

www.dii.unipd

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale «Studio di giunti saldati in acciaio bainitico con consumabili a basso e medio carbonio, mediante dilatometria e prove di trazione»

Tutor universitario: Prof. Luca Pezzato

Laureando: Vittoria Marchesin

Padova, 10/07/2023

arche

L'OBIETTIVO DEL LAVORO: STUDIARE L'EFFETTO DEI TRATTAMENTI TERMICI POST-SALDATURA IN GIUNTI SALDATI CON UN ACCIAIO BAINITICO A MEDIO TENORE DI CARBONIO ED ALTO TENORE DI SILICIO

TECNICHE DI SALDATURA

TIG «Tungsten Inert Gas»

Sottocategoria del GTAW, cioè «*Gas Tungsten Arc Welding*» Arco elettrico (corrente e voltaggio) Atmosfera inerte (gas Ar, He, CO2) Materiale di riempimento del cordone (barretta di metallo consumabile) Elettrodo di tungsteno non-consumabile Velocità di raffreddamento Bassa penetrazione del cordone Torcia

MIG «Metal Inert Gas»

Sottocategoria del GMAW, cioè «*Gas Metal Arc Welding*» Arco elettrico (corrente e voltaggio) Atmosfera inerte (gas Ar, He, CO2) Materiale di riempimento del cordone Elettrodo Velocità di raffreddamento Alta penetrazione del cordone

COMPOSIZIONI DI ACCIAIO BASE E MATERIALI DI RIEMPIMENTO

MATERIALE BASE: ACCIAIO BAINITICO

С %	Si %	Al %	Mn %	Fe %	Others %
0.38	3.2	0.1	2.56	93.52	<0.5

CONSUMABILE TIG: INETIG 120 S1 (diametro di 1.6mm)

С%	Mn %	Si %	S %	P %	Cr %	Ni%	Mo %	Cu %
0.08	1.70	0.50	0.007	0.007	0.10	2.3	0.50	0.15

► Composizione gas inerte usato insieme al filo di riempimento (I1): 100% Ar

CONSUMABILE MIG: INEFIL NIMOCR (diametro di 0.8mm)

С %	Mn %	Si %	S %	P %	Cr %	Ni %	Mo %	Cu %	V %
0.08	1.60	0.50	0.007	0.007	0.30	1.50	0.25	< 0.15	0.09

Composizione gas inerte usato insieme al filo di riempimento (M21): 92% Ar, 8% CO2

PARAMETRI dei PROCESSI di SALDATURA

	MIG	TIG
Materiale Base	Acciaio bainitico	Acciaio bainitico
Geometria giunto	Butt weld – V groove	Butt weld – V groove
Preriscaldo	200 °C	200 °C
РѠҤТ	/	/
Numero passate	6	14
Posizione	EN ISO 6947: PA	EN ISO 6947: PA
Materiale d'apporto – EN /AWS	EN ISO 16834-A: G 69 4 M21 Mn3Ni1CrMo	EN ISO 16834-A: W 79 6 I1 Mn4Ni2Mo
Materiale d'apporto – diametro	0.8 mm	1.6 mm
Gas di protezione	EN ISO 14175: M21	EN ISO 14175: I1
Corrente di saldatura	168 A	188 A
Tensione di saldatura	27 V	15 V
Velocità di saldatura	37 cm/min	19 cm/min
Apporto termico	0.80 kJ/cm	0.91 kJ/cm
Temperatura di interpass	260 °C	260 °C

CARATTERIZZAZIONE

(campioni *as-weld* e post trattamento termico)

- Microscopio ottico
- SEM (Scanning Electron Microscope)
- Durezze (Vickers, peso 300g)
- Prove meccaniche sulla sezione trasversale rispetto alla direzione di saldatura
- Dilatometro

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE RISULTATI (1): TIG AS-WELD E POST-AUSTEMPERING

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE RISULTATI (1): TIG AS-WELD E POST-AUSTEMPERING

UTS

(MPa)

 1292 ± 10

Distance from centre (mm)

Profilo di durezza post-austempering

RA

(%)

47

YELD

STRESS

(MPa)

 803 ± 6

Frattografia (post-austempering)

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE RISULTATI (1): MIG AS-WELD E POST-AUSTEMPERING

Micrografie al SEM as weld (cordone sopra, HAZ sotto)

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE RISULTATI (1): MIG AS-WELD E POST-AUSTEMPERING

Profilo di durezza post-austempering

← Confronto delle durezze fra MIG as weld, MIGT e MIG austemepered

300

200 -15

-10

Distance from the centre (mm)

Si sono studiati i giunti di acciaio bainitico a medio contenuto di carbonio e alto contenuto di silicio saldati con tecniche TIG e MIG.

Le conclusioni che si possono trarre sono le seguenti:

CONCLUSIONI (1)

- Le saldature presentano tre diverse macro-zone (FZ, ZTA e MB) e la zona termicamente alterata è a sua volta suddivisa in altre sotto-regioni che sono caratterizzate dalle seguenti microstrutture: martensite, austenite residua e bainite, martensite rinvenuta.
- Il trattamento termico dell'**austempering** porta alla formazione di martensite nel cordone prima che si formi bainite. La trasformazione martensitica va ad accelerare quella bainitica.
- Dalle prove di trazione risulta che le saldature raggiungono valori elevati di UTS, oltre i 1000 Mpa, pertanto resistenza e ragionevole duttilità.
- Dall'analisi della distribuzione della deformazione si è osservata che essa è concentrata prevalentemente sul cordone, data la minore resistenza meccanica del consumabile, dove avviene la frattura.
- Dalla caratterizzazione del giunto saldato partendo da microstruttura bainitica senza realizzare un trattamento termico post saldatura si osserva un comportamento fragile, con frattura che avviene a piede cordone, caratterizzata da una microstruttura martensitica. Da qui emerge la necessità dello sviluppo di nuovi consumabili / metodi di saldatura per acciai bainitici.

SALDATURA CON CONSUMABILE A MEDIO TENORE DI CARBONIO

MATERIALE BASE: ACCIAIO BAINITICO AISI 4130

С %	Si %	Al %	Mn %	Fe %	Others %
0.38	3.2	0.1	2.56	93.52	< 0.5

MATERIALE DI RIEMPIMENTO MIG 4130 (diametro di 0.9 mm)

С %	Si %	Mo %	Mn %	Cr %	Fe %
0.30	0.20	0.20	0.50	0.95	Resto

► Composizione gas inerte usato insieme al filo di riempimento (M13): 98% Ar, 2% O₂

MATERIALE DI RIEMPIMENTO TIG 4130 (diametro di 1.6 mm)

С %	Si %	Mo %	Mn %	Cr %	Fe %
0.30	0.20	0.20	0.50	0.95	Resto

► Composizione gas inerte usato insieme al filo di riempimento (I1): 100% Ar

PARAMETRI dei PROCESSI di SALDATURA

	MIG	TIG
Materiale Base	Acciaio bainitico	Acciaio bainitico
Geometria giunto	Butt weld – V groove	Butt weld – V groove
Preriscaldo	200 °C	200 °C
РѠҤТ	1	/
Numero passate	4	11+R
Posizione	EN ISO 6947: PA	EN ISO 6947: PA
Materiale d'apporto	AISI 4130	AISI 4130
Materiale d'apporto – diametro	0.9 mm	1.6 mm
Gas di protezione	EN ISO 14175: M13	EN ISO 14175: I1
Corrente di saldatura	184 A	190 A
Tensione di saldatura	25 V	15 V
Velocità di saldatura	44 cm/min	17 cm/min
Apporto termico	0.70 kJ/cm	0.95 kJ/cm
Temperatura di interpass	240 °C	260 °C

SALDATURA TIG 4130 AS WELD

Corso di Laurea in Ingegneria ...

— Liquidi penetranti —

1000 µm

www.dii.unipd.ii

CARATTERIZZAZIONE

- Microscopio ottico
- SEM (Scanning Electron Microscope)
- Durezze (Vickers, peso 300g)
- Diffrattometro XRD per le tensioni residue

Foto al microscopio ottico di campioni MIG 4130 e TIG 4130 con attacco colorato (Klemm'I)

5µm

5µm

(d)

(f)

www.dii.unipd.i

18

Alla fine di questa seconda parte sulla saldabilità dell'acciaio AISI 4130 si sono tratte le seguenti conclusioni:

CONCLUSIONI (2)

- Non si sono osservati fenomeni di criccatura a caldo e a freddo che limitano la saldabilità.
- Il processo di saldatura introduce tensioni residue di trazione in corrispondenza del cordone di saldatura che non compromettono l'integrità del giunto saldato.
- L'utilizzo M13 come gas di protezione rispetto all'M21 utilizzato nei test precedenti, garantisce l'assenza di scoria sul cordone di saldatura ottenuto tramite MIG.
- Nel giunto as-weld nella zona fusa è possibile osservare una microstruttura costituita da bainite superiore e inferiore, ferrite aciculare e martensite.

Grazie per l'attenzione!