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Introduction

Gravitational waves (GWs) were predicted by Albert Einstein in 1916 in his theory of
General Relativity (GR), which is still considered to be the most accurate and well-tested
theory of gravitation we have today. This prediction became truth in 2016, when it was
announced that gravitational waves from the merging of a binary black hole system were
directly observed by the LIGO-Virgo collaboration for the first time [1], opening up new
horizons to allow us to better understand our Universe. At the same time, the last century
saw the rise (and possibly fall) of a wide number of theories of gravitation alternative to
General Relativity. Since GR gives such a valid description of gravity, most of these alter-
natives today are not meant to completely replace Einstein’s theory, but rather to extend it
by focusing on scales far beyond those where it has been correctly tested, such as the solar
system scale, and/or considering different stages of our Universe, with modifications moti-
vated by other branches of physics, such as cosmology and particle physics. Such alternative
theories of gravity do indeed feature some specific predictions that can distinguish them
from GR. In particular when generic metric theories of gravity are considered, at most 6
gravitational wave polarization modes are allowed and classified as follows: 2 tensor modes
(usually called plus and cross), already predicted by GR, 2 scalar modes (called breathing
and longitudinal) and 2 vector modes (called vector-x and vector-y). Therefore the im-
portance of testing for the presence of such extra-polarization modes is clear: if they are
detected new physics is discovered and alternative theories need to be taken into account.
The possibility to perform such a test with present and future ground-based interferometers
is the focus of this Thesis.
Detectors which aim to detect gravitational waves are ground-based interferometers on
Earth and future space-based interferometers. Ground-based are usually distinguished in
2nd-generation detectors, such as Advanced LIGO [8, 9] (which includes both observatories
in Hanford and Livingston in North America), Advanced VIRGO [10] in Italy and KAGRA
[11] in Japan, and future 3rd-generation interferometers, such as Einstein Telescope (ET)
[14, 15] and Cosmic Explorer (CE) [16], which are expected to begin their operations in
the 2030’s. All these detectors exploit the basic functioning of a Michelson interferometer,
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although they are built with high-finesse Fabry–Pérot resonant arm cavities and adopt sig-
nal recycling systems to extend light travel-time along the arms, thus its interaction with
gravitational waves. While working with these kind of interferometers, the biggest problem
arises from the fact that gravitational waves are very weak and it is very difficult for us
to separate their true signal from the detector noise. As far as spaceborne interferometers
are concerned we can mention the Laser Interferometer Space Antenna (LISA) [12, 13] that
will be launched in the 2030’s.
The Thesis is structured as follws. In the first chapter of this thesis, we give a short in-
troduction about the theory of GR and we show how gravitational waves arise from linear
perturbations of the metric tensor. We further introduce the reader to some of the most
popular alternative theories of gravity and we briefly show how they are generated by intro-
ducing additional scalar/vector fields that mediate gravity and modifying the gravitational
action from which field equations are obtained. Then we consider a Cosmological Stochastic
Gravitational Wave Background (SGWB) involving a mixture of all possible tensor, vector
and scalar polarization modes and we list its properties. In particular, the Cosmological
Background is among the target of upcoming 3rd-generation detectors.
In the second chapter we analyze detection techniques for the SGWB exploiting ground-
based interferometers. Initially, we investigate how detector responses significantly vary
depending on both detector geometry and incoming gravitational wave frequency: in par-
ticular we show how for sufficiently low values of the latter the response is frequency inde-
pendent. Whenever this condition is no longer valid, detector responses have to account for
transfer functions, which in general depend on both detector geometry and GW frequency.
Transfer functions show different behaviours for Michelson and Fabry-Pèrot inteferome-
ters, althoug their presence always implies detector sensitivity losses above some critical
frequency. Since in realistic situations GWs are very hard to distinguish from detector
background noises, we proceed by covering the issue of detector correlation which allows to
match two detector outputs to “filter” true GW signals. The measure of correlation between
two interferometers with different locations and orientations is given by overlap reduction
functions: these key objects are different for tensor, vector and scalar polarization modes
respectively and while considering correlations between two detectors in this work we al-
ways provide their plots. Finally, we show how three detector networks can be exploited
in order to separate stochastic background energy density contributions for tensor, vector
and scalar modes using 2nd-generation interferometers.
In the third and last chapter we focus on future ground-based detector Einstein Telescope.
We investigate some of its properties derived by its proposed triangular configuration with
three interferometers in order to understand its benefits in terms of sensitivity to gravita-
tional waves. After considering detector networks involving both 2nd-generation interferom-
eters and the Einstein Telescope, we mainly focus on the interplays between the latter and
the Cosmic Explorer: we find that detector networks involving 3rd-generation interferome-
ters improve sensitivity to the SGWB roughly by a factor of 103 for each polarization mode
with respect to the old generation. In the context of GW polarization modes separation,
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we show how the Einstein Telescope alone cannot exploit its three detectors to distinguish
energy density contributions to the SGWB from tensor, vector and scalar modes, thus only
two ET interferometers can be considered to work independently in a network. Finally we
show a possible method to break the existing degeneracy between breathing and longitudinal
polarization modes exploiting both the Einstein Telescope and the Cosmic Explorer, which
are expected to be sensitive to higher frequencies with respect to current interferometers.
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Chapter 1
Gravitational Waves and Stochastic
Backgrounds

Since 2016 binary mergers have been observed [2, 3, 4, 5, 6] by LIGO and Virgo through
gravitational waves (GWs) detection. Therefore, in this chapter we wish to give the reader a
basic introduction to Einstein’s theory of General Relativity (GR) to better understand how
GWs emerge and what are their properties. Defining a particular gauge choice, this can be
achieved by “perturbing” the flat Minkowski spacetime metric and subsequently linearizing
Einstein field equations to obtain a wave equation. It is a well-known result that GR
predicts the existence of plus and cross polarization modes; however standard tools of GR
such as the geodesic equation and the geodesic deviation equation allow us to understand
how four independent extra polarization modes may ultimately arise. Moreover, alternative
theories of gravitation might predict the existence of such modes, thus measuring GW
polarizations provide a useful tool to test gravity. It turns out that more than one possible
GW source exists: in this work we focus on a Cosmological Stochastic Gravitational Wave
Background (SGWB). In direct analogy with the Cosmic Microwave Background [17, 69] for
electromagnetic radiation, the detection of such background would give us information on
the primordial phase of our Universe, possibly up to the inflation time scale [19, 25, 26, 27].

1.1 Gravitational Waves in General Relativity

We consider our spacetime to be a 4-dimensional manifold on which we set a generic coordi-
nate system xµ = (x0, x1, x2, x3); we further assume gµν(x) to be the metric tensor through
which we define the line element

ds2 = gµνdx
µdxν . (1.1.1)
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CHAPTER 1. GRAVITATIONAL WAVES AND STOCHASTIC
BACKGROUNDS

To understand how GWs are produced in GR, we follow [72] and we begin writing down
the gravitational action

S = SEH + SM (ψM , gµν), (1.1.2)

where

SEH =
c3

16πGN

∫
d4x
√
−gR, (1.1.3)

is the Einstein-Hilbert action, SM is the matter action which couples the matter field ψM
to the metric tensor, g is determinant of the metric tensor, c is the speed of light and GN is
Newton’s gravitational constant. The key object used in GR to measure the local spacetime
curvature is the Riemann tensor

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + ΓρµαΓανσ − ΓρναΓαµσ, (1.1.4)

where we have introduced the Christoffel symbols

Γρµν =
1

2
gρσ
(
∂µgνσ + ∂νgµσ − ∂σgµν

)
, (1.1.5)

and gµν are the metric tensor entries. The Ricci tensor and the Ricci scalar are then given
by the following contractions

Rµν = Rαµ
α
ν , R = gµνRµν . (1.1.6)

Einstein field equations are obtained taking the variation of the gravitational action with
respect to the inverse metric and together they represent a tensorial equation that relates
the metric tensor with matter

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.1.7)

where Tµν is the stress-energy tensor. These equations are often written down this way to
underline the fact that the left hand-side term gives us geometrical informations about the
spacetime and its curvature, while the right-hand side term tells us informations about the
gravitational field source. If no matter is present, then Tµν = 0 and Eq. (1.1.7) reduces1 to

Rµν = 0, (1.1.8)

which are the vacuum Einstein field equations. Gravitational waves are found by considering
Einstein field equations in the weak field limit [20], which is valid when we consider nearly
flat regions spacetime, meaning we can decompose the metric tensor as a sum of two terms

gµν = ηµν + hµν(x), |hµν | � 1, (1.1.9)
1We have Rµν − 1

2
gµνR = 0, thus considering the contraction with the inverse metric tensor we get

gµν(Rµν − 1
2
gµνR) = R− 2R = −R = 0.
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1.1. GRAVITATIONAL WAVES IN GENERAL RELATIVITY

where

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.1.10)

is the Minkowski metric for a flat spacetime, while hµν is the perturbative term which
denotes small deviations from it. Under these assumptions, we wish to solve Eq. (1.1.8).
Since the gravitational field is weak, we are justified to neglect all 2nd or higher order terms
in hµν while computing all the quantities we need. This means that Christoffel symbols
become

Γµνρ(h) =
1

2
ηµσ
(
∂νhρσ + ∂ρhνσ − ∂σhνρ

)
+O(h2), (1.1.11)

and the vacuum field equations become

Rµν(h) = Rαµ
α
ν(h) = ∂αΓαµν(h)− ∂µΓααν(h) +O(h2)

=
1

2

(
∂µ∂

νhαν + ∂ν∂
αhµα − ∂α∂αhµν − ∂µ∂νhαα

)
+O(h2) = 0. (1.1.12)

Notice that the perturbative term hµν(x) depends on the frame of reference we choose
and if we wish to decompose the metric tensor we need Eq.(1.1.9) to hold on sufficiently
large regions of spacetime. Inside these regions, we can always consider an infinitesimal
coordinate transformation x̃µ = xµ+εµ, with |εµ| = O(h), thus the metric tensor transforms
as

gµν =
∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ

= (δρµ + ∂µε
ρ)(δσν + ∂νε

σ)g̃ρσ, (1.1.13)

where g̃ρσ is the metric tensor in the new frame of reference, which we rewrite as

g̃µν = ηµν + h̃µν(x), |h̃µν | � 1. (1.1.14)

This means that if we move to another frame of reference describing the same physical
problem, we get the following relation between the two perturbative terms

h̃µν = hµν − ∂µεν − ∂νεµ = hµν − δhµν . (1.1.15)

This is the manifestation of the well known Gauge invariance2 in the context of GR. To get
rid of this freedom, we choose the xµ coordinate system and we fix the gauge by picking
the de Donder gauge [], which states

DµDµx
ν = 0 = −gρσΓνρσ, (1.1.16)

2In electromagnetism the Gauge invariance denotes the transformation Aµ → Aµ + ∂µf , with f scalar
function, which leaves the electromagnetic tensor Fµν = ∂µAν − ∂νAµ invariant. Similarly, in General
Relativity metric perturbations related by Eq.(1.1.15) satisfy δRµνρσ = 0, leaving the linearized Riemann
tensor invariant.
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CHAPTER 1. GRAVITATIONAL WAVES AND STOCHASTIC
BACKGROUNDS

where Dµ is the covariant derivative, which acts on covariant and contravariant vectors as

DµV
ν = ∂µV

ν + ΓνµρV
ρ, DµVν = ∂µVν − ΓρµνVρ. (1.1.17)

It is straightforward to see that Eqs.(1.1.11) and (1.1.16) lead us to

∂µhµν −
1

2
∂νh = 0, (1.1.18)

where we have defined h = hαα, and from Eq.(1.1.12) we get{
∂α∂αhµν = 0

∂µhµν − 1
2∂νh = 0

. (1.1.19)

In literature, the object h̄µν = hµν − 1
2ηµνh called trace-reversed perturbation is often used

to get the following system {
∂α∂αh̄µν = 0

∂µh̄µν = 0
, (1.1.20)

where the first expression is the plane wave equation and the second one is the result of
the de Donder gauge condition. This system obviously admits plane waves as elementary
solutions, so we have

h̄µν = Cµνe
ikρxρ , (1.1.21)

with the 4-momentum k2 = kµkµ = 0, suggesting that GWs travel at the speed of light,
while the de Donder gauge condition gives us

kµCµν = 0, (1.1.22)

with Cµν = Cνµ due to the metric tensor being simmetric, meaning we are now left with
6 degrees of freedom, starting from the possible initial 16. If we perform an infinitesimal
coordinate transformation x′µ = xµ + εµ we can still take the de Donder gauge condition
to be valid as long as DµDµε

ν = 0 is also satisfied and admits a solution εµ = Gµe
ikρxρ .

We rewrite Eq.(1.1.15) using the trace reversed perturbation to get

h̄′µν = h̄µν − ∂µεν − ∂νεµ + ηµν∂αε
α, (1.1.23)

which in terms of plane wave solutions gives us

C ′µν = Cµν − ikµGν − ikνGµ + iηµνkαG
α

= C̃µν + iδCµν . (1.1.24)

Let us finally find the degrees of freedom of GWs in GR. We can set c = 1 for simplicity,
thus the wave vector kµ = ω(1, 0, 0, 1)T 3 denotes a GW propagating along the z-axis: with
this specific choice, from kµCµν = 0 we get

C3µ = −C0µ. (1.1.25)
3The dispersion relation for plane waves propagating at the speed of light in vacuum is ω = ck.
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1.1. GRAVITATIONAL WAVES IN GENERAL RELATIVITY

We now proceed by choosing Gµ in order to fix C0µ = 0 = C3µ in Eq.(1.1.24), we have

δC00 = G3 −G0 = −δC03

δC01 = −G1 = −δC31

δC02 = −G2 = −δC32

δC12 = 0

δC33 = G3 −G0

δC11 = −(G0 +G3) = δC22, (1.1.26)

and we can set (G3 − G0) to fix C ′00 = C ′03 = C ′33 = 0, G1 to fix C ′01 = C ′31 = 0 and G2

to fix C ′02 = C ′32 = 0. In the end we consider the object4 δ(Cµµ) = −2(G0 + G3) and we
set it to fix C ′µµ = 0, which implies C ′11 = −C ′22. With no gauge freedom left to exploit, we
rename C ′ ≡ C and the only nonzero components are then C11, C12, C21 and C22 for the
traceless and symmetric tensor Cµν , which can be written as

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 . (1.1.27)

In the end we are left with only 2 degrees of freedom. C11 and C22 completely characterize
a GW propagating at the speed of light along the z-axis and correspond to the plus and
cross polarization modes represented in the transverse traceless gauge, since the metric
perurbation is traceless and perpendicular to the wave vector [72]. The metric tensor in
Eq. (1.1.9) can now be written as

gµν =

(
1 0
0 δij + hij

)
, (1.1.28)

where we have defined

hij =

C11 C12 0
C12 −C11 0
0 0 0

Re(eikρx
ρ
), (1.1.29)

which is the expression of the perturbation term in the transverse-traceless gauge, while the
line element in Eq.(1.1.1) becomes

ds2 = −dt2 + dz2 +
(
1 + C11 cosω(t− z)

)
dx2 +

(
1− C11 cosω(t− z)

)
dy2+

+ 2C12

(
cosω(t− z)

)
dxdy. (1.1.30)

4Recall we have just fixed C′00 = C′33 = 0.
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CHAPTER 1. GRAVITATIONAL WAVES AND STOCHASTIC
BACKGROUNDS

Since Eqs.(1.1.19) still hold, hij satisfies the plane wave equation, meaning that superposi-
tions of elementary solutions of the equation are still solutions. This means that the spatial
part of the tensorial perturbation can be written down as

hij(t, x̄) =
∑

A=+,×

∫ +∞

−∞
df

∫
S2

dΩ
(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄

c
), (1.1.31)

where Ω̂ denotes the GW direction, amplitudes hA(f, Ω̂) are complex functions satisfying
hA(−f, Ω̂) = h∗A(f, Ω̂) due to the reality of hij(t, x̄), ẽAij ẽ

ij
A′ = 2δAA′ and we restored the

constant c. Although plus and cross polarization modes are the only one predicted by GR,
we shall see in the next section how in alternative metric theories other modes are expected
to exist and how it turns out that as long as we are in the weak field limit the metric tensor
can be decomposed as in Eq.(1.1.28) with a different form for hij .

1.2 Gravitational Waves in Alternative Metric Theories of
Gravity

Since GR was developed many observations have confirmed its correctness [21, 22, 23, 24].
However, when alternative metric theories of gravity are considered, other polarization
modes might appear and, if these theories happen to be accurate, they might lead us to
new physical considerations and results, causing an inevitable extension of GR. In this
section we wish to give a simple and useful introduction to extra polarization modes by
showing how they arise and affect test particles, while in the next section we show a few
examples of alternative theories.
Freely-falling particles in a curved spacetime move along curves called geodesics, which
represent the particle worldlines minimising the distance between two points. The evolution
of a particle path xµ(τ) is dictated by the geodesic equation

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0, (1.2.1)

where the equality holds if τ is an affine parameter. We begin by considering nearby
geodesics [45] for two massive test particles in a general, possibly curved, 4 dimensional
spacetime and we identify them as xµ(τx) and yµ(τy), where τx,y denotes each particle
proper time. Once we evaluate both geodesics for a specific value τ = τx = τy, we can
define

εµ(τ) = yµ(τ)− xµ(τ), (1.2.2)

which gives a measure of how the two geodesics approach or deviate from each other; to be
more precise, we need to evaluate εµ(τ) along one of the two geodesics, say xµ(τ), so that
it represents the deviation of the second geodesic from the first one. Assuming this is the
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1.2. GRAVITATIONAL WAVES IN ALTERNATIVE METRIC THEORIES OF
GRAVITY

case, we wish to study how this deviation evolves in terms of proper time. To simplify the
computation, we choose locally flat coordinates along xµ(τ), thus we have

∂µgνρ(x(τ)) = 0 =⇒ Γρµν(x(τ)) = 0, (1.2.3)

and the geodesic equations for xµ(τ) and yµ(τ) become

d2xµ

dτ2
= 0,

d2yµ

dτ2
+ Γµνρ(y)

dyν

dτ

dyρ

dτ
= 0, (1.2.4)

while εµ satisfies

d2εµ

dτ2
=
d2yµ

dτ2
− d2xµ

dτ2
=
d2yµ

dτ2

= −Γµνρ(x+ ε)
d(x+ ε)ν

dτ

d(x+ ε)ρ

dτ

= −εσ∂σΓµνρ(x)
dxν

dτ

dxρ

dτ
+O(ε2). (1.2.5)

In the context of GR, we are interested in the evolution of vectors along geodesics, thus we
need the covariant derivative to accurately describe the evolution of the deviation vector

D2εµ

Dτ2
=
d2εµ

dτ2
+
dxσ

dτ
∂σΓµνρ(x)

dxν

dτ
ερ

=
(
−∂σΓµνρ(x) + ∂νΓµσρ(x)

)dxν
dτ

dxρ

dτ
εσ

= −Rσνµρ(x)εσ
dxν

dτ

dxρ

dτ
, (1.2.6)

where in the final step we add −ΓµσαΓανρ and ΓµναΓασρ to the quantity between parenthesis,
since in locally flat coordinates they are null. This way we obtained the geodesic deviation
equation in a covariant form, thus valid in any frame of reference. Since we are interested in
small perturbations of the metric, we consider once again the weak field limit and we wish to
see how particles initially at rest5 are affected by a passing GW. Under these assumptions,
we decompose the spatial part of the metric tensor as

gij = δij + hij , i, j = 1, 2, 3. (1.2.7)

and Eq.(1.2.6) reduces to

D2εi

Dt2
= −Rj0

i
0(h)εj(τ) =

(
∂2

∂t2
hij(t)

)
εj(t). (1.2.8)

5Under these assumptions the 4-velocity of a stationary observer is uµ = (1, 0, 0, 0)T and the proper
time τ coincides with the coordinate time t.
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CHAPTER 1. GRAVITATIONAL WAVES AND STOCHASTIC
BACKGROUNDS

Recall that hij reduces to Eq.(1.1.29) in GR, but it might be different for alternative metric
theories, where more than two polarization modes for GWs can exist. We also notice that
gravitational waves are related to linearized Riemann tensor components Rj0i0 (sometimes
called “electric” components of the Riemann tensor), which can be used to identify their
polarization states. If we take plane waves propagating along the z-axis at the speed of light,
then the electric components are only functions of ξ(t, z) = t− z

c . It was pointed out in [41]
by Newmann and Penrose that there exist only 6 algebraically independent components6 of
the Riemann tensor in vacuum, corresponding to the same amount of possible polarization
modes; we use the same notation introduced in their paper and we follow [18] to manage
these components in order to define the following 4 objects

Ψ2(ξ) = −1

6
Rz0z0

Ψ3(ξ) = −1

2
Rx0z0 +

i

2
Ry0z0

Ψ4(ξ) = −Rx0x0 +Ry0y0 + i2Rx0y0

Φ22(ξ) = −Rx0x0 −Ry0y0, (1.2.9)

where Ψ3,4(ξ) are complex functions and can be seen as the sum of two real independent
ones. We introduce the square matrix Zij = Rj0i0, which may be written as

Z =

−1
2(Re Ψ4 + Φ22) 1

2 Im Ψ4 −2ReΨ3
1
2 Im Ψ4

1
2(Re Ψ4 − Φ22) 2 Im Ψ3

−2 Re Ψ3 2 Im Ψ3 −6Ψ2

 , (1.2.10)

then, as in [42], we define7

q1 = −3
√

2Ψ2, q2 = −2 Re Ψ3,

q3 = 2 Im Ψ3, q4 = −1

2
Re Ψ4,

q5 =
1

2
Im Ψ4, q6 = −1

2
Φ22, (1.2.11)

6From Rj0i0 they are Rx0x0, Rx0y0, Rx0z0, Ry0y0, Ry0z0, Rz0z0.
7The constants are choosen in a way to already obtain the normalization we want for the GW polarization

tensors.
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1.3. EXAMPLES OF ALTERNATIVE METRIC THEORIES OF GRAVITY

thus we can write Z =
∑6

n=1 q(n)ẽ
(n)
ij , where we have defined

ẽ
(1)
ij =

√
2

0 0 0
0 0 0
0 0 1

 = ẽlij , ẽ
(2)
ij =

0 0 1
0 0 0
1 0 0

 = ẽxij ,

ẽ
(3)
ij =

0 0 0
0 0 1
0 1 0

 = ẽyij , ẽ
(4)
ij =

1 0 0
0 −1 0
0 0 0

 = ẽ+
ij ,

ẽ
(5)
ij =

0 1 0
1 0 0
0 0 0

 = ẽ×ij , ẽ
(6)
ij =

1 0 0
0 1 0
0 0 0

 = ẽbij ,

(1.2.12)

which constitute the bases of all the possible polarization tensors for a metric theory of
gravity of a 4 dimensional spacetime. In particular, looking at ẽ

(4)
ij and ẽ

(5)
ij we have found

once again the plus (+) and cross (×) polarization modes predicted by GR, which can be
grouped together as tensor modes. However, four additional modes appear: ẽ

(2)
ij and ẽ

(3)
ij

are called respectively vector-x (x) and vector-y (y) modes, belonging to the vector modes,
while ẽ

(1)
ij and ẽ

(6)
ij are called longitudinal (l) and breathing (b) modes and they form the

scalar modes. Each polarization mode is orthogonal to all the other ones, meaning that
ẽAij ẽ

ij
A′ = 2δAA′ with A,A′ = +,×, x, y, b, l; moreover tensor and vector polarizations are

traceless, while the scalar ones are not. Besides the way they affect test particles as shown
in Fig.1.1, we have that tensor, vector and scalar modes are also distinguished by their
relative GW helicity values, which are respectively s = ±2, s = ±1 and s = 0.

1.3 Examples of Alternative Metric Theories of Gravity

Despite the fact that today GR is the best description we have for gravity, alternative metric
theories of gravity have been developed in order to extend Einstein’s theory and describe
possible physical effects that GR cannot. In the context of gravitational waves, different
theories allow the existence of specific polarization modes, meaning that GWs provide a
very useful tool to test the correctness of the theory itself. In this section we first show
some examples of alternative theories generated by introducing additional scalar or vector
fields that mediate gravitational interactions besides the metric tensor, then we give a brief
introduction to the so-called f(R) and Quadratic Gravity theories.

Scalar-Tensor theories. Scalar-Tensor theories are based on the presence of an addi-
tional scalar field φ, besides the metric tensor gµν [48, 49]. The gravitational action is now
replaced by

S =
1

16πG

∫
d4x
√
−g
[
φR− ω(φ)

φ
gµν(∂µφ)(∂νφ)− U(φ)

]
+ SM (ψM , gµν), (1.3.1)
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CHAPTER 1. GRAVITATIONAL WAVES AND STOCHASTIC
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where U(φ) is the scalar field potential and ω(φ) is a coupling function. We proceed in the
same way we did for GR and we take the variation of this action with respect to the inverse
metric and φ to get the field equations

Rµν −
1

2
gµνR =

8πG

φ
Tµν +

ω(φ)

φ2

[
(∂µφ)(∂νφ)− 1

2
gµν(∂αφ)(∂αφ)

]
+

1

φ
(∂µ∂νφ− gµν�φ),

(1.3.2a)

�φ =
1

3 + 2ω(φ)

[
8πGNg

µνTµν −
dω

dφ
(∂αφ)(∂αφ) +

d

dφ
(φ2U(φ))

]
, (1.3.2b)

where � is the d’Alambertian operator and Tµν is the stress-energy tensor. Another for-
mulation of the theory can be provided by introducing the following transformation for the
metric tensor

g̃µν =
φ

φ0
gµν , (1.3.3)

where φ0 is a constant and represents the asymptotic value of the scalar field today. Thus
we get the action

S =
1

16πG̃

∫
d4x
√
−g̃
(
R̃− 3 + 2ω(φ)

2φ2
g̃µν(∂µφ)(∂νφ)− V (φ)

)
+ SM (ψM , φ

−1g̃µν), (1.3.4)

where R̃ is the Ricci scalar obtained from g̃µν , G̃N = GN
φ0

and V (φ) = φ0U(φ)
φ2 . Eq.(1.3.1) and

Eq.(1.3.4) are two different representations of the same theory, which are called respectively
Jordan frame and Einstein frame and are used for different purposes. One particular
example among scalar-tensor theories is the Brans-Dicke theory [52], which forecasts a
constant value of the coupling function ω(φ) ≡ ωBD and reduces to GR in the limit ω →∞.
This theory predicts the existence of scalar polarization modes, GW detection can be a good
way to investigate the problem.

Vector-Tensor theories. Vector-Tensor theories provide the presence of a vector field
Bµ and of the usual metric tensor gµν [50, 51]. This time the gravitational action is given
by

S =
1

16πGN

∫
d4x
√
−g
(
(1+ωBµB

µ)R−Qµναβ(DµB
α)(DνB

β)+λ(BµB
µ+1)

)
+SM (ψM , gµν),

(1.3.5)
where

Qµναβ = c1g
µνgαβ + c2δ

µ
αδ

ν
β + c3δ

µ
βδ

ν
α − c4B

µBνgαβ, (1.3.6)

with cj , j = 1, 2, 3 arbitrary. Depending on a specific model of such theories, the vector field
Bµ can be uncostrained or can be constrained to have unit norm. A particular example of
(constrained) vector-tensor theory is the Einstein–æther one [54], which was introduced to
explore the possible violation of Lorentz invariance in the context of gravity. Unconstrained
theories instead are characterized by λ = 0 and an arbitrary parameter ω.
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1.4. COSMOLOGICAL AND ASTROPHYSICAL STOCHASTIC BACKGROUNDS

f(R) theories. f(R) theories replace the Ricci scalar appearing in the Einstein-Hilbert
action with a function of R itself [60, 61]. The gravitational action then becomes

S =
1

16πGN

∫
d4x
√
−gf(R) + SM (ψM , gµν). (1.3.7)

These theories are often used in cosmology, where f(R) is chosen in a way to explain the
present accelerated expansion of the Universe on cosmological scales without taking into
account the cosmological constant Λ or dark energy. Tipically this kind of theories are
studied by substituing f(R) with f(τ)− df(τ)

dτ (R− τ), where τ is a scalar field, we can take
the variation of the action with respect to τ to find τ = R. Next, we set φ ≡ −df(τ)

dτ and
it is possible to show that we obtain a scalar-tensor theory action with coupling function
ω(φ) = 0 and potential defined from φ2U(φ) = φτ(φ)− f(τ(φ)) [44].

Quadratic Gravity and Chern-Simons theories. Quadratic gravity models add to
Einstein-Hilbert action quadratic terms in R, Rµν , Rµνρσ, thus the gravitational action
becomes [44]

S =

∫
d4x
√
−g
{
κR+ α1f1(φ)R2 + α2f2(φ)RαβR

αβ + α3f3(φ)RαβγδR
αβγδ+

+ α4f4(φ)(
1

2
εγδρσRαβρσR

β
αγδ)−

β

2

(
gµν(∂µφ)(∂νφ) + 2V (φ)

)}
+ SM (ψM , gµν), (1.3.8)

where κ = 1
16πGN

, αi are coupling constants, φ is a scalar field and β is a constant. Different
values of αi and β corresponds to different theories: in the special case of α1 = α2 = α3 = 0
we recover the so-called Chern-Simons gravity theory [58]. This may appear from anomaly
cancellation schemes in the standard model, from string theory, or from quantum loop
gravity [70, 71].
There is a wide number of metric theories of gravity in addition to the ones we briefly
discussed, although it is not in our interest to list all of them. We have just shown how
in the last century alternative models beyond GR were introduced and how we can exploit
GWs as a tool to test them. In Tab.2.1 we give some references and some properties about
such models.

1.4 Cosmological and Astrophysical Stochastic Backgrounds

A stochastic background of gravitational waves (SGWB) [72, 7] is defined as a superposition
of waves, the general direction of which is given by the unit vector Ω̂, and is expected to
be produced by a wide number of independent and unresolved astrophysical sources and
by cosmological sources ([43, 73]). In the context of SGWB of cosmological origin we are
interested in primordial GW production processes,
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Figure 1.1: Effects of passing GWs on test masses. The symbols � and → denote the
propagating direction of the GW, while its effects on test masses are shown by the two
ellipses/circles. This picture was taken from [86].
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Gravitational theory Gravitational fields ẽ+
ij ẽ×ij ẽxij ẽyij ẽbij ẽlij

General relativity [46, 47] gµν X X × × × ×
Brans-Dicke theory [52] gµν , φ X X × × X X
4-Vector gravity [53] Bµ × × X X × ×

Horndesk theory [55, 56] gµν , φ X X × × X X
Einstein-æther theory [55, 54] gµν , Bµ X X X X X X

dCS gravity [57, 58] gµν , φ X X × × × ×
EdGB gravity [57, 59] gµν , φ X X × × × ×
f(R) gravity [55, 60, 61] −−− X X × × X X

Table 1.1: Polarization modes of GWs and gravitational fields predicted in different metric
theories of gravity where gµν is the metric tensor, Bµ is a vector field and φ is a scalar field.
Longitudinal mode existence strongly depends on the mass of the graviton: if the graviton
is massless, then only the breathing mode is present, meanwhile if the graviton has mass,
both scalar modes exist.

These include the SGWB produced by the standard amplification of vacuum metric
tensor modes, due to the accelerated inflationary8 expansion in the early universe, but
also many processes related to inflation models beyond the standard mechanism which
could produce detectable signals (e.g. from the couplings of the inflaton field to extra
fields, to new symmetry patterns underlying the inflationary mechanism or a mass of the
graviton or Primordial Black Holes formation, see, e.g. [62] Post-inflationary, early universe
mechanisms can also source GWs with a large amplitude, like strong first order phase
transitions. All these SGWB once produced, would afterwards propagate freely until today.
Thus, the detection of the SGWB coming from the primordial universe could provide us
very interesting information on the status of the universe in its early years. Stochastic
backgrounds may also have astrophysical origin, being produced by a large number of
weak, independent, and unresolved astrophysical sources. A clear example may be the
astrophysical background arising from stellar mass binary black hole coalescences[34, 35, 36],
core-collapse supernovae [37, 38] or GWs coming from rotating neutron stars [39, 40].
In the rest of this section we work in the transverse-tracelesse gauge and we assume the
existence of all the possible polarization modes A = (+,×, x, y, b, l) given by Eq.(1.2.12)
to introduce some general results for the SGWB. The metric perturbation appearing in
Eq.(1.1.31) must be replaced by

hij(t, x̄) =
∑
A

∫ +∞

−∞
df

∫
S2

dΩ
(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄

c
). (1.4.1)

8For energies comprised between the scale of inflation, processes such as particle production during
inflation [26], cosmic strings [28, 29] and first order phase transitions [30, 31] could be cosmological sources
of GWs.
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Since we have only one Universe to work with, the ensemble average of the amplitudes
hA(f, Ω̂), which are now random variables, is replaced by a time average invoking the
ergodic hypothesis [32]. We list here some properties we expect to be true for a stochastic
background of gravitational waves:

• We assume the stochastic background to be Gaussian. This means that SGWB sta-
tistical properties are described by the mean value 〈hA(f, Ω̂)〉 and the two-point
correlator 〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉, where 〈·〉 denotes the ensemble average. This as-
sumption is sustained by central limit theorem, which states that a large number of
random uncorrelated events produces a random event, indipendently of the probabil-
ity distribution of the random events. We further assume that 〈hA(f, Ω̂)〉 = 0 and
consequently we focus on the two-point correlator.9

• Similarly to the CMB radiation, we expect the stochastic background to be highly
isotropic in a first approximation10. Recent studies to quantify non-Gaussianity in the
cosmological SGWB are reported in [33]. Thus, we expect waves coming from different
directions not to be correlated, meaning that considering the two-point correlator
〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉 this is proportional to

δ(Ω̂, Ω̂′) = δ(φ− φ′)δ(cos θ − cos θ′), (1.4.2)

with (θ, φ) standard spherical coordinates.

• The SGWB is stationary, which means that all the background statistical properties
must depend on the difference between times, but not on the time origin. In the time
domain, the two-point correlator 〈hA(t)hA′(t

′)〉 may be proportional to t − t′, while
moving to the frequency domain, this means that 〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉 is proportional
to δ(f − f ′).

• Since nature has no preferences, we assume an unpolarized SGWB, meaning that GWs
have statistically equivalent components of tensor, vector and scalar modes. This also
implies that the two-point correlator is proportional to δAA′ .

It is now time to discuss if these conditions are valid for both cosmological and astrophysical
backgrounds. The Gaussian SGWB assumption is expected to be true for a background
of cosmological origin, due to the large number of possible sources needed for the central
limit theorem to work (see footnote 8.). On the other hand, if the number of GW sources
contributing to the astrophysical background is small, the assumption may not hold for the
astrophysical background. The isotropy expectation seems reasonable for GWs of cosmo-
logical origin (see footnote 9) coming from early universe sources, but it may not be valid

9See however the discussion in [63, 64, 65] and the recent work about non-Gaussianities in the space of
distribution of the SGWB energy density [33, 66, 67]

10Of course small anisotropies might be present analogously to the CMB, where ∆T
T
≈ 10−5. For recenet

works in the direction of the SGWB see [66, 68]
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if we consider GWs relative to astrophysical processes: in this case the gravitational back-
ground would be more intense when looking in the direction of the galactic plane where
these processes are supposed to take place, breaking the isotropy. Finally, a cosmologi-
cal background is expected to vary on time-scales comparable to the age of the universe,
which is several orders of magnitude larger than both GW period and observation time,
and the stationary assumption can be taken to be true for it. In the end, a background of
cosmological origin in a first approximation satisfies all the conditions we discussed, while
an astrophysical background presents some issues and his nature cannot always be defined
stochastic according to the properes described above. From now on, when we consider a
stochastic background of gravitational waves, we shall focus only on the one of cosmological
origin. Putting together all four assumptions, the two-point correlator is given by

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 =

1

4π
δ(Ω̂, Ω̂′)δ(f − f ′)δAA′

1

2
SA(f), (1.4.3)

where SA(f) is a real function called spectral density11, relative to the polarization mode
A, it satisfies SA(f) = SA(−f) and its dimensions are Hz−1. The factor 1/4π comes from
a normalization choice so that∫

dΩ

∫
dΩ′〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉 = δ(f − f ′)δAA′
1

2
SA(f). (1.4.4)

To get a proper description of the SGWB it is useful to keep track of its energy density,
whose contributions can be found in the transverse-traceless gauge for each polarization
mode from [72]

ρAgw ≡
∫ f=∞

f=0
d(ln f)

dρAgw
d ln f

, (1.4.5)

which is the energy density contained in a logarithmic frequency bin corresponding to A-
polarized GWs and

ΩA
gw(f) ≡ 1

ρc

dρAgw
d ln f

, (1.4.6)

where ρc is the so-called critical energy density i.e. the cosmological quantity defined as
the energy density needed today to close the Universe

ρc =
3c2H2

0

8πG
≈ 1.688× 10−8h2

0, (1.4.7)

where H0 is the today value of the Hubble parameter [78] (i.e. the Universe expansion rate)
which is parametrized via H0 = (67.27± 0.60)km s−1Mpc−1. It is straightforward to define

ΩA
gw =

1

ρc

∫ f=∞

f=0
d(ln f)ΩA

gw(f), (1.4.8)

11Due to the presence of the 1/2 factor, S(f) should be called one-sided spectral density (in opposition
to the double-sided spectral density SAdouble(f) = 1

2
SA(f)), to highlight the fact that when computing an

integration over the whole frequency range
∫∞
−∞ dfSdouble(f) =

∫∞
0
dfS(f). However, we omit the "one-

sided" adjective for simplicity from now on.
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which denotes the adimensional quantity used to keep track of the gravitational radiation
energy density. Since we are considering logarithmic frequency intervals, both ΩA

gw and
ΩA
gw(f) are dimensionless. There is a precise relation between ΩA

gw(f), related to the GW
background energy density, and SA(f), which uniquely characterizes the statistical proper-
ties of the background itself, that we now wish to find. Using Eqs.(1.4.1) and (1.4.3) it is
possible to get a second expression [72] for the energy density given by

ρAgw =
c2

16πG

∫ f=∞

f=0
d(ln f)4π2f3SA(f). (1.4.9)

We now compare Eqs.(1.4.5)-(1.4.9) to finally get the following relation

ΩA
gw(f) =

2π2

3H2
0

f3SA(f). (1.4.10)
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Chapter 2
2nd-generation Ground Based
Interferometers

In this chapter we introduce the physics behind ground-based GW interferometers in or-
der to understand how GWs from a Cosmological Stochastic Background can be detected
([72, 73]). The major issue concerning GW signals is their incredible weakness which makes
them really hard to distinguish from the background detector noise; to avoid this problem
at least two detectors need to be cross-correlated to filter the GW signal. Moreover, to
separate tensor, vector and scalar polarization mode contributions to the background en-
ergy density we need at least three detectors, thus we can build detector networks with
interferometers on Earth. In order to prepare ourselves to upcoming future ground-based
detectors, in this section we wish to better understand these problems considering 2nd-
generation interferometers, which represent a valid starting point.

2.1 Detector Signal and Angular Pattern Functions

We now wish to understand how GWs can be detected and how we can distinguish their weak
signal from the noise background. We begin the discussion by considering 2nd-generation
ground-based interferometers, while upcoming future detectors will be discussed in the next
chapter. As suggested by Eqs. (1.1.9) and (1.4.1), the nature of GWs is tensorial. However,
in real life situations, we expect the output of a detector to be a scalar quantity given by
the sum of two time-dependent terms: the first one, which we denote h(t), relative to the
real GW signal and the second one, n(t), relative to the detector noise. To derive those, we
introduce the rank-2 detector tensor D, which depends on the detector geometry, in such
a way that

h(t) = Dijhij(t, x̄), (2.1.1)
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where x̄ denotes the detector location and the signal will be given by

s(t) = h(t) + n(t). (2.1.2)

If the detector is a GW interferometer of arm length L, then D is the trace-free tensor

D =
1

2

{
û⊗ û− v̂ ⊗ v̂

}
, (2.1.3)

where û and v̂ are unit vectors directed along the interferometer arms and ⊗ denotes the
tensor product. This expression is valid if the GW reduced wavelenght1 /λ is greater than
the interferometer arm length L. This working regime is sometimes referred to as long wave-
length limit. Analogously we can define a characteristic frequency f∗ = c

2πL and reproduce
the previous limit whenever f � f∗, where f is the GW frequency: in Tab.2.1 we list both
arm length and characteristic frequency of 2nd-generation ground-based interferometers.

Detector Arm Length f∗
Ligo Hanford (LH) 4 Km 11937 Hz
Ligo Livingston (LL) 4 Km 11937 Hz

Virgo (V) 3 Km 15915 Hz
Kagra (K) 3 Km 15915 Hz

Table 2.1: Arm length and characteristic frequency of 2nd-generation ground-based inter-
ferometers.

We now define for each polarization mode the detector angular pattern functions

FA(Ω̂) = DijeAij(Ω̂), A = +,×, x, y, b, l. (2.1.4)

thus the GW true signal can be written as

h(t) =
∑
A

∫ +∞

−∞
df

∫
S2

dΩ
(
FA(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄

c
). (2.1.5)

Angular pattern functions are key objects in data analysis and they encode information
on both GW direction and polarization and detector geometry. We now wish to find a
possible analytic expression of FA for an L-shaped2 interferometer ([86, 72]) and we begin
by defining the following orthonormal coordinate system

û = (1, 0, 0)T

v̂ = (0, 1, 0)T

ẑ = (0, 0, 1)T
. (2.1.6)

1We define /λ = λ
2π

.
2GW interferometer with an internal angle of π

2
between its arms.

22



2.1. DETECTOR SIGNAL AND ANGULAR PATTERN FUNCTIONS

We assume that the first arm of the interferometer is directed along û, while the second
one is directed along v̂, thus the detector tensor is given by

D =
1

2

1 0 0
0 −1 0
0 0 0

 . (2.1.7)

Starting from Eq.(2.1.6), we define a second orthonormal coordinate system rotated by
angles {θ ∈ [0, π], φ ∈ [0, 2π]} given by


û
′

= (cos θ cosφ, cos θ sinφ,− sin θ)T

v̂
′

= (− sinφ, cosφ, 0)T

ẑ
′

= (sin θ cosφ, sin θ sinφ, cos θ)T
, (2.1.8)

and we identify ẑ
′ with the GW direction Ω̂. Polarization tensors can be defined through

tensor products between Ω̂ and two orthogonal unit vectors lying on its transverse plane:
to put ourselves in the most general situation, we can perform a rotation by an angle ψ
around the axis identified by the unit vector Ω̂, thus rotated unit vectors are given by

m̂
n̂

Ω̂

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

û
′

v̂
′

Ω̂
′

 =⇒


m̂ = û

′
cosψ + v̂

′
sinψ

n̂ = −û
′
sinψ + v̂

′
cosψ

Ω̂ = ẑ
′

. (2.1.9)

While the detector tensor remains unaffected, clearly this change of coordinates leads to
the following new expressions for the polarization tensors

ẽ+ = m̂⊗ m̂− n̂⊗ n̂,

ẽ× = m̂⊗ n̂ + n̂⊗ m̂,

ẽb = m̂⊗ m̂ + n̂⊗ n̂,

ẽl =
√

2 Ω̂⊗ Ω̂,

ẽx = m̂⊗ Ω̂ + Ω̂⊗ m̂,

ẽy = n̂⊗ Ω̂ + Ω̂⊗ n̂, (2.1.10)

According to Eq.(2.1.8) and Eq.(2.1.9), we may express all these tensor products in terms
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of unit vectors û
′
, v̂
′
, and Ω̂, as we show here

m̂⊗ m̂ = û
′ ⊗ û

′
cos2 ψ + v̂

′ ⊗ v̂
′
sin2 ψ + û

′ ⊗ v̂
′
sinψ cosψ + v̂

′ ⊗ û
′
sinψ cosψ

n̂⊗ n̂ = û
′ ⊗ û

′
sin2 ψ + v̂

′ ⊗ v̂
′
cos2 ψ − û

′ ⊗ v̂
′
sinψ cosψ − v̂

′ ⊗ û
′
sinψ cosψ

m̂⊗ n̂ = −û
′ ⊗ û

′
sinψ cosψ + v̂

′ ⊗ v̂
′
sinψ cosψ + û

′ ⊗ v̂
′
cos2 ψ − v̂

′ ⊗ û
′
sin2 ψ

n̂⊗ m̂ = −û
′ ⊗ û

′
sinψ cosψ + v̂

′ ⊗ v̂
′
sinψ cosψ − û

′ ⊗ v̂
′
sin2 ψ + v̂

′ ⊗ û
′
cos2 ψ

Ω̂⊗ Ω̂ = ẑ
′ ⊗ ẑ

′

m̂⊗ Ω̂ = û
′ ⊗ ẑ

′
cosψ + v̂

′ ⊗ ẑ
′
sinψ

Ω̂⊗ m̂ = ẑ
′ ⊗ û

′
cosψ + ẑ

′ ⊗ v̂
′
sinψ

n̂⊗ Ω̂ = −û
′ ⊗ ẑ

′
sinψ + v̂

′ ⊗ ẑ
′
cosψ

Ω̂⊗ n̂ = −ẑ
′ ⊗ û

′
sinψ + ẑ

′ ⊗ v̂
′
cosψ.

(2.1.11)
We now need to find the form of all the possible tensor product combinations involving unit
vectors û

′
, v̂
′
, and ẑ

′ . With a little work it can be shown that

û
′ ⊗ û

′
=

 cos2 θ cos2 φ cos2 θ sinφ cosφ − sin θ cos θ cosφ
cos2 θ sinφ cosφ cos2 θ sin2 φ − sin θ cos θ sinφ
− sin θ cos θ cosφ − sin θ cos θ sinφ sin2 θ

 , (2.1.12)

û
′ ⊗ v̂

′
=

− cos θ sinφ cosφ cos θ cos2 φ 0
− cos θ sin2 φ cos θ sinφ cosφ 0

sin θ sinφ − sin θ cosφ 0

 , (2.1.13)

v̂
′ ⊗ û

′
=

− cos θ sinφ cosφ − cos θ sin2 φ sin θ sinφ
cos θ cos2 φ cos θ sinφ cosφ − sin θ cosφ

0 0 0

 , (2.1.14)

v̂
′ ⊗ v̂

′
=

 sin2 φ − sinφ cosφ 0
− sinφ cosφ cos2 φ 0

0 0 0

 , (2.1.15)

ẑ
′ ⊗ ẑ

′
=

 sin2 θ cos2 φ sin2 θ sinφ cosφ sin θ cos θ cosφ
sin2 θ sinφ cosφ sin2 θ sin2 φ sin θ cos θ sinφ
sin θ cos θ cosφ sin θ cos θ sinφ cos2 θ

 , (2.1.16)

û
′ ⊗ ẑ

′
=

 sin θ cos θ cos2 φ sin θ cos θ sinφ cosφ cos2 θ cosφ
sin θ cos θ sinφ cosφ sin θ cos θ sin2 φ cos2 θ sinφ
− sin2 θ cosφ − sin2 θ sinφ − sin θ cos θ

 , (2.1.17)

ẑ
′ ⊗ û

′
=

 sin θ cos θ cos2 φ sin θ cos θ sinφ cosφ − sin2 θ cosφ
sin θ cos θ sinφ cosφ sin θ cos θ sin2 φ − sin2 θ sinφ

cos2 θ cosφ cos2 θ sinφ − sin θ cos θ

 , (2.1.18)
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v̂
′ ⊗ ẑ

′
=

− sin θ sinφ cosφ − sin θ sin2 φ − cos θ sinφ
sin θ cos2 φ sin θ sinφ cosφ cos θ cosφ

0 0 0

 , (2.1.19)

ẑ
′ ⊗ v̂

′
=

− sin θ sinφ cosφ sin θ cos2 φ 0
− sin θ sin2 φ sin θ sinφ cosφ 0

sin θ cos θ cos θ cosφ 0

 . (2.1.20)

Finally we can plug Eqs.(2.1.12)-(2.1.20) into Eq.(2.1.11) to get the most general expression
for our polarization tensors and we can compute the angular pattern function for each
polarization mode. We get

• for the + and × tensor modes

F+(Ω̂, ψ) = Dij ẽ+
ij =

1

2

[
(m̂⊗ m̂− n̂⊗ n̂)11 − (m̂⊗ m̂− n̂⊗ n̂)22

]
=

=
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (2.1.21)

F×(Ω̂, ψ) = Dij ẽ×ij =
1

2

[
(m̂⊗ n̂ + m̂⊗ n̂)11 − (m̂⊗ n̂ + m̂⊗ n̂)22

]
=

= −1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ, (2.1.22)

• for the breathing and longitudinal scalar modes

F b(Ω̂) = Dij ẽbij =
1

2

[
(m̂⊗ m̂ + n̂⊗ n̂)11 − (m̂⊗ m̂ + n̂⊗ n̂)22

]
=

= −1

2
sin2 θ cos 2φ, (2.1.23)

F l(Ω̂) = Dij ẽlij =

√
2

2

[
(ẑ
′
⊗ ẑ

′
)11 − (ẑ

′ ⊗ ẑ
′
)22

]
=

=
1√
2

sin2 θ cos 2φ, (2.1.24)

• and for the x and y vector modes

F x(Ω̂, ψ) = Dij ẽxij =
1

2

[
(m̂⊗ Ω̂ + Ω̂⊗ m̂)11 − (m̂⊗ Ω̂ + Ω̂⊗ m̂)22

]
=

= sin θ(cos θ cos 2φ cosψ − sin 2φ sinψ), (2.1.25)

F y(Ω̂, ψ) = Dij ẽyij =
1

2

[
(n̂⊗ Ω̂ + Ω̂⊗ n̂)11 − (n̂⊗ Ω̂ + Ω̂⊗ n̂)22

]
=

= − sin θ(cos θ cos 2φ sinψ + sin 2φ cosψ). (2.1.26)
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We notice that angular pattern functions corresponding to tensor and vector modes are
functions of the polarization angle ψ, while scalar modes are not. Moreover breathing
and longitudinal modes only differ for a constant multiplicative factor and they are not
distinguishable, thus completely degenerate. We mentioned how angular pattern functions
are a measure of the detector sensitivity to GWs of different polarizations and directions.
In Fig.2.1-2.3 we show their plots with ψ = 0 for each polarization mode in our 3D space
and their projection on a 2D plane for fixed values of θ. Let us consider Fig.2.1c for a clear
example: due to detector geometry, a GW with plus polarization coming from the direction
(θ, φ = π

4 ) is not detected by the interferometer. This happens because the incoming wave
induces the same phase shift to the light running along both interferometer arms so that
the relative phase difference becomes zero, making this direction blind. Similar scenarios
can happen for other polarizations and blind directions correspond to FA = 0.

2.2 Transfer Function of a Michelson Interferometer

All previous results were found considering GW frequencies smaller than f∗ and it now
seems legit to explore how Eq.(2.1.3) changes if the long wavelength limit can no longer
be taken as valid. Let us consider the arm of an interferometer with two masses (m1, m2)
at its ends: m1 and m2 are located respectively at x̄ and x̄ + L · ê1, where L is the arm
length and ê1 is the unit vector directed along the arm. The passage of a gravitational
wave described by Eq.(1.4.1) affects the travel of a photon emitted at x̄ at time t− L

c and
arriving at x̄ + L · ê1 at time t. The time-travel change ([87]) is given by

∆T =
(ê1 ⊗ ê1)ij

2c

∫ L

0
ds
(
hij(t(s), x̄(s))

)
, (2.2.1)

where we are using the position and time parametrizations [88]

t(s) =
(
t− L

c

)
+
s

c
, x̄(s) = x̄ + s · ê1. (2.2.2)

Putting together Eqs.(1.4.1) and (2.2.1) we get

∆T =
(ê1 ⊗ ê1)ij

2c

∫ L

0
ds
∑
A

∫ +∞

−∞
df

∫
S2

dΩ
(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄

c
)ei2πf

s
c
(1−Ω̂·ê1)e−i2πf

L
c

=
(ê1 ⊗ ê1)ij

2c

(∑
A

∫ +∞

−∞
df

∫
S2

dΩ
(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄

c
)
)
×

×
∫ L

0
ds
(
ei2πf

s
c
(1−Ω̂·ê1)

)
e−i2πf

L
c ,

(2.2.3)

26



2.2. TRANSFER FUNCTION OF A MICHELSON INTERFEROMETER
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Figure 2.1: Angular pattern functions for plus (left) and cross (right) polarization of an
L-shaped interferometer with arms directed along the x-axis and y-axis respectively. In (a),
(b) the 3D plots of |F+| and |F×| are shown, while their projections on a 2D plane for
different fixed values of θ ((π6 , dot-dashed), (

π
4 , dotted), (

π
3 , dashed), (

5π
12 , solid)) are shown

in (c), (d).
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Figure 2.2: Angular pattern functions for vector-x (left) and vector-y (right) polarization
modes of an L-shaped interferometer with arms directed along the x-axis and y-axis respec-
tively. In (a), (b) the 3D plots of |F x| and |F y| are shown, while their projections on a
2D plane for different fixed values of θ (vector-x: ( π12 , dot-dashed), (

π
6 , dashed), (

π
4 , solid),

vector-y: (π6 , dot-dashed), (
π
4 , dotted), (

π
3 , dashed), (

π
2 , solid)) are shown in (c), (d).
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Figure 2.3: Angular pattern functions for the breathing polarization mode of an L-shaped
interferometer with arms directed along the x-axis and y-axis respectively. In (a) the 3D
plots of |F b| is shown, while its projection on a 2D plane for different fixed values of θ ((π6 ,
dot-dashed), (π4 , dotted), (

π
3 , dashed), (

π
2 , solid)) are shown in (b). |F l| differs from |F b|

by a
√

2 constant factor.
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where A = +,×, x, y, b, l. We now need to compute the integration over the parameter s
before going on, thus we have∫ L

0
ds
(
ei2πf

s
c
(1−Ω̂·ê1)

)
=
ei2πf

L
c

(1−Ω̂·ê1) − 1

i2πfc (1− Ω̂ · ê1)
=

=
eiπf

L
c

(1−Ω̂·ê1)

πf
c (1− Ω̂ · ê1)

eiπf
L
c

(1−Ω̂·ê1) − e−iπf
L
c

(1−Ω̂·ê1)

2i
=

=
sin
(πLf

c (1− Ω̂ · ê1)
)

πf
c (1− Ω̂ · ê1)

eiπf
L
c

(1−Ω̂·ê1)

= L
sin
( f

2f∗
(1− Ω̂ · ê1)

)
f

2f∗
(1− Ω̂ · ê1)

e
i f
2f∗

(1−Ω̂·ê1)

= L sinc
( f

2f∗
(1− Ω̂ · ê1)

)
e
i f
2f∗

(1−Ω̂·ê1)
, (2.2.4)

where we have used sinc(x) = sinx
x . Finally we define the following tensor

Dij(Ω̂ · ê1, f) =
1

2
(ê1 ⊗ ê1)ijT (Ω̂ · ê1, f), (2.2.5)

where
T (Ω̂ · ê1, f) = sinc

( f
2f∗

(1− Ω̂ · ê1)
)
e
−i f

2f∗
(1+Ω̂·ê1)

, (2.2.6)

is the one-arm transfer function. When GW frequencies are lower than f∗ we have T ≈ 1,
while for f ≈ f∗ transfer functions start to oscillate and the interferometer suffers a loss of
sensitivity to GWs of higher frequencies. This behaviour is shown in Fig.2.4. In the end we
show that the time-travel change can be written as

∆T =
∑
A

(
L

c

∫ +∞

−∞
df

∫
S2

dΩ
(
ẽAij(Ω̂)Dij(Ω̂ · ê1, f)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄

c
)

)
. (2.2.7)

Let us now assume we are working with a Michelson interferometer: we want to consider
the whole photon time-travel along the first arm: the photon is emitted at x̄a at time t− 2L

c
and arrives at x̄b = x̄a +L · ê1 at time t− L

c , then it goes back to x̄a reaching this position
at time t. Something analogous can be said for the second arm of the interferometer: two
more masses m3 adn m4 are located respectively at x̄c and x̄d = x̄c + L · ê2, where once
again L is the arm length and ê2 is the versor directed along the second arm. This way we
are able to consider the signal

s(t) =
c

2L

{[
∆Tab(t− 2

L

c
) + ∆Tba(t−

L

c
)
]
−
[
∆Tcd(t− 2

L

c
) + ∆Tdc(t−

L

c
)
]}
. (2.2.8)
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Figure 2.4: Absolute value of the one-arm transfer function for a Michelson interferom-
eter for different values of the angle Ω̂ · ê1 ((2π,Orange), (π6 ,Red), (

π
4 ,Blue), (

π
3 ,Green),

(π2 ,Black)).

Starting with the first arm we define the following parametrizations for the a→ b travel

∆Tab(t− 2
L

c
), t(s) =

(
t− 2L

c

)
+
s

c
, x̄(s) = x̄1 + sê1, (2.2.9)

and repeating the steps done for the one-arm transfer function we obtain

∆Tab(t− 2
L

c
) =

=
(ê1 ⊗ ê1)ij

2c

∫ L

0
ds
∑
A

∫ +∞

−∞

∫
S2

dΩ
(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)ei2πf

s
c
(1−Ω̂·ê1)e−i4πf

L
c

= L
(ê1 ⊗ ê1)ij

2c

∫ +∞

−∞
df

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)

)
×

× sinc
( f

2f∗
(1− Ω̂ · ê1)

)
e
−i f

2f∗
(3+Ω̂·ê1)

.

(2.2.10)

Moving on to the b→ a travel we have

∆Tba(t−
L

c
), t(s) =

(
t− L

c

)
+
s

c
, x̄(s) = (x̄1 + Lê1)− sê1, (2.2.11)
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so we get

∆Tba(t−
L

c
) =

=
(ê1 ⊗ ê1)ij

2c

∫ L

0
ds
∑
A

∫ +∞

−∞

∫
S2

dΩ
(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)ei2πf

s
c
(1+Ω̂·ê1)e−i2πf

L
c e−i2πf

L
c
Ω̂·ê1

= L
(ê1 ⊗ ê1)ij

2c

∫ +∞

−∞
df

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)

)
×

× sinc
( f

2f∗
(1 + Ω̂ · ê1)

)
e
−i f

2f∗
(1+Ω̂·ê1)

.

(2.2.12)

Summing up these two contributions we find the total delay in time-travel relative to the
first arm

∆Tab(t− 2
L

c
) + ∆Tba(t−

L

c
) =

= L
(ê1 ⊗ ê1)ij

2c

∫ +∞

−∞
df

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)

)
×

×
[
sinc

( f
2f∗

(1− Ω̂ · ê1)
)
e
−i f

2f∗
(3+Ω̂·ê1)

+ sinc
( f

2f∗
(1 + Ω̂ · ê1)

)
e
−i f

2f∗
(1+Ω̂·ê1)]

=
L

c
(ê1 ⊗ ê1)ij

∫ +∞

−∞
df

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)

)
T1(Ω̂ · ê1, f),

(2.2.13)

where we have defined the two-arms transfer function

TMich,1(Ω̂ · ê1, f) =
1

2

[
sinc

( f
2f∗

(1− Ω̂ · ê1)
)
e
−i f

2f∗
(3+Ω̂·ê1)

+ sinc
( f

2f∗
(1 + Ω̂ · ê1)

)
e
−i f

2f∗
(1+Ω̂·ê1)]

,

(2.2.14)

which also reduces to unity for f � f∗ and starts to oscillate when f ≈ f∗. Let us focus
on the second arm of the interferometer now: we only need to switch ê1 with ê2 to get the
proper result, we have

∆Tcd(t− 2
L

c
) + ∆Tdc(t−

L

c
) =

=
L

c
(ê2 ⊗ ê2)ij

∫ +∞

−∞
df

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)

)
T2(Ω̂ · ê2, f),

(2.2.15)
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where the transfer function relative to the second arm was also defined

TMich,2(Ω̂ · ê2, f) =
1

2

[
sinc

( f
2f∗

(1− Ω̂ · ê2)
)
e
−i f

2f∗
(3+Ω̂·ê2)

+ sinc
( f

2f∗
(1 + Ω̂ · ê2)

)
e
−i f

2f∗
(1+Ω̂·ê2)]

.

(2.2.16)

The signal in Eq.(2.2.8) is then given by

s(t) =

∫ +∞

−∞
df

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)Dij(Ω̂ · ê1, Ω̂ · ê2, f)hA(f, Ω̂)

)
ei2πf(t−Ω̂· x̄1

c
)

)
. (2.2.17)

where we have finally introduced the complete expression of the detector tensor

Dij(Ω̂ · ê1, Ω̂ · ê2, f) =
(ê1 ⊗ ê1)ijTMich,1(Ω̂ · ê1, f)− (ê2 ⊗ ê2)ijTMich,2(Ω̂ · ê2, f)

2
.

(2.2.18)
When GW frequencies approache f∗ or higher values, transfer functions cannot be ig-
nored anymore and their effects must be considered; in particular we now have frequency-
dependent angular pattern functions for each polarization mode

FA(Ω̂, f) = Dij(Ω̂ · ê1, Ω̂ · ê2, f)eAij(Ω̂). (2.2.19)

When f � f∗, transfer function effects are negligible and the detector tensor does not
depend on the GW frequency anymore. Moreover, if we set ê1 = (1, 0, 0)T and ê2 =
(0, 1, 0)T we see that Eqs.(2.1.3) and (2.1.4) are recovered.

2.3 Transfer Function of a Fabry-Pèrot Interferometer

All 2nd-generation ground based interferometers have Fabry-Pèrot cavities built in both
arms: the idea is to extend the interaction between GWs and light by forcing the latter to
“bounce” inside the cavity for a longer period of time before recombining the two beams:
this is achieved by “trapping” photons using highly reflective mirrors [74]. We now wish
to understand how this behaviour affects the transfer function of such interferometers. We
begin by considering the more manageable fourier transform of Eq.(2.2.1)

∆T̃ =
L

c
(ê1 ⊗ ê1)ij

∫
S2

dΩ

(∑
A

(
ẽAij(Ω̂)hA(f, Ω̂)

)
e−i2πf(Ω̂· x̄a

c
)TMich(Ω̂ · ê1, f)

)
, (2.3.1)

and with a little abuse of notation we rename ∆T̃ ≡ ∆T . In order to properly understand
the light phase shift induced by cavities, we shall start with the case of a multi-round trip
photon using a Michelson interferometer where we assume we can control the number of
back and forth bounces made by photons. Then, we move on to the case of a Fabry-Pérot
interferometer.
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Multi-round trip Michelson interferometer. Let us consider the general case where
a photon is emitted at time tm = t− 2L

c m at x̄a, reaches at x̄b at tm+ L
c and then gets back

to x̄a at tm + 2L
c , with m ∈ {1, 2, 3, ...,∞}. Recalling that ∆T denotes a single round-trip

for a Michelson-interferometer, we find the following relation

∆Tm = e
−i 2f

f∗
(m−1)

∆T, (2.3.2)

where we notice that for m = 1 we get a trivial identity3. Let us further assume that a
photon emitted at tm makes exactly m round trips before reaching the position x̄a at time
t and exiting the cavity. This means that its total time travel change can be expressed as
the sum of each change acquired along every loop, we have

∆T totm = ∆Tm + ∆Tm−1 + ...+ ∆T2 + ∆T1

= e
−i 2f

f∗
(m−1)

∆T1 + e
−i 2f

f∗
(m−2)

∆T1 + ...+ e
−i 2f

f∗∆T1 + ∆T1

=

(m−1∑
n=0

e
−i 2f

f∗
n
)

∆T1 =
sin
( f
f∗
m
)

sin
( f
f∗

) e−i ff∗ (m−1)
∆T, (2.3.3)

where in the second step we used Eq.(2.3.2) and the subscript m in ∆T totm denotes the
number of round trips carried out by the photon. Indeed the time travel change acquired
by a photon coming from m round trips can be related to the one relative to a single round
trip by multiplying for a factor

g(m, f) =
sin
( f
f∗
m
)

sin
( f
f∗

) e−i ff∗ (m−1)
. (2.3.4)

Looking at Eq.(2.3.1) we can re-define the transfer function so that this factor is now
included, we get

TMultiMich(Ω̂ · ê1, f) =
sin
( f
f∗
m
)

sin
( f
f∗

) e−i ff∗ (m−1)TMich(Ω̂ · ê1, f). (2.3.5)

While considering a Michelson interferometer, we mentioned how transfer functions collapse
to unity when GW frequencies are lower than f∗. Due to the presence of g(m, f), this
is no longer true and we now wish to restore our previous result for a multi-round trip
interferometer as well. Let us consider the following limit

lim
f
f∗
→0

g(m, f) = m. (2.3.6)

3In the new notation ∆T1 = ∆T
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It is then possible to introduce the one-arm normalized transfer function of a multi-round
trip Michelson interferometer as

T NormMultiMich(Ω̂ · ê1, f) =
sin
( f
f∗
m
)

m sin
( f
f∗

)e−i ff∗ (m−1)TMich(Ω̂ · ê1, f). (2.3.7)

Unfortunately, in real life scenarios we cannot control the exact number of loops made by
a photon inside a Fabry-Pérot cavity, meaning that we need to approach the problem from
a probabilistic point of view.

Fabry-Pérot interferometer. We now wish to understand how light behaves inside a
Fabry-Pérot cavity: we follow [72] for a proper discussion. Let us assume that light of
frequency fL is emitted by a laser towards a Fabry-Pérot cavity. Let us further consider
the electric field coming out from the cavity, which is given by the superposition of all the
fields that entered the cavity at a time tm = t− 2L

c m, m ∈ {1, 2, 3, ...,∞}, and are coming
out at time t. Assuming no GWs are present, the general expression for a field that entered
the cavity at time tm and went through m round trips before coming out is given by

Ecavitym =
(
−rm−1

1 rm2 t
2
1e
i2m

fL
f∗
)
Eine

−iωLt, (2.3.8)

where r1,2 and t1 are the reflection and transmission coefficients of the mirrors inside the
cavity and facing the inside of the cavity itself, ωL = 2πfL and Eine

−iωLt is the electric
field entering the cavity corresponding to the laser light. Reflection coefficients are used to
define the cavity finesse as

F =
π
√
r1r2

1− r1r2
. (2.3.9)

The electric field about to exit the cavity at time t is then given by

Ecavitytot =
( ∞∑
m=1

Ecavitym

)
= −

( r2t
2
1e
i2
fL
f∗

1− r1r2e
i2
fL
f∗

)
Eine

−iωLt, (2.3.10)

thus the total reflected electric field given by the sum of the electric field immediately
reflected back and the electric field coming out of the cavity [72] is

Etotrefl = r1Eine
−iωLt + Ecavitytot = Eine

−iωLt r1 − r2e
i2
fL
f∗

1− r1r2e
i2
fL
f∗

= R(fL)Eine
−iωLt, (2.3.11)

where R(fL) can be interpreted as the reflection coefficient associated to the cavity. Let us
now assume a GW is present: for a single loop it produces a phase shift ∆φ = 2πfL∆T ,
meaning that after m round trips we have

∆φtotm = 2πfL∆T totm = 2πfL
sin
( f
f∗
m
)

sin
( f
f∗

) e−i ff∗ (m−1)
∆T1 =

sin
( f
f∗
m
)

sin
( f
f∗

) e−i ff∗ (m−1)
∆φ, (2.3.12)
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where we used Eq.(2.3.3). Small values of ∆φ imply small values of ∆φtotm ), thus for the
electric field coming out of the cavity we get

Ecav,GWm =
(
−rm−1

1 rm2 t
2
1e
i2m

fL
f∗ ei∆φ

tot
m
)
Eine

−iωLt

≈
(
−rm−1

1 rm2 t
2
1e
i2m

fL
f∗ (1 + i∆φtotm )

)
Eine

−iωLt, (2.3.13)

which is now different from Eq.(2.3.8). The reflected field then becomes

Etot,GWrefl = r1Eine
−iωLt +

( ∞∑
m=1

Ecav,GWm

)
= Eine

−iωLt r1 − r2e
i2
fL
f∗

1− r1r2e
i2
fL
f∗

(
1 + i

1− r1r2e
i2
fL
f∗

r1 − r2e
i2
fL
f∗

∞∑
m=1

(
−rm−1

1 rm2 t
2
1e
i2m

fL
f∗ ∆φtotm

))

≈ Eine−iωLt
r1 − r2e

i2
fL
f∗

1− r1r2e
i2
fL
f∗

ei∆φFP ,

(2.3.14)

where

∆φFP =
1− r1r2e

i2
fL
f∗

r1 − r2e
i2
fL
f∗

∞∑
m=1

(
−rm−1

1 rm2 t
2
1e
i2m

fL
f∗ ∆φtotm

))

=
1− r1r2e

i2
fL
f∗

r1 − r2e
i2
fL
f∗

∞∑
m=1

(
−rm−1

1 rm2 t
2
1e
i2m

fL
f∗

sin
( f
f∗
m
)

sin
( f
f∗

) e−i ff∗ (m−1)
∆φ1

))

=
r2t

2
1e
i2
fL
f∗(

r1 − r2e
i2
fL
f∗

)(
1− r1r2e

i2
(
fL
f∗
− f
f∗

))∆φ, (2.3.15)

is the phase change induced by a GW affecting the path of photons inside the cavity.
Notice that Eq.(2.3.14) shows how the effect of a GW on light inside a Fabry-Pérot cavity
might be expressed as the perturbation of the reflection coefficient R(fL) → R

′
(fL, f) =

R(fL) + α(fL, f), where in general α ∈ C and |α| � 1. Once again we found that ∆φFP
can be related to the phase change induced by a Michelson interferometer. Moreover, we
focus on the GW-frequency dependent term and ignore the rest of the amplification factor,
this way we can define the transfer function for a Fabry-Pérot interferometer

TFP (Ω̂ · ê1, f) =
TMich(Ω̂ · ê1, f)

1− r1r2e
i2
(
fL
f∗
− f
f∗

) . (2.3.16)
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We want to define the normalized transfer function for a Fabry-Pérot interferometer in a
way that reduces to unity when f � f∗, this time we have

lim
f
f∗
→0

TMich(Ω̂ · ê1, f)

1− r1r2e
i2
(
fL
f∗
− f
f∗

) =
1

1− r1r2e
i2
fL
f∗

, (2.3.17)

which leads us to the following relation

T NormFP (Ω̂ · ê1, f) =
1− r1r2e

i2
fL
f∗

1− r1r2e
i2(

fL
f∗
− f
f∗

)
TMich(Ω̂ · ê1, f). (2.3.18)

Both normalized transfer functions given by Eqs.(2.3.7) and (2.3.16) are in good agreement
with results found in [89] and [90] and two example plots are shown in Fig.2.5. Let us
further assume that fL/f∗ = 2nπ; this condition can be achieved setting the proper laser
frequency. The detector tensor is given by

Dij(Ω̂ · ê1, Ω̂ · ê2, f) = C(f)
(ê1 ⊗ ê1)ijTMich,1(Ω̂ · ê1, f)− (ê2 ⊗ ê2)ijTMich,2(Ω̂ · ê2, f)

2
,

(2.3.19)
which differs from Eq.(2.2.18) only for a GW frequency dependent factor

C(f) =
1− r1r2

1− r1r2e
i2
(
fL
f∗
− f
f∗

) . (2.3.20)

It is worth noting that all the information relative to GW direction and detector geometry
were already contained in the transfer function of a Michelson interferometer. The detector
output has the same form of Eq.(2.2.17), although the detector tensor that appears in the
equation is now given by Eq.(2.3.19). Let us focus on the absolute value of the unnormalized
transfer function and assume for simplicity r2 = 1, 2fL

f∗
= 2nπ and rename r1 ≡ r. Taking

Eq.(2.3.16) and considering the absolute value of the denominator of the right handside
term we have√(

1− r cos
(
2
f

f∗

))2

+ r2 sin2
(
2
f

f∗

)
=

√
(1 + r2)− 2r cos

(
2
f

f∗

)
. (2.3.21)

When f � f∗ we can expand 2r cos
(
2 f
f∗

)
= 2r(1− 1

2

(
2 f
f∗

)2
), thus we get√

(1 + r2)− 2r cos
(
2
f

f∗

)
=

√
(1− r2) + r

(
2
f

f∗

)2
= (1− r)

√(
1 + r

16π2L2f2

(1− r)2c2

)

= (1− r)

√(
1 + r

( f
fp

)2)
, (2.3.22)
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where we have defined the pole frequency and the storage time4

fp =
1

4πτ
, τ =

2L

c

1

1− r2
≈ L

c

1

1− r
, (2.3.23)

meaning that the absolute value of Eq.(2.3.16) can be expressed as

|T normFP (Ω̂ · ê1, f)| ≈ |TMich(Ω̂ · ê1, f)|

(1− r)

√(
1 + r

( f
fp

)2) . (2.3.24)

We found that with Fabry-Pérot interferometers, if the period of the GW becomes com-
parable to the storage time there is another contribution to the detector sensitivity loss,
besides the loss due to the sinc function in the Michelson transfer function.

2.4 Two-Detector Correlation and Signal-to-Noise ratio

In the first chapter we mentioned how the SGWB can be considered as a superposition of
waves produced by a huge number of unresolved sources: it is then impossible to determine
the form of the true GW signal h(t), since by definition it is considered an unpredictable
fluctuating variable. As a consequence we expect a single detector to be useless while detect-
ing gravitational radiation from stochastic backgrounds. Moreover, in realistic situations
gravitational waves can be buried deep in noise, with the latter being larger than the actual
signal itself, making possible GW detections really hard to see. We now wish to understand
how we may overcome this issue: following [43, 72] the idea is to work with at least two
interferometers which allow us to match the output of the first detector to the output of
the second one, so we can actually see if a GW signal is detected from both interferometers.
We also wish to show how this allow us to neglect noise terms by considering ensamble
averages. We further assume that the long wavelength limit is valid, all possible modes
exist and we consider the signal to be given by Eq.(2.1.2) for both detectors

sj(t) = hj(t) + nj(t), j = 1, 2. (2.4.1)

with

hj(t, x̄j) =
∑
A

∫ +∞

−∞
df

∫
S2

dΩ
(
FAj (Ω̂)hA(f, Ω̂)

)
ei2πf(t−Ω̂·

x̄j
c

), (2.4.2)

where x̄j is the j-th detector location while FAj (Ω̂), A = +,×, x, y, b, l, are its angular
pattern functions. In correlation analysis detector outputs are related defining the quantity

Y =

∫ T/2

−T/2
dt

∫ +T/2

−T/2
dt′s1(t)s2(t′)Q(t− t′), (2.4.3)

4Time needed to reduce the number of photons inside the cavity of a factor 1/e
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Figure 2.5: Absolute value of the normalized one-arm transfer function for a multi-round
trip Michelson interferometer (a) and a Fabry-Pèrot interferometer (finesse=10 and fL/f∗ =
2nπ) (b) for different values of the angle Ω̂ · ê1 ((2π,Orange), (π6 ,Red), (

π
4 ,Blue), (

π
3 ,Green),

(π2 ,Black)).
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where T is the total observation time and Q(t) is the filter function [72]. However, it is
more convenient to switch to the frequency space considering the Fourier transform5 of
Eq.(2.4.2)

h̃j(f, x̄j) =
∑
A

∫
S2

dΩ
(
FAj (Ω̂)hA(f, Ω̂)

)
e−i2πfΩ̂·

x̄j
c , (2.4.4)

expressing the signal as sj(f) = h̃j + nj(f), with nj(f) Fourier transform of the time
dependent noise function. In terms of frequency, we can exploit the following identity

δT (f) ≡
∫ T/2

−T/2
dtei2πft =

sin(πfT )

fT
, (2.4.5)

which is equivalent to the Dirac delta for fT →∞6, thus Eq.(2.4.3) becomes

Y =

∫ +∞

−∞
df

∫ +∞

−∞
df ′
∫ +∞

−∞
df ′′δT (f − f ′′)δT (f ′ − f ′′)s∗1(f)s2(f ′)Q(f ′′)

=

∫ +∞

−∞
dfs∗1(f)s2(f)Q(f), (2.4.6)

where Q(f) is the Fourier transform of the time dependent filter function. If we consider
the following ensemble average7

〈s∗1(f)s2(f)〉 = 〈h̃∗1(f)h2(f)〉+ 〈h̃∗1(f)n2(f)〉+ 〈n∗1(f)h̃2(f)〉+ 〈n∗1(f)n2(f)〉, (2.4.7)

a reasonable assumption is that different detector noises are uncorrelated and so are the
true GW signal detected by one interferometer and the noise of the other, meaning that
〈n∗1(f)n2(f)〉 = 0 and 〈h̃∗i (f)nj(f)〉 = 〈n∗i (f)h̃j(f)〉 = 0, i, j = {1, 2}, i 6= j. Indeed, we
define the signal S as the ensemble average8 of Y and we get

S = 〈Y 〉 =

∫ +∞

−∞
df〈s∗1(f)s2(f)〉Q(f) =

∫ ∞
−∞

df〈h̃∗1(f)h̃2(f)〉Q(f)

=

∫ +∞

−∞
df
∑
A,A′

∫
dΩ

∫
dΩ′

∫ 2π

0

dψ

2π
FA1 (Ω̂)FA

′
2 (Ω̂′)〈h∗A(f, Ω̂)hA′(f, Ω̂

′)〉ei2πf(Ω̂′· x̄2
c
−Ω̂· x̄1

c
)Q(f)

=
T

2

∑
A

∫ +∞

−∞
dfSA(f)

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π
ei2πfΩ̂·∆x

c
(
FAi (Ω̂, ψ)FAj (Ω̂, ψ)

)
Q(f),

(2.4.8)

5We have G(t) =
∫∞
−∞ dfG̃(f)ei2πft.

62nd-generation ground based interferometers are sensible to frequencies ranging from 1 − 103 Hz. For
sufficiently large observation periods we are justified to assume this limit to be true.

7We recall that the ergodic assumption must be used here, thus the ensemble average is replaced by a
time average.

8We recall that angular pattern functions for tensor and vector polarization modes depend on the angular
variable ψ, meaning that also the average over this angle must be included.
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where we have used Eq.(1.4.3) and Eq.(2.4.5), with δ(0) = T and ∆x = xJ − xI is the
distance betwen the two detectors. Let us now consider Eq.(1.4.10): since we are considering
an unpolarized background, we are justified to assume that

Ω+
gw(f) = Ω×gw(f)→ ΩT

gw(f) = Ω+
gw(f) + Ω×gw(f)

Ωx
gw(f) = Ωy

gw(f)→ ΩV
gw(f) = Ωx

gw(f) + Ωy
gw(f), (2.4.9)

both for tensor and vector modes. Something different needs to be said for scalar modes:
through Eqs.(2.1.23)-(2.1.24) we showed that breathing and longitudinal polarization modes
are degenerate when f � f∗ and it is not possible for us to separate their contribution to
the SGWB energy density. Longitudinal mode contributions can be expressed as a fraction
of the breathing ones, thus we have

Ωl
gw(f) = κ(f)Ωb

gw(f)→ ΩS
gw(f) = Ωb

gw(f) + Ωl
gw(f) = Ωb

gw(f)(1 + κ(f)). (2.4.10)

Recalling Eq.(1.4.10), we finally rewrite Eq.(2.4.8) as

S =
3H2

0T

4π2

∑
A

∫ +∞

−∞
dff−3ΩA

gw(f)

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π
ei2πfΩ̂·∆x

c
(
FAi (Ω̂, ψ)FAj (Ω̂, ψ)

)
Q(f)

=
3H2

0T

8π2

∫ +∞

−∞
dff−3

(
ΩT
gw(f)ΓT (f) + ΩV

gw(f)ΓV (f) +
2

1 + κ
ΩS
gw(f)ΓS(f)

)
Q(f),

(2.4.11)

where for tensor, vector and scalar modes we have defined the corresponding overlap reduc-
tion function9

ΓTIJ =

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π
ei2πfΩ̂·∆x

c
( ∑
A=+,×

FAI (Ω̂, ψ)FAJ (Ω̂, ψ)
)
, (2.4.12)

ΓVIJ =

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π
ei2πfΩ̂·∆x

c
( ∑
A=x,y

FAI (Ω̂, ψ)FAJ (Ω̂, ψ)
)
, (2.4.13)

ΓSIJ =

∫
S2

dΩ

4π
ei2πfΩ̂·∆x

c
(
F bI (Ω̂)F bJ(Ω̂) + κF lI(Ω̂)F lJ(Ω̂)

)
, (2.4.14)

Overlap reduction functions are key objects in the context of cross correlation because they
are a measure of the correlation between two interferometers. We now wish to investigate
their properties and we begin by noticing that they are dimensionless, they show oscillatory
behaviours at high frequencies and they contain information on both GW polarization and

9As we shall see, the ψ-dependence in
∑
A F

A
i (Ω̂, ψ)FAj (Ω̂, ψ) cancels out: this is why we usually omit

this angular variable in angular pattern function expressions, although we decided to show it in this instance
for completeness.
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frequency, but also information on detector geometry and angular sensitivity, since angular
pattern functions appear in their definitions. Moreover, when we consider a detector pair,
overlap reduction functions are suggesting that different interferometers detect a different
GW signal both because of their different locations and orientations. Let us now discuss
their oscillatory behaviour: the complex exponential factor forces us to introduce a new
characteristic frequency fc = c

2π|∆x| . When f � fc
10 we see that Γij(f) starts to oscillate

very rapidly and the signal S tends to zero. However, 2nd-generation interferometers are
located sufficiently far apart from each other, thus inducing fc to be approximately two
order of magnitude smaller than f∗, meaning that if GW frequencies reach f∗, then the
overlap function is very close to zero and so is the signal S. This is the reason why we feel
safe to work in the long wavelength limit with ground-based interferometers.
We further introduce normalized overlap reduction functions

γN (f) =
ΓNIJ(f)

FNIJ
, N = T, V, S (2.4.15)

where FNIJ is obtained computing ΓNIJ in the scenario where the two detectors are of the
same type11 and share both location and orientation. In the following, while computing
FNIJ we use the subscript "I = J" to underline these assumptions: we get

F TIJ =

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π

( ∑
A=+,×

FAI (Ω̂, ψ)FAJ (Ω̂, ψ)
)∣∣∣

I=J
=

=

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π

[
(F+(θ, φ, ψ))2 + (F×(θ, φ, ψ))2

]
=

=

∫
dψ

2π

∫
S2

dΩ

4π

{
1

4
[(1 + cos2 θ) cos 2φ]2 cos2 2ψ + cos2 θ sin2 2φ sin2 2ψ+

− (1 + cos2 θ) cos θ sin 2φ cos 2φ sin 2ψ cos 2ψ

}
+

∫
dψ

2π

∫
S2

dΩ

4π

{
1

4
[(1 + cos2 θ) cos 2φ]2 sin2 2ψ+

+ cos2 θ sin2 2φ cos2 2ψ + (1 + cos2 θ) cos θ sin 2φ cos 2φ sin 2ψ cos 2ψ

}
=

=

∫
dψ

2π

∫
S2

dΩ

4π

{
1

4
[(1 + cos2 θ) cos 2φ]2

=1︷ ︸︸ ︷
(cos2 2ψ + sin2 2ψ) + cos2 θ sin2 2φ

=1︷ ︸︸ ︷
(cos2 2ψ + sin2 2ψ)

}
=

=
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

{
1

4
[(1 + cos2 θ) cos 2φ]2 + cos2 θ sin2 2φ

}
=

2

5
,

(2.4.16)

10Once again, the analogous limit in terms of the reduced wavelength is /λ� |∆x|.
11for example it cpuld be the case of two two L shaped interferometers.
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F VIJ =

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π

( ∑
A=x,y

FAI (Ω̂, ψ)FAJ (Ω̂, ψ)
)∣∣∣

I=J
=

=

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π

[
(F x(θ, φ, ψ))2 + (F y(θ, φ, ψ))2

]
=

=

∫
dψ

2π

∫
S2

dΩ

4π

[
sin2 θ(cos2 θ cos2 2φ cos2 ψ + sin2 2φ sin2 ψ − 2 cos θ sin 2φ cos 2φ sinψ cosψ)

]
+

+

∫
dψ

2π

∫
S2

dΩ

4π

[
sin2 θ(cos2 θ cos2 2φ cos2 ψ + sin2 2φ sin2 ψ + 2 cos θ sin 2φ cos 2φ sinψ cosψ)

]
=

=

∫
dψ

2π

∫
S2

dΩ

4π

{
sin2 θ[cos2 θ cos2 2φ

=1︷ ︸︸ ︷
(cos2 2ψ + sin2 2ψ) + sin2 2φ

=1︷ ︸︸ ︷
(cos2 2ψ + sin2 2ψ)

]}
=

=
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin3 θ[cos2 θ cos2 2φ+ sin2 2φ

]
=

2

5
,

(2.4.17)

FSIJ =

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π

[
F bI (Ω̂)F bJ(Ω̂) + κF lI(Ω̂)F lJ(Ω̂)

]∣∣∣
I=J

=

=

∫ 2π

0

dψ

2π

∫
S2

dΩ

4π

[
(F b(θ, φ))2 + κ(F l(θ, φ))2

]
=

=
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

(1

2
+ κ
)1

2
sin4 θ cos2 2φ =

1 + 2κ

15
. (2.4.18)

It is worth noting how Eqs.(2.4.16)-(2.4.17) do not depend on the polarization angle ψ
and the integration over this variable becomes trivial and can be omitted: this is due to the
fact that the objects (F+)2 + (F×)2, (F x)2 + (F y)2 are ψ-invariant. Although we showed
this in the particular case of two identical detectors in the same location and identically
oriented, it is straightforward to show this is true in general: under the assumptions made
for a SGWB it seems reasonable to expect the physics of the the problem not to depend
on the rotation of the axes lying on the plane orthogonal to Ω̂ with respect to the GW
direction itself12. In the limit where I = J , we recover the quantity

∑
A

FAI (Ω̂)FAI (Ω̂) which

is the antenna power pattern of a single detector and represents its maximum detection
reach along different angular directions. In Fig. 2.6, 2.7, 2.8 we show 3D plots related to
antenna power pattern square root for tensor, vector and scalar polarization modes along
with their 2D projections for some fixed values of θ. Finally, from Eq.(2.4.15) we find the
normalized overlap reduction functions for each mode

γTIJ =
5

2

∫
S2

dΩ

4π
ei2πfΩ̂·∆X

c
( ∑
A=+,×

FAI (Ω̂)FAJ (Ω̂)
)
, (2.4.19)

12These axes still need to be orthogonal to each other to properly define polarization tensors.
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Figure 2.6: 3D plot of
√

(F+)2 + (F×)2 (peanut diagram), and relative projection on a 2D
plane for different fixed values of θ ((π6 , dot-dashed), (

π
4 , dotted), (

π
3 , dashed), (

π
2 , solid).
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Figure 2.7: 3D plot of
√

(F x)2 + (F y)2, and relative projection on a 2D plane for different
fixed values of θ ((π6 , dot-dashed), (

π
4 , dotted), (

π
3 , dashed), (

π
2 , solid).

44



2.4. TWO-DETECTOR CORRELATION AND SIGNAL-TO-NOISE RATIO

(a)
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(b)

Figure 2.8: 3D plot of
√

(F b)2 + (F l)2, and relative projection on a 2D plane for different
fixed values of θ ((π6 , dot-dashed), (

π
4 , dotted), (

π
3 , dashed), (

π
2 , solid).

γVIJ =
5

2

∫
S2

dΩ

4π
ei2πfΩ̂·∆X

c
( ∑
A=x,y

FAI (Ω̂)FAJ (Ω̂)
)
, (2.4.20)

γSIJ =
15

1 + 2κ

∫
S2

dΩ

4π
ei2πfΩ̂·∆X

c
(
F bI (Ω̂)F bJ(Ω̂) + κF lI(Ω̂)F lJ(Ω̂)

)
, (2.4.21)

and Eq.(2.4.11) can be rewritten as

S =
3H2

0T

20π2

∫ +∞

−∞
dff−3

(
ΩT
gw(f)γT (f) + ΩV

gw(f)γV (f) + τ(f)ΩS
gw(f)γS(f)

)
Q(f), (2.4.22)

where

τ(f) =
1

3

(
1 + 2κ(f)

1 + κ(f)

)
,

1

3
≤ τ(f) ≤ 2

3
. (2.4.23)

Up to now we mainly focused on GW signals and we removed noise contributions considering
the ensemble average given by Eq.(2.4.7). However, since a possible GW signal is expected
to be very weak, distinguishing the latter from the background noise can be very challenging.
Indeed we account for the presence of a background noise by considering Y in the absence
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of a GW signal and then compute

N2 = 〈Y 2〉 − 〈Y 〉2

=

∫ +∞

−∞
df

∫ +∞

−∞
df ′
(
〈n∗1(f)n2(f)n1(f ′)n∗2(f ′)〉 − 〈n∗1(f)n2(f)〉〈n1(f ′)n∗2(f ′)〉

)
Q(f)Q(f ′)

=

∫ +∞

−∞
df

∫ +∞

−∞
df ′
(
〈n∗1(f)n1(f ′)〉〈n2(f)n∗2(f ′)〉,

(2.4.24)

where again we assumed noises of different detectors to be uncorrelated. We assume the
detector noise to be stationary, thus we may consider the ensemble average

〈n∗(f)n(f ′)〉 = δ(f − f ′)1

2
Sn(f), (2.4.25)

meaning that noise and sensitivity of the interferometer are completely specified by the
function Sn(f), which is called power spectral density (PSD) and has dimension Hz−1.
Since we expect n(t) to be real we have n∗(f) = n(−f) and Sn(f) = Sn(−f). We can now
use Eq.(2.4.25) to get

N2 =
T

4

∫ ∞
−∞

dfS1n(f)S2n(f)|Q(f)|2 (2.4.26)

and we finally define the Signal-to Noise Ratio (SNR) as

S

N
=

3H2
0

√
T

10π2

∫ +∞
−∞ dff−3

(
ΩT
gw(f)γT (f) + ΩV

gw(f)γV (f) + τ(f)ΩS
gw(f)γS(f)

)
Q(f)(∫∞

−∞ dfS1n(f)S2n(f)|Q(f)|2
) 1

2

=
3H2

0

√
T

10π2

∫ +∞
−∞ dff−3

(
ΩT
gw(f)γT (f) + ΩV

gw(f)γV (f) + τ(f)ΩS
gw(f)γS(f)

)
Q(f)(∫∞

−∞ dfS
2
n(f)|Q(f)|2

) 1
2

,

(2.4.27)

where in the last step we have defined the function

Sn(f) =
(
S1n(f)S2n(f)

) 1
2 . (2.4.28)

Since the signal S depends on T , while N depends on its square root, so does the SNR,
meaning that the greater the observation time, the better the SNR would be. To maximize
the SNR we need to find the optimal form for the filter function Q(f): there is a simple
way to show how this is done which we report here. We begin by introducing the following
scalar product involving two general complex functions H(f) and G(f), we have

H ·G =

∫ ∞
−∞

dfH∗(f)G(f)S2
n(f), (2.4.29)
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and we define for simplicity Ωgw(f)γ(f) = ΩT
gw(f)γT (f)+ΩV

gw(f)γV (f)+τ(f)ΩS
gw(f)γS(f),

meaning that Eq.(2.4.27) becomes

S

N
=

3H2
0

√
T

10π2

(Q(f) ·
(γIJ (f)Ωgw(f)

f3S2
n

)√
Q(f) ·Q(f)

)
, (2.4.30)

where we used I and J to denote detectors of the pair. Similarly to the case of two parallel
vectors in linear algebra, the previous scalar product is maximized when

Q(f) ∝
(
γIJ(f)Ωgw(f)

f3S2
n(f)

)
. (2.4.31)

Finally, using this expression for the filter function, Eq.(2.4.27) may be written as

S

N
=

3H2
0

√
T

10π2

(∫ +∞

−∞
df

(ΩT
gw(f)γT (f) + ΩV

gw(f)γV (f) + τ(f)ΩS
gw(f)γS(f))2

f6S1n(f)S2n(f)

) 1
2

=
3H2

0

√
T

10π2

(∫ +∞

−∞
df

(γ(f)Ωgw(f))2

f6S1n(f)S2n(f)

) 1
2

=
3H2

0

√
T

10π2

(∫ +∞

−∞
df

(γ(f)Ωgw(f))2

f6S2
n(f)

) 1
2

. (2.4.32)

2.5 Analytic Overlap Function for Two L-shaped Interferom-
eters on Earth

2nd-generation interferometers like LIGO, Virgo or KAGRA are sensitive to GW frequencies
ranging from 10 Hz to a few kHz and since f∗ ≈ 104 Hz (see Tab. 2.1) we can always work
in the long wavelength limit. Under this assumption, we now wish to investigate overlap
reduction functions to find a possible analytical expression for each polarization mode. In
the following, we proceed as in [43] for the tensor modes, then we extend the results to
vector and scalar modes as in [86].
Let us consider a GW detector pair on Earth: we define the unit vector d̂ = ∆x

|∆x| , where ∆x

denotes the distance between the two detector locations, and α ≡ f
fc

= 2πf |∆x|
c . Appealing

to Eqs.(2.1.3), (2.1.4) and (2.4.15) we obtain a second expression for the normalized overlap
reduction function for each polarization mode

γN (f) = DijDklΓNijkl(α, d̂), N = T, V, S (2.5.1)

where
ΓTijkl(α, d̂) ≡ 5

2

∑
A=+,×

∫
S2

dΩ

4π
eiαΩ̂·d̂ẽAij(Ω̂)ẽAkl(Ω̂), (2.5.2)
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ΓVijkl(α, d̂) ≡ 5

2

∑
A=x,y

∫
S2

dΩ

4π
eiαΩ̂·d̂ẽAij(Ω̂)ẽAkl(Ω̂), (2.5.3)

and
ΓSijkl(α, d̂) ≡ 15

1 + 2k

∫
S2

dΩ

4π
eiαΩ̂·d̂(ẽbij(Ω̂)ẽbkl(Ω̂) + κẽlij(Ω̂)ẽlkl(Ω̂)

)
. (2.5.4)

Since the following steps are the same for each polarization mode, for the rest of the
discussion we shall omit the apex N for simplicity. Due to its construction, the rank-4
tensor Γijkl(α, d̂) is symmetric under exchanges of i ↔ j, k ↔ l and ij ↔ kl: these
properties lead to the most general tensor form for Γijkl(α, d̂), which can be written in
terms of the Kronecker delta δij and di

Γijkl(α, d̂) = A(α)δijδkl +B(α)
(
δikδjl + δjkδil

)
+ C(α)

(
δijdkdl + δkldidj

)
+

+D(α)
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
+ E(α)didjdkdl. (2.5.5)

We now wish to find an expression for the functions A(α), B(α), C(α), D(α), E(α) and
we begin by singularly taking the contraction between Γijkl(α, d̂) and the different rank-4
tensors appearing in the equation above, thus we define

ξ1(α) ≡ Γijklδ
ijδkl,

ξ2(α) ≡ Γijkl
(
δikδjl + δjkδil

)
,

ξ3(α) ≡ Γijkl
(
δijdkdl + δkldidj

)
,

ξ4(α) ≡ Γijkl
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
,

ξ5(α) ≡ Γijkld
idjdkdl. (2.5.6)

Since the Kronecker delta satisfies δijδij = 3 and δijdidj = djdj = 1, we get

ξ1(α) = A(α)δijδklδ
ijδkl +B(α)

(
δikδjl + δjkδil

)
δijδkl+

+ C(α)
(
δijdkdl + δkldidj

)
δijδkl +D(α)

(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
δijδkl+

+ E(α)didjdkdlδ
ijδkl =

= 9A(α) + 6B(α) + 6C(α) + 4D(α) + E(α),
(2.5.7)

ξ2(α) = A(α)δijδkl
(
δikδjl + δjkδil

)
+B(α)

(
δikδjl + δjkδil

)(
δikδjl + δjkδil

)
+

+ C(α)
(
δijdkdl + δkldidj

)(
δikδjl + δjkδil

)
+

+D(α)
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)(
δikδjl + δjkδil

)
+

+ E(α)didjdkdl
(
δikδjl + δjkδil

)
=

= 6A(α) + 24B(α) + 4C(α) + 16D(α) + 2E(α), (2.5.8)
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ξ3(α) = A(α)δijδkl
(
δijdkdl + δkldidj

)
+B(α)

(
δikδjl + δjkδil

)(
δijdkdl + δkldidj

)
+

+ C(α)
(
δijdkdl + δkldidj

)(
δijdkdl + δkldidj

)
+

+D(α)
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)(
δijdkdl + δkldidj

)
+

+ E(α)didjdkdl
(
δijdkdl + δkldidj

)
=

= 6A(α) + 4B(α) + 8C(α) + 8D(α) + 2E(α), (2.5.9)

ξ4(α) = A(α)δijδkl
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
+

+B(α)
(
δikδjl + δjkδil

)(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
+

+ C(α)
(
δijdkdl + δkldidj

)(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
+

+D(α)
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
+

+ E(α)didjdkdl
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
=

= 4A(α) + 16B(α) + 8C(α) + 24D(α) + 4E(α),
(2.5.10)

ξ5(α) = A(α)δijδkld
idjdkdl +B(α)

(
δikδjl + δjkδil

)
didjdkdl + C(α)

(
δijdkdl + δkldidj

)
didjdkdl+

+D(α)
(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
didjdkdl + E(α)didjdkdld

idjdkdl =

= A(α) + 2B(α) + 2C(α) + 4D(α) + E(α).
(2.5.11)

Putting together Eqs.(2.5.7)-(2.5.11), we can write our results in a matrix form
ξ1

ξ2

ξ3

ξ4

ξ5

 =


9 6 6 4 1
6 24 4 16 2
6 4 8 8 2
4 16 8 24 4
1 2 2 4 1



A
B
C
D
E

 , (2.5.12)

and the coefficient matrix can be inverted, so that
A
B
C
D
E

 =
1

8


3 −1 −3 1 1
−1 1 1 −1 1
−3 1 5 −1 −5
1 −1 −1 2 −5
1 1 −5 −5 35



ξ1

ξ2

ξ3

ξ4

ξ5

 . (2.5.13)

We now need to find an expression for ξ1, ξ2, ξ3, ξ4, ξ5, thus considering Eq.(2.1.9) we
introduce the angular coordinate η such that the unit vector d̂ satisfies

m̂ · d̂ = 0

n̂ · d̂ = − sin η

Ω̂ · d̂ = cos η

(2.5.14)
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meaning that d̂ lies on the n̂-Ω̂ plane and its components can be taken as d̂ = (0,− sin η, cos η)T .
We set x ≡ cos η and we express ξj , j = 1, ..., 5 as proper combinations of spherical Bessel
functions, which can be found in B.1. Finally we obtain

• for the tensor mode

ξ1(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽ+
ij ẽ

+
kl + ẽ×ij ẽ

×
kl

)
δijδkl = 0, (2.5.15)

ξ2(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽ+
ij ẽ

+
kl + ẽ×ij ẽ

×
kl

)(
δikδjl + δjkδil

)
= 20j0(α), (2.5.16)

ξ3(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽ+
ij ẽ

+
kl + ẽ×ij ẽ

×
kl

)(
δijdkdl + δkldidj

)
= 0, (2.5.17)

ξ4(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽ+
ij ẽ

+
kl + ẽ×ij ẽ

×
kl

)(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
=

= 10

∫ 1

−1
dxeiαx(1− x2) = 40

j1(α)

α
,

(2.5.18)

ξ5(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽ+
ij ẽ

+
kl + ẽ×ij ẽ

×
kl

)
didjdkdl =

=
5

4

∫ +1

−1
dxeiαx(1− x2)2 = 20

j2(α)

α2
, (2.5.19)

• for the vector mode

ξ1(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽxij ẽ

x
kl + ẽyij ẽ

y
kl

)
δijδkl = 0, (2.5.20)

ξ2(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽxij ẽ

x
kl + ẽyij ẽ

y
kl

)(
δikδjl + δjkδil

)
= 20j0(α), (2.5.21)

ξ3(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽxij ẽ

x
kl + ẽyij ẽ

y
kl

)(
δijdkdl + δkldidj

)
= 0, (2.5.22)

ξ4(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽxij ẽ

x
kl + ẽyij ẽ

y
kl

)(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
=

= 5

∫ +1

−1
dxeiαx

[
2− (1− x2)

]
= 20

(
j0(α)− j1(α)

α

)
,

(2.5.23)
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ξ5(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽxij ẽ

x
kl + ẽyij ẽ

y
kl

)
didjdkdl =

= 5

∫ +1

−1
dxeiαx

[
(1− x2)− (1− x2)2

]
= 20

(
j1(α)

α
− 4

j2(α)

α2

)
, (2.5.24)

• for the scalar mode

ξ1(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽbij ẽ

b
kl + κẽlij ẽ

l
kl

)
δijδkl = 30

(
2 + κ

1 + 2κ

)
j0(α), (2.5.25)

ξ2(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽbij ẽ

b
kl + κẽlij ẽ

l
kl

)(
δikδjl + δjkδil

)
= 60

(
1 + κ

1 + 2κ

)
j0(α), (2.5.26)

ξ3(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽbij ẽ

b
kl + κẽlij ẽ

l
kl

)(
δijdkdl + δkldidj

)
=

=
30

1 + 2κ

∫ +1

−1
dxeiαx

[
κ+ (1− κ)(1− x2)

]
=

60

1 + 2κ

[
κj0(α) + 2(1− κ)

j1(α)

α

]
,

(2.5.27)

ξ4(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽbij ẽ

b
kl + κẽlij ẽ

l
kl

)(
δikdjdl + δildjdk + δjkdidl + δjldidk

)
=

=
30

1 + 2κ

∫ +1

−1
dxeiαx

[
2κ+ (1− 2κ)(1− x2)

]
=

120

1 + 2κ

[
κj0(α) + (1− 2κ)

j1(α)

α

]
,

(2.5.28)

ξ5(α) =
5

4

∫ 1

−1
dxeiαx

(
ẽbij ẽ

b
kl + κẽlij ẽ

l
kl

)
didjdkdl =

=
15

2(1 + 2κ)

∫ +1

−1
dxeiαx

[
2κ− 4κ(1− x2) + (1 + 2κ)(1− x2)2

]
=

=
30

1 + 2κ

[
κj0(α)− 4κ

j1(α)

α
+ 4(1 + 2κ)

j2(α)

α2

]
, (2.5.29)

Considering Eq.(2.5.13) we can list our results in a cleaner way

• Tensor mode
A(α)
B(α)
C(α)
D(α)
E(α)

 =
1

2α2


−5α2 10α 5
5α2 −10α 5
5α2 −10α −25
−5α2 20α −25
5α2 −50α 175


j0(α)
j1(α)
j2(α)

 =
1

42


−28 80 3
42 −60 3
0 −120 −15
0 90 −15
0 0 105


j0(α)
j2(α)
j4(α)

 .

(2.5.30)
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• Vector mode


A(α)
B(α)
C(α)
D(α)
E(α)

 =
5

2α2


0 0 −4
0 2α −4
0 −4α 20
α2 −7α 20
−4α2 40α −140


j0(α)
j1(α)
j2(α)

 =
1

42


−28 −40 −12
42 30 −12
0 60 60
0 −45 60
0 0 −420


j0(α)
j2(α)
j4(α)

 .

(2.5.31)

• Scalar mode


A(α)
B(α)
C(α)
D(α)
E(α)

 =
15

(1 + 2κ)α2


α2 −2α (1 + 2κ)
0 0 (1 + 2κ)
−α2 2(2 + κ)α −5(1 + 2κ)

0 (1 + 2κ)α −5(1 + 2κ)
(1 + 2κ)α2 −10(1 + 2κ)α −35(1 + 2κ)


j0(α)
j1(α)
j2(α)

 =

=
1

7(1 + 2κ)


14(3 + κ) −20(3− κ) 3(1 + 2κ)
7(1 + 2κ) 10(1 + 2κ) 3(1 + 2κ)

0 30(3− κ) −15(1 + 2κ)
0 −15(1 + 2κ) −15(1 + 2κ)
0 0 105(1 + 2κ)


j0(α)
j2(α)
j4(α)

 .

(2.5.32)

Eqs.(2.5.30), (2.5.31) and (2.5.32) show two different forms of the same result and they
are equivalent: it is possible to use Bessel functions j0, j1, j2 or j0, j2, j4 and we can switch
from one expression to the other using the relations shown in Appendix B. In our case, we
decided to stick to the j0, j2, j4 notation. Let us consider Eq.(2.5.1) once again: this time
we want to compute all the contractions that appear while reminding ourselves that the
detector tensor is tracefree, thus Dii = 0. We get

γN (f) = A(α)
��

��*
0

Dii
1D

jj
2 +B(α)

(
Dij

1 D2ij +Dij
1 D2ij

)
+ C(α)

(
��

���
�:0

Dii
1D

kl
2 dkdl +���

���
�:0

Dij
1 D

kk
2 didj

)
+

+D(α)
(
Dij

1 D2ildjd
l +Dij

1 D2ikdjd
k +Dij

1 D2jldid
l +Dij

1 D2jkdid
k
)

+ E(α)Dij
1 D

kl
2 didjdkdl =

= 2B(α)Dij
1 D2ij + 4D(α)Dij

1 D2ildjd
l + E(α)Dij

1 D
kl
2 didjdkdl =

= ρ1(α)Dij
1 D2ij + ρ2(α)Dij

1 D2ildjd
l + ρ3(α)Dij

1 D
kl
2 didjdkdl,

(2.5.33)

where in the last line we have defined ρ1(α) = 2B(α), ρ2(α) = 4D(α) and ρ3(α) = E(α).
In the end, our final coefficients are
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• Tensor modeρT1 (α)
ρT2 (α)
ρT3 (α)

 =
1

2α2

 10α2 −20α 10
−20α2 80α −100

5α2 −50α 175

j0(α)
j1(α)
j2(α)

 =

=
1

14

28 −40 2
0 120 −20
0 0 35

j0(α)
j2(α)
j4(α)

 , (2.5.34)

• Vector mode

ρV1 (α)
ρV2 (α)
ρV3 (α)

 =
10

α2

 0 α −2
α2 −7α 20
−α2 10α −35

j0(α)
j1(α)
j2(α)

 =

=
2

7

7 5 −2
0 −15 20
0 0 −35

j0(α)
j2(α)
j4(α)

 , (2.5.35)

• Scalar mode

ρS1 (α)
ρS2 (α)
ρS3 (α)

 =
15

α2

 0 0 2
0 4α −20
α2 −10α 35

j0(α)
j1(α)
j2(α)

 =

=
1

7

14 20 6
0 −60 −60
0 0 105

j0(α)
j2(α)
j4(α)

 . (2.5.36)

We notice that the parameter κ(f) correctly disappears from the scalar mode coefficients:
we have already mentioned that breathing and longitudinal polarization modes are degen-
erate in the long wavelength limit, thus κ(f) must disappear as a manifestation of their
indistinguishability13. We now compute Eq.(2.5.33) for a real detector pair on Earth14: we
begin by introducing the coordinate system displayed in Fig.2.9. The angle β represents

13Indeed if the κ parameter was present, it would mean that we would be able to distinguish breathing
and longitudinal mode contribution so the SGWB and break the degeneracy.

14We take the Earth to be a perfect sphere of radius R = 6.371 · 103 km.
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Figure 2.9: (Left) Representation of the relative position of a detector pair (blue arrows)
lying on the surface of the Earth. (Right) Orientation of the detector arms (red, solid) and
bisector (red, dashed) with respect to the vector (x axis) tangent to the circumference of
radius R connecting the detector pair together.

the separation between two L-shaped interferometers I and J located on the surface of the
Earth and is measured from its center, while σ1 and σ2 are the angles between the bisector
of the angle between each of the two interferometer arms and the tangent to the circumfer-
ence of radius R wrapping planet Earth and connecting the two detectors together at the
detector locations. Angles σ1 and σ2 are measured in a counterclockwise manner relative
to the vector tangent to the circumference and they are defined on the planes tangent to
Earth at the detector positions, as seen in the right panel of Fig.2.9. This means that
β, σ1, σ2 define the location and orientation of both detectors. Exploiting the simmetry of
our problem, we can place the first detector at β = 0. We then introduce an orthonormal
coordinate system S′ = (x̂′, ŷ′, ẑ′) with its origin in the position of the I-th detector and
then we define a second one S′′ = (x̂′′, ŷ′′, ẑ′′) with its origin in the position of the J-th
detector: 

x̂′ = (1, 0, 0)T

ŷ′ = (0, 1, 0)T

ẑ′ = (0, 0, 1)T
,


x̂′′ = (cosβ, 0,− sinβ)T

ŷ′′ = (1, 0, 0)T

ẑ′′ = (sinβ, 0, cosβ)T
. (2.5.37)

We introduce unit vectors (û′, v̂′) directed along each I-th detector arm and (û′′, v̂′′) di-
rected along each J-th detector arm, with û′ ⊥ v̂′ and û′′ ⊥ v̂′′. In the most general case
we can express (û′, v̂′) as a rotation of (x̂′′, ŷ′′) around ẑ′ and (û′′, v̂′′) as a rotation of
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(x̂′′, ŷ′′) around ẑ′′:û′

v̂′

ẑ′

 =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

x̂′

ŷ′

ẑ′

 ,

û′′

v̂′′

ẑ′′

 =

 cos δ sin δ 0
− sin δ cos δ 0

0 0 1

x̂′′

ŷ′′

ẑ′′

 .

(2.5.38)
The internal angle of an L-shaped interferometer is π

2 , so given the geometry of the problem
we have γ = σ1 − π

4 and δ = σ2 − π
4 . Finally we can compute the two detector tensors

DI =
1

2

{
û′ ⊗ û′ − v̂′ ⊗ v̂′

}
, DJ =

1

2

{
û′′ ⊗ û′′ − v̂′′ ⊗ v̂′′

}
. (2.5.39)

Starting with DI , we have{
û′ ⊗ û′ = x̂′ ⊗ x̂′ cos2 γ + ŷ′ ⊗ ŷ′ sin2 γ + x̂′ ⊗ ŷ′ sin γ cos γ + ŷ′ ⊗ x̂′ sin γ cos γ

v̂′ ⊗ v̂′ = x̂′ ⊗ x̂′ sin2 γ + ŷ′ ⊗ ŷ′ cos2 γ − x̂′ ⊗ ŷ′ sin γ cos γ − ŷ′ ⊗ x̂′ sin γ cos γ
.

(2.5.40)
These tensor products can be computed using Eq.(2.5.37), and we obtain

x̂′ ⊗ x̂′ =

1 0 0
0 0 0
0 0 0

 , ŷ′ ⊗ ŷ′ =

0 0 0
0 1 0
0 0 0

 ,

x̂′ ⊗ ŷ′ =

0 1 0
0 0 0
0 0 0

 , ŷ′ ⊗ x̂′ =

0 0 0
1 0 0
0 0 0

 . (2.5.41)

Putting together what we have found we get

DI =
1

2

cos2 γ − sin2 γ 2 sin γ cos γ 0
2 sin γ cos γ sin2 γ − cos2 γ 0

0 0 0



=
1

2

cos 2γ sin 2γ 0
sin 2γ − cos 2γ 0

0 0 0

 , (2.5.42)

which is the expression for the I-th detector tensor located at β = 0.
Something similar can be done for DJ . This time we start with{

û′′ ⊗ û′′ = x̂′′ ⊗ x̂′′ cos2 δ + ŷ′′ ⊗ ŷ′′ sin2 δ + x̂′′ ⊗ ŷ′′ sin δ cos δ + ŷ′′ ⊗ x̂′′ sin δ cos δ

v̂′′ ⊗ v̂′′ = x̂′′ ⊗ x̂′′ sin2 δ + ŷ′′ ⊗ ŷ′′ cos2 δ − x̂′′ ⊗ ŷ′′ sin δ cos δ − ŷ′′ ⊗ x̂′′ sin δ cos δ
,

(2.5.43)
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Using Eq.(2.5.37) we obtain

x̂′′ ⊗ x̂′′ =

 cos2 β 0 − sinβ cosβ
0 0 0

− sinβ cosβ 0 sin2 β

 , ŷ′′ ⊗ ŷ′′ =

0 0 0
0 1 0
0 0 0

 ,

x̂′′ ⊗ ŷ′′ =

0 cosβ 0
0 0 0
0 − sinβ 0

 , ŷ′′ ⊗ x̂′′ =

 0 0 0
cosβ 0 − sinβ

0 0 0

 . (2.5.44)

Finally we get

DJ =
1

2

 cos2 β cos 2δ cosβ sin 2δ − sinβ cosβ cos 2δ
cosβ sin 2δ − cos 2δ − sinβ sin 2δ

− sinβ cosβ cos 2δ − sinβ sin 2δ sin2 β cos 2δ

 . (2.5.45)

It is worth noting that for β → 0 we have DJ → DI , which is the expected result. We still
need an expression for the unit vector d̂. We have |∆x| = 2R sin β

2 = l3 and considering
the left panel of Fig.2.9 we get

l3 = 2R sin β
2 ,

l2 = R sinβ,

l1 = R
√

4 sin2 β
2 − sin2 β = R

√
4 sin2 β

2 − 4 sin2 β
2 cos2 β

2 = 2R sin2 β
2 ,

(2.5.46)

thus we find

d̂ =
1

2R sin β
2

× (R sinβ, 0,−2R sin2 β

2
)T

= (cos
β

2
, 0,− sin

β

2
)T . (2.5.47)

We may now proceed to insert the previous results in (2.5.33) to compute the tensor con-
tractions. We get

• for Dij
I DJij

Dij
I DJij = D11

I DJ11 +D12
I DJ12 +D21

I DJ21 +D22
I DJ22

=
1

4

(
cos 2γ cos 2δ + 2 cosβ sin 2γ sin 2δ + cos2 β cos 2γ cos 2δ

)
, (2.5.48)
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• for Di
IkD

kj
J didj

Di
IkD

kj
J didj = D1

I1D
11
J d1d1 +D1

I1D
13
J d1d3 +D1

I2D
21
J d1d1 +D1

I2D
23
J d1d3

=
1

4

(
cosβ cos2 β

2
sin 2γ sin 2δ +

1/2 sin2 β︷ ︸︸ ︷
sinβ sin

β

2
cos

β

2
sin 2γ sin 2δ+

+ cos2 β cos2 β

2
cos 2γ cos 2δ +

1/2 cosβ sin2 β︷ ︸︸ ︷
sinβ cosβ sin

β

2
cos

β

2
cos 2γ cos 2δ

)
,

(2.5.49)

• for Dij
I D

kl
J didjdkdl

Dij
I D

kl
J didjdkdl = D11

I D
11
J d1d1d1d1 +D11

I D
13
J d1d1d1d3 +D11

I D
31
J d1d1d3d1 +D11

I D
33
J d1d1d3d3

=
1

4

(
cos2 β cos4 β

2
cos 2γ cos 2δ + 2 sinβ cosβ sin

β

2
cos3 β

2
cos 2γ cos 2δ+

+ sin2 β sin2 β

2
cos2 β

2
cos 2γ cos 2δ

)
.

(2.5.50)

We now introduce two new parameters

σ+ ≡ σ1 + σ2

2
, σ− ≡ σ1 − σ2

2
, (2.5.51)

thus we can use trigonometric identities listed in A.2 to find

{
cos 2γ cos 2δ = 1

2

(
cos(4σ+ − π) + cos 4σ−

)
= 1

2

(
cos 4σ− − cos 4σ+

)
sin 2γ sin 2δ = 1

2

(
cos 4σ− − cos(4σ+ − π)

)
= 1

2

(
cos 4σ− + cos 4σ+

) . (2.5.52)

We finally have all the ingredients to reduce Eq.(2.5.33) to the following expression

γN (α, β, σ+, σ−) = Ξ+
N (α, β) cos 4σ+ + Ξ−N (α, β) cos 4σ−, (2.5.53)
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with N = T, V, S. Let us start with the tensor mode: plugging Eqs.(3.1.9)-(3.1.11) and the
second expression of Eq.(2.5.34) in Eq.(2.5.33) we get

γTIJ(α) =

(
2j0 −

20

7
j2 +

1

7
j4

)
× 1

4

[
1

2
(cos 4σ− − cos 4σ+) + cosβ(cos 4σ− + cos 4σ+)+

+
1

2
cos2 β(cos 4σ− − cos 4σ+)

]
+

(
60

7
j2 −

10

7
j4

)
× 1

4

[
1

2
cosβ cos2 β

2
(cos 4σ− + cos 4σ+)+

+
1

4
sin2 β(cos 4σ− + cos 4σ+) +

1

2
cos2 β cos2 β

2
(cos 4σ− − cos 4σ+)+

+
1

4
cosβ sin2 β(cos 4σ− − cos 4σ+)

]
+

+
35

14
j4 ×

1

4

[
1

2
cos2 β cos4 β

2
(cos 4σ− − cos 4σ+) +

1

2
sin2 β sin2 β

2
cos2 β

2
(cos 4σ− − cos 4σ+)+

+ sinβ cosβ cos3 β

2
sin

β

2
(cos 4σ− − cos 4σ+)

]
.

(2.5.54)

We now look for Ξ+
T (α, β), meaning we must focus on terms multiplying cos 4σ+. We then

have

Ξ+
T (α, β) = −1

2
j0

[
1

2

(
1 + cos2 β

)
− cosβ

]
+

5

7
j2

[
1

2

(
1 + cos2 β

)
− cosβ +

3

2

(
cosβ cos2 β

2
+

+
1

2
sin2 β − cos2 β cos2 β

2
− 1

2
cosβ sin2 β

)]
− 1

28
j4

[
1

2

(
1 + cos2 β

)
− cosβ + 5

(
cosβ cos2 β

2
+

+
1

2
sin2 β − cos2 β cos2 β

2
− 1

2
cosβ sin2 β

)
+

35

2

(1

2
cos2 β cos4 β

2
+

1

2
sin2 β sin2 β

2
cos2 β

2
+

+ cosβ sinβ cos3 β

2
sin

β

2

)]
.

(2.5.55)

It is very useful to simplify all the following expressions using the following identities

• first identity

1 + cos2 β

2
=

1

2
+

1 + cos 2β

4
=

3

4
+

cos 2β

4
, (2.5.56)
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• second identity

cosβ cos2 β

2
+

1

2
sin2 β − cos2 β cos2 β

2
− 1

2
cosβ sin2 β =

= cosβ cos2 β

2

(
1− cosβ

)
+

1

2
sin2 β − 2 cosβ cos2 β

2
sin2 β

2
=

=
���

���
���

�

2 cosβ cos2 β

2
sin2 β

2
−
���

���
���

�

2 cosβ cos2 β

2
sin2 β

2
+

1

2
sin2 β =

=
1

2
sin2 β, (2.5.57)

• third identity

1

2
cos2 β cos4 β

2
+

1

2
sin2 β sin2 β

2
cos2 β

2
+ sinβ cosβ

1/2 sinβ cos2 β
2︷ ︸︸ ︷

cos3 β

2
sin

β

2
=

=
1

2

(
cos2 β cos4 β

2
+ sin2 β cos2 β

2

(1/2−1/2 cosβ+cosβ︷ ︸︸ ︷
sin2 β

2
+ cosβ

))
=

=
1

2
cos4 β

2

(
cos2 β + sin2 β

)
=

1

2
cos4 β

2
=

=
1

8

(
1 + cosβ

)2
=

1

2

(3

4
+ cosβ +

1

4
cos 2β

)
, (2.5.58)

which lead us to

Ξ+
T (α, β) = j0

(
−3

8
+

1

2
cosβ − 1

8
cos 2β

)
+ j2

(
+

45

56
− 5

7
cosβ − 5

56
cos 2β

)
+

− j4
(

169

896
+

27

224
cosβ +

3

896
cos 2β

)
=

= −
(

3

8
j0 −

45

56
j2 +

169

896
j4

)
+

(
1

2
j0 −

5

7
j2 −

27

224
j4

)
cosβ+

−
(

1

8
j0 +

5

56
j2 +

3

896
j4

)
cos 2β. (2.5.59)
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Let us now focus on terms multiplying cos 4σ−, this time we have

Ξ−T (α, β) =
1

2
j0

[
1

2

(
1 + cos2 β

)
+ cosβ

]
+

5

7
j2

[
−1

2

(
1 + cos2 β

)
− cosβ +

3

2

(
cosβ cos2 β

2
+

1

2
sin2 β+

+ cos2 β cos2 β

2
+

1

2
cosβ sin2 β

)]
+

1

14
j4

[
1

2

(
1 + cos2 β

)
+ cosβ − 5

(
cosβ cos2 β

2
+

+
1

2
sin2 β + cos2 β cos2 β

2
+

1

2
cosβ sin2 β

)
+

35

4

(1

2
cos2 β cos4 β

2
+

1

2
sin2 β sin2 β

2
cos2 β

2
+

+ sinβ cosβ cos3 β

2
sin

β

2

)]
.

(2.5.60)

Once again we may simplify the calculations

• first identity

cos4 β

2
=

1

4

(
1 + cos2 β

)
=

1

2

[
cosβ +

1

2

(
1 + cos2 β

)]
, (2.5.61)

• second identity

cosβ cos2 β

2
+

1

2
sin2 β + cos2 β cos2 β

2
+

1

2
cosβ sin2 β =

= cosβ cos2 β

2
+ cos2 β cos2 β

2
+

1

2

1−cos2 β︷ ︸︸ ︷
sin2 β

(
1 + cosβ

)
=

= cosβ cos2 β

2
+ cos2 β

2
+���

���
�

cos2 β cos2 β

2
−���

���
�

cos2 β cos2 β

2
=

=
(
1 + cosβ

)
cos2 β

2
= 2 cos4 β

2
, (2.5.62)

• third identity

1

2
cos2 β cos4 β

2
+

1

2
sin2 β sin2 β

2
cos2 β

2
+

1/2 cosβ sin2 β cos2 β/2︷ ︸︸ ︷
sinβ cosβ cos3 β

2
sin

β

2
=

=
1

2
cos2 β cos4 β

2
+

1

2
sin2 β cos2 β

2

( 1/2(1+cosβ)︷ ︸︸ ︷
cosβ + sin2 β

2

)
=

=
1

2
cos4 β

2

(
cos2 β + sin2 β

)
=

1

2
cos4 β

2
, (2.5.63)

thus we get

Ξ−T (α, β) = j0 cos4 β

2
+

5

7
j2 cos4 β

2
+

3

112
j4 cos4 β

2
=

(
j0 +

5

7
j2 +

3

112
j4

)
cos4 β

2
. (2.5.64)
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Moving to vector modes, this time we need to plug the second expression of Eq.(2.5.35)
into Eq.(2.5.33), so we get

γVIJ(α) =

(
2j0 +

10

7
j2 −

4

7
j4

)
× 1

4

[
1

2
(cos 4σ− − cos 4σ+) + cosβ(cos 4σ− + cos 4σ+)+

+
1

2
cos2 β(cos 4σ− − cos 4σ+)

]
+

(
−30

7
j2 +

40

7
j4

)
× 1

4

[
1

2
cosβ cos2 β

2
(cos 4σ− + cos 4σ+)+

+
1

4
sin2 β(cos 4σ− + cos 4σ+) +

1

2
cos2 β cos2 β

2
(cos 4σ− − cos 4σ+)+

+
1

4
cosβ sin2 β(cos 4σ− − cos 4σ+)

]
+

− 10j4 ×
1

4

[
1

2
cos2 β cos4 β

2
(cos 4σ− − cos 4σ+) +

1

2
sin2 β sin2 β

2
cos2 β

2
(cos 4σ− − cos 4σ+)+

+ cosβ sinβ cos3 β

2
sin

β

2
(cos 4σ− − cos 4σ+)

]
.

(2.5.65)

We can immediately spot a similarity: Eq.(2.5.65) differs from Eq.(2.5.54) only for the
coefficients multiplying the Bessel functions j0, j2, j4. This means that we can still use
Eqs.(2.5.56)-(2.5.58) and Eqs.(2.5.61)-(2.5.63) to get the following results

Ξ+
V (α, β) = −

(
3

8
j0 +

45

112
j2 −

169

896
j4

)
+

(
1

2
j0 +

5

14
j2 +

27

56
j4

)
cosβ+

−
(

1

8
j0 −

5

112
j2 −

3

224
j4

)
cos 2β, (2.5.66)

and

Ξ−V (α, β) =

(
j0 −

5

14
j2 −

3

28
j4

)
cos4 β

2
. (2.5.67)
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Something analogous is obtained for the scalar mode: pluggin the second expression of
Eq.(2.5.36) into Eq.(2.5.33) we get

γSIJ(α) =

(
2j0 +

20

7
j2 +

6

7
j4

)
× 1

4

[
1

2
(cos 4σ− − cos 4σ+) + cosβ(cos 4σ− + cos 4σ+)+

+
1

2
cos2 β(cos 4σ− − cos 4σ+)

]
+

(
−60

7
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60

7
j4

)
× 1

4
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1

2
cosβ cos2 β

2
(cos 4σ− + cos 4σ+)+

+
1

4
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1

2
cos2 β cos2 β

2
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+
1

4
cosβ sin2 β(cos 4σ− − cos 4σ+)

]
+

+ 15j4 ×
1

4

[
1

2
cos2 β cos4 β

2
(cos 4σ− − cos 4σ+) +

1

2
sin2 β sin2 β

2
cos2 β

2
(cos 4σ− − cos 4σ+)+

+ cosβ sinβ cos3 β

2
sin

β

2
(cos 4σ− − cos 4σ+)

]
,

(2.5.68)

and once again we can use Eqs.(2.5.56)-(2.5.58), (2.5.61)-(2.5.63) to help us with our com-
putations. We finally get

Ξ+
S (α, β) = −

(
3

8
j0 +

45

56
j2 +

507

448
j4

)
+

(
1

2
j0 +

5

7
j2 −

81

112
j4

)
cosβ+

−
(

1

8
j0 −

5

56
j2 +

9

448
j4

)
cos 2β, (2.5.69)

and
Ξ−S (α, β) =

(
j0 −

5

7
j2 +

9

56
j4

)
cos4 β

2
. (2.5.70)

All these results can be finally used to compute Eq.(2.5.53) for each polarization mode.

2.6 Detectable SGWB Energy Density and Mode Separation

We now consider the Earth-based coordinate system introduced in Appendix C: both lo-
cation and orientation of 2nd-generation interferometers are well known [75, 76] and listed
in Table 2.2 and the detailed procedure we used to compute β, σ+ and σ− is also reported
in the same appendix. Numerical values of these angular parameters and characteristic
frequencies fc are shown in Table 2.3 and 2.4. Components of unit vectors directed along
each interferometer arm with respect to the detector center are also listed in Table 2.2; we
can use these values to compute the detector tensor and antenna power pattern for real GW
interferometers on Earth. Mollweide projections of square root antenna power pattern func-
tions are shown in Fig.2.10, 2.11 and 2.12 for tensor, vector and scalar modes respectively.

62



2.6. DETECTABLE SGWB ENERGY DENSITY AND MODE SEPARATION

0 0.2 0.4 0.6 0.8 1.0

Figure 2.10: Mollweide projection of
√

(F+)2 + (F×)2 for 2nd-generation interferometers
Ligo-Hanford (top left), Ligo-Livingston (top right), Virgo (bottom left) and Kagra (bottom
right). The coordinate system used is described in Appendix C. Unit vectors listed in Tab
2.2 were used to compute detector tensors.
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0 0.2 0.4 0.6 0.8 1.0

Figure 2.11: Mollweide projection of
√

(F x)2 + (F y)2 for 2nd-generation interferometers
Ligo-Hanford (top left), Ligo-Livingston (top right), Virgo (bottom left) and Kagra (bottom
right). The coordinate system used is described in Appendix C. Unit vectors listed in Tab
2.2 were used to compute detector tensors.
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0 0.2 0.4 0.6 0.8

Figure 2.12: Mollweide projection of
√

(F b)2 + (F l)2 for 2nd-generation interferometers
Ligo-Hanford (top left), Ligo-Livingston (top right), Virgo (bottom left) and Kagra (bottom
right). The coordinate system used is described in Appendix C. Unit vectors listed in Tab
2.2 were used to compute detector tensors.
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Central Location 1st Arm 2nd Arm
LH {−0.338,−0.6, 0.725} {−0.224, 0.799, 0.557} {−0.914, 0.0261,−0.405}
LL {−0.0116,−0.861, 0.508} {−0.953,−0.144,−0.266} {0.302,−0.488,−0.819}
V {0.712, 0.132, 0.690} {−0.701, 0.201, 0.684} {−0.0485,−0.971, 0.236}
K {−0.591, 0.546, 0.594} {−0.390,−0.838, 0.382} {0.706,−0.00580, 0.709}

Table 2.2: Cartesian coordinates Ligo Hanford (LH), Ligo Livingston (LL), Virgo (V),
Kagra (K) and unit vectors directed along each interferometer arm with respect to its
center. The coordinate system used is described in Appendix C.

These results along with Eq.(2.5.53) allow us to explicitly compute overlap reduction
functions for each detector pair: their plots are shown in Fig.2.14. Let us set the GW
frequency to zero: we have that j0 = 1 while j2 = 0 = j4. Since Eqs.(2.5.54),(2.5.65) and
(2.5.68) have the same coefficients multiplying j0 we get the same expression of Eq.(2.5.53)
for tensor, vector and scalar modes

γN (f = 0) = cos4 β

2
cos 4σ− − sin4 β

2
cos 4σ+, (2.6.1)

for N = T, V, S. This is the reason why for f � fc overlap functions behave in the same
way for each polarization mode as shown in Fig.2.14. Notice that γN (f = 0) 6= 1: this
issue arises from the fact that the detectors of each pair are not in the same location and do
not share the same orientation15. As we mentioned, overlap functions show an oscillatory
behaviour once f ≈ fc and approach 0 when f � fc. We are finally ready to compute the

β σ1 σ2 σ+ σ− fc [Hz]
LH-LL 27◦14′24′′ 196◦40′12′′ 286◦52′12′′ 241◦46′12′′ −45◦6′ 16.01
LH-V 79◦36′36′′ 173◦31′12′′ 115◦23′24′′ 144◦27′36′′ −29◦42′ 5.85
LH-K 72◦22′12′′ 28◦18′ 205◦47′24′′ 116◦54′36′′ −88◦52′48′′ 6.33
LL-V 79◦36′36′′ 145◦49′48′′ 199◦48′36′′ 172◦49′12′′ −26◦59′24′′ 6.03
LL-K 99◦18′ 23◦49′12′′ 295◦40′12′′ 159◦44′24′′ −135◦55′48′′ 4.92
V-K 86◦30′ 66◦14′24′′ 127◦49′48′′ 97◦1′48′′ −30◦48′ 5.46

Table 2.3: Separation angle β between detector pairs on the surface of the Earth and bisector
orientation σ1, σ2 relative to the circumference of radius R connecting the pair given in
degrees. Parameters σ+, σ− are also shown. The coordinate system used is described in
Appendix C.

SGWB energy density contributions for each polarization mode exploiting what we learned.
We begin by considering the simplest scenario: we assume the existence of only one between

15Indeed, choosing β = 0 and σ1 = σ2 we obtain γN (f = 0) = 1.
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β σ+ σ−

LH-LL 27.2 241.8 −45.1

LH-V 79.6 144.5 29.1

LH-K 72.4 116.9 −88.9

LL-V 76.8 172.8 −27.0

LL-K 99.3 159.7 −135.9

V-K 86.5 97.0 −30.8

Table 2.4: Separation and relative orientations of major interferometers on Earth given in
decimal degrees. The coordinate system used is described in Appendix C.

tensor, vector and scalar modes and a frequency independent GW-spectrum for each case,
meaning that the parameter related the GW energy density defined in Eq.(1.4.6) can be
taken outside the integral in Eq.(2.4.32). Secondly, we set SNR = 5 as a threshold and we
consider a total observation time of three years, thus we can rewrite Eq.(2.4.32) as follows

h2
0ΩN

gw = 5×
[(

3(100Kms−1Mpc−1)2
√

3yrs

10π2

)−1(∫ +∞

−∞
df

(γN (f))2

f6S2
n(f)

)− 1
2
]
, (2.6.2)

withN = T, V, S and16 h2
0ΩN

gw → τh2
0ΩN

gw ifN = S. The noise power spectral density can be
derived from detector sensitivity curves: these are usually constructed by taking the ratio of
the PSD to the detector sky- and polarization-averaged response to a GW [77]. Sensitivity
curves relative to 2nd-generation interferometers are public and provided by [79, 80] and
their plots are shown in Fig.2.13. Numerical values of the SGWB detectable energy density
ΩN
gw are reported in Table 2.5. Combinations of interferometers more sensitive to GWs are

between LIGO-Livingston, LIGO-Hanford and Virgo due to their better sensitivities. In
the most general case of a GW signal, tensor, vector and scalar modes are all present at
the same time and we need to consider the full form of Eq.(2.4.32), which mixes the three
contributions making it impossible to distinguish their energy density contributions with
only two interferometers. To overcome this issue, we need to consider a network of (at
least) three detectors which we simply denote 1, 2, 3: it is then possible to obtain three
different signals related to three possible detector pairs (1, 2), (2, 3), (3, 1), which we wish
to manipulate in order to compute ΩN

gw(f), with N = T, V, S. We show how this can be
achieved follwing [86], then we list the results obtained using updated noise data provided
by [79, 80]. We begin by considering Eqs.(2.4.8) and (2.4.22), we can deduce

〈s∗I(f)sJ(f)〉 =
3H2

0T

20π2
f−3

(
ΩT
gw(f)γTIJ(f) + ΩV

gw(f)γVIJ(f) + τ(f)ΩS
gw(f)γSIJ(f)

)
, (2.6.3)

16We recall that τ(f) = 1
3

(
1+2κ(f)
1+κ(f)

)
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Figure 2.13: Sensitivity curves for 2nd-generation interferometers. Plots were realized with
public data provided by [79, 80].

h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

LH-LL 8.96× 10−10 1.20× 10−9 1.19× 10−9

LH-V 4.82× 10−9 6.39× 10−9 2.54× 10−9

LH-K 3.95× 10−8 2.58× 10−8 1.91× 10−8

LL-V 4.82× 10−9 4.86× 10−9 2.81× 10−9

LL-K 6.93× 10−8 7.57× 10−8 6.41× 10−8

V-K 2.02× 10−8 2.80× 10−8 2.01× 10−8

Table 2.5: SGWB detectable energy density contributions for tensor, vector and scalar
modes if only one of these is present. A frequency independent GW-spectrum, and a total
observational time of three years were assumed. The signal to noise ratio was set to 5. All
detector pairs return similar values for each polarization SGWB energy density contribution.

with I, J = 1, 2, 3 denoting the three interferometers. We further introduce a new object
GIJ which satisfies

〈GIJ〉 =
20π2

3H2
0T

f3〈s∗I(f)sJ(f)〉 =
(
ΩT
gw(f)γTIJ(f) + ΩV

gw(f)γVIJ(f) + τ(f)ΩS
gw(f)γSIJ(f)

)
,

(2.6.4)
where ensemble averages were used in order to eliminate noise contributions, similarly to
the two detectors scenario. We can express our result as〈G12〉

〈G23〉
〈G31〉

 =

γT12 γV12 γS12

γT23 γV23 γS23

γT31 γV31 γS31

 ΩT
gw

ΩV
gw

τΩT
gw

 = Λ(f)

 ΩT
gw

ΩV
gw

τΩT
gw

 , (2.6.5)
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Figure 2.14: Overlap reduction functions of 2nd-generation ground-based interferometer
pairs on Earth. Plots were obtained from Eq.(2.5.53) and data listed in Tab. 2.4.
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where Λ is the detector correlation matrix. In case this matrix is invertible, we get ΩT
gw

ΩV
gw

τΩT
gw

 = Λ−1(f)

〈G12〉
〈G23〉
〈G31〉

 , (2.6.6)

where

Λ−1 =
1

detΛ

γV23γ
S
31 − γS23γ

V
31 γV31γ

S
12 − γS31γ

V
12 γV12γ

S
23 − γS12γ

V
23

γS23γ
T
31 − γT23γ

S
31 γS31γ

T
12 − γT31γ

S
12 γS12γ

T
23 − γT12γ

S
23

γT23γ
V
31 − γV23γ

T
31 γT31γ

V
12 − γV31γ

T
12 γT12γ

V
23 − γV12γ

T
23

 , (2.6.7)

and

detΛ = γT12(γV23γ
S
31 − γS23γ

V
31) + γV12(γS23γ

T
31 − γT23γ

S
31) + γS12(γT23γ

V
31 − γV23γ

T
31). (2.6.8)

For Λ to be invertible, its determinant needs to satisfy detΛ 6= 0: this condition is not
trivial and needs to be verified investigating real networks. We can express the inverse
matrix as

Λ−1 =

βT1 βT2 βT3
βV1 βV2 βV3
βS1 βS2 βS3

 , (2.6.9)

and define the new GW signal for each polarization mode as

SN =
3H2

0T

20π2

∫ ∞
−∞

dff−3
(
ΩN
gw(f)Q(f)

)
=

3H2
0T

20π2

∫ ∞
−∞

dff−3
(
βN1 〈G12〉+ βN2 〈G21〉+ βN3 〈G31〉

)
Q(f), (2.6.10)

while the noise becomes

N2
N =

T

4

∫ ∞
−∞

df
[
(βN1 )2Sn1(f)Sn2(f) + (βN2 )2Sn2(f)Sn3(f) + (βN3 )2Sn3(f)Sn1(f)

]
Q2(f),

(2.6.11)
with N = T, V, S. We then define

ZN =
[
(βN1 )2Sn1(f)Sn2(f) + (βN2 )2Sn2(f)Sn3(f) + (βN3 )2Sn3(f)Sn1(f)

] 1
2 , (2.6.12)

and we introduce the analogous inner product of Eq.(2.4.29)

H ·G =

∫ ∞
−∞

dfH∗(f)G(f)Z2
N (f). (2.6.13)

It is straightforward to see that the SNR may be expressed as

(
S

N

)
N=T,V,S

=
3H2

0

√
T

10π2

(Q(f) ·
(ΩNgw(f)

f3Z2
N

)√
Q(f) ·Q(f)

)
, (2.6.14)
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and the filter function that maximizes the SNR

Q(f) ∝
ΩN
gw(f)

f3Z2
n

. (2.6.15)

In the end we obtain(
S

N

)
N=T,V,S

=
3H2

0

√
T

10π2

(∫ +∞

−∞
df

(ΩN
gw(f))2

f6Z2
N (f)

) 1
2

, (2.6.16)

which is the formula we use to efficiently separate tensor, vector and scalar modes. As we
mentioned, the condition detΛ(f) 6= 0 needs to be satisfied: indeed, ZN (f) ∝ (detΛ(f))−1

and if the determinant is zero, so is the SNR. For each possible triad of 2nd-generation
interferometers on Earth, we show how detΛ(f) behaves in Fig. 2.15: we mentioned how
overlap functions have similar values for f � fc and reduce to zero for f � fc, thus
the determinant filters GW frequencies and allows a true mode separation only for finite
ranges (10-100 Hz) far away from f∗: this is another instance that justifies us to use the
long wavelength limit. We checked ZN (f) functions regularity and zeros and no anomalous
behaviours were found. We finally list our results in Tab. 2.6 for the detectable energy
density: once again we assumed a frequency independent GW-spectrum for each polariza-
tion mode. We notice that all networks return similar values for each polarization SGWB
energy density contribution.

h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

LH-LL-V 4.36× 10−9 1.06× 10−8 3.75× 10−9

LH-LL-K 2.32× 10−8 4.09× 10−8 3.01× 10−8

V-K-LL 2.55× 10−8 5.04× 10−8 4.73× 10−8

V-K-LH 2.64× 10−8 2.69× 10−8 1.80× 10−8

Table 2.6: SGWB detectable energy density contributions for tensor, vector and scalar
modes considering three detector networks. A frequency independent GW-spectrum, and
a total observational time of three years is assumed. The SNR is set to 5. All possible
networks return similar values for each polarization SGWB energy density contribution.
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Figure 2.15: Plots of detΛ(f) defined in Eq.(2.6.8) for each possible network built with
three 2nd-generation ground-based interferometers on Earth. Overlap reduction functions
have similar values for f � ffc and collapse to zero for f � fc, thus the determinant filters
GW frequencies and allows a true mode separation only for finite frequency ranges.
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Chapter 3
3nd-generation ground based
interferometers

3.1 Response Functions of a V-shaped Interferometer

In this chapter we generalize some of the previously obtained results to the case of a
V-shaped interferometer, like will probably be ET [14]. Once again we consider the or-
thonormal coordinate system shown in Eq.(2.1.6) and we proceed by finding the proper
expression of the detector tensor. Let us first consider the case where the GW frequency
f � f∗: assuming that versors directed along each detector arm are ê1 = (1, 0, 0) and
ê2 = (cos η, sin η, 0) we have

Df�f∗ =

 1
2 sin2 η −1

2 sin η cos η 0
−1

2 sin η cos η −1
2 sin2 η 0

0 0 0

 . (3.1.1)

An example of this configuration is shown by blue versors in the left panel of Fig.3.1 for
η = π

3 . Let us further reconsider Eq.(2.1.4): angular pattern functions for a V-shaped
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Figure 3.1: (Left) Example of possible configurations for a V-shaped detector with an
internal angle of π3 . (Right) Orientation of the detector arms (red, solid) and bisector (red,
dashed) with respect to the vector (x axis) tangent to the circumference connecting the
detector pair together.

interferometer are then given by

F+(θ, φ, ψ, η) =
1

4
sin η((cos 2θ + 3) cos 2ψ sin(η − 2φ)− 4 cos θ sin 2ψ cos(η − 2φ))

F×(θ, φ, ψ, η) =
1

4
sin η(−4 cos θ cos 2ψ cos(η − 2φ)− (cos 2θ + 3) sin 2ψ sin(η − 2φ))

F b(θ, φ, η) = −1

2
sin η sin2 θ sin(η − 2φ)

F l(θ, φ, η) =
1√
2

sin η sin2 θ sin(η − 2φ)

F x(θ, φ, ψ, η) = sin η sin θ(cos θ cosψ sin(η − 2φ)− sinψ cos(η − 2φ))

F y(θ, φ, ψ, η) = − sin η sin θ(cos θ sinψ sin(η − 2φ) + cosψ cos(η − 2φ)).
(3.1.2)

As a consistency check for η = π
2 we get expressions previously found for an L-shaped

interferometer and given by Eqs.(2.1.21)-(2.1.26), which is an expected and correct result.
We notice that F b(θ, φ, η) and F l(θ, φ, η) still differ only for a constant factor, thus consid-
ering different opening angles do not break the degeneracy between scalar modes. When
f ≈ f∗ the full form of the detector tensor is given by Eq.(2.2.18): transfer function effects
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cannot be neglected this time, thus we have

D =

 1
2

(
T1 − T2 cos2 η

)
−1

2T2 sin η cos η 0
−1

2T2 sin η cos η −1
2T2 sin2 η 0

0 0 0

 , (3.1.3)

where Ti, i = 1, 2, are transfer functions for each arm. The latter expression reduces to
Eq.(3.1.1) in the long wavelength limit, where Ti ≈ 1. Angular pattern functions now
depend on GW frequencies, thus we get

F+(θ, φ, ψ, η, f) =
1

4
[cos 2ψ(cos2 θ(cos 2φ(T1 − T2 cos 2η) + T1 − T2) + cos 2φ(T1 − T2 cos 2η)+

− T1 − T2 sin η cos η(cos 2θ + 3) sin 2φ+ T2)− 2 cos θ sin 2ψ(T1 sin 2φ+ T2 sin(2(η − φ)))]

F×(θ, φ, ψ, η, f) =
1

8
[sin 2ψ((cos 2θ + 3) cos 2φ(T2 cos 2η − T1) + 2(T1 − T2) sin2 θ+

+ T2 sin 2η(cos 2θ + 3) sin 2φ)− 4 cos θ cos 2ψ(T1 sin 2φ+ T2 sin(2(η − φ)))]

F b(θ, φ, η, f) =
1

8
[2 sin2 θ(T2 cos(2(η − φ))− T1 cos 2φ) + (T1 − T2)(cos 2θ + 3)]

F l(θ, φ, η, f) =
sin2 θ(T1 cos 2φ+ T1 − T2 cos(2(η − φ))− T2)

2
√

2

F x(θ, φ, ψ, η, f) =
1

2
sin θ[cos θ cosψ(T1 cos 2φ+ T1 − T2 cos(2(η − φ))− T2)+

− sinψ(T1 sin 2φ+ T2 sin(2(η − φ)))]

F y(θ, φ, ψ, η, f) =
1

4
[sin 2θ sinψ(T1(− cos 2φ)− T1 + T2 cos(2(η − φ)) + T2)+

− 2 sin θ cosψ(T1 sin 2φ+ T2 sin(2(η − φ)))].
(3.1.4)

This result is very intriguing: it suggests that if f ≈ f∗ or higher, then the degeneracy
between breathing and longitudinal modes is broken. We merely assert this here, while we
deeply investigate this behaviour at the end of this chapter using both Einstein Telescope
and Cosmic Explorer interferometers. For the rest of this section we assume the condition
f � f∗ to be valid instead. Since we are only changing the detector internal angle we expect
Eq. (2.5.1) to be the same in form, although we recall that normalization factors appearing
in Eqs.(2.5.2)-(2.5.4) were obtained considering two L shaped interferometers. To overcome
this issue, we simply need to compute Eqs.(2.4.16)-(2.4.18) taking two interferometers with
opening angles η and τ , with η, τ ∈ (0, π2 ]. From Eq.(3.1.2) it is straightforward to see that

F TIJ =
2

5
sin η sin τ, F VIJ =

2

5
sin η sin τ, FSIJ =

1 + 2κ

15
sin η sin τ, (3.1.5)

which are general normalization factors affected by the interferometer opening angle. We
now wish to compute the overlap reduction function of a V-shaped interferometer pair on
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Earth by retracing what we did in the previous chapter: detectors I and J now have opening
angles η and τ and we choose unit vectors directed along their arms as ê′1, ê′2 and ê′′1, ê′′2.
These unit vectors are expressed as a counterclowise rotation of the unit vectors x̂′ and x̂′′

on the (x̂′, ŷ′) and (x̂′′, ŷ′′) planes with respect to the proper x-axis. Rotation angles are
now γ = σ1 − η

2 and δ = σ2 − τ
2 . Considering the left panel of Fig. 2.9 and the right panel

of Fig. 3.1 this time we get

ê′1 = (cos γ, sin γ, 0), ê′2 = (cos(η + γ), sin(η + γ), 0),

ê′′1 = (cosβ cos δ, sin δ, sinβ cos δ), ê′′2 = (cosβ cos(τ + δ), sin(τ + δ), sinβ cos(τ + δ)),
(3.1.6)

and the following expressions for the detector tensors

DI =
1

2

{
ê
′
1 ⊗ ê

′
1 − ê

′
2 ⊗ ê

′
2

}
=

sin η

2

 sin(η + 2γ) − cos(η + 2γ) 0
− cos(η + 2γ) − sin(η + 2γ) 0

0 0 0

 , (3.1.7)

and

DJ =
1

2

{
ê
′′
1 ⊗ ê

′′
1 − ê

′′
2 ⊗ ê

′′
2

}
=

=
sin τ

2

 cos2 β sin(τ + 2δ) − cosβ cos(τ + 2δ) − sinβ cosβ sin(τ + 2δ)
− cosβ cos(τ + 2δ) − sin(τ + 2δ) sinβ cos(τ + 2δ)

− sinβ cosβ sin(τ + 2δ) sinβ cos(τ + 2δ) sin2 β sin(τ + 2δ)

 .

(3.1.8)

We simply need to compute the same objects we met beofore, we get

• for Dij
I DJij

Dij
I DJij = D11

I DJ11 +D12
I DJ12 +D21

I DJ21 +D22
I DJ22

=
sin η sin τ

4

(
sin(η + 2γ) sin(τ + 2δ) + 2 cosβ cos(η + 2γ) cos(τ + 2δ)+

+ cos2 β sin(η + 2γ) sin(τ + 2δ)
)
,

(3.1.9)

• for Di
IkD

kj
J didj

Di
IkD

kj
J didj = D1

I1D
11
J d1d1 +D1

I1D
13
J d1d3 +D1

I2D
21
J d1d1 +D1

I2D
23
J d1d3

=
sin η sin τ

4

(
cosβ cos2 β

2
cos(η + 2γ) cos(τ + 2δ)+

+ sinβ sin
β

2
cos

β

2
cos(η + 2γ) cos(τ + 2δ) + cos2 β cos2 β

2
sin(η + 2γ) sin(τ + 2δ)+

+ sinβ cosβ sin
β

2
cos

β

2
sin(η + 2γ) sin(τ + 2δ)

)
,

(3.1.10)
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• for Dij
I D

kl
J didjdkdl

Dij
I D

kl
J didjdkdl = D11

I D
11
J d1d1d1d1 +D11

I D
13
J d1d1d1d3 +D11

I D
31
J d1d1d3d1 +D11

I D
33
J d1d1d3d3

=
sin η sin τ

4

(
cos2 β cos4 β

2
sin(η + 2γ) sin(τ + 2δ)+

+ 2 sinβ cosβ sin
β

2
cos3 β

2
sin(η + 2γ) sin(τ + 2δ)

+ sin2 β sin2 β

2
cos2 β

2
sin(η + 2γ) sin(τ + 2δ)

)
.

(3.1.11)

Notice how the factor sin η sin τ is common between all these contractions. We define the
two parameters σ+ ≡ σ1+σ2

2 and σ− ≡ σ1−σ2
2 , this way can compute{

cos(η + 2γ) cos(τ + 2δ) = 1
2

(
cos 4σ− + cos 4σ+

)
sin(η + 2γ) sin(τ + 2δ) = 1

2

(
cos 4σ− − cos 4σ+

) . (3.1.12)

Considering Eqs.(2.5.1) and (3.1.5) we notice that factors (sin η sin τ)−1 relative to the
overlap normalizations and the factor sin η sin τ relative to the detector tensor contractions
perfectly elide each other, meaning that the overlap reduction function expression is still
given by Eq.(2.5.53), computed for an L-shaped interferometer. Notice that this is due to
the normalization choice we have made for overlap functions; although the SNR is reduced
by a factor sin η sin τ with respect to the case of two L-shaped interferometers

S

N
=

3H2
0

√
T sin η sin τ

10π2

(∫ +∞

−∞
df

(γ(f)Ωgw(f))2

f6S2
n(f)

) 1
2

. (3.1.13)

3.2 The Einstein Telescope

The Einstein Telescope Project (ET) is an upcoming third-generation ground-based grav-
itational wave detector. A possible configuration for [82, 83] ET adopts the xylophone
configuration which consists of three underground detectors, each in turn composed of two
aligned V-shaped interferometers with an opening angle η = π

3 , arm length L = 10 Km and
characteristic frequency f∗ ≈ 4774 Hz. One interferometer is optimized to detect low GW
frequencies (1 Hz - 250 Hz), while the other one aims to detect GWs with higher frequen-
cies (10 Hz - 10 kHz) and the two are expected to work together to extend ET detectors
sensitivity to the whole allowed frequency range [82]. These three detectors are displaced
in a triangular way as shown in Fig.3.2, where we decided to label them as A, B and C.
We then consider the frame of reference introduced by Eq.(2.1.6), this way we can define
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Figure 3.2: Einstein Telescope interferometers configuration.

versors directed along each interferometer arm

êA1 = (cos 0, sin 0, 0)T , êA2 = (cos
π

3
, sin

π

3
, 0)T , (3.2.1a)

êB1 = (cos
(
π − π

3

)
, sin

(
π − π

3

)
, 0)T , êB2 = (cosπ, sinπ, 0)T , (3.2.1b)

êC1 = (cos
(
π +

π

3

)
, sin

(
π +

π

3

)
, 0)T , êC2 = (cos

(
2π − π

3

)
, sin

(
2π − π

3

)
, 0)T .

(3.2.1c)

The Einstein Telescope can detect GWs with f ≶ f∗, thus in the following we need to
consider two different working regimes.
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3.2.1 Einstein Telescope at Low Frequencies

Let us start assuming the long wavelength limit is valid: we have three different detector
tensors, one for each ET interferometer1

DA
f�f∗ =

 3
8 −

√
3

8 0

−
√

3
8 −3

8 0
0 0 0

 , (3.2.2a)

DB
f�f∗ =

 −3
8 −

√
3

8 0

−
√

3
8

3
8 0

0 0 0

 , (3.2.2b)

DC
f�f∗ =

 0
√

3
4 0√

3
4 0 0
0 0 0

 . (3.2.2c)

As we did for 2nd-generation interferometers, it is straightforward to compute angular
pattern functions for each mode using Eq.(2.1.4)

F+
A (θ, φ, ψ) =

√
3

8
((cos 2θ + 3) cos 2ψ sin

(π
3
− 2φ

)
− 4 cos θ sin 2ψ cos

(π
3
− 2φ

)
) (3.2.3a)

F+
B (θ, φ, ψ) = −

√
3

8
((cos 2θ + 3) cos 2ψ sin

(π
3

+ 2φ
)

+ 4 cos θ sin 2ψ cos
(π

3
+ 2φ

)
)

(3.2.3b)

F+
C (θ, φ, ψ) =

√
3

2

(
1

4
(cos 2θ + 3) cos 2ψ sin 2φ+ cos θ sin 2ψ cos 2φ

)
(3.2.3c)

F×A (θ, φ, ψ) = −
√

3

8
(4 cos θ cos 2ψ cos

(π
3
− 2φ

)
+ (cos 2θ + 3) sin 2ψ sin

(π
3
− 2φ

)
)

(3.2.3d)

F×B (θ, φ, ψ) =

√
3

8
((cos 2θ + 3) sin 2ψ sin

(π
3

+ 2φ
)
− 4 cos θ cos 2ψ cos

(π
3

+ 2φ
)

) (3.2.3e)

F×C (θ, φ, ψ) =

√
3

2

(
cos θ cos 2ψ cos 2φ− 1

4
(cos 2θ + 3) sin 2ψ sin 2φ

)
, (3.2.3f)

1Each interferometer couple of the xylophone configuration can be considered as one interferometer
sensible to GW frequencies ranging from 1-10 Hz.
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F xA(θ, φ, ψ) =

√
3

2
sin θ(cos θ cosψ sin

(π
3
− 2φ

)
− sinψ cos

(π
3
− 2φ

)
) (3.2.4a)

F xB(θ, φ, ψ) = −
√

3

2
sin θ(cos θ cosψ sin

(π
3

+ 2φ
)

+ sinψ cos
(π

3
+ 2φ

)
) (3.2.4b)

F xC(θ, φ, ψ) =
1

2
sin θ(cos θ cosψ sin 2φ+ sinψ cos 2φ) (3.2.4c)

F yA(θ, φ, ψ) = −
√

3

2
sin θ(cos θ sinψ sin

(π
3
− 2φ

)
+ cosψ cos

(π
3
− 2φ

)
) (3.2.4d)

F yB(θ, φ, ψ) =

√
3

2
sin θ(cos θ sinψ sin

(π
3

+ 2φ
)
− cosψ cos

(π
3

+ 2φ
)

) (3.2.4e)

F yC(θ, φ, ψ) =
1

2
sin θ(cosψ cos 2φ− 2 cos θ sinψ sinφ cosφ). (3.2.4f)

F bA(θ, φ) = −
√

3

4
sin2 θ sin

(π
3
− 2φ

)
(3.2.5a)

F bB(θ, φ) =

√
3

4
sin2 θ sin

(π
3

+ 2φ
)

(3.2.5b)

F bC(θ, φ) = −
√

3

2
sin2 θ sinφ cosφ (3.2.5c)

F lA(θ, φ) =

√
3 sin2 θ sin

(
π
3 − 2φ

)
2
√

2
(3.2.5d)

F lB(θ, φ) = −
√

3 sin2 θ sin
(
π
3 + 2φ

)
2
√

2
(3.2.5e)

F lC(θ, φ) =
1√
2

sin2 θ sinφ cosφ, (3.2.5f)

Notice how the following identities are satisfied due to ET geometrical configuration

FQB (θ, φ, ψ) = FQA (θ, φ− 2π

3
, ψ), FQC (θ, φ, ψ) = FQA (θ, φ+

2π

3
, ψ), (3.2.6)

with Q = +,×, b, l, x, y. While discussing 2nd-generation interferometers we introduced
antenna power pattern functions2 and we mentioned they are ψ3-independent quantities
representing the maximum detector reach along different angular directions. Since we now
have three detectors, it is indeed useful to consider the network joint response to tensor,

2We recall that the antenna power pattern function represent the detector maximum detection reach
along different angular directions.

3We recall that ψ is the polarization angle.
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vector and scalar modes, which are defined as

F T (θ) =
∑

k=A,B,C

(
(F+

k )2 + (F×k )2
)

=
9

256

(
35 + 28 cos 2θ + cos 4θ

)
, (3.2.7)

F V (θ) =
∑

k=A,B,C

(
(F xk )2 + (F yk )2

)
=

9

16

(
3 + cos 2θ

)
sin2 θ, (3.2.8)

FS(θ) =
∑

k=A,B,C

(
(F bk)2 + (F lk)

2
)

=
27 sin4 θ

32
. (3.2.9)

We appreciate how ET joint responses are independent from both angular variables ψ and
φ for each polarization mode: relative plots are shown in Fig. 3.3, 3.4, 3.5. If we compare
them to Fig. 2.6 and 2.8 we notice how the GWs detection reach is definitely improved
for ET: starting from tensor modes, the Einstein Telescope presents no blind spots at all,
making ET sensible to GWs incoming from every direction; moving on to vector and scalar
modes, only GWs along directions perpendicular to the interferometer plane (θ = 0, π)
cannot be detected. Moreover, V-shaped interferometers suffer from an opening angle of π3 ,
but all three detectors combined enhance ET maximum detection reach by the following
factors κN[

(F+(θ = 0, φ))2 + (F×(θ = 0, φ))2
]
L

= 1, F T (0) =
9

4
, κT =

(
3

2

)2

> 1, (3.2.10a)

[
(F x(θ =

π

2
, φ =

π

4
))2 + (F y(θ =

π

2
, φ =

π

4
))2
]
L

= 1, F V (
π

2
) =

9

8
, κV =

1

2

(
3

2

)2

> 1,

(3.2.10b)[
(F b(θ =

π

2
, φ = 0))2 + (F l(θ =

π

2
, φ = 0))2

]
L

=
27

32
, F V (

π

2
) =

3

4
, κS =

1

2

(
3

2

)2

> 1,

(3.2.10c)

where the subscript “L” denotes a single L-shaped interferometer.
At the time of writing (2020) there are two possible Earth locations where ET can

be placed [82, 84] the first one is in Italy, in the Sos Enattos mine in the city of Lula in
Sardinia (ETS), while the second one is in Netherland in the city of Limburg (ETN). If we
consider the Earth-based frame of reference introduced in Appendix C, then these locations
are denoted by

x̂ETS = (0.750, 0.125, 0.649), x̂ETN = (0.631,−0.089, 0.770). (3.2.11)

81



CHAPTER 3. 3ND-GENERATION GROUND BASED INTERFEROMETERS

-1.0 -0.5 0.5 1.0

x

-1.0

-0.5

0.5

1.0

y

Figure 3.3: 3D plot of
√
F T (θ), and relative projection on a 2D plane for different fixed

values of θ ((π6 , dot-dashed), (
π
4 , dotted), (

π
3 , dashed), (

π
2 , solid). In terms of tensor modes,

there are no blind directions and ET can cover the whole sky. Due to ET triangular
configuration, the maximum detection reach is enhanced by 3

2 with respect to a single
L-shaped interferometer.
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Figure 3.4: 3D plot of
√
F V (θ) and relative projection on a 2D plane for different fixed

values of θ ((π6 , dot-dashed), (
π
4 , dotted), (

π
3 , dashed), (

π
2 , solid). In terms of cector modes

blind directions are present for θ = 0, π. Due to ET triangular configuration, the maximum
detection reach for tensor modes is enhanced by 3

2
√

2
with respect to a single L-shaped

interferometer.
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Figure 3.5: 3D plot of
√
FS(θ) and relative projection on a 2D plane for different fixed

values of θ ((π6 , dot-dashed), (
π
4 , dotted), (

π
3 , dashed), (

π
2 , solid). In terms of scalar modes

blind directions are present for θ = 0, π. Due to ET triangular configuration, the maximum
detection reach for tensor modes is enhanced by 3

2
√

2
with respect to a single L-shaped

interferometer.

83



CHAPTER 3. 3ND-GENERATION GROUND BASED INTERFEROMETERS

We further consider Earth rotation around its axis with constant angular velocity ω =
7.29 × 10−5rad/s and we wish to understand how this motion affects the detector joint
response to GWs. Let us focus on the Sardinia site for a concrete example: the Einstein
Telescope lies on the plane π orthogonal to the direction denoted by x̂ETS, thus we have

π : (0.750)x+ (0.125)y + (0.649)z + ω = 0, (3.2.12)

where ω can be set to zero once we pick the plane containing the origin O = (0, 0, 0)T . We
showed in Eqs.(3.2.7)-(3.2.9) that joint responses do not depend on φ. This is a general
result due to ET triangular configuration, thus we can pick any unit vector lying on π to
be the one directed along the first interferometer arm; a simple example may be

ê1 =
(1,−0.750

0.125 , 0)T

‖(1,−0.750
0.125 , 0)‖

= (0.1644,−0.9864, 0)T . (3.2.13)

We want to account for Earth rotation and we do that rotating ê1 by ωt around Earth axis,
thus

ê1(t) =

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 0.1644
−0.9864

0

 . (3.2.14)

It is then straightforward to find unit vectors related to all interferometer arms rotating4

ê1(t) around x̂ETS by α = mπ
3 , with m = 1, 2, 3, 4, 5; this procedure can be easily extended

to the Netherland site. This allow us to investigate ET joint responses to tensor, vector
and scalar modes merely by knowing its location on Earth: indeed we can build detector
tensors and solve Eq.(2.1.4) numerically. In Fig. 3.6, 3.7 and 3.8 we show the Mollweide
projections at 6 hours intervals of the joint responses relative to the Einstein Telescope
located at the Sardinia site, while in Fig. 3.9, 3.10 and 3.11 we show the ones relative
to the Netherland site. Since these two sites are very close together, we get very similar
results. It is worth noting that Earth rotation allows ET vector and scalar responses to
cover the whole sky along one day period, thus overcoming the blind directions issue; this
problem does not arise for plus and cross polarized GWs since in terms of tensor modes ET
has no blind directions.

4Since L� RE we can assume ET detectors lay on the same plane.
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Figure 3.6: Mollweide projections of the Einstein Telescope (Sardinia site) joint response
for tensor modes for f � f∗. The Earth-based coordinate system used is described in
Appendix C. Earth rotation was also considered and plots are given every 6 hours. In the
context of tensor modes, the Einstein Telescope has all-sky coverage, with best detection
reach for GWs coming along orthogonal directions to the detector plane.
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Figure 3.7: Mollweide projections of the Einstein Telescope (Sardinia site) joint response for
vector modes for f � f∗. The Earth-based coordinate system used is described in Appendix
C. Earth rotation was also considered and plots are given every 6 hours. In the context of
vector modes, the Einstein Telescope has only one blind spot along the orthogonal direction
to the detector plane. The best detection reach is for GWs coming along parallel directions
to the detector plane.
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Figure 3.8: Mollweide projections of the Einstein Telescope (Sardinia site) joint response for
scalar modes for f � f∗. The Earth-based coordinate system used is described in Appendix
C. Earth rotation was also considered and plots are given every 6 hours. In the context of
scalar modes, the Einstein Telescope has only one blind spot along the orthogonal direction
to the detector plane. The best detection reach is for GWs coming along parallel directions
to the detector plane.
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Figure 3.9: Mollweide projections of the Einstein Telescope (Netherland site) joint response
to tensor modes for f � f∗. The Earth-based coordinate system used is described in
Appendix C. Earth rotation was also considered and plots are given every 6 hours. In the
context of tensor modes, the Einstein Telescope has all-sky coverage, with best detection
reach for GWs coming along the orthogonal direction to the detector plane.
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Figure 3.10: Mollweide projections of the Einstein Telescope (Netherland site) joint re-
sponse to vector modes for f � f∗.The Earth-based coordinate system used is described
in Appendix C. Earth rotation was also considered and plots are given every 6 hours. In
the context of vector modes, the Einstein Telescope has only one blind spot along the or-
thogonal direction to the detector plane. The best detection reach is for GWs coming along
parallel directions to the detector plane.
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Figure 3.11: Mollweide projections of the Einstein Telescope (Netherland site) joint response
to scalar modes for f � f∗. The Earth-based coordinate system used is described in
Appendix C. Earth rotation was also considered and plots are given every 6 hours. In the
context of scalar modes, the Einstein Telescope has only one blind spot along the orthogonal
direction to the detector plane. The best detection reach is for GWs coming along parallel
directions to the detector plane.
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3.2.2 Einstein Telescope at High Frequencies

Let us now focus on GW frequencies f & f∗. This time we need to consider detector tensors
accounting for transfer functions effects, thus their expressions are given by Eq.(2.2.18) or
(2.3.19) depending on which configuration we are using. We can keep the discussion general
for the time being, thus we do not write down explicit expressions for transfer functions.
Once again we begin by considering unit vectors given by Eq.(3.2.1), although this time we
have three different frequency-dependent detector tensors, one for each ET interferometer

DA =

1
2

(
TA1 − TA2

4

)
−
√

3
8 TA2 0

−
√

3
8 TA2 −3

8TA2 0
0 0 0

 , (3.2.15a)

DB =

1
2

(
TB1

4 − TB2

)
−
√

3
8 TB1 0

−
√

3
8 TB1

3
8TB1 0

0 0 0

 , (3.2.15b)

DC =

 1
8(TC1 − TC2)

√
3

8 (TC1 + TC2) 0√
3

8 (TC1 + TC2) 3
8(TC1 − TC2) 0

0 0 0

 , (3.2.15c)

where we have defined the transfer functions TM1(Ω̂ · êM1, f) and TM2(Ω̂ · êM2, f), with
M = A,B,C. As we mentioned, this implies frequency dependent angular pattern functions
for each polarization mode. Starting from the tensor ones we get

F+
A (θ, φ, ψ, f) =

1

4

(
cos 2ψ

(
cos2 θ(cos 2φ(TA1 − TA2 cos 2

π

3
) + TA1 − TA2) + cos 2φ(TA1 − TA2 cos 2

π

3
)+

− TA1 − TA2 sin
π

3
cos

π

3
(cos 2θ + 3) sin 2φ+

+ TA2

)
− 2 cos θ sin 2ψ(TA1 sin 2φ+ TA2 sin

(
2(
π

3
− φ)

)
)
)

(3.2.16a)

F+
B (θ, φ, ψ, f) =

1

8
(cos 2ψ((TB1 − TB2) cos 2θ + TB1(cos 2θ + 3) cos

(
2(
π

3
+ φ)

)
+

− TB1 − TB2(cos 2θ + 3) cos 2φ+

+ TB2) + 4 cos θ sin 2ψ(TB2 sin 2φ− TB1 sin
(

2(
π

3
+ φ)

)
)) (3.2.16b)

F+
C (θ, φ, ψ, f) =

1

2

(
(TC1 − TC2) cos2 π

3

(
cos 2ψ

(
cos2 θ cos2 φ− sin2 φ

)
− 4 cos θ sinψ cosψ sinφ cosφ

)
+

+ (TC1 − TC2) sin2 π

3

(
cos 2ψ

(
cos2 θ sin2 φ− cos2 φ

)
+ cos θ sin 2ψ sin 2φ

)
+

+ (TC1 + TC2) sin 2
π

3

(1

4
(cos 2θ + 3) cos 2ψ sin 2φ+ cos θ sin 2ψ cos 2φ

))
(3.2.16c)
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F×A (θ, φ, ψ, f) =
1

8

(
sin 2ψ

(
(cos 2θ + 3) cos 2φ(TA2(−1

2
)− TA1) + 2(TA1 − TA2) sin2 θ+

+ TA2(

√
3

2
)(cos 2θ + 3) sin 2φ

)
− 4 cos θ cos 2ψ(TA1 sin 2φ+

+ TA2 sin
(

2(
π

3
− φ)

)
)
)

(3.2.17a)

F×B (θ, φ, ψ, f) =
1

8
(4 cos θ cos 2ψ(TB2 sin 2φ− TB1 sin

(
2(
π

3
+ φ)

)
) + sin 2ψ((TB2 − TB1) cos 2θ+

+ TB1(−(cos 2θ + 3)) cos
(

2(
π

3
+ φ)

)
+ TB1+

+ TB2(cos 2θ + 3) cos 2φ− TB2)) (3.2.17b)

F×C (θ, φ, ψ, f) =
1

16

(
sin 2ψ

(
−2(TC1 − TC2)(−1

2
)(cos 2θ + 3) cos 2φ− 2(TC1 + TC2)(

√
3

2
)(cos 2θ + 3) sin 2φ+

+ 4(TC1 − TC2) sin2 θ
)

+ 8 cos θ cos 2ψ(TC1 sin
(

2(
π

3
− φ)

)
+

+ TC2 sin
(

2(
π

3
+ φ)

)
)
)
, (3.2.17c)

for breathing and longitudinal scalar modes we get

F bA(θ, φ, f) =
1

8

(
2 sin2 θ(TA2 cos

(
2(
π

3
− φ)

)
− TA1 cos 2φ) + (TA1 − TA2)(cos 2θ + 3)

)
(3.2.18a)

F bB(θ, φ, f) =
1

8

(
cos 2θ(TB1 − TB2 cos 2φ− TB2)− 2TB1 sin2 θ cos

(
2(
π

3
+ φ)

)
+

+ 3TB1 + TB2 cos 2φ− 3TB2

)
(3.2.18b)

F bC(θ, φ, f) =
1

2

(
(TC1 − TC2)(

1

4
)
(
cos2 θ cos2 φ+ sin2(φ)

)
+ (TC1 − TC2)(

3

4
)
(
cos2 θ sin2(φ)+

+ cos2 φ
)
− (TC1 + TC2)(

√
3

2
) sin2 θ sinφ cosφ

)
(3.2.18c)

F lA(θ, φ, f) =
sin2 θ(TA1 cos 2φ+ TA1 − TA2 cos

(
2(π3 − φ)

)
− TA2)

2
√

2
(3.2.19a)

F lB(θ, φ, f) =
sin2 θ(TB1 cos

(
2(π3 + φ)

)
+ TB1 − TB2 cos 2φ− TB2)

2
√

2
(3.2.19b)

F lC(θ, φ, f) =
sin2 θ(TC1 cos

(
2(π3 − φ)

)
+ TC1 − TC2 cos

(
2(π3 + φ)

)
− TC2)

2
√

2
, (3.2.19c)
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and for x and y vector modes we get

F xA(θ, φ, ψ, f) =
1

2
sin θ(cos θ cosψ(TA1 cos 2φ+ TA1 − TA2 cos

(
2(
π

3
− φ)

)
− TA2)+

− sinψ(TA1 sin 2φ+ TA2 sin
(

2(
π

3
− φ)

)
)) (3.2.20a)

F xB(θ, φ, ψ, f) =
1

2
sin θ(cos θ cosψ(TB1 cos

(
2(
π

3
+ φ)

)
+ TB1 − TB2 cos 2φ− TB2)+

+ sinψ(TB2 sin 2φ− TB1 sin
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2(
π

3
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)
)) (3.2.20b)

F xC(θ, φ, ψ, f) =
1

2
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(
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F yA(θ, φ, ψ, f) =
1

2
sin θ(cos θ sinψ(TA1(− cos 2φ)− TA1 + TA2 cos

(
2(
π

3
− φ)

)
+ TA2)+

− cosψ(TA1 sin 2φ+ TA2 sin
(

2(
π

3
− φ)

)
)) (3.2.21a)

F yB(θ, φ, ψ, f) =
1

2
sin θ(cos θ sinψ(TB1(− cos

(
2(
π

3
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)
)− TB1 + TB2 cos 2φ+ TB2)+

+ cosψ(TB2 sin 2φ− TB1 sin
(

2(
π

3
+ φ)

)
)) (3.2.21b)

F yC(θ, φ, ψ, f) =
1

2
sin θ(cos θ sinψ(TC1(− cos

(
2(
π

3
− φ)

)
)− TC1 + TC2 cos

(
2(
π

3
+ φ)

)
+ TC2)+

+ cosψ(TC1 sin
(

2(
π

3
− φ)

)
+ TC2 sin

(
2(
π

3
+ φ)

)
)). (3.2.21c)

Finally we consider both the Earth-based frame of reference introduced in Appendix C and
Earth rotation to get Mollweide projections of ET response functions for tensor, vector and
scalar modes at high frequencies. We discussed how Michelson transfer functions already
contain all the information relative to both detector geometry and GW direction, which is
what we are really interested in while studying ET detection reach. Joint responses still
do not depend on the polarization angle ψ, but the cylindrical simmetry along φ is slightly
broken: indeed if we retrace what we did in the long wavelength limit, then the initial arm
unit vector choice ( e.g. once we define each interferometer orientation ) affects the detector
response and the result loses its generality. In the context of cross-correlation we mostly
consider situations where transfer function effects can be ignored and we can use results
found for low GW frequencies. However, we give a concrete example for joint responses at
high frequencies: we choose Eq.(3.2.13) to be the initial arm unit vector for ET located in
Sardinia. We proceed exactly in the same way we did for f � f∗, although this time we get
frequency dependent detector tensors and angular pattern functions, thus we set5 f = 8000

5We recall that ET interferometer arm lengths are 10 km, thus f∗ ≈ 4774.65 Hz.
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Figure 3.12: Mollweide projections of the Einstein Telescope (Sardinia site) joint response
to tensor modes for f = 8000 Hz. The Earth-based coordinate system used is described in
Appendix C. Earth rotation was also considered and plots are given every 6 hours. Unlike
the long wavelength limit, the cylindrical simmetry is now slightly broken and the joint
response depends on interferometer orientations. Notice how transfer functions decrease
the detector sensitivity to GW of high frequencies.

Hz > f∗. In Fig. 3.12, 3.13 and 3.14 we show Mollweide projections at 6 hour intervals for
each polarization mode.

3.3 Einstein Telescope and 2nd-generation Interferometers

We now move the subject to multiple detector correlation by building networks involving the
Einstein Telescope in order to understand how ET affects the overall sensitivity. Once again
we are going to consider the cosmological SGWB as a source of GWs and we retrace what
we did in the previous chapter: we begin by assuming the singular existence of one between
tensor, vector and scalar modes, this way we can compute energy density contributions
merely considering a detector pair. We assume a frequency independent GW-spectrum and
we set SNR = 5 and T = 3yrs; the sensitivity curve of the Einstein Telescope is provided
[81] and is shown in Fig. 2.13. Finally, overlap reduction functions are given by Eq.(2.5.53).
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Figure 3.13: Mollweide projections of the Einstein Telescope (Sardinia site) joint response
to vector modes for f = 8000 Hz. The Earth-based coordinate system used is described in
Appendix C. Earth rotation was also considered and plots are given every 6 hours. Unlike
the long wavelength limit, the cylindrical simmetry is now slightly broken and the joint
response depends on interferometer orientations. Notice how transfer functions decrease
the detector sensitivity to GW of high frequencies.
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Figure 3.14: Mollweide projections of the Einstein Telescope (Sardinia site) joint response
to scalar modes for f = 8000 Hz. The Earth-based coordinate system used is described in
Appendix C. Earth rotation was also considered and plots are given every 6 hours. Unlike
the long wavelength limit, the cylindrical simmetry is now slightly broken and the joint
response depends on interferometer orientations. Notice how transfer functions decrease
the detector sensitivity to GW of high frequencies.
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β α fc[Hz]

ETS-LH 81.84 117.76 5.72

ETS-LL 77.66 203.00 5.97

ETS-V 3.22 40.21 133.37

ETS-K 89.38 126.4 5.32

β α fc[Hz]

ETN-LH 66.5 121.35 6.83

ETN-LL 62.56 198.436 7.22

ETN-V 14.27 150.80 30.17

ETN-K 87.89 142.04 5.40

Table 3.1: Detector pair orientations (α) of 2nd-generation interferometers and angular
separation (β) given in decimal degrees. Both Einstein Telescope sites in Sardinia (ETS) and
Netherland (ETN) are considered and characteristic frequencies for each pair are reported.
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Figure 3.15: Sensitivity curves for 3rd-generation interferometers. Plots were realized with
public data provided by [81, 85].

2nd-generation interferometer locations and arm orientation are shown in Tab. 2.2, thus we
can compute the angular separation between each one of them and ET and their bisector
orientation angle with respect to the tangent vector to the great circumference joining a
detector pair together. We recall that ET has no preferred arm orientations yet, thus to
overcome this issue we begin by finding the great circle of radius RE connecting the pair
together, then we decompose angular parameters σ+ and σ− as

σ+ =
1

2
(τ + α), σ+ =

1

2
(τ − α), (3.3.1)

where τ is the variable ET bisector orientation angle, and α is the other interferometer
known bisector orientation angle. All angular parameters are shown in Tab. 3.1 for both
ET sites along with each pair characteristic frequency6 fc. Finally, we consider Eq.(3.1.13)
and we compute the energy density as a function of ET orientation τ . Results are shown in
Fig. 3.16 for each polarization mode. First of all we did not include here results relative to

6We recall thath fc = c

4πRE sin β
2

.
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the Einstein Telescope-Virgo configuration: since they are very close together the charac-
teristic frequency is very high and this instance needs a proper treatment. Other possible
configurations show oscillatory behaviours and can be compared to the results shown in
Tab. 2.5: assuming we can pick τ to minimize the detectable energy density, detector pairs
involving ET improve the sensitivity to the SGWB approximately by a factor of 10 with
respect to 2nd-generation interferometers. However, if tensor, vector and scalar modes are
present at the same time we need to build detector networks in order to distinguish their
energy density contributions and in the following we investigate some possible scenarios.

Einstein Telescope and Ligo Observatories. We begin by considering the Einstein
Telescope-LIGO correlations: looking at Fig. 3.16 we see that peaks relative to ETS(N)-
LH and ETS(N)-LL configurations show no anomalous behaviour. Moreover we can take
Eq.(2.6.16)7 to compute the energy density as a function of ET orientation τ , which we
define as the bisector orientation angle with respect to the great circle connecting LL and
ETS(N). We recall that the detector correlation matrix determinant, which also depends
on τ , needs to statisfy detΛ(f, τ) 6= 0 for the mode separation to be allowed. Results are
shown in Fig. 3.17. Once again the correlation matrix determinant filters GW frequencies
and allow mode separation in the 10-100 Hz range approximately. Tensor and vector mode
energy density contributions are very similar, however it is worth noting that these con-
figurations show better sensitivity to scalar modes. Three detector networks involving ET
improve the sensitivity to the SGWB roughly by a factor of 10 for each polarization mode
with respect to 2nd-generation interferometers.

Einstein Telescope and Virgo. The situation is somehow more delicate when we try to
couple the Einstein Telescope and Virgo, due to their locations being very close together.
To fully understand what the major concern is, let us step back and consider both the
coordinate system given by Eq.(2.1.6) and two L-shaped interferometers sharing the same
location (∆x = 0), but keeping different orientations: the first detector has arms directed
along û = (1, 0, 0)T and v̂ = (0, 1, 0)T , while the second detector arms are given by ê1 =

(
√

2
2 ,
√

2
2 , 0)T and ê2 = (−

√
2

2 ,
√

2
2 , 0)T . We purposely set the two bisectors in a way they

differ by an angle of π4 . We need to compute the detector tensor of the second detector, we
get

D =
1

2

{
ê1 ⊗ ê1 − ê2 ⊗ ê2

}
=

1

2

0 1 0
1 0 0
0 0 0

 , (3.3.2)

7This time we have both L-shaped and V-shaped interferometers, thus overlap functions need to account
for a sin η factor, with η opening angle of the V-shaped detector.
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Figure 3.16: SGWB detectable energy density contributions for tensor, vector and scalar
modes as a function of the Einstein Telescope orientaion τ if only one of these is present.
A frequency independent GW-spectrum, and a total observational time of three years were
assumed. The signal to noise ratio was set to 5. Vector modes show higher oscillations
than the tensor and scalar ones for ET-LH and ET-LL configurations, while higher peaks
are present considering the pair ET-K. In the context of scalar modes, τ(f)Ωgwh

2
0 needs to

be considered.
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Figure 3.17: (Top) SGWB detectable energy density contributions for tensor, vector and
scalar modes as a function of the Einstein Telescope bisector orientation angle τ between
the great circle connecting ET and LL together. A frequency independent GW-spectrum,
and a total observational time of three years were assumed. The SNR was set to 5. In the
context of scalar modes, τ(f)Ωgwh

2
0 needs to be considered. (Bottom) Detector correlation

matrix determinant as a function of both frequency and ET orientation τ . Modes separation
is allowed for frequency intervals ranging from 10-80 Hz.
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and using Eq.(2.1.4) we derive the following angular pattern functions

F̃+(Ω̂, ψ) =
1

4
(cos 2θ + 3) cos 2ψ sin 2φ+ cos θ sin 2ψ cos 2φ, (3.3.3a)

F̃×(Ω̂, ψ) = cos θ cos 2ψ cos 2φ− 1

4
(cos 2θ + 3) sin 2ψ sin 2φ, (3.3.3b)

F̃ x(Ω̂, ψ) = sin θ(cos θ cosψ sin 2φ+ sinψ cos 2φ), (3.3.3c)

F̃ y(Ω̂, ψ) = sin θ(cosψ cos 2φ− 2 cos θ sinψ sinφ cosφ), (3.3.3d)

F̃ b(Ω̂) = − sin2 θ sinφ cosφ, (3.3.3e)

F̃ l(Ω̂) =
√

2 sin2 θ sinφ cosφ. (3.3.3f)

Since ∆x = 0, inside Eqs.(2.4.19)-(2.4.21) appear the following integral∫
S2

dΩ

4π

(
FAI (Ω̂)F̃AJ (Ω̂)

)
= 0, (3.3.4)

for A = +,×, x, y, b, l, meaning that overlap functions are zero everywhere and from
Eq.(2.4.32) the SNR is zero. If we naively attempt to isolate Ωgw as in Eq.(2.6.2), we
get an infinite value and we lose physical meaning. This situation is very similar to the
Einstein Telescope-Virgo possible collaboration: indeed from Tab.3.1 we notice that β is
very small, meaning that ∆x ≈ 0. We are interested in the behaviour of the overlap func-
tion given by Eq.(2.5.53). Let us consider the case where ET orientation is defined by
τ = αV − π

4 , where αV is Virgo known orientation listed in Tab. 3.1. Looking at the
top panels of Fig. 3.18 we see how overlap functions for tensor, vector and scalar modes
are very close to zero for f < fc, they briefly oscillate when f ≈ fc, then they reduce
asymptotically to zero once again. While computing the energy density using Eq.(2.6.2),
we expect the denominator to become very small, thus making Ωgw bigger and implying
a sensitivity loss. Let us now consider the case where τ = αV , which corresponds to the
two detectors being perfectly aligned. Looking at the bottom panels of Fig.3.18 we see that
γ(f = 0) ≈ 1: this must not surprise us, since the now aligned detectors are almost sharing
the same location8 and overlap functions now start to oscillate very late in frequency due
to the small distance between ET and Virgo (e.g. bigger fc). Assuming only one between
tensor, vector and scalar mode exists, we show in Tab.3.2 the numerical values of the de-
tectable energy density for the Einstein Telescope-Virgo collaboration for the two discussed
cases: notice how the orientation strongly influences the sensitivity to GWs. It might
be worth investigating the scenario where ET and Virgo share the same orientation a bit
further. First of all, notice that this assumption gives us the following unit vectors directed
along the ET bisector

b̂ETS = (−0.498,−0.539, 0.679), b̂ETN = (−0.676,−0.549, 0.491). (3.3.5)
8We discussed this scenario in Eq.(2.6.1).
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Figure 3.18: (Top) ETS/ETN-V overlap functions for each polarization mode with τ =
αV − π

4 . (Bottom) ETS/ETN-V overlap functions for each polarization mode with αV = τ .
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τ h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

ETS-V αV − π
4 1.47× 10−6 3.53× 10−7 2.33× 10−7

ETS-V αV 7.05× 10−11 7.08× 10−11 7.09× 10−11

ETN-V αV − π
4 2.41× 10−8 5.11× 10−9 3.06× 10−9

ETN-V αV 8.01× 10−11 8.45× 10−11 8.59× 10−11

Table 3.2: Possible orientations (τ) of the Einstein Telescope bisector as a function of
Virgo orientation (αV ) and detectable energy density values for ETS/ETN-V configuration.
Notice how greatly the orientation of ET influences the results.

This is exactly the information we need to extend the results in Tab.3.1 by adding the
orientation of the ET bisector, which we still name τ , with respect to the tangent vector
to the great circumference joining ET and a 2nd-generation interferometer together. In
Tab.3.3 we show these angular values for both sites, while in Fig.3.19 we show the plots
of the relative overlap functions for each possible pair. We have everything we need to

τ

ETS-LH 173.91

ETS-LL 146.53

ETS-K 66.18

τ

ETN-LH 175.27

ETN-LL 145.35

ETN-K 66.93

Table 3.3: Orientations (τ) of the Einstein Telescope bisector with respect to the tangent
vector to the great circumference for both sites, with ET sharing the same orientation of
Virgo. Numerical values are reported in decimal degrees.

compute the energy density related to each polarization mode starting from Eq.2.6.16 and
creating networks involving both the Einstein Telescope and Virgo. We list our results
in Tab. 3.4, while in Fig. 3.20 we show the related plots of detΛ(f). Similarly to the
previous cases, the correlation matrix determinant filters GW frequencies and allows the
mode separation only for finite ranges (10-200 Hz). Once again three detector networks
involving ET improve the sensitivity to the SGWB roughly by a factor of 10 for each
polarization mode with respect to 2nd-generation interferometers.

Einstein Telescope and KAGRA. In the end we briefly investigate the Einstein Telescope-
Kagra collaboration. In particular, we wish to better understand both energy density peaks
appearing in Fig. 3.16 for both sites at τ ≈ k π2 , with k ∈ N and energy density minima
obtained for τ ≈ k π4 , k ∈ N. This periodic behaviour is common to all modes and can be
derived once again from overlap reduction functions: while considering the great circum-
ference joining the Einstein Telescope and Kagra overlap functions can be computed using
angular parameters shown in Tab. 3.1 and choosing the orientation of ET. In Fig. 3.21 we
show overlap reduction functions computed setting τ = 0 and τ = π

4 respectively: notice
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Figure 3.19: Overlap reduction functions for each possible detector pair built with ET
and 2nd-generation interferometers. ET was choosen to have the same orientation of Virgo
(τ = αV ).
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Figure 3.20: Plots of detΛ(f) for possible detector netwroks involving ET and V, where
the Einstein Telescope has the same orientation of Virgo (α = τ). The correlation ma-
trix determinant filters GW frequencies and allows a true mode separation only for finite
frequency ranges.
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h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

ETS-LL-V 2.25× 10−8 5.86× 10−9 2.89× 10−9

LH-ETS-V 6.34× 10−9 3.22× 10−9 2.55× 10−9

V-K-ETS 1.67× 10−8 9.27× 10−9 1.80× 10−8

ETN-LL-V 5.31× 10−9 3.59× 10−9 1.28× 10−9

LH-ETN-V 2.73× 10−9 1.91× 10−9 1.10× 10−9

V-K-ETN 3.31× 10−8 1.57× 10−8 9.18× 10−9

Table 3.4: SGWB detectable energy density contributions for tensor, vector and scalar
modes considering three detector networks with the Einstein Telescope having the same
orientation of Virgo. A frequency independent GW-spectrum, and a total observational
time of three years were assumed. The signal to noise ratio was set to 5. All possible
networks return similar values for each polarization SGWB energy density contribution.

how when τ = 0 overlap functions are very close to zero for f < fc, they briefly oscillate
when f ≈ fc, then they reduce asymptotically to zero once again. Indeed if we use this
configuration to compute the energy density through Eq.(2.6.2) we get a small denomina-
tor and bigger values ΩN

gw gets, thus implying a sensitivity loss to GWs and explaining the
peaks.
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Figure 3.21: (Top) ETS/ETN-K overlap functions for each polarization mode with τ = 0.
(Bottom) ETS/ETN-K overlap functions for each polarization mode with τ = π

4 .
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Figure 3.22: Overlap reduction function for each polarization mode considering two Einstein
Telescope interferometers in the long wavelength limit. Since fc = f∗ ≈ 4774.65 overlap
functions start to oscillate ath higher frequencies with respect to previous cases considered.

3.4 Einstein Telescope Interferometers

In the previous sections we focused on networks involving ET and one or two 2nd-generation
interferometers on Earth. However, 3rd-generation interferometers are expected to work
together in order to greatly improve the understanding of our Universe. The Einstein
Telescope offers three interferometers to work with and we now wish to understand if and
how they can be exploited to detect a cosmological SGWB. Let us first consider two ET
interferometers. We have already introduced its triangular configuration and we know that
the two interferometers are 10 km away from each other: in this particular scenario we
have f∗ = fc ≈ 4774.65 Hz. The angular separation between two interferometers given in
decimal degrees is β ≈ 0.089, thus they can be considered to lie on the same plane. Let us
consider detectors A and B in Fig. 3.2 as an example: let the tangent vector to the great
circumference joining the interferometers together be directed along êA1, thus becoming
parallel to one detector arm for each interferometer of the pair. Interferometer orientations
are utterly determined independently of ET location and in the long wavelenght limit the
overlap reduction function for each polarization mode is given by

γN (f) = Ξ+
N (f, β) cos(2π) + Ξ−N (f, β) cos

(
4π

3

)
. (3.4.1)

The plot of Eq.(3.4.1) is shown in Fig. 3.22. Due to the detector configuration the
overlap function is constant up to frequencies of order 103 Hz and it differs from zero
approaching f∗. Moreover, ET is expected to be sensitive to GW frequencies up to 10 Hz
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and for a proper treatment the transfer functions need to be considered. We can still use
Eq.(3.4.1) to compute the energy density for tensor, vector and scalar modes supposing their
singular existence one by one: these approximative results are shown in Tab. 3.5. ET pair
sensitivity to the SGWB is remarkably improven roughly by a factor of 103 with respect to
2nd-generation interferometers. As we shall see, similar values are given by collaborations
between the Einstein Telescope and the Cosmic Explorer, thus we expect transfer functions
to only affect these results with small corrections, while preserving the order of magnitude.
Finally we might think of using all three ET interferometers to distinguish energy density

h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

ET-ET 2.196× 10−12 2.196× 10−12 2.196× 10−12

Table 3.5: SGWB detectable energy density contributions for tensor, vector and scalar
modes if only one of these is present. A frequency independent GW-spectrum, and a total
observational time of three years were assumed. The SNR ratio was set to 5. ET sensitivity
to different polarization modes is basically the same.

contributions for each polarization mode. Consider Fig. 3.2 once again: due to its triangular
configuration, the overlap reduction function of every possible pair involving detectors A,
B or C is always given by Fig. 3.22. No matter what the Einstein Telescope final location
will be, the tangent vector to great circumference joining ET detectors together is always
parallel to one detector arm for each interferometer of the pair. Considering Eq.(2.6.8),
it is clear that the correlation matrix determinant is always null9 since γN12 = γN23 = γN31,
for N = T, V, S. Unforunately the Einstein Telescope alone in this configuration cannot
separate polarization modes.

3.5 Einstein Telescope and Cosmic Explorer

The Cosmic Explorer (CE) [16] observatory will consist of one single L-shaped interfer-
ometer with arm length of 40 km (10 times the length of LIGO and 4 times the length
of the Einstein Telescope) and a characteristic frequency f∗ ≈ 1193.66 Hz. The available
sensitivity curve is provided by [85] and is shown in Fig. 3.15 for frequencies in the 5-5000
Hz range. Since the detector is an L-shaped interferometer, we can recover some previously
found results: considering the coordinate system given in Eq.(2.1.6) and assuming the long
wavelength limit to be valid angular pattern functions do not depend on the detector geom-
etry and are provided by Eqs.(2.1.21)-(2.1.26); considering GW with higher frequencies and
accounting for transfer functions, angular pattern functions are given instead by Eq.(3.1.4)
with η = π

2 . In the rest of this section we wish to understand how the Cosmic Explorer
couples to 2nd-generation interferometers and then to the Einstein Telescope.

9From Eq.(2.6.16), if detΛ = 0, then SNR = 0.
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3.5.1 The Cosmic Explorer and 2nd-generation Interferometers.

No preferred location for the Cosmic Explorer has been reported yet, thus we consider two
possible sites: a) the Cosmic Explorer replaces LIGO H both in location and orientation
(CEH) b) the Cosmic Explorer replaces LIGO L both in location and orientation (CEL).
Once again we assume a frequency independent GW-spectrum and in our computations
we set SNR = 5 and T = 3yrs. We initally consider the existence of only one between
tensor, vector and scalar modes, then we proceed to separate modes and their energy
density contributions considering three interferometer networks involving CE. Since we are
assuming the Cosmic Explorer to have also the same orientation of the replaced LIGO
interferometers, we can use the parameters listed in Tab.2.4 to compute overlap functions,
which at low frequencies are exactly the ones shown in Fig.2.14 replacing LH and LL with
CEH and CEL one at a time respectively. Energy density values are computed through
Eq.(2.6.2) and are shown in Tab.3.6. Collaborations with the remaining LIGO observatory
and Virgo improve sensitivity to GWs roughly by a factor oscillating between 10− 102 for
each mode. It is then straightforward to separate polarization modes and their contribution
to the stochastic background energy density as we previously did using Eq.(2.6.16). We
finally list our results in Tab.3.7: Combinations of interferometers more sensitive to GWs
are given by the CE, LIGO and Virgo due to their better sensitivities.

h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

CEH-LL 1.90× 10−11 2.27× 10−11 2.39× 10−11

CEL-LH 1.90× 10−11 2.27× 10−11 2.39× 10−11

CEL-V 1.10× 10−10 1.46× 10−10 6.42× 10−11

CEL-K 1.68× 10−9 1.73× 10−9 2.28× 10−9

CEH-V 9.50× 10−11 2.07× 10−10 5.61× 10−11

CEH-K 8.38× 10−10 6.39× 10−10 5.21× 10−10

Table 3.6: SGWB detectable energy density contributions for tensor, vector and scalar
modes if only one of these is present. A frequency independent GW-spectrum, and a total
observational time of three years were assumed. The signal to noise ratio was set to 5.
These results were found replacing LIGO H and LIGO L observatories with the Cosmic
Explorer (CEH and CEL respectively).

3.5.2 Einstein Telescope and Cosmic Explorer Cross-Correlation.

Finally we wish to investigate detector networks involving the Einstein Telescope and Cos-
mic Explorer in order to see how far we can push the sensitivity to GWs of upcoming
ground-based interferometers. As we did previously, we consider the possibility where the
Cosmic Explorer replaces one of the LIGO observatories both in location and orientation,
while the Einstein Telescope can be located in Italy or Netherland with no known orienta-
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h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

CEH-LL-V 6.02× 10−10 1.26× 10−9 4.96× 10−10

CEH-LL-K 2.04× 10−8 9.54× 10−9 5.66× 10−9

LH-CEL-V 6.72× 10−10 4.66× 10−9 4.61× 10−10

LH-CEL-K 5.25× 10−9 1.17× 10−8 6.65× 10−9

V-K-CEL 2.01× 10−8 1.02× 10−8 7.48× 10−9

V-K-CEH 6.79× 10−9 1.32× 10−8 4.45× 10−9

Table 3.7: SGWB detectable energy density contributions for tensor, vector and scalar
modes considering three detector networks involving CE. A frequency independent GW-
spectrum and a total observational time of three years were assumed. The signal to noise
ratio was set to 5. These results were found replacing LIGO H and LIGO L observatories
with the Cosmic Explorer (CEH and CEL respectively).

tion (which we denote τ) and we investigate the detection of a cosmological SGWB with
a frequency independent GW-spectrum and we choose again SNR= 5 and T = 3yrs. Let
us begin by considering the existence of only one between tensor, vector and scalar modes.
Under these assumptions we can use angular parameters listed in Tab.2.4 for a concrete
example: let us choose the configuration where ET and CE share the same orientation,
making τ = αCE . As usual, we can use Eq.(2.6.2) to compute the energy density for each
polarization mode and we list our results in Tab. 3.8. Similarly to ET-ET pairs, collabora-
tion between ET and CE improve sensitivity to the SGWB roughly by a factor of 103 with
respect to 2nd-generation interferometers. Clearly we are interested in SGWB involving a

h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

ETS-CEL 3.90× 10−12 5.04× 10−12 5.40× 10−12

ETS-CEH 4.88× 10−12 4.62× 10−12 4.43× 10−12

ETN-CEL 2.22× 10−12 3.01× 10−12 3.29× 10−12

ETN-CEH 2.74× 10−12 2.78× 10−12 2.72× 10−12

Table 3.8: SGWB detectable energy density contributions for tensor, vector and scalar
modes if only one of these is present. A frequency independent GW-spectrum, and a total
observational time of three years were assumed. The signal to noise ratio was set to 5.
These results were found replacing LIGO H and LIGO L observatories with the Cosmic
Explorer (CEH and CEL respectively) and setting ET orientation τ = αCE .

mixture of all possible polarization modes, thus we can use two of the Einstein Telescope
interferometers (ETS1, ETS2 for the Sardinia site and ETN1, ETN2 for the Netherland
site) and the Cosmic Explorer to build a 3rd-generation detector network that allow us to
distinguish between tensor, vector and scalar energy density contributions. The first issue
we need to deal with is ET orientation: we can choose τ to be the angle between the first
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ET1 interferometer and the tangent vector to the great circumference joining ET1 and CE,
thus ET2 orientation can be defined as τ + 2π

3 due to ET triangular configuration. Now we
wish to pick τ in order to maximize the network sensitivity to GWs (e.g in order to minimize
the energy density). This can be achieved by investigating the correlation matrix determi-
nant as a function of both GW frequency and ET orientation; for all possible configurations
we show the plots of detΛ(f, τ) in Fig. 3.23. Polarization modes can be separated roughly
in the frequency range 10 − 100 Hz almost independently by the choice of ET orientation
and we now wish understand why: the overlap function between two ET interferometers is
reported in Fig. 3.22 and for each polarization it appears to be equal and constant up to
very high frequencies due to detectors reciprocal small distance. Indeed considering care-
fully Eq.(2.6.8), the ET-ET overlap function can be collected as a dominant factor, while
differences between overlap functions involving CE only brings small corrections. In the end
we are free to choose any value for ET orientation and we set τ = π

3 for a concrete example.
Overlap reduction functions for CE-ET configurations are shown in Fig. 3.24 and 3.25 for
the Sardinia and Netherland site respectively, while energy density contributions for each
polarization mode are listed in Tab. 3.9. Once again the result is remarkable: detector
networks involving ET and CE improve sensitivity to the SGWB roughly by a factor of
103 with respect to 2nd-generation interferometers and by a factor of 102 with respect to
collaborations between 3rd and 2nd-generation detectors.

h2
0ΩT

gw h2
0ΩV

gw τh2
0ΩS

gw

CEL-ETS1-ETS2 9.52× 10−12 1.38× 10−11 6.43× 10−12

CEH-ETS1-ETS2 1.03× 10−11 1.38× 10−11 6.43× 10−12

CEL-ETN1-ETN2 8.76× 10−12 1.38× 10−11 6.43× 10−12

CEH-ETN1-ETN2 8.52× 10−12 1.38× 10−11 6.43× 10−12

Table 3.9: SGWB detectable energy density contributions for tensor, vector and scalar
modes considering three detector networks involving CE and ET only. A frequency inde-
pendent GW-spectrum and a total observational time of three years were assumed. The
signal to noise ratio was set to 5. These results were found replacing LIGO H and LIGO
L observatories with the Cosmic Explorer (CEH and CEL respectively) and setting ET
orientation τ = π

3 .
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Figure 3.23: Correlation matrix determinant detΛ(f, τ) for all possible configurations in-
volving ET and CE. Notice how it weakly depends on ET orientation angle.
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Figure 3.24: Overlap reduction functions of all possible configurations involving CEH(L)
and ETS, with τ = π
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Figure 3.25: Overlap reduction functions of all possible configurations involving CEH(L)
and ETN, with τ = π
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3.6 Breaking Scalar Modes Degeneracy

While considering Eqs.(2.1.23) and (2.1.24) for L-shaped interferometers we underlined
how breathing and longitudinal angular pattern functions differ from a constant factor,
thus making scalar modes degenerate. Even considering V-shaped interferometers did not
solve this issue. In this section we wish to show a possible way to break this degeneracy
considering GW with high frequencies10 to which upcoming ground-based detecors are
expected to be sensitive. To this purpose, let us focus on the left panel of Fig.3.1: we
consider the (û, v̂) plane where a generic V-shaped detector lies and we assume its bisector
to form an angle of π4 relative to the û axis measured in a counterclockwise manner. This
way we have that unit vectors along ech detector arm now are

ê1 = (cos
(π

4
− η

2

)
, sin

(π
4
− η

2

)
, 0), ê2 = (cos

(π
4

+
η

2

)
, sin

(π
4

+
η

2

)
, 0). (3.6.1)

We choose this particular configuration in order to align the bisector of the V-shaped
detector with the bisector of an hypothetical L-shaped interferometer with arms directed
along û and v̂: to only purpose of these assumptions is to make computations simpler.
Since we are cosnsidering high frequencies, the long wavelength limit is no longer valid,
thus we get frequency-dependent angular pattern functions

F b(f, Ω̂) = Dij ẽbij =
T1

2

{
cos2(
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and
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(3.6.3)

10In particular with f & f∗
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As a consistency check, if we assume f � f∗, then T1,2 ≈ 1 and if η = π
2 the angular

pattern functions reduces to Eq. (2.1.23) and (2.1.24) respectively, while in general for
η ∈ (0, π2 ) the degeneracy cannot be broken by the interferometer opening angle choice.
However, if GW frequencies approach or overcome the characteristic frequency f∗, the de-
generacy is broken for every value of the angle η by the (1 ± cos2 θ) factor. This can be
better visualized with a concrete example using the Eart-based frame of reference intro-
duced in Appendix C: we can consider a single Einstein Telescope detector (Sardinia site),
with specific unit vectors directed along its arms given by ê1 = (0.1644,−0.9864, 0.) and
ê2 = (0.6368,−0.4008,−0.6587)), and the Cosmic Explorer replacing the LIGO Livingston
observatory in both location and orientation. Both detectors are assumed to be Michelson
interferometers, thus apart a frequency dependent coefficient given by Eq. (2.3.20), their
transfer functions contain information relative to both detector geometry and GW direc-
tion. Finally in Fig. 3.26 and 3.27 we show the Mollweide projections of both detectors
breathing and longitudinal angular pattern functions for three different GW frequency val-
ues in order to see how they behave for f � f∗, f ≈ f∗ and f � f∗. Since 3rd-generation
interferometers are expected to have longer arms (e.g. lower values of f∗) and to be sensitive
to GW frequencies ranging from 1-104 Hz, the investigation of GWs whose frequencies are
higher than f∗ may be an achievable result and the degeneracy between scalar modes could
be broken.
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Figure 3.26: Mollweide projection of |F b(f, Ω̂)| (a), c) and e))and |F l(f, Ω̂)| (b), d) and f))
for three different frequency values (100Hz, 7000Hz and 10000Hz) using one ET Michélson
interferometer. The initial intensity difference between breathing and longitudinal is due
to the

√
2 factor that appears in the definition of F l.
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Figure 3.27: Mollweide projection of |F b(f, Ω̂)| (a), c) and e)) and |F l(f, Ω̂)| (b), d) and f))
for three different frequency values (100Hz, 1000Hz and 5000Hz) using CE as a Michélson
interferometer. The initial intensity difference between breathing and longitudinal is due
to the

√
2 factor that appears in the definition of F l.
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Conclusion

At the beginning of this thesis we stated that gravitational waves may represent a powerful
tool to test General Relativity and at the same time to investigate proposed alternative
metric theories of gravity. In particular, we focused on GW polarization modes: while GR
only allows the presence of two independent tensor modes, different theories may predict
also the existence of vector and scalar polarization modes, thus their detection might lead
us to new physical considerations and results, causing an inevitable extension of Einstein’s
theory. In the context of Cosmological Stochastic Gravitational Wave Backgrounds, the
detection of gravitational waves could provide us very interesting information on the status
of the universe in its early phase and we showed how it is possible to distinguish between
tensor, vector and scalar mode contributions to the background energy density, investigat-
ing interplays among present and future ground-based interferometers, such as the Einstein
Telescope and the Cosmic Explorer.
In the context of 3rd-generation interferometers we initially discussed the proposed xy-
lophone configuration for the Einstein Telescope, which consists of three V-shaped under-
ground detectors displaced in a triangular way, each in turn composed of two interferometers
adapted to different GW frequency ranges. Considering all three detectors, we investigated
the network joint response to GWs for tensor, vector and scalar modes and we found that
the Einstein Telescope maximum detection reach is overall enahanced with respect to 2nd-
generation interferometers: in particular considering tensor modes ET has all-sky coverage,
while in terms of vector and scalar modes only GWs coming from directions orthogonal
to the detector plane cannot be detected. For sufficiently low frequencies joint responses
present cylindrical symmetry with respect to the detector plane normal vector, although
this simmetry is slightly broken for higher frequencies accounting for transfer function ef-
fects, which reduce ET sensitivity to GWs. We then considered how Earth rotation affects
joint responses and we showed how this motion moves blind directions relative to scalar
and vector joint responses and allows the detection of GWs coming from every direction
along one day period.
We also considered the possibility of combining future ground-based detectors in order to
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distinguish and compute the stochastic background energy density for tensor, vector and
scalar modes. To separate each polarization mode contribution we need at least three in-
terferometers, thus we began by considering the Einstein Telescope with its three detectors.
Due to its geometrical configuration, we found that ET alone cannot separate polarization
mode contributions to the SGWB, thus only two ET interferometers can be considered to
work independently inside a network. We showed how this behaviour can be related to its
proposed triangular configuration, independently of its possible locations on Earth. For this
purpose, we investigated the network involving two Einstein Telescope detectors along with
the Cosmic Explorer. We showed that it is possible to distinguish between tensor, vector
and scalar mode energy density contributions roughly in the frequency range 10 − 100 Hz
and we found that the network sensitivity to the SGWB is overall improved by a factor of
10−3 with respect to 2nd-generation interferometers.
Although we mainly focus on a cosmological stochastic bacground of gravitational waves,
upcoming ground-based and space-born detectors are expected to greatly improve our
knowledge of both cosmology and relativistic astrophysics thanks to their higher sensi-
tivities. Therefore we expect the following years to show us how gravitational waves are
going to revolutionize our knowledge of the Universe.
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Appendix A
Trigonometric identities

A.1 Sum and difference formulas for sine and cosine

sin(α+ β) = sinα cosβ + cosα sinβ,

sin(α− β) = sinα cosβ − cosα sinβ,

cos(α+ β) = cosα cosβ − sinα sinβ,

cos(α− β) = cosα cosβ + sinα sinβ. (A.1.1)

A.2 Werner Formulas for sine and cosine

sinα sinβ =
1

2
[cos(α− β)− cos(α+ β)],

cosα cosβ =
1

2
[cos(α− β) + cos(α+ β)],

sinα cosβ =
1

2
[sin(α− β) + sin(α+ β)]. (A.2.1)

A.3 Double angle formulas for sine and cosine

sin 2α = 2 sinα cosα,

cos 2α = cos2 α− sin2 α = 2 cos2 α− 1 = 1− sin2 α. (A.3.1)
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A.4 Half angle formulas for sine and cosine

sin
α

2
= ±

√
1− cosα

2
,

cos
α

2
= ±

√
1 + cosα

2
. (A.4.1)
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Appendix B
Spherical Bessel functions

B.1 Integral formulae∫ +1

−1
dxeiαx = 2j0(α),∫ +1

−1
dxeiαx(1− x2) = 4

j1(α)

α
,∫ +1

−1
dxeiαx(1− x2)2 = 16

j2(α)

α2
. (B.1.1)

B.2 Relations between Bessel functions
j1(α)

α
=

1

3

(
j0(α) + j2(α)

)
,

j2(α)

α2
=

1

105

(
7j0(α) + 10j2(α) + 3j4(α)

)
. (B.2.1)
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Appendix C
Relative orientation and separation
of two detectors on Earth

We take the Earth to be a perfect sphere of radius R = 6.371 · 103 km. We consider a
Cartesian coordinate system with the origin located at the center of the Earth, and with
the z axis going in the direction of the North pole. The x axis goes in the direction of the
point connecting the Earth Equator (latitude 0) and the Greenwich Meridian (longitude
0). The y axis is then determined by êy = êz × êx and is directed toward the point on the
Equator at 90◦E longitude. Let us then consider two detectors A and B and their positions
described by the unit vectors

x̂A =

a1

a2

a3

 , x̂B =

b1b2
b3

 . (C.0.1)

Considering the great circumference of radius R wrapping the Earth and connecting
A and B, we want to find the tangent vectors to the circumference itself in the detector
positions: this way we are able to compute the angle that gives us the orientations σ1 and
σ2 of the bisectors. We begin by finding the normal vector q̂ to the plane spanned by x̂A

and x̂B and passing through the origin, we have

q̂ = x̂A × x̂B =

q1

q2

q3

 , (C.0.2)

so the plane equation is

πq : q1x+ q2y + q3z = 0. (C.0.3)
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We also need to find the planes tangent to the Earth in the detector positions, the
normal vectors of which are given by x̂A and x̂B. We can take the respective parallel
planes passing through the origin, so the plane equations are

πa : a1x+ a2y + a3z = 0, πb : b1x+ b2y + b3z = 0. (C.0.4)

Finally we can find the tangent vectors and their directions as the intersection between
πq and πa or πb considering the following systems{

q1x+ q2y + q3z = 0

a1x+ a2y + a3z = 0
0,

{
q1x+ q2y + q3z = 0

b1x+ b2y + b3z = 0
. (C.0.5)

We can choose to solve for x and then setting x = 1 we have

V̄A =

 1

−a3q1−a1q3
a3q2−a2q3
a2q1−a1q2
a3q2−a2q3

 , V̄B =

 1

− b3q1−b1q3
b3q2−b2q3
b2q1−b1q2
b3q2−b2q3

 , (C.0.6)

and we can find the tangent unit vectors

v̂A =
VA

||VA||
, v̂B =

VB

||VB||
. (C.0.7)

We still have to choose a convention to select the orientations: we move along the great
circumference in counterclockwise manner starting from its intersection with the Greenwich
meridian and so we fix the orientation of the tangent vectors v̂A and v̂B.
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