748 953 025 889039 795 653 737 385 530, 19 931 927 179 436 689 259308 699 941 902,

27 521 029 860 159120 238 311 384 540 387, 69 671 281 680 362 614 056045 797 666 218,

2 581 879 778 080 302554 071 544 494 030}, {1, 2, 3, 4}}

Coefficients defining the function on Q:

-
533

720
,
50 160

24 479
,
20 244 133

29 791 920
, -

1 885 575 304 680

6 567 152 683
, -

1 877 939

116 188 488
, {1, 2, 3, 4}

Check output: True

Exit and return function

Out[74]= -
533

720
+

-1 + x

50160
24 479

+
-2+x

20244 133
29 791 920

+
-3+x

-
1 885 575 304 680
6 567 152 683

-
116 188 488 (-4+x)

1 877 939

In[75]:= % // Simplify

Out[75]=
273 + 182 x + 78 x2

294 - 1014 x2

Printed by Wolfram Mathematica Student Edition

Figure 3.25: Example of rational reconstruction over finite fields using the Chinese re-
mainder theorem.
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Chapter 4

Scattering Amplitudes over Finite
Fields

In this chapter we are going to discuss first the numerical evaluation of scattering ampli-
tudes via BCFW and Berends-Giele recursion, then their transposition to finite fields and
finally the reconstruction techniques applied to them. Each of these steps was already
addressed bearing in mind what was to follow. An example of this is the special attention
given to the factors of i and to the square roots, whose presence is perfectly fine in a
general computation of an amplitude through Berends-Giele or BCFW, but is not allowed
when performing rational reconstruction over finite fields. For this reason we introduced
appropriate overall factors allowing to restore (if needed) the appropriate powers of i and
of eventually present square roots at the end of the computation, while omitting them
through out the calculation. Similarly we introduced the use of the light-cone basis in-
stead of the canonical Minkowski basis. Further details will be given when first introducing
these tools.

4.1 Numerical evaluation of scattering amplitudes

4.1.1 Spinor helicity formalism

One of the tools we made use of for computations involving spinor-helicity formalism
was the Mathematica package S@M [17]. This package allows computations with both
two and four-dimensional angle and square brackets, being however better suited for the
four-dimensional case. The only draw-back of this package is that some operations are
only performed numerically, for example the scalar product. Since in some instances we
needed analytical expressions instead, we wrote our own functions performing the simple
operations we usually make use of, i.e.: scalar product, contractions among two-component
spinors and computation of the spinor components given the 4-momentum.

We shall define the following class of objects:

Components[i] = {{SR[i], SL[i]}, {LS[i], RS[i]}}
= {{|i〉, |i]}, {〈i|, [i|}} (4.1)
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From Components[i] the momentum can be extracted as1

MomFromSpinor[i] =
1

2




LS[i].IdentityMatrix[2].SL[i]

LS[i].PauliMatrix[1].SL[i]

LS[i].PauliMatrix[2].SL[i]

LS[i].PauliMatrix[3].SL[i]


 (4.2)

which makes use of pµ = 1
2〈p|σµ|p]. We will also be needing the inverse function of eq. (4.2)

which is called SpinorFromMom and extracts the spinor components given the momentum
of a particle. It uses a generalisation of eq. (1.66), which does not present singularities for
any value of the momentum components. We shall provide the expression used later on,
since further remarks about it will be given when talking about BCFW recurrence.

Our goal is to perform a rational reconstruction of the amplitude given its numerical
value on some phase-space points. These points will be computed using either the Berends-
Giele or the BCFW recursion as functions of the angle and square spinors written in terms
of the momentum-twistor variables. We need thus to generate the momentum-twistor
parametrization for any given number of external legs. This is done through the function
called TwisTs, which takes as input an integer n defining the number of legs, and whose
output is a list of objects belonging to the class Components defined in eq. (4.1). These
are expressed in terms of 3n − 10 variables x[i].2 The parametrization used by TwisTs

is the one by Tiziano Peraro.

In order to check the correctness of the spinors generated we first tested whether the
associated momenta were massless and momentum conservation applied as it should by
construction. As a second less tautological check we generated a set of on- shell conserved
momenta for a given number of external legs using S@M [17] and computed all the scalar
products among them. Then we generated the spinors through our code as functions of the
xi, computed the associated momenta, computed the numerical values of the xi through
the variable changes of eq. (1.115-1.120) and then computed the scalar products among
these momenta comparing them with the first ones.

As an example output we displayed in figure 4.1 a five-point amplitude parametrization.

In[3]:= TwisTs[5, x]

Out[3]= {{{1, 0}, {x[5], 1}}, {{0, -1}, {-1, x[5]}}},

{{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[4]}, 1, -

1

x[1]
, {-x[1] x[4], x[1]},


x[2]

x[1]
, 1, -

x[1] 1 + x[5]

x[2] - x[3]
,
x[1] -1 - x[4] + x[3] x[4]

x[2] - x[3]
,

1, -
x[2]

x[1]
, -

x[1] -1 - x[4] + x[3] x[4]

x[2] - x[3]
, -

x[1] 1 + x[5]

x[2] - x[3]
,


x[3]

x[1]
, 1, 

x[1] 1 + x[5]

x[2] - x[3]
, -

-x[1] - x[1] x[4] + x[1] x[2] x[4]

x[2] - x[3]
,

1, -
x[3]

x[1]
, 

-x[1] - x[1] x[4] + x[1] x[2] x[4]

x[2] - x[3]
,
x[1] 1 + x[5]

x[2] - x[3]


Printed by Wolfram Mathematica Student Edition

Figure 4.1: Output example of the function TwisTs, using Peraro’s choice of variables

1The dot expresses the matrix product.
2The name of the variables may be chosen through an optional argument to be given to TwisTs.
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4.1.2 Berends-Giele recursion

Overall multiplicative factor

As already mentioned the reconstruction over finite fields is compromised by i and square
root factors. In the Berends-Giele recurrence these factors appear in the gluon vertex
and propagator definitions, as well as in the polarization vector normalizations. However
it is possible to completely remove these factors from inside the current provided the
final amplitude is multiplied by an appropriate pre-factor which takes into account all the
removed constants. Thus we omitted these factors through out the computation, in order
for the code to be ready for rational reconstruction over finite fields, and restored the final
resulting pre-factor at the end of the calculation.3 More in detail

Mn(1, · · · , n) = CBG(i,
√

2)M̃BG
n (1, · · · , n) (4.3)

Where the superscript BG stays for Berends-Giele, since later we will provide an anal-
ogous relation for the BCFW recurrence. Now we are going to prove that all the irrational
and imaginary factors arising in the calculation of the amplitude can be reabsorbed in
CBG and compute its value.

In M̃BG
n we applied the following substitutions:





P 7→ cpP = iP

V3 7→ c3V3 = (−i)
√

2V3

V4 7→ c4V4 = (−i)2V4

εµ 7→ cεε
µ =
√

2εµ

(4.4)

The value of M̃BG
n will be given by a sum over many addenda corresponding to different

diagrams resulting from the application of the Berends-Giele recursion, these will cover all
the possible allowed combinations of three- and four-point vertices and propagators. To
recover the correct value of the amplitude with the appropriate

√
2 and i dependence one

has to multiply each addendum by a product of 1
cP

, 1
c3

, 1
c4

and 1
cε

each with an appropriate
power, depending on the number of propagators, three-point vertices, four-point vertices
and polarization vectors appearing in the associated diagram. Thus a priori all these pre-
factors appear different, however we are going to show that they have all the same value.
Consider the form of the Berends-Giele current eq. (1.122), after having performed the
complete recurrence there will be three different types of terms: some involving only three-
point vertixes, some only four-point vertexes and for the most part terms with both types
of vertexes. Of course all of these are contracted with the same number n of polarization
vectors. First notice that the terms involving only three-point vertexes will all have the
same number of vertexes as well as propagators, in particular if we have n external legs
there will be n − 2 three-point vertexes and n − 3 propagators. Thus for these terms C
must be of the form

CBG(i,
√

2) =
( 1

c3

)n−2( 1

cP

)n−3( 1

cε

)n

= i
( 1√

2

)2n−2 (4.5)

Now consider the mixed terms. The crucial fact is that each time a four vertex appears
in a given term, there will be also the corresponding diagram with the four-point vertex

3By the end of the calculation we mean either once the amplitude was computed through Berends-Giele,
if we simply wanted to know the numerical value of that given amplitude, or after rational reconstruction
was performed if we wanted the analytical form of the amplitude.
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substituted with two three-point vertexes connected by a propagator. One can easily check
that

c4 = c2
3cP (4.6)

In other words the mixed terms can be obtained from the pure three-point terms by
contracting two vertexes and a propagator into a four point vertex and taking all the
possible combinations of this operation. The same is true the other way around, expanding
the four-point vertexes in the mixed terms or pure four-point terms into two three-point
vertexes and a propagator we can get all the pure three-point terms. We then see that
due to eq. (4.6) the mixed and pure four-point terms will have the same overall factor
eq. (4.5).

Clearly there are still imaginary (and possibly irrational) factors appearing in the
amplitude, namely those descending from the polarization vectors whose components are
in general complex. To take care of these i’s we introduce the light-cone basis.

Light-cone basis

The advantage of using light-cone basis is that starting from real spinor components,4 we
get real momenta and polarization vectors as well. The light cone basis is defined by the
variable change5

p =




p0

p1

p2

p3


 7→ pl =




p0 + p3

p0 − p3

p1 + ip2

p1 − ip2


 (4.7)

Now since we are computing p out of the expression

pµ =
〈p|σµ|p]

2

if 〈p| and |p] are real, the component p2 will be imaginary due to the product of a real
vector and co-vector with the Pauli matrix σ2 which has imaginary components. Thus by
taking the momentum in light-cone basis as defined above, all its components will be real
since imaginary factors cancel out.

The recurrence

There are two possible approaches for a code implementation of this recurrence relation.
Either one proceeds top-down, i.e. writing the n-point current in terms of lower-point ones
until only one-gluon currents are left. Or bottom-up, constructing first all the numerical
two-point currents, then three-point, four-point and so on up to n. The analytic form
of the current Jµ leads to an immediate implementation of the first type, however this
presents a major disadvantage: we have to deal with analytical expressions of the currents,
which need to be stored by Mathematica, until the end of the computation is reached and
numerical values for the J(i) single-gluon currents are substituted back inside each of them.
The resulting code is highly inefficient in terms of time, thus we adopted the bottom-up
approach.

We defined both, the Berends-Giele current Jµ and the auxiliary current Jµa , in terms
of three arguments: the label of the first and last gluon appearing in the current and the

4Using momentum-twistor parametrization the spinor components will all be rational.
5Usually there is also a

√
2 factor for normalization, however we do not include it because as already

explained we do not want square roots to appear.
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label assigned to the momenta. In other words J[i,j,P] ≡ J(i, · · · , j) and Ja[i,j,P] ≡
Ja(i, · · · , j) with momenta called P (i). An example is shown in figure 4.2.

J[2,7,P]= J

P(2)

P(7)

Ja[4,9,Q]= Ja

Q(4)

Q(9)

Figure 4.2: Example of Berends-Giele and auxiliary current definition

From eq. (1.122) and eq. (1.136) we see that J[i,j,P] and Ja[i,j,P] are defined in
terms of J[a,b,P], with b − a < j − i and i ≤ a, b ≤ j, and of the three and four-gluon
vertexes. These are defined as follows:

V3[P{1,i}, P{i+1,n}, J
ν , Jρ] = V µνρ

3 Jν(1, · · · , i)Jρ(i+ 1, · · · , n)|µ={0,1,2,3} (4.8)

V4[Jν , Jρ, Jσ] = V µνρσ
4 Jν(1, · · · , i)Jρ(i+ 1, · · · , j)Jσ(j + 1, · · · , n)|µ={0,1,2,3} (4.9)

Both V3 and V4 are lists of four elements, i.e. they represent the entire four-vector.. A
graphical representation of these relations is given in figure 4.3 and figure 4.4.

V3[P,Q,J1,J2]=

J1

i

a

J2 a+ 1

j

P

Q

Figure 4.3: Graphical representation of the three-gluon vertex object definition.

We can then rewrite eq. (1.122) as

J[1,n,q] =
−1

P 2
1,n

[ n−1∑

i=2

V3[P{1,i}, P{i+1,n}, J[1,i,q],J[i+1,n,q]]

+

n−2∑

i=2

n−1∑

j=i+1

V4[J[1,i,q],J[i+1,j,q],J[j+1,n,q]]

]
(4.10)

Recall that all these functions use the modified versions of vertexes and propagators,
without imaginary and irrational factors, defined in eq. (4.4). So, once all these definitions
are given we start from

J[i,i,P] ≡ ε(i) (4.11)

with i = {1, · · · , n + 1}. To compute the amplitude we consider the first n gluons and
compute the associated Berends-Giele current from bottom-up. To do so we need all the
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V4[J1,J2,J3]=

J1

J2

J3

a

i

i+ 1

j

j + 1

b

Figure 4.4: Graphical representation of the four-gluon vertex object definition.

possible contractions among the lower point currents, these are given by the bgcurrent

shown in algorithm 7. Its flowchart is represented in figure 4.5. An example is displayed
in figure 4.6. The algorithm takes as input the labels of the first and last gluon entering
the colour ordered amplitude, say x,y, and performs all the possible contractions of lower
point currents in the range from x to y. Once the one-point currents are defined as
the polarization vectors, bgcurrent is used to compute the currents in increasing order
numerically.

input : x,y Integers
output: out=Berends-Giele current

length=y-x ;
for i=0 to length-1 do

for k=x to y-i do
out=J[k,k+i];

end

end
out=Ja[x,y];

Algorithm 7: bgcurrent computes the numerical values of the Berends-Giele currents
in increasing order.
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Integers x, y

Set: lenght=y-x;
i=0; out=0;

k=x

k ≤ y-i? i=i+1
i ≤

lenght-1?

out=J[k,k+i,p];
k=k+1;

out=Ja[x,y,p]

Return out

Yes

No

Yes

No

Figure 4.5: Flowchart of the algorithm bgcurrent computing the Berends-Giele current
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In[6]:= bgcurrent1[1, 5, p] // PrintDebug

J1[1, 1, p]

J1[2, 2, p]

J1[3, 3, p]

J1[4, 4, p]

J1[5, 5, p]

J1[1, 2, p]

J1[2, 3, p]

J1[3, 4, p]

J1[4, 5, p]

J1[1, 3, p]

J1[2, 4, p]

J1[3, 5, p]

J1[1, 4, p]

J1[2, 5, p]

Out[6]= Ja1[1, 5, p]

Printed by Wolfram Mathematica Student Edition

Figure 4.6: Example of application of bgcurrent to a five gluon current. The routine
computes the currents J in the order printed: one gluon (magenta), two gluon (blue), three
gluon (orange), four gluon (green) and finally the five gluon auxiliary current, returned as
the output. If numerical values for all the J [i, i, p] (magenta) were entered before applying
bgcurrent, all the symbolical values printed would be numbers instead.

If bgcurrent is run after having assigned to each single gluon current the numerical
value of the corresponding polarization vector, the output of the routine will be a num-
ber. The amplitude can then be computed contracting bgcurrent[1,n,p], which is the
numerical value of the Berends-Giele current for the first n gluons, with the polarization
vector ε(n+ 1). Recall that we are using light-cone basis thus the scalar product must use
the appropriate metric. In our code this scalar product is called mplc.

input : {Components[1], · · · ,Components[n+1]}, list of positive helicity
gluons and negative helicity gluons

output: out

out=0;
for i=1 to n+1 do

J[i,i,p]=ε(i) ; /* The ε are computed via eq. (1.44) */

end
out=bgcurrent[1,n,p];
out=mplc[out,ε(n+ 1)];

Algorithm 8: Berends-Giele recursion BGAt2
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Some examples

As an example we report in figure 4.7 the six-point amplitude computed starting from
the spinor components generated using Peraro’s choice of variables, with numerical values
xi = i. We considered the following helicity configurations:

• (1+, 2+, 3+, 4+, 5+, 6+)

• (1+, 2+, 3+, 4+, 5−, 6+)

• (1+, 2−, 3+, 4−, 5+, 6+)

• (1+, 2−, 3+, 4−, 5+, 6−)

• (1−, 2+, 3−, 4−, 5+, 6+)

To get the correct value of the amplitude M6 = C6(i,
√

2)M̃BG
6 one must multiply the

displayed values by

CBG6 (i,
√

2) =
i

32
(4.12)

Checking the results

In order to check the correctness of our code, we compared the results obtained with those
given by the MHV and anti-MHV amplitudes, whose values can be computed easily once
the spinor components are known. For a further check we used the analytical values of
next to MHV six-point amplitudes reported in the appendix of [8].

4.1.3 BCFW recursion

For the BCFW recursion the bottom up approach, i.e. computing numerically lower-point
functions working up to the desired number of legs, is not viable. The reason for this
is that differently from Berends-Giele where external momenta and spinor components
stay fixed, and all we have to do is combine them in an appropriate way, in BCFW after
each step of the recursion two external momenta get to be redefined and become new
complex momenta and two more external particles are added, namely the internal particle
going on-shell with the two possible helicities. Moreover the way this happens depends
on the “history” of the computation, depending on the order with which the propagators
were put on-shell. So we are forced to perform a semi-analytical computation, which in
Berends-Giele could be avoided.

Overall factor and little group scaling

As in the case of Berends-Giele we want to eliminate all the i and square root dependence.
Looking at eq. (1.166) we can see that the i dependence is easily factored out: at each
step of the iteration a pair of new i’s appear, the number of steps needed for a complete
factorization is given by the number of propagators which need to be put on-shell. With
n external lines there are n−3 propagators in an amplitude comprised of only three-point
vertices, thus we can omit all the internal i factors if we compensate with an i2(n−3) at
the end of the computation. So we set

Mn(1, · · · , n) = CBCFW (i)M̃BCFW
n (1, · · · , n) (4.13)

CBCFW (i) = i2n−6 (4.14)
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In[2]:= spinorcomp = TwisTs[6, x]

Out[2]= {{{1, 0}, {x[8], 1}}, {{0, -1}, {-1, x[8]}}},

{{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[5]}, 1, -

1

x[1]
, {-x[1] x[5], x[1]},


x[2]

x[1]
, 1, {x[1] x[6], x[1] x[7]}, 1, -

x[2]

x[1]
, {-x[1] x[7], x[1] x[6]},


x[3]

x[1]
, 1, 

x[1] -1 - x[2] x[6] + x[4] x[6] - x[8]

x[3] - x[4]
,

x[1] -1 - x[5] + x[4] x[5] - x[2] x[7] + x[4] x[7]

x[3] - x[4]
,

1, -
x[3]

x[1]
, -

x[1] -1 - x[5] + x[4] x[5] - x[2] x[7] + x[4] x[7]

x[3] - x[4]
,

x[1] -1 - x[2] x[6] + x[4] x[6] - x[8]

x[3] - x[4]
,


x[4]

x[1]
, 1, -

-x[1] - x[1] x[2] x[6] + x[1] x[3] x[6] - x[1] x[8]

x[3] - x[4]
,

-
-x[1] - x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[7] + x[1] x[3] x[7]

x[3] - x[4]
,

1, -
x[4]

x[1]
, 

-x[1] - x[1] x[5] + x[1] x[3] x[5] - x[1] x[2] x[7] + x[1] x[3] x[7]

x[3] - x[4]
,

-
-x[1] - x[1] x[2] x[6] + x[1] x[3] x[6] - x[1] x[8]

x[3] - x[4]


In[3]:= spinorcomp = spinorcomp //. Table[x[i] → i, {i, 8}]

Out[3]= {{{{1, 0}, {8, 1}}, {{0, -1}, {-1, 8}}},

{{{0, 1}, {-1, 0}}, {{1, 0}, {0, -1}}}, {{{1, 1}, {1, 5}}, {{1, -1}, {-5, 1}}},

{{{2, 1}, {6, 7}}, {{1, -2}, {-7, 6}}}, {{{3, 1}, {-3, -28}}, {{1, -3}, {28, -3}}},

{{{4, 1}, {-3, 16}}, {{1, -4}, {-16, -3}}}}

In[4]:= BGAt2[spinorcomp, {1, 2, 3, 4, 5, 6}, {}]

Out[4]= 0

In[5]:= BGAt2[spinorcomp, {1, 2, 3, 4, 6}, {5}]

Out[5]= 0

In[6]:= BGAt2[spinorcomp, {1, 3, 5, 6}, {2, 4}]

Out[6]= -512

In[7]:= BGAt2[spinorcomp, {1, 3, 5}, {2, 4, 6}]

Out[7]= -
41 357 664 197824

17 904 677 175

In[8]:= BGAt2[spinorcomp, {2, 5, 6}, {1, 3, 4}]

Out[8]= -
4 598 211 584

1 627 697 925

Printed by Wolfram Mathematica Student Edition

Figure 4.7: Example of phase-free amplitudes M̃BG
6 computed with Berends-Giele recur-

sion, starting from numerical momentum-twistor components.
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A part from these imaginary factors there are also some square roots to account for,
which arise when computing the spinor components starting from the momentum of a par-
ticle. In fact the analytical expression of the spinor components in terms of the momentum
is given by

|p〉 =




√
p+

p1 + ip2

√
p+


 |p] =



p1 − ip2

√
p+

−
√
p+


 (4.15)

With p± = p0±p3. Since the square root does not involve a constant factor but momentum
components, there is no way of factoring out this dependence. However the external spinor
components are given in terms of momentum-twistor variables and are already rational
numbers, and eq. (4.15) needs only to be used to compute the spinor components associated
to the internal particles which were put on-shell. Because of the opposite helicities of these
particle when entering the left and right sub-amplitude which arise from factorization, we
have that each time a |p〉 appears also a [p| arises, and similar for |p] and 〈p|. So we can
perform a little group transformation, which does not affect the momentum of the particle
by construction, and because of what we just said does not affect the amplitude itself
either. So map

|p〉 7→ 1√
p+
|p〉 , |p] 7→

√
p+|p] (4.16)

After the transformation of eq. (4.16) is applied the square roots all cancel. Another
possible problem arising is the fact that there are values of the momentum for which these
components are singular. So we use the following case dependent definitions:

• for p+ 6= 0

|p〉 =




1
p1 + ip2

p+


 |p] =

(
p1 − ip2

−p+

)
(4.17a)

• for p+ = 0 and p1 + ip2 6= 0

|p〉 =

(
0
1

)
|p] =

(
p−

−(p1 + ip2)

)
(4.17b)

• for p+ = 0 and p1 + ip2 = 0

|p〉 =

(
p1 − ip2

p−

)
|p] =

(
1
0

)
(4.17c)

Using these conventions all the intermediate steps as well as the output of the BCFW algo-
rithm are rationals, provided the input spinor components are parametrized by momentum-
twistor variables.

The numerical computation of spinor components starting from the momentum is per-
formed by the routine called SpinorFromMom. It takes as input the list of four momentum
components and returns an object of the class Components, where |p〉, |p] are computed
via eq. (4.17) and 〈p|, [p| through the map to dual space defined by the two dimensional
εij tensor. In matrix notation:

ε =

(
0 1
−1 0

)
ε−1 =

(
0 −1
1 0

)
(4.18)

〈p|= ε|p〉 [p|= ε−1|p] (4.19)
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The recurrence relation

A diagrammatic representation of the recursion is given in figure 4.8. We adopted the
convention of always injecting a complex component into the momenta of the first and
last particle involved in the amplitude. In the figure we have that:

• red lines are associated to the particles whose momentum is shifted in the given
step of the recurrence. These particles get and additional complex component which
allows the intermediate states cut by the dashed line to go on-shell.

• Blue lines in the output are on-shell particles with complex momenta.

• The sum
∑

hel runs over all the possible helicity configurations of all the intermediate
states present

• The sum
∑

σ is a sum over all the possible permutations of n − 3 objects, where
n− 3 is the total number of propagators which are put on-shell once the recurrence
is terminated.

Tree1 n

Tree=
∑

hel

n−2∑

l=2

1̂

l

Tree n̂

l + 1

L R

=
∑

hel

n−2∑

l=2

l−1∑

k=2

n−2∑

j=l+1

1̂ Tree

k

Tree

k + 1

Tree

j

Tree

j + 1

n̂

L R

=
∑

hel

∑

σ

S(σ)
1̂

2 3 n− 2 n− 1

n̂

σ(1) σ(n− 4)σ(2) σ(n− 3)

Figure 4.8: Diagrammatic representation of the BCFW algorithm. Red lines are associated
to the particles whose momentum is shifted at the given step of the recursion. Blue lines
in the output are associated to complex on- shell states.
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1−

2−

3+
=

〈1|2〉4
〈1|2〉〈2|3〉〈3|1〉

1+

2+

3−
= − [1|2]4

[1|2][2|3][3|1]

1−

2−

3+
=

〈1|2〉4
〈1|2〉〈2|3〉〈3|1〉

1+

2+

3−
= − [1|2]4

[1|2][2|3][3|1]

Tree2

l

Tree n− 1

l + 1

1 n

Q̂

l

1̂ n̂

Tree2

1̂

a− 1

Tree n− 1

n̂

a

≡
Tree2

a− 1

Tree n− 1

a

1 n

Q̂1,a−1

k

1̂ n̂

6

Figure 4.9: Three-point vertexes with complex kinematics.

For a given helicity configuration of all the particles, the addenda of the output of the
BCFW factorization are distinguished by the order in which the intermediate states were
put on-shell. Recall that the starting point of the recursive relation was the equation

iM(z = 0) = −
∑

poles α

Res
z=zα

iM(z)

z
(4.20)

and each factorization in two sub-amplitudes corresponds to one of these residues. Each
residue is characterized by a different value of the pole. Each pole in turn is defined by the
momenta of the external particles appearing in the amplitude, and defines new complex
momenta of the particles of the sub-amplitudes resulting from the factorization. Thus in
general the i-th pole depends on the values of all the j-th poles with j < i computed that
far, which is why we can distinguish the completely factorized output diagrams basing on
the order the internal states were put on-shell. Some of the permutations however yield
repeating results, due to the specific symmetry of the factorized amplitudes. In order
to avoid double counting a symmetry factor S(σ) is introduced. This is necessary only
because of the specific labelling of the diagrams in terms of permutations of propagators.
When generating the result recursively no double counting occurs.

There are specific orderings of the propagators which result in the same value of one
or more poles along the computation. These values also depend on the specific helicity
configuration which picks the correct expression out of two possibilities, see section 1.5.
When the two particles which are shifted are in the same helicity state, both possibilities
are admitted. So for a smart choice of the pole expressions, the double sum

∑
hel

∑
σ can

be reduced to a sum over few independent diagrams only. These cannot be immediately
spotted when writing the recurrence output in terms of the complete factorization in three-
point amplitudes, since all diagrams have exactly the same form. However it is possible to
establish an analogy between the BCFW recurrence and the maximum-cut of multi-loop
diagrams, which is a tool of the unitarity-based framework for the computation of higher-
order corrections to scattering amplitudes. Through this analogy BCFW recursion can
be represented in terms of multi-loop diagrams, and the independent ones can be easily
found. We will talk about this in more detail in chapter 5.

The routine performing the computation of BCFW recurrence over Q is called BCFW.
Differently from Berends-Giele recursion, where the helicities of the particles were used
only in the beginning to compute the polarization vectors, here helicity labels need to
be kept track of through out the entire computation. This is due to the fact that the
momentum shift as well as the final numerical evaluation of the three-point amplitudes,
arising in the factorization of the complete amplitude, depend on the helicities of external
as well as internal on-shell states. It is thus useful to define a new class of objects, providing
all the spinor components in the same form as Components, and additionally the helicity:

Part[i] = {{SR[i], SL[i]}, {LS[i], RS[i]}, hel[i]}
= {Components[i],hel[i]} (4.21)

where hel[i] assumes the two values Hplus and Hminus for gluons with positive/negative
helicity respectively.
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The routine BCFW is shown in algorithm 9 and the corresponding flowchart is repre-
sented in figure 4.10. Once a three-point amplitude is encountered by BCFW it returns its
numerical value evaluated through M3, which takes as input three elements of the class
Part and returns the numerical value of the associated MHV or anti-MHV depending on
the helicities computed via eq. (1.140) and eq. (1.141). The output of BCFW is either a
number, in the case of n = 3, or again a function of BCFW which is thus recursively sub-
stituted until only numbers remain. Calling cxmom the complex momentum injected into
the first and last particle, and Q the momentum flowing along the propagator which is put
on-shell:

BCFW[Part[1],...,Part[n]] =
∑

hel

BCFW[Part[1+cxmom],...,Part[Q+cxmom]]
−1

Q2

BCFW[Part[-(Q+cxmom)],...,Part[n-cxmom]] (4.22)

Where
∑

hel runs over the possible helicity states of the internal particle going on-shell.
The value of the spinor components appearing in Part[i ± cxmom] are computed through
eq. (4.17). The analytic expressions of the pole and the associated complex momentum
injection can be found in section 1.5.4.

input : {Part[1], · · · ,Part[n]}
output: bcfw

bcfw=0;
if n=3 then

bcfw=M3[Part[1],Part[2],Part[3]];
else

for i=1 to n do
p[i]=MomFromSpinor[i];

end
for l=2 to n-2 do

compute value of the pole z;
cxmom= complex momentum injected depending on z;
bcfw=bcfw+eq. (4.22);

end

end
Algorithm 9: BCFW recursion, the analytic expressions of the quantities used can be
found in section 1.5.4.

An example of a six-point amplitude computed via BCFW is displayed in figure 4.11, the
helicity configurations used are the same as those of figure 4.7. The function tobcfwform

converts the input given in the form of a list of Components plus two lists of positive and
negative helicity gluons, suitable for the BGAt2, into the Part[i] form required by BCFW.

Notice that again all the results are rational numbers as desired. The values we com-
puted here are the amplitudes with an overall factor stripped off, which is why the values
computed with the BCFW recurrence differ from those computed via the Berend-Giele
recursion. The actual value of the amplitudes can be obtained by restoring the appropriate
factors called respectively overallfactorbcfw and overallfactor, which depend only
on the number of external legs. See figure 4.12.
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List of spinor com-
ponents and he-

licities of n gluons

n > 3?

compute pole z and associated
complex momentum injection

cxmom. Set local variable bcfw=0

l = 2

l ≤ n− 2

bcfw=bcfw+eq. (4.22)

l = l + 1

Return
bcfw

Return
bcfw=M3

Yes

Yes

No

No

Figure 4.10: Flowchart of BCFW algorithm.
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In[9]:= BCFW[tobcfwform[spinorcomp, {1, 2, 3, 4, 5, 6}, {}]]

Out[9]= 0

In[10]:= BCFW[tobcfwform[spinorcomp, {1, 2, 3, 4, 6}, {5}]]

Out[10]= 0

In[11]:= BCFW[tobcfwform[spinorcomp, {1, 3, 5, 6}, {2, 4}]]

Out[11]= 16

In[12]:= BCFW[tobcfwform[spinorcomp, {1, 3, 5}, {2, 4, 6}]]

Out[12]=
1 292 427 006182

17 904 677 175

In[13]:= BCFW[tobcfwform[spinorcomp, {2, 5, 6}, {1, 3, 4}]]

Out[13]=
143 694 112

1 627 697 925

In[14]:= BGAt2[spinorcomp, {1, 3, 5}, {2, 4, 6}] * overallfactor[6]

Out[14]= -
1 292 427 006182 ⅈ

17 904 677 175

In[15]:= BCFW[tobcfwform[spinorcomp, {1, 3, 5}, {2, 4, 6}]] * overallfactorbcfw[6]

Out[15]= -
1 292 427 006182 ⅈ

17 904 677 175

In[16]:= BGAt2[spinorcomp, {2, 5, 6}, {1, 3, 4}] * overallfactor[6]

Out[16]= -
143 694 112 ⅈ

1 627 697 925

In[17]:= BCFW[tobcfwform[spinorcomp, {2, 5, 6}, {1, 3, 4}]] * overallfactorbcfw[6]

Out[17]= -
143 694 112 ⅈ

1 627 697 925

2     

Printed by Wolfram Mathematica Student Edition

Figure 4.11: Example of six-point amplitudes in different helicity configurations computed
through BCFW recursion. The spinor components are parametrized by momentum-twistor
variables and generated via TwisTs.

In[9]:= BCFW[tobcfwform[spinorcomp, {1, 2, 3, 4, 5, 6}, {}]]

Out[9]= 0

In[10]:= BCFW[tobcfwform[spinorcomp, {1, 2, 3, 4, 6}, {5}]]

Out[10]= 0

In[11]:= BCFW[tobcfwform[spinorcomp, {1, 3, 5, 6}, {2, 4}]]

Out[11]= 16

In[12]:= BCFW[tobcfwform[spinorcomp, {1, 3, 5}, {2, 4, 6}]]

Out[12]=
1 292 427 006182

17 904 677 175

In[13]:= BCFW[tobcfwform[spinorcomp, {2, 5, 6}, {1, 3, 4}]]

Out[13]=
143 694 112

1 627 697 925

In[14]:= BGAt2[spinorcomp, {1, 3, 5}, {2, 4, 6}] * overallfactor[6]

Out[14]= -
1 292 427 006182 ⅈ

17 904 677 175

In[15]:= BCFW[tobcfwform[spinorcomp, {1, 3, 5}, {2, 4, 6}]] * overallfactorbcfw[6]

Out[15]= -
1 292 427 006182 ⅈ

17 904 677 175

In[16]:= BGAt2[spinorcomp, {2, 5, 6}, {1, 3, 4}] * overallfactor[6]

Out[16]= -
143 694 112 ⅈ

1 627 697 925

In[17]:= BCFW[tobcfwform[spinorcomp, {2, 5, 6}, {1, 3, 4}]] * overallfactorbcfw[6]

Out[17]= -
143 694 112 ⅈ

1 627 697 925

2     

Printed by Wolfram Mathematica Student Edition

Figure 4.12: Comparison of some of the numerical values of a six-point amplitude com-
puted via BCFW and Berends-Giele recurrence

4.2 Amplitudes from finite fields

Now we get to discuss the rational reconstruction of scattering amplitudes over finite fields.
In order for the Berends-Giele and BCFW recurrences to be applicable over finite fields
and to be a suitable input for the reconstruction algorithm one needs to consider that

• the output of the recurrences is not the object we are going to reconstruct, an overall
phase Φn must still be removed
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• the internal operations of the routines performing the computation of the numerical
value of the amplitude must be transposed onto finite fields

• the standard output of these routines must be compatible with the reconstruction
algorithm even when the evaluation failed

After dealing with each of these topics we will be giving an example of a four-point
function.

4.2.1 Factorization of the amplitude

The complete color-ordered amplitude can be factorized as

Mn(1, · · · , n) = C(i,
√

2)M̃R.R.
n (1, · · · , n) (4.23)

where the coefficient C(i,
√

2) contains the entire dependence of the amplitude on imagi-
nary and irrational factors. The analytic expression of C depends on whether we are using
Berends-Giele or BCFW recurrence to compute the amplitude, and was given respectively
in section 4.1.2 and section 4.1.3. It depends only on the number of external legs of the
considered process.

M̃R.R.
n is a rational number and it is the output of the recurrence relations as we

implemented them. However M̃R.R.
n depends on 4n variables, and not only on 3n − 10

independent ones. As discussed in section 1.3 a phase Φn can be extracted, the resulting
function depends only on the independent variables xi:

M̃n(x1, · · · , x3n−10) =
M̃R.R.

n (1, · · · , n)

Φn(1h1 , · · · , nhn)
(4.24)

This is the object whose analytic expression we are going to reconstruct.

The value of Φn can be computed once the spinor components and the helicities of all
the external particles are known. This phase is not uniquely defined, a possible expression6

was given in section 1.3.1 we report it once again:

Φn(1h1 , · · · , nhn) =

( 〈1|3〉
[1|2]〈2|3〉

)h1 n∏

i=2

(〈1|i〉2[1|2]〈2|3〉
〈1|3〉

)−hi
(4.25)

Since we are using momentum-twistor parametrization for the amplitude, the spinor com-
ponents in eq. (4.25) are all rational. But at the same time Φn is a phase, so it can take
on only the values

Φn(1h1 , · · · , nhn) = ±1 (4.26)

In the analytic expression of the phase, eq. (4.25), divisions are present so also Φn may
present vanishing denominators and must be checked each time it is computed.

4.2.2 Spinor helicity formalism over finite fields

Inside the recurrence relations all the four-vectors have been defined in light-cone com-
ponents. In particular this was done so that the momenta, constructed in terms of the

6Derived by Simon Badger in [2].
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two-dimensional rational spinor components, were rational themselves. The associated
routine has the form

MomFromSpinorLightC[i] =

1

2




LS[i].IdentityMatrix[2].SL[i]+LS[i].PauliMatrix[3].SL[i]

LS[i].IdentityMatrix[2].SL[i]-LS[i].PauliMatrix[3].SL[i]

LS[i].PauliMatrix[1].SL[i]+I*LS[i].PauliMatrix[2].SL[i]

LS[i].PauliMatrix[1].SL[i]-I*LS[i].PauliMatrix[2].SL[i]


 (4.27)

This needs to be transposed to finite fields. The matrix dot product can be seen as the
standard product applied multiple times, and can thus be implemented in terms of ffprod,
call it ffprodMatrix. For a generic matrix product M.N we define ffprodMatrix as

input : p=prime, M=matrix, N=matrix
output: matrix A

rowsM=number of rows of M;
colsM=number of columns of M;
rowsN=number of rows of N;
colsN=number of columns of N;
if rowsN6=colsM then

return error message;
else

for i = 1 to rowsM do
for k = 1 to colsN do

for j = 1 to colsM do
Aik = ffprod[p,Mij , Njk];

end

end

end

end
Algorithm 10: Matrix product over finite fields ffprodMatrix

We will call this matrix product symbolically ◦p.
The matrix σ2 in eq. (4.27) contains imaginary factors so we cannot map everything

directly to Zp and then perform matrix multiplication. Instead we define a new object

ModifiedPauliM[i]=PauliMatrix[i] for i = 1, 3
ModifiedPauliM[i]=I*PauliMatrix[i] for i = 2

(4.28)

All the components of ModifiedPauliM are integers. We can then compute the momenta
in light-cone basis in two steps, first compute:

ModifiedSL[i,j]=ModifiedPauliM[i] ◦p SL[j] (4.29)

and then the complete form of the momentum

MomFromSpinorff[i] =

1

2




LS[i] ◦p SL[i]+LS[i]◦pModifiedSL[3,i]
LS[i] ◦p SL[i]-LS[i]◦pModifiedSL[3,i]

LS[i]◦pModifiedSL[1,i]+LS[i]◦pModifiedSL[2,i]
LS[i]◦pModifiedSL[1,i]-LS[i]◦pModifiedSL[2,i]


 (4.30)
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4.2.3 Recurrence relations over finite fields

The algorithms performing the Berends-Giele and BCFW recurrences on finite fields will
be called BGoverff and BCFWff respectively. Since imaginary and irrational factors were
already removed from the recurrences factoring out C(i,

√
2), we just need to substitute the

standard operations on Q with the +p, ×p and ◦p defined so far. The prime p characterizing
the field over which the computation is taking place will be given as an additional input
to the routines. The recurrences are then ready to be run on Zp. Their output will be an

integer corresponding to the numerical value of M̃R.R.
n on Zp.

Vanishing denominators

Along the computation of both the recurrence relations divisions are performed and van-
ishing denominators may appear. In particular in Berends-Giele non-invertible zeros can
be found when

• computing the polarization vectors from the spinor components associated to the
external particles

• computing propagators in the intermediate steps of the recurrence

whereas for BCFW when

• computing the value of the pole which takes intermediate states on-shell

If a non-invertible zero is encountered the evaluation of the amplitude is interrupted and
as output an appropriate error message string is returned. In the following example two
computations are displayed: a successful one returning an integer and a failed one returning
an error message.

In[15]:= BGoverff[101, test, {1, 3, 5}, {2, 4, 6}]

Out[15]= 44

In[16]:= BGoverff[23, test, {1, 3, 5}, {2, 4, 6}]

Out[16]= Non invertible zero in B.G.

Printed by Wolfram Mathematica Student Edition

The input called test is the list of spinor components defining the external particles.

The spinor components themselves could present vanishing denominators for particular
values of the x[i]. For example generating a parametrization of a five-point amplitude
with TwisTs and considering the spinor components of the last particle, we see that x[1]=0
and x[2]=x[3] are not acceptable:

In[5]:= TwisTs[5, x][[5]]

Out[5]= 
x[3]

x[1]
, 1, 

x[1] 1 + x[5]

x[2] - x[3]
, -

-x[1] - x[1] x[4] + x[1] x[2] x[4]

x[2] - x[3]
,

1, -
x[3]

x[1]
, 

-x[1] - x[1] x[4] + x[1] x[2] x[4]

x[2] - x[3]
,
x[1] 1 + x[5]

x[2] - x[3]


Printed by Wolfram Mathematica Student Edition

So the input of the recurrences must also be checked.
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The reconstruction

The function which removes the phase and checks the evaluation for error messages, call
it RecurrenceChecked,7 is described in algorithm 11. It takes as input one prime p and
three lists: comp is the list of spinor components in form Components[i],8 lplus is the
list of positive helicity gluons and lminus of negative helicity gluons. The output is
either the numerical value of M̃n(x1, · · · , x3n−10) or 1

0 . The latter corresponds to a non-
invertible zero encountered either in the spinor components, or during the evaluation of
the recurrence, or the computation of the phase Φn. This form of output is compatible
with the reconstruction algorithm which recognizes the 1

0 of the failed evaluation and skips
the associated sampling point moving on to the next one.

Φn is evaluated via phase, which takes the same input as RecurrenceChecked, and
returns as output the numerical value of the phase computed through eq. (4.25) on finite
fields.

The spinor components given as input to RecurrenceChecked must be already mapped
to Zp. The function Recurrence can be either BGoverff or BCFWff.

input : p,comp,lplus,lminus
output: out

if any element of comp contains 1
0 then

out=1
0 ;

else
ph=phase[p,comp,lplus,lminus];
if ph contains 1

0 then
out=1

0 ;
else

rec=Recurrence[p,comp,lplus,lminus];
if rec=String then

out=1
0 ;

else
out=rec/ph ;

end

end

end
Algorithm 11: RecurrenceChecked removes the phase and checks the recurrences for
error messages.

The whole reconstruction process of an n-point tree-level scattering amplitude, given
a certain helicity configuration, proceeds as follows:

7Recurrence stands for either BG or BCFW.
8These were defined in section 4.1.
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Generate momentum-twistor parametrization

Map the parametrization to Zp

[
M̃n(x1, · · · , x3n−10)

]

p

Rational reconstruction algorithm on Zp

Analytic expression of M̃n(x1, · · · , x3n−10) on Q

Analytic expression of the colour-ordered amplitude Mn(1h1 , · · · , nhn)

input for

input for

returns

multiply by Φn × C(i,
√

2)

Figure 4.13: Schematic overview of the complete reconstruction process of a tree-level
color-ordered scattering amplitude. The objects Φn, C(i,

√
2) and M̃n are defined in

section 4.2.1.

A more detailed description of the procedure outlined in figure 4.13 is given in algo-
rithm 12.

input : n=number of external legs, hel=helicity configuration
output: out=analytic expression of amplitude

comp[x]=TwisTs[n,x] ; /* momentum-twistor parametrization of an

n-point amplitude */

compff[p,x]=ffmap[p,comp[x]] ; /* image of comp on Zp */

Fin[p˙,x]=RecurrenceCheceked[p,compff[p,x],hel] ; /* black-box algorithm for

the reconstruction */

out=ChineseRec[Fin] ; /* run the reconstruction algorithm */

out=out*phase[comp]*overallfactor[n] ; /* reintroduce the overall factor

and the phase */
Algorithm 12: Complete reconstruction of the nalytic expression of a scattering am-
plitude

In the following section an example is presented.
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4.2.4 A four-point example

Consider a four-point amplitude with the helicity configuration {1+, 2−, 3+, 4−}. It can
be described by 3×4−10 = 2 independent variables {x1, x2}. As seen in section 1.3 these
can be taken to be

x1 = s12 x2 =
s23

s12
(4.31)

Set x1 = 1 and perform the reconstruction in x2. The result will be the analytic expression
of M4 in terms of x2. The full amplitude can then be obtained by dimensional analysis
multiplying by the appropriate power of x1 which has mass dimension two. It is thus
possible to obtain the expression of the amplitude performing only an univariate recon-
struction. For the numerical calculation of the amplitude we are going to use the BCFW
recurrence relation. The functions in the example correspond to:

• test is the symbolic form of the momentum-twistor parametrization generated via
TwisTs after substitution x1 = 1

• comp is the function associated to test

• compff is the image of the parametrization on Zp

• Fin is the black-box algorithm which will be given as input to the reconstruction.
It is defined in terms of BCFWchecked which takes as input the spinor components
on Zp generated by compff.

• out is the analytic expression of M̃n(x1 = 1, x2) obtained by ChineseRec, which
performs the rational reconstruction on finite fields using the Chinese remainder
theorem

• out is then simplified and multiplied by the appropriate phase and overall factor
Φn × C(i,

√
2)
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(*Generate momentum-twistor parametrization and set x[1]=1*)

In[2]:= TwisTs[4, x]

Out[2]= {{{1, 0}, {-1, 1}}, {{0, -1}, {-1, -1}}}, {{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[2]}, 1, -

1

x[1]
, {-x[1] x[2], x[1]},


1 + x[2]

x[1] x[2]
, 1, {0, -x[1] x[2]}, 1, -

1 + x[2]

x[1] x[2]
, {x[1] x[2], 0}

In[3]:= test = % //. x[1] -> 1

Out[3]= {{{1, 0}, {-1, 1}}, {{0, -1}, {-1, -1}}},

{{{0, 1}, {-1, 0}}, {{1, 0}, {0, -1}}}, {{{1, 1}, {1, x[2]}}, {{1, -1}, {-x[2], 1}}},


1 + x[2]

x[2]
, 1, {0, -x[2]}, 1, -

1 + x[2]

x[2]
, {x[2], 0}

In[4]:= comp[y_] := Evaluate[test //. x[2] → y]

(*Example output of comp assigning to the parameter the value x[2]=5*)

In[5]:= comp[5]

Out[5]= {{{1, 0}, {-1, 1}}, {{0, -1}, {-1, -1}}}, {{{0, 1}, {-1, 0}}, {{1, 0}, {0, -1}}},

{{{1, 1}, {1, 5}}, {{1, -1}, {-5, 1}}}, 
6

5
, 1, {0, -5}, 1, -

6

5
, {5, 0}

(*Map the parametrization on Zp*)

In[6]:= compff[p_, y_] := ffmap[p, #] & /@ comp[y]

(*Define the black-box algorithm*)

In[7]:= Fin[p_, y_] := BCFWchecked[p, compff[p, y], {1, 3}, {2, 4}]

Printed by Wolfram Mathematica Student Edition

Figure 4.14: Set up for a 4-point amplitude reconstruction using BCFW recursion as
black-box algorithm.

123



In[21]:= out = ChineseRec[Fin, x[2], 4]

List of primes: {9 007 199 254 740 881}

Coefficients computed over Zp:

{{9 007 199 254 740753}, {2 108067 910 684 036}, {6 727 501 036 284 398}, {8 188 536 491 918 173},

{6 624 305 237 005763}, {2 693184 811 678 676}, {4 662 592 237 117 905}, {6 150 509 202 043 487}}

Sampling points over Zp: {{1}, {2}, {3}, {4}, {5}, {6}, {7}}

Product of all primes: 9 007 199 254 740881

Coefficients and sampling points after applying Chinese remainder th. :

{{9 007 199 254 740753, 2 108067 910 684 036, 6 727 501 036 284 398,

8 188 536 491 918 173, 6 624 305237 005 763, 2 693 184 811 678 676,

4 662 592 237 117 905, 6 150 509202 043 487}, {1, 2, 3, 4, 5, 6, 7}}

Coefficients defining the function on Q:

-128,
1

47
,
33 088

565
, -

137 295

976 754
,

3 171 057

89 170 646
,
81 725 674

27 718 899
, -

69 517 405

19 267 578
,

1

127 032
, {1, 2, 3, 4, 5, 6, 7}

Check output: False

Repeat reconstruction on another finite field

List of primes: {9 007 199 254 740 881, 9 007 199 254740 847}

Coefficients computed over Zp:

{{9 007 199 254 740753, 9 007199 254 740 719}, {2 108 067 910 684 036, 6 899 131 344 056 819},

{6 727 501 036 284398, 5 436 203444 011 791}, {8 188 536 491 918 173, 2 962 325 909 485 597},

{6 624 305 237 005763, 6 314 958138 233 536}, {2 693 184 811 678 676, 3 319 491 740 878 710},

{4 662 592 237 117905, 6 263 236928 162 671}, {6 150 509 202 043 487, 3 707 549 608 217 962}}

Sampling points over Zp: {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}, {7, 7}}

Product of all primes: 81 129 638 414604 375 852 779 791 466 207

Coefficients and sampling points after applying Chinese remainder th. :

{{81 129 638 414 604375 852 779 791 466 079,

46 606 388 025 411024 426 064 986 586 970, 78 401 385 087 387 591 532066 842 726 694,

70 200 459 775 733116 171 135 674 584 254, 21 393 541 022 762 416 210682 119 325 877,

52 661 568 130 212528 126 324 302 815 338, 62 464 350 719 058 743 962810 621 806 147,

63 779 294 510 630911 853 216 936 478 783}, {1, 2, 3, 4, 5, 6, 7}}

Coefficients defining the function on Q:

-128,
1

47
,
33 088

565
, -

137 295

976 754
, -

1 313 089 888

1 424 365
, -

1 888 229

329 997 378
,
2 337 388 800

2521
,

1

127 032
,

{1, 2, 3, 4, 5, 6, 7}

Check output: True

Exit and return function

Out[21]= -128 +
-1 + x[2]

1
47

+ -2+x[2]
33 088
565

+ -3+x[2]

-
137 295
976 754

+ -4+x[2]

-
1 313 089 888
1 424 365

+ -5+x[2]

-
1 888 229

329 997 378
+ -6+x[2]

2 337 388 800
2521

+127 032 (-7+x[2])

Printed by Wolfram Mathematica Student Edition

Figure 4.15: Reconstruction of M̃4 using the Chinese remainder theorem.
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(*Reduce the output to canonical form*)

In[22]:= out = out // Simplify

Out[22]= -
8 1 + x[2]4

x[2]3

(*multiply by the overallfactor and the phase*)

In[23]:= out * overallfactor[4] * phase[comp[y], {1, 3}, {2, 4}]

Out[23]= -
ⅈ 1 + x[2]4

x[2]3

2     4point_example.nb

Printed by Wolfram Mathematica Student Edition

Figure 4.16: Simplification of the result and extraction of the analytical expression of the
4-point amplitude.

The four-point tree-level amplitude has mass dimension -4, thus we expect its analytic
expression to be given by the result obtained in figure 4.16 times x−2

1 :

M4(1+, 2−, 3+, 4−) = − i(1 + x2)4

x2
1x

3
2

(4.32)

This result can be checked easily since the amplitude considered is an MHV, and can
thus be computed using eq. (1.79a). This has been done in Mathematica, and as can be
seen from figure 4.17 our result is correct.

(*Analytical expressions of the spinor components in terms of x[1] and x[2]*)

In[3]:= TwisTs[4, x]

Out[3]= {{{1, 0}, {-1, 1}}, {{0, -1}, {-1, -1}}}, {{{0, 1}, {-x[1], 0}}, {{1, 0}, {0, -x[1]}}},


1

x[1]
, 1, {x[1], x[1] x[2]}, 1, -

1

x[1]
, {-x[1] x[2], x[1]},


1 + x[2]

x[1] x[2]
, 1, {0, -x[1] x[2]}, 1, -

1 + x[2]

x[1] x[2]
, {x[1] x[2], 0}

In[4]:= Do[{{SR[i], SL[i]}, {LS[i], RS[i]}} = %[[i]], {i, 4}];

(*Definition of the MHV amplitude. n is the number of legs and i,

j are the two negative helicity gluons*)

In[5]:= MHV[n_, i_, j_] := I * AA[i, j]^4  Product[AA[l, l + 1], {l, n - 1}] * AA[n, 1];

(*Computation of M41^+,2^-,3^+,4^-*)

In[6]:= MHV[4, 2, 4]

Out[6]= -
ⅈ 1 + x[2]4

x[1]3 x[2]4 - 1

x[1]
+

1+x[2]

x[1] x[2]


In[7]:= % // Simplify

Out[7]= -
ⅈ 1 + x[2]4

x[1]2 x[2]3

Printed by Wolfram Mathematica Student Edition

Figure 4.17: Check of the result obtained from reconstruction using the MHV expression.
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Chapter 5

On-shell recurrence relations and
Maximum-cuts

The BCFW tree-level recurrence relation as well as the maximum unitarity-cut1 are ef-
ficient tools for the analytic computation of tree-level and higher-order corrections to
scattering amplitudes. Both the techniques exploit the singularity structure of the ampli-
tudes: the multi-particle collinear behaviour in the case of tree-level amplitudes, and the
leading Landau singularity in the case of one-loop amplitudes. The reconstruction of the
amplitude is performed by inverting the corresponding factorization limit, from the knowl-
edge of the sub-amplitudes which are sewn back together to form the parent amplitude
that has, by constructions, the correct analytic properties.

Both techniques make use of complex momenta for the particles in order for them to
be on-shell. We are going to show that the complex momenta needed to establish the
tree-level recursion fulfil the four on-shellness conditions associated to the quadruple-cut
of an appropriately defined one-loop diagram.

For the time being we will focus on this aspect only, however the goal of further studies
will be to determine whether it is possible to extend the analogy to an exact equality mod-
ulo overall multiplicative factors for any arbitrary number of external legs. This would
represent a striking relation between on-shell tree-level and multi-loop amplitudes. More-
over maximum-cut diagrams present some unique properties, in particular their residue
can be shown to be a polynomial which admits a univariate representation [21].

5.1 Integrand decomposition methods

When computing loop corrections to tree-level scattering amplitudes, usually very com-
plicated integrals appear. When a direct integration of these is prohibitive, the evaluation
of scattering amplitudes beyond the leading order is in general addressed in two stages:

• the reduction in terms of an integral basis

• the evaluation of the elements of such a basis, called Master Integrals (MI)

The extraction of the coefficients of the amplitude in this basis can be achieved for example
by matching the cuts on the amplitude with the cuts on the MI and solving the resulting
system of equations. However, the integrand-decomposition method, proposed for the first
time for the one-loop case in [23] and extended to two-loops in [18], allows to replace any

1An introduction to this topic can be found for example in [5].
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explicit integration procedure and/or any matching procedure between cuts of amplitudes
and cuts of MI’s by polynomial fitting, which is a simpler operation.

Integrand-reduction methods allow the extractions of the coefficients of the MI by
exploiting the multi-particle pole expansion for the integrand of the scattering amplitude,
i.e. a representation where the numerator of each Feynman integral is expressed as a
combination of products of the corresponding denominators, with polynomial coefficients.
The crucial aspect is the shape of the residue on the multi-particle pole. Each residue is
a multivariate polynomial in the irreducible scalar products (ISPs) of loop momenta and
either external momenta or polarization vectors. In the residues reducible scalar products,
i.e. products which can be written in terms of denominators, are not allowed to appear:
else further simplification would be possible, and this contradicts the definition of residue.
Thus any monomial formed by ISP’s is the numerator of a potential MI which may appear
in the final result.

What is to follow has been shown in [21]. For simplicity we consider 4-dimensional
loop momenta. The problem of computing l-loop amplitudes with n denominators can be
recast as the reconstruction of integrand functions of the type

Ii1···in =
Ni1···in(k1, · · · , kl)

Di1(k1, · · · , kl) · · ·Dil(k1, · · · , kl)
(5.1)

with k1, · · · , kl loop-momenta. The generic denominator can be written as

Di =
( l∑

j=1

αjkj + pj

)2
−m2

i , αi = {0,±1} (5.2)

with pi external momenta.The numerator Ii1···in and all the denominators Di are polyno-
mials in the components of the loop- momenta, let us call them z = (z1, · · · , z4l).

Consider the ideal generated by the denominators, which is defined as

Ji1···in = 〈D1, · · · , Dn〉

≡
{

n∑

t=1

ht(z)Dit(z) : ht(z) ∈ P [z]

}
(5.3)

where P [z] is the ring of polynomials in z. The common zeros of the elements in Ji1···in
are the same as the common zeros of the denominators. By performing multivariate-
polynomial division it is possible to achieve the multi-pole decomposition of eq. (5.1),
resulting in an expression of Ni1···in in terms of denominators and residues.

Next construct a Gröbner basis [10] (see also [22], ch. 2) generating the ideal Ji1···in
with respect to a chosen monomial order2

Gi1···in = {gi(z), · · · , gm(z)} (5.4)

Then n-ple cut conditions Di1 = · · · = Din = 0 are then equivalent to g1 = · · · = gm = 0.
The number of elements m of the Gröbner basis is in general different from n. Considering
then the multivariate division of Ni1···in modulo Gi1···in one can write

Ni1···in(z) = Γi1···in + ∆i1···in(z) (5.5)

where Γi1···in is a sum of products of quotients Qi and divisors gi

Γi1···in =
m∑

i=1

Qi(z)gi(z) (5.6)

2We will assume lexicographic order as in [21].
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whereas ∆i1···in is the remainder of the division. Having used the Gröbner basis this
remainder is uniquely defined once the monomial order is fixed. Since Γi1···in belongs to
the ideal Ji1···in it can be written in terms of the denominators as

Γi1···in =
n∑

t=1

Ni1···it−1it+1···in(z)Dit(z) (5.7)

The explicit form of Ni1···it−1it+1···in(z) can be found by expressing the elements of the
Gröbner basis in terms of the denominators Din .

Reducibility criterion

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point
integrands: that happens when the numerator can be written in terms of denominators.
From eq. (5.5) and eq. (5.7) it follows that an integrand is reducible if and only if the
remainder ∆i1···in(z) of the division modulo a Gröbner basis Gi1···im vanishes, in other
words when the integrand belongs to the ideal Ii1···in ∈ Ji1···in . It can be shown [21],
using the Nullstellenansatz theorem (see ch.4 of [22]), that this happens when the system
of equations (5.8) defined by the cut conditions of the denominators admits no solutions.





Di1(z) = 0
...

Din(z) = 0

(5.8)

Substituting back eq. (5.5) and eq. (5.7) in eq. (5.1) one gets a non-homogeneous
recurrence relation in the n-denominator integrand

Ii1···in =

n∑

t=1

Ii1···it−1it+1in +
∆i1···in

Di1 · · ·Din

(5.9)

where the integrands Ii1···it−1it+1in have n − 1 denominators, and the numerator of the
non- homogeneous term is the remainder ∆i1···in of the polynomial division eq. (5.5). By
construction this contains only irreducible terms with respect to Gi1···in , thus it can be
identified with the residue at the cut (i1, · · · , in).

The remainders Ii1···it−1it+1in can be decomposed applying the same procedure, and by
successive iterations the unique structure of the remainders ∆ is extracted. The procedure
naturally stops when all cuts are exhausted, and no denominator is left, leaving us with
the integrand reduction formula.

The maximum-cut

In four space-time dimensions, if the integrand Ii1···in is associated to a diagram presenting
l loops, since each cut condition constrains one loop-momentum component the system of
eq. (5.8) admits no solutions if more than 4l equations are present. We define then the
maximum cut as the 4l-cut 




Di1(z) = 0
...

Di4l(z) = 0

(5.10)

Assuming that, in non-exceptional phase space points, a maximum-cut has a finite number
ns of solutions each with multiplicity one, it can be shown [21] that
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ns = 2 ∆ = c0 + c1z

ns = 4 ∆ =

3∑

i=0

ciz
i

ns = 8 ∆ =

8∑

i=0

ciz
i

Figure 5.1: Three on-shell diagrams with the associated form of the residues, corresponding
to one,two and three-loop maximum cuts respectively

Theorem 5.1.1 (Maximum-cut). The residue of the maximum-cut is a polynomial parametrized
by ns coefficients, which admit an univariate representation of degree ns − 1.

The maximum-cut theorem ensures that the maximum-cut residue, at any loop, is
completely determined by the ns distinct solutions of the cut conditions. In particular
it can be reconstructed by sampling the integrand on the solutions of the maximum cut
itself.
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5.2 One-loop 4-ple cut and BCFW

5.2.1 BCFW tree-level recurrence

In section 1.5 we saw that given a tree-level color-ordered scattering amplitude, upon
injection of a complex-component momentum lµ to the real Minkowsky kinematic values
of two of the external particles, say i and j, the amplitude can be computed as a sum over
the residues of an auxiliary function of one complex variable M(z). For an appropriate
choice of l these residues are products of lower-point on-shell amplitudes with some of the
external momenta taking on complex values. The analytic expression of l(z) as well as
that of the z∗ defining the pole of a given propagator depend on the helicity configuration
considered.

L R

a− 1

î(z)

1

n

a

ĵ(z)

Q̂(z)−−−→

Figure 5.2: Diagram associated to one of the residues in eq. (??).

In particular, consider shifting adjacent legs. With labels of figure 5.2, define

pµi (z∗) = pµi + lµ(z∗) (5.11)

pµj (z∗) = pµj − lµ(z∗) (5.12)

Qm,n = pm + · · · pn (5.13)

Then we choose the following shifts:

• For (i, j) = {(−,+), (+,+), (−,−)}

|̂i〉 = |i〉 |̂i] = |i] + z|j]
|ĵ〉 = |j〉 − z|i〉 |ĵ] = |j]

(5.14)

lµ1 (z) ≡ z

2
〈i|σµ|j] (5.15)

and the resulting pole is given by

z∗1 = −
Q2
i,a−1

〈i|Qi,a−1|j]
(5.16)

• For (i, j) = {(+,−), (+,+), (−,−)}

|̂i〉 = |i〉+ z|j〉 |̂i] = |i]
|ĵ〉 = |j〉 |ĵ] = |j]− z|i]

(5.17)
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lµ2 (z) ≡ z

2
〈j|σµ|i] (5.18)

and the resulting pole

z∗2 = −
Q2
i,a−1

〈j|Qi,a−1|i]
(5.19)

It can be shown that these shifts satisfy the border condition eq. (1.150) for the given
helicity configurations. When (i, j) = {(+,+), (−,−)} both shifts are admitted.

Notice that due to the form of l(z) we have that by construction





l(z)2 = 0

p̂2
i = (pi + l(z))2 = 0

p̂2
j = (pj − l(z))2 = 0

(5.20)

which can be shown using Fierz rearrangement eq. (1.41) and antisymmetry of the spinor
product. For example considering the first type of shift with complex momentum l1(z):

l21 =
z2

4
2〈i|i〉[j|j] = 0 (5.21)

p̂2
i = p2

i + 2pi · l1 + l21

= 2
〈i|σµ|i]

2
z
〈i|σµ|j]

2
∝ 〈i|i〉[j|i] = 0

(5.22)

p̂2
j = p2

j + 2pj · l1 + l21

= 2
〈j|σµ|j]

2
z
〈i|σµ|j]

2
∝ 〈i|j〉[j|j] = 0

(5.23)

The equation defining the pole of the propagator z∗ is

Q̂(z)2 = (Q+ l(z))2 !
= 0 (5.24)

Thus li(z
∗
i ) for i = 1, 2 solves the system of equations





l(z)2 = 0

(pi + l(z))2 = 0

(pj − l(z))2 = 0

(Q+ l(z))2 = 0

(5.25)

5.2.2 Quadruple-cut of a one-loop diagram

Consider now the one-loop diagram represented in figure 5.3.

132



Tree2

a− 1

Tree n− 1

a

1 n

Q̂1,a−1

k

1̂ n̂

Figure 5.3: One-loop quadruple-cut of a diagram with two adjacent massless legs.

The quadruple-cut coefficient associated to this diagram is obtained by the product of
the tree-level amplitudes sitting at the corners of the figure, with momenta that satisfy the
cut conditions of eq. (5.26). These are obtained by requiring that the denominators of the
propagators cut by dashed lines vanish. In other words that the associated intermediate
states go on-shell. 




D1 = 0

D2 = 0

D3 = 0

D4 = 0

(5.26)

where Di is the denominator associated to the i-th propagator represented in the figure.
Starting from the lower propagator and proceeding clockwise, these equations read





k2 = 0

p̂2
1 = (p1 + k)2 = 0

Q̂2
1,a−1 = (Q1,a−1 + k)2 = 0

p̂2
n = (pn − k)2 = 0

(5.27)

Upon substitution k → l the system of eq. (5.27) can be seen to coincide with that
of eq. (5.25), which defines the value of the pole z∗ and thus through l(z∗) the shifted
and internal momenta of the BCFW recursion. We are now going to solve eq. (5.27) to
show that the solutions obtained are exactly the values of l(z∗) presented in the preceding
section.

Start by defining the four-vector

εµij ≡
〈i|γµ|j]

2
(5.28)

and write the loop momentum k in the light-cone bases:

k = x1p1 + x2pn + x3ε1n + x4εn1 (5.29)

Since the external particles are massless, using the first equation of the system eq. (5.27),
the second and last become:

{
0 = (p1 + k)2 = 2x2p1 · pn → x2 = 0

0 = (pn − k)2 = −2x1p1 · pn → x1 = 0
(5.30)
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Then the equation k2 = 0 can be written explicitly as:

0 = k2 = 2p1 · pn(x1x2 − x3x4)

= −2p1 · pn(x3x4) → x3x4 = 0→ x3 = 0 ∨ x4 = 0
(5.31)

Finally the last equation Q̂2
1,a−1 = 0 fixes the values of the non-zero variable among x3

and x4:
0 = (Q1,a−1 + k)2 = Q2

1,a−1 +Q1,a−1 · k
= Q2

1,a−1 +Q1,a−1 · (x3ε1n + x4εn1)
(5.32)

and so

x3 = −
Q2

1,a−1

Q1,a−1 · ε1n
∧ x4 = 0 (5.33)

or

x3 = 0 ∧ x4 = −
Q2

1,a−1

Q1,a−1 · εn1
(5.34)

If we choose i = 1 and j = n in the BCFW shift equations of the preceding section,
the two k(x1, x2, x3, x4) which solve eq. (5.27) read:

k(0, 0, x3, 0) = −
Q2

1,a−1

Q1,a−1 · ε1n
ε1n = l1(z∗1) (5.35)

and

k(0, 0, 0, x4) = −
Q2

1,a−1

Q1,a−1 · εn1
εn1 = l2(z∗2) (5.36)

We can then establish the following correspondence:

Tree2

1̂

a− 1

Tree n− 1

n̂

a

≡
Tree2

a− 1

Tree n− 1

a

1 n

Q̂1,a−1

k

1̂ n̂

Figure 5.4: Diagrammatic representation of the correspondence between BCFW tree-level
recurrence and quadruple-cut of a corresponding one-loop diagram.

The three-point amplitudes sitting at the bottom corners of the one-loop diagram have
been represented in a semi-transparent color, since they do not contribute to the value
of the parent amplitude. They are just needed to define the system of equations which
fix the complex loop momentum k and thus by momentum conservation 1̂, n̂ and Q̂1,a−1.
The momentum k corresponds to the complex-component momentum l(z∗) which was
to be injected into the external legs of the parent amplitude, in order to apply BCFW
recursion. The sub-amplitudes sitting at the upper-corners of the diagram coincide with
the sub-amplitudes obtained from factorization via BCFW in the left-hand side of the
represented identity.
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5.2.3 The BCFW recursion in diagrammatic form

Using the correspondence represented in figure 5.4, the BCFW tree-level recursion:

Tree1 n Tree=
∑

hel

n−1∑

a=3

1̂

a− 1

Tree n̂

a

Figure 5.5: Canonical representation of the BCFW recurrence relation.

can be represented in an alternative diagrammatic way as:

Tree

1 n

2 n− 1 =
∑

hel

n−1∑

a=3

Tree2

a− 1

Tree n− 1

a

1 n

Q̂1,a−1

k1

1̂ n̂

Figure 5.6: Diagrammatic representation of the BCFW recursion in terms of the
quadruple-cut of one-loop diagrams.

The sum over hel is intended over the two possible helicities of the intermediate state
Q̂1,a−1. The sub-amplitudes sitting at the upper-corners of the one-loop diagram are on-
shell amplitudes, to which the relation of figure 5.6 can be applied in a recursive manner.
We adopt the convention of labelling by ki the loop momentum appearing at the i-th step
of the recursion. This momentum will be carried by the propagator connecting the two
legs which were to be shifted in canonical BCFW. For example consider the upper-right
corner of one of the addenda in figure 5.6, the successive step of the recursion is given by:
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Tree

a

Q1,a−1(z1) n− 1

n(z1)

=
∑

hel

n−2∑

c=a+2

Q1,a−1(k1)

Tree

Tree

n(k1)

a c− 1

c

n− 1k2 n̂(k1)

Q̂(k1) P̂ (k1)

where:

Q̂(k1) = Q1,a−1(k1) + k2

P̂ (k1) = Q1,c−1(k1) + k2

n̂(k1) = pn(k1) + k2

(5.37)

Some of the external legs now depend on k1, which is the value of the loop momentum
computed at the preceding step of the recurrence. k2 is the new loop momentum. The
four cut-conditions, define a system of equations whose solution fixes k2 and through
momentum conservation all the other internal-state momenta. The system to be solved is
given by: 




k2
2 = 0

Q̂1,a−1(k1)2 = (Q1,a−1(k1) + k2)2 = 0

Q̂1,c−1(k1)2 = (Q1,c−1(k1) + k2)2 = 0

p̂n(k1)2 = (pn(k1)− k2)2 = 0

(5.38)

Using the same strategy as for the solution of eq. (5.27), one writes k2 in the basis

kµ2 = x1Q
µ
1,a−1(k1)+x2p

µ
n(k1)+x3

〈Q1,a−1(k1)|σµ|n(k1)]

2
+x4
〈n(k1)|σµ|Q1,a−1(k1)]

2
(5.39)

Then on-shellness of Q̂1,a−1(k1) and p̂n(k1) lead to x1 = 0 = x2, solving k2
2 = 0 gives

x3x4 = 0 and finally the last condition yields the two possible solutions:

k2 = − Q1,c−1(k1)2

〈Q1,a−1(k1)|Q1,c−1(k1)|n(k1)]
〈Q1,a−1(k1)|σµ|n(k1)] (5.40)

and

k2 = − Q1,c−1(k1)2

〈n(k1)|Q1,c−1(k1)|Q1,a−1(k1)]
〈n(k1)|σµ|Q1,a−1(k1)] (5.41)

These solutions can be obtained directly using the BCFW formalism of section 5.2.1
as k2 = l1(z∗1) and k2 = l2(z∗2).

The n-point amplitude, after the second step of the recursion can be written as:
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Tree

Tree

a c− 1

c

n− 1k2 n̂(k1)

Q̂(k1) P̂ (k1)

Tree

1 n

2 n− 1 =
∑

hel

n−1∑

a=3

n−2∑

a+2

Tree2

a− 1

1 nk1

1̂
n̂

Figure 5.7: Second step of BCFW recursion.

The recursion goes on until only three-point amplitudes appear.

Once a specific complex-momentum was injected into the external particles, i.e. a loop-
momentum was computed and fixed, some particles carry a dependence on this complex
(loop) momentum. These dependences get more involved the higher the number of external
legs of the initial amplitude, since proportionally more steps in the recursion are needed
for a complete factorization. We will display explicitly the dependence on previously
computed loop-momenta when needed.

Shift of non-adjacent legs

The correspondence of figure 5.4 could be established since we decided to shift the momenta
of two adjacent legs, in particular we always stick to the convention of shifting the first
and last particles’ momenta. However even choosing a different convention and shifting
random legs, since one considers color-ordered diagrams, the relation presented stays true
modulo reordering of the legs.

5.3 Four-,five-,six-point examples

5.3.1 Conventions

From here on, in order for the figures to be of simpler interpretation, we will adopt the
following conventions:

1. we will use straight lines instead of coils for the gluon lines. This leads to no ambi-
guity since we are considering gluons only.

2. The three-point amplitudes which contribute to the parent amplitude are marked
with a black dot.

3. Successive steps in the recursion can be distinguished:

• in the canonical BCFW factorization by a number above the dashed lines which
indicates at which step of the recursion that propagator was put on-shell

137



• in the multi-loop representation by a number inside the loops which indicates
at which step of the recursion that loop appeared

4. All along the recursion one has to sum over the helicity states of internal particles,
this sum will be understood since it is always present.

5. In multi-loop representation all the internal propagators are cut, but the cuts are
understood and not explicitly depicted. In other words all propagators represent
on-shell particles.

6. The dependence of internal momenta on a previously computed loop-momenta will
be represented as p(i, · · · , j), meaning that the momentum p depends on the loop
momenta {ki, · · · , kj}.

7. Finally all external momenta are considered as incoming.

5.3.2 Four-point amplitude

Considering a four point amplitude the BCFW recursion leads to an immediate one-step
factorization, which is represented in figure 5.8.

32

1 4

= 1(1)

2

Q1,2(1)

1

Q1,2(1)

3

4(1)

= 1

32

1 4

Figure 5.8: Four-point amplitude factorization.
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5.3.3 Five-point amplitude

In this section we are going to treat in detail the case of a five-point amplitude. First
we will present the factorization in both the canonical BCFW form and via multi-loop
diagrams, then we will consider one of the diagrams resulting from the factorization and
explicitly solve the two-loop maximum cut system, showing that the constrains as well as
solutions it provides are the same as those given by the BCFW recursion.

Factorization

The complete factorization requires two iterations of the recursive relation. These are
displayed in figure 5.9 and figure 5.10 respectively.

3

2

1 5

4
= 1(1)

2

Q1,2(1)

1

Q1,2(1)

3

4

5(1)

+ 2

3

Q1,3(1)

(1)

1

Q1,3(1)

4

5(1)

= 1

2

1 5

3

4

+ 1

4

1 5

2

3

Figure 5.9: First step of BCFW recursion for a five point amplitude.
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+
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Figure 5.10: Second step of the BCFW factorization for a five point amplitude.

Analytic solution of a two-loop maximum cut system

Let us consider the first diagram resulting from the complete factorization of the five-point
amplitude, which is represented in figure 5.11.
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1

2

1

2

5

3

4

k2

k1

1̂ = p1 + k1 −5̂ = k1 − p5

Q1,2 + k1

Q1,2 + k1 + k2 Q1,3 + k1 + k2

Q1,4 + k1 + k2 = k1 + k2 − p5

Figure 5.11: One of the terms appearing in the final factorized form of the five-point
amplitude.

The 8-ple cut of this diagram corresponds to the following system of eight equations:





k2
1 = 0

(k1 + p1)2 = 0

(k1 + p1 + p2)2 = 0

(k1 + k2 + p1 + p2)2 = 0

(k1 + k2 − p4 − p5)2 = 0

(k1 + k2 − p5)2 = 0

k2
2 = 0

(k − p5)2 = 0

(5.42)

We will proceed in two steps, solving the system first in k1 and then in k2. Writing k1

in the light-cone basis {p1, p5, ε15, ε51} we get

kµ1 = y1p1 + y2p5 + y3ε15 + y4ε51 (5.43)





0 = (k1 + p1)2 = 2y2p1 · p5 → y2 = 0

0 = (k1 − p5)2 = −2y1p1 · p5 → y1 = 0

0 = k2
1 = 2p1 · p5(y1y2 − y3y4) → y3 = 0 ∨ y4 = 0

(5.44)

Using then the condition 0 = (k1 + p1 + p2)2 = 2k1 · p2 + 2p1 · p2 we get





y1 = 0

y2 = 0

y3 = 0 ∧ y4 = − p1 · p2

p2 · ε51

(5.45)

or 



y1 = 0

y2 = 0

y3 = − p1 · p2

p2 · ε15
∧ y4 = 0

(5.46)
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which completely define k1. Now we can proceed similarly with the momentum k2. Defin-
ing P ≡ k1 + p1 + p2 and P̄ ≡ p5 − k1 and

kµ2 = x1P + x2P̄ + x3εPP̄ + x4εP̄P (5.47)





0 = (k2 + P )2 = 2x2P · P̄ → x2 = 0

0 = (k2 − p4)2 = −2x1P · P̄ → x1 = 0

0 = k2
2 = 2P · P̄ (x1x2 − x3x4) → x3 = 0 ∨ x4 = 0

(5.48)

And finally using (k2−p4− P̄ )2 = 0 we get x3 and x4 as functions of P and P̄ so implicitly
also of k1: 




x1 = 0

x2 = 0

x3 = 0 ∧ x4 =
p4 · P̄
p4 · εP̄P

(5.49)

or 



x1 = 0

x2 = 0

x3 =
p4 · P̄
p4 · εPP̄

∧ x4 = 0

(5.50)

Substituting the two possible values for k1 computed before inside P and P̃ we get the
four possible solutions to the 8-ple cut. We present the solutions writing k1 explicitly for
an easier comparison with the BCFW results which will be given below.

For k1 = − p1 · p2

p2 · ε51
ε51




y1

y2

y3

y4

x1

x2

x3

x4




=








0
0
0

− p1 · p2

p2 · ε51

0
0
0

2p4 · (p5 − k1)

〈p5 − k1|p4|k1 + p1 + p2]




,




0
0
0

− p1 · p2

p2 · ε51

0
0

2p4 · (p5 − k1)

〈k1 + p1 + p2|p4|p5 − k1]
0








(5.51)

For k1 = − p1 · p2

p2 · ε15
ε15




y1

y2

y3

y4

x1

x2

x3

x4




=








0
0

− p1 · p2

p2 · ε15

0
0
0
0

2p4 · (p5 − k1)

〈p5 − k1|p4|k1 + p1 + p2]




,




0
0

− p1 · p2

p2 · ε15

0
0
0

2p4 · (p5 − k1)

〈k1 + p1 + p2|p4|p5 − k1]
0








(5.52)
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BCFW analytic solution

Now we are going to compute the term arising from BCFW recurrence related to the
2-loop pentabox maximum cut given above.

1(1)

2

Q1,2(1)

1

Q1,2(1)

3

4

5(1)

Figure 5.12: First factorization of the term corresponding to figure 5.11.

At the first factorization the term we are interested in has the form shown in figure
5.12. The poles and the associated complex momentum to be injected in the external
particles, are computed using the expressions of section 5.2.1. The poles arising from the
first factorization are

z1,1 = − Q2
12

〈5|Q12|1]
= −2p1 · p2

〈5|p2|1]
= − p1 · p2

p2 · ε51
(5.53)

z1,2 = − Q2
12

〈1|Q12|5]
= −2p1 · p2

〈1|p2|5]
= − p1 · p2

p2 · ε15
(5.54)

(5.55)

where in zi,j the label i refers to the step of the recursion in which the pole is computed
and j labels the two distinct possible solutions. The associated complex momenta are

l1,1 =
z1,1

2
〈5|σ|1] (5.56)

l1,2 =
z1,2

2
〈1|σ|5] (5.57)

leading to

p1(z1) = p1 + l1 (5.58)

p5(z1) = p5 − l1 (5.59)

Q12(z1) = p1(z1) + p2 = Q12 + l1 (5.60)

To compute the second set of poles one has to consider the four-point sub-amplitude
factorization represented in figure 5.13.
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Q1,3(z1, z2)

2

Q1,3(z1, z2)

4

p5(z1, z2)

Figure 5.13: Decomposition of the 4-point amplitude resulting from the first factorization
shown in figure 5.12.

Notice that the z2 poles will depend on z1, so in total there will be four sets of solutions
with different poles: {{z1,1, z2,1}, {z1,1, z2,2}, {z1,2, z2,1}, {z1,2, z2,2}}. Applying again the
expressions of section 5.2.1 we get:

z2,1(z1,1) = − (Q12(z1,1) + p3)2

〈Q12(z1,1)|(Q12(z1,1) + p3)|p5(z1,1)]
(5.61)

=
2p4 · (p5 − l1,1)

〈p1 + p2 + l1,1|p4|p5 − l1,1]
(5.62)

having used momentum conservation p1 + p2 + p3 = −p4 − p5 and the Dirac equation in
momentum space eq. (1.2). And for the second pole

z2,2(z1,1) = − (Q12(z1,1) + p3)2

〈p5(z1,1)|(Q12(z1,1) + p3)|Q12(z1,1)]
(5.63)

=
2p4 · (p5 − l1,1)

〈p5 − l1,1|p4|p1 + p2 + l1,1]
(5.64)

Clearly z2,1(z1,2) and z2,2(z1,2) are given by eq. (5.61) and eq. (5.63) with the substitution
z1,1 → z1,2. Substituting the explicit form of l1,1,l1,2 in the BCFW poles and of k1 in the
8-ple cut solutions we see that they coincide.

5.4 Six-point amplitude

Finally we consider a six-point function, for complete factorization three iterations of the
recurrence are needed. The first step of the factorization is depicted in figure 5.14, we get
three terms called A,B,C whose decomposition is represented in figure 5.15, figure 5.16
and figure 5.17 respectively. The final result is presented in figure 5.18.

Redundant diagrams

At each step of the recursion one propagator is cut, i.e. the corresponding internal state
goes on-shell and gets a complex momentum injection. The value of this complex com-
ponent depends on the momentum flowing along the propagator, which by momentum
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conservation depends on the external momenta. The cut propagator produces two new
external states for the sub-amplitudes resulting from the factorization, thus successive
evaluated cuts depend on previously computed ones. In other words the terms of final
factorization may be characterized by the order in which the propagators are cut.

However, the sub-amplitudes produced at each step of the factorization are new on-
shell amplitudes which are completely independent. For certain symmetric diagrams then
redundant terms may be produced, which arise only because propagators were cut sequen-
tially without considering the independence of the daughter amplitudes. This is the case
of the two terms of figure 5.16 of the six-point amplitude. The propagators are cut in
the order {2, 1, 3} and {2, 3, 1}, however after the first factorization one gets two indepen-
dent four-point amplitudes. Cutting first propagator 1 and then 3 or vice versa makes
no difference, and the two permutations are equivalent. This can be clearly seen from
figure 5.18 where the two equivalent terms have exactly the same form with the loop mo-
menta k2 ↔ k3 swapped. The momenta ki depend only on adjacent loop-momenta, thus
k2 = k2(k1) and k3 = k3(k1) and the two terms are the same upon relabelling momenta.

In the next section we will provide some rules which allow to construct the final multi-
loop diagrams which contribute to the amplitude directly. One of these will be that
diagrams differing only by relabelling of independent loop-momenta are equivalent and
contribute only once.
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Figure 5.14: First step of BCFW factorization of a six-point amplitude.

146



A = 1(1)

2

Q1,2(1)

1

Q1,2(1, 2)

3 4

Q1,4(1, 2)

2

Q1,4(1, 2)

5

6(1, 2)

+ 1(1)

2

Q1,2(1)

1

Q1,2(1, 2)

3

Q1,3(1, 2)

2

Q1,3(1, 2)

4

5

6(1, 2)

=

1

2

1

2

6

3 4

5

+

1

2

1

2

6

4

5

3

Figure 5.15: Second step of BCFW recursion for the term A resulting from the first
factorization.
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Figure 5.16: Second step of BCFW recursion for the term B resulting from the first
factorization.

148



C = 1(1, 2)

2

Q1,2(1, 2)

2

Q1,2(1, 2)

3 4

Q1,4(1, 2)

1

Q1,4(1)

5

6(1)

+ 2

3

Q1,3(1, 2)

1(1, 2)

2

Q1,3(1, 2)

4

Q1,4(1, 2)

1

Q1,4(1)

5

6(1)

1

2

1 6

5

4

3

2

1

2

1 6

5

2

43

= +

Figure 5.17: Second step of BCFW recursion for the term C resulting from the first
factorization.
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Figure 5.18: Multi-loop representation of the complete factorized six-point amplitude.
The crossed term is redundant. It appears only because in this explicit example construc-
tion we considered all possible permutations of cut propagators, but only independent
permutations contribute.
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5.5 Direct construction of the multi-loop representation

The loop diagrams contributing to the BCFW factorization of an n-point amplitude are not
all the possible maximum cut graphs with that given number of legs, but a limited subset
of these. The following rules allow to build these diagrams in terms of polygons, more in
detail squares, pentagons and hexagons, where each edge represents a cut propagator.

The fundamental building block is the square. As seen in section 5.2.3 at each iteration
of the BCFW tree-level recursion, the amplitude is substituted by a square with two on-
shell sub-amplitude sitting at adjacent corners of it.

Tree

1 n

2 n− 1 =

n−1∑

a=3

Tree2

a− 1

Tree n− 1

a

1 n

Figure 5.19: BCFW recursion in diagrammatic form.

These sub-amplitudes are then again substituted by new squares, until only three-
point functions appear at every corner. Thus at each step of the recursion, four new edges
corresponding to the new square appear. This square is nested into an already existing
polygon which will thus gain a new edge itself, unless it was the first step where the
diagram is the tree-level amplitude. So define

I ≡ total iterations needed for complete factorization (5.65)

Ni ≡ total number of edges in the loop-diagram at i-th iteration (5.66)

we have that:

NI = 4 +

I−1︷ ︸︸ ︷
(4 + 1) + · · ·+ (4 + 1)

= 4 + 5× (I − 1)

= 5× I − 1

(5.67)

Consider the following as an example, each diagram represented is only one of the possible
terms arising from the application of the recursion to the previous step.

Start with the tree-level amplitude:

Tree −→ N0 = 0 (5.68)
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First application of the recursion in figure 5.19:

Tree Tree

−→ N1 = 4 (5.69)

Second application:

−→ N2 = (4 + 1)︸ ︷︷ ︸
pentagon

+

new square︷︸︸︷
4

(5.70)

third application:

−→ N3 = (4 + 1 + 1)︸ ︷︷ ︸
hexagon

+ 4︸︷︷︸
first square

+

new square︷︸︸︷
4 (5.71)

Given an n-point amplitude, the total number of iterations needed for complete fac-
torization is:

I = n− 3 (5.72)

Clearly since at each iteration a new polygon appears, the total number of them in each
diagram must be I.

From the above example it should also be clear that the only figures that may appear
are squares, pentagons and hexagons, see figure 5.20.

The building blocks of the multi-loop representation are thus:

Figure 5.21: Building blocks of the multi-loop representation. The thick edges are shared
with other polygons of the diagram.
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(a) Square

Tree

Leads to−−−−−−→

(b) Pentagon

Tree Tree

Leads to−−−−−−→

(c) Hexagon

Figure 5.20: Possible polygons appearing in the multi-loop representation. The shaded
areas represent the rest of the diagram to which the given figure is attached.
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1 4

+ =

1 4

32

Figure 5.23: The four point amplitude is obtained by all possible combinations (i.e. only
one) of one square and the base line.

The thick edges are shared among different polygons. Notice that, by construction, in
the final diagrams a square is always attached to two external lines, a pentagon to one and
a hexagon to none. There is however one exception: the polygon which originates from
the first application of BCFW is attached to the first and last external legs, independently
of whether it is a square, a pentagon or a hexagon.3 We then define an object called “base
line” as in figure 5.22, which makes up for this exception. This object saturates one of the
shared edges of the polygons.

1 n

Figure 5.22: “Base line” which saturates one shared edge of a polygon.

For example given a four-point amplitude the only figure that can appear in the multi-
loop diagram is one square. This has two external legs attached to it and one edge which
should be shared with another polygon. This edge is saturated by the base line. The
four-point amplitude is obtained by matching the square with the base line in all possible
combinations, as represented in figure 5.23.

Finally notice that any application of the BCFW recursion ends inevitably with the
factorization of a four-point amplitude into two three-point sub-amplitudes. This means
that each multi-loop diagram must contain at least one square, which corresponds to this
factorization.

Drawing recipe

We have that the maximum-cut graphs contributing to an n-point tree-level amplitude
can be obtained by the following rules:

1. Compute the number of iterations needed for complete factorization: I = n− 3

3These two external legs are the only external lines attached to three-point amplitudes which do not
contribute to the value of the parent amplitude.
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2. Build sets of I polygons among those represented in figure 5.21 that satisfy N =
5I − 1, with N sum of all the edges of the figures in the set. Each set must contain
at least one square.

3. For each set combine the polygons among them and with the base line in all possible
ways, considering that:

• The polygons are to be connected to one another only on the thick lines of
figure 5.21

• Polygons with the same number of edges are to be considered indistinguishable

• Only connected diagrams are admitted

The resulting diagrams are all the possible maximum-cut graphs corresponding to the
BCFW tree-level factorization.

Example:five-point amplitude

Consider a five-point amplitude. We have that:

n = 5

I = 2

N = 9

(5.73)

So now we need to build all the possible sets of I = 2 polygons among squares, pentagons
and hexagons whose total edges sum to N = 9. The only possibility is

9 = 4 + 5 (5.74)

Thus take the set:

1 5

, ,

Figure 5.24: Building blocks of the five-point amplitude.

and take all possible combinations. The result is depicted in figure 5.25.
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Figure 5.25: Five point amplitude multi-loop representation.

Example: seven-point amplitude

Consider a seven-point amplitude. We have that:

n = 7

I = 4

N = 19

(5.75)

So the contributing diagrams are given by a combination of four polygons among squares,
pentagons and hexagons, with in total 19 edges plus the base line. Since at least one
square must be present it is easiest to build the sets in terms of increasing number of
squares. We get that the only allowed sets of figures are:

19 = 4 + 5 + 5 + 5

19 = 4 + 4 + 5 + 6
(5.76)

The two possible sets are then:

1 7

, , , ,

1 7

, , , ,

Figure 5.26: The two allowed sets of building blocks for the seven-point amplitude.
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These figures will then be combined in all the possible ways among them, obtaining
the diagrams shown in figure 5.27 and figure 5.28. The two legs at the bottom of each
diagram are the lines 1 and 7 which form the base line.
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Figure 5.27: Seven-point amplitude complete factorization in multi-loop representation.
Possible combinations with one square and three pentagons.

Figure 5.28: Seven-point amplitude complete factorization in multi-loop representation.
Possible combinations with two squares, one pentagon and one hexagon.
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Conclusions

In this work we presented in detail all the techniques needed to perform the functional re-
construction of univariate rational functions over finite fields, and discussed its application
to tree-level scattering amplitudes.

We started by introducing the rational reconstruction techniques on the field Q, which
is the most natural setting for them to be applied. Since however it is not always the
most convenient one, finite fields were introduced along with their fundamental opera-
tions. These were defined mathematically as well as operatively, always presenting an
immediate possible code implementation. Particular attention has been given to the prob-
lem of defining a multiplicative inverse not only on finite fields but also on rings, which
proves essential when applying the Chinese remainder theorem at the last stage of the
reconstruction procedure. The task of inverting the mapping from Q to Zp was addressed,
showing how it is possible to obtain a unique inverse image under appropriate hypothesis,
which involve the size of the order p of the finite field. Then we showed how this hypoth-
esis could be fulfilled using the Chinese remainder theorem, allowing us not to leave the
domain of machine-size numbers for the numerical calculations.

Then we discussed numerical evaluation of tree-level amplitudes on finite fields. We
showed how the combined use of spinor-helicity formalism and momentum-twistor vari-
ables allows to write scattering amplitudes as rational functions. The Berends-Giele and
BCFW recursions were presented, along with appropriate factorizations of them in terms
of a completely rational part and an overall factor carrying imaginary and irrational de-
pendencies.

The first main result of this work was then obtained, i.e. the rational reconstruction
on finite fields of a tree-level scattering amplitude using the BCFW recursion as black-box
algorithm, which was presented here for the first time.

Finally some relations among BCFW tree-level recurrence and multi-loop maximum-
cut graphs were explored. We presented a novel strategy which allows the direct identifi-
cation/construction of all the multi-loop graphs related to BCFW recursion, starting only
from the number of external legs. The multi-loop representation, a part from providing
a possible direct construction of the completely factorized amplitude usually obtained by
the application of the BCFW recursion, also allows to recognize otherwise hidden relations
among addenda appearing in it. Furthermore its relation with the residue of the maximum-
cut appearing in the integrand decomposition method is still to be studied, in particular
the possible connection with the constant term of this polynomial. It is our hope that a
deeper mathematical structure, apparently hidden behind these considerations, could one
day be uncovered.
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Appendix A

Groups, rings and fields

We briefly recall some definitions about groups, rings and fields, see for example [16].

Definition A.1 (Group). Given a set G is said to be a group if it is endowed with an
operation ◦ such that

1. ◦ is associative, a ◦ (b ◦ c) = (a ◦ b) ◦ c ∀ a, b, c ∈ G

2. there is an identity element e such that a ◦ e = e ◦ a = a ∀ a ∈ G

3. ∀a ∈ G there is an inverse element denoted a−1 such that a ◦ a−1 = a−1 ◦ a = e

A group is said to be abelian if ◦ is commutative.

Definition A.2 (Ring). A ring (R,+, ·) is a set R together with two binary operations
+ called addition and · called multiplication, such that:

1. R is an abelian group with respect to +

2. · is associative, a · (b · c) = (a · b) · c ∀ a, b, c ∈ R

3. the distributive law holds: a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c ·
a) ∀ a, b, c ∈ R

A ring is said to be a ring with identity if · admits an identity element, which we will
denote by 1. The identity element of the operation + will be denoted 0. Furthermore a
ring is called commutative if · is commutative.

Definition A.3 (Field). A commutative ring whose non-zero elements form a group under
· is called a field

A field composed of a finite number of elements is said to be finite.

Another definition which we will need later is that of group homomorphism:

Definition A.4 (Group homomorphism). A map F : G→ H is said to be an homomor-
phism between the groups G and H if it preserves the group operation of G:

F (a ◦G b) = F (a) ◦H F (b) ∀ a, b ∈ G

where ◦G and ◦H are the group operations of G and H respectively.

In a similar fashion for rings, and thus fields, we have the extension of the above to
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Definition A.5 (Ring homomorphism). A map F : R1 → R2 is said to be an homomor-
phism between the rings (R1, σ1, φ1) and (R2, σ2, φ2) if

F (σ1(a, b)) = σ2(F (a), F (b)) ∀ a, b ∈ G

and
F (φ1(a, b)) = φ2(F (a), F (b)) ∀ a, b ∈ G

where σi and φi denote the addition and multiplication operation on Ri.

In other words the ring isomorphism preserves both, addition and multiplication. We
will not use different names to refer to these operations on different rings, since this
distinction should be clear from the context. Thus if F is an homomorphism we will
simply write

F (a+ b) = F (a) + F (b) F (a · b) = F (a) · F (b)

A bijective homomorphism is called isomorphism.
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