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�Ho soprattutto arrampicato con la fantasia. Col pensiero sono sempre stato
un po' più avanti rispetto alle mie capacità, e ho scalato pareti sempre più
ripide, �nché a un certo punto nessuna via, per quanto ardita, mi è parsa

impossibile.�
(�La mia vita al limite�, Reinhold Messner)
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Premessa

In questo lavoro di tesi il mondo della Teoria dei Sistemi e della Teoria dei
Controlli si fonde all'ambito biomedico: mentre il secondo ha sempre suscitato in
me un certo fascino, come è normale che sia per uno studente di Bioingegneria,
l'interesse verso il primo, un mondo rigoroso, preciso, in cui nulla sembra essere
lasciato al caso, è stata una scoperta, qualcosa nato un po' alla volta tra un corso
universitario e l'altro, grazie a chi queste materie me le ha sapute insegnare.
Questo è il motivo per cui ho scelto di seguire i corsi di Teoria dei Sistemi e
Sistemi Multivariabili, di svolgere una tesi su un argomento poco comune per
uno studente di Bioingegneria, ed è anche il motivo per cui spero in futuro di
poter lavorare in quest'ambito.

Irene Zorzan
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Summary

In the present work an introduction to positive switched systems is provided,
along with an interesting application of this kind of systems to the biomedical
area. Re�ecting this twofold objective, the thesis is divided into two parts.

In the �rst part classical theoretical aspects, namely stability and stabiliz-
ability, concerning positive switched systems are addressed.

In Chapter 1 positive switched systems are introduced, both in the discrete
time case and in the continuous time case. A brief overview on the main ap-
proaches to the study of stability and stabilizability issues is also presented,
focusing in particular on the Lyapunov function techniques.

Chapter 2 is devoted to the problem of stability under arbitrary switching:
a number of results from the literature dealing with conditions ensuring the
existence of certain types of Lyapunov functions are collected.

In Chapter 3 stabilizability of discrete-time positive switched systems is ad-
dressed. In that respect, some recent works appeared in the literature concern-
ing the design of stabilizing switching sequences by means of di�erent types of
Lyapunov functions are presented.

The second part of the work aims at showing the importance of the previously
presented theory with an application from the biomedical area, speci�cally to
the problem of drug scheduling in HIV infection treatment.

Chapter 4 provides some essential notions concerning the human immune
system and the Human Immunode�ciency Virus, focusing in particular on an-
tiretroviral therapies commonly in use and the problem of the development of
drug-resistant viral variants.

In Chapter 5 two di�erent models of viral mutation treatment are presented:
the �rst one deals 4 viral variants and 2 drug therapies that can be administered,
while the second one provides a more extensive description of HIV dynamics
taking into account 64 viral variants and 3 drug combinations.

Chapter 6 is focused on the problem of treatment scheduling in HIV infection:
interesting simulation studies performed by Hernandez-Vargas and coauthors
using the above mentioned models are presented. All these results establish
the importance of proactive switching among drug regimens in order to manage
viral mutation and limit, or delay, the emergence of drug-resistant variants.

Finally, in the Appendix some essential notions on positive systems along
with some basic properties of positive matrices and Metzler matrices are pro-
vided.
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Z+ set of non-negative integers
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Chapter 1

Positive Switched Systems

In the present chapter we introduce positive switched systems and three
di�erent approaches to the investigation of their stability and stabilizability
properties. In particular, we focus on Lyapunov functions techniques, which
represent the most popular approach.

In what follows, basic notions of positive systems are taken for granted.
In that respect, we refer the reader to the Appendix, which provides some
interesting properties of positive matrices and Metzler matrices along with a
brief characterization of discrete-time and continuous-time positive systems.

1.1 Introduction

By a positive switched system we mean a dynamic system consisting of a
family of positive state-space models and a switching law, specifying when and
how the switching among the various subsystems takes place. Switching among
di�erent models naturally arises as a way to formalize the fact that the behavior
of a system changes under di�erent operating conditions, and is therefore repre-
sented by di�erent mathematical structures. On the other hand, the positivity
constraint is pervasive in engineering as well as in chemical, biological and eco-
nomic modeling: pressures, absolute temperatures, concentration of substances,
population levels, any type of resource measured by a quantity and probabilities
are all examples of variables that are con�ned to be positive or non-negative.
While both switched systems and positive systems have attracted a great deal
of attention over the past decades, the interest in positive switched systems is
relatively recent and strongly motivated by the fact that this class of systems is
frequently encountered in many application �elds. Typical applications can be
found in consensus and synchronization problems [17], wireless power control
[33], transmission control problems and congestion control [35] and so on. In
addition, a major motivation for studying such positive switched systems comes
from the possibility of employing them in system biology and pharmacokinetic:
this is the case, for instance, when describing the viral mutation dynamics under
drug treatment [11] [10], as we will see in Chapter 5.

From a theoretical point of view, although the main properties of both
switched systems and positive systems have been well understood during the
past decades, many basic problems concerning positive switched systems remain
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unanswered and that is why these systems still represent quite a challenge. As
far as properties like reachability and controllability are concerned, they can-
not be investigated as special cases of the analogous properties for standard
switched systems, as positive switched systems are de�ned on cones rather than
on linear spaces (and this is an obvious consequence of the positivity constraint
on system matrices and on the soliciting inputs). On the other hand, properties
like stability and stabilizability, meanwhile inheriting the general results derived
for non-positive switched systems, o�er new tools and new testing criteria that
�nd no equivalent in the general case. In this sense, studying switched positive
systems is more challenging than studying general switched systems, because
one has to combine the features of switched systems and positive systems to
obtain more �elegant� results.

1.2 Discrete-time Positive Switched Systems

A discrete-time positive switched system (DPSS) is described by the following
equation:

x(t+ 1) = Aσ(t)x(t), t ∈ Z+, (1.1)

where x(t) ∈ R
n
+ denotes the n-dimensional state variable at time t, σ is an

arbitrary switching sequence, taking values in the set [1, p] := 1, 2, . . . , p, and
for each i ∈ [1, p] the matrix Ai is an n× n positive matrix.

The state at any time instant t ∈ Z+, starting from the initial condition x(0)
and under the e�ect of the switching sequence σ(0), σ(1), . . . , σ(t− 1), can be
expressed as follows:

x(t) = Aσ(t−1) . . . Aσ(1)Aσ(0)x(0).

The index i = σ(t) in (1.1) is called the active mode at the time instant t.
In general, the active mode at t may depend not only on the time instant
t, but also on the current state x(t) and/or previous active mode σ(τ) for
τ < t. Accordingly, the switching law is usually classi�ed as time-dependent
(if it depends on the time t only), state-dependent (if it depends on state x(t)
as well), and with memory (if it also depends on the history of active modes).

1.3 Continuous-time Positive Switched Systems

Even if in the sequel only the stability and stabilizability of discrete-time pos-
itive switched systems will be considered, it is convenient to introduce continuous-
time positive switched systems, as some results derived for the latter �nd a
straightforward extension to the former.

Analogously to its discrete-time counterpart just introduced, a continuous-
time positive switched system(CPSS) is described by the following equation:

ẋ(t) = Aσ(t)x(t), t ∈ R+, (1.2)

where x(t) ∈ Rn+ denotes the value of the n-dimensional state variable at time
t, σ is an arbitrary switching sequence, taking values in the set [1, p], and for
each i ∈ [1, p] the matrix Ai is an n × n Metzler matrix. We assume that the
switching sequence is piecewise continuous, and hence in every time interval [0, t]
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there is a �nite number of discontinuities, which correspond to a �nite number
of switching instants 0 = t0 < t1 < · · · < tk < t. This actually corresponds to
the no-chattering requirement for the continuous-time switched systems (note
that this is not an issue in the discrete-time case). Also, we assume that, at the
switching time tl, σ is right continuous.

Given a time interval [0, t], corresponding to a set of switching instants
{t0, t1, . . . , tk} satisfying 0 = t0 < t1 < · · · < tk < t, the state at the time
instant t, starting from the initial condition x(0), can be expressed as follows:

x(t) = eAik (t−tk) . . . eAi0 (t1−t0)x(0),

where il = σ(tl), l = 0, 1 . . . , k.

As seen for the discrete-time case, the switching law σ(t) can be classi�ed
as time-dependent, state-dependent or with memory.

1.4 Stability and stabilizability

Stability and stabilizability issues for positive switched systems include sev-
eral interesting phenomena, all of them inherited from general switched sys-
tems. In this regard, we immediately point out two remarkable facts: switching
between individually stable subsystems may cause instability and conversely,
switching between unstable subsystems may yield a stable switched system. As
these examples suggest, the stability of (positive) switched systems depends
not only on the dynamics of each subsystems but also on the properties of the
switching signals. Therefore, when stability analysis for autonomous positive
switched systems is considered, many questions arise. First of all, we may look
for conditions ensuring the asymptotic stability of the system under arbitrary
switching rules. Secondly, if all individual subsystems are stable, we may want
to calculate a lower bound on the dwell time so as to guarantee the convergence
to zero of the state trajectory. If we need to be less restrictive, we might con-
sider an average dwell time, which allows the possibility of switching fast when
necessary and then compensating for it by switching su�ciently slowly later.
Furthermore, we may study stability under constrained switching when each
subsystem is associated with a closed convex region of the positive orthant and
can only be active for states within that region. Finally, we may want to specify
a time-dependent or a state-dependent switching rule that makes the resulting
system asymptotically stable.

Generally speaking, three di�erent approaches to the investigation of sta-
bility and stabilizability of (positive) switched systems can be found in the
literature. The �rst one is based on the evaluation of the joint spectral ra-
dius of a �nite set of matrices A := {Ai, i ∈ [1, p]}, namely the evaluation of
ρ(A) := lim supk→+∞max{ρ(Ai1Ai2 . . . Aik)1/k : Ail ∈ A}: the asymptotic sta-
bility of the DPSS switching into the set of matrices A is thus equivalent to
the fact that ρ(A) is smaller than 1. An alternative line of research, the so-
called variational approach, is based on identifying the most critical switching
sequence and investigating the resulting system behavior. The basic idea is
rather intuitive: if the worst case trajectory, namely the �most unstable� trajec-
tory, is stable, then the whole system should be stable as well. Finally, the most
popular approach is undoubtedly the one based on Lyapunov functions, which
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lays its foundations on Lyapunov stability theory1 and has a rather signi�cant
advantage: it captures the very nature of positive systems, namely the fact that
their states are always non-negative. As it will be clearer later, this method
consists in �nding conditions which guarantee the existence of certain types of
Lyapunov functions.

We have so far presented a brief overview on stability and stabilizability
problems and the main approaches to their solution which can be found in the
literature. Owing to the great extent of the subject, in what follows we limit
us to stability under arbitrary switching and state-feedback stabilization. Both
topics are investigated by resorting to Lyapunov functions techniques, which are
the object of the following section.

1.4.1 Lyapunov functions

The main purpose of this section is to introduce those types of Lyapunov
functions we will encounter in the following chapters. This is far away from
providing a full and deep characterization of Lyapunov functions, which goes
beyond the objectives of the present work.

In general, a Lyapunov function for a system x(t + 1) = Aix(t) or ẋ(t) =
Aix(t) is a positive de�nite function V (x) : Rn → R having the property that it
is decreasing along the system trajectories. This amounts to saying that its dif-
ference ∆Vi(x) := V (Aix)−V (x) (for discrete-time systems) or derivative V̇i(x)
(for continuous-time systems) taken along the system's trajectories is negative.
When positive systems are considered, the need to evaluate the asymptotic sys-
tem evolution only on the positive orthant allows to employ a larger class of
Lyapunov functions, namely copositive Lyapunov functions, which means that
V (x) is strictly positive for every x > 0 and becomes zero at the origin. We
now introduce three classes of copositive functions:

• linear copositive functions:

V (x) = vTi x, with vi ∈ Rn and vi � 0;

• quadratic copositive functions:

V (x) = xTPix, with Pi = PTi ∈ Rn×n such that xTPix > 0 ∀x > 0;

• quadratic positive de�nite functions:

V (x) = xTPix, with Pi = PTi � 0.

When dealing with positive switched systems, namely when the index i takes
values in the set [1, p], �nding a copositive Lyapunov function (belonging to any
of the previous three classes) such that ∆Vi(x) (or V̇i(x)) is negative for every
x > 0 and for each i ∈ [1, p] means ensuring the asymptotic stability of the
system under arbitrary switching signals. The Lyapunov function V (x) is a

1We recall that Lyapunov's theory is inspired by the concept of energy and energy-
dissipation (or preservation): the main idea is based on the fact that if an equilibrium point of
a dynamical system is the local minimum of an energy function and the system is dissipative,
then the equilibrium is (locally) stable.
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common copositive Lyapunov function for the positive switched system if the
vector vi (or the matrix Pi) does not depend on the index i, which amounts to
saying that V (x) is a copositive Lyapunov function for each subsystem. Con-
versely, when the vector vi (or the matrix Pi) depends on the active mode,
V (x) is a switched copositive Lyapunov function. Basically, if there exists a
copositive Lyapunov function for each i-th subsystem, then these functions are
patched together based on the switching signal σ(t) to construct a global copos-
itive Lyapunov function. For instance, a Switched Linear Copositive Lyapunov
Function takes the following form:

V (t,x(t)) =

(
p∑
i=1

ηi(t)vi

)T
x(t),

where ηi(t) =

{
1, if σ(t) = i

0, otherwise.

A slightly di�erent reasoning, but based on exactly the same principle, allows
to determine stabilizing switching signals. In this case, indeed, we look for
copositive Lyapunov functions (either linear, quadratic or quadratic positive
de�nite) satisfying the following condition: for every x > 0 there exists i ∈ [1, p]
such that ∆Vi(x) (or V̇i(x)) is negative. Alternatively, we consider piecewise
copositive Lyapunov functions, which are the minimum of p linear or quadratic
terms, i.e. the minimum of p individual Lyapunov functions. Thus, we have a
Piecewise Linear Copositive Lyapunov Function of the form:

V (x) = min
i=1,...,p

vTi x,

or a Piecewise Quadratic Copositive Lyapunov Function of the form:

V (x) = min
i=1,...,p

xTPix.

As already mentioned, this is not an exhaustive presentation of Lyapunov
functions and many other types of Lyapunov functions can be found in the
literature, such as multiple Lyapunov functions, control Lyapunov functions,
Lyapunov-like functions and so on.

Before concluding, it is worth making a remark concerning computation
tractability of conditions for the existence of a Lyapunov function belonging
to any of the previous types. Obviously, we are interested in the derivation of
testable conditions, namely compact and easily veri�able conditions, but this
goal cannot always be accomplished. Indeed, if these conditions are presented
in the form of a set of Linear Matrix Inequalities (LMIs), these can be solved
e�ciently by means of standard numerical software (such as the LMI Control
Toolbox of Matlab). On the contrary, the numerical determination of a solution
of a set of non-linear inequalities is not a simple task and looking for an alterna-
tive, although certainly more conservative, reformulation might be convenient
(this is the case, for instance, when dealing with piecewise copositive Lyapunov
functions, whose computation requires the solution of a set of Lyapunov-Metzler
inequalities). Alternatively, there have been various attempts to derive algebraic
conditions on the subsystems' state matrices for the existence of a certain type
of Lyapunov function, since this kind of conditions should be easier to verify
and may give us valuable insights in the stability problem.
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Chapter 2

Stability Under Arbitrary

Switching

In this chapter our main concern is to understand conditions that guarantee
the stability of the DPSS when there is no restriction on the switching signals.
This problem, which is not a trivial one, is relevant when the switching mecha-
nism is either unknown or too complicated to be useful in the stability analysis.
As we will see, even if it has attracted a great deal of attention and a number of
interesting results have been obtained, the topic still deserves more investigation
as we are far away from a full comprehension of the mechanisms that can lead
to instability.

2.1 Preliminary considerations

When dealing with switched systems, the possibility of ensuring a good
asymptotic behavior to the system trajectories independently of the switch-
ing law requires all individual subsystems to be asymptotically stable. Indeed,
if the i-th subsystem is unstable for some i ∈ [1, p], then the switched system
is unstable for σ(t) ≡ i. Therefore, throughout this chapter it will be assumed
that all individual subsystems are asymptotically stable, which amounts to say-
ing that all matrices Ai, i ∈ [1, p], are positive Schur matrices if we are dealing
with DPSSs or Metzler Hurwitz matrices if we are dealing with CPSSs.

This assumption, in general, is not su�cient to guarantee stability under
arbitrary switching. However, owing to the fact that all results obtained for
general switched systems hold true for positive switched systems, some special
cases can be identi�ed. More precisely [24],[25], the above subsystems' stability
assumption ensures the existence of a common quadratic Lyapunov function
and, hence, the stability of the (positive) switched system, when one at least of
the following conditions is satis�ed:

• the subsystems' state matrices are pairwise commutative, i.e. AiAj =
AjAi for all i, j ∈ [1, p];

• all the subsystems' state matrices are symmetric, i.e. Ai = ATi for all
i ∈ [1, p];

9



• all the subsystems' state matrices are normal, i.e. AiA
T
i = ATi Ai for all

i ∈ [1, p].

When none of the previous conditions holds, unconstrained switching may
destabilize a switched system even if all individual subsystems are stable. An
illustrating example for the discrete-time case is given in Example 2.1 below,
while [29] provides an example for the continuous-time case.

Example 2.1. Consider the pair of positive, Schur matrices:

A1 =

[
0 1
0 0

]
A2 =

[
0 0
1 0

]
.

It is clear that the matrix:

A1A2 =

[
1 0
0 0

]
is not Schur, and hence the state trajectory corresponding to the periodic switch-
ing sequence:

σ(t) =

{
2, if t is even;

0, if t is odd,

does not converge to zero corresponding to every positive x(0).

Leaving aside the aforementioned special cases, in what follows we are in-
terested in determining what additional requirements must be imposed on the
DPSS (1.1) to ensure stability under all possible switching signals. To this
aim, common Copositive Lyapunov Functions (CLFs) will be �rst considered,
and, later on, the switched linear Copositive Lyapunov Function method will
be presented.

2.2 Common Copositive Lyapunov Functions

It is well known [7],[20],[27],[28],[30] that the existence of a common Copos-
itive Lyapunov Function, either linear, quadratic or quadratic positive de�nite,
represents a su�cient condition for asymptotic system stability. While studying
the existence of such Lyapunov functions for switched systems is certainly con-
servative, establishing conditions under which such functions exist is a natural
place to begin the study of the stability of positive switched systems.

Before proceeding, it is worth mentioning one of the �rst works dealing with
discrete-time switched systems (note that most of the results obtained so far
have been derived in the continuous-time case). In [27] Mason and Shorten
propose a necessary and su�cient condition for the existence of a Common
Quadratic Lyapunov Function when a general second-order switched system
with p = 2 modes is considered. The result is based on the stability of the matrix
pencil formed by the pair of subsystems' state matrices. Given two matrices
M,N ∈ Rn×n, the matrix pencil Γ[M,N ] is de�ned as the one-parameter family
of matrices Γ[M,N ] = {M + γN : γ ∈ [0,∞)}. Formally, the result can be
summarized by the following proposition.

Proposition 2.1. Let A1, A2 be Schur matrices in R2×2 and let C(Ai) indicate
the matrix product C(Ai) := (Ai− In)(Ai + In)−1 for i = 1, 2. A necessary and

10



su�cient condition for the existence of a Common Quadratic Lyapunov Function
is that the pencils Γ[C(A1), C(A2)] and Γ[C(A1), C(A2)−1] consist entirely of
Hurwitz matrices.

Of course, generalizing the above algebraic condition to higher dimensional
systems or to the case with p > 2 modes turns out to be di�cult. Thus, research
e�orts have taken alternative directions and quite interesting results have been
obtained.

2.2.1 Common Linear CLFs

In this section we quote necessary and su�cient conditions for the existence
of a Common Linear CLF. Notice, �rst, that a linear copositive function V (x) =
vTx, with v� 0, is a Common Linear CLF for the DPSS (1.1) if and only if:

∆Vi(x) = V (Aix)− V (x) = vTAix− vTx� 0, ∀i ∈ [1, p] and ∀x > 0,

which amounts to saying that:

vT (Ai − In)� 0, ∀i ∈ [1, p]. (2.1)

When dealing with CPSSs, V (x) = vTx is a Common Linear CLF for the
system (1.2) if and only if:

V̇i(x) = vT ẋ = vTAix� 0, ∀i ∈ [1, p] and ∀x > 0,

which amounts to saying that:

vTAi � 0, ∀i ∈ [1, p]. (2.2)

Recalling that if Ai is a positive and Schur matrix, then Āi = Ai−In is a Metzler
and Hurwitz matrix, it is straightforward to see that every result derived in the
continuous-time case can be applied to DPSSs by substituting the Metzler,
Hurwitz matrix Ai in (2.2) with Āi, which is still a Metzler, Hurwitz matrix.

The interest in the existence of a Common Linear CLF is motivated by
the fact that checking whether there exists a strictly positive vector such that
(2.1) (or (2.2)) holds just amounts to solve a family of LMIs. This justi�es
our concern in characterizing, within the class of asymptotically stable positive
switched systems, those admitting a Common Linear CLF.

A �rst characterization is provided in [30], where Mason and Shorten pro-
pose a necessary and su�cient condition for a pair of asymptotically stable
continuous-time positive systems to have a Common Linear CLF. This condi-
tion is given in Proposition 2.2 below and its derivation is based on the following
preliminary lemma, whose proof can be found in [28].

Lemma 2.1. Let A1, A2 ∈ Rn×n be Metzler, Hurwitz matrices such that there
exists no non-zero vector v > 0 with ATi v < 0 for i = 1, 2. Then, there exist
w1 � 0, w2 � 0 in Rn such that:

A1w1 +A2w2 = 0.

11



Before stating the foretold result, we need to introduce some notation. Given
A ∈ Rn×n and an integer i with 1 ≤ i ≤ n, A(i) denotes the i-th column of A.
Thus, A(i) denotes the vector in Rn whose j-th entry is aij for 1 ≤ j ≤ n. For
a positive integer n, we denote the set of all mappings π : [1, n]→ [1, 2] by Cn,2.
Given two matrices A1, A2 ∈ Rn×n and a mapping π ∈ Cn,2, Aπ(A1, A2) denotes
the matrix:

Aπ(A1, A2) :=
[
A

(1)
π(1) A

(2)
π(2) . . . A

(n)
π(n))

]
.

Thus, Aπ(A1, A2) is the matrix in Rn×n whose i-th column is the i-th column of
Aπ(i) for 1 ≤ i ≤ n. We shall denote the set of all matrices that can be formed
in this way by S(A1, A2):

S(A1, A2) = {Aπ(A1, A2) : π ∈ Cn,2}.

Proposition 2.2. Let A1, A2 ∈ Rn×n be Metzler, Hurwitz matrices. Then, the
following statements are equivalent:

(i) ∃v� 0 such that V (x) = vTx is a Common Linear CLF for A1, A2;

(ii) The �nite set S(A1, A2) consists entirely of Hurwitz matrices.

Proof. (i) ⇒ (ii): Assuming there exists a Common Linear CLF amounts to
saying there exists some vector v � 0 in Rn such that vTAi � 0 for i = 1, 2.

This immediately implies that vTA
(j)
i � 0 for i = 1, 2 and for every j ∈ [1, n],

and hence:

vTA� 0 ∀A ∈ S(A1, A2). (2.3)

Now note that as A1, A2 are Metzler, all matrices belonging to the set S(A1, A2)
are also Metzler. Recalling that a Metzler matrix A is Hurwitz if and only of
there is some vector v� 0 such that Av� 0, it follows immediately from (2.3)
that each matrix in S(A1, A2) must be Hurwitz.

(ii) ⇒ (i): We shall show that if a Common Linear CLF for the matrices
A1, A2 does not exist, then at least one matrix belonging to the set S(A1, A2)
must be non-Hurwitz.

First of all, suppose that there is no non-zero vector v > 0 with vTAi < 0
for i = 1, 2 (note that this is a stronger assumption than the non-existence of a
strictly positive vector v, as stated in (i); we will relax this assumption below).
It follows from Lemma 2.1 that there are vectors w1,w2 such that w1 � 0,
w2 � 0 and:

A1w1 +A2w2 = 0. (2.4)

As w1 � 0, w2 � 0, there is some positive de�nite diagonal matrix D =
diag(d1, . . . , dn) in Rn×n with w2 = Dw1. It follows from (2.4) that, for this D,
we have:

A1w1 +A2Dw1 = (A1 +A2D)w1 = 0

and hence:

det(A1 +A2D) = 0. (2.5)

Now, de�ne for each mapping π ∈ Cn,2 the following product: dπ :=
∏n
i=1 d

π(i)−1
i

(note that dπ > 0 for all π ∈ Cn,2 since di > 0 for all i). In terms of this notation

12



and recalling that the determinant of a matrix is multilinear in the columns, we
can express det(A1 +A2D) as:

det(A1 +A2D) = det
[
A

(1)
1 + d1A

(1)
2 A

(2)
1 + d2A

(2)
2 . . . A

(n)
1 + dnA

(n)
2

]
=

=
∑

π∈Cn,2

det(Aπ(A1, A2))dπ.

If all matrices in the set S(A1, A2) were Hurwitz, then det(Aπ(A1, A2)) > 0 for
all π ∈ Cn,2 if n is even and det(Aπ(A1, A2)) < 0 for all π ∈ Cn,2 if n is odd.
In either case, this would contradict (2.5) which implies that there are positive
real numbers d1, . . . , dn for which:∑

π∈Cn,2

det(Aπ(A1, A2))dπ = 0.

Hence, there must exist at least one π ∈ Cn,2 for which Aπ(A1, A2) is non-
Hurwitz.

So far, we have shown that if there is no non-zero v > 0 such that vTAi < 0
for i = 1, 2, then at least one of the matrices Aπ(A1, A2) has to be non-Hurwitz.
However, in order to �nish the proof we need to extend this result to strictly
positive vectors v, as stated in the proposition. So, let us assume that there is
no common v � 0 such that vTAi � 0 for i = 1, 2. If, additionally, there was
no v > 0 such that vTAi < 0 for i = 1, 2, the result follows from the above
discussion. Conversely, if there was such a v > 0, an additional argument is
needed.

Denote by 1n×n the matrix in Rn×n consisting entirely of ones (1n×n(i, j) =
1 for all 1 ≤ i, j ≤ n) and by Ai(ε) the matrix Ai(ε) := Ai + ε1n×n for ε > 0
and i = 1, 2. It then follows that there cannot be a non-zero v > 0 achieving
vTAi(ε) < 0 for i = 1, 2. This can be shown by argument of contradiction:
assume there was a vector v > 0 such that vTAi(ε) < 0, then:

vTAi(ε) = vT (Ai + ε1n×n) < 0

vTAi < 0− εvT1n×n
vTAi < 0

for ε > 0 and i = 1, 2, which contradicts the �rst assumption. Thus, there is no
non-zero v > 0 such that vTAi(ε) < 0 for i = 1, 2.

Now, if we choose any ε > 0 su�ciently small to ensure that A1(ε) and
A2(ε) are Hurwitz and Metzler matrices, it follows from the above argument
that there must be at least one non-Hurwitz matrix in the set S(A1(ε), A2(ε)).

Finally, a limiting argument is needed. Consider a sequence of (εk) such that
εk → 0 as k →∞ and all εk's are small enough so that all Ai(εk) are still Hurwitz
and Metzler matrices. Since these matrices, and thus all Aπ(A1(εk), A2(εk)),
depend continuously on εk, it follows for all π ∈ Cn,2 that:

Aπ(A1(εk), A2(εk))→ Aπ(A1, A2) as εk → 0.

Since there is at least one π ∈ Cn,2 for which Aπ(A1(εk), A2(εk)) is non-Hurwitz,
this will also be the case for Aπ(A1, A2). This shows that at least one matrix in
the set S(A1, A2) is non-Hurwitz and completes the proof of the proposition.

13



The result provided by Proposition 2.2 is generalized to the case of a �nite
set of continuous-time positive subsystems in [20]. Of course, we need to extend
the notation previously introduced. For positive integers n and p, we denote
the set of all mappings π : [1, n] → [1, p] by Cn,p. Given a family of p matrices
in R

n×n, A = {A1, . . . Ap}, and a mapping π ∈ Cn,p, Aπ(A1, . . . , Ap) denotes
the matrix:

Aπ(A1, . . . , Ap) :=
[
A

(1)
π(1) A

(2)
π(2) . . . A

(n)
π(n)

]
.

We shall denote by S(A1, . . . , Ap) the set of all matrices one obtains by selecting
the 1st column among the 1st columns of the matrices in A, the 2nd column
among the 2nd columns of the matrices in A and so on:

S(A1, . . . , Ap) = {Aπ(A1, . . . , Ap) : π ∈ Cn,p}.

We can now state Theorem 2.1, whose proof is omitted (but can be found
in [20]), as it follows closely the lines of that of Proposition 2.2, including a
generalization of Lemma 2.1.

Theorem 2.1. Let A1, . . . , Ap ∈ R
n×n be Metzler, Hurwitz matrices. Then,

the following statements are equivalent:

(i) ∃v� 0 such that V (x) = vTx is a Common Linear CLF for A1, . . . , Ap;

(ii) The �nite set S(A1, . . . , Ap) consists entirely of Hurwitz matrices.

This theorem states that p continuous-time positive systems share a linear
CLF if and only if each of the pn Metzler matrices belonging to S(A1, . . . , Ap) are
Hurwitz matrices. In that case, the switched system formed by these subsystems
is asymptotically stable under arbitrary switching. To illustrate this result, we
include the following numerical example from [20].

Example 2.2. Consider three Metzler and Hurwitz matrices:

A1 =

−12 6 6
1 −10 2
5 3 −10

 A2 =

−12 4 0
6 −10 9
4 3 −13

 A3 =

−9 2 8
6 −10 4
3 0 −11


It turns out that the matrix Aπ(A1, A2, A3) is Hurwitz for any π ∈ C3,3 and
hence a CPSS with these matrices will be asymptotically stable under arbitrary
switching. If, however, the (3, 1)-element of A3 is changed from 3 to 5 (note
that after change A3 is still a Metzler and Hurwitz matrix), then the matrix

A(3,1,3) =
[
A

(1)
3 A

(2)
1 A

(3)
3

]
will have an eigenvalue λ ≈ 0.06 which violates

the Hurwitz condition.

A complete characterization for the existence of a Common Linear CLF
based on the investigation of a new geometric object, the convex hull generated
by the columns of the subsystems matrices, is provided in [7]. Presenting these
results requires some basic notions on cones we now introduce.

Let us �rst recall that the convex hull of a given family of vectors w1, . . . ,ws

is the set of vectors:

Ww :=

{
s∑
i=1

αiwi : αi ≥ 0,

s∑
i=1

αi = 1

}
.
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A set K ⊂ Rn is a cone if αK ⊆ K for all α ≥ 0. A cone K is said to be:

• convex if it contains, with any two points, the line segment between them;

• solid if it is convex and it includes at least one interior point;

• pointed if it is convex and K ∩ {−K} = {0};

• polyhedral if it can be expressed as the set of non-negative linear com-
binations of a �nite set of vectors, called generating vectors; if the gen-
erating vectors are the columns of a matrix A, we adopt the notation
K = Cone(A).

The dual cone of a cone K ⊂ Rn is:

K∗ :=
{
v ∈ Rn : xTv ≥ 0, ∀x ∈ K

}
.

Finally, the following relations between a closed convex cone K and its dual
cone K∗ hold:

• K is pointed if and only if K∗ is solid;

• K is solid if and only if K∗ is pointed;

• K is polyhedral if and only if K∗ is polyhedral.

In order to state the foretold results, we need a technical lemma, whose
proof is provided in [7]. In the following, for the sake of simplicity, we denote
the orthant of Rn including vectors with all non-negative entries except for the
j-th, which is negative, as Oj−.

Lemma 2.2. Let w1,w2, . . . ,ws be a family of s ≤ n+1 vectors in Rn, each of
them belonging to some orthant Oj−, j ∈ [1, n]. Suppose there exists a positive
convex combination:

y =

s∑
j=1

wjcj , cj > 0,

s∑
j=1

cj = 1,

such that y is a non-negative vector. If (at least) two vectors of the family,
say w1 and w2, belong to the same orthant Oj−, then a non-negative vector,
possibly di�erent from y, can be obtained as a convex combination of a subfamily
of w1,w2, . . . ,ws, where either w1 or w2 has been removed.

Theorem 2.2. Let A1, . . . , Ap ∈ R
n×n be Metzler, Hurwitz matrices and let

W denote the matrix:

W :=
[
In −A1 −A2 . . . −Ap

]
∈ Rn×(p+1)n.

Then, the following statements are equivalent:

(i) ∃v� 0 such that V (x) = vTx is a Common Linear CLF for A1, . . . , Ap;

(ii) ker+(W ) = {0};

(iii) The convex hull of the vector family WA := {A(j)
i : j ∈ [1, n], i ∈ [1, p]}

does not intersect the positive orthant Rn+;
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(iv) For every map π ∈ Cn,p, the convex hull of the vector family Wπ :=

{A(j)
π(j) : j ∈ [1, n]} does not intersect the positive orthant Rn+.

Proof. (i) ⇔ (ii): Consider the polyhedral cone whose generating vectors are
the columns of W :

K := Cone(W ) =
{
x ∈ Rn : x = Wλ, λ ∈ R(p+1)n

+

}
and its dual cone:

K∗ : =
{
v ∈ Rn : λTWTv ≥ 0, ∀λ ∈ R(p+1)n

+

}
=

=

v ∈ Rn+ :


In
−AT1
...
−ATp

v ≥ 0

 .

Notice that a strictly positive vector v ∈ R
n de�nes a Common Linear CLF

for A1, . . . , Ap if and only if it belongs to the interior of the closed convex cone
K∗. Hence, statement (i) is satis�ed if and only if K∗ is solid or, equivalently,
K is pointed. However, as W is devoid of zero columns, it is easily seen that
K is pointed if and only if the only non-negative vector in the kernel of W
is the zero vector. Indeed, assume ker+(W ) = {0} and let v ∈ K ∩ {−K},
which amounts to saying v = Wλ1 and −v = Wλ2 for some λ1,λ2 ∈ R(p+1)n

+ .
Then 0 = W (λ1 + λ2) implies v = Wλ1 = 0 since λ1 + λ2 ∈ ker+(W ).

Conversely, any non zero vector λ ∈ R
(p+1)n
+ belonging to ker+(W ) can be

written as λ = (λ−αei) +αei where ei is a canonical vector and α > 0 is small
enough to ensure λ−αei is still positive. Now,W (λ−αei+αei) = 0 implies the
existence of a non zero vector v = W (λ− αei) belonging to K, whose opposite
−v = Wαei belongs to −K. So, we have proved that (i) and (ii) are equivalent
statements.

(ii) ⇔ (iii): There exists a positive vector in ker+(W ) if and only if there
exist non-negative vectors y,x1, . . . ,xp in R

n not all of them equal to zero, such
that:

[
In −A1 . . . −Ap

]

y
x1

...
xp

 = y −A1x1 − · · · −Apxp = 0

and hence:

y =

p∑
i=1

Aixi =

p∑
i=1

n∑
j=1

A
(j)
i [xi]j .

Possibly rescaling y and the various non-negative coe�cients [xi]j , we can as-

sume
∑p
i=1

∑n
j=1[xi]j = 1, which amounts to saying that the convex hull of the

family of vectors WA includes a non-negative vector. Therefore, also (ii) and
(iii) are equivalent.

(iii)⇒ (iv): The proof is obvious, since for each mapping π ∈ Cn,p the vector
family Wπ is a subset of the vector family WA.

(iv) ⇒ (iii): Notice, �rst, that each vector of the families WA and Wπ,
being a column of a Metzler Hurwitz matrix, belongs to some orthant Oj−, for
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some j ∈ [1, n]. We now proceed by showing that ¯(iii) ⇒ ¯(iv). Consider a
non-negative vector y ∈ Rn+ obtained as the convex combination of the vectors
of WA. By the Caratheodory's theorem 1, there exist s ≤ n + 1 vectors, say
w1,w2, . . . ,ws in R

n, such that:

y =

s∑
j=1

wjcj , cj > 0,

s∑
j=1

cj = 1.

Starting from the above combination and repeatedly applying Lemma 2.2, we
reduce ourselves to the situation when we have vectors, say ŵ1, ŵ2, . . . , ŵr, with
r ≤ min{s, n}, endowed with the following properties:

• each of them belongs to WA;

• for every pair of distinct indices i, j ∈ [1, r], ŵi and ŵj belong to distinct
orthants;

• there exists a convex combination of the vectors ŵ1, ŵ2, . . . , ŵr that gives
a non-negative vector in Rn+.

If r < n, we complete the r-tuple above by introducing n − r vectors of
WA, each of them belonging to one of the orthants which are not represented
by ŵ1, ŵ2, . . . , ŵr. So, in any case, we end up with an n-tuple of columns,

{A(j)
π(j), j ∈ [1, n]}, that corresponds to a suitable map π, and produces, via

convex combination, a non-negative vector in Rn+. This contradicts (iv).

Theorem 2.2 relates the existence of a Common Linear CLF to the structure
of the convex hull generated by the columns of the subsystems matrices. Again,
we provide an illustrating example.

Example 2.3. Consider the pair of Metzler and Hurwitz matrices:

A1 =

[
−1 1
2
3 − 29

30

]
A2 =

[
− 1

2 10
0 − 2

3

]
.

It turns out that the convex hull of the vector family WA intersects the positive
orthant Rn+, as:

y =
2

3
A

(1)
1 +

1

3
A

(2)
2 =

 8
3

2
9

 ∈ Rn+
and hence, by Theorem 2.2, there does not exist a Common Linear CLF for
A1 and A2. Note that this does not imply the existence of some divergent
trajectories for a CPSS with these matrices.

Remark 2.1. Both Theorem 2.1 and Theorem 2.2 present necessary and su�-
cient conditions for the existence of a Common Linear CLF, but the underlying
approach is slightly di�erent. On the one hand, Knorn, Mason and Shorten,
resorting to positive diagonal transformations and to determinantal properties,
provide a characterization in terms of the Hurwitz property of a certain �nite

1Caratheodory's theorem states that if a vector x of Rn belongs to the convex hull of a set
P, there is a subset P̄ of P consisting of s ≤ n + 1 vectors such that x belongs to the convex
hull of P̄.
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set of matrices. On the other hand, Fornasini and Valcher exploit the theory of
cones to provide conditions involving the convex hulls of certain vector families
and their intersection with the positive orthant.

In this regard, it is worth pointing out that the equivalence between state-
ment (ii) in Theorem 2.1 and statement (iv) in Theorem 2.2 directly follows
from standard properties of Metzler matrices and the following lemma.

Lemma 2.3. Let U be a real matrix in Rm×n. Then, one and only one of the
following alternatives holds:

(a) ∃w > 0 such that wTU � 0;

(b) ∃z > 0 such that Uz > 0.

Indeed, if all matrices in the set S(A1, . . . , Ap) are Hurwitz, condition (b)
of Lemma 2.3 cannot be veri�ed, and consequently for every map π ∈ Cn,p
no convex combination of the columns of Aπ(A1, . . . , Ap) intersects the pos-
itive orthant Rn+. Conversely, if there exists a map π ∈ Cn,p such that the
convex hull of Aπ(A1, . . . , Ap) intersects the positive orthant, namely condition
(b) of Lemma 2.3 holds true, there does not exist a vector w > 0 such that
wTAπ(A1, . . . , Ap)� 0 and hence Aπ(A1, . . . , Ap) is not Hurwitz.

All results presented in Theorem 2.1 and Theorem 2.2 have been derived for
CPSSs. The following corollary puts together such results and restates them for
the discrete-time case.

Corollary 2.1. Let A1, . . . , Ap ∈ Rn×n be positive, Schur matrices and let W
denote the matrix:

W :=
[
In −(A1 − In) −(A2 − In) . . . −(Ap − In)

]
∈ Rn×(p+1)n.

Then, the following statements are equivalent:

(i) ∃v� 0 such that V (x) = vTx is a Common Linear CLF for A1, . . . , Ap;

(ii) The �nite set S(A1, . . . , Ap) consists entirely of Schur matrices;

(iii) ker+(W ) = {0};

(iv) The convex hull of the vector family WĀ := {(Ai − In)(j) : j ∈ [1, n], i ∈
[1, p]} does not intersect the positive orthant Rn+;

(v) For every map π ∈ Cn,p, the convex hull of the vector family Wπ :=
{(Aπ(j) − In)(j) : j ∈ [1, n]} does not intersect the positive orthant Rn+.

An alternative proof of the equivalence (i) ⇔ (iv) of Corollary 2.1 can be
found in [8], where DPSSs are addressed.

Before concluding, we brie�y mention a recent work by Doan and coau-
thors centered around Collatz-Wielandt sets. In [4] the link between linear
Lyapunov functions for DPSSs with irreducible matrices and corresponding
Collatz-Wielandt sets is established and this leads to an algorithm to compute
a Common Linear CLF whenever it exists. This approach di�ers considerably
from what we have seen so far and its deeper investigation goes beyond this
discussion.
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2.2.2 Common Quadratic CLFs and Common Quadratic

Positive De�nite CLFs

A quadratic copositive function V (x) = xTPx, with Pi = PTi ∈ Rn×n, is a
Common Quadratic CLF for the DPSS (1.1) if and only if:

∆Vi(x) = V (Aix)− V (x) =

= xTATi PAix− xTPx =

= xT (ATi PAi − P )x < 0, ∀i ∈ [1, p] and ∀x > 0.

(2.6)

If, in addition, the matrix P is positive de�nite, V (x) is said to be a Common
Quadratic Positive De�nite CLF.

When dealing with CPSSs, V (x) = xTPx is a Common Quadratic CLF for
the system (1.2) if and only if:

V̇i(x) = ẋTPx + xTP ẋ =

= (Aix)TPx + xTP (Aix) =

= xT (ATi P + PAi)x < 0, ∀i ∈ [1, p] and ∀x > 0.

(2.7)

Comparing (2.6) and (2.7) we see that, unlike linear Lyapunov functions pre-
viously considered, conditions concerned with the existence of quadratic (or
quadratic positive de�nite) common CLFs for CPSSs cannot be extended to
DPSSs.

Unfortunately, while a number of results have been derived in the continuous-
time case, only few works can be found in the literature dealing with quadratic
CLF for DPSSs. In that regard, in [7] necessary and su�cient conditions for
the existence of Common CLFs belonging to any of the three classes are mutu-
ally related, thus proving that if a Common Linear CLF can be found, then a
Common Quadratic CLF can be found, too, and this latter, in turn, ensures the
existence of a Common Quadratic Positive De�nite CLF. Formally, the result
can be summarized by the following theorem.

Theorem 2.3. Let A1, . . . , Ap ∈ Rn×n be positive, Schur matrices. Then, the
following statements are equivalent:

(i) ∃v� 0 such that V (x) = vTx is a Common Linear CLF for A1, . . . , Ap;

(ii) ∃P = PT of rank 1 such that V (x) = xTPx is a Common Quadratic CLF
for A1, . . . , Ap.

If (i)-(ii) hold, then the following condition holds:

(iii) ∃P̃ = P̃T � 0 such that V (x) = xT P̃x is a Common Quadratic Positive
De�nite CLF for A1, . . . , Ap.

If (iii) holds, then:

(iv) ∃P = PT such that V (x) = xTPx is a Common Quadratic CLF for
A1, . . . , Ap.
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Proof. (i) ⇒ (ii): Let v be a strictly positive vector such that vTAix < vTx
for every i ∈ [1, p] and every x > 0. As all quantities involved are non-negative,
for every i ∈ [1, p] and every x > 0 we have:

(vTAix)2 < (vTx)2

xTATi vv
TAix < xTvvTx,

and hence (ii) is satis�ed for P = vvT .

(ii) ⇒ (i): Notice, �rst, that any symmetric matrix P of rank 1 can be
expressed as P = vvT for some vector v. Moreover, as xTPx = xTvvTx =
(vTx)2 > 0 for every x > 0, all entries of v are nonzero and of the same sign,
and it entails no loss of generality assuming that they are all positive. On the
other hand, statement (ii) means that for every i ∈ [1, p] and every x > 0 we
have:

xTATi PAix < xTPx.

The previous condition can be rewritten as:

xTATi vv
TAix < xTvvTx

(vTAix)2 < (vTx)2.

Now, from the non-negativity of both vTAix and vTx, we get statement (i),
namely:

vTAix < vTx, ∀i ∈ [1, p] and ∀x > 0.

(ii) ⇒ (iii): If P is a symmetric matrix of rank 1 such that xTPx > 0 in
every point of the positive orthant, except for the origin, then, as shown in
(ii) ⇒ (i), P = vvT for some v � 0. This implies that P is also positive
semide�nite. Now, we set P̃ := P + εIn, with ε > 0, and we prove that there
exists ε such that V (x) = xT P̃x is a Common Quadratic Positive De�nite CLF
for A1, . . . , Ap. Clearly P̃ is positive de�nite, indeed:

xT P̃x = xTPx + εxTx > 0 ∀x 6= 0.

Now, consider the two functions:

f(x) := max
i=1,...,p

|xT (ATi Ai − In)x|,

g(x) := max
i=1,...,p

xT (ATi PAi − P )x.

Both f(x) and g(x) are continuous in the compact set E := R
n
+∩{x ∈ Rn+ : ‖x‖2 =

1} and hence, by Weierstrass' theorem and assumption (ii), we have:

max
x∈E

f(x) = max
x∈E

max
i=1,...,p

|xT (ATi Ai − In)x| = M ≥ 0,

max
x∈E

g(x) = max
x∈E

max
i=1,...,p

xT (ATi PAi − P )x = −δ < 0.

Let ε be any positive number such that εM < δ, namely −δ + εM < 0. Then,
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for every x ∈ E, we have:

max
i=1,...,p

xT (ATi P̃Ai − P̃ )x =

= max
i=1,...,p

[xT (ATi PAi − P )x + ε(xT (ATi Ai − In)x)]

≤ max
x∈E

max
i=1,...,p

[xT (ATi PAi − P )x] + ε ·max
x∈E

max
i=1,...,p

[|xT (ATi Ai − In)x|] =

= −δ + εM < 0.

By the homogeneity of V (x), the result holds for every x > 0.
(iii) ⇒ (iv): The proof is obvious.

Remark 2.2. While the existence of a Common Linear CLF implies the exis-
tence of a Common Quadratic Positive De�nite CLF, the converse is not true.
Consider the pair of positive Schur matrices:

A1 =

[
0 1
2
3

1
30

]
A2 =

[
1
2 1
0 1

3

]
.

It is easy to see that the matrix:

A(1,2) =
[
A

(1)
1 A

(2)
2

]
=

[
0 1
2
3

1
3

]
has eigenvalues λ1 = 1 and λ2 = − 2

3 . So, it is not a Schur matrix and, by
Corrolary 2.1, a Common Linear CLF for A1 and A2 does not exist. However,
it is a matter of simple calculation to show that the matrix:

P̃ =

[
1 4

5
4
5 2

]
= P̃T � 0

makes V (x) = xT P̃x a Common Quadratic Positive De�nite CLF for A1 and
A2.

2.3 Switched Linear Copositive Lyapunov Func-

tions

As already pointed out in our earlier discussion, stability criteria obtained by
means of common CLF (either linear, quadratic or quadratic positive de�nite)
are overconservative. An alternative line of research, only partially explored to
date, aims at reducing such conservatism by resorting to switched CLF. This
method has been �rst applied to discrete-time general switched systems and
then extended to discrete-time positive switched systems. In this regard, Liu
provides [26] a necessary and su�cient condition for the existence of a Switched
Linear CLF and formulates such condition both as a set of Linear Programming2

2A Linear Programming problem may be de�ned as the problem of maximazing or mini-
mazing a linear function subject to linear constraint (which may be either equalities or inequal-
ities). The interest in an LP formulation lies on the fact that there exist e�cient algorithms
to solve these kind of problems.
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(LP) problems and LMI problems. The result is provided by Theorem 2.4 below,
but �rst let us recall that a Switched Linear CLF takes the following form:

V (t,x(t)) =

(
p∑
i=1

ηi(t)vi

)T
x(t), (2.8)

where ηi(t) =

{
1, if σ(t) = i

0, otherwise.

Theorem 2.4. Let A1, . . . , Ap ∈ Rn×n be positive, Schur matrices. Then, the
following statements are equivalent:

(i) There exists a Switched Linear CLF of the form (2.8) for A1, . . . , Ap;

(ii) (LP problem) There exist p vectors vi � 0, i ∈ [1, p], such that:

ϕij = ATi vj − vi � 0, ∀(i, j) ∈ [1, p]× [1, p];

(iii) (LMI problem) There exist p diagonal positive de�nite matrices Pi =
diag(pi1, pi2, . . . , pin), i ∈ [1, p], such that:

Θij = diag(θij1, . . . , θijn) ≺ 0, ∀(i, j) ∈ [1, p]× [1, p],

where θijk = (A
(k)
i )Tpj − pik with pj =

[
pj1 pj2 . . . pjn

]T
.

It is straightforward to see that results obtained by Theorem 2.4 are less con-
servative than those derived by means of Common Linear CLFs. Indeed, if there
exists a Common Linear CLF V (x) = vT1 x, then a Switched Linear CLF of the
form (2.8) can be found too, as we only need to choose η1(t) ≡ 1 and ηi(t) ≡ 0
for i 6= 1 (equivalently, notice that p identical vectors v1 = v2 = · · · = vp satisfy
condition (ii) in Theorem 2.4). However, it is also clear that such reduction of
conservatism is at the price of increasing computational e�ort.

To summarize, throughout this chapter we have focused on the search for
conditions ensuring asymptotic system stability and a number of interesting
results have been presented. First of all, investigation of the existence of a
Common Linear CLF has led to deeper insights into the properties the sub-
systems family must be endowed with. In particular, Theorem 2.1 provides
a characterization referring to the Hurwitz property of a certain �nite set of
matrices, while Theorem 2.2 provides conditions involving the convex hulls of
certain vector families and their intersection with the positive orthant. Sec-
ondly, Theorem 2.3 relates the existence of a Common Linear CLF to that of
a Common Quadratic CLF and a Common Quadratic Positive De�nite CLF.
Finally, in Theorem 2.4, by resorting to Switched Linear CLFs, less conservative
conditions, although more computationally demanding, have been provided.
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Chapter 3

State-feedback Stabilizability

We have seen in the previous chapter conditions ensuring a good asymptotic
behavior to the system trajectories, independently of the switching law. On the
other hand, there are systems that are not stable under arbitrary switching (this
is the case, for instance, when modeling viral mutation and escape in patients
a�ected by HIV [11],[10], as we will see in Chapter 5). In addition, unstable
subsystems are commonly encountered in many engineering processes, because
of disturbances, unmodelled dynamics or possible faults. For such systems we
are interested in determining, if possible, switching strategies that ensure the
convergence to zero of the state trajectories. Despite the fact that both practical
applications and theoretical reasons make the investigation of stabilizability
property appealing to an increasing number of researchers, it is still a topic only
partially explored and it o�ers a wide range of interesting open problems.

3.1 De�nitions and preliminaries

We have so far referred to stabilizability in an intuitive way, as the possibility
of making the state evolutions converge to zero by means of suitable switching
signals. A more rigorous formulation of the concept is provided by the following
de�nitions.

De�nition 3.1. The DPSS (1.1) is stabilizable if for every positive initial state
x(0) there exists a switching sequence σ : Z+ → [1, p] such that the state trajec-
tory x(t), t ∈ Z+, generated by the DPSS starting from x(0) and corresponding
to σ, asymptotically converges to zero.

De�nition 3.2. The DPSS (1.1) is consistently stabilizable if there exists a
switching sequence σ : Z+ → [1, p] such that, for every positive initial state
x(0), the state trajectory x(t), t ∈ Z+, generated by the DPSS starting from
x(0) and corresponding to σ, converges to zero.

It is worthwhile to underline that, while in De�nition 3.1 the choice of the
switching sequence σ may depend on the initial state x(0), in De�nition 3.2 the
stabilizing sequence σ is required to drive to zero the state trajectory indepen-
dently of the initial state.
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It is clear that consistent stabilizability implies stabilizability, while the nat-
ural question arises whether the converse is true. In that regard, [8] provides an
e�ective response along with an additional characterization of stabilizability.

Proposition 3.1. Given a DPSS (1.1), the following statements are equivalent:

(i) The system is stabilizable;

(ii) The system is consistently stabilizable;

(iii) There existN > 0 and indices i0, i1, . . . , iN−1 ∈ [1, p], such that the matrix
product AiN−1

AiN−2
. . . Ai1Ai0 is a positive, Schur matrix;

(iv) There exists a periodic switching sequence that leads to zero every positive
initial state.

Proof. (i) ⇒ (ii): Consider any switching sequence σ that drives to zero the
initial state x̂(0) = 1n, where 1n is the n-dimensional vector with all entries
equal to 1. We prove that such switching sequence drives to zero every other
positive state x(0). Indeed, choose a positive number M such that 0 < x(0) ≤
M x̂(0) and let x(t) and x̂(t), t ∈ Z+, be the state evolutions originated from
x(0) and x̂(0), respectively, under the switching sequence σ. By the positivity
assumption on the matrices Ai's, we have:

0 ≤ x(t) ≤M x̂(t) ∀t ∈ Z+,

which ensures that x(t) goes to zero as t→ +∞. So, the system is consistently
stabilizable.

(ii) ⇒ (iii): Let σ be the switching sequence that makes the state evolution
go to zero, independently of the initial state. Set x(0) = 1n and ε ∈ (0, 1).
Then, a positive integer N can be found such that:

x(N) = Aσ(N−1) . . . Aσ(1)Aσ(0)1n � ε1n.

This ensures, by standard properties of positive matrices (see Proposition A.1 in
the Appendix1), that the spectral radius of the positive matrixAσ(N−1) . . . Aσ(1)Aσ(0)

is smaller than ε < 1, and hence the matrix is Schur. So, (iii) holds for ik = σ(k),
k ∈ [0, N − 1].

(iii) ⇒ (iv): If A := AiN−1
AiN−2

. . . Ai1Ai0 is a positive, Schur matrix, then
Ak converges to zero as k goes to in�nity. Consequently, the switching sequence
σ(t) = i(t mod N) drives to zero the state evolution corresponding to every pos-
itive initial state.

(iv) ⇒ (i): The proof is obvious.

The above proposition states that, when dealing with DPSSs, consistent
stabilizability and stabilizability are equivalent properties, and they are both

1If the matrices A1, A2, . . . , Ap are not irreducible, it is always possible to choose δ > 0

such that Ãi = Ai + δ1n1Tn is irreducible for all i = 1, . . . , p. Then, the following inequalities
hold:

Aσ(N−1) . . . Aσ(1)Aσ(0)1n � Ãσ(N−1) . . . Ãσ(1)Ãσ(0)1n � ε1n,

which implies that the spectral radius of the positive matrix Aσ(N−1) . . . Aσ(1)Aσ(0) is smaller

than the spectral radius of the matrix Ãσ(N−1) . . . Ãσ(1)Ãσ(0) (whose spectral radius, in turn,
is smaller than ε < 1 by Proposition A.1 in the Appendix).
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equivalent to the possibility of stabilizing the system by means of a periodic
switching sequence, independently of the positive initial state. It is worth notic-
ing that in the general case, i.e. when there is no positivity assumption, discrete-
time switched systems can be found (see [36], Chapter 3) that are stabilizable,
but not consistently stabilizable (indeed, in the above proof (i) ⇒ (ii) we made
unavoidable use of the positivity assumption).

Clearly, the stabilization problem is a non-trivial one only if all matrices Ai's
are not Schur (otherwise, if i ∈ [1, p] is the index of some asymptotically stable
subsystem, the switching signal σ(t) ≡ i drives to zero every positive initial
state). So, throughout this chapter, we will steadily make this assumption.

Apart from formulating stabilizability criteria that characterize the existence
of a stabilizing switching law, a more important issue is to explicitly calculate
such a stabilizing law. In that regard, notice that the stabilizing switching
strategy is most likely not to be unique: by choosing di�erent switching rules,
one may obtain di�erent trajectories, all of them convergent to zero, originating
from the same initial state. However, in what follows, we will not be concerned
with a comparison between such convergent trajectories, namely between their
rates of convergence, but only with the existence and the design of a stabilizing
switching strategy. In particular, the focus will be put on the search for a
stabilizing switching sequence whose value at time t depends on the speci�c
value of the state x(t), thus representing a state-feedback switching sequence of
the form σ(x(t)) = u(x(t)). To this aim, it is assumed that the full state vector
x(t) is available for feedback for all t ∈ Z+.

In the following sections, in order to determine the function u(·) : Rn → [1, p]
which stabilizes the system, we will �rst resort to piecewise CLFs, and then we
will move on to CLFs such that, for every x > 0, ∆Vi(x) < 0 for some i ∈ [1, p].

3.2 Piecewise Copositive Lyapunov Function ap-

proach

In this section we aim at designing a stabilizing switching rule by means
of a piecewise Lyapunov Function, which takes the form of the minimum of p
individual Lyapunov functions. In particular, we will consider Piecewise Linear
CLFs of the form:

V (x(t)) = min
i=1,...,p

vTi x(t), (3.1)

or Piecewise Quadratic Lyapunov Functions of the form:

V (x(t)) = min
i=1,...,p

xT (t)Pix(t). (3.2)

This method has been �rst applied in the context of general switched systems
and then extended to positive switched systems (both in the continuous and in
the discrete-time case). For this reason, we begin our discussion with a result
derived in the general case, that clearly holds true also for positive switched
systems. In [9] Geromel and Colaneri resort to Piecewise Quadratic Lyapunov
Functions to propose a state-feedback strategy for stabilization, designed from
the solution of a set of Lyapunov-Metzler inequalities.
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Before stating such result, let us recall that a simplex in R
p is the set of

vectors:

Λ :=

{
λ ∈ Rp :

p∑
i=1

λi = 1, λi ≥ 0

}
.

We also need to introduce a class of Metzler matrices, denoted by M , which is
constituted by all Metzler matrices M ∈ Rp×p with elements µij such that:

µij ≥ 0,

p∑
i=1

µij = 1, ∀i, j.

Proposition 3.2. Let A1, . . . , Ap ∈ R
n×n be the subsystems' state matrices

of a discrete-time switched system. Assume that there exist M ∈ M and a
set of p positive de�nite matrices P1, . . . , Pp satisfying the Lyapunov-Metzler
inequalities:

ATi

(
p∑
j=1

µjiPj

)
Ai − Pi ≺ 0, ∀i ∈ [1, p]. (3.3)

Then, the state-feedback switching rule:

σ(x(t)) := argmin
i=1,...,p

xT (t)Pix(t) (3.4)

stabilizes the system, i.e. it makes the state evolution goes to zero for every
initial state.

Proof. Consider the Piecewise Quadratic Lyapunov Function (3.2) with matrices
Pi satisfying (3.3) and assume that, at an arbitrary instant t ∈ Z+, the state
switching control is given by σ(x(t)) = u(x(t)) = i for some i ∈ [1, p]. Hence,
we have V (x(t)) = xT (t)Pix(t) and, from the system dynamic equation, we get:

V (x(t+ 1)) = min
j=1,...,p

xT (t)ATi PjAix(t)

= min
λ∈Λ

xT (t)ATi

(
p∑
j=1

λjPj

)
Aix(t)

≤ xT (t)ATi

(
p∑
j=1

µjiPj

)
Aix(t), (3.5)

where the inequality holds owing to the fact that each column of M belongs to
Λ. Now, from the Lyapunov-Metzler inequalities (3.3), it follows that for every
x(t) 6= 0:

xT (t)

[
ATi

(
p∑
j=1

µjiPj

)
Ai − Pi

]
x(t) < 0,

or, equivalently:

xT (t)ATi

(
p∑
j=1

µjiPj

)
Aix(t) < xT (t)Pix(t). (3.6)

Hence, from (3.5) and (3.6), it follows:

V (x(t+ 1)) < xT (t)Pix(t) = V (x(t)).
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So, taking into account that the Lyapunov function V (x(t)) is radially un-
bounded, we conclude that x(t) converges to zero for every initial state.

It is worth noticing that the numerical determination of a solution, if any,
of the Lyapunov-Metzler inequalities (3.3) with respect to the variables M and
P1, . . . , Pp is not a simple task due to its non-linear nature, and this is why
Geromel and Colaneri provide in [9] an alternative, although certainly more
conservative, condition expressed by means of LMIs. This result is here omit-
ted, as a very similar argument will be presented, in the context of DPSSs,
towards the end of the section.

As mentioned above, the piecewise Lyapunov function method has been
applied also to DPSSs. However, this line of research has been only partially
explored and, to date, only Piecewise Linear CLFs have been considered. In this
regard, a recent work by Hernandez-Vargas and coauthors should be mentioned:
[11] provides a su�cient condition for the existence of a Piecewise Linear CLF,
which, in turn, allows to design a stabilizing switching sequence. The result is
presented in Theorem 3.1 below, but �rst let us introduce a new class of Metzler
matrices. We shall denote by N the set of all Metzler matrices N ∈ Rp×p with
elements νij , such that:

νij ≥ 0,∀i 6= j,

p∑
i=1

νij = 0,∀j.

Theorem 3.1. Let A1, . . . , Ap ∈ Rn×n+ be the subsystems' state matrices of a
DPSS (1.1). Assume that there exist N ∈ N and a set of p positive vectors
v1, . . . ,vp, vi ∈ Rn+, satisfying the copositive Lyapunov inequalities:

(Ai − In)Tvi +

p∑
j=1

νjivj < 0, ∀i ∈ [1, p]. (3.7)

Then, the state-feedback switching rule:

σ(x(t)) := argmin
i=1,...,p

vTi x(t) (3.8)

stabilizes the DPSS, i.e. it makes the state evolution goes to zero for every
positive initial state.

Proof. Consider the Piecewise Linear CLF (3.1) with vectors vi satisfying (3.7).
We prove that V (x(t)) is decreasing, namely its di�erence ∆V (x(t)) is negative,
along the system trajectory corresponding to the state-switching control (3.8).
Indeed, we have:

∆V (x(t)) : = V (x(t+ 1))− V (x(t))

= min
j=1,...,p

{vTj x(t+ 1)} − min
j=1,...,p

{vTj x(t)}

= min
j=1,...,p

{vTj Aσ(t)x(t)} − min
j=1,...,p

{vTj x(t)}

= min
j=1,...,p

{vTj Aσ(t)x(t)} − vTσ(t)x(t),

27



and, by de�nition of σ(x(t)), the following inequality holds:

∆V (x(t)) ≤ vTσ(t)Aσ(t)x(t)− vTσ(t)x(t)

= vTσ(t)(Aσ(t) − In)x(t).
(3.9)

Now, notice that the Lyapunov inequality (3.7) for i = σ(t) can be rewritten as:

(Aσ(t) − In)Tvσ(t) < −
p∑
j=1

νjσ(t)vj ,

or, equivalently, as:

vTσ(t)(Aσ(t) − In) < −
p∑
j=1

νjσ(t)v
T
j . (3.10)

From (3.9) and (3.10), with x(t) 6= 0, it follows:

∆V (x(t)) < −
p∑
j=1

νjσ(t)v
T
j x(t)

= −νσ(t)σ(t)v
T
σ(t)x(t)−

p∑
j=1
j 6=σ(t)

νjσ(t)v
T
j x(t)

≤ −νσ(t)σ(t)v
T
σ(t)x(t)−

p∑
j=1
j 6=σ(t)

νjσ(t)v
T
σ(t)x(t)

= −

(
p∑
j=1

νjσ(t)

)
vTσ(t)x(t) = 0.

Thus, V (x(t)) converges to zero, and x(t) converges to zero in turn.

The previous theorem provides a su�cient condition for stabilizability along
with a stabilizing switching rule designed from the solution of a set of copos-
itive Lyapunov inequalities (notice that such inequalities are not LMIs since
the unknown parameters νji multiply the unknown vectors vj). An interesting
application of this result will be presented in Chapter 6 in the context of HIV
treatment modeling.

More recently, Tong and coauthors [37] resorted to the already introduced
class of matrices denoted by M in order to provide an alternative stabilization
strategy: again, the stabilization condition is expressed by means of a set of
matrix inequalities, whose solution, if any, de�nes a Piecewice Linear CLF,
which, in turn, allows to determine a stabilizing switching law.

Theorem 3.2. Let A1, . . . , Ap ∈ Rn×n+ be the subsystems' state matrices of a
DPSS (1.1). Assume that there exist M ∈ M and a set of p positive vectors
v1, . . . ,vp, vi ∈ Rn+, satisfying the copositive Lyapunov-Metzler inequalities:

ATi

(
p∑
j=1

µjivj

)
− vi < 0, ∀i ∈ [1, p]. (3.11)
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Then, the state-feedback switching rule:

σ(x(t)) := argmin
i=1,...,p

vTi x(t) (3.12)

stabilizes the DPSS, i.e. it makes the state evolution goes to zero for every
positive initial state.

Proof. The proof follows the same line as the proof of Proposition 3.2, except
that the Lyapunov function we now consider is the Piecewise Linear CLF (3.1).
Suppose that at an arbitrary instant t ∈ Z+, the state switching control is given
by σ(x(t)) = u(x(t)) = i for some i ∈ [1, p]. Hence, V (x(t)) = vTi x(t) and, from
the system dynamic equation, we have:

V (x(t+ 1)) = min
j=1,...,p

vTj Aix(t)

= min
λ∈Λ

(
p∑
j=1

λjv
T
j

)
Aix(t)

≤

(
p∑
j=1

µjiv
T
j

)
Aix(t), (3.13)

where the inequality holds owing to the fact that each column of M belongs to
Λ. Then, from (3.11) and (3.13), it follows:

V (x(t+ 1)) < vTi x(t) = V (x(t)).

Recalling that the Lyapunov function V (x(t)) is radially unbounded, we con-
clude that x(t) converges to zero for every positive initial state.

Again, the Lyapunov-Metzler inequalities (3.11) are not linear because of
the products of variables µji and vj . In order to obtain an e�cient numerical
solution, Tong and coauthors focus on particular matrices belonging to M ,
namely matrices Ai, i = 1, . . . , p, whose diagonal entries are identical, by this
meaning that for each of them [Ai]jj = [Ai]kk for all j, k. This technique, which
leads to a stabilizability condition expressed by LMIs, is analogous to the one
pursued by Geromel and Colaneri in [9] when dealing with general switched
systems and piecewise quadratic Lyapunov functions. Formally, the result can
be summarized by the following theorem.

Theorem 3.3. Let A1, . . . , Ap ∈ R
n×n
+ be the subsystems' state matrices of

a DPSS (1.1). Let q1, . . . ,qp, qi ∈ R
n
+, be a given set of p positive vectors

and assume that there exist a scalar 0 ≤ η ≤ 1 and a set of p positive vectors
v1, . . . ,vp, vi ∈ Rn+, satisfying the copositive Lyapunov-Metzler inequalities:

ATi
[
ηvi + (1− η)vj

]
− vi + qi < 0, ∀i 6= j ∈ [1, p]. (3.14)

Then, the state-feedback switching rule:

σ(x(t)) := argmin
i=1,...,p

vTi x(t) (3.15)

stabilizes the DPSS, i.e. it makes the state evolution goes to zero for every
positive initial state.
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Proof. Choose M ∈M , such that µii = η for all i ∈ [1, p]. Then the remaining
elements satisfy:

p∑
j=1
j 6=i

µji = 1− η, ∀i, j ∈ [1, p].

Now, by multiplying (3.14) by µji and, thereafter, by summing up for all j 6=
i ∈ [1, p], we obtain:

ηATi

p∑
j=1
j 6=i

µjivi + (1− η)ATi

p∑
j=1
j 6=i

µjivj < (1− η)(vi − qi). (3.16)

By multiplying both sides of (3.16) by (1− η)−1 and recalling that η = µii for
all i ∈ [1, p], we get:

ATi

p∑
j=1

µjivj < vi − qi,

or, equivalently:

ATi

p∑
j=1

µjivj − vi + qi < 0,

which implies that also the Lyapunov-Metzler inequalities (3.11) hold true.
Hence, by Theorem 3.2, the DPSS is globally asymptotically stable under the
switching law (3.15).

It is clear that the Lyapunov-Metzler inequalities (3.14) expressed by means
of LMIs are simpler to solve, but provide a more conservative condition, as we
restrict ourselves to a subclass of all matrices belonging to M .

3.3 An alternative Copositive Lyapunov Function

approach

Another strategy to stabilize a DPSS (1.1) is proposed in [8]: Fornasini and
Valcher resort to CLFs such that for every x > 0 there exists i ∈ [1, p] such that
∆Vi(x) is negative, namely:

min
i=1,...,p

∆Vi(x) = min
i=1,...,p

V (Aix)− V (x) < 0, ∀x > 0, (3.17)

where V (x) is a CLF either linear, quadratic or quadratic positive de�nite.
Notice that, di�erently from the piecewise CLF method, we do not search for p
vectors vi (or p matrices Pi) de�ning p individual CLFs, but a unique CLF (and
hence a unique vector v or a unique matrix P ) satisfying (3.17) is required.

In the following, we �rst investigate, and mutually relate, conditions for the
existence of a CLF satisfying (3.17) and, subsequently, we will prove that, when
any such function V (x) is available, a stabilizing switching law, based on the
values taken by the various ∆Vi(x)'s, can be found.

Theorem 3.4. Let A1, . . . , Ap ∈ Rn×n+ be positive matrices. Condition:
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(i*) ∃P = PT � 0 and α1, . . . , αp ≥ 0, with
∑p
i=1 αi = 1, such that V (x) =

xTPx satis�es:
p∑
i=1

αi∆Vi(x) =

p∑
i=1

αix
T (ATi PAi − P )x < 0 ∀x > 0,

implies any of the following equivalent facts:

(i) ∃v� 0 such that V (x) = vTx is a Linear CLF that satis�es:

min
i=1,...,p

∆Vi(x) = min
i=1,...,p

vT (Ai − In)x < 0 ∀x > 0;

(ii) ∃P = PT of rank 1 such that V (x) = xTPx is a Quadratic CLF that
satis�es:

min
i=1,...,p

∆Vi(x) = min
i=1,...,p

xT (ATi PAi − P )x < 0 ∀x > 0.

If (i)-(ii) hold, then the following condition holds:

(iii) ∃P̃ = P̃T � 0 such that V (x) = xT P̃x is a Quadratic Positive De�nite
CLF that satis�es:

min
i=1,...,p

∆Vi(x) = min
i=1,...,p

xT (ATi P̃Ai − P̃ )x < 0 ∀x > 0.

If (iii) holds, then:

(iv) ∃P = PT such that V (x) = xTPx is a Quadratic CLF that satis�es:

min
i=1,...,p

∆Vi(x) = min
i=1,...,p

xT (ATi PAi − P )x < 0 ∀x > 0.

Proof. (i*) ⇒ (i): Let Qi denote the matrix:

Qi :=

[
ATi PAi ATi P
PAi P

]
.

It is easily seen that Qi is positive semide�nite for every i ∈ [1, p], indeed:

xTQix = xT
[
ATi
In

]
P
[
Ai In

]
x ≥ 0 ∀x 6= 0.

Consequently, also the matrix
∑p
i=1 αiQi is positive semide�nite:

p∑
i=1

αiQi =

(∑p
i=1 αiA

T
i PAi

) (∑p
i=1 αiA

T
i

)
P

P
(∑p

i=1 αiAi

)
P

 � 0.

By the Schur complement's formula2, this implies that for every x, and hence,
in particular, for every x > 0, we have:

xT

[(
p∑
i=1

αiA
T
i PAi

)
−

(
p∑
i=1

αiA
T
i

)
P

(
p∑
i=1

αiAi

)]
x ≥ 0,

2Let M be a symmetric matrix block given by:

M =

[
A B
BT C

]
,

with matrices A,B,C having suitable dimensions. If C is positive de�nite, then the following
condition holds: M is positive semide�nite if and only if the Schur complement of the block
C is positive semide�nite, namely M � 0⇔ A−BC−1BT � 0.
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or, equivalently:

xT

(
p∑
i=1

αiA
T
i PAi

)
x ≥ xT

(
p∑
i=1

αiA
T
i

)
P

(
p∑
i=1

αiAi

)
x.

Now, by subtracting xTPx on both sides, we obtain:

xT

[
p∑
i=1

αi(A
T
i PAi − P )

]
x ≥ xT

[(
p∑
i=1

αiA
T
i

)
P

(
p∑
i=1

αiAi

)
− P

]
x. (3.18)

Since, by assumption (i*), the left hand-side in (3.18) is negative for every x > 0,
so is the right hand-side:

xT

[(
p∑
i=1

αiA
T
i

)
P

(
p∑
i=1

αiAi

)
− P

]
x < 0, ∀x > 0. (3.19)

Let Aα denote the positive matrix Aα :=
∑p
i=1 αiAi. It follows from (3.19) that

V (x) = xTPx is a quadratic copositive function such that V (Aαx)− V (x) < 0
for every x > 0 and, hence, Aα is asymptotically stable, which amounts to
saying that Aα is a Schur matrix. Now, notice that

∑p
i=1 αiIn = In and recall

that Aα is a positive, Schur matrix, if and only if:

Āα := Aα − In =

p∑
i=1

αi(Ai − In)

is a Metzler, Hurwitz matrix. This implies, by standard properties of Metzler
matrices, that there exists a vector v � 0 such that vT Āα � 0. Hence, for
every positive vector x, we have:

vT Āαx =

p∑
i=1

αi

[
vT (Ai − In)x

]
< 0,

which amounts to saying that min
i=1,...,p

vT (Ai − In)x < 0.

(i) ⇔ (ii): The proof follows the same lines as the proof of the analogous
conditions (i) ⇔ (ii) in Theorem 2.3.

(ii) ⇒ (iii): The reasoning is very similar to the one used in the proof of (ii)
⇒ (iii) in Theorem 2.3, except that the two continuous functions we need now
are:

f(x) := max
i=1,...,p

|xT (ATi Ai − In)x|,

g(x) := max
i=1,...,p

xT (ATi PAi − P )x.

(iii) ⇒ (iv): The proof is obvious.

Remark 3.1. A close examination of the proof (i*) ⇒ (i) in Theorem 3.4
shows that a necessary and su�cient condition for the existence of a Linear
CLF satisfying (3.17) is that there exists a Schur convex combination of the
positive system matrices, namely there exist α1, . . . , αp ≥ 0, with

∑p
i=1 αi = 1,

such that Aα :=
∑p
i=1 αiAi is Schur. However, the existence of such a Schur

convex combination does not imply condition (i*) and a counterexample can be
found in [8].
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A more complete characterization for the existence of a CLF satisfying con-
dition (3.17) is provided in [8] for a DPSS switching between p = 2 subsystems.
For this particular case a new set of equivalent su�cient conditions for stabiliz-
ability can be found and these conditions prove to be stronger than any of the
conditions presented in Theorem 3.4. This result is presented is Proposition 3.3
below and its derivation is based on the following lemma.

Lemma 3.1 (S-procedure). Let Q1, Q2 ∈ Rn×n be two symmetric matrices,
and suppose that there exist x̄ 6= 0 such that x̄TQ1x̄ > 0. Then, the following
statements are equivalent:

(a) ∀x 6= 0 such that xTQ1x ≥ 0, one �nds xTQ2x < 0;

(b) ∃γ ≥ 0 such that γQ1 +Q2 ≺ 0.

Proposition 3.3. Let A1, A2 ∈ Rn×n+ be positive matrices. The following facts
are equivalent:

(i2) ∃P = PT � 0 such that V (x) = xTPx satis�es:

min
i=1,2

∆Vi(x) = min
i=1,2

xT (ATi PAi − P )x < 0 ∀x 6= 0;

(ii2) ∃P = PT � 0 and η > 0 such that V (x) = xTPx satis�es:

min
i=1,2

∆Vi(x) = min
i=1,2

xT (ATi PAi − P )x < −ηxTx ∀x 6= 0;

(iii2) ∃P = PT � 0 and α ∈ [0, 1] such that:

α(AT1 PA1 − P ) + (1− α)(AT2 PA2 − P ) ≺ 0.

If (i2)-(iii2) hold, then:

(i*) ∃P = PT � 0 and α ∈ [0, 1] such that V (x) = xTPx satis�es for every
x > 0:

α∆V1(x)+(1−α)∆V2(x) = xT
[
α(AT1 PA1−P )+(1−α)(AT2 PA2−P )

]
x < 0.

Conditiion (i*) implies any of the following equivalent facts:

(i) ∃v� 0 such that V (x) = vTx is a Linear CLF that satis�es:

min
i=1,2

∆Vi(x) = min
i=1,2

vT (Ai − In)x < 0 ∀x > 0;

(ii) ∃P = PT of rank 1 such that V (x) = xTPx is a Quadratic CLF that
satis�es:

min
i=1,2

∆Vi(x) = min
i=1,2

xT (ATi PAi − P )x < 0 ∀x > 0.

If (i)-(ii) hold, then the following condition holds:
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(iii) ∃P̃ = P̃T � 0 such that V (x) = xT P̃x is a Quadratic Positive De�nite
CLF that satis�es:

min
i=1,2

∆Vi(x) = min
i=1,2

xT (ATi P̃Ai − P̃ )x < 0 ∀x > 0.

If (iii) holds, then:

(iv) ∃P = PT such that V (x) = xTPx is a Quadratic CLF that satis�es:

min
i=1,2

∆Vi(x) = min
i=1,2

xT (ATi PAi − P )x < 0 ∀x > 0.

Proof. (i2) ⇒ (ii2): Consider the continuous function:

f(x) := min
i=1,2

xT (ATi PAi − P )x

and the compact set:
E := {x ∈ Rn : ‖x‖2 = 1}.

By Wierstrass' theorem and assumption (i2), it follows that maxx∈E f(x) < −η,
η > 0. Now, for every c ∈ R+ consider the compact set:

Ec := {x ∈ Rn : ‖x‖2 = c} = {x = cz : z ∈ E},

and notice that:

max
x∈Ec

f(x) = max
x∈Ec

min
i=1,2

xT (ATi PAi − P )x

= max
z∈E

min
i=1,2

zT (ATi PAi − P )z < −η. (3.20)

Condition (3.20) implies that:

min
i=1,2

zT (ATi PAi − P )z < −η

min
i=1,2

xT

c
(ATi PAi − P )

xT

c
< −η

min
i=1,2

xT (ATi PAi − P )x < −η · c2

and this ensures that, for every x 6= 0, f(x) < −ηxTx.
(ii2) ⇒ (iii2): If either A1 or A2 is Schur, the result is obvious. So, we

assume that neither of them is. Now, set Qi := ATi PAi − P + ηIn and notice
that condition (ii2) can be rewritten as:

min
i=1,2

xT (ATi PAi − P + ηIn)x = min
i=1,2

xTQix < 0 ∀x 6= 0. (3.21)

Observe that, as A1 is not Schur, there exists x̄ 6= 0 such that x̄T (AT1 PA1 −
P )x̄ ≥ 0, which implies that x̄TQ1x̄ > 0. In addition, condition (3.21) implies
that for every x 6= 0 such that xTQ1x ≥ 0, one has xTQ2x < 0. So, by Lemma
3.1, we can claim that there exists γ ≥ 0 such that:

γQ1 +Q2 = γ(AT1 PA1 − P + ηIn) + (AT2 PA2 − P + ηIn) ≺ 0,
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and hence:
γ(AT1 PA1 − P ) + (AT2 PA2 − P ) ≺ 0,

which amounts to saying that (iii2) holds for α = γ
1+γ ∈ [0, 1).

(iii2) ⇒ (i2) and (iii2) ⇒ (i*) are obvious.
The remaining conditions follow from Theorem 3.4 for the particular case

p = 2.

The above Theorem 3.4 (along with Proposition 3.3 for the case p = 2)
mutually relates the conditions for the existence of CLFs satisfying (3.17), thus
proving that, within such class of CLFs, if a Linear CLF can be found, then a
Quadratic CLF can be found, too, and this latter, in turn, ensures the existence
of a Quadratic Positive De�nite CLF. It is worth noticing that, in a sense, this is
the counterpart for stabilizability of the characterization obtained in Theorem
2.3 for stability.

The interest in the existence of a CLF satisfying (3.17) is justi�ed by the
possibility of implementing a state-feedback stabilizing switching law. This is
shown in Theorem 3.5 below, which provides a stabilization strategy which
is independent of the special kind of Lyapunov function we are considering.
In addition, the same reasoning would apply to every copositive homogeneous
function, thus making this switching rule applicable when dealing with a broader
class of Lyapunov functions.

Theorem 3.5. Let a DPSS of the form (1.1) be given. Assume there exists a
CLF, which is either linear, quadratic or quadratic positive de�nite, satisfying
the following condition:

min
i=1,...,p

∆Vi(x) = min
i=1,...,p

V (Aix)− V (x) < 0 ∀x > 0.

Then, the state-feedback switching rule:

σ(x(t)) := min{k : ∆Vk(x(t)) ≤ ∆Vi(x(t)), ∀i ∈ [1, p]} (3.22)

stabilizes the system, i.e. it makes the state evolution goes to zero for every
positive initial state.

Proof. Consider �rst the case when V (x) is a Quadratic (possibly Positive Def-
inite) CLF and hence takes the form V (x) = xTPx. The function:

∆V (x) := min
i=1,...,p

∆Vi(x) = min
i=1,...,p

xT (ATi PAi − P )x

is a continuous function that takes negative values in every point of the compact
set:

E := R
n
+ ∩ {x ∈ Rn : xTPx = 1}.

So, by Weierstrass' theorem, maxx∈E ∆V (x) = −η, 0 < η ≤ 1. Now, for every
c ∈ R+ consider the compact set:

Ec := R
n
+ ∩ {x ∈ Rn : xTPx = c} = R

n
+ ∩ {x =

√
cz : z ∈ E},

and notice that:

max
x∈Ec

∆V (x) = max
x∈Ec

min
i=1,...,p

xT (ATi PAi − P )x

= max
z∈E

min
i=1,...,p

zT (ATi PAi − P )z = −η. (3.23)
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Condition (3.23) implies that:

min
i=1,...,p

zT (ATi PAi − P )z ≤ −η

min
i=1,...,p

xT√
c
(ATi PAi − P )

xT√
c
≤ −η

min
i=1,...,p

xT (ATi PAi − P )x ≤ −η · c

and this ensures that for every x > 0 we have:

∆V (x(t)) ≤ −ηxTPx.

Finally, notice that:

V (x(t+ 1)) = V (x(t)) +
[
V (Aix(t))− V (x(t))

]
= V (x(t)) + ∆V (x(t))

≤ (1− η)xT (t)Px(t)

≤ (1− η)t+1xT (0)Px(0).

Thus V (x(t)) converges to zero, and x(t) converges to zero in turn.
The proof in case of a linear CLF V (x) = vTx follows the same lines, upon

assuming E := R
n
+ ∩ {x ∈ Rn : vTx = 1}.

Remark 3.2. Interestingly enough, under certain assumptions the stabilizing
switching strategy provided by just stated Theorem 3.5 is completely equiva-
lent to the one described by Geromel and Colaneri in [9] (see Proposition 3.2
above). This is the case when there exist P = PT � 0 and α1, . . . , αp ≥ 0, with∑p
i=1 αi = 1, such that V (x) = xTPx satis�es:

p∑
i=1

αi∆Vi(x) =

p∑
i=1

αix
T (ATi PAi − P )x < 0 ∀x 6= 0,

which amounts to saying that:

p∑
i=1

αi(A
T
i PAi − P ) ≺ 0. (3.24)

Note that this is a stronger condition with respect to condition (i*) in Theorem
3.4 and coincides with any of the conditions (i2)-(iii2) in Proposition 3.3 when
p = 2. We now prove that if (3.24) holds for suitable αi's and P , then the
Lyapunov-Metzler inequalities (3.3) admit a solution. Indeed, assuming that
(3.24) holds, then there exists ε > 0 su�ciently small such that:

p∑
i=1

αi(A
T
i PAi − P ) + εIn � 0,

or, equivalently:
p∑
i=1

αi(A
T
i PAi + εIn)− P � 0.
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This, in turn, implies that for all i ∈ [1, p]:

ATi

[
p∑
i=1

αi(A
T
i PAi + εIn)

]
Ai −ATi PAi � 0,

and hence:

ATi

[
p∑
i=1

αi(A
T
i PAi + εIn)

]
Ai −ATi PAi − εIn ≺ 0,

which amounts to saying that each of the pmatrices P̄i = ATi PAi+εIn, i ∈ [1, p],
satis�es the Lyapunov-Metzler inequalities (3.3):

ATi

(
p∑
j=1

αjP̄j

)
Ai − P̄j ≺ 0.

Finally, it is straightforward to see that the switching strategy (3.22) is totally
equivalent to the state-feedback switching rule (3.4) of Proposition 3.2:

σ(x(t)) = argmin
i=1,...,p

xT (t)(ATi PAi − P )x(t)

= argmin
i=1,...,p

xT (t)(ATi PAi)x(t)

= argmin
i=1,...,p

xT (t)(ATi PAi + εIn)x(t)

= argmin
i=1,...,p

xT (t)P̄ix(t).

Remark 3.3. When a DPSS (1.1) satis�es condition (i*) of Theorem 3.4, di�er-
ent state-feedback switching strategies can be adopted and the natural question
arises whether they are just the same or, if not, which of them ensures better
convergence performance. In this regard, a few considerations should be done.
First of all, notice that the switching strategies based on Linear CLFs and those
based on Quadratic CLFs of rank 1 are just the same. Indeed, as clari�ed in the
proof of (ii)⇔ (i) in Theorem 2.3, a matrix P = PT of rank 1 satis�es condition
(ii) if and only if it can be expressed as P = vvT , for some vector v � 0. On
the other hand, by the non-negativity of the quantities involved, we have:

σ(x(t)) = min{k : vT (Ak − In)x ≤ vT (Ai − In)x, ∀i ∈ [1, p]}
= min{k : vTAkx ≤ vTAix, ∀i ∈ [1, p]}
= min{k : xTATk vv

TAkx ≤ xTATi vv
TAix, ∀i ∈ [1, p]}

= min{k : xT (ATk vv
TAk − vvT )x ≤ xT (ATi vv

TAi − vvT )x,∀i ∈ [1, p]}

and hence the switching sequences based on vTx and on xTvvTx are just the
same. Secondly, since the set of Quadratic CLFs of arbitrary rank include the set
of Quadratic CLFs of rank 1, the stabilizing switching laws based on the latter
are a subset of those based on the former. Similarly, the class of switching laws
based on Quadratic CLFs encompasses those based on Quadratic Positive De�-
nite CLFs and hence it ensures convergence performances at least as good as the
latter. So, we can conclude that, in order to optimize the convergence perfor-
mances, it is always convenient to resort to switching laws based on Quadratic
CLFs.
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Before concluding, let us revise what we have seen throughout this chapter,
where the determination of a stabilizing switching strategy has been addressed.
First, the piecewise CLF method has been considered: in this context the sta-
bilization condition is expressed by means of a set of matrix inequalities, whose
solution, if any, de�nes a Piecewise Linear CLF, which, in turn, allows to design
a stabilizing switching law. This underlying idea has led to results presented in
Theorem 3.1 and in Theorem 3.2 by resorting to di�erent classes of Metzler ma-
trices. Unfortunately, the aformentioned matrix inequalities are non-linear and
hence looking for a simpler, although more conservative, reformulation might
be convenient, as seen in Theorem 3.3. Finally, an alternative approach has
been presented: Theorem 3.4 investigates conditions for the existence of a spe-
cial class of CLFs, while Theorem 3.5 ensures the possibility of implementing a
state-feedback stabilizing switching law whenever such a Lyapunov function is
available.
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Part II

Application of Positive

Switched Systems to HIV

Treatment Modeling
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Chapter 4

The Immune System and the

Human Immunode�ciency

Virus

In this chapter we provide some basic concepts on the immune system and
the Human Immunode�ciency Virus (HIV). In particular, in the �rst section
a brief overview over the immune system's components is presented, while in
the second section the typical course of HIV disease is described, along with
antiretroviral therapies commonly used for treating individuals infected. In
both cases we will limit to some essential notions and we refer the reader to
[2],[16],[19] for a complete and exhaustive presentation of the topics.

All �gures included in the present chapter are taken from [2].

4.1 The immune system

The immune system is a remarkable defense mechanism: it provides the
means to make rapid, speci�c and protective responses against foreign and
harmful substances, microorganisms, toxins, and malignant cells. Its central
role is illustrated by the tragic example of severe immunode�ciencies, as seen
in both genetically determined diseases and in the Acquired Immunode�ciency
Syndrome (AIDS).

The immune system can be divided into two parts, called innate and adap-
tive. The innate immune system acts in a nonspeci�c manner, which means
that defense mechanisms become active independently of the invading pathogen.
Some examples include physical barriers such as the skin, chemical barriers like
lysozymes, the complement system, granulocytes and macrophages. The adap-
tive immune system is responsible for highly speci�c reactions which require
recognition of speci�c �non-self� antigens. It also creates immunological mem-
ory after an initial response to a speci�c pathogen, which leads to an enhanced
response to subsequent encounters with the same pathogen.

When a foreign, potentially pathogenic agent breaches the outer barriers of
the body, mechanisms of innate immunity are �rst activated (also known as the
primary immune defenses), while speci�c immune defense factors are mobilized
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later on to fortify and regulate these primary defenses.
White blood cells, also called leukocytes, constitute the immune system's

components. Like all other components of the blood, they originate from
pluripotent hematopoietic stem cells of the bone marrow and they subsequently
di�erentiate into various types: polymorphonuclear granulocytes, lymphocytes
and monocytes. The class of polymorphonuclear granulocytes includes neu-
trophils, eosinophils, and basophils, which are all characterized by a segmented
nucleus and by the presence of di�erently staining granules in their cytoplasm
when viewed under microscopy. Lymphocytes can be distinguished into two
di�erent types: T cells (Thymus cells) and B cells (Bone cells). Monocytes
circulate in the blood and continually migrate into tissues, where they mature
and become macrophages. As lymphocytes and monocytes are characterized by
the apparent absence of granules in their cytoplasm, they are collectively called
mononuclear agranulocytes in order to distinguish them from granulocyte cells.

The various components of the immune system play di�erent roles in the
immune response. Granulocytes and monocytes have the ability to ingest par-
ticles, microorganisms, dead cell debris and �uids by phagocytosis, which is the
main mechanism of innate immunity. T and B lymphocytes are the e�ector cells
of the adaptive immune response: the former are responsible for the so called
cell-mediated immunity, while the latter produce antibodies, which constitute
the humoral (namely, antibody-mediated) immune response. Both T and B
cells carry on their surface specialized receptors which recognize and bind with
only one speci�c antigen: this �lock-and-key� mechanism accounts for the high
speci�city of the adaptive immune response. A brief description of T cells, B
cells and macrophages is presented below.

T lymphocytes

T-lymphocytes derive from precursors in hematopoietic tissue, undergo dif-
ferentiation in the thymus (hence the name T lymphocytes), and are then seeded
to the peripheral lymphoid tissue and to the recirculating pool of lymphocytes.
They can be distinguished from other lymphocytes by the presence on the sur-
face of a T cell Receptor (TCR), a protein that binds speci�cally to antigens
trapped by the Major Histocompatibility Complex (MHC) molecules. The di-
versity of TCR is achieved by means of rearrangement of gene segments coding
for its constituent chains. Di�erently from B cell receptors, T cell receptors
are unable to recognize free antigens. Rather, they recognize cell-associated
molecules, namely antigenic peptides, derived by proteolysis of the antigen, in
combination with either MHC class I or II.

There are several subsets of T cells mediating a wide range of immunologic
functions and di�ering in how they recognize antigens. T Helper cells and
Cytotoxic T cells are among the most important subpopulations. T Helper
cells are also called CD4+ T cells as they express the surface molecule CD4,
which recognizes only MHC class II-associated antigens. The CD4 molecule also
serves as the binding protein for the HIV. T Helper cells exercise an important
regulatory e�ect on other lymphocytes: they help B cells develop into antibody-
producing cells and they produce, or induce the production of, cytokines by
which means they activate macrophages and enhance their microbicidal activity.

Cytotoxic T cells are also known as CD8+ T cells as they express the CD8
molecule that binds to MHC class I. They are capable of e�ciently lysing tar-
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get cells, like virus-infected cells, tumor cells and allogeneic cells. Such lysing
mechanism involves the production of perforin, a molecule that inserts into the
membrane of target cells and promotes its lysis.

B lymphocytes

B lymphocytes derive from hematopoietic stem cells by a complex set of
di�erentiation events occurring in the bone marrow (hence the name B lym-
phocytes). When a mature B cell encounters the antigenic epitope speci�cally
recognized by its surface receptor, it becomes an activated B cell. Such an ac-
tivation process, which may occur directly or through the interaction with a
Helper T cell, is responsible for the proliferation and di�erentiation of the B cell
into either a plasma-cell or a memory cell. Plasma-cells secrete in the blood an-
tibodies exhibiting the same antigen speci�city as the B cell receptor. The great
variety of antibodies, known as Immunoglobulins (Ig), is ensured by a process of
continuous diversi�cation of the genetically identical B-cell precursors. Memory
B cells give rise to antibody-secreting cells upon re-challenge of the individual:
the hallmarks of this response to re-challenge is that it is of greater magnitude,
occurs more promptly and is composed of antibodies with higher a�nity for the
antigen.

Macrophages

Macrophages, which represent the mature form of monocytes, are large,
highly phagocytic and relatively long-lived cells distributed in almost all tis-
sues. In contrast with T and B lymphocytes, macrophages cannot recirculate or
re-initiate DNA replication except in a limited way. They are important for the
generation of both adaptive immune response and innate immune response: they
regulate activation of T and B lymphocytes through their specialized derivatives
known as Dendritic Cells, they process and present antigens, they produce pro-
teins (chemokines and cytokines) that activate other immune system cells and
they phagocytose cellular debris, pathogens, necrotic and apoptotic cells.

4.2 HIV infection

The Human Immunode�ciency Virus was �rst identi�ed in 1983 and was
shown to be the cause of Acquired Immunode�ciency Syndrome (AIDS) in 1984.
Since the introduction of the combination of antiretroviral therapies a signi�-
cant decrease in morbidity and a reduction in mortality have been reported.
Nevertheless, the treatment of HIV infected patients is still of major impor-
tance in today's medicine as, to date, no curative therapy resulting in complete
eradication of the virus is available.

4.2.1 The virus and its replication cycle

HIV belongs to the family of retroviruses, a class of viruses characterized by
having an enzyme, called reverse transcriptase, that transcribes single-stranded
genomic RNA into double-stranded DNA.
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Figure 4.1: Replication cycle of HIV in the host cell.

The HIV viron is about 100nm in diameter with 72 spikes derived from gly-
coproteins gp120 and gp41. Its genome contains nine genes encoding the struc-
tural proteins of the core, the envelope glycoproteins, the enzymes involved in
viral replication and integration and other proteins essential for viral produc-
tion. The attachment of the viral particle to the surface of the host cell requires
binding of gp120 with the CD4 molecule. Consequently, HIV can infect CD4+
T lymphocytes and other cells bearing the CD4 marker on their surface, such
as monocytes, tissue macrophages and Langherans cells.

Figure 4.1 illustrates HIV's replication cycle in the host cell. Once the
contents of the virion have been released into the cytoplasm of the cell, the
reverse transcriptase starts to transcribe the RNA in double-stranded DNA,
which is then incorporated into the host-cell genome. Immediately afterward,
the production of viral proteins, supplied by cell's protein synthesis mechanism,
can be initiated: immature viral particles are �rst formed, which undergo a
maturation process facilitated by the enzyme protease, and eventually become
new viruses.

4.2.2 HIV disease progression

HIV infection is predominantly an infection of the immune system: it is char-
acterized by the eventual depletion of CD4+ T cells, leading to severe immune
de�ciency which in turn provokes devastating e�ects on the patient's health.

As illustrated in Figure 4.2, the typical course HIV infection goes through
three stages: the primary infection, the asymptomatic or latency period and
the �nal progression to AIDS. The median time between primary HIV infection
and the development of AIDS is approximately 10 years.

The primary infection can either remain inapparent or manifest through
symptoms such as fever, chills and lymphadenopathy. This initial phase of in-
fection is associated with a burst of circulating free viruses and a decline in
the level of CD4+ T cells, CD8+ T cells and B cells. After resolution of the
acute syndrome, both CD4+ and CD8+ T cell levels usually rebound to near
normal levels, while the overall virus population decreases sharply owing to the
development of potent cellular and humoral responses: the cellular cytotoxic im-
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Figure 4.2: Typical course of HIV infection.

mune response is activated, antibodies produced by activated B cells bind free
viral particles and make them digestible for macrophages. Nevertheless, HIV is
not completely cleared from the body. Indeed, during the course of the second
stage (also called chronic or persistent infection), ongoing virus replication can
be detected consistently in the blood and in the lymphoid tissue, even if the
patient does not exhibit any evidence of disease. During this latency period
CD4+ T cells counts usually decrease gradually.1 When the CD4+ T cell count
has dropped lower than 250 cells/mm3, the individual is said to have AIDS.
At this stage, the immune system collapses and the risk for the development
of opportunistic diseases is high: the loss of integrity of the immune function
allows ubiquitous environmental organisms with limited virulence to become
life-threatening pathogens. AIDS is also characterized by the occurrence of cer-
tain malignant neoplasms (like Kaposi's sarcoma) and central nervous systems
manifestations in its late stages.

4.2.3 Antiretroviral drugs for HIV infection

Since the identi�cation of HIV as the causative agent for AIDS, a number
of antiretroviral drugs for treating individuals infected with HIV have been
developed. There are �ve classes of substances (Figure 4.3) available for HIV
therapy, acting on di�erent stages of the HIV life-cycle:

• Fusion Inhibitors (FIs) interfere with the binding, fusion and entry of an
HIV virion to a human cell;

• Nucleosidic Reverse Transcriptase Inhibitors (NRTIs) bind to the active
center of reverse transcriptase and are integrated in the DNA strands,
resulting in �chain termination�;

• Nonnucleosidic Reverse Transcriptase Inhibitors (NNRTIs) bind to the
catalytic center of reverse transcriptase and inactivate the enzyme, thereby
inhibiting the production of viral cDNA;

• Integrase Nuclear Strand Transfer Inhibitors (INSTIs) inhibit the viral
enzyme integrase, which is responsible for integration of viral DNA into
the DNA of the infected cell;

1As we will see in Chapter 5, such graduality is very important when modeling HIV dy-
namics, as it allows us to assume that CD4+ T cell counts are approximately constant.
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Figure 4.3: Antiretroviral drugs for HIV infection.

• Protease Inhibitors (PI) inhibit viral protease and thus viral maturation.

A combination of at least three drugs from at least two substance classes
is usually administered. Such combination of antiretrovirals, known as Highly
Active Antiretroviral Therapy (HAART), often results in suppression of plasma
HIV RNA and a signi�cant increase in CD4+ T cell counts. However, HAART
is unable to completely eradicate HIV infection owing to the persistent HIV
replication in reservoirs sites such as lymphoid tissue and latently infected CD4+
T cells, as well as the continual evolution of HIV envelop and protease genes.

4.2.4 Viral mutation and switching regimen

One striking feature of the HIV is the high level of genetic variability within
a single infected patient. The leading cause of such a diversity is the high error
rate of reverse transcriptase: this enzyme does not have any proof-correction
activity, and appears to introduce errors every 104 nucleotides. In addition,
fast HIV replication cycle and prolonged duration of HIV infection are major
contributors to viral diversity. Such level of genetic variability, much higher
than most human RNA viruses, is a prominent issue in HIV infection. First of
all, it contributes to the ability of HIV to evade the humoral immune response:
when, towards the end of the latency period, around 10 million HIV variants
per day are produced, it becomes impossible for the immune system to control
the infection e�ectively. Secondly, the generation of many variants of HIV in
the presence of antiretroviral drugs may cause drug resistance, and hence the
reduction in e�ectiveness of a drug.

A relatively recent strategy to manage viral mutation and limit, or delay, the
emergence of drug-resistant variants is the proactive switching and alternation
of HAART regimens. The design of drug sequencing, however, is still a point
of discussion as there is no general consensus among clinicians on the optimal
time to change therapy. There is, indeed, a sort of tradeo�: on the one hand,
switching drugs too early risks poor adherence to a new drug regimen and limits
future treatments options; on the other hand, switching drugs too late allows the
accumulation of mutations and the selection of drug-resistant variants. In this
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context, developing HIV mutation models and performing simulation studies
may help to design switching strategies able to delay the emergence of highly
resistant mutant viruses.
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Chapter 5

Viral Mutation Treatment

Models

Since 1990s several mathematical models of HIV infection have been pro-
posed [22],[38],[34],[11],[10], each of them describing one or more di�erent as-
pects of HIV dynamics: the interaction with the immune system's components,
the primary infection and the asymptomatic stage, the long-term behavior of
the infection and the progression to AIDS, and, more recently, the problem of
viral mutation leading to the generation of many variants of HIV. These models
have the ability to re�ect clinical results they have been thought to describe,
but, obviously, none of them can fully explain all events observed to occur in
practice.

In what follows we focus on two di�erent models of HIV mutation treatment,
both of them involving positive switched systems introduced in Part I of the
present work.

5.1 A 4 variant, 2 drug combination model

The �rst model we present is taken from [11] and deals with 4 viral vari-
ants and 2 drug combinations. As we will see in Chapter 6, Hernandez-Vargas
and coauthors in the same work [11] used this model to perform interesting
simulation studies testing the e�ectiveness of switching among two treatments.

5.1.1 Model's assumptions

In order to allow control analysis and optimization of treatment switching,
the viral mutation model should not be too complicated and, to this aim, some
simplifying assumptions are needed. First of all, scalar dynamics for each mu-
tant are considered, by this meaning that we only focus on the viral concentra-
tion Vi(t) of mutant i and we do not consider its possible di�erent states, such
as infected T cells or infected macrophages. Secondly, we assume that the viral
clearance rate is constant, even if it actually depends on the treatment which
is being administered and on the viral genetics. In addition, another important
assumption deals with the mutation rate between species: this rate is taken as
a constant, but in practice it depends on the replication rate of the variants
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and on the treatment regime. Finally, we consider a deterministic model, which
does not include random variations. Even if this is a signi�cant limitation, it
should be noted that, owing to the linearity of the system, the deterministic
model describes the expected behavior of a stochastic model.

5.1.2 Mutation model

As mentioned above, the model has 4 di�erent viral variants (also called
�genotypes� or �strains�) and 2 possible drug therapies that can be administered:
this corresponds to a 4-th order positive switched system switching among 2
di�erent subsystems. The state variables are brie�y described as follow:

• x1(t) represents the Wild Type (WT) variant, a genotype susceptible to
both therapies, which would be the most proli�c strain in the absence of
any drugs;

• x2(t) represents Genotype 1 (G1), a genotype that is resistant to therapy
1, but is susceptible to therapy 2;

• x3(t) represents Genotype 2 (G2), a genotype that is resistant to therapy
2, but is susceptible to therapy 1;

• x4(t) represents the Highly Resistant Genotype (HRG), a variant with low
proliferation rate, but that is resistant to all drug therapies.

Describing the behavior of any viral variant means taking into account three
di�erent terms: virus proliferation, natural death and virus mutation. Recalling
the assumptions presented in the previous section, the dynamics of the i-th
viral population under the j-th drug therapy can be described by the following
ordinary di�erential equation:

ẋi(t) = ρi,jxi(t)− δxi(t) +

4∑
l=1
l 6=i

µmi,lxl(t), (5.1)

where:

• ρi,j is the replication rate of genotype i under therapy j;

• δ is the death (or decay) rate;

• µ is the mutation rate;

• mi,l ∈ {0, 1} represents the genetic connections between genotypes, that is
mi,l = 1 if and only if it is possible for genotype l to mutate into genotype
i and mi,l = 0 otherwise.

Taking into account all di�erent viral variants, equation (5.1) can be rewrit-
ten in vector form as:

ẋ(t) =


ρ1,j 0 0 0
0 ρ2,j 0 0
0 0 ρ3,j 0
0 0 0 ρ4,j

x(t)−δx(t)+µ


0 m1,2 m1,3 m1,4

m2,1 0 m2,3 m2,4

m3,1 m3,2 0 m3,4

m4,1 m4,2 m4,3 0

x(t)
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Table 5.1: Replication rates for viral variants and therapy combinations.

Variant Therapy 1 Therapy 2

Wild Type (x1) ρ1,1 = 0.05 ρ1,2 = 0.05
Genotype 1 (x2) ρ2,1 = 0.40 ρ2,2 = 0.05
Genotype 2 (x3) ρ3,1 = 0.05 ρ3,2 = 0.40
HR Genotype (x4) ρ4,1 = 0.30 ρ3,2 = 0.30

Finally, if the two di�erent drug therapies are administered according to
the switching rule σ(t), σ(t) ∈ [1, 2], we can de�ne the matrices Rσ(t) :=
diag{ρi,σ(t)} and M := [mi,l] and obtain the following CPSS:

ẋ(t) = (Rσ(t) − δI4 + µM)x(t), (5.2)

where the matrix Rσ(t) − δI4 + µM is certainly a Metzler matrix.

5.1.3 Model's parameters

The various replication rates for viral variants and therapy combinations are
shown in Table 5.1: they describe a symmetric scenario, in the sense that therapy
1 inhibits G2 with the same intensity as therapy 2 inhibits G1 (in practice,
this scenario is rather idealized since there will be some small di�erences in
relative proliferation ability). Two further considerations underlie numerical
values reported in Table 5.1. First of all it is assumed that genetic distance from
WT makes the reproduction rate decrease: this is the reason why ρ4,1 = ρ4,2 is
smaller than ρ2,1 and ρ3,2. Secondly, we take the replication rate in the absence
of drugs as 0.5day−1 (as suggested by clinical data) and we consider therapy's
e�ectiveness equal to 90%: this justi�es the fact that ρ1,1, ρ1,2, ρ2,2 and ρ3,1 are
all equal to 0.05day−1 (however, the replication rate of G1 is lower under drug
therapy 1 and the same holds for reproduction rate of G2 under drug therapy
2).

As regards genetic connections between genotypes, we consider the symmet-
ric and circular mutation graph shown in Figure 5.1: only connections WT ↔
G1, G1 ↔ HRG, HRG ↔ G2 and G2 ↔ WT are allowed. Hence, the mutation
matrix results as follow:

M =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


For the sake of simplicity, we assume that other connections requiring double
mutations are of negligible probability.

As far as the remaining parameters are concerned, we take the viral mutation
rate as µ = 10−4 and the viral clearance rate as δ = 0.24day−1, corresponding
to a half life of slightly less than 3 days.

5.1.4 Model's discretization and �nal rearrangement

The viral mutation treatment model just introduced is described in the con-
tinuous time, however, since measurements can only reasonably be made infre-
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Figure 5.1: Mutation tree for the 4 variant, 2 drug combination model.

quently, we are interested in its discrete-time counterpart. Hence, we consider
a regular treatment interval τ during which treatment is �xed and, denoting by
k ∈ N the number of sampling intervals since t = 0, we obtain the following
DPSS:

x(k + 1) = Aσ(k)x(k), (5.3)

where x(k) = x(kτ) is the sampled state and the positive matrix Aσ(k) is given
by:

Aσ(k) := e(Rσ(k)−δI+µM)τ .

Finally, an important remark concerns system's stabilizability: even if nec-
essary and su�cient conditions for the stabilizability of a DPSS do not exist,
biological reasons suggest that the system (5.3) is not stabilizable. Indeed,
clinical experience shows that highly resistant genotypes emerging from viral
mutation process escape the e�ects of treatments and immune system (namely,
the state evolution asymptotically diverges). For this reason, in order to en-
sure at least the subsystems' stability, it is convenient to introduce exponential
weighting on the new coordinates:

x̂(k) = e−βkτx(kτ).

The above variable transformation leads to:

x̂((k + 1)τ) = e−β(k+1)τx((k + 1)τ)

= e−βτAσ(kτ)e
−βkτx(kτ)

= e−βτAσ(kτ)x̂(kτ)

Hence, we have obtained the following DPSS:

x̂(k + 1) = Âσ(k)x̂(k), (5.4)

where Âσ(k) := e−βτAσ(k), x̂(k) = x̂(kτ) and σ(k) = σ(kτ) is constant in the
interval [kτ, (k + 1)τ ].
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5.2 A 64 variant, 3 drug combination model

A far more complex model with respect to the one introduced in the previous
section is presented in [10]: this model takes into account 64 viral variants and
switching among 3 di�erent drug combinations. In the same work [10], a Model
Predictive Control approach is proposed in order to analyze drug regimens and
maximize the delay till viral escape.

5.2.1 Model's assumptions

In order to provide a more extensive description for HIV dynamics, one
at least of the assumptions presented in section 5.1.1 should be released. In
particular, di�erently from the previous case, a set of states for each possible
genotype is considered. This is consistent with the ability of HIV to infect a
number of di�erent cells, such as CD4+ T cells, macrophages and dendritic cells.
For the sake of simplicity, three states for each variant are included: free viral
particles, infected CD4+ T cells and latently infected cells, namely those cells
which can be activated and start reproducing virus later. It is worth noticing
that such state variables' selection re�ects the fact that monitoring viral levels
in the plasma, together with CD4+ T cell counts, plays an important role in
deciding which therapy should be administered.

As far as the remaining assumptions of section 5.1.1 are concerned, they are
still valid: independence of death rates and mutation rates from treatment and
mutant, and the deterministic (namely non-stochastic) nature of the model.

In addition, a further assumption is needed, namely the time-invariance of
uninfected CD4+ T cell counts: this is consistent with clinical data of the initial
infection stage, until full progression to a dominant highly resistant mutant
(as seen in Chapter 4), and has the great advantage of making the dynamics
essentially linear.

5.2.2 Mutation model

The model deals with 64 viral variants and 3 di�erent drug combinations.
Recalling that three di�erent states for each possible genotype are taken into
account, this corresponds to a positive switched system switching among 3 dif-
ferent subsystems where each subsystem has 64 · 3 = 192 state variables. In
particular, for each i-th mutant, with i = 1, . . . , 64, we have the following state
variables:

• T ∗i (t) represents the (active) infected CD4+ T cell population;

• Li(t) represents the latently infected cells;

• Vi(t) represents the viral population.

It is worth recalling that, among infected CD4+ T lymphocytes, a proportion
of cells passes into the (active) infected cell population, whereas the remaining
part passes into the latently infected cell population: we consider this proportion
equal to ψ.

Furthermore, in all equations presented below, T represents the uninfected
CD4+ T cell population, which is assumed being approximately constant as
mentioned above.
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Describing the behavior of the infected cell population requires taking into
account four di�erent terms: natural death, activation of latently infected cells,
infection of healthy CD4+ T cells and virus mutation. The resulting equation
is given by:

Ṫ ∗i (t) = −δ1T ∗i (t) + αLi(t) + ψbi,jTVi(t) +

64∑
l=1
l 6=i

µmi,lVl(t)T, (5.5)

where:

• δ1 is CD4+ T cells' death rate;

• α is the activation rate;

• bi,j represents the infectivity of genotype i under treatment j. It depends
on the genotype and the therapy that is being used according to the fol-
lowing relation:

bi,j = b̄βi,jfi,

where b̄ is the infectivity rate, βi,j represents the infection e�ciency for
genotype i under treatment j and fi represents the �tness of genotype i;

• µ is the mutation rate;

• mi,l ∈ {0, 1} represents the genetic connections between genotypes.

The dynamic evolution of the latently infected cell population is controlled by
the same mechanisms which govern the behavior of the infected cell population,
except for the absence of the viral mutation term:

L̇i(t) = −δ2Li(t)− αLi(t) + (1− ψ)bi,jTVi(t), (5.6)

where δ2 is the death rate of the latently infected cells.
In order to describe the behavior of the viral population Vi(t), the following

terms should be considered: virus proliferation, infection of healthy CD4+ T
cells and natural death. The dynamic equation is hence given by:

V̇i(t) = ei,jT
∗
i (t)− ϕTVi(t)− δ3Vi(t), (5.7)

where:

• ei,j represents the viral proliferation rate of genotype i under treatment
j. It depends on the �tness of the genotype and the therapy that is being
administered according to the following relation:

ei,j = ēεi,jfi,

where ē is the proliferation rate, εi,j represents the production e�ciency
for genotype i under treatment j and fi represents the �tness of genotype
i;

• ϕ represents the rate at which a viral particle meets (and infects) an
healthy T Helper cell;
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• δ3 is the virus' death rate.

Note that if we remove the assumption of constant healthy CD4+ T cell counts,
all the equations (5.5), (5.6) and (5.7) become non-linear owing to the product
TVi(t).

If we consider the state vector of genotype i, xi(t) =
[
T ∗i (t) Li(t) Vi(t)

]T
,

equations (5.5), (5.6), (5.7) can be rewritten in vector form as:

ẋi(t) =

 δ1 α ψbi,jT
0 −(α+ δ2) (1− ψ)bi,jT
ei,j 0 −(ϕT + δ3)

xi(t) + µT

 0 m1,2 m1,3

m2,1 0 m2,3

m3,1 m3,2 0

xi(t)

Now, it is convenient to introduce the matrix:

Λi,j =

 δ1 α ψbi,jT
0 −(α+ δ2) (1− ψ)bi,jT
ei,j 0 −(ϕT + δ3)

 .
Finally, if the three drug regimens are alternated according to the switching rule
σ(t), σ(t) ∈ [1, 3], and the matrix M is de�ned as M := [mi,l], we can build

up the whole state vector x(t) =
[
x1(t) x2(t) . . . x64(t)

]T
and obtain the

following CPSS:

ẋ(t) =




Λ1,σ 0 . . . 0
0 Λ2,σ . . . 0
...

. . .
...

0 0 . . . Λ64,σ

+ µTM

x(t), (5.8)

where the state matrix is certainly a Metzler matrix.

5.2.3 Model's parameters

Di�erently from the previous model case, we are not interested in all nu-
merical values of the numerous system's parameters and the reason is that in
Chapter 6 we will only hint at results obtained by Hernandez-Vargas and coau-
thors using the 64 variant, 3 drug combination model and the MPC approach.
We provide however a few interesting considerations concerning the mutation
tree and the �tness of genotype.

As far as the mutation tree (and hence the matrix M) is concerned, the
viral variants are organized in a three-dimensional lattice as shown in Figure
5.2: the wild type genotype g1 is susceptible to all therapies, while a number
of independent mutations are required to achieve resistance to all therapies,
represented by genotype g64. Clearly, viral variant g1 would be the most proli�c
variant in the absence of any drugs, while genotype g64 has low proliferation
rate. Arrows in Figure 5.2 indicates the e�ciency of the drugs: for instance,
the genotypes g1, g5, . . . , g61 are all on the same face of the lattice and are fully
susceptible to therapy 1, while the opposite face, g4, g8, . . . , g64 describes all
genotypes highly resistant to therapy 1.

Finally, the �tness of genotype i, fi, is a decreasing factor owing to the fact
that, in the absence of treatment, mutation reduces the �tness of the genotype.

55



Figure 5.2: Mutation tree for the 64 variant, 3 drug combination model.

5.2.4 Model's discretization

Analogously to what done for the 4 variant, 2 drug combination model, and
for the same reason, it is convenient to introduce the discrete-time counterpart
of model (5.8). Denoting by τ the sampling interval, the DPSS is given by:

x(k + 1) = Aσ(k)x(k), (5.9)

where x(k) = x(kτ) is the sampled state and the positive matrix Aσ(k) is given
by:

Aσ(k) := e(diag{Λi,σ(t)}+µTM)τ .

56



Chapter 6

Switching Strategies to

Mitigate HIV Escape

In the present chapter we address the problem of Highly Active Antiretro-
viral Therapy (HAART) scheduling using a control theoretic approach. First
of all, the optimal control problem is introduced along with its great criticality:
computing the optimal solution is a hard task to be accomplished even numeri-
cally. For this reason, looking for suboptimal solutions may be convenient and,
in this regard, two di�erent approaches are considered. Firstly, switching strate-
gies designed by means of linear CLFs are tested using the 4 variant, 2 drug
combination model. Secondly, the Model Predictive Control approach is brie�y
described along with simulation results performed on the 64 variant, 3 drug
combination model. As we will see, the remarkable fact is that both approaches
guarantee performances that are not far away from the solution of the optimal
control problem.

6.1 Problem formulation

As already seen in the previous chapters, current HAART regimens are only
able to partially and temporarily halt the HIV replication: not only they reduce
the growth of certain viral populations while leaving that of others unchanged,
but there also exist viral variants resistant to all antiretroviral drugs currently
in use.

Furthermore, biological reasons ensure that, if the total viral load is small
enough during a �nite time of treatment, then there is a signi�cant probability
that the total virus load becomes zero and stays at zero. Hence, �nding the
best time to change HAART therapy (namely, �nding a suitable switching rule)
in order to maintain the total viral load at low levels is of great importance for
patient treatment.

Formulation as an optimal control problem is straightforward when consid-
ering the total viral load as the cost function to be minimized. In particular,
if we consider the 4 variant, 2 drug combination model (5.4), recalling that
each state variable represents a di�erent genotype, it is logical to de�ne a cost
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function over an in�nite, or �nite, time horizon respectively as:

J∞ :=

∞∑
k=0

1T4 x̂(k) (6.1)

JT := 14x̂(T ), (6.2)

where T is an appropriate �nal time.
Analogously, if we consider the 64 variant, 3 drug combination model (5.9)

and we recall that for each mutant i the state vector is de�ned as:

xi(t) =
[
T ∗i (t) Li(t) Vi(t)

]T
,

the cost function over �nite horizon takes the form:

JT := cx(T ), (6.3)

where c =
[
0 0 1 0 0 1 . . . 0 0 1

]T
.

Hence, �nding the optimal alternation of HAART regimens means �nding
the optimal switching law that minimizes one of the cost functions just intro-
duced.

6.2 Optimal control problem

Before considering the 4 variant, 2 drug combination model, let us formulate
the problem in more general terms. To this aim, consider a DPSS of the form
(1.1) switching among p subsystems and the cost function to be minimized:

JT = cTx(T ) +

T−1∑
k=0

qTσ(k)x(k).

Notice that each i-th subsystem is associated with a (possibly) di�erent
weighting vector qi, which means that when the i-th subsystem is active, then
the penalty on the vector state is equal to qi. The vector c, instead, provides
weighing to the �nal state reached by the system.

The �rst approach we might think of to compute the optimal solution is a
�brute force� algorithm which analyzes all possible combinations for the switch-
ing sequence. Assuming the initial state x(0) to be given and considering a
decision time equal to τ , during which treatment is �xed, we can proceed as
follows:

• we compute the set of all states that can be reached by the system at any
time instant;

• we evaluate p
T
τ possible switching sequences and we determine which one

minimizes the performance criterion.

Clearly, this exhaustive search approach becomes computationally prohibitive
as soon as the �nal time T grows up.

An alternative, less computationally demanding, way to calculate the opti-
mal switching signal σo(·) and the corresponding trajectory xo(·) is the so called
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�dynamic programming�1 approach. This approach is based on the principle of
optimality formulated by Bellman and stated in Proposition 6.1 below.

Proposition 6.1 (Bellman's principle of optimality). Let σo(·) and xo(·)
be respectively the optimal strategy and the optimal trajectory corresponding to
the initial state x(0) = x0 and the time interval [0, T ]. Then, for any arbitrary
instant t̄ in [0, T ] the switching strategy σo(t̄), σo(t̄+1), . . . , σo(T−1) represents
the optimal strategy corresponding to the initial state xo(t̄) and the time interval
[t̄, T ].

The proof of this principle is rather straightforward: suppose that the opti-
mal strategy, when starting from xo(t̄), is σ̄(t̄), σ̄(t̄+ 1), . . . , σ̄(T − 1) and apply
the switching sequence:

σo(0), σo(1), . . . , σo(t̄− 1), σ̄(t̄), σ̄(t̄+ 1), . . . , σ̄(T − 1);

then, the cost function JT would assume a smaller value than JoT , thus contra-
dicting the hypothesis of optimality on σo(·).

The characteristic feature of the dynamic programming approach is the fact
that we proceed backward. Intuitively, the underlying idea is the following:

• if we suppose we have somehow determined xo(T − 1), the remaining
decision σ(T − 1) which minimizes the cost function over the interval
[T − 1, T ] coincides with σo(T − 1);

• then, we can go one step backward: assuming the state xo(T − 2) to be
given, the remaining decision σ(T − 2) minimizing the cost function over
the interval [T−2, T ] coincides with the value of the optimal law σo(T−2);

• we can go on moving backward until we reach the initial condition x(0)
and hence the optimal value σo(0).

With no pretense of rigorousness, the above reasoning can be put into mathe-
matical terms as follows: the optimal trajectory xo(·) and the optimal switching
signal σo(·) satisfy the following di�erence equation, known as the Hamilton-
Jacobi-Bellman equation2:

H(xo(T ), T ) = 1Tnx
o(T ) (6.4)

H(xo(k), k) = min
i=1,...,p

{H(xo(k + 1), k + 1) + qix(k)}, k = 0, . . . , T − 1, (6.5)

where qi = qσo(k).
Obviously, the optimal trajectory xo(·) must satisfy the further condition:

x(0) = x0, (6.6)

xo(k + 1) = Aσo(k)x
o(k), k = 0, . . . , T − 1. (6.7)

1Dynamic programming algorithms solve problems by combining the solutions to subprob-
lems that are not disjoint but rather overlapping (namely, they share �subsubproblems�). A
typical dynamic programming algorithm recursively de�nes the value of an optimal solution
and then constructs such an optimal solution in a bottom-up fashion.

2In this context our aim is to provide only a brief introduction, at a very intuitive level, to
the Hamilton-Jacobi-Bellman equation. Deeper insights into its solution, along with a more
rigorous formulation of the problem, can be found for instance in [21],[3].
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Hence, using equations (6.4), (6.5), (6.6) and (6.7), we obtain the following
system: {

H(xo(k), k) = min
i=1,...,p

{H(xo(k + 1), k + 1) + qix(k)}
xo(k + 1) = Aσo(k)x

o(k)
(6.8)

with boundary conditions:{
H(xo(T ), T ) = 1Tnx

o(T )
x(0) = x0.

(6.9)

Notice that the state equation (6.7) with initial condition (6.6) must be
integrated forward, whereas equation (6.5), initialized by condition (6.4), must
be integrated backward, both according to the coupling condition provided by
the switching rule σo(·). In this sense the optimal control problem (6.8)-(6.9)
is a two point boundary value problem, and cannot be solved using regular
integration techniques.

Even if a number of algorithms have been proposed to solve the system
(6.8)-(6.9), and hence compute the optimal solution, we will present only the
simplest and more intuitive procedure. Consider the case where qi = 0 for
all i = 1, . . . , p, namely there is a terminal cost only. Note that this does not
entail loss of generality as we can always introduce a new variable y(k), having
equation y(k + 1) = y(k) + qσ(k)x(k) and initial condition y(0) = 0, so that:

JT = cTx(T ) + y(T ).

Now, de�ne recursively the sequence of matrices:

Ω0 = c

Ω1 =
[
AT1 Ω0 AT2 Ω0 . . . ATp Ω0

]
=
[
AT1 c AT2 c . . . ATp c

]
...

Ωk+1 =
[
AT1 Ωk AT2 Ωk . . . ATp Ωk

]
Then, we can compute the optimal switching strategy and the optimal tra-

jectory as:

σo(0) = argmin
j

(ΩTT )(j)x(0)

xo(1) = Aσo(0)x(0)

σo(1) = argmin
j

(ΩTT−1)(j)xo(1)

...

σo(k) = argmin
j

(ΩTT−k)(j)xo(k)

xo(k + 1) = Aσo(k)x(k)

...

σo(T − 1) = argmin
j

(ΩT1 )(j)xo(T − 1)

xo(T ) = Aσo(T−1)x(T − 1)
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Figure 6.1: Optimal control rule.

Notice that, even if we build up the optimal sequence onwards, we are still
resorting to Bellman's principle of optimality, as at each step t̄ ∈ [0, T ], the
optimal value σo(t̄) is computed as the optimal strategy corresponding to the
initial state xo(t̄) and the time interval [t̄, T ].

The implementation of the previous strategy requires storing the columns of
ΩTT−k whose number would be 1 + p + p2 + p3 + · · · + pT . Clearly, this expo-
nential growth could be too computationally demanding. In general, many of
the columns of the matrices ΩTT−k may be redundant and can be removed. to
accomplish this goal, Hernandez-Vargas and coauthors in [14] provide a num-
ber of algorithms based on linear programming techniques, whose presentation
certainly goes beyond our objectives.

Finally, we go back to the problem of treatment scheduling and present
results obtained by Hernandez-Vargas and coauthors in [11]. They consider
the 4 variant, 2 drug combination model given by equation (5.3) and the cost
function:

JT := 1T4 x(T ).

Furthermore, they consider a period of T = 200 days and take the decision
time τ equal to 20 days (this is consistent with the fact that clinical visits during
HIV treatment typically have a frequency of once a month or less).

Simulation results [11] can be summarized as follows:

• The optimal control rule is shown in Figure 6.1: we can notice that the
switching among the two therapies occurs quite regularly, approximately
every 20 days;

• The total viral load at the end of treatment is equal to 664.99.

For comparison purposes, authors also perform a simulation using a single
therapy. As we might expect, in this case the total viral load at the end of the
treatment is much greater than 664.99, and, indeed, it is equal to 3.05×103. This
dramatic di�erence re�ects clinical data suggesting the proactive alternation of
HAART regimens.
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6.3 Bounds to the optimal cost

We have seen in the previous section that computing the solution to the
optimal control problem might be really computationally demanding, or even
prohibitive, depending on the length of the treatment period T . For this reason
it is convenient to look for alternative strategies, namely suboptimal strategies.

The aim of the present section is to present results derived in [11] providing
upper bounds on the performance of the optimal feedback strategy, both in
the �nite- and in the in�nite-time horizon case. It is worthwhile to underline
that these results are not only interesting by themselves, but they also provide
justi�cation for testing certain switching strategies.

6.3.1 In�nite time horizon case

Consider a DPSS of the form (1.1) and the following cost function over an
in�nite time horizon:

J∞ :=

∞∑
k=0

qTσ(k)x(k).

Recall that, as seen in Chapter 3, section 3.2, N denotes the set of all Metzler
matrices N ∈ Rp×p with elements νij , such that:

νij ≥ 0,∀i 6= j,

p∑
i=1

νij = 0,∀j.

Then, an upper bound on the optimal value Jo∞ of J∞ can be derived, as shown
in Proposition 6.2 below.

Proposition 6.2. Let A1, . . . , Ap ∈ R
n×n
+ be the subsystems' state matrices

of a DPSS (1.1). Let q1, . . . ,qp, qi ∈ Rn+, be a given set of p positive vectors
and assume that there exist N ∈ N and a set of p positive vectors v1, . . . ,vp,
vi ∈ Rn+, satisfying the copositive Lyapunov inequalities:

(Ai − In)Tvi +

p∑
j=1

νjivj + qi < 0, ∀i ∈ [1, p]. (6.10)

Apply the state-feedback switching rule:

σ(x(t)) := argmin
i=1,...,p

vTi x(t) (6.11)

and consider the cost function:

J∞ =

∞∑
k=0

qTσ(k)x(k).

Then, the following bound on the cost function holds:

J∞ ≤ min
i=1,...,p

vTi x0.
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Proof. If inequalities (6.10) hold, then, by Theorem 3.1, the switching rule (6.11)
stabilizes the DPSS. In addition, if we consider the Piecewise Linear CLF:

V (x(k)) = min
i=1,...,p

vTi x(k),

then, as seen in the proof of Theorem 3.1, we have:

∆V (x(k)) ≤ vTσ(k)(Aσ(k) − In)x(k). (6.12)

Now, notice that the Lyapunov inequality (6.10) for i = σ(k) can be rewritten
as:

(Aσ(k) − In)Tvσ(k) < −
p∑
j=1

νjσ(k)vj − qσ(k),

or, equivalently, as:

vTσ(k)(Aσ(k) − In) < −
p∑
j=1

νjσ(k)v
T
j − qTσ(k). (6.13)

From (6.12) and (6.13), with x(k) 6= 0, it follows:

∆V (x(k)) < −
p∑
j=1

νjσ(k)v
T
j x(k)− qTσ(k)x(k)

≤ −

(
p∑
j=1

νjσ(k)

)
vTσ(k)x(k)− qTσ(k)x(k)

= −qTσ(k)x(k).

By summing up on both sides, for each k from zero to in�nity, we have:

∞∑
k=0

∆V (x(k)) ≤ −
∞∑
k=0

qTσ(k)x(k),

or, equivalently:
∞∑
k=0

qTσ(k)x(k) ≤ V (x(0))− V (x(∞)). (6.14)

Now, recall that the state evolution asymptotically converges to zero, and hence
V (x(∞)) = 0. From (6.14), this implies that:

J∞ =

∞∑
k=0

qTσ(k)x(k) ≤ min
i=1,...,p

vTi x0.

6.3.2 Finite time horizon case

Consider a DPSS of the form (1.1) and the following cost function already
introduced in section 6.2 when dealing with the optimal control problem:

JT := cTx(T ) +

T−1∑
k=0

qTσ(k)x(k).
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In order to compute an upper bound on the optimal value JoT of JT we need
to slightly modify the relevant inequalities considered in the previous subsection.
In this case, however, instead of a set of inequalities, we need to deal with a
set of di�erence equations and a set of vectors vi(k) which depend on the time
instant k.

Proposition 6.3. Let A1, . . . , Ap ∈ R
n×n
+ be the subsystems' state matrices

of a DPSS (1.1). Let q1, . . . ,qp, qi ∈ R
n
+, be a given set of p positive vec-

tors and assume that there exist N ∈ N and a set of p · T positive vectors
{v1(k), . . . ,vp(k)}, vi(k) ∈ Rn+, k = 0, . . . , T − 1, satisfying the di�erence equa-
tions:

vi(k) = ATi vi(k + 1) +

p∑
j=1

νjivj(k) + qi, vi(T ) = c, (6.15)

for i = 1, . . . , p. Apply the state-feedback switching rule:

σ(x(k)) := argmin
i=1,...,p

vTi (k)x(k)

and consider the cost function:

JT = cTx(T ) +

T−1∑
k=0

qTσ(k)x(k).

Then, the following bound on the cost function holds:

JT ≤ min
i=1,...,p

vTi (0)x0.

Proof. Consider the function:

V (x(k), k) = min
i=1,...,p

vTi (k)x(k)

Then, we have:

V (x(k + 1), k + 1) = min
i=1,...,p

vTi (k + 1)x(k + 1)

= min
i=1,...,p

vTi (k + 1)Aσ(k)x(k)

≤ vTσ(k)(k + 1)Aσ(k)x(k) (6.16)

Now, from the di�erence equation (6.15) for i = σ(k) we have:

ATσ(k)vσ(k)(k + 1) = vσ(k)(k)−
p∑
j=1

νjσ(k)vj(k)− qσ(k),

or, equivalently:

vTσ(k)(k + 1)Aσ(k) = vTσ(k)(k)−
p∑
j=1

νjσ(k)v
T
j (k)− qTσ(k). (6.17)
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Hence, from (6.16) and (6.17), it follows:

V (x(k + 1), k + 1) ≤ V (x(k), k)− qTσ(k)x(k)−
p∑
j=1

νjσ(k)v
T
j (k)x(k)

≤ V (x(k), k)− qTσ(k)x(k)− vTσ(k)(k)x(k)

p∑
j=1

νjσ(k)

= V (x(k), k)− qTσ(k)x(k),

which amounts to:

V (x(k + 1), k + 1)− V (x(k), k) ≤ −qTσ(k)x(k).

By summing up on both sides, for each k from zero to T − 1, we have:

T−1∑
k=0

V (x(k + 1), k + 1)− V (x(k), k) ≤ −
T−1∑
k=0

qTσ(k)x(k),

so that:

JT = cTx(T ) +

T−1∑
k=0

qTσ(k)x(k)

≤ cTx(T )−
T−1∑
k=0

V (x(k + 1), k + 1)− V (x(k), k)

= cTx(T )− V (x(T ), T ) + V (x0, 0)

= min
i=1,...,p

vTi (0)x0

It is worth noticing that, di�erently from the in�nite horizon case where
conditions (6.10) may be infeasible, in the �nite horizon case equations (6.15)
are always feasible. Indeed, once we choose the matrix N ∈ N as the zero-
matrix (and hence νij = 0 for every i, j), we only need to solve backward the
di�erence equation (6.15).

6.4 Guaranteed cost control over in�nite horizon

We consider the cost function over in�nite horizon (6.1):

J∞ :=

∞∑
k=0

1T4 x̂(k)

and the 4 variant, 2 drug combination model given by (5.4), where we choose β
so as to ensure that all matrices Âσ are Schur.

Now, consider the copositive Lyapunov inequalities (6.10) with vectors qi =
14 for all i. It is straightforward to see that the subsystems' stability assumption
ensures that such inequalities are always feasible, as we only need to choose
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N ∈ N equal to the zero-matrix (namely νij = 0 for every i, j) and vectors vi
given by:

vi = −(ÂTi − In)−1q. (6.18)

Notice that, since Âi is a Schur matrix, ÂTi −In is a Metzler Hurwitz matrix,
and hence it is non-singular and its inverse is a negative matrix, so that vectors
vi in (6.18) are positive.

Finally, we consider the switching rule:

σ(x̂(k)) := argmin
i=1,...,p

vTi x̂(k). (6.19)

By applying Proposition 6.2, we can claim that such switching rule guaran-
tees an upper bound on the cost function:

J∞ ≤ min
i=1,...,p

vTi x̂0.

As for the optimal control case, we take a decision time equal to 20 days
and a period of treatment equal to 200 days. Simulation results [11] can be
summarized as follows:

• The dynamic evolution of the state variables (namely, of the 4 viral vari-
ants) is illustrated in Figure 6.2: we can notice that, for an initial period
of time, the switching rule (6.19) is able to maintain a low Wild Type
concentration and to suppress the concentrations of Genotype 1 and 2.
However, as we might expect, the Highly Resistant Genotype eventually
grows since none of the therapies a�ect this genotype;

• The switching rule given by (6.19) is illustrated in Figure 6.3: as for the
optimal control case, it shows a certain periodicity (and again the period
is approximately equal to 20 days);

• The total viral load at the end of treatment is equal to 664.99: quite
surprisingly, this value coincides with the optimal performance previously
derived.

6.5 Guaranteed cost control over �nite horizon

We consider the cost function over �nite horizon (6.2):

JT := 1T4 x̂(T ).

Di�erently from the previous case, the condition that all matrices Âi are Schur
matrices can be removed. Therefore, we consider the 4 variant, 2 drug combi-
nation model (5.4) with β = 0 (which implies x̂(k) = x(k) for all k).

Now, we can solve backward in time the di�erence equations (6.15) with
vectors qi = 14 for all i: to this aim we choose N ∈ N equal to the zero-matrix
and start from the �nal condition vi(T ) = 14 for all i.

Finally, we consider the switching rule:

σ(x̂(k)) := argmin
i=1,...,p

vTi (k)x̂(k). (6.20)
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Figure 6.2: Dynamic evolution of the state variables using the guaranteed cost
control over in�nite horizon.

Table 6.1: Total viral load at the end of treatment using di�erent control rules.

Control rule Performance

Single therapy 3.05× 1013

Optimal control 664.99
Guaranteed cost control over in�nite horizon 664.99
Guaranteed cost control over �nite horizon 664.99

By applying Proposition 6.3, we can claim that this switching rule guarantees
an upper bound on the cost function:

JT ≤ min
i=1,...,p

vTi (0)x0.

Again, we take a decision time equal to 20 days and a period of treatment
equal to 200 days. Simulation results shows that the control rule (6.20) has the
same performance obtained in the in�nite time horizon case, namely the total
viral load concentration at the end of the treatment is equal to 664.99.

6.6 Comparison

All results presented so far are summarized in Table 6.1.
Fist of all, an important comment about suboptimal strategies should be

make: even if in this particular case both guaranteed cost controls have the
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Figure 6.3: Guaranteed cost control over in�nite horizon.

same performance, this is not a general result, but rather a consequence of the
symmetry of the replication rates values (see Table 5.1 in Chapter 5).

Comparing the performance of the optimal switching law with other subop-
timal strategies, we see that they all give the same total virus load at the end
of the treatment. What is more, Hernandez-Vargas and coauthors claim that
guaranteed cost controls have the same performances as the optimal rule even
if di�erent initial conditions are considered. This is certainly a very interest-
ing, as well as surprising, result, since computing suboptimal strategies is far
less computationally demanding that computing the optimal rule. On the other
hand, there is no proof that any of the guaranteed cost control is the same as
the optimal control.

Finally, it is worth saying that periodicity of the switching law previously
noticed might be a consequence of the symmetry in the replication rates.

6.7 Model Predictive Control Approach

A completely di�erent approach for determining near optimal switching drug
schedules is Model Predictive Control (MPC). Generally speaking, MPC appears
to be suitable for applications to the biomedical area, owing to its robustness
to disturbances, model uncertainties and the possibility of handling constraints.
For these reasons, also in the context of HIV treatment scheduling the MPC
approach has been addressed [10],[39],[32],[13].

In what follows, we will �rst present the basic idea of MPC, and later on,
without being concerned with its rigorous mathematical formulation nor with
the computation of a numerical solution, we will present results derived by
Hernandez-Vargas and coauthors [10] using the 64 variant, 3 drug combination
model introduced in Chapter 5.

The original feature of MPC approach is the fact that the optimization pro-
cedure resorts to predictions based on a model (hence the name Model Predictive
Control). To be more precise, the basic idea is the following (see Figure 6.4):

• At time instant t the controller, using measurements just collected, pre-
dicts the future dynamic behavior of the system over a prediction horizon
Tp and computes the optimal control rule over a control horizon Tc;

• Only the �rst input of the optimal control sequence is applied (the re-
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Figure 6.4: Model Predictive Control approach.

maining inputs are disregarded and will not be taken into account any
more);

• At time instant t+ τ new measurements are available and the whole pro-
cedure, namely prediction and optimization, can be reiterated to �nd a
new input function.

We can think of the prediction and the control horizons as two sliding win-
dows moving forward: the former de�nes how far into the future the controller
predicts the state evolution, while the latter de�nes how far into the future it
plans the control action.

It is worth noticing that, due to disturbances, measurement noise and model-
plant mismatch, the actual system behavior is most likely to be di�erent from the
predicted one. However, implementing only the �rst step of the optimal sequence
(and then performing again the prediction and optimization procedures), means
incorporating a useful feedback mechanism.

As far as the prediction horizon Tp is concerned, an interesting consideration
should be done. This parameter, indeed, plays a very important role in the
performance of the MPC schemes: on the one hand, it is desirable to use short
prediction horizons for computational reasons (the shortest Tp, the less costly
the solution of the optimization problem); on the other hand, choosing too short
prediction horizons leads to optimal control rule which di�er signi�cantly from
the optimal solution over in�nite horizon.

As already mentioned above, we can now present results derived in [10]
using the 64 variant, 3 drug combination model. In order to be consistent with
application in a clinical setting, authors �xed the decision time τ to 90 days and
decided not to take measurements at faster intervals.
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Figure 6.5: Switching control rule given by the MPC approach.

Figure 6.6: Total viral load given by the MPC approach.

Simulation results over a period of 14 years and using a 10 months long
prediction horizon, can be summarized as follows:

• The switching rule is illustrated in Figure 6.5: we can notice that it is
irregular for the �rst 4 years, but it shows a quite regular behavior for the
remaining years;

• Time trend of the total viral load is illustrated in Figure 6.6: it can be seen
that the critical value of 1000 copies/ml (de�ning the so called �virologic
failure�) is reached after 12 years.

For comparison purposes, in the same work [10] a simulation study over a
period of 4 years is performed applying the strategy commonly used in clinical
practice, known as �Virologic Failure Treatment Strategy�. This switching rule
and the corresponding trend of the total viral load are reported in Figures 6.7
and 6.8 respectively: notice that the viral load starts to escape after 4 years only.
This means that the switching rule obtained by means of MPC algorithm can
extend the virologic failure for 8 years more compare to the clinical assessment.

Finally, Hernandez-Vargas and coauthors resorted also to a �brute force� ap-
proach to compute the optimal control law over a period of 5 years (recall that

the evaluation of 3
T
τ possible combinations is required and hence high computa-

Figure 6.7: Switching control rule given by the Virologic Failure Treatment
Strategy.
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Figure 6.8: Total viral load given by the Virologic Failure Treatment Strategy.

Table 6.2: Total viral load at the end of treatment using di�erent control strate-
gies.

Control strategy Performance

Model Predictive Control 2.31× 10−9

Virologic Failure Treatment Strategy 5.14× 1028

tional resources are needed). Simulation results for a 5 years period treatment
are summarized in Table 6.2: interestingly, the di�erence on the viral load ob-
tained with the optimal control and the MPC approach is very small. Hence,
MPC appears to be an appropriate framework for this problem, as it provides
close results to the optimal control problem, while reducing dramatically com-
putational resources.

6.8 Conclusions

Simulation studies presented throughout this chapter establish the impor-
tance of alternating HAART regimens: using di�erent drugs at the right mo-
ment is of great importance for patient treatment, as it allows to suppress HIV
RNA levels maximally and to prevent future selection of resistant mutations.
However, �nding the optimal switching rule can require high computational re-
sources as the optimal control problem results in a two boundary value problem.
An alternative, suboptimal, solution is represented by guaranteed cost controls,
which achieve good results compared to the optimal one. A completely di�erent
approach, but as promising as the previous one, is MPC, whose performance is
similar to the optimal control and has the advantage of being quite robust to
model uncertainties.

Of course, all these simulation studies may help to optimally schedule HIV
treatment, a problem which is still a point of discussion among clinicians. Nev-
ertheless, we are far away from a full characterization of switching strategies
able to forestall drug failure and a number of interesting open problems can
be found: on the one hand, the optimal control problem for positive switched
system has been only partially explored to date; on the other hand, in order
to provide a more extensive description of HIV dynamics, more complicated
mutation trees might be taken into consideration, further states for each mu-
tant (such us infected macrophages) might be considered and random variations
might be introduced. All these considerations make the problem of HIV treat-
ment scheduling an open and active �eld of research.
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Appendix A

Positive systems

The purpose of this appendix is to introduce some essential notions on pos-
itive systems along with some basic properties of positive matrices and Metzler
matrices. Not aiming for a complete characterization of the subject, we will
limit us to those remarkable facts which are of relevance to the comprehension
of results provided in the present work. For the sake of conciseness, we have
chosen to omit (almost) all proofs and to refer the reader to specialized literature
on the topic.

By a positive system we mean a state-space model having the peculiar prop-
erty that its state trajectories and outputs always remain non-negative for any
non-negative initial condition and any non-negative input. It is worth noticing
that the positivity constrain is commonly encountered in many applications: a
variety of models having positive linear behavior can be found in Engineering,
Management, Science, Economics, Social Sciences, Biology and Medicine.

As it will be clearer later, the theory of positive systems is �rmly based
on positive matrices for the discrete-time case and on Metzler matrices for the
continuous-time case. For this reason, in the following, we will �rst provide
insights into these classes of matrices and then we will move on to positive
systems.

A.1 Positive matrices

In this section square positive matrices, namely square matrices whose el-
ements are all non-negative, are considered. In particular, we discuss their
classi�cation into irreducible matrices and reducible matrices and we provide
insights into their spectral properties.

De�nition A.1. A real positive matrix A ∈ Rn×n+ is called:

• primitive if there exists an integer h > 0 such that Ah � 0, namely:[
Ah
]
r,s
> 0, ∀r, s ∈ [1, n];

the smallest h such that Ah � 0 is called �exponent of primitivity�;

• irreducible if for any pair (r, s), 1 ≤ r, s ≤ n, there exists an integer h > 0
(in general depending on r and s) such that:[

Ah
]
r,s
> 0;
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• reducible if there exist r and s such that:[
Ah
]
r,s

= 0, ∀h ≥ 0.

Notice that strictly positive square matrices are primitive matrices with ex-
ponent of primitivity equal to 1, while primitive matrices are a subset of irre-
ducible matrices. In addition, the set of reducible matrices complements those
of irreducible matrices within the whole set of positive matrices.

As far as spectral properties are concerned, positive matrix theory takes the
famous Perron-Frobenius theorem as its foundation: Perron proved it in 1907 for
strictly positive matrices, while Frobenius provided its extension to irreducible
matrices in 1912.

Theorem A.1 (Perron-Frobenius theorem for irreducible matrices).
Let A ∈ Rn×n+ be an irreducible matrix. Then, the following properties hold:

(i) existence of a strictly positive eigenvalue and a strictly posi-

tive eigenvector: there exist a real number λ0 > 0 and a vector v0 � 0
such that:

Av0 = λ0v0;

(ii) maximality of λ0: the eigenvalue λ0 is maximal in modulus among all
the eigenvalues of A, namely |λ| ≤ λ0 for any eigenvalue λ ∈ Λ(A) (and
hence λ0 is the spectral radius of A);

(iii) structure of the peripheral spectrum: every eigenvalue λ with
|λ| = λ0 is a simple root of the characteristic polynomial of A; in addition,
there exists a positive integer η, called �index of imprimitivity�, such that:

� all the eigenvalues of A with |λ| = λ0 are given by:

λ = λ0e
j 2π
η k, k = 0, 1, . . . , η − 1;

� the whole spectrum of A is invariant under a rotation of the com-
plex plane by 2π

η (namely, the whole spectrum of A is invariant with

respect to multiplication by ej
2π
η );

(iv) uniqueness of v0: any positive eigenvector of A corresponding to λ0 is
a multiple of v0;

(v) components on the Jordan basis: with respect to the Jordan basis,
any positive vector x > 0 has a positive component with respect to v0;

(vi) monotonicity of λ0: if Ā is such that Ā > A, its maximal eigenvalue
satis�es λ̄0 > λ0.

The positive eigenvalue λ0 and the strictly positive vector v0 are called
�Perron-Frobenius eigenvalue� and �Perron-Frobenius eigenvector�.

As already mentioned above, proving just stated properties of irreducible
matrices goes beyond our objectives. However, various proofs of the Perron-
Frobenius theorem can be found in the literature, see for instance [6],[31].

A further useful characterization of the Perron-Frobenius eigenvalue is pro-
vided by the following proposition.
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Proposition A.1. Let A ∈ R
n×n
+ be an irreducible matrix and let λ0 be its

Perron-Frobenius eigenvalue. Then, the following properties hold:

(i) If λ > λ0, the matrix (λIn −A)−1 is strictly positive;
if 0 ≤ λ < λ0, the matrix (λIn−A)−1, if it exists, has at least one negative
entry;

(ii) For every vector x > 0 and every λ ∈ R+, we have:

Ax > λx⇒ λ0 > λ,

Ax < λx⇒ λ0 < λ;

(iii) λ0 can be characterized as:

λ0 = sup{λ ∈ R+ : Ax ≥ λx, for some x > 0}
= inf{λ ∈ R+ : Ax ≤ λx, for some x > 0}.

Interestingly enough, some properties stated for irreducible matrices in the
previous Perron-Frobenius theorem hold true in a weaker version for positive
matrices that are not necessarily irreducible. These results are presented in
Theorem A.2 below, but �rst the normal form of a reducible matrix should be
introduced.

Proposition A.2. Let A ∈ Rn×n+ be a reducible matrix of dimension n > 1.

Then, there exists a permutation matrix Π such that Â = ΠTAΠ is a lower
triangular matrix block having the following normal form:

Â = ΠTAΠ =



Â1,1

0 Â2,2

0 0
. . .

0 0 . . . Âh,h
? ? . . . ? Âh+1,h+1

? ? . . . ? ?
. . .

? ? . . . ? ? ? Âk,k


(A.1)

where each diagonal block Âi,i, i = 1, 2, . . . , k > 1, is an irreducible matrix

(possibly the zero matrix of dimension 1). In addition, if Â is not a diagonal
block matrix, namely h < k, then for every index i > h there exists j 6= i such
that Âi,j 6= 0. The blocks Âi,i, i = 1, 2, . . . , h, are called �isolated blocks�.

Theorem A.2 (Perron-Frobenius theorem for reducible matrices).
Let A ∈ Rn×n+ be a reducible matrix. Then, the following properties hold:

(i) existence of a maximal non-negative eigenvalue with a positive

eigenvector: there exist a real number λ0 ≥ 0 and a vector v0 > 0 such
that:

Av0 = λ0v0;

(ii) maximality of λ0: the eigenvalue λ0 is maximal in modulus among all
eigenvalues of A, namely |λ| ≤ λ0 for any eigenvalue λ ∈ Λ(A);
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(iii) structure of the peripheral spectrum: there exist positive integers
η1, . . . , ηg, g ≤ n, such that all eigenvalues of A with |λ| = λ0 are given
by:

λ = λ0e
j 2π
ηh
kh , h = 1, 2, . . . , g, kh = 1, 2, . . . , ηh;

(iv) existence of a strictly positive eigenvector in Uλ0
: the eigenspace

Uλ0
corresponding to the maximal eigenvalue λ0 has a strictly positive

eigenvector v0 if and only if, in the normal form (A.1), λ0 is an eigenvalue
of all isolated blocks Âi,i, i = 1, 2, . . . , h, but this is not true for any of the

remaining diagonal blocks Âi,i, i > h;

(v) monotonicity of λ0: if Ā is such that Ā > A, its maximal eigenvalue
satis�es λ̄0 ≥ λ0.

Again, we omit the proof of the previous theorem, which can be found for
instance in [6].

A.2 Metzler matrices

The focus of the present section will be on Metzler matrices, an important
class of matrices that has attracted a great deal of attention over the past
decades and still represents the object of an intense study.

De�nition A.2. A real matrix A ∈ Rn×n is called a Metzler matrix if all the
o�-diagonal entries are non-negative, namely aij ≥ 0,∀i 6= j.

De�nition A.3. A real matrix A ∈ Rn×n is a Metzler Hurwitz matrix if it is a
Metzler matrix and the real part of each eigenvalue of A is negative.

It is worth noticing that any Metzler matrix A can be represented as:

A = A+ − λIn, λ ∈ R, A+ ∈ Rn×n+ . (A.2)

Consequently, as the spectrum of A and the spectrum of A+ are linked by
the relation Λ(A) = Λ(A+)− λ, (A.2) de�nes a Metzler Hurwitz matrix if and
only if λ > λ0, where λ0 is the Perron eigenvalue of A+.

Several equivalent de�nitions for Metzler Hurwitz matrices involving con-
cepts from many areas of linear algebra are available in the literature (just
think that Berman and Plemmons in [1] provide �fty equivalent de�nitions for
M-matrices, which are the opposite of Metzler Hurwitz matrices). Far away from
providing a systematic treatment of such a class of matrices, in the following
proposition we list a selection of their most useful properties.

Proposition A.3. Let A ∈ R
n×n be a Metzler matrix. Then, the following

statements are equivalent:

(i) A is a Metzler Hurwitz matrix;

(ii) The coe�cients of the characteristic polynomial of A are all positive,
namely if ∆A(z) = α0 + α1z + · · · + αn−1z

n−1 + zn, then αi > 0 for
every i = 0, . . . , n− 1;

(iii) A is non-singular and A−1 is a negative matrix, namely A−1 < 0;
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(iv) For every vector d ∈ Rn the condition Ad ≤ 0 implies d ≥ 0;

(v) There exists a vector d� 0 such that Ad� 0;

(vi) A has all negative diagonal elements and there exists a positive diagonal
matrix D such that −AD is strictly diagonally dominant, namely:

−aiidi >
∑
j 6=i

|−aij |dj , i = 1, . . . , n;

(vii) A has all negative diagonal elements and there exists a positive diagonal
matrix D such that −D−1AD is strictly diagonally dominant;

(viii) The matrix −A is a P-matrix, namely all its principal minors are positive;

(ix) There exist lower and upper triangular matrices L and U , respectively,
with positive diagonals such that:

A = −LU ;

(x) There exists a positive diagonal Lyapunov solution, namely there exists a
positive diagonal matrix D such that DA+ATD is negative de�nite.

A more exhaustive characterization of Metzler Hurwitz matrices (actually,
of their opposites, the M-matrices) can be found for instance in [1],[15].

Both positive matrices and Metzler matrices are central to the study of posi-
tive systems, which constitute the object of the following sections. In particular,
we present necessary and su�cient conditions for positivity and, subsequently,
we brie�y discuss asymptotic stability. As far as other classical properties of
dynamical systems are concerned, such as reachability, observability and input-
output maps, we refer the reader to [6],[5],[18].

A.3 Discrete-time positive systems

Consider the discrete-time system described by the equations:{
x(t+ 1) = Fx(t) +Gu(t),
y(t) = Hx(t) +Du(t).

(A.3)

System (A.3) is (internally) positive if and only if for any x(0) ∈ Rn+ and every
u(t) ∈ Rm+ we have x(t) ∈ Rn+ and y(t) ∈ Rp+ for all t ≥ 0.

Proposition A.4. The discrete-time system (A.3) is positive if and only if
F ∈ Rn×n+ , G ∈ Rn×m+ , H ∈ Rp×n+ , D ∈ Rp×m+ .

Proof. Sufficiency: It is obvious that if F,G,H,D have all non-negative en-
tries, any non-negative initial state and any non-negative input will generate a
non-negative trajectory and output at all times.

Necessity: If we choose u(0) = 0 and x(0) = ei, the state x(1) and the
output y(0) are respectively the i-th column of F and the i-th column of H
and this implies that both F and H must be positive matrices. Analogously,
if we choose u(0) = ei and x(0) = 0, the state x(1) and the output y(0) are
respectively the i-th column of G and the i-th column of D and hence both G
and D must be positive matrices.
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As far as asymptotic stability is concerned, it is worth noticing that asymp-
totic stability with respect to initial conditions in the positive orthant is equiv-
alent to asymptotic stability with respect to arbitrary initial conditions in Rn.
Indeed, any initial state x(0) ∈ R

n can be written as x(0) = x1 − x2 where
x1,x2 > 0. Hence, all the conditions for asymptotic stability of linear systems,
hold true for positive systems. Nevertheless, positive systems have some pecu-
liar properties that are quite useful for the stability analysis, as shown in the
following proposition.

Proposition A.5. Let F ∈ Rn×n+ . Then, the following statements are equiva-
lent:

(i) All eigenvalues of F have moduli less than 1, namely |Λ(F )| < 1;

(ii) The matrix F − In is a Metzler Hurwitz matrix;

(iii) The coe�cients of the characteristic polynomial of F − In, ∆F−In(z), are
all positive;

(iv) There exists a linear CLF V (x) := vTx such that:

∆V (x) := vT (F − In)x� 0, ∀x > 0;

(v) The Lyapunov equation:

FTXF −X = −Q,

with −Q a suitable de�nite negative matrix, admits a positive diago-
nal solution, namely there exists a positive diagonal matrix D such that
FTDF −D is negative de�nite.

A.4 Continuous-time positive systems

Consider the continuous-time system described by the equations:{
ẋ(t) = Fx(t) +Gu(t),
y(t) = Hx(t) +Du(t).

(A.4)

Analogously to its discrete-time counterpart, the system (A.4) is (internally)
positive if and only if for any x(0) ∈ Rn+ and every u(t) ∈ Rm+ we have x(t) ∈ Rn+
and y(t) ∈ Rp+ for all t ≥ 0.

Proposition A.6. The continuous-time system (A.4) is positive if and only if
F is a Metzler matrix and G ∈ Rn×m+ , H ∈ Rp×n+ , D ∈ Rp×m+ .

Proof. Sufficiency: Recall that the state at any time instant t ∈ Z+, starting
from the initial condition x(0) and under the e�ect of the input u(·), can be
expressed as:

x(t) = eFtx(0) +

∫ t

0

eF (t−τ)Gu(τ) dτ,

and hence we only need to prove that eFt is a positive matrix for every t ≥
0. This is rather straightforward if we recall that any Metzler matrix can be
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represented as F = F+ − λIn for some λ ∈ R and some positive matrix F+ ∈
R
n×n
+ . Indeed:

eFt = e(F+−λIn)t = e−λteF+t = e−λt
+∞∑
i=0

F i+
ti

i!
,

which implies that eFt is a positive matrix for every t ≥ 0.
Necessity: If we choose x(0) = 0, the positivity assumption ensures ẋ(0) =

Gu(0) ≥ 0 for every u(0) ≥ 0, which in turn implies G ∈ Rn×m+ . Analogously,
y(0) = Du(0) and, by the positivity assumption, we have y(0) ≥ 0 for every
u(0) ≥ 0, which amounts to D ∈ R

p×m
+ . Finally, if we choose x(0) = ei

and u(0) = 0, ẋ(0) = Fx(0) is the i-th column of F . Since the trajectory of a
positive system can not leave the positive orthant Rn+, each element of the vector
ẋ(0), except for the i-th, must be positive or zero. Therefore, the o�-diagonal
elements of F must be positive or zero, which amounts to saying that F is a
Metzler matrix.

To conclude, the following proposition, which is the continuous-time counter-
part of Proposition A.5, characterizes asymptotic stability for a continuous-time
positive system.

Proposition A.7. Let F ∈ R
n×n be a Metzler matrix. Then, the following

statements are equivalent:

(i) All the eigenvalues of F have negative real parts, namely <{Λ(F )} < 0;

(ii) F is a Metzler Hurwitz matrix;

(iii) The coe�cients of the characteristic polynomial of F , ∆F (z), are all pos-
itive;

(iv) There exists a linear CLF V (x) := vTx such that:

V̇ (x) := vTFx� 0, ∀x > 0;

(v) The Lyapunov equation:

FTX +XF = −Q,

with −Q a suitable de�nite negative matrix, admits a positive diago-
nal solution, namely there exists a positive diagonal matrix D such that
FTD +DF is negative de�nite.
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