
University of Padua

Department of Mathematics "Tullio

Levi-Civita"

Action Recognition in Low-Resolution

Videos

Master Thesis in Computer Science

Supervisor Master Candidate

Lamberto Ballan Alex Dametto

Co-supervisors

Guglielmo Camporese

Elena Izzo

Academic Year 2021-2022

Alex Dametto: Action Recognition in Low-Resolution Videos, Master Thesis in

Computer Science, © July 2022.

Abstract

The current state of the art on recognizing actions as a computer vision problem

focuses primarily on high quality video where the action is clearly visible. The

models that are currently available are therefore not designed for low resolution

inputs and their performance is not satisfactory in the presence of constraints

such as resolution or duration of the video. This type of environment is very

common in video surveillance, where we have low-resolution video captured with

many of these constraints. In this work we are going to propose three different

Multi-Scale architectures that try to adapt to these constraints and we will also

propose some tricks that used in the training phase can significantly improve the

performance of the models facing low resolution video. One of the proposed models,

the FPN AD-ResNet50, manages to improve the ResNet18 baseline scores with an

improvement of +9.2% on F1-Score, +9% on Precision and +8.3% on Recall, using

the low-resolution TinyVIRAT-v2 action recognition benchmark.

iii

Contents

1 Introduction 1

2 Low-quality Action Recognition in Computer Vision 5

2.1 Action Recognition on Videos . 6

2.1.1 Hand-crafted features . 6

2.1.2 Rise of Deep Learning: Convolutional Neural Network . . . 6

2.1.2.1 ResNet-3D . 7

2.1.2.2 R2+1D . 9

2.1.2.3 I3D . 11

2.1.3 Vision Transformers . 12

2.2 Action Detection on Videos . 12

2.3 Turn a low resolution task into an high resolution one 13

2.4 Multi-scale Recognition . 14

2.4.1 Multi-Scale Models . 14

2.4.2 Feature Pyramid Networks 15

2.4.3 MViT: Multi-scale Vision Transformer 16

3 Methodology 17

3.1 Clip Sampling . 18

3.1.1 Random Clip Sampling . 18

3.1.2 Segment Based Sampling . 19

3.2 Using very small inputs for standard ResNet 20

3.3 Advanced data augmentation . 20

3.3.1 Random Short Side Scale . 21

v

vi CONTENTS

3.3.2 Random Crop . 22

3.3.3 Random Horizontal Flip . 22

3.3.4 RandAugment . 23

3.4 Applying Test Time augmentation 24

3.4.1 Horizontal Flip . 24

3.4.2 K-clips . 24

3.5 Positive-Negative threshold . 25

3.6 Multi-scale ResNet-3D Model . 25

3.7 ResNet-3D Feature Pyramid Network 28

3.8 Multi-scale ResNet-3D Feature Pyramid Network 29

3.9 Applying Attention Pooling Layer (APL) in a ResNet-3D 30

3.10 Using Spatial-temporal discriminative filter 30

3.11 Loss Functions . 31

3.11.1 Binary Cross Entropy . 32

3.11.2 Asymmetric Loss . 32

4 Experiments 35

4.1 Setup . 35

4.1.1 Tools . 36

4.1.1.1 Python . 36

4.1.1.2 PyTorch . 37

4.1.1.3 PyTorchVideo . 37

4.1.2 Dataset . 38

4.1.2.1 TinyVIRAT dataset 38

4.1.2.2 TinyVIRAT-v2 dataset 39

4.1.3 Evaluation Metrics . 41

4.1.3.1 Precision . 41

4.1.3.2 Recall . 43

4.1.3.3 F1-Score . 43

4.1.4 Training setup . 44

4.2 Baseline . 45

4.3 Ablation studies . 46

CONTENTS vii

4.3.1 Model ablation . 46

4.3.2 Training procedure ablation 48

4.3.3 Using Attention . 49

4.3.4 Applying Spatial-temporal discriminative filters 53

4.3.5 Loss Function ablation . 55

4.4 Results on TinyVIRAT-v2 action recognition benchmark 58

5 Conclusions 63

5.1 Future Works . 64

References 65

Acknowledgements 71

List of Figures

1.1 Examples of actions that can be recognized in the action recognition

task. 1

2.1 Illustration of the concept of "skip connection". 8

2.2 Skip connection when input and output of convolution block have

the same shape. 8

2.3 Skip connection when input and output of convolution block do not

have the same shape. 8

2.4 ResNet 18 architecture . 9

2.5 Difference between a 3D convolution block and a (2+1)D convolution

block. 10

2.6 R(2+1)D architecture. 10

2.7 I3D architecture. 11

2.8 Vision Transformer (ViT) architecture. 13

2.9 Basic idea of the Super Resolution technology. 14

2.10 Illustration of pyramid of images (left) and pyramid of features maps

(right). 15

2.11 Feature Pyramid Network (FPN) architecture. 15

2.12 Multi-scale Vision Transformer (ViT) architecture. 16

3.1 Illustration of Random Clip Sampling. After choosing the initial

frame, all the following N − 1 frames are selected. 18

3.2 Illustration of Segment Based clip Sampling, with N = 10. In this

example the frames (green lines) that are extracted from the segments

are chosen randomly. 19

ix

x LIST OF FIGURES

3.3 Example of image random cropping. 21

3.4 Example of horizontal flip. 22

3.5 Example of Rand Augment with N = 2 and different values for

magnitude M . 23

3.6 Scores obtained using different values of threshold on an ResNet18

model on TinyVIRAT-v2 dataset validation split. 26

3.7 Multi-scale ResNet architecture. In this particular example we have

considered 3 different input sizes, 28× 28, 56× 56 and 112× 112. . 27

3.8 ResNet-3D Feature Pyramid Network architecture. 28

3.9 ResNet-3D Multi-Scale Feature Pyramid Network architecture. In

this particular example we have considered 3 different input sizes,

28× 28, 56× 56 and 112× 112. 29

3.10 Architecture diagram of discriminative filter banks. Global feature

branch is identical to the baseline. The approach is going to improve

the baseline with a bank of discriminative filters that specialize on

localized cues and a local feature extraction branch, that produces

feature maps tuned to be sensitive to local patterns [24] 31

4.1 Python [31] logo. 36

4.2 PyTorch [32] logo. 37

4.3 PyTorchVideo [33] logo. 38

4.4 Number of samples per action class across the train, validation and

test split of the TinyVIRAT-v2 dataset [42]. 40

4.5 Class wise sample distribution by resolution in TinyVIRAT-v2 dataset.

Samples has been grouped into six groups based on their resolution

(0-20, 20-40, 40-60, 60-80, 80-100, 100-128) for each class. [42]. . . . 41

4.6 Training scores of the ResNet18 baseline model during epochs. . . . 46

4.7 Validation F1-Score of the FPN AD-ResNet18 with Random Clip

Sampling and Segment Based Clip Sampling. 50

4.8 Validation F1-Score of the AD-ResNet18 with Average Pooling Layer

(red) and Attention Pooling Layer (blue). 51

LIST OF FIGURES xi

4.9 Validation F1-Score of the FPN AD-ResNet18 with Average Pooling

Layer (red) and Attention Pooling Layer (blue) in the ResNet18

backbone. 52

4.10 Validation F1-Score of the AD-ResNet18 with Fully Connected Layer

(FC) (red) and Spatial-Temporal Discriminative Filters (blue) in the

classification stage of the AD-ResNet18 model. 54

4.11 Validation F1-Score of the FPN AD-ResNet18 with Fully Connected

Layer (FC) (red) and Spatial-Temporal Discriminative Filters (blue)

in the classification stage of the AD-ResNet18 model. 55

4.12 Validation F1-Score of the FPN AD-ResNet50 with Binary Cross-

Entropy (BCE) (red) and Asymmetric Loss (AL) (blue) as loss

function. 56

4.13 Validation F1-Score of the Multi-Scale FPN ResNet18 with Binary

Cross-Entropy (BCE) (red) and Asymmetric Loss (AL) (blue) as

loss function. 57

4.14 Validation Recall score of the Baseline model (red) and FPN AD-

ResNet50 (blue). 59

4.15 Validation per-class accuracy analysis on the FPN AD-ResNet50

model. 60

4.16 F1-Score for each video size in the validation set using the FPN

AD-ResNet50 model. 61

List of Tables

4.1 Dataset statistics [42]. In this table AFN: average number of frames,

ML: multi-label and NC: number of classes. 39

4.2 Number of samples for each class in TinyVIRAT-v2 training and

validation set. 42

4.3 Baseline scores calculated on the TinyVIRAT-v2 dataset. 45

4.4 Results for the action recognition task on the TinyVIRAT-v2 dataset

with different models. The ResNet18 model is the baseline described

in section 4.2, so it uses 112 × 112 as input size. The Multi-Scale

ResNet18 instead is using 14, 56 and 112 as input sizes. FPN

ResNet18 uses 112 × 112 and Multi-Scale FPN ResNet18 is using

again 14, 56 and 112 as input sizes. 47

4.5 Results of the Training Procedure ablation study, a comparison

between different training procedures on a Feature Pyramid Net-

work ResNet18 model with 112 × 112 as input size. In this table

SM = Sampling Method, AG = Augmentation, TTA = Test Time

Augmentation, H.F. = Horizontal Flip, 5-C = 5-Clips, TH = Positive-

Negative Threshold Tuning. 49

4.6 Comparison between using an Attention Pooling Layer instead stan-

dard Average Pooling Layer. AD-ResNet18 stands for Adapted

ResNet18, where you change the strides according to the description

in section 3.2. 50

4.7 Comparison between using an Attention Pooling Layer instead stan-

dard Average Pooling Layer on a Feature Pyramid Network using an

adapted ResNet18 as backbone. 52

xiii

xiv LIST OF TABLES

4.8 Comparison between using Spatial-temporal discriminative filter [24]

instead of classic Fully Connected Layer on AD-ResNet18 model. . 53

4.9 Comparison between using Spatial-temporal discriminative filter [24]

instead of classic classic Fully Connected Layer on FPN AD-ResNet18

model. 53

4.10 Performances obtained using Binary Cross-Entropy and Asymmetric

Loss in FPN AD-ResNet50 model. 56

4.11 Performances obtained using Binary Cross-Entropy and Asymmetric

Loss in Multi-Scale FPN ResNet18 model. 57

4.12 Scores obtained on TinyVIRAT-v2 action recognition benchmark

with FPN AD-ResNet50 model. 58

LIST OF TABLES xv

List of acronyms

AD-ResNet Adapted ResNet.

AI Artificial Intelligence.

APL Attention Pooling Layer.

CNN Convolutional Neural Network.

FPN Feature Pyramid Network.

MViT Multi-scale Vision Transformer.

ResNet Residual Network.

TTA Test Time Augmentation.

ViT Vision Transformer.

xvii

Chapter 1

Introduction

In recent years, the problem of understanding actions from videos is experiencing

an increase in interest from the scientific community. The reason for this interest

can be assimilated to the increase in the fields of applications of this task, just

think that in recent years more and more car manufacturers are implementing

autonomous driving in their vehicles. Even simply in the field of security cameras,

this task can be used to analyze the actions that are happening at that moment.

Other very common applications of this task can be human - robot interaction,

gaming or entertainment [50].

Specifically, this task is called action recognition and it aims at understanding

the actions that are happening in the video and assign a label to each action [40].

In figure 1.1 you can see some examples of actions that can be recognized in video

recognition task.

Figure 1.1: Examples of actions that can be recognized in the action recognition task.

1

2 CHAPTER 1. INTRODUCTION

In recent years, the increase in research interest in this task has led to the

emergence of many datasets to address this problem. The availability of these

large-scale, high-quality datasets has resulted in a significant improvement in this

type of task [42].

In particular, datasets with multiple actors and multiple actions for each video, such

as UCF-101 [39], Kinetics [38], AVA [13], YouTube-8M [1] and Moments-in-time

[26] allow you to have a huge amount of data with a large variety to be able to

train neural networks [42]. This has allowed the development of various action

recognition models, capable of being very effective in recognizing the correct actions.

Some examples of these models can be C3D [44], I3D [3], ResNet-3D [14] and

R2+1D [43].

The main problem with these datasets is that they ignore a large portion of real

life videos, such as videos from low-resolution security cameras where the actions

are not as clearly visible as in a high-resolution videos. The current state of the art

of this task focuses only on high quality videos where the actions are clearly visible

[42].

Existing approaches for this task re-scale high resolution video to create low

resolution video. The problem with doing this however is that these videos don’t

exactly mirror the low-resolution videos. For example, low-resolution real-world

videos suffer from camera sensor noise and other factors that are not present in

down-scaled video [42].

Considering this context, the purpose of this work is to try to address the action

recognition task applied to low resolution videos. In order to do this we will use

the TinyVIRAT [8] dataset, a benchmark dataset containing natural low resolution

videos taken by security cameras [42].

Addressing this type of problem with a model that is capable of recognizing actions

in low-resolution videos could be beneficial for autonomous driving or, even better,

in the video-security field, where it’s very common to have low-resolution cameras.

The thesis is organized as follows:

• Chapter 2 introduces the action recognition task, talking about how it was

investigated during the years and what are the main approaches to address

3

this task, especially on low-quality videos;

• Chapter 3 explains our approach and what we have investigated to handle

this particular task;

• Chapter 4 shows the ablation studies and the experiments that we have carried

out in this context;

• Chapter 5 reports the concluding remarks.

Chapter 2

Low-quality Action Recognition in

Computer Vision

Action recognition is the task of identifying the actions that are taking place in a

video. The problem is even more challenging in low-resolution videos, since the

action can be not clearly visible.

This chapter aims at illustrating this task and how it has been investigated in

computer vision during past years. It is also showing some approaches to cope with

low-resolution videos.

This chapter is divided into:

• Section 2.1 is illustrating the Action Recognition task, how it was investigated

during the years and main approaches;

• Section 2.2 describes the Action Detection task, that is built upon Action

Recognition task;

• Section 2.3 is illustration the Super-Resolution technique, a tool for trans-

forming low-resolution tasks into high-resolution ones;

• Section 2.4 instead is illustrating the Deep Learning Multi-scale approach and

some implementations.

5

6CHAPTER 2. LOW-QUALITY ACTION RECOGNITION IN COMPUTER VISION

2.1 Action Recognition on Videos

One of the most representative task in the field of video understanding is the video

action recognition task. It is about understanding the actions that are taking place

in the videos. This type of task has many applications in the real world, such

as gaming, entertainment, human-robot interaction and also in the field of video

surveillance [50].

This section aims at illustrating how this task has been investigated over the years

and what are the current main approaches.

2.1.1 Hand-crafted features

The first approach for video and action recognition task is using hand-crafted

features.

In particular, 2 hand-crafted features dominated the video understanding literature

until 2015, bringing high accuracy and good robustness:

• Improved Dense Trajectories (IDC) [47];

• Stacked Fisher Vectors [29].

The first, Improved Dense Trajectories (IDC) [47] is a descriptor that is based

on motion boundary histograms, which is robust to camera motions.

The second instead, Stacked Fisher Vectors [29], is a multi-layer nested Fisher

vector encoding, that allows abstracting semantic information in a hierarchical way.

2.1.2 Rise of Deep Learning: Convolutional Neural Network

With the rise of deep learning [19], researchers started to adapt CNNs to video

problems.

The first approaches, like the seminal work DeepVideo [17], proposed to use a single

2D CNN model on each video frame independently. DeepVideo [17] found that a

model to which every single frame of the video is the input performs equally well

when the input is changed to a stack of frames and this observation indicates that

the learnt spatio-temporal features did not capture the motion well.

2.1. ACTION RECOGNITION ON VIDEOS 7

A conceptually easy way to understand a video is to the use a 3D tensor with two

spatial and one time dimension. This leads to the usage of 3D CNNs as a processing

unit to model the temporal information in a video.

The first work about using 3D CNNs for action recognition [16] was using a neural

network that was not deep enough to show its potential.

Tran et al. [44] extended it to a deeper network, called C3D, that follow a modular

design of [37], which could be thought of as a 3D version of VGG16 [37] network.

Its performance on standard benchmarks is not satisfactory [50], but shows strong

generalization capability and can be used as a generic feature extractor for various

video tasks [49].

2.1.2.1 ResNet-3D

2D CNNs enjoy the benefit of pre-training brought by the large-scale of image

datasets, such as ImageNet [9].

One model that works very well on these large-scale datasets is the ResNet. Thanks

also to the large-scale datasets, this is one of the models that is more accurate and

generalize better in the Image Recognition task.

ResNet-3D [14] is the result by taking a standard 2D ResNet [15] and replace all

the 2D convolutional filters with 3D kernels. This idea was inspired by the fact

that by using a 3D CNNs together with a large-scale datasets one can exploit the

success of 2D CNNs on ImageNet.

ResNet, that stands for Residual Networks, is a classic neural network used as

backbone for many computer vision tasks and also, this model, was the winner of

ImageNet challenge in 2015.

ResNet 2D [15] was the first model to introduce the concept of skip connection.

On figure 2.1 you can see an example of skip connection. On the left part of the

figure there is an illustration of a standard stack of convolution layers. On the right

part of the figure, instead, it is illustrated what we consider a skip connection. In

this case we also add the original input to the output of the convolution block.

8CHAPTER 2. LOW-QUALITY ACTION RECOGNITION IN COMPUTER VISION

Figure 2.1: Illustration of the concept of "skip connection".

One important point is that you can perform the addition in the skip connection

only if the original input and the output of the convolution block has the same

shape.

Figure 2.2: Skip connection when input and output of convolution block have the same

shape.

If the convolution block is done in a way that the output shape is the same, then

we can simply add them, as shown in figure 2.2.

Figure 2.3: Skip connection when input and output of convolution block do not have

the same shape.

Instead, if the convolution block is going to produce an output of a different

shape, the original input goes through a convolution block in order to obtain the

2.1. ACTION RECOGNITION ON VIDEOS 9

same dimension as the output of the convolution block (figure 2.3).

There are 2 main reasons about why skip connections are very good:

• this alternative shortcut path is going to mitigate the problem of vanishing

gradient, because it allows the gradient to flow through;

• it allows the model to learn an identity function which ensures that higher

layer will perform at least as good as the lower layer

There are various types of ResNet based on the size of it, which in the case of

ResNet is called depth, such as 18, 34 or 50. The architecture, however, always has

the same structure, that is:

• a convolution block called stem, composed by a convolution and a max-pooling

using 7× 7 and 3× 3 kernel sizes respectively;

• 4 convolution blocks, called stages, where each stage is identical to the others;

• a classification block, composed by an Average Pooling Layer followed by a

fully connected layer.

Depending on the depth of the ResNet, the architecture of the stages will change,

increasing the number of network parameters.

The complete architecture of the ResNet 18 can be seen in the figure 2.4.

Figure 2.4: ResNet 18 architecture

2.1.2.2 R2+1D

3D networks are very hard to optimize. To train a 3D convolutional filter well, people

need large-scale datasets with a variety of video contents and action categories.

10CHAPTER 2. LOW-QUALITY ACTION RECOGNITION IN COMPUTER VISION

To reduce the complexity of 3D network training, a lot of models like P3D [34] and

R2+1D [43] explore the idea of 3D factorization.

To be specific, 3D factorization is when a 3D kernel (e.g. 3×3×3) can be factorized

to two separate operations, a 2D spatial convolution (e.g. 1 × 3 × 3) and a 1D

temporal convolution (e.g. 3×1×2). You can see an illustration of the factorization

in figure 2.5.

Figure 2.5: Difference between a 3D convolution block and a (2+1)D convolution block.

The R2+1D [43] (also referred as R(2+1)D) is composed of five (2+1)D convolu-

tion blocks (architecture shown in figure 2.6).

Using this type of factorization leads to two major benefits:

• the non-linearity of a (2+1)D convolution block is twice compared to the 3D

convolution block, thanks to the fact that in the (2+1)D convolution block

we have two computation phase;

• the optimization is easier in a (2+1)D CNN with respect to a 3D CNN block

with the same number of blocks.

Figure 2.6: R(2+1)D architecture.

2.1. ACTION RECOGNITION ON VIDEOS 11

2.1.2.3 I3D

The architecture of the I3D [3] model was born from the idea of taking a 2D

architecture and modifying all filters and kernel pools to add an additional dimension,

making the filters that were previously N ×N become N ×N ×N .

This leads to an interesting fact: you can re-use the weights of the original 2D

filters by repeating N times its weights along the time dimension.

Figure 2.7: I3D architecture.

Another modification to consider is the receptive field of pooling and convolutional

layers. A receptive field in a convolutional neural network is the part of the image

that is visible to one filter at a time. The receptive field will increase by adding

more and more layers.

2D convolutions and pooling focus on the height and width of the image and

therefore are symmetrical (e.g. 7× 7 kernel or 3× 3 kernel).

When a temporal dimension is included, it is important to find the optimal receptive

field, which is dependent on the frame rate and frame dimensions.

By the authors [3], if the receptive field grows too quickly in time relative to space,

it may conflate edges from different objects, breaking early feature detection. If

receptive field grows too slowly, it may not capture scene dynamics as well. For

this reason, kernels in I3D are not symmetrical because of the additional time

dimensions.

12CHAPTER 2. LOW-QUALITY ACTION RECOGNITION IN COMPUTER VISION

In figure 2.7 you can see the architecture of the I3D model. As you can see, the

beginning of the network uses asymmetrical filters for max-pooling, maintaining

time while pooling over the spatial dimension. When the model run convolutions

and pooling with the time dimension, filters becomes symmetrical filters.

2.1.3 Vision Transformers

The Transformers [46] is an architecture that has out-rivaled the competing Natural

Language Process (NLP) models after its release.

This model can be generalized also to other application, like Computer Vision.

When applying Transformers to Computer Vision, we talk about Vision Trans-

formers (ViT) [10]. In this case, the image is splitted into multiple patches and

the image patches are considered as words. In this case, ViT provides embeddings

of the patches to the transformer.

The architecture is illustrated in figure 2.8. Input image is sliced into patches

of size P × P . Each patch is flattened and linearly mapped into a D dimension

vector, called embedding stage of the ViT. Position embeddings from the original

transformer and class tokens are added to the patch embedding. The position

is considered as a single number (e.g., in figure 2.8, from 1 to 9) because a pair

of (x, y) position was not helpful for the model. Then the whole process is going

to convert image patches into tokens, like in the NLP tasks, in fact the encoder

transformer has not been modified.

ViT can also incorporate CNNs for further improving performance.

2.2 Action Detection on Videos

On videos you could have two types of action detection on videos: temporal and

non-temporal action detection [45]. Both of these tasks are built upon the action

recognition task, which aims simply at classifing the categories of a video clip.

Temporal action detection aims at localizing the action instances in time and recog-

nize their categories. This task is very similar to segmentation, but done in time.

Instead, non-temporal action detection is very similar to object detection. These

2.3. TURN A LOW RESOLUTION TASK INTO AN HIGH RESOLUTION ONE13

Figure 2.8: Vision Transformer (ViT) architecture.

problems aim at localizing objects/actions of interest in the spatial context.

Action detection has drawn much attention in recent years and has broad appli-

cations in video analysis tasks. For example, in video surveillance area, where an

action could appear in a short period of time and the whole video that has been

recorded from the camera is very long. This task is very time-consuming for an

human, so having an automatic detection has a great advantage. This task has also

another application that in recent years is growing so much: autonomous driving.

2.3 Turn a low resolution task into an high resolu-

tion one

A practical approach to adapt every state of the art model for a video understanding

task that works with high-resolution videos to low-resolution videos is simply trying

to increase the video resolution [23] (figure 2.9).

The Super-Resolution technology, either on images or video, has progressed a lot in

recent years.

There are various methods to do super resolution of images or videos [22]. They

mainly falls in two categories: traditional methods and deep learning based methods.

14CHAPTER 2. LOW-QUALITY ACTION RECOGNITION IN COMPUTER VISION

Figure 2.9: Basic idea of the Super Resolution technology.

In the first one the idea is to estimate motions by affine models. Instead, in the

second one, the idea is to use deep learning models.

Some examples of video super resolution deep learning methods can be BasicVSR

[4] (used also in [23] with TinyVIRAT dataset), TecoGAN [5] and SOF-VSR [48].

2.4 Multi-scale Recognition

In Section 2.3 we have illustrated the basic idea of Video Super-Resolution technology.

Using this technique we could obtain an higher resolution video in order to train a

state of the art model.

This section, instead, is going to present how to cope with different-scale dataset,

where you have objects at different scale. In particular, this section presents the

Multi-scale models idea and some (different) implementations.

2.4.1 Multi-Scale Models

Multi-scale modelling [28] is a style of modelling neural network where multiple

models at different scales are used simultaneously to describe a system.

The need for multi-scale modelling comes usually from the fact that the available

macro-scale models are not accurate enough and the micro-scale models are not

efficient enough [11]. Combining both these models the hope is to arrive to a

reasonable compromise between accuracy and efficiency.

2.4. MULTI-SCALE RECOGNITION 15

2.4.2 Feature Pyramid Networks

One approach to address object detection at different scales is to use a pyramid of

image at different scale. Processing multiple scale images is time consuming and

the memory demand is too high to be trained simultaneously.

Alternatively, we can create a pyramid of features maps closer to the image layer

composed of low-level structures. On figure 2.10 you can see an illustration of

pyramid of images and pyramid of feature maps.

Figure 2.10: Illustration of pyramid of images (left) and pyramid of features maps

(right).

Feature Pyramid network (FPN) [21] is designed for such pyramid concept

in order to have both accuracy and speed. In replaces feature extract of detectors

like Faster R-CNN [35] and generates multiple feature map layers (multi-scale

feature maps) with better quality information than regular feature pyramid for

object detection.

Figure 2.11: Feature Pyramid Network (FPN) architecture.

The architecture is illustrated in figure 2.11. It is composed of a bottom-up

and a top-down pathway. The first one is, usually, a convolution neural network

for feature extraction (e.g. ResNet). By going up, the spatial resolution decreases

16CHAPTER 2. LOW-QUALITY ACTION RECOGNITION IN COMPUTER VISION

while the semantic value increases.

In the top-down pathway instead the idea is to construct higher resolution layers

from a semantic rich layer. The reconstructed layers are semantically strong, but

the location of objects are not precise after all the down-sampling and up-sampling.

To cope with this we add a lateral connection between reconstructed layers and the

corresponding feature maps, in order to help the detector to predict the location

better. This also acts as skip connection to make the training easier (like the

ResNet, section 2.1.2.1).

2.4.3 MViT: Multi-scale Vision Transformer

The Multi-scale Vision Transformer architecture [12] is a Transformer [46]

architecture for representation learning from visual data, such as images and

videos. It incorporate the seminal concept of hierarchical representations into the

Transformer architecture.

In figure [12] you can see the illustration of the models’ architecture. The key idea

for the hierarchical representation is that you apply transformer multiple times,

where each time the number of patches is divided by two because patches are

grouped by pairs.

Figure 2.12: Multi-scale Vision Transformer (ViT) architecture.

Chapter 3

Methodology

Chapter 2 explains the task of action recognition on low resolution video, illustrating

why this task is important and what are the main approaches of the literature in

recent years.

This chapter contains a description of the working method and what approaches

has been adopted to be able to cope with this type of task. This chapter is divided

into the following sections:

• Section 3.1 explains two different methods to extract fixed-length clips from

a video;

• Section 3.2 illustrates a simple procedure to adapt ResNet architecture in

order to work with inputs of smaller scale than the standard one (224× 224);

• Section 3.3 describes a set of data augmentation technique that has been used

in this work;

• Section 3.4 illustrates different test time augmentation techniques;

• Section 3.5 indicates the importance of choosing a good positive-negative

threshold;

• Section 3.6 shows a multi-scale implementation of ResNet model;

• Section 3.7 proposes a Feature Pyramid Network using ResNet as backbone;

17

18 CHAPTER 3. METHODOLOGY

• Section 3.8 illustrates a model that is the fusion of the one described in 3.6

and the one described in 3.7;

• Section 3.9 describes how to add attention to a ResNet;

• Section 3.10 proposes an implementation of Spatial-Temporal Discriminative

Filter Banks [24] to a ResNet-3D and to a Feature Pyramid Network ;

• Section 3.11 contains a description of two different loss functions that can be

used in a multi-label classification task.

3.1 Clip Sampling

This section aims at illustrating two different techniques to sample a clip from a

video. A clip is a fixed-length sub-video extracted from the original video.

The clip is then used as input for the models.

3.1.1 Random Clip Sampling

In the random clip sampling technique the clip is sampled starting from a frame

that is chosen randomly between all the frames in the clip.

We firstly select (randomly) one frame between all the frames in the video and

then we select the N − 1 (usually N = 16 or N = 32) following frames, in order to

obtain N total frames. On figure 3.1 you can see an illustration of the process.

Figure 3.1: Illustration of Random Clip Sampling. After choosing the initial frame, all

the following N − 1 frames are selected.

3.1. CLIP SAMPLING 19

3.1.2 Segment Based Sampling

When having a dataset where the number of frames is not so big, it could be useful

to use segment based clip sampling.

In this technique we divide the frames in N (where N is the number of frames that

we want to sample) disjoint chunks. After having N frame chunks, we sample one

frame per chunk in order to obtain exactly N frames.

This technique can be very powerful when the action is visible temporally in the

whole video or when the average number of frames in the dataset is very low.

Instead, this technique is not very good when you have a long video and the action

is visible only in a small part of it.

Figure 3.2: Illustration of Segment Based clip Sampling, with N = 10. In this example

the frames (green lines) that are extracted from the segments are chosen

randomly.

We can employ two types of frame sampling in a single chunk:

• random: select the frame randomly according to a uniform distribution;

• center: select always the central frame of the chunk.

Random frame selection should be used in training phase, in order to train the

model on similar but different clips, while the center frame selection should be used

for validation and test phase. Figure 3.2 is illustrating the (random) segment based

sampling using N = 10.

20 CHAPTER 3. METHODOLOGY

3.2 Using very small inputs for standard ResNet

ResNet [14] has been described in the section 2.1.2.1. The standard architecture of

the ResNet is designed to work with an input with spatial resolution of 224× 224.

Since we are in a low-resolution task, videos are probably of a resolution that is

lower of 224 × 224. If we upsample the video to 224 × 224 we would get a very

grainy video which certainly would lead to bad results.

So if we want to use, for example, 112× 112 as input size instead of 224× 224 we

have to change the architecture to ensure that the output of the last stage is always

7× 7, making the architecture more robust on these very small input sizes.

The best thing that we could modify in order to obtain this is the stride of the

various pooling and convolutional layers. Using a value of strides of 2 means that

the output will be half the size of the same layer with stride 1. ResNet architecture

has many layers with stride 2 and this is not good for small input size since it

will instantly half the information contained in the video. This is not a problem

for high-resolution video, because if you half the spatial size the video it is still

recognizable.

This means that if we want to use an input size of 112×112, to adapt the architecture

we should change the first layer that has a stride of 2 to a stride of 1. Similarly, if

we want to use an input size of 56× 56 we need to change the first two layers that

has a stride of 2 to a stride of 1.

This approach can be very effective, but it has a limitation: we need to have that

log2

(︃
224

input size

)︃
to be an integer

If this constraint is met, then the output of the last stage will be 7× 7, like in

the original architecture. In practice, the available input sizes are 14× 14, 28× 28,

56× 56 and 112× 112.

3.3 Advanced data augmentation

Data augmentation is a set of techniques that are used to increase the amount of

data simply by adding slightly modified copies of existing data. It is a regularization

3.3. ADVANCED DATA AUGMENTATION 21

technique and it helps reduce overfitting [36].

Previous works has demonstrated the effectiveness of data augmentation [30].

For this document a combination of different augmentation techniques has been

used. In particular, in order:

1. random short side scale;

2. random crop;

3. random horizontal flip;

4. RandAugment.

Some of these techniques will be explained on the images, but the idea is replicable

on videos.

Figure 3.3: Example of image random cropping.

3.3.1 Random Short Side Scale

Random short side scale is a data augmentation technique. In this technique

the idea is to do a resize of the frames based on the short side of the frames.

It is called random because you need to define a range of values and the algorithm is

going to choose the size randomly in this range. Also, the aspect ratio is maintained.

For example, if we have a 60 × 80 and we define a range of 100 − 130, then a

number between 100 and 130 is chosen. Let, for example, that the random number

is 120. Then the short side (so 60) is scaled to 120 and the other scale (80) is scaled

22 CHAPTER 3. METHODOLOGY

proportionally. The output then will be a 120× 160.

Since the dataset is composed of squared videos (i.e. both sides has the same

dimension), this is easier and we will obtain again squared videos.

3.3.2 Random Crop

Random cropping is a data augmentation technique where the video are cropped

in a random position.

The only parameter that this augmentation technique have is the output size. The

output, for simplicity, is squared.

Figure 3.3 is illustrating an example of image cropping.

Choosing a good output size is crucial. If the output size is very small with respect

to the input size, then a lot of information will be lost. Instead, if the output size

is similar to the input size, then cropping is pretty useless. The perfect size should

be a trade-off where most of the information is maintained and the cropping is

changing the point of view of the input.

3.3.3 Random Horizontal Flip

Random horizontal flip is an augmentation technique where you randomly flip

horizontally the input (figure 3.4).

Figure 3.4: Example of horizontal flip.

It is called random because the only parameter of this data augmentation

3.3. ADVANCED DATA AUGMENTATION 23

technique is the probability of flipping. The idea behind this augmentation technique

is that the model will learn the correct information also if you flip the input.

This technique cannot be used when you have actions that are indicating a left or

right direction. For example, if the dataset has an action "pushing to the left",

then flipping will result in an action that is "pushing to the right", but the model

will wrongly learn "pushing to the left".

3.3.4 RandAugment

RandAugment [7] is a recent data augmentation technique. It is an automated

data augmentation method where you have a search space with only two hyperpa-

rameter: N and M .

N is the number of augmentation transformations to apply sequentially, instead M

is the magnitude for all the transformations.

Figure 3.5: Example of Rand Augment with N = 2 and different values for magnitude

M .

Each of the single transformation that can be applied is constrained by a proba-

bility value. Transformations that can be applied include identity transformation,

24 CHAPTER 3. METHODOLOGY

auto contrast, equalize, rotation, solarization, color jittering, posterizing, changing

contrast, changing brightness, changing sharpness, shear-x, shear-y, translate-x and

translate-y.

3.4 Applying Test Time augmentation

This section is going to illustrate two Test Time Augmentation (TTA) technique

that has been exploited in this work: Horizontal Flip and K-clips.

3.4.1 Horizontal Flip

The Horizontal Flip Test Time Augmentation (TTA) technique is done by

sampling one clip, the horizontal flipped ones from the initial clip and do model

ensemble with these clips.

By doing this procedure and getting the max value for each class is going to make

the final prediction more robust.

Since this augmentation is very similar to the random horizontal flip augmentation

described in section 3.3.3, this technique is applicable only if the dataset does not

contain actions characterized by right or left directionality.

3.4.2 K-clips

The idea of K-clips Test Time Augmentation (TTA) technique is to sample K

clips from the original video and do model ensemble with these clips.

Similarly to the Horizontal Flip TTA, the idea is that this is going to make the

final prediction more robust.

One example for a value of K is 5, that is used in a lot of works.

This technique can be easily used with the Random Clip Sampling. Instead, if

we are using the Segmented Based Sampling, we need to use the random frame

extraction instead of the central one, otherwise the K clips will be K copies of the

same clip.

3.5. POSITIVE-NEGATIVE THRESHOLD 25

3.5 Positive-Negative threshold

The model outputs are values between 0 and 1, which indicates the percentage of

memberships in that class.

Considering that labels are defined only of 0s and 1s, we need to define a threshold,

called positive-negative threshold, where

output[x] =

⎧⎪⎨⎪⎩1 output[x] > threshold

0 output[x] ≤ threshold

otherwise it is not possible to compare the output of the models with the actual

labels and it is not possible to calculate losses and scores.

A rational choice of a correct threshold value could be

threshold = 0.5

This seems reasonable, since if the percentage of membership to a class is greater

than 50% then this should be considered part of that class.

However, this is not always the best choice. Different threshold values, depending

on the model, dataset and training procedure, can lead to better results than the

standard 0.5. This can be seen in plot 3.6, where you can see the scores obtained

by using different threshold values. As you can see, 0.5 is not corresponding to the

optimal scores. If you consider F1− Score as your preferred score, then 0.1 is a

good threshold value, instead for Precision 0.4 is good.

For this reason it is necessary to make an accurate choice of a correct threshold

value.

3.6 Multi-scale ResNet-3D Model

Using low-resolution dataset can be very tricky when you want to fix a scale for the

model. For example, if you have a dataset that has videos that goes from 10× 10

to 128 × 128, what kind of resolution should you consider for the inputs of your

model?

Downsampling clips results in losing a lot of details from the largest clips in the

26 CHAPTER 3. METHODOLOGY

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

S
co
re

F1
Precision
Recall

Figure 3.6: Scores obtained using different values of threshold on an ResNet18 model

on TinyVIRAT-v2 dataset validation split.

dataset. Instead if you upsample 10× 10 clips to 128× 128 you are going to have a

clip that doesn’t have any details in it, because it will look a lot grainy.

In this cases using a multi-scale model can be a good choice. You could define

more models for different scale, in order to not upsample and downsample the

videos. Multi-scale models have already been illustrated in section 2.4.1.

This work proposes an implementation of a multi-scale version of the ResNet-3D.

As you can see from the architecture in figure 3.7, the idea is to use N different

ResNet-3D. At the output of stage 1, 2 and 3 of each ResNet-3D, the embeddings

flows from each architecture to the ones with smaller scale. This connection is

called lateral connection (in figure 3.7 are colored in red) and its purpose is to

enrich the semantic information that has the lower scale output with the semantic

information that has the higher scale output. The lateral connection is implemented

with a concatenation in the channels dimension.

After the last stage, the stage 4, the outputs are summed together in order to have

a final single classifier.

3.6. MULTI-SCALE RESNET-3D MODEL 27

Figure 3.7: Multi-scale ResNet architecture. In this particular example we have consid-

ered 3 different input sizes, 28× 28, 56× 56 and 112× 112.

28 CHAPTER 3. METHODOLOGY

3.7 ResNet-3D Feature Pyramid Network

Another type of multi-scale models are the Feature Pyramid Networks, explained in

section 2.4.2.

This work proposes an implementation of a ResNet-3D Feature Pyramid

Network, which architecture can be seen in figure 3.8.

Figure 3.8: ResNet-3D Feature Pyramid Network architecture.

This is a particular version of the Feature Pyramid Network where the CNN

backbone (bottom-up pathway) is the ResNet-3D. When going into top-down

pathway, the lateral connections are coming from the outputs of the stage 1, 2 and

3 of the ResNet-3D. Then the classification is done for each of the different scales

feature maps and the different classifications are combined together to have the

final outcome.

3.8. MULTI-SCALE RESNET-3D FEATURE PYRAMID NETWORK 29

3.8 Multi-scale ResNet-3D Feature Pyramid Net-

work

This work also proposes a fusion between the Multi-Scale ResNet-3D model (section

3.6) and the ResNet-3D Feature Pyramid Network (section 3.7).

Figure 3.9: ResNet-3D Multi-Scale Feature Pyramid Network architecture. In this

particular example we have considered 3 different input sizes, 28 × 28,

56× 56 and 112× 112.

The architecture of the ResNet-3D Multi-Scale Feature Pyramid Network is

illustrated in figure 3.9.

The idea of the model is to have a Feature Pyramid Network where the bottom-up

approach is composed of a Multi-Scale ResNet-3D.

By doing this, the strengths of the two models should come together.

As you can see from the architecture, the bottom-up pathway is done by a Multi-

scale ResNet-3D. In the top-down pathway you have again the lateral connection

that are coming from the bottom-up path. The particularity is that the lateral

30 CHAPTER 3. METHODOLOGY

connection of the Feature Pyramid Network are coming from the concatenation of

the various outputs of the Multi-scale ResNet-3D, so only after the lateral connection

of the Multi-scale ResNet-3D.

Then you have the same classifiers, one for each different scale feature maps. Each

output is then combined together to get the final output.

3.9 Applying Attention Pooling Layer (APL) in a

ResNet-3D

Attention is a technique that mimics cognitive attention. Also, the effect enhances

some parts of the input data while diminishing other parts [46], based on the area

of interest of the image/video.

This work proposes a modification of the standard ResNet-3D in order to use

attention. This is done by changing the Average Pooling Layer at the end of the

network with an Attention Pooling Layer.

An Attention Pooling Layer is composed of two parts: a multi head attention layer

followed by an average pooling layer.

The idea behind this modification is that the Attention Pooling Layer will enhance

some part of the input and then the prediction will be more accurate.

3.10 Using Spatial-temporal discriminative filter

Action recognition has seen a performance improvement in the last yaers. State-

of-the-art literature aims at improving performance through changes to the CNN

network or they explore different trade-offs between computational efficiency and

performance.

Almost all of these works maintains the same last layers of the network: global

average pooling followed by a fully connected layer.

An interesting improvement could be done in this phase [24]. We could apply a

different classification block, that explores the finer details of the input.

In figure 3.10 you can see an illustration of the architecture.

3.11. LOSS FUNCTIONS 31

Figure 3.10: Architecture diagram of discriminative filter banks. Global feature branch

is identical to the baseline. The approach is going to improve the baseline

with a bank of discriminative filters that specialize on localized cues and a

local feature extraction branch, that produces feature maps tuned to be

sensitive to local patterns [24]

We have three branches. The first one, the Global Feature Branch, is the classic

baseline branch with average pool and fully connected layer. Here we have also

another branch, the Local Feature Branch, that is going to specialize the finer details.

After this branch there is the Discriminative Filter Bank that is going to focus on

these key local regions and to classify correctly the overall input.

Finally, to combine the three classifier outputs into a single prediction, we sum the

three values.

Since this is a ResNet (2D or 3D) architecture proposal, we have applied it on the

standard ResNet-3D architecture. Also this thesis proposes an additional Feature

Pyramid Network where the classifier part on the top-down pathway is done using

this approach.

3.11 Loss Functions

Loss functions plays an important role in neural network model because they define

an objective which the performance of the model is evaluated. Then, parameters

learned by the model are determined by minimizing a chosen loss function.

Changing the loss function can therefore lead to a performance improvement.

32 CHAPTER 3. METHODOLOGY

3.11.1 Binary Cross Entropy

Binary Classification is a problem where we have to segregate our observations in

any of the two labels on the basis of the features.

Binary Cross Entropy compares each of the predicted probabilities to actual

class output which can be either 0 or 1. It then calculates the score that penalizes

the probabilities based on the distance from the expected value.

To be precise, Binary Cross Entropy is the negative average of the log of corrected

predicted probabilities.

Hp(q) = − 1

N

N∑︂
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi))

This loss function is going to use the Entropy, that is a measure of the uncertainty

associated with a given distribution q(y).

This loss function is one of the most used in multi-label classification task.

3.11.2 Asymmetric Loss

A work from the 2021 TinyAction Challenge has shown that the positive-negative

imbalance nature in the multi-label datasets may hurt the optimization process

[41].

Common practices in multi-label classification adopt a binary cross-entropy loss.

To handle the problem of positive-negative imbalance, we can consider what is

called Asymmetric Loss (ASL) [2]. It is defined as

X(m,n) =

⎧⎪⎨⎪⎩L+ = (1− p)λ+ + log(p)

L− = (pm)
λ− + log(1− pm)

where p = δ(z) is the network’s output probability.

Asymmetric loss contains two mechanisms of asymmetric focusing and probability

shifting, that are integrated into a unified formula using soft thresholding, via the

focusing parameter λ, and hard thresholding, based on the probability margin m.

In the asymmetric loss, both mechanisms are used for reducing the contribution of

easy negative samples to the loss function.

3.11. LOSS FUNCTIONS 33

Since in the low-resolution action recognition task we would probably handle

multi-label datasets, this loss function could be useful.

Chapter 4

Experiments

Chapter 3 proposed the approach that has been used to address the Action Recog-

nition task on Low-Resolution videos. It proposes models, clip sampling methods

and other training settings.

This chapter is gonna present all the experiments carried out in order to obtain the

best result on a low-resolution action recognition dataset.

This chapter is divided into:

• Section 4.1 describes the setup used for experiments, illustrating the tools

that has been used, the TinyVIRAT [8] dataset, the evaluation metrics and

the training setup;

• Section 4.2 illustrates the baseline model used as point of reference for all the

experiments;

• Section 4.3 contains all the ablation studies carried out in this work;

• Section 4.4 reports the final experimental results by comparing the best result

with the baseline model.

4.1 Setup

This section describes the tools used, the TinyVIRAT dataset and the evaluation

metrics used in this work. It also describes the training details, like parameters

initialization and learning algorithm.

35

36 CHAPTER 4. EXPERIMENTS

4.1.1 Tools

This section will present all the tools that has been used to develop each experiment

that is reported in this document.

4.1.1.1 Python

Python [31] is a high-level, interpreted and general-purpose programming language

used to build websites, softwares, automate tasks and conduct data analysis. It

is dynamic and free open source. It has efficient high-level data structures and a

simple but effective approach to object-oriented programming.

Figure 4.1: Python [31] logo.

Python is a great choice for developing machine learning algorithms a models.

There are various reasons to use python in machine learning:

• it has a huge number of libraries and frameworks: python comes with

many libraries and frameworks that helps the developer coding;

• simplicity: python code is readable and concise;

• massive online support: as python is an open-source programming language,

it has a very excellent support from many resources and documentation

worldwide;

• fast development: its syntax is very easy to understand and friendly and

together with libraries and frameworks the application’s develop time will be

very short;

• flexible integration: a python project can be integrated with projects

written with a different programming language;

4.1. SETUP 37

• extensible and portable: you can write a portion of your code in other

languages (like C++) and also you can move to code to any machine and,

without making any change, you can run it;

• visualization tools: some of python libraries offer good visualization tools

and this is very important for AI, Machine Learning and Deep Learning where

you need to present data in a human-readable format.

4.1.1.2 PyTorch

PyTorch [32] is an open source machine learning framework written in Python

(section 4.1.1.1). It is used for applications such as computer vision and natural

language processing (NLP) and it was primarily developed by Facebook’s AI

Research lab (FAIR).

Figure 4.2: PyTorch [32] logo.

A lot of deep learning software are developed using PyTorch, like Tesla Autopilot

and Uber’s Pyro.

It has the following features:

• distributed training: it is scalable to distributed training;

• robust ecosystem: a lot of tools and libraries extends PyTorch;

• cloud support: it is well supported on major cloud platforms, providing

friction-less development and easy scaling.

4.1.1.3 PyTorchVideo

PyTorchVideo [33] is a deep-learning library with a focus on video understanding

work. It’s based on PyTorch (section 4.1.1.2) and it provides reusable, modular and

efficient components that a developer can use to accelerate the video understanding

38 CHAPTER 4. EXPERIMENTS

research. It supports different deep-learning video components like video models,

datasets and video-specific transforms.

Figure 4.3: PyTorchVideo [33] logo.

The key features of PyTorchVideo are:

• based on PyTorch: it’s easy to use all of the PyTorch-ecosystem components;

• reproducible model zoo: it contains a variety of the state of the art pre-

trained video models with the associated benchmarks and it also contains a

variety of datasets;

• efficient video components: it has some video-focused fast and efficient

components and it supports accelerated inference on hardware.

4.1.2 Dataset

In this section we present the TinyVIRAT [8] dataset and it’s extension, TinyVIRAT-

v2, that is the dataset used in this document.

4.1.2.1 TinyVIRAT dataset

TinyVIRAT [8] is a dataset, based on VIRAT [27] dataset, for real-life tiny action

recognition problems.

VIRAT [27] dataset contains a variety of different actor sizes and it is very complex

because actions can happen any time in any spatial position. In order to have a

low-resolution action recognition problem, the TinyVIRAT dataset is obtained by

cropping small action clips from VIRAT videos and it’s restricted to outdoor videos

[42].

TinyVIRAT [8] dataset has 7663 training and 5166 testing videos with 26 action

labels.

4.1. SETUP 39

4.1.2.2 TinyVIRAT-v2 dataset

TinyVIRAT-v2 [42] is an extension to TinyVIRAT where also the MEVA [6] dataset

has been used.

Similarly to TinyVIRAT (section 4.1.2.1) this dataset is based on security videos.

A key difference of this dataset with respect to the standard TinyVIRAT is that it

has also indoor scenes which makes this problem more challenging.

TinyVIRAT-v2 has 16950 videos in train, 3308 videos in validation and 6097 videos

in test split.

In table 4.1 you can see a statistics comparison from TinyVIRAT, TinyVIRAT-v2

and several other popular datasets.

Dataset Resolution ANF ML NC Train Val Test

UCF-101 [39] 320x240 186.50 No 101 9537 - 3783

HMDB-51

[20]
320x240 94.49 No 51 3570 1530 -

AVA [13]
264x440 to

360x640
127081.66 Yes 80 210,634 57,371 117,441

TinyVIRAT

[8]

10x10 to

128x128
93.93 Yes 26 7663 - 5166

TinyVIRAT-

v2 [42]

10x10 to

128x128
76.14 Yes 26 16950 3308 6097

Table 4.1: Dataset statistics [42]. In this table AFN: average number of frames, ML:

multi-label and NC: number of classes.

For this challenge we have used only TinyVIRAT-v2 as benchmark dataset, since

it has also indoor scenes and it will generalize better.

40 CHAPTER 4. EXPERIMENTS

Figure 4.4: Number of samples per action class across the train, validation and test split

of the TinyVIRAT-v2 dataset [42].

In figure 4.4 [42] you can see the number of samples for each action class across

the train, validation and test split. Instead, in figure 4.5 [42] you can see the class

wise sample distribution by resolution. In table 4.2 you can see the number of

videos for each class in training and validation set.

4.1. SETUP 41

Figure 4.5: Class wise sample distribution by resolution in TinyVIRAT-v2 dataset.

Samples has been grouped into six groups based on their resolution (0-20,

20-40, 40-60, 60-80, 80-100, 100-128) for each class. [42].

4.1.3 Evaluation Metrics

This section aims at illustrating the three performance metrics that has been used

to evaluate the different experiments that are proposed in this work. The three

performance metrics are Precision, Recall and F1-Score.

4.1.3.1 Precision

The Precision of a model is a score that measures the proportion of positively

predicted labels that are actually correct. It is also known as the positive predictive

value and its minimizing the false negatives.

This type of score is affected by the class distribution. If there are more samples in

the minority class, than precision will be lower.

The precision score is a useful measure of the success of prediction when the classes

are very imbalanced. It represents the ratio of true positive (TP) to the sum of

true positive (TP) and false positive (FP)

42 CHAPTER 4. EXPERIMENTS

Class Training samples Validation samples

Opening 225 12

Interacts 501 29

Pull 85 50

activity carrying 2947 707

Entering 202 15

vehicle moving 689 154

Exiting 139 3

Loading 13 3

Talking 7072 1323

activity running 27 6

vehicle turning left 217 22

vehicle stopping 226 26

Riding 57 13

Closing 178 11

activity walking 3782 862

Push 12 1

specialized using tool 162 28

vehicle starting 166 36

specialized miscellaneous 13 1

activity standing 1552 279

Transport HeavyCarry 938 216

activity gesturing 24 5

vehicle turning right 152 42

specialized talking phone 668 123

specialized texting phone 3673 440

Misc 47 5

Table 4.2: Number of samples for each class in TinyVIRAT-v2 training and validation

set.

4.1. SETUP 43

precision =
TP

TP + FP

As you can see the number of false positive would impact the precision score.

4.1.3.2 Recall

Recall score represents the ability of the model to correctly predict the positives

out of actual positives.

It is a score that is often paired with the Precision in order to do a trade-off between

false positives and false negatives. With an high recall, you are minimizing the false

positives.

Mathematically, it represents the ratio of true positives (TP) to the sum of true

positive (TP) and false negative (FN)

recall =
TP

TP + FN

The formula is very similar to Precision, but here the number of false negative

would impact the recall score.

4.1.3.3 F1-Score

The F1-Score is a score that combines both Precision and Recall scores. It is a

metric that gives equal weight to both the Precision and the Recall. It is used for

optimizing both scores.

Mathematically, the F1-Score represents an harmonic mean of precision and recall

score:

f1 =
2 ∗ precision ∗ recall
precision+ recall

Since this metric is a trade off between precision and recall, we would focus on

optimizing this score.

44 CHAPTER 4. EXPERIMENTS

4.1.4 Training setup

All the experiments carried out use the same configuration of training parameters.

All numerical results are obtained training the models for 200 epochs. The setup

used for all the training procedures is described hereafter:

• Dataset: the chosen dataset is the TinyVIRAT-v2 ;

• Randomization: the seed for all the random number generations is 1.

• Initialization: weights of the models are partially or completely initialized

using pre-trained weights coming from other dataset. The weights that are

not coming from a pre-trained model have been initialized randomly. In

particular, for each model:

– ResNet : pre-trained weights taken from Kinetics-700 [38] both for depth

18 and 50 ResNets.

– Multi-Scale ResNet : only the weights of the backbone (ResNet18 or

ResNet50) are pre-trained from Kinetics-700 [38].

– FPN ResNet : only the weights of the backbone (ResNet18 or ResNet50)

are pre-trained from Kinetics-700 [38].

– Multi-Scale FPN ResNet : only the weights of the backbone of the

Multi-Scale ResNet model (ResNet18 or ResNet50) are pre-trained from

Kinetics-700 [38].

• Weights updating: the weight updating during the training process follows

the back-propagation technique.

• Learning Rate: the learning rate starting value depends on the model. It is

updated using a Multi-Step Scheduler where, at epoch 50, 100 and 150, it is

divided by 10 (starting from 0.001, at epoch 50 it is changed to 0.0001, at

epoch 100 it is changed to 0.00001 and at epoch 150 it becomes 0.000001). For

ResNet18, FPN ResNet18 and Multi-Scale ResNet18 the learning rate starts

from 0.001, instead for FPN ResNet50 and for Multi-Scale FPN ResNet18 it

starts from 0.00001.

4.2. BASELINE 45

• Optimizer: the optimizer used in the experiments is ADAM [18] with a

weight decay equal to 0.

• Batch size: the batch size depends on the model. For ResNet18 we have

a batch size of 96, instead for Multi-Scale ResNet18, FPN ResNet18, FPN

ResNet50 and Multi-Scale FPN ResNet18 we have a batch size of 24.

• Input sizes: the temporal size (i.e., number of frames) per clip is always 16.

The spatial size of the input clips depends on the model. In particular, for

ResNet18, FPN ResNet18 and FPN ResNet50 we have 112×112 as input size,

and for Multi-Scale ResNet18 and Multi-Scale FPN ResNet18 we have three

different input sizes (because of the multi-scale approach) 14× 14, 56× 56

and 112× 112.

4.2 Baseline

In order to compare the results of our studies we need to have a baseline score as

point of reference.

To do this we have applied one recent state-of-the-art architecture, the ResNet18

model, on the action recognition TinyVIRAT-v2 dataset.

Method F1-Score Precision Recall

ResNet18 33.0 % 33.6 % 37.4 %

Table 4.3: Baseline scores calculated on the TinyVIRAT-v2 dataset.

The results of the baseline model are shown in table 4.3, where we have evaluated

the score of the standard ResNet − 3D architecture with a depth of 18 and we

have calculated F1-Score, Precision and Recall. On figure 4.6 you can see the scores

during the training phase.

46 CHAPTER 4. EXPERIMENTS

50 100 150
0.8

0.85

0.9

0.95

1

Epoch

S
co
re

Precision
Recall

F1

Figure 4.6: Training scores of the ResNet18 baseline model during epochs.

4.3 Ablation studies

This section illustrates the ablation studies that has been done to evaluate the

performances of our models with respect to the baselines. In each experiment

we report also the score of the baseline, in order to compare the results that the

experiment is exposing.

4.3.1 Model ablation

The first ablation study that this work proposes is the model ablation study. The

idea of this experiment is to try different models in order to see the different

performances.

In this experiment we compare the baseline score or the ResNet18 model with

the scores obtained by using a Multi-Scale ResNet18 model, a Feature Pyramid

Network ResNet18 model and a Multi-Scale FPN ResNet18 model.

The Multi-Scale architecture has been described in section 3.6. For this experi-

ment we have used a Multi-Scale with a ResNet18 as backbone. This model uses

4.3. ABLATION STUDIES 47

Method F1-Score Precision Recall

ResNet18 33.0 % 33.6 % 37.7 %

Multi-Scale ResNet18 33.6 % 33.8 % 38.3 %

FPN ResNet18 33.1 % 32.7 % 40.4 %

Multi-Scale FPN ResNet18 34.9 % 34.6 % 40.0 %

Table 4.4: Results for the action recognition task on the TinyVIRAT-v2 dataset with

different models. The ResNet18 model is the baseline described in section

4.2, so it uses 112 × 112 as input size. The Multi-Scale ResNet18 instead

is using 14, 56 and 112 as input sizes. FPN ResNet18 uses 112 × 112 and

Multi-Scale FPN ResNet18 is using again 14, 56 and 112 as input sizes.

14, 56 and 112 as input sizes.

The Feature Pyramid Network architecture has been described in section 3.7. As

backbone, a ResNet18 has been used and the input size is 112× 112.

The last model, the Multi-Scale Feature Pyramid Network model, has been described

in section 3.8. A Multi-Scale ResNet18 model is used as backbone using 14, 56 and

112 as input sizes.

Results are reported in table 4.4. As you can see from the results, the model that is

performing better is the Multi-Scale FPN ResNet18 model, that obtains a +1.9%

in the F1-Score, +1.0% in precision and +2.6% in the recall. However, the one

that is performing better in the recall is the FPN ResNet18, obtaining a +0.1% in

F1-Score, −0.9% in precision an +3% in the recall.

The Multi-Scale ResNet18 is improving performances of +0.6% in F1-Score, +0.2%

in precision an +0.9% in recall.

To analyze better the results we should consider the following things:

• the Multi-Scale ResNet18 model is performing a little bit better of the baseline

but the model complexity is ∼ 3 times the complexity of the baseline (it uses

three ResNet18 instead of one);

• the Multi-Scale Feature Pyramid Network ResNet model is performing well,

but it also increases the complexity of the model.

48 CHAPTER 4. EXPERIMENTS

For these reasons this work will focus on the Feature Pyramid Network model.

This model is very nice because it proposes a multi-scale model without duplicating

the backbone. Hence, this model is giving very nice results without increasing a lot

the model complexity.

4.3.2 Training procedure ablation

In this experiment we want to try different configuration for the training procedure

in order to see if any changes can improve the performances of the model.

We compare the performances of the ResNet18 baseline and of the Feature Pyramid

Network ResNet18 that we have seen in section 4.3.1 with the performance of a

Feature Pyramid Network where we change some settings in the training procedure.

The input size of the model is always 112× 112.

We decide to change the training procedure in an incremental way. The changes

are:

1. updating the strides of the network in order to work with low-resolution

inputs, as described in 3.2;

2. changing the clip sampling method from the random clip sampling to segment

based clip sampling, both described in section 3.1;

3. adding data augmentation (section 3.3);

4. applying Horizontal Flip TTA (Test Time Augmentation) described in section

3.4.1);

5. tuning the positive-negative threshold, exposed in section 3.5

6. using 5-clips TTA (Test Time Augmentation) (section 3.4.2)

As you can see from table 4.5 the incremental changes are very effective and,

from the initial setup of the standard Feature Pyramid Network ResNet18, we obtain

a final +8.1% on F1-Score, +11.3% on precision and +3.8% on Recall.

The only training configuration that is not increasing the F1-Score is the one when

we have changed the sampling method. However, this last training configuration is

4.3. ABLATION STUDIES 49

Method SM AG TTA TH F1 Precision Recall

ResNet18 Random No No No 33.0 % 33.6 % 37.7 %

FPN ResNet18 Random No No No 33.1 % 32.7 % 40.4 %

FPN AD-ResNet18 Random No No No 36.7 % 38.8 % 38.6 %

FPN AD-ResNet18 Segment No No No 36.3 % 34.3 % 46.0 %

FPN AD-ResNet18 Segment Yes No No 38.8 % 36.1 % 45.4 %

FPN AD-ResNet18 Segment Yes H.F. No 40.6 % 40.0 % 45.5 %

FPN AD-ResNet18 Segment Yes H.F. Yes 41.0 % 44.7 % 40.8 %

FPN AD-ResNet18 Segment Yes 5-C. Yes 41.2 % 44.9 % 41.2 %

Table 4.5: Results of the Training Procedure ablation study, a comparison between

different training procedures on a Feature Pyramid Network ResNet18 model

with 112× 112 as input size. In this table SM = Sampling Method, AG =

Augmentation, TTA = Test Time Augmentation, H.F. = Horizontal Flip,

5-C = 5-Clips, TH = Positive-Negative Threshold Tuning.

increasing a lot the Recall obtaining the base score in this performance measure

(+7.4% with respect to the previous configuration). Also, considering the plot in

figure 4.7 that is showing the Validation F1-Score using Random Clip Sampling

and Segment Based Sampling, we can see that the scores are very similar. For this

reasons losing 0.4% on the F1-Score on the test set is worth for getting an incredible

boost in the Recall score.

4.3.3 Using Attention

This ablation study will try to change the architecture in order to use Attention [46]

in the model. For this purpose, in particular, we want to try to change the standard

ResNet18 architecture in order to use an Attention Pooling Layer instead of the

Average Pooling Layer at the end of the model. The full procedure is described in

section 3.9.

We compare the performances of the adapted ResNet18 model (updated strides)

using Segment Based Sampling and Horizontal Flip TTA with the adapted ResNet18

50 CHAPTER 4. EXPERIMENTS

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−

S
co
re

Random
Segment

Figure 4.7: Validation F1-Score of the FPN AD-ResNet18 with Random Clip Sampling

and Segment Based Clip Sampling.

using the Segment Based Sampling, Horizontal Flip TTA and the Attention Pooling

Layer instead of the Average Pooling Layer. For both models we have used an

input size of 112× 112.

Method Pooling type F1-Score Precision Recall

ResNet18 Average 33.0 % 33.6 % 37.7 %

AD-ResNet18 Average 36.5 % 36.5 % 40.7 %

AD-ResNet18 Attention 34.3 % 33.2 % 38.7 %

Table 4.6: Comparison between using an Attention Pooling Layer instead standard

Average Pooling Layer. AD-ResNet18 stands for Adapted ResNet18, where

you change the strides according to the description in section 3.2.

As you can see from the results in table 4.6, the results of the Attention Pooling

Layer are not as good as using Average Pooling Layer, since with the Attention

Pooling Layer we obtain a −2.2% on the F1-Score, −3.3% on the Precision and

−2% on the Recall.

4.3. ABLATION STUDIES 51

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−
S
co
re

Average
Attention

Figure 4.8: Validation F1-Score of the AD-ResNet18 with Average Pooling Layer (red)

and Attention Pooling Layer (blue).

The interesting thing to note is that by looking at the plot in figure 4.8 that

is plotting the F1-Score during the validation phase, it seems that the Attention

Pooling Layer is better than the Average Pooling Layer.

The same results can be seen by comparing two Feature Pyramid AD-Network

ResNet18, using an adapted ResNet18 as backbone and with Augmentation and

Horizontal Flip TTA. In one model we use the adapted ResNet18 with the

Average Pooling Layer and in the other one we use the adapted ResNet18 with the

Attention Pooling Layer.

In fact, table 4.7 is showing that the Average Pooling Layer is still performing a

little bit better than the Attention Pooling Layer on F1-Score and Precision (+1.8%

on F1-Score, +6.2% on the Precision and −6.1% on the Recall).

52 CHAPTER 4. EXPERIMENTS

Method Pooling type F1-Score Precision Recall

ResNet18 Average 33.0 % 33.6 % 37.7 %

FPN AD-ResNet18 Average 41.0 % 44.7 % 40.8 %

FPN AD-ResNet18 Attention 39.2 % 38.5 % 46.9 %

Table 4.7: Comparison between using an Attention Pooling Layer instead standard

Average Pooling Layer on a Feature Pyramid Network using an adapted

ResNet18 as backbone.

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−
S
co
re

Average
Attention

Figure 4.9: Validation F1-Score of the FPN AD-ResNet18 with Average Pooling Layer

(red) and Attention Pooling Layer (blue) in the ResNet18 backbone.

If we look at the plot in figure 4.9 that is showing the validation F1-Score of

the FPN AD-ResNet18 with Attention Pooling Layer and Average Pooling Layer

during the training we can see that it seems, again, that the Attention Pooling

Layer is better.

4.3. ABLATION STUDIES 53

Method Discriminative filter F1-Score Precision Recall

ResNet18 No 33.0 % 33.6 % 37.7 %

AD-ResNet18 No 36.6 % 36.3 % 40.3 %

AD-ResNet18 Yes 36.1 % 35.0 % 40.8 %

Table 4.8: Comparison between using Spatial-temporal discriminative filter [24] instead

of classic Fully Connected Layer on AD-ResNet18 model.

Method Discriminative filter F1-Score Precision Recall

ResNet18 No 33.0 % 33.6 % 37.7 %

FPN AD-ResNet18 No 41.0 % 44.7 % 40.8 %

FPN AD-ResNet18 Yes 37.7 % 36.5 % 42.3 %

Table 4.9: Comparison between using Spatial-temporal discriminative filter [24] instead

of classic classic Fully Connected Layer on FPN AD-ResNet18 model.

4.3.4 Applying Spatial-temporal discriminative filters

This experiment will study if there is any benefit by using spatial-temporal discrim-

inative filters [24], that are described in section 3.10.

The idea is changing the classifier part of the network in order to detect finer

actions.

To do this experiment we compare the adapted ResNet18 model with and without

the spatial-temporal discriminative filters, using Augmentation and Horizontal Flip

TTA. We also try this method on the Feature Pyramid Network.

As you can see from the results reported in table 4.8, the AD-ResNet model

without the discriminative filter is performing better in the F1-Score (+0.5%) and

on the Recall (+1.3%), instead is performing worse in the Recall (−0.5%).

Also here it is interesting to see that in plot 4.10 the validation F1-Score of the

AD-ResNet18 with the Spatial-Temporal Discriminative Filters is higher than the

one with Fully Connected Layer.

The results are similar on the FPN AD-ResNet18, using again an adapted ResNet18

as backbone, Augmentation and Horizontal Flip TTA.

54 CHAPTER 4. EXPERIMENTS

50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−

S
co
re

FC
Spatial

Figure 4.10: Validation F1-Score of the AD-ResNet18 with Fully Connected Layer (FC)

(red) and Spatial-Temporal Discriminative Filters (blue) in the classification

stage of the AD-ResNet18 model.

In fact, table 4.9 shows that Fully Connected Layer is better than Spatial-

Temporal Discriminative Filters, obtaining +3.3% on F1-Score, +8.2% on Precision

and −1.5% on Recall.

4.3. ABLATION STUDIES 55

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−
S
co
re

FC
Spatial

Figure 4.11: Validation F1-Score of the FPN AD-ResNet18 with Fully Connected Layer

(FC) (red) and Spatial-Temporal Discriminative Filters (blue) in the classi-

fication stage of the AD-ResNet18 model.

Looking at plot 4.11 we can see that, similarly to the AD-ResNet18 model, the

Spatial-Temporal Discriminative Filters are a little better than the Fully Connected

Layer on the validation set.

4.3.5 Loss Function ablation

The idea of this experiment is to see if changing the loss function is going to increase

the performances.

In order to do this we compare the performance of two FPN AD-ResNet18 with the

same training configuration, changing only the Loss Function. We use 112× 112 as

input size, we have used an adapted ResNet18 in order to work with smaller inputs,

we have used Augmentation, Horizontal Flip TTA and Positive-Negative Threshold

Tuning.

56 CHAPTER 4. EXPERIMENTS

Method Loss function F1-Score Precision Recall

ResNet18 Binary cross-entropy 33.0 % 33.6 % 37.7 %

FPN AD-ResNet50 Binary cross-entropy 42.2 % 42.6 % 45.7 %

FPN AD-ResNet50 Asymmetric Loss 40.5 % 52.2 % 35.3 %

Table 4.10: Performances obtained using Binary Cross-Entropy and Asymmetric Loss

in FPN AD-ResNet50 model.

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−
S
co
re

BCE
AL

Figure 4.12: Validation F1-Score of the FPN AD-ResNet50 with Binary Cross-Entropy

(BCE) (red) and Asymmetric Loss (AL) (blue) as loss function.

Table 4.10 is reporting the results. As you can see, one is using standard Binary

Cross-Entropy and the other one is using Asymmetric Loss, both described in

section 3.11. The Binary Cross-Entropy is performing better on F1-Score, with an

increment of 1.7%, and on Recall, with a +10.4%, but worse on Precision (−9.6%).

On plot 4.12 we can see that actually these two loss function, on Validation set,

are very similar and there is not a predominant loss function.

It is interesting to see this experiment done to Multi-Scale FPN ResNet18

4.3. ABLATION STUDIES 57

Method Loss function F1-Score Precision Recall

ResNet18 Binary cross-entropy 33.0 % 33.6 % 37.7 %

Multi-Scale FPN ResNet18 Binary cross-entropy 34.9 % 34.6 % 40.0 %

Multi-Scale FPN ResNet18 Asymmetric Loss 36.2 % 40.9 % 34.9 %

Table 4.11: Performances obtained using Binary Cross-Entropy and Asymmetric Loss

in Multi-Scale FPN ResNet18 model.

model. We have done the same experiment using 14, 56 and 112 as input sizes,

using standard ResNet18 as backbone and without using any data augmentation

technique or test time augmentation.

0 50 100 150
0.5

0.6

0.7

0.8

0.9

Epoch

F
1
−
S
co
re

BCE
AL

Figure 4.13: Validation F1-Score of the Multi-Scale FPN ResNet18 with Binary Cross-

Entropy (BCE) (red) and Asymmetric Loss (AL) (blue) as loss function.

Table 4.11 is showing results obtained using this model. As you can see, in this

experiment, Asymmetric Loss is performing better than Binary Cross-Entropy on

F1-Score (+1.3%) and Precision (+6.3%), but it loses on Recall (−5.1%). Similarly

to the FPN ResNet50, plot 4.13 is showing that there is not a predominant Loss

58 CHAPTER 4. EXPERIMENTS

Function on the validation set.

4.4 Results on TinyVIRAT-v2 action recognition

benchmark

This section illustrates the improvement over the standard ResNet18 model baseline

evaluating on the TinyVIRAT-v2 action recognition benchmark.

The best score that we have obtained is by using a Feature Pyramid Network with

and adapted ResNet50 as backbone. We have used the Segment Based Sampling,

Augmentation and Horizontal Flip TTA using a Positive-Negative threshold of 0.35.

Method F1-Score Precision Recall

ResNet18 33.0 % 33.6 % 37.7 %

FPN AD-ResNet50 42.2 % 42.6 % 45.7 %

Improvement +9.2 % ↑ +9 % ↑ +8.3 % ↑

Table 4.12: Scores obtained on TinyVIRAT-v2 action recognition benchmark with FPN

AD-ResNet50 model.

The table 4.12 is showing that the FPN AD-ResNet50 model improves the

standard ResNet18 model baseline on all the performance metrics, obtaining a

+9.2% on F1-Score, +9% on the Precision and +8.3% on the Recall.

4.4. RESULTS ON TINYVIRAT-V2 ACTION RECOGNITION BENCHMARK59

0 50 100 150
0.5

0.6

0.7

0.8

0.9

1

Epoch

S
co
re

BS Recall FPN Recall

Figure 4.14: Validation Recall score of the Baseline model (red) and FPN AD-ResNet50

(blue).

It is interesting to see, from plot 4.14, that the Recall of the baseline model on

validation set is better than the one obtained by the FPN AD-ResNet50 but, on

the test set, FPN AD-ResNet50 outperforms the baseline by +8.3%.

60 CHAPTER 4. EXPERIMENTS

O
p
en

in
g

In
te

ra
ct

s
P
u
ll

ac
ti

v
it
y

ca
rr

y
in

g
E
n
te

ri
n
g

ve
h
ic

le
m

ov
in

g
E
x
it

in
g

L
oa

d
in

g
T
al

k
in

g
ac

ti
v
it
y

ru
n
n
in

g
ve

h
ic

le
tu

rn
in

g
le

ft
ve

h
ic

le
st

op
p
in

g
R

id
in

g
C

lo
si

n
g

ac
ti

v
it
y

w
al

k
in

g
P
u
sh

sp
ec

ia
li
ze

d
u
si

n
g

to
ol

ve
h
ic

le
st

ar
ti

n
g

sp
ec

ia
li
ze

d
m

is
ce

ll
an

eo
u
s

ac
ti

v
it
y

st
an

d
in

g
T
ra

n
sp

or
t

H
ea

v
y
C

ar
ry

ac
ti

v
it
y

ge
st

u
ri

n
g

ve
h
ic

le
tu

rn
in

g
ri

gh
t

sp
ec

ia
li
ze

d
ta

lk
in

g
p
h
on

e
sp

ec
ia

li
ze

d
te

x
ti

n
g

p
h
on

e
M

is
c

0

20

40

60

80

100

A
cc
u
ra
cy

(%
)

Figure 4.15: Validation per-class accuracy analysis on the FPN AD-ResNet50 model.

Plot 4.15 is showing the classes of actions that are classified correctly and

incorrectly. Plot is revealing that exists classes that are never recognized correctly

and classes that are recognized correctly most of the time. In particular, by

comparing this plot with table 4.2 that is showing the number of samples for each

class in the training and validation set, you can see that the classes that are never

recognized correctly (like action Loading) has a small number of elements in training

and validation set (in this case 13 in the training and 3 in the validation).

4.4. RESULTS ON TINYVIRAT-V2 ACTION RECOGNITION BENCHMARK61

0 10 20 30 40 50 60 70 80 90 100

20
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
55
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100
102
104
106
108
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

F1− Score (%)

S
iz
e
(p
x
)

Figure 4.16: F1-Score for each video size in the validation set using the FPN AD-

ResNet50 model.

Instead plot 4.16 is showing F1-Score for each original clip size of our dataset.

62 CHAPTER 4. EXPERIMENTS

As you can see the multi-scale mechanism (top-down pathway) of the FPN AD-

ResNet50 model is working pretty well since we obtain good F1-Scores in almost

all the different input sizes, going from the smaller to the larger ones.

Chapter 5

Conclusions

This thesis focuses on applying the action recognition task on low-resolution videos.

Our approach has led to trying various solutions, changing both the model to be

trained and the way in which we pre and post process data. This particular type of

task plays a key role in research, since the current state of the art does not consider

these types of datasets, in which the videos are very short and have a very low

spatial resolution. These datasets, such as the TinyVIRAT, allows people to train

models in cases where these constraints are very common, such as in the context of

video surveillance.

In this work we have seen how pre and post-process of the data matters a lot in

the model training phase on low-resolution data. In fact, simply by changing the

random clip sampling to the segment based clip sampling is going to boost up to

+7% on the Recall. And also using Test Time Augmentation (TTA) techniques led

up to a +1.8% on F1-Score, +3.9% on the Precision and +1% on the Recall.

Then, since the standard ResNet-3D architecture works with a spatial dimension of

224× 224, we have proposed an modification of the architecture in order to work

with inputs of 14 × 14, 56 × 56 and 112 × 112, since in the majority of the case

datasets has smaller clips.

After that, we have proposed three different Multi-Scale architectures, the Multi-

Scale ResNet, FPN ResNet and Multi-Scale FPN ResNet, in order to handle the

problem of choosing the correct spatial size for the clips. In fact, selecting a size

that is too small will lead to the loss of too much detail for the larger clips when

63

64 CHAPTER 5. CONCLUSIONS

we go to reduce their size. Instead, by selecting a larger size we will get that the

smaller clips, when enlarged, will be very grainy. Using this kind of model has

increased the scores obtained by the proposed state-of-the-art solution up to +1.9%

on the F1-Score, +1% on the Precision and +2.7% on the Recall.

In the end we were able to increase the results of the ResNet18 baseline model

by +9.2% in the F1-Score, +9% in the Precision and by +8.3% in the Recall (as

reported in table 4.12) by using an FPN AD-ResNet50.

5.1 Future Works

One idea for a future work is to use more low-resolution benchmark datasets

in order to have data coming from different sources and also to increase the

amount of data. Comparing the performances obtained on the TinyVIRAT dataset

with performances obtained on other low-resolution dataset is going to give us a

generalized measure on the quality of our results, also considering that TinyVIRAT

dataset has a shift between validation and test split (a model that obtain like 0.75

F1-Score on the validation set is getting like 0.30/0.35 F1-Score on the test set).

It is also interesting to see if using other backbone model, different from the ResNet

model, is going to boost the performances. Also, the idea of using some model

ensemble methods is a future work, since this method could be used in order to

classify correctly all the classes of actions that, at the moment, our final result is not

classifying correctly (section 4.4, plot 4.15). Another possible future work that can

be done is to use the Video Super-Resolution, that is a different approach to handle

low-resolution tasks used to transform a low-quality video to an high-resolution

video and handle it as a common high-resolution action recognition task.

References

[1] Sami Abu-El-Haija et al. YouTube-8M: A Large-Scale Video Classification

Benchmark. 2016. doi: 10.48550/ARXIV.1609.08675. url: https://arxiv.

org/abs/1609.08675 (cit. on p. 2).

[2] Emanuel Ben-Baruch et al. Asymmetric Loss For Multi-Label Classification.

2021. arXiv: 2009.14119 [cs.CV] (cit. on p. 32).

[3] Joao Carreira and Andrew Zisserman. Quo Vadis, Action Recognition? A New

Model and the Kinetics Dataset. 2017. doi: 10.48550/ARXIV.1705.07750.

url: https://arxiv.org/abs/1705.07750 (cit. on pp. 2, 11).

[4] Kelvin C. K. Chan et al. BasicVSR: The Search for Essential Components in

Video Super-Resolution and Beyond. 2020. doi: 10.48550/ARXIV.2012.02181.

url: https://arxiv.org/abs/2012.02181 (cit. on p. 14).

[5] Mengyu Chu et al. “Learning temporal coherence via self-supervision for

GAN-based video generation”. In: ACM Transactions on Graphics 39.4 (Aug.

2020). doi: 10.1145/3386569.3392457. url: https://dl.acm.org/doi/

10.1145/3386569.3392457 (cit. on p. 14).

[6] Kellie Corona et al. MEVA: A Large-Scale Multiview, Multimodal Video

Dataset for Activity Detection. 2020. doi: 10.48550/ARXIV.2012.00914.

url: https://arxiv.org/abs/2012.00914 (cit. on p. 39).

[7] Ekin D. Cubuk et al. RandAugment: Practical automated data augmentation

with a reduced search space. 2019. doi: 10.48550/ARXIV.1909.13719. url:

https://arxiv.org/abs/1909.13719 (cit. on p. 23).

65

https://doi.org/10.48550/ARXIV.1609.08675
https://arxiv.org/abs/1609.08675
https://arxiv.org/abs/1609.08675
https://arxiv.org/abs/2009.14119
https://doi.org/10.48550/ARXIV.1705.07750
https://arxiv.org/abs/1705.07750
https://doi.org/10.48550/ARXIV.2012.02181
https://arxiv.org/abs/2012.02181
https://doi.org/10.1145/3386569.3392457
https://dl.acm.org/doi/10.1145/3386569.3392457
https://dl.acm.org/doi/10.1145/3386569.3392457
https://doi.org/10.48550/ARXIV.2012.00914
https://arxiv.org/abs/2012.00914
https://doi.org/10.48550/ARXIV.1909.13719
https://arxiv.org/abs/1909.13719

66 REFERENCES

[8] Ugur Demir, Yogesh S Rawat, and Mubarak Shah. TinyVIRAT: Low-resolution

Video Action Recognition. arXiv, 2020. doi: 10.48550/ARXIV.2007.07355.

url: https://arxiv.org/abs/2007.07355 (cit. on pp. 2, 35, 38, 39).

[9] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,

pp. 248–255. doi: 10.1109/CVPR.2009.5206848 (cit. on p. 7).

[10] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for

Image Recognition at Scale. 2020. doi: 10.48550/ARXIV.2010.11929. url:

https://arxiv.org/abs/2010.11929 (cit. on p. 12).

[11] W. E and J. Lu. “Multiscale modeling”. In: Scholarpedia 6.10 (2011). revision

#91540, p. 11527. doi: 10.4249/scholarpedia.11527 (cit. on p. 14).

[12] Haoqi Fan et al. Multiscale Vision Transformers. 2021. doi: 10.48550/ARXIV.

2104.11227. url: https://arxiv.org/abs/2104.11227 (cit. on p. 16).

[13] Chunhui Gu et al. AVA: A Video Dataset of Spatio-temporally Localized

Atomic Visual Actions. 2017. doi: 10.48550/ARXIV.1705.08421. url:

https://arxiv.org/abs/1705.08421 (cit. on pp. 2, 39).

[14] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can Spatiotemporal 3D

CNNs Retrace the History of 2D CNNs and ImageNet? 2017. doi: 10.48550/

ARXIV.1711.09577. url: https://arxiv.org/abs/1711.09577 (cit. on

pp. 2, 7, 20).

[15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. doi:

10.48550/ARXIV.1512.03385. url: https://arxiv.org/abs/1512.03385

(cit. on p. 7).

[16] Shuiwang Ji et al. “3D Convolutional Neural Networks for Human Action

Recognition”. In: IEEE Transactions on Pattern Analysis and Machine In-

telligence 35.1 (2013), pp. 221–231. doi: 10.1109/TPAMI.2012.59 (cit. on

p. 7).

https://doi.org/10.48550/ARXIV.2007.07355
https://arxiv.org/abs/2007.07355
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/ARXIV.2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.4249/scholarpedia.11527
https://doi.org/10.48550/ARXIV.2104.11227
https://doi.org/10.48550/ARXIV.2104.11227
https://arxiv.org/abs/2104.11227
https://doi.org/10.48550/ARXIV.1705.08421
https://arxiv.org/abs/1705.08421
https://doi.org/10.48550/ARXIV.1711.09577
https://doi.org/10.48550/ARXIV.1711.09577
https://arxiv.org/abs/1711.09577
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/TPAMI.2012.59

67

[17] Andrej Karpathy et al. “Large-Scale Video Classification with Convolutional

Neural Networks”. In: 2014 IEEE Conference on Computer Vision and Pattern

Recognition. 2014, pp. 1725–1732. doi: 10.1109/CVPR.2014.223 (cit. on

p. 6).

[18] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-

mization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.

org/abs/1412.6980 (cit. on p. 45).

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Clas-

sification with Deep Convolutional Neural Networks”. In: Commun. ACM

60.6 (May 2017), pp. 84–90. issn: 0001-0782. doi: 10.1145/3065386. url:

https://doi.org/10.1145/3065386 (cit. on p. 6).

[20] H. Kuehne et al. “HMDB: A large video database for human motion recogni-

tion”. In: 2011 International Conference on Computer Vision. 2011, pp. 2556–

2563. doi: 10.1109/ICCV.2011.6126543 (cit. on p. 39).

[21] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2016. doi:

10.48550/ARXIV.1612.03144. url: https://arxiv.org/abs/1612.03144

(cit. on p. 15).

[22] Hongying Liu et al. Video Super Resolution Based on Deep Learning: A

Comprehensive Survey. 2020. doi: 10 . 48550 / ARXIV . 2007 . 12928. url:

https://arxiv.org/abs/2007.12928 (cit. on p. 13).

[23] Yunbo Peng Liu Cen and Yue Lin. Along. 2021 (cit. on pp. 13, 14).

[24] Brais Martinez et al. Action recognition with spatial-temporal discriminative

filter banks. 2019. doi: 10.48550/ARXIV.1908.07625. url: https://arxiv.

org/abs/1908.07625 (cit. on pp. 18, 30, 31, 53).

[25] Rajat Modi et al. Video Action Detection: Analysing Limitations and Chal-

lenges. arXiv, 2022. doi: 10.48550/ARXIV.2204.07892. url: https://

arxiv.org/abs/2204.07892.

https://doi.org/10.1109/CVPR.2014.223
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICCV.2011.6126543
https://doi.org/10.48550/ARXIV.1612.03144
https://arxiv.org/abs/1612.03144
https://doi.org/10.48550/ARXIV.2007.12928
https://arxiv.org/abs/2007.12928
https://doi.org/10.48550/ARXIV.1908.07625
https://arxiv.org/abs/1908.07625
https://arxiv.org/abs/1908.07625
https://doi.org/10.48550/ARXIV.2204.07892
https://arxiv.org/abs/2204.07892
https://arxiv.org/abs/2204.07892

68 REFERENCES

[26] Mathew Monfort et al. Moments in Time Dataset: one million videos for

event understanding. 2018. doi: 10.48550/ARXIV.1801.03150. url: https:

//arxiv.org/abs/1801.03150 (cit. on p. 2).

[27] Sangmin Oh et al. “A large-scale benchmark dataset for event recognition

in surveillance video”. In: CVPR 2011. 2011, pp. 3153–3160. doi: 10.1109/

CVPR.2011.5995586 (cit. on p. 38).

[28] Grace C. Y. Peng et al. Multiscale modeling meets machine learning: What

can we learn? 2019. doi: 10.48550/ARXIV.1911.11958. url: https://

arxiv.org/abs/1911.11958 (cit. on p. 14).

[29] Xiaojiang Peng et al. “Action Recognition with Stacked Fisher Vectors”. In:

ECCV. 2014 (cit. on p. 6).

[30] Luis Perez and Jason Wang. The Effectiveness of Data Augmentation in Image

Classification using Deep Learning. 2017. doi: 10.48550/ARXIV.1712.04621.

url: https://arxiv.org/abs/1712.04621 (cit. on p. 21).

[31] Python. url: https://www.python.org/ (cit. on p. 36).

[32] PyTorch. url: https://www.pytorch.org/ (cit. on p. 37).

[33] PyTorchVideo. url: https://www.pytorchvideo.org/ (cit. on pp. 37, 38).

[34] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning Spatio-Temporal Representa-

tion with Pseudo-3D Residual Networks. 2017. doi: 10.48550/ARXIV.1711.

10305. url: https://arxiv.org/abs/1711.10305 (cit. on p. 10).

[35] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks. 2015. doi: 10.48550/ARXIV.1506.01497. url:

https://arxiv.org/abs/1506.01497 (cit. on p. 15).

[36] Connor Shorten and Taghi Khoshgoftaar. “A survey on Image Data Aug-

mentation for Deep Learning”. In: Journal of Big Data 6 (July 2019). doi:

10.1186/s40537-019-0197-0 (cit. on p. 21).

https://doi.org/10.48550/ARXIV.1801.03150
https://arxiv.org/abs/1801.03150
https://arxiv.org/abs/1801.03150
https://doi.org/10.1109/CVPR.2011.5995586
https://doi.org/10.1109/CVPR.2011.5995586
https://doi.org/10.48550/ARXIV.1911.11958
https://arxiv.org/abs/1911.11958
https://arxiv.org/abs/1911.11958
https://doi.org/10.48550/ARXIV.1712.04621
https://arxiv.org/abs/1712.04621
https://www.python.org/
https://www.pytorch.org/
https://www.pytorchvideo.org/
https://doi.org/10.48550/ARXIV.1711.10305
https://doi.org/10.48550/ARXIV.1711.10305
https://arxiv.org/abs/1711.10305
https://doi.org/10.48550/ARXIV.1506.01497
https://arxiv.org/abs/1506.01497
https://doi.org/10.1186/s40537-019-0197-0

69

[37] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. 2014. doi: 10.48550/ARXIV.1409.1556.

url: https://arxiv.org/abs/1409.1556 (cit. on p. 7).

[38] Lucas Smaira et al. A Short Note on the Kinetics-700-2020 Human Action

Dataset. 2020. doi: 10.48550/ARXIV.2010.10864. url: https://arxiv.

org/abs/2010.10864 (cit. on pp. 2, 44).

[39] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A

Dataset of 101 Human Actions Classes From Videos in The Wild. 2012. arXiv:

1212.0402 [cs.CV] (cit. on pp. 2, 39).

[40] Zehua Sun et al. Human Action Recognition from Various Data Modalities:

A Review. 2020. doi: 10.48550/ARXIV.2012.11866. url: https://arxiv.

org/abs/2012.11866 (cit. on p. 1).

[41] Jinbao Wang Teng Wang Tiantian Geng and Feng Zheng. Sustech&hku

submission to tinyaction challenge 2021. 2021 (cit. on p. 32).

[42] Praveen Tirupattur et al. TinyAction Challenge: Recognizing Real-world Low-

resolution Activities in Videos. arXiv, 2021. doi: 10.48550/ARXIV.2107.

11494. url: https://arxiv.org/abs/2107.11494 (cit. on pp. 2, 38–41).

[43] Du Tran et al. A Closer Look at Spatiotemporal Convolutions for Action

Recognition. 2017. doi: 10.48550/ARXIV.1711.11248. url: https://arxiv.

org/abs/1711.11248 (cit. on pp. 2, 10).

[44] Du Tran et al. Learning Spatiotemporal Features with 3D Convolutional

Networks. 2014. doi: 10.48550/ARXIV.1412.0767. url: https://arxiv.

org/abs/1412.0767 (cit. on pp. 2, 7).

[45] Elahe Vahdani and Yingli Tian. Deep Learning-based Action Detection in

Untrimmed Videos: A Survey. 2021. doi: 10.48550/ARXIV.2110.00111. url:

https://arxiv.org/abs/2110.00111 (cit. on p. 12).

https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.2010.10864
https://arxiv.org/abs/2010.10864
https://arxiv.org/abs/2010.10864
https://arxiv.org/abs/1212.0402
https://doi.org/10.48550/ARXIV.2012.11866
https://arxiv.org/abs/2012.11866
https://arxiv.org/abs/2012.11866
https://doi.org/10.48550/ARXIV.2107.11494
https://doi.org/10.48550/ARXIV.2107.11494
https://arxiv.org/abs/2107.11494
https://doi.org/10.48550/ARXIV.1711.11248
https://arxiv.org/abs/1711.11248
https://arxiv.org/abs/1711.11248
https://doi.org/10.48550/ARXIV.1412.0767
https://arxiv.org/abs/1412.0767
https://arxiv.org/abs/1412.0767
https://doi.org/10.48550/ARXIV.2110.00111
https://arxiv.org/abs/2110.00111

70 REFERENCES

[46] Ashish Vaswani et al. Attention Is All You Need. 2017. doi: 10.48550/ARXIV.

1706.03762. url: https://arxiv.org/abs/1706.03762 (cit. on pp. 12, 16,

30, 49).

[47] Heng Wang et al. “Action recognition by dense trajectories”. In: CVPR 2011.

2011, pp. 3169–3176. doi: 10.1109/CVPR.2011.5995407 (cit. on p. 6).

[48] Longguang Wang et al. Deep Video Super-Resolution using HR Optical Flow

Estimation. 2020. doi: 10.48550/ARXIV.2001.02129. url: https://arxiv.

org/abs/2001.02129 (cit. on p. 14).

[49] Li Yao et al. Describing Videos by Exploiting Temporal Structure. 2015. doi:

10.48550/ARXIV.1502.08029. url: https://arxiv.org/abs/1502.08029

(cit. on p. 7).

[50] Yi Zhu et al. A Comprehensive Study of Deep Video Action Recognition. 2020.

doi: 10.48550/ARXIV.2012.06567. url: https://arxiv.org/abs/2012.

06567 (cit. on pp. 1, 6, 7).

https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CVPR.2011.5995407
https://doi.org/10.48550/ARXIV.2001.02129
https://arxiv.org/abs/2001.02129
https://arxiv.org/abs/2001.02129
https://doi.org/10.48550/ARXIV.1502.08029
https://arxiv.org/abs/1502.08029
https://doi.org/10.48550/ARXIV.2012.06567
https://arxiv.org/abs/2012.06567
https://arxiv.org/abs/2012.06567

Acknowledgements

Prima di tutto, desidero ringraziare il professore Lamberto Ballan, nonchè relatore

di questa tesi, per avermi dato l’opportunità di svolgere questo lavoro. Inoltre

desidero ringraziare i miei correlatori, Guglielmo ed Elena, per avermi sempre

assistito e supportato in questo progetto, non avrei mai raggiunto questi risultati

senza di voi.

Ringrazio inoltre tutta la mia famiglia, genitori, fratello, sorella, nonni e parenti

per avermi sempre appoggiato nel mio percorso ed in questi anni di studio.

Desidero ringraziare anche tutti i miei amici, per le uscite in compagnia e per tutti

i momenti di svago. Grazie per aver reso questo percorso più leggero e spensierato.

Ringrazio inoltre tutti i miei colleghi di lavoro che mi hanno permesso di svolgere

questi studi in parallelo al percorso lavorativo e per l’appoggio che hanno sempre

saputo darmi, cercando sempre di agevolare il più possibile il tutto.

Inoltre un grazie speciale va a te, Giada, che durante questo percorso non mi hai

mai fatto mancare tutto il tuo supporto ed il tuo incoraggiamento. Hai sempre

creduto in me dall’inizio, mi hai sempre aiutato e spero di renderti felice tanto

quanto hai reso felice me da quando fai parte della mia vita.

71

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Low-quality Action Recognition in Computer Vision
	2.1 Action Recognition on Videos
	2.1.1 Hand-crafted features
	2.1.2 Rise of Deep Learning: Convolutional Neural Network
	2.1.2.1 ResNet-3D
	2.1.2.2 R2+1D
	2.1.2.3 I3D

	2.1.3 Vision Transformers

	2.2 Action Detection on Videos
	2.3 Turn a low resolution task into an high resolution one
	2.4 Multi-scale Recognition
	2.4.1 Multi-Scale Models
	2.4.2 Feature Pyramid Networks
	2.4.3 MViT: Multi-scale Vision Transformer

	3 Methodology
	3.1 Clip Sampling
	3.1.1 Random Clip Sampling
	3.1.2 Segment Based Sampling

	3.2 Using very small inputs for standard ResNet
	3.3 Advanced data augmentation
	3.3.1 Random Short Side Scale
	3.3.2 Random Crop
	3.3.3 Random Horizontal Flip
	3.3.4 RandAugment

	3.4 Applying Test Time augmentation
	3.4.1 Horizontal Flip
	3.4.2 K-clips

	3.5 Positive-Negative threshold
	3.6 Multi-scale ResNet-3D Model
	3.7 ResNet-3D Feature Pyramid Network
	3.8 Multi-scale ResNet-3D Feature Pyramid Network
	3.9 Applying Attention Pooling Layer (APL) in a ResNet-3D
	3.10 Using Spatial-temporal discriminative filter
	3.11 Loss Functions
	3.11.1 Binary Cross Entropy
	3.11.2 Asymmetric Loss

	4 Experiments
	4.1 Setup
	4.1.1 Tools
	4.1.1.1 Python
	4.1.1.2 PyTorch
	4.1.1.3 PyTorchVideo

	4.1.2 Dataset
	4.1.2.1 TinyVIRAT dataset
	4.1.2.2 TinyVIRAT-v2 dataset

	4.1.3 Evaluation Metrics
	4.1.3.1 Precision
	4.1.3.2 Recall
	4.1.3.3 F1-Score

	4.1.4 Training setup

	4.2 Baseline
	4.3 Ablation studies
	4.3.1 Model ablation
	4.3.2 Training procedure ablation
	4.3.3 Using Attention
	4.3.4 Applying Spatial-temporal discriminative filters
	4.3.5 Loss Function ablation

	4.4 Results on TinyVIRAT-v2 action recognition benchmark

	5 Conclusions
	5.1 Future Works

	References
	Acknowledgements
	Acknowledgements

