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Introduction

Linear programming is the problem of finding the maximum or the minimum of
a given linear function, called objective function, under linear constraints, both
equalities and inequalities. A linear program (LP) can be stated as

min (max) cTx

s.t. Ax = b

x � 0,

where 0 is the zero vector of Rn, cTx is the objective function, with c 2 Rn and
x 2 Rn, and where Ax = b and x � 0

1 are the constraints, with A 2 Rm⇥n.
From now on we concentrate on the maximization (max) case, the other one is
analogous. Geometrically, the constraints can be represented as a polytope.
Any vectors that belong to the constraints polytope are called solutions. The
goal of linear programming is to find a solution x⇤ that maximize the objective
function. This solution is said to be optimal. Depending on the solutions, linear
programs can be classified. If the constraints polytope is non empty, then the
linear program is said to be feasible, otherwise it is called infeasible. A simple
example of feasible linear program is the following

max x1

s.t. x1 + x2 = 1

x1, x2 � 0,

where clearly the constraints polytope defined is non empty and the optimal
solution is the vector x⇤ = (1, 0). On the other hand, to be infeasible means

1Hereafter the comparison between two vector is element-wise.
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that the constraints have no solutions, for example,

max x1

s.t. x1 + x2 = 1

x1 + x2 = �1

x1, x2 � 0.

If in the feasible case the objective function is bounded over the constraints
polytope, the program is called bounded, otherwise it is said to be unbounded.
The feasible program above is bounded because it has an optimal solution and
because clearly the objective function is bounded, x1  1. A trivial example of
an unbounded program is the maximization on the line

max x1

s.t. x1 � 0.

Indeed, we can notice that it is feasible but for every solution x̄ of the pro-
gram there always exists a solution x̃ such that x̃1 � x̄1. Therefore a feasi-
ble program is unbounded when there is not an optimal solution. The widely
known method for solving LP is the Simplex Method. Despite it is used in
practice for solving linear programs, in the worst cases it is not an efficient
algorithm. In fact, it has been proven that for special linear programs the com-
putational time of the simplex method is exponential [9]. Many studies focused
on finding a polynomial-time algorithm for solving linear programs and to date
different efficient algorithms are available [14][10][8]. Although linear program-
ming is known to be in the class of polynomial-time problems P, no strongly
polynomial-time algorithm2 is known. A possible direction for finding a strongly
polynomial algorithm for linear programming is by means of solving a unique
sink orientation problem on an hypercube. A unique sink orientation on an
hypercube is a directed hypercube where all its faces, which are subgraphs
that are hypercubes, have a unique sink. Therefore the hypercube, being a
face of itself, has a unique global sink. It has been shown by Gärtner and
Schurr [6] that for any linear programs in standard form with n variables we
can define an equivalent unique sink orientation on an n-hypercube, where
the global unique sink of the cube represents the solution of the problem. The
idea is to exploit the equivalence between USO and a certain class of strictly

2a polynomial-time algorithm in the RAM model.
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convex programs, i.e. constraints optimization problems where the function is
strictly convex and the constraints are linear equalities or inequalities. By per-
turbing any LP to a family of strictly convex programs parameterized by ✏ > 0,
one can obtain a sequence of USO that depends on ✏. The limit orientation
obtained from letting ✏ tend to zero is a USO, which is called LP-induced. In
Figure 1 it is shown an example of an LP and its LP-induced USO. By finding
the sink of the LP-induced USO, indeed, it can determine whether the pro-
gram is infeasible, unbounded or feasible. In the latter case it is also possible
to compute the optimal solution. For solving a unique sink orientation problem
we need a function, called oracle, because in such a problem we do not know
the edge orientations a priori and the only way we can access to this informa-
tion is via the oracle. The oracle takes as input a vertex and outputs a list of
the directions of the outgoing edges of that vertex. Therefore the algorithm
complexity is computed with the query complexity, i.e. the number of times we
use the oracle. Until now, no efficient algorithms for finding the unique sink in
such frameworks are known. The best known algorithm queries to the oracle
O ((1, 467 . . .)n) times, where n is the dimension of the hypercube taken into
account.

max x1

s.t. x1 + x2 = 1

x1, x2 � 0

Figure 1: Example of a linear program and its unique sink orientation on hyper-
cube equivalent problem. The ⇤ node is the unique sink of the 2-hypercube.
The arrow represents the procedure needed to define the orientation on the
hypercube.

In this thesis we present a quantum approach to the unique sink orientation
problem on hypercubes. Indeed, quantum computation outperforms the classi-
cal one in different mathematical problems. One of the most known is Grover’s
search algorithm [7]. This algorithm searches for a specific element in an un-
structured database. Both for the Grover’s and the classical search we need
an oracle that detects the element we are looking for. The Grover’s search
provides a quadratic speedup on query complexity over the classical search
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methods. In fact, if we are looking for an item in a N elements database,
the classical search needs, in average, O(N) queries to the oracle while the
Grove’s algorithm just O(

p
N). Moreover, Grover’s search algorithm is impor-

tant for our purpose because it outperforms the best classical algorithm for
solving the unique sink orientation problem. Note that a trivial application of
Grover’s search to the general unique sink orientation problem yields a quan-
tum algorithm with query complexity O(

p
2n) = O((1, 141 . . .)n), where 2n are

the vertices of the n-hypercube. Therefore Grover’s algorithm just marginally
beats the best known classical algorithm. Furthermore, our interest in the
unique sink orientation problem arises from a recent result by Bacon [1]. The
author showed that it is possible to find an efficient quantum algorithm for
solving unique sink orientation problems if it is possible to define an efficient
specific function based on the oracle. However, the author cannot provide
such a function and, in general, finding it is an hard problem since we need to
be able to compute efficiently the composite function fk, where f is the oracle,
for any k 2 {1, . . . , 2n � 1}. So the problem is still open.

In this thesis are presented different ways to attack USO problems with re-
spect to that proposed by Bacon. Two quantum algorithms that exploit different
geometrical and combinatorial properties of unique sink orientations on hyper-
cubes are proposed. This particular properties can be used efficiently only on
a quantum computer. In fact, in a nutshell, these algorithms take into account
all the vertices of the hypercube (which are 2n in the n-dimensional case) at
once. In a classical computer implementing a list of 2n elements requests an
exponential number of resources, while in a quantum computer we need only
n qubits (the quantum counterpart of bits).

The structure of this thesis is the following: we first introduce the basic
notions of linear programming and of quantum computation theory. Then, we
present the geometrical and combinatorial properties of the unique sink orien-
tation on hypercubes and we show how to generate a unique sink orientation
from a linear program. In conclusion, we present and benchmark the two
quantum algorithms that we developed.



Chapter 1

Preliminaries

In this chapter we show the basic notions of linear programming and quantum
computing that are necessary for our discussion.

1.1 Linear programming

A linear program (LP) is a constrained optimization problem where the function
to be maximize, or minimize, is linear and the constraints are linear equalities
or inequalities. A general linear program can be stated as:

max c1x1 + · · ·+ cnxn (1.1)
subject to a11x1 + · · ·+ a1n ⇠ b1 (1.2)

...
...

am1x1 + · · ·+ amn ⇠ bm, (1.3)

where (ci) = c 2 Rn, (bj) = b 2 Rm and (aij) = A 2 Rm⇥n. The symbol
“⇠" stands for “", “�" or “=". Notice that strict inequalities are not allowed.
In the general linear program above every xi, i = 1, . . . , n, is called variable
of the program, the linear function cTx, in (1.1), is the objective function and
the expression from (1.2) to (1.3) are called the constraints of the program.
We take into account only maximization programs because the other ones are
analogous. In fact, it is really straightforward to pass from a maximization pro-
gram to a minimization one: if we have as an objective function f(x) to be
maximized, then, for having a minimization program, we take the opposite of
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the solution of the program which has as objective function the opposite func-
tion, �f(x), and has the same constraints. Therefore “max f(x)" is equivalent
to “�min � f(x)", under the same constraints. We refer to a general linear
program in the following compact form

min cTx

s.t. Ax ⇠ b.

Every vectors x 2 Rn which satisfies the expressions Ax ⇠ b is called
feasible solution of the program. The correspondent value cTx is called value
of the feasible solution x. The set of all the feasible solutions is called feasible
region. A vector x⇤

2 Rn is said to be an optimal solution of the linear program
whether cTx⇤

� cTx for any vector x that belongs to the feasible region. And
finally, the optimal value is the value associated to an optimal solution.

What is important to stress in linear programming is the Fundamental the-
orem of linear programming, which gives a description of all the possibilities
that can occur in the analysis of a linear program.

Theorem 1.1. Given a linear program, only one of the following holds:

(i) the problem has at least an optimal solution.

(ii) the problem has no feasible solution and, then, it is said to be infeasible.

(iii) the problem is unbounded, that is, for any ↵ 2 R there exists a feasible
solution x such that cTx � ↵ ( cTx  ↵ in the minimization case).

This result says that it is impossible for the problem to have a infimum (or
supremum in the maximization case) that is not also a minimum (or maximum
respectively).

Let us show, now, that we are able to write any linear program in a more
suitable way. In fact, without loss of generality we can study a program in a
particular form, called standard form:

min cTx

s.t. Ax = b

x � 0,

where with the vector notation x � 0 we are saying that xi � 0 for any i =
1, . . . , n.
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First of all, we specify what it means to be equivalent for two linear pro-
grams and then explain why it is possible to find this form for every linear
program. Therefore, given P1 and P2 two maximization linear programs we
would say that they are equivalent if for any ↵ 2 R, P1 has a feasible solution
of value ↵ if and only if P2 has a feasible solution of value ↵. Moreover, if P1

and P2 are equivalent it is easy to see that

(a) P1 has a feasible solution if and only if P2 has a feasible solution.

(b) for any ↵ 2 R, P1 has an optimal solution value ↵ if and only if P2 has an
optimal solution of value ↵.

(c) P1 is unbounded if and only P2 is unbounded.

Lemma. Every linear program is equivalent to a program in standard form.

Proof. We say that a variable xi is non negative whether xi � 0, otherwise it
is said to be free.

Let us start with the procedure for deriving the standard form program from
a generic program written like (1.1)-(1.3). First of all, every inequality constraint
aT
i
x � bi, where ai is the i-th row of A, is equivalent to the inequality �aT

i
xi 

�bi. Thus, every constraint, except the non negative ones, in the program is
either of the type aT

i
x  bi or aT

i
x = bi .

Now, if we take into account the constraint aT
i
x  bi and we add a new non

negative auxiliary variable si, called slack variable, then we can substitute the
above inequality constraint in the program for

aT
i
x+ si = bi, si � 0. (1.4)

Notice that if x satisfies the constraint aT
i
x  bi to equality then it means that

si = bi � aT
i
x. On the other hand, if both x and si satisfy the constraints (1.4),

then x satisfies the above constraint aT
i
x  bi. Therefore, since the objective

function has not been modified then the problem obtained is equivalent to the
starting one.

Eventually, let us consider free variables, i.e. the ones which have not a
constrained sign. So if xj is a free variable it means that it belongs to R and,
thus, from a real number property we are able to rewrite it as a subtraction of
two different non negative numbers. Therefore, we can substitute the variable
xj for the two variables x0

j
and x00

j
by adding

xj = x0
j
� x00

j
, x0

j
, x00

j
� 0 (1.5)
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to the constraints. It is easy to compute xj from x0
j

and x00
j
, and vice versa.

Therefore we found a linear program in standard form equivalent to the
starting one.

We now introduce the dual theory of linear programming which would be
crucial in Chapter 3 for understanding the equivalence between linear pro-
gramming and unique sink orientation problems.

Given a LP:

z⇤ = max cTx

s.t. Ax = b

x � 0,

P :=

where A 2 Rm⇥n, b 2 Rm, c 2 Rn, x 2 Rn and z⇤ := cTx⇤ is the optimal
value whether it exists. The goal of the duality theory is to find the best bound
for the optimality, i.e. a real number u 2 R such that u � z⇤. Note that by
giving an arbitrary vector y 2 Rm, every vector x, feasible for P , fulfills

yT (Ax) = yT b. (1.6)

Moreover, by assuming that AyT � c, since x is non negative we get the
inequality cTx  (ATy)Tx = (yTA)x. Therefore, by using equation (1.6) we
obtain

cTx  (ATy)Tx = yT (Ax) = yT b = bTy. (1.7)

Finally, for any y 2 Rm such that ATy � c, every feasible x for P satisfies
cTx  bTy. Thus, z⇤  bTy and, therefore, for any suitable y we have an
upper bound of the optimal value z⇤. Finding the smallest upper bound means
solving

d⇤ =min bTy

s.t. ATy � c.
D :=

This last LP is called the dual problem of P , which is instead called primal
problem.
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Theorem 1.2 (Duality weak theorem). If x is a feasible solution of P and y is
a feasible solution of D, then cTx  bTy.

Proof. It follows form (1.7) since the first inequality comes from ATy � c and
x � 0, while the second equality comes from Ax = b.

This result yields to a characterization for the optimality of solutions.

Corollary. Given x⇤ feasible solution for P and y⇤ feasible solution for D, if
cTx⇤ = bTy⇤, then x⇤ and y⇤ are optimal solutions for their respective problems.

Proof. If x⇤ had not been optimal, then it would have existed another feasible
solution x̄ for the primal problem such that cT x̄ � cTx⇤ = bTy⇤, which would
contradict the Theorem 1.2. Analogously, if y⇤ had not been optimal, then
there would have existed another feasible solution ȳ of the dual problem such
that bT ȳ < bTy⇤ = cTx⇤, which contradict the Theorem 1.2 as well.

Corollary. If either P or D is unbounded, then the other one is infeasible.

Proof. Let us suppose that D has a feasible solution ȳ. Then since Theorem
1.2 we have that cTx  bT ȳ for each x feasible for P , therefore the former
cannot be unbounded. The other case is analogue.

Finally, all of this considerations yield to the following theorem. We omit
the proof for lightening the discussion.

Theorem 1.3 (Strong duality theorem). If P has an optimal solution x⇤, then
D has an optimal solution y⇤; moreover, cTx⇤ = bTy⇤ holds.

Moreover, from the duality theory we can also find out the following char-
acterization for optimal solution.

Theorem 1.4 (Complementary slackness theorem). Let P be a LP in standard
form and let x⇤ and y⇤ be feasible solution respectively of P and of its dual D.
Then x⇤ and y⇤ are optimal solution for their respective problems if and only
if for any j 2 {1, . . . , n}, x⇤

j
= 0 or y⇤ satisfies to equality the correspondent

dual constraint.
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Proof. The primal problem has the form

max cTx

s.t. Ax = b

x � 0,

while its dual

min bTy

s.t. ATy � c.

Since the feasibility of x⇤ and y⇤ it follows that

cTx⇤

�
ATy⇤

�T
x⇤ = (y⇤)TAx⇤ = (y⇤)T b = bTy⇤.

Given Strong duality theorem, Theorem 1.3, both x⇤ and y⇤ are optimal for
the respective problem if and only if cTx⇤ = bTy⇤, that is, when in the ex-
pression above all the relations are equality. This happens if and only if
cTx⇤ = (ATy⇤)Tx⇤ and, therefore, if and only if

�
ATy⇤ � c

�T
x⇤ = 0, or ex-

plicitly
nX

j=1

�
AT

j
y⇤ � cj

�
x⇤
j
= 0.

Since x⇤
j
� 0 and AT

j
� cj � 0 for any j, this happens if and only if all terms

of the sum are zero, i.e. if and only if for any j 2 {1, . . . , n} at least one of x⇤
j

and AT

j
y⇤ � cj is equal to zero.

Eventually, we look for a general description of duality and a general state-
ment for the complementary slackness theorem.

Therefore we present a method for computing the dual problem of a gen-
eral linear program. We do not enter in the details, but the derivation is similar
to the standard form case. For this method we take into account any variables
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and constraints separately, thus we refer to a general linear program as

max cTx (1.8)

s.t. aT
i
x  bi, i = 1, . . . , h (1.9)

aT
i
x � bi, i = h+ 1, . . . , k (1.10)

aT
i
x = bi, i = k + 1, . . . ,m (1.11)

xj � 0, j = 1, . . . , p (1.12)
xj  0, j = p+ 1, . . . , q (1.13)
xj 2 R, j = q + 1, . . . , n (1.14)

The dual problem have as many variables as many rows A has and as many
constraints as many variables the primal problem has. Moreover the following
relations hold

max cTx min bTy
aT
i
x � bi yi � 0 i = 1, . . . , h

aT
i
x � bi yi  0 i = h+ 1, . . . , k

aT
i
x = bi yi 2 R i = k + 1, . . . ,m
xj � 0 AT

j
y � cj j = 1, . . . , p

xj  0 AT

j
y  cj j = p+ 1, . . . , q

xj 2 R AT

j
y = cj j = q + 1, . . . , n

The above table can be read in both the ways, that is, we can use it for com-
puting the dual of a maximization program (read from left to right) or of a
minimization one (read from right to left).

Then the complementary slackness theorem become

Theorem. Given a general linear program in the form (1.8)-(1.14) and the
feasible solution x⇤ and y⇤ of the primal and the dual problem respectively,
then x⇤ and y⇤ are optimal if and only if the following slackness conditions
hold:

• For any j 2 {1, . . . , n}, x⇤
j
= 0 or y⇤ satisfy at equality the correspon-

dent dual constraint.

• For any i 2 {1, . . . ,m}, y⇤
i
= 0 or x⇤ satisfy at equality the correspondent

primal constraint.

We stress the fact that if a primal (dual) variable is free, then its corre-
spondent dual (primal) constraint is an equality, therefore the complementarity
conditions always hold.
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1.2 Quantum computing theory

For understanding how quantum algorithms work, we give the basic notions of
quantum computing and quantum information theory. In the classical compu-
tation the bit is the fundamental concept. Quantum computation is build on an
analogous concept: the quantum bit, or qubit.

Qubits are two-level quantum systems described by a two dimensional
Hilbert space where only two orthogonal and normalized states are taken into
account: the fundamental state |0i and one excited state |1i. Notation 0

| i
0

is called Dirac notation and it is a standard way to refer to quantum physical
state1. A classical bit can be implemented on a classical hardware only in two
different ways, the state |0i and the state |1i. In the other hand, a qubit, by
exploiting the property of superposition can be found in the state:

| i = ↵|0i+ �|1i,

where ↵, � 2 C under the unitary constraint |↵|2 + |�|2 = 1. In Figure 1.1 we
can see a concrete example of a qubit.

|1i

|0i

↵|0i+ �|1i

Figure 1.1: Example of a qubit: we can take into account an electron where
only two energy levels are considered, the fundamental one (spin down) |0i
and an exited one (spin up) |1i. Starting from one of these we can create a
superposed state, represented in the right part of the figure. We can think that
the electron is in a superposed state whether it is both in the spin up and in
the spin down state.

The states |0i and |1i are represented by vectors that form an orthonormal
basis of the Hilbert space. This basis is also known as computational basis.

1For more details about this, look at the Appendix.
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One picture useful in thinking about qubits is the following geometric rep-
resentation. By starting from the normalization constraint|↵|2 + |�|2 = 1 we
can see that

| i = ei�
✓
cos

✓

2
|0i+ iei' sin

✓

2
|1i

◆
,

where �, ✓ and ' are real numbers. Notice that ei� is a global phase of a
physical quantum system, therefore it has no physical meaning and can be
neglected. Then we can write

| i = cos
✓

2
|0i+ iei' sin

✓

2
|1i.

The numbers ✓ and ' define a point on the unit three dimensional sphere, as
shown in Figure 1.2. This sphere is called the Bloch sphere.

z

y
x

✓

'

| i

|0i

|1i

Figure 1.2: Bloch sphere where are highlighted the polar coordinates of the
state | i. Notice that the “classical state" are in the poles.

Although the states of a qubit are infinitely many, the information we have
access is the same as the classical bit, therefore, after measuring, we find the
qubit or in |0i or in |1i, because, in quantum mechanics, after measuring a
system its state changes.
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Since qubits are quantum systems we want to exploit their properties.
Therefore, in a general quantum computation we need to prepare an input
state, implement an evolution by means of unitary transformation and mea-
sure the output state of the evolution. Informally, if we think about a bit, we
consider it and all the classical gates as deterministic objects and functions;
on the other hand, we can see a qubit as a distribution of two different states,
therefore the idea is to use the evolution of the system, i.e. unitary matrices,
for mapping distributions in distributions.

By summarising all the notions we gave above about qubits, we can state
that a system with two different energy levels is suitable for our purpose whether,
by starting from the fundamental state |0i, we can create every state allowed in
the system by means of unitary transformations and we can measure the state
in the computational basis {|0i, |1i}. Being able to apply this measurements
means to be able to measure the observable2

�z =

✓
1 0
0 �1

◆

which has eigenstates |0i and |1i.

For storing and manipulating information we need to be able to obtain string
of bits. For achieving this result in a quantum framework we can just consider a
composite system of qubits. For recalling the formalism of composite systems
let us consider two qubits. If these were classical bits we would have four
different possibilities 00, 01, 10 and 11. In a two qubits system we have four
different computational states, denoted |00i, |01i, |10i and |11i,3 as well. But,
now, we know that a quantum state could be in any possible superposition of
this four states, therefore a general wavefunction of two qubits is

| i = a00|00i+ a01|01i+ a10|10i+ a11|11i.

Here of course the probability that we measure one of the four possible out-
comes is |aij|2, with i, j 2 {0, 1}, thus these amplitudes must satisfy the nor-
malization constraint

P
i,j2{0,1} |aij|

2 = 1 . Eventually, we recall that we can
measure a subset of the qubits. For instance, if we measure the state | i

2Notice that this operator is also unitary, in fact it is an important quantum gate as well.
Following this concept is explained.

3From now on we are going to denote the composite state |i1i · · · |iki as |i1 · · · iki.
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on the first qubit and as an outcome we get |0i, which occurs with probability
|a00|2 + |a01|2, then the state | i after the measurement become

| ̃i =
a00|00i+ a01|01ip

|a00|2 + |a01|2
.

Beyond the previous simple example, generally, we are interested in using
more qubits for creating longer strings. Indeed quantum computers are based
on strings of bits as well as classical ones.

We can think about quantum computers as finite collections of n qubits.
A general set of k qubit in a quantum computer is called a quantum register
of size k. While a general state in a classical computer with n bits can be
described by means of the string i = (i1i2 · · · in), where ij 2 {0, 1}, which
represents the number

i = 2n�1i1 + 2n�2 + · · ·+ 21in�1 + 20in, (1.15)

in the case of quantum computation the general state is a superposition of all
the possible states described in (1.15). Thus the physical system we want to
use is described by a 2n-dimensional Hilbert space obtained by the composi-
tion of n 2-dimensional Hilbert spaces, which are the qubits. Therefore, if we
denote the state |i1 · · · ini as |ii, where i1 · · · in is the number written in base 2
and i is the number written in base 10, we obtain that a general superposition
of the computational states of n qubits is

2n�1X

i=0

ci|ii,

where, of course, the amplitudes ci 2 C are under a normalization constraint.
Thus, we stress that if the ci are all non zero, then we have a superposition of
2n states. Therefore, while classical computation needs different inputs for dif-
ferent runs, quantum computers can perform a computation for exponentially
many inputs on a single run. This is the core of quantum computation power.

For having a consistence computation we want that the composite system,
obtained by composing qubits, fulfills the same requirements that we stated
for a single qubit. That is, we want to be able to generate any state allowed in
the Hilbert space, which described our system, by means of unitary operators
applied to the state |0i := |0 · · · 0i and to measure the states in the computa-
tional basis, obtained by the tensor product of the computational basis of the
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single qubits. This last condition means that we need to be able to measure
�z on each single qubit.

As we said before, in the basic framework of a basic quantum algorithm we
have to compute the evolution of a prepared state. Mathematically the evolu-
tion of a n qubits register is represented by a 2n ⇥ 2n matrix. This can always
be decomposed in the product of matrices that represent a local evolution
only on one or two qubits. Those matrices are the elementary operations of
quantum computation and are called quantum gates. Analogous to the way a
classical computer is built from an electrical circuit containing wires and logic
gates, a quantum computer is built from a quantum circuit containing wires
and quantum gates.

Like the classical case, even in a quantum circuit wires carry around the
information and gates manipulate it.

Following we introduce two fundamental single-qubit quantum gates: the
Hadamard gate and the phase-shift gate. These are important because by
means of them we can prove that we can create any unitary transformation for
a one qubit system.

The Hadamard gate is defined as

H =
1
p
2

✓
1 1
1 �1

◆
.

This gate creates a uniform4 superposition of the computational basis states

H|0i =
1
p
2
(|0i+ |1i)

H|1i =
1
p
2
(|0i � |1i).

It is also worthy to note that H2 = I. Furthermore,

H† = H�1 = H,

where H† is the conjugate transpose matrix of H. The first equality is due to
the unitarity of the matrix and the second one since what we stressed about
H.

4In the probabilities point of view.
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H↵|0i+ �|1i ↵ |0i+|1ip
2

+ � |0i�|1ip
2

Figure 1.3: Graphical representation of a quantum circuit where we have ap-
plied an Hadamard gate H.

The phase-shift gate is defined as:

Rz(�) =

✓
1 0
0 ei�

◆
.

It is a diagonal matrix that simply maps the state |0i in |0i and the state |1i
in ei�|1i. So, on the computational basis state the action of this gate is trivial,
because it changes only the global phase. However, on a general single-qubit
state

Rz(�)| i =

✓
1 0
0 ei�

◆✓
cos ✓2

ei' sin ✓

2

◆
=

✓
cos ✓2

ei('+�) sin ✓

2

◆
.

The action of this gate, then, it is not trivial because it modifies the relative
phase.

Rz(�)cos ✓2 |0i+ iei' sin ✓

2 |1i cos ✓2 |0i+ iei('+�) sin ✓

2 |1i

Figure 1.4: Graphical representation of a quantum circuit where we have ap-
plied a phase-shift gate Rz(�) on a general qubit written in the Bloch sphere
framework.

It is important to realize that we can obtain any points on the Bloch sphere
starting from the state |0i by applying only Hadamard and phase-shift gates:

Rz

⇣⇡
2
+ '

⌘
HRz(✓)H|0i = ei

✓
2

✓
cos

✓

2
|0i+ iei' sin

✓

2

◆
.

Finally, we present the Pauli gates, which we used in our algorithm

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
.
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X↵|0i+ �|1i ↵|1i+ �|0i

Y↵|0i+ �|1i i↵|1i � i�|0i

Z↵|0i+ �|1i ↵|0i � �|1i

G

Figure 1.5: The representation of the Pauli gates in a quantum circuit. The
last gate G presents how to represent a general single-qubit gate action on a
qubit.

First of all notice that they are symmetries and so �2
j
= I, they anticommute

�j�h = ��h�j for h 6= j and [�h, �j] = 2i✏hjk�k, where [·, ·] is the commutator
and ✏hjk is the Levi-Civita tensor. The last property means that we are able
to write each Pauli gate in function of the other ones. Eventually, we highlight
that �x is the quantum counterpart of the classical logic gate NOT and that
�z = Rz(⇡).

Above we mentioned the possibility of writing any evolution of a composite
quantum system, i.e. a register of qubits, in a product of different single-qubit
and two-qubits gates. Thus, let us present a two-qubits gates which is crucial
for the universality result we will mention below.

Moreover, it is important because it creates entanglement between two
qubits: the controlled NOT, or CNOT :

CNOT =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA .

As we can notice this matrix is non separable, i.e. there do not exist two
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matrices A,B 2 U2(C) such that A ⌦ B = CNOT, therefore it can create
entanglement. To stress the fact that the CNOT creates entanglement let us
show how this gate makes the computational basis states evolve:

|00i ! |00i, |01i ! |01i, |10i ! |11i, |11i ! |10i.

Informally, for understanding what this gate does, we can interpret its action
as a conditional command “if"5. Straightforwardly, by considering the system
composed by two registers of size 1, CNOT says to apply a gate �x on the
second register whether the first one is on the state |1i. Hence, it is called
“controlled" because we are checking the state of a qubit for deciding whether
apply the X gate or not.

Figure 1.6: Graphical representation of a CONT gate in a 2 qubits register in
a quantum circuit. The black dot

To see clearly the creation of entanglement we can consider the following
quantum circuit

I: |0i

II: |0i

H

| 1i | 2i

The dashed lines mean that we are considering the information brought by the
wires at that specific point.

The circuit has as input both in the first and in the second register the state
|0i. At | 1i we have applied only an Hadamard gate on the first register, so
the state results in

| 1i =
1
p
2
(|0i+ |1i)|0i.

5In the computer science point of view.
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This is a separable state, i.e. it is not entangled. But after applying the CNOT
gate, controlled on the first register and applied on the second we obtain

| 2i =
1
p
2
(|00i+ |11i).

This last state is non separable and, thus, entangled. There are different two-
qubits gates but the CNOT occurs to be important due to this result of univer-
sality.

Theorem. Any multiple-qubit logic gates can be composed by CNOT and sin-
gle qubit gates.

However, in a quantum circuit, multi-qubits gates can still be expressed by
means of unitary operators.

Before giving a first example of quantum algorithm we present how to im-
plement a general function in a quantum circuit. Let f : {0, 1}k ! {0, 1} be
a Boolean function6 and let us consider a quantum register of size n. For
implementing the function in a gate we find a unitary matrix that describe an
evolution of the system, in particular we stress that this matrix must be invert-
ible. A trivial way to implement a general function is to add an auxiliary register
where to store the output of the function and to keep the input. In such a way
we are sure about the unitarity of the gate.

|xi

|yi
Uf

|xi

|y � f(x)i

Figure 1.7: Example of a general unitary gate of a function f . In the case
explained above the first register represented by |xi has size n, instead, the
second one has size 1 and it is used for storing the output of the function by
means of �, which is the sum on Z2, the ring of integer modulo 2. It is easy to
see that by applying again the same operator Uf we obtain |xi|yi as output,
i.e. Uf = U�1

f
and so it is invertible.

6For the sake of simplicity we have taken into account only a Boolean function but further
we will see also the case of functions with multiple output
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Every multi-qubits gate creates entanglement because in its decomposition
in single-qubit gates and CNOT, the latter can appear. Therefore also the
unitary gates defining starting by a function create entanglement. First of all,
we spot that the gate CNOT itself can be seen as an implementation of a
function. Indeed, let us consider the function

f : {0, 1} ! {0, 1}, f :

⇢
0 7! 0
1 7! 1

which is the identity. Now we take a register of 1 qubit and we add an auxiliary
register of 1 qubit. Notice that the computational basis states of the composite
system of the two registers are mapped in

|0i|0i 7! |0i|0� f(0)i = |0i|0i, |0i|1i 7! |0i|1� f(0)i = |0i|1i

|1i|1i 7! |1i|1� f(1)i = |1i|0i, |1i|0i 7! |1i|0� f(1)i = |1i|1i,

which is exactly the action of a CNOT gate. Furthermore, other functions can
generate entanglement, let us consider the following example. Let f{0, 1}2 !
{0, 1} with f :=AND, the classical logic gate that returns 1 if and only if both of
the inputs are 1. Then, if we prepared a quantum circuit with a first register of
size 2 and an auxiliary register of size 1, we would be able to implement this
function in the following circuit

|0i
|0i
|0i

H
H Uf

After applying the circuit we obtain

1

2
(|00i|0i+ |01i|0i+ |10i|0i+ |11i|1i),

which is an entangled state.

Finally, we have all the tools for starting to present quantum algorithms.
We define a quantum algorithm as an algorithm which runs on any realistic
model of quantum computation, in our case our model are quantum circuits
themselves. Following, we present one of the most famous algorithm called
Grover’s search algorithm.
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Grover’s algorithm is a quantum algorithm used for searching a marked el-
ement in an unstructured database. Classically, for finding a specific element,
which is also said to be marked, in an N elements unstructured database,
we check in average N/2 elements. For checking whether an element is the
marked one we have to apply a function, called oracle, which returns 1 if the
element is marked and 0 otherwise. This means that the number of checks
corresponds to the number of evaluations of the oracle f . Then we define
the query complexity of an algorithm as the number of time we query the or-
acle. Therefore, the classical query complexity of the algorithm for finding the
marked element in an N elements unstructured database is N/2.

We will see that Grover’s algorithm has a query complexity of O(
p
N),

hence it finds the marked elements with a quadratics advantage. We start
presenting the algorithm with the case N = 4 and then we generalize it for
arbitrary N .

For describing four different elements in a quantum circuit, we need only
two qubits, in fact, the system with 2 qubits has 22 = 4 = N different states.
Therefore, we need a first register of size 2 and, since we need to use an
oracle, i.e. a function, we need an auxiliary register with a qubit. By denoting
as x̄ the marked element, the oracle works in this way

f : D ! {0, 1}, f(x) :=

⇢
1 if x = x̄,
0 otherwise.

The idea behind the algorithm is to exploit entanglement, highlight the marked
element by changing its phase in the superposition by means of the oracle
and apply a change of basis7 for making the superposition become only the
marked element state. Let us see it in details.

Let us suppose that the marked element is represented by the state |01i.
First of all, we consider all of the states which represent the elements in our
database. So in the first register we have

H⌦2 |00i =


1
p
2
|0i+ |1i

�
⌦


1
p
2
|0i+ |1i

�
=

1

2
(|00i+ |01i+ |10i+ |11i),

where H⌦n :=

n timesz }| {
H ⌦ · · ·⌦H. For what concerns the auxiliary register we

initialize the state |1i and then we apply an Hadamard gate H

H|1i =
1
p
2
(|0i � |1i).

7Unitary matrices map orthonormal basis in orthonormal basis.
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This choice will be clear soon. By applying this two initial gates, we obtain

1

2
(|00i+ |01i+ |10i+ |11i)
| {z }

Register that represents the elements

⌦
1
p
2
(|0i � |1i)

| {z }
Auxiliary register

.

And now we can see that by using the oracle Uf we have that

Uf |xi
|0i � |1i

p
2

= |xi
|0� f(x)i � |1� f(x)i

p
2

=

(
�|xi |0i�|1ip

2
if x = x̄

|xi |0i�|1ip
2

otherwise

Essentially, with the application of the oracle we are changing the relative
phase of the marked element in the superposition, in particular in our case
after Uf we obtain

1

2
(|00i � |01i+ |10i+ |11i)⌦

1
p
2
(|0i � |1i).

As we said before this does not suffice to measure the marked element with
certainty. Indeed, we can easily notice that now in our superposition we have
changed only the phases of our states, but the amplitudes modulus remained
the same as well as the probability of measuring any state. Therefore, the idea
is to make this phase difference become an amplitude one. In order to do this
we apply a basis change which is represented by the matrix

Dij = ��ij +
2

2n
, (1.16)

where �ij is the Kronecker delta and n is such that N = 2n. This operator is
called the diffusion operator and when N = 4 it appears

D4 =
1

2

0

BB@

�1 1 1 1
1 �1 1 1
1 1 �1 1
1 1 1 �1

1

CCA .

This matrix is unitary and it can be implemented in a quantum circuit, of course.
Since we want to generalize this algorithm eventually, it is interesting to see
how we can decompose this matrix in elementary gates. First of all, we can
compute the diagonal matrix

D = (H⌦2)†D0H⌦2 = H⌦2D0H⌦2 ,
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where

D0 =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

and where

H⌦nH⌦n = (H ⌦ · · ·⌦H)(H ⌦ · · ·⌦H)

= H2
⌦ · · ·⌦H2 = I⌦ · · ·⌦ I

= I,

therefore (H⌦n)† = (H⌦n)�1 = H⌦n . Moreover, up to an overall global phase,
we can decompose D0 with

D0 = �⌦2
x
(I⌦H)CNOT(I⌦H)�⌦2

x
,

where �⌦2
x

:= �x⌦�x. Eventually, we can compute the last step for finding the
marked element

D
1

2

0

BB@

1
�1
1
1

1

CCA =
1

4

0

BB@

�1 1 1 1
1 �1 1 1
1 1 �1 1
1 1 1 �1

1

CCA

0

BB@

1
�1
1
1

1

CCA =

0

BB@

0
1
0
0

1

CCA .

Here we have taken into account only the first register and we have computed
all the tensor products as Kronecker products. Now, after measuring the first
register, we obtain the marked state |01i.

|0i

|0i

|1i

H

H

H

Uf

H

H

X

X H H

X

X

H

H

Figure 1.8: Quantum circuit model representing the Grover’s algorithm.

Notice from Figure 1.8 that with only one query, i.e. one application of Uf ,
we are able to find the marked element, that is, the query complexity of the
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Grover’s search in a 4 elements database is 1.

Now, let us generalize this algorithm for arbitrary n. We describe the
method for a general number N = 2n of items. As in the previous case, the
registers are only two: the former of size n, where the states that represent
the elements of the database are stored, and an auxiliary one for storing the
result of the oracle. Thus by applying the Hadamard gates at both the register
we obtain

(H⌦n ⌦H)|0i|1i =
1

p
2n

2n�1X

i=0

|ii
|0i � |1i

p
2

,

where |0i := |00 · · · 0i is the fundamental state of the first register. Before
carrying on our discussion we need to prove

H⌦n |0i =
1

p
2n

2n�1X

i=0

|ii.

Notice that the Hadamard gate can be stated also as

H|xi =
1
p
2

X

y=0,1

(�1)xy|yi,

where x 2 {0, 1}. Let us prove that

H⌦n |xi =
1

p
2n

X

y2{0,1}n
(�1)x·y|yi. (1.17)

The case n = 1 is clear. For n = 2, generally

(H ⌦H)|x1i|x2i =

 
1
p
2

X

y1=0,1

(�1)x1y1 |y1i

!
⌦

 
1
p
2

X

y2=0,1

(�1)x2y2 |y2i

!

=
1

2

X

y1,y2=0,1

(�1)x1y1+x2y2 |y1i|y2i

=
1

2

X

y2{0,1}2
(�1)x·y|yi,
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where x = (x1, x2) and y = (y1, y2). This argument can be applied for n
arbitrary

(H ⌦ · · ·⌦H)|xi =
1

p
2n

X

y1,...,yn=0,1

(�1)x1y1+···+xnyn |y1i · · · |yni

=
1

p
2n

X

y2{0,1}n
(�1)x·y|yi,

where x = (x1, . . . , xn) and y = (y1 . . . , yn). But, now, by setting |xi = |0i we
easily see that the term (�1)x·y = 1 and, therefore, we have proven equation
(1.17).

Now we can continue with the generalization of the Grover’s algorithm. At
the last step we obtained the superposition of all the states which represent
the items in the database. At this point we query the oracle and change the
relative phase of the marked element.

Finally, we apply the diffusion operator, which can be computed with the
expression in (1.16) or by recalling the gate decomposition

D = (H⌦n)†(�I+ 2|0ih0|)H⌦n ,

where D0 = �I + 2|0ih0| is a reflection about the vector |0i. Unfortunately,
after one application of the oracle we are not able to measuring the marked
element with certainty. For reaching a suitable probability to measure the right
state we have to apply the operator G = DUf several times.

Now, the goal is to compute the query complexity of this algorithm. For un-
derstanding it we give a geometrical interpretation of the Grover’s algorithm.
For the sake of simplicity, we neglect the auxiliary register whose state is al-
ways factorized and never changes.

First of all, it is clear that the action of the oracle Uf is

Uf |xi = (�1)f(x)|xi

and it can be implemented by means of the reflection

Uf = I� 2|x̄ihx̄| =: R|x̄i.

Therefore, geometrically, Uf makes a reflection about the orthogonal sub-
space of |x̄i in H, which is the Hilbert space that describes the system. By
considering a state | i we can decompose it in parallel and orthogonal part

| i = ↵|x̄i+ �|x̄?
i,
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where ↵, � 2 C. Thus, after the evaluation of the oracle we get

Uf | i = �↵|x̄i+ �|x̄?
i.

Eventually, we consider the other component of G, D. As we defined above

D = (H⌦n)†(�I+ 2|0ih0|)H⌦n = �I+ 2H⌦n |0ih0|H⌦n = �I+ 2|SihS|,

where we have used that (H⌦n)† = H⌦n and |Si is equal to the state

|Si = H⌦n |0i =
1
p
2

2n�1X

i=0

|ii.

Therefore, we can see the operator D as a reflection as well

D = �I+ 2|SihS| = �R|Si.

Finally, we can write the Grover’s operator G as a composition of two different
reflections

G = �R|SiR|x̄i.

Now, for understanding the geometrical action of G let us focus on the plane
spanned by {|x̄i, |Si}. In this plane we need also to consider the vectors |x̄?

i

and |S?
i, which are the orthogonal vectors respectively of the states |x̄i and

|Si in the plane spanned by {|x̄i, |Si}. Notice that

G = �R|SiR|x̄i = R|S?iR|x̄i, x

where R|S?i is the reflection about |Si. In Figure 1.9 we show that if the angle
between |x̄?

i and |Si is ✓, then the angle between a generic state vector | i
and G| i is 2✓.
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|x̄?
i

|x̄i

|Si

|S?
i

| i

G| i

Uf | i = R|x̄i| i

2✓

Figure 1.9: Graphical proof of the action of the operator G on a generic vector
| i into the subspace spanned by {|x̄i, |Si}. ✓ is the angle between |x̄?

i and
|Si.

Therefore, by taking into account a general state | 0i, we can consider it
as

| 0i := |Si = sin ✓|x̄i+ cos ✓|x̄?
i,

and after applying the operator G j times we obtain

| ji = Gj
| 0i = sin ((2j + 1)✓) |x̄i+ cos ((2j + 1)✓) |x̄?

i.

Thus, for reaching almost the certainty we apply the operator in such a way

(2j + 1)✓ ⇡
⇡

2
.

The number of times we apply the algorithm for being as near as possible to
the solution is

j =

⇠
⇡

4✓
�

1

2

⇡
.

Finally, we are able to compute the query complexity of measuring the marked
element with large N .

We recall that we are starting from | 0i = |Si, therefore

sin ✓ = h 0|x̄i =
1

p
N
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and therefore for large N , we can state ✓ ⇡ 1/
p
N and

j =

⇠
⇡

4

p

N �
1

2

⇡
= O

⇣p
N
⌘

At the end, notice that the Grover’s algorithm for large N does not find the
marked element with certainty, but there is some probability of failure. After
running the algorithm, we measure the state obtained in the computational ba-
sis and we query again the oracle for checking whether the state is in the right
state or not. In the negative case we have to repeat the whole algorithm again.

Furthermore, from Grover’s algorithm we can derive a method for increas-
ing the probability of measuring a chosen state with certainty. This technique
is called amplitude amplification. Let us taking into account a quantum algo-
rithm that use no measurements A, i.e. the algorithm is invertible, and acts on
a quantum register of size n. We denote with | i := A|0i the final superposed
state where the chosen state can be measured with probability a, 0 < a < 1.
The idea is to substitute in the Grover operator G the Hadamard gates, which
initialize the superposition |Si, for the algorithm A which creates a specific
superposition containing the chosen state. The operator we are looking for is

Q = �AR|0iA
�1R|x̄i, (1.18)

which is, indeed, similar to the operator G, seen in the geometrical interpre-
tation of Grover’s search. In fact, Q is a composition of two reflections: R|x̄i,
which is defined about the orthogonal space to |x̄i and R| ?i := �AR|0iA

�1,
which is defined about the state | i. The reflection R|0i is the reflection about
the state |0i.

By recalling that we are always able to find an orthogonal decomposition
of a general state, we can consider | i = sin(✓a)|x̄i + cos(✓a)|x̄?

i, where
a = sin2(✓a) and hx̄?

|x̄i = 0, i.e. they are orthogonal. We can show that the
subspace spanned by {|x̄i, |x̄?

i}, which we denote as H , is stable under the
action of Q.

Let us prove it. First of all, notice that the vector |x̄?
i depends on | i

because it is the projection of | i into the orthogonal hyperplane to |x̄i. Hence,
since 0 < a < 1 the subspace H has dimension 2. We recall that the action
of Q on H , as we noticed before, is given by the application of two reflections

R| ?iR|x̄i.
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Consider, now, the orthogonal complement H?
 

of H in H, which is the
space that describes the whole system. Since the operator AR|0iA

�1 acts like
the identity on H

?
 

, because | i 2 H , then the operator Q acts as �R|x̄i on
H

?
 

. Thus Q2 is the identity and the eigenvalues of Q are only +1 and �1 in
H

?
 

. It follows that for understanding the action of Q on H, it suffices to look at
the action on the subspace H .

Since the operator Q is unitary and it is acting in a subspace spanned by
two vectors H then there exists an orthonormal basis of two eigenvectors

| ±i =
1
p
2

�
|x̄i± i|x̄?

i
�
,

associated with the eigenvalues

�± = e±i2✓a ,

where, again, ✓a is such that a = sin2 ✓a and 0  ✓a  ⇡/2.
Now, we show how Q acts on | i. Let us consider the following decompo-

sition of | i:

| i = A|0i =
�i
p
2

�
ei✓a | +i � e�i✓a | �i

�
.

It is now immediate to see the action of Q after j iterations:

Qj =
�i
p
2

�
ei(2j+1)✓a | +i � e�i(2j+1)✓a | �i

�

= sin((2j + 1)✓a)|x̄i+ cos((2j + 1)✓a)|x̄
?
i.

Therefore if we compute Qm
| i for some integer m � 0 then the final proba-

bility of measuring the state |x̄i is sin2((2m+ 1)✓a).
As the Grove’s search case, we want to find the integer m such that sin((2m+

1)✓a) = 1. We can distinguish two case. The first case is when the number

m̃ =
⇡

4✓
�

1

2

is an integer. It is really straightforward to see that by applying Qm̃ to | i we
measure the chosen state |x̄i with likelihood exactly 1. The other case is when
the number m̃ is not an integer. In this case we take into account the number
m̄ = dm̃e and the angle ✓̄a = ⇡/(4m̄+ 2), which is slightly smaller than ✓a.
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Of course any quantum algorithm, that succeeds with probability ā = sin2(✓̄a),
succeeds with certainty after m̄ application of the amplitude amplification op-
erator. For obtaining with certainty the chosen state in this case we have to
define a new algorithm based on A and which succeeds with probability ā.
Such algorithm is obtained by considering an auxiliary register of size 1. In
fact, by preparing the state

 r
1�

ā

a

!
|0i+

 r
ā

a

!
|1i

in the auxiliary register and by substituting the operator R|x̄i with an operator
Uf , which is an oracle defined as in the Grover’s search algorithm, we can
apply the algorithm A and we obtain that the probability of measuring |x̄i is
exactly ā and, therefore, we can apply Qm̄ to the new | i for measuring the
marked element with certainty. We do not enter in the details of the last case
because in our discussion m̃ will be always an integer.





Chapter 2

Hypercubes and unique sink

orientations

In this chapter we will give the definition and the properties of undirected hy-
percubes and then we will present the unique sink orientation problems and
different results about unique sink orientation on hypercubes.

2.1 Hypercubes

n-hypercubes can be defined in two different equivalent ways.
In the former we define an n-hypercube, or simply a cube, as an undirected

graph Cn (sometimes if the dimension is not specified, we denote it as C). The
vertex set1 is V (Cn) = Zn

2 , where Z2 = Z/2Z is the ring of integers modulo 2,
endowed by the operation

·� · : Z2 ⇥ Z2 ! Z2, (a, b) 7! a� b = a+ b mod 2.

The operation � acts on the set Zn

2 element-wise. So,

v � w =

0

B@
v1
...
vn

1

CA�

0

B@
w1
...
wn

1

CA =

0

B@
v1 � w1

...
vn � wn

1

CA ,

for any v, w 2 Zn

2 . The edge set is define by means of the operation �:

E(Cn) = {{u, v}|u, v 2 V (Cn) : |u� v| = 1},

1For further details on graphs give a look at the Appendix.
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where |v| =
P

n

i=1 vi with v a generic vector in Zn

2 .

(0) (1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0)

(0, 1, 1)

(1, 0, 0)

(1, 1, 1)

(0, 0, 1) (1, 0, 1)

Figure 2.1: Three simple examples of hypercubes: 1-hypercube, 2-hypercube
and 3-hypercube in the “combinatorial view".

We call this definition the “combinatorial view".

In the latter definition we describe vertices as sets. An n-hypercube, Cn, is
an undirected graph whose vertex set is

V (Cn) := 2[n],

where [n]:={1,. . . ,n} and 2[n] is its power set. The edge set is defined as fol-
lowing

E(Cn) := {{u, v}|u, v 2 V (Cn) : |u� v| = 1},

where, in this case, � is the symmetric difference and | · | is the cardinality of
the set. We call this definition the “set view".
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{2}
{1, 2}

?

{2, 3}

{1}

{1, 2, 3}

{3}
{1, 3}

Figure 2.2: A 3-hypercube in the “set view".

We use the same notation for defining both “views" because they are equiv-
alent. Notice that the cardinalities of the two vertex sets are the same

|Zn

2 | = |Z2|
n = 2n = 2|{1,...,n}| = 2|[n]| =

��2[n]
�� .

Then we can define the following group isomorphism between
�
2[n],�

�
and

(Zn

2 ,�). Indeed we define the map f

2[n] 3 v = {i1, . . . , ik} 7�! (bi)i=1,...,n = b 2 Zn

2 , where bi =

⇢
1 if i 2 v
0 otherwise .

It is straightforward to see that this map is a group isomorphism and that is
why to consider the notation � for both the “views" is consistent. This induces
also a graph isomorphism between the graphs of the two definitions. In fact,
{u, v} 2 E(Cn) implies that |u� v| = 1 for any u, v 2 2[n], therefore, by calling
u� v = {�} we have that

f(u)� f(v) =

0

BBBBBBBBB@

0
...
0
1
0
...
0

1

CCCCCCCCCA

}� .

Hence, since f(u), f(v) 2 Zn

2 and |f(u)�f(v)| = 1, we have that {f(u), f(v)} 2

E(Cn) for any u, v 2 2[n]. So f is a graph isomorphism.
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Now we introduce different definitions and properties that will be useful and
crucial in the analysis of the unique sink orientation problems on hypercubes.
For what concerns this chapter we will always use the “set view".

Given A,B ✓ [n], let [A,B] := {X|A ✓ X ✓ B}. This is said to be an
interval. Given two sets A ✓ B ⇢ [n], we define the graph C, called subcube,
where V (C) := [A,B] and

E(C) := {{u, u� {a}}|u 2 V (C), a 2 B \ A}.

Moreover, we define an edge labelling

� : {u, u� {a}} 7�! a,

which is a mapping defined over the edge set that associates each edge with a
label, which is sometimes called a direction. Sometimes we denote a subcube
as C [A,B] for stressing the fact that it is induced by [A,B]. We call the set of the
directions on a subcube C the carrier of C, carrC := {B \A}. The cardinality
of the carrier of a subcube is called the dimension of the subcube and it is
denoted as dimC.

Notice that subcubes are subgraphs of the main n-hypercube and, more-
over, we can show that they are (dimC)-hypercubes. Given a subcube C,
indeed, we can find a graph isomorphism between C and the k-hypercube,
with k = dimC. Let us consider the edge labelling � of C. Its image is

Im(�) := {�1, . . . ,�k} = carrC.

By spotting that the interval

V (C) = [A,B] = {A�D|D ✓ carrC},

the map g is defined as

Q = A�DQ 7! {i|�i 2 DQ} ✓ [k],

for any Q 2 [A,B] and DQ ✓ carrC. For proving that g is a graph isomor-
phism, it suffices to note that {u, v} 2 E(C) if and only if v = u � {a} for
some a 2 carrC. In fact, if u = A � Du (the case in which u contains {a} is
analogous), then v = A� (Du [ {a}) and

|g(u)� g(v)| = |{i|�i 2 Du}� {i|�i 2 Du [ {a}}| = |{i|�i 2 {a}}| = 1.
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Hence, {g(u), g(v)} is in the edge set of the k-hypercube for any u, v 2 E(C)
and g is a graph isomorphism.

The subcubes of an hypercube are also called faces or, if we are referring
to a subcube of dimension k, they are called k-faces. Notice that the n-face
defined by the interval [?, [n]] is the whole n-hypercube, that the 1-faces are
the edges and the 0-faces are the vertices.

We denote the (n� 1)-faces as facets. For every direction � we can define
two different facets. Let Cn be an n-hypercube and let us take a label � 2 [n].
We can define two different facets: the upper �-facet, which is the subcube
induced by the interval [{�}, [n]], and the lower �-facet, which is the subcube
induced by the interval [?, [n] \ {�}]. We can easily see that in both cases
the subcubes has dimension n � 1 and indeed are facets, because we are
considering all the possible directions of the cube except from �, in fact in both
cases � /2 carrC.

2.2 Unique sink orientations on hypercubes

In this section we introduce unique sink orientations (USOs) on hypercubes
and their properties.

First of all, we define what an orientation is. Given an undirected graph
G = (V,E), an orientation is a map � : E ! V such that �(e) 2 e. This
maps edges to their correspondent sink vertex. Hence if {v, w} 2 E and
�({v, w}) = v, then the orientation has the arc w ! v and in this case w is a
source and v is a sink. Therefore, a graph G endowed with an orientation � is
a digraph. Given a vertex we can partitioned its incident edges into those for
which the vertex is a sink (ingoing edges) and those for which the vertex is the
source (outgoing edges).

Given an orientation � on an hypercube C and a subcube C, we define the
output map s : V (C) ! 2carrC of � as the map that assigns to every vertex the
labels of the outgoing edges from that vertex.

Finally, a USO of an n-hypercube Cn is an orientation � such that every face
has a unique sink with respect to �. Or equivalently, in term of the output map,
an orientation � is a USO if for any two distinct vertices v ✓ w ✓ [n] there
exists in the subcube C [v,w] a unique vertex u 2 [v, w] such that s(u) = ?,
where V (C [v,w]) = [v, w] and s is the outmap of � in C [v,w].
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Figure 2.3: Example of 1, 2 and 3-hypercube. The ⇤ node represents the
global unique sink of the cube. We stress that every subcubes on the hyper-
cube has a unique sink, in fact we can think at the 1-hypercube as a subcube
of the 2-hypercube and the 2-hypercubes as a subcube of the 3-hypercube.

We denote a unique sink orientation � on an n-hypercube as C
�

n
.

Now we present several properties of USO on hypercubes that we will use
for defining our algorithms.

Lemma 2.1. Given a unique sink outmap s of a USO on an n-hypercube C
�

n
,

and a set of directions ⇤ ✓ carrC�
n
, the map defined by s0(v) := ⇤� s(v) is the

outmap of an USO.

In other words, it means that whenever in C
�

n
we reverse the orientation of all

the edges with label � 2 ⇤, then the new orientation obtained �0 is also a USO
and its outmap is, indeed, s0(v) := ⇤� s(v).

Proof. We first show that this is true for ⇤ = {�}. We prove that the new
outmap s0 corresponds to an orientation  0 that satisfies the USO definition.
Let Cu and Cl the upper and lower �-facets of Cn generated respectively by
the intervals [{�}, [n]] and [?, [n] \ {�}]. Consider any subcubes C of Cn.
We have to prove that in each C there is a unique sink for the orientation
�0, defined as in the statement. If C is entirely contained in a �-facet then
the orientation obtained by reversing all edges along the � direction does not
change the orientation on any edges of C. In this case, since � has a unique
sink on C, so does �0 on C. On the other hand, if C spans �-facets, then
we can partition C into subcubes Du := C \ Cu and Dl := C \ Cl. Over
the orientation � suppose that these two subcubes have unique sink ou and
ol. Assume without loss of generality that the unique sink of � over C is ou.
Flipping all the edges along � means that ou is no longer a unique sink, since
its � edge now points away from it. However, ol must now be a unique sink
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of C since prior to flipping the � edge the only thing keeping ol from being a
unique sink of C was the � edge. All other vertices cannot be unique sinks of
C since they are not unique sinks in Du and Dl and none of the edges in those
subcubes are flipped. Hence, �0 is the outmap of a USO for ⇤ = {�}.

For the general case of ⇤ = {�1, . . . ,�k}, note that it follows from the
application of the just proven case k times since s0(v) = ⇤ � s(v) = {�1} �

· · ·� {�k}� s(v).

The above lemma implies the following results.

Lemma 2.2. The outmap of a USO on an n-hypercube Cn is a bijection.

Proof. Given a USO � on Cn, suppose that there exist two vertices u 6= v,
which have the same image under the outmap s, s(u) = s(v) = t. Then
consider the orientation �0 obtained by flipping all of the edges along the t
direction. This has outmap s0(v) = t� v. Via Lemma 2.1, this new orientation
is a USO. However, s0(u) = s0(v) = ?, which is a contradiction. Hence the
map is a bijection, because the cardinalities of the domain and of the codomain
are the same.

The following property is a characterization for USO and from it we can
derive a property that we will use in the Local Grover search algorithm.

Lemma 2.3. A mapping s : V (C) ! 2carrC is an outmap of a unique sink
orientation of the cube C if and only if

(s(u)� s(v)) \ (u� v) 6= ? (2.1)

for all u, v 2 V (C) with u 6= v.

Proof. First assume s satisfies the property (2.1) and fix a subcube C [I,J ] of
C. We have to show that C [I,J ] has a unique sink. Consider the restricted map
s̃ : V (C [I,J ]) ! 2carrC[I,J] ,

s̃(u) = s(u) \ carrC [I,J ],

that is the outmap of the orientation on [I, J ] induced by s. If s̃ is not injective
there are u, v 2 [I, J ], u 6= v, with s̃(u) = s̃(v). For these vertices we get

(s(u)� s(v)) \ carrC [I,J ] = ?
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and since u � v ✓ carrC [I,J ] this contradicts the assumption (2.1). Therefore
s̃ is injective and thus bijective. In particular there exist only a vertex o 2 [I, J ]
such that s̃(o) = ? and, hence, it is the unique sink.

Conversely, assume s has not the (2.1) property and let u, v witness its
failure. Then, since (u � v) \ (s(u) � s(v)) = ?, in the subcube induced
by [u \ v, u [ v] both u and v have the same outmap ⇤ = s(u) \ (u � v) =
s(v) \ (u� v). Thus ⇤� s has two sinks in [u \ v, u [ v], i.e. it is not a USO.
By Lemma 2.1 s is not a USO either.

Now we can present the idea which is the core of the Local Grover search.
Consider a general subcube C := C [X,Y ] and let A ✓ carrC. By removing

all the edges with labels in carrC \ A, we obtain a graph whose connected
components are exactly the faces of C with carrier A. For every v with X ✓

v ✓ Y \ A there is a unique such face Fv with carrier A containing v. Now let
� be an orientation of C such that every face with carrier A has a unique sink.
Then we define a mapping

s�/A : [X, Y \ A] ! 2carrC\A

v 7! s(ov),

where ov is the unique sink of the face Fv and s is the outmap of the orientation
�. In other words, s�/A maps a vertex v in the set of labels of the edges
outgoing from the sink of Fv. We call s�/A the A-inherited outmap of �. Note
that a priori we do not know whether the inherited orientation is an outmap
of any orientations on the subcube C [X,Y \A]. The following theorem proves
that s�/A is, indeed, an outmap of a USO and we denote this property as the
heritage property.

Lemma 2.4. Let � be a USO of a cube C, and let A ✓ carrC. Then s�/A is the
outmap of a USO on a (dimC � |A|)-hypercube.

Proof. This can be derived from characterization of Lemma 2.1. Indeed, let
us suppose that V (C) := [X, Y ], then for every vertex v 2 [X, Y \A] we have
that v = ov \ A. Then, for any u, w 2 V (C 0) := [X, Y \ A], where C

0 is the
(dimC � |A|)-hypercube

(u� w) \ (s�/A(u)� s�/A(w)) =
(a)

(ou � ow) \ (s(ou)� s(ow)) 6= ?
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where ou and ow are respectively the sinks of the faces Fu and Fw. Notice that
(a) holds because A * (s(ou) � s(ow)) and so we can add in the other term
of the intersection whatever elements of A. The last “ 6=" holds because s is a
USO and so S�/A is a USO either.

Figure 2.4: Example of cubes with their inherited orientation, the nodes of the
inherited cube are highlighted with gray. The red node represent the sinks of
the faces induced by the subset A = {1}. The correspondent inherited orien-
tation is obtained by considering the faces Fv as a single node with outgoing
edges the ones of the sink of the face (such edges are highlighted with red).





Chapter 3

LP-induced unique sink

orientations

In this chapter we present how to exploit the properties of hypercubes and,
specially, unique sink orientation on hypercubes for solving linear programs.
Hence, we show how to obtain an LP-induced orientation from a general LP
in standard form. Then, we study its edge orientations for proving that it is,
indeed, a USO. This procedure and the result below were proved by Gärtner
and Schurr [6]. Let us consider a general linear program in the standard form

max cTx

s.t. Ax = b

x � 0,

Now we change our point of view on LP to compute the edge orientations. For
x 2 Rn and J ✓ [n] := {1, . . . , n}, xJ is the |J |-dimensional vector obtained
from x by collecting all the coordinates with subscript in J , which as we noticed
in Chapter 2 represents a node in the cube. For A 2 Rm⇥n, Aj 2 Rm⇥|J | is
the matrix that collects all the columns of A with subscript in J .

With 0 being the zero vector of the appropriate dimension, we also use

RJ := {x 2 Rn
|x[n]\J = 0}.

Let f : Rn
! R be a differentiable convex function with continuous partial



48 CHAPTER 3. LP-INDUCED UNIQUE SINK ORIENTATIONS

derivatives. For I ✓ J ✓ [n] we define a convex program as

CP(I, J) min f(x)

s.t. Ax = b

x 2 RJ

xJ\I � 0,

where A 2 Rm⇥n and b 2 Rm. By the well known Karush-Khun-Tucker condi-
tions we obtain the following theorem:

Theorem 3.1. x⇤
2 Rn is an optimal solution to the problem CP(I,J) if and only

if

(i) Ax⇤ = b, x⇤
2 RJ , x⇤

J\I � 0

(ii) there exist � 2 Rm such that for all j 2 J ,

rf(x⇤)j � �TAj � 0

with equality if j 2 I or x⇤
j
> 0.

Here rf(x⇤) is the gradient of the function f evaluated at x⇤ which by convec-
tion is an n-dimensional row vector.

Proof. Assume (i) and (ii) hold, then we get:
�
rf(x⇤)� �TA

�
x⇤ = 0,

�
rf(x⇤)� �TA

�
x � 0,

for some suitable � 2 Rm and for all the feasible solution of CP(I,J). By sub-
tracting the first equation to the second, the term �TA cancels, and we get

rf(x⇤)(x� x⇤) � 0. (3.1)

This is a well-known optimality condition for x⇤. In fact, if x⇤ satisfies inequality
(3.1) for any x feasible, then, since f is convex, we have

f(x) � f(x⇤) +rf(x⇤)(x� x⇤) � f(x⇤).
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On the other hand, if x⇤ is optimal, by contradiction, suppose that there exists
a feasible solution x such that rf(x⇤)(x� x⇤) < 0. Consider the point z(t) =
tx+ (1� t)x⇤ with t 2 [0, 1]. Clearly z(t) is feasible for any t. Notice that

lim
t!0

f(z(t))� f(x⇤)

t
= rf(x⇤)(x� x⇤) < 0.

Therefore, for t small enough we have that f(z(t)) < f(x⇤), which contradicts
our assumption of optimality.

In such a way we proved that since x⇤ satisfies (3.1), it is optimal.

Conversely, let us assume that x⇤ is optimal, thus feasible, which gives (i).
Moreover, since in this case (3.1) holds for all feasible solutions x, the vector
x⇤ is an optimal solution of the following LP as well

min rf(x⇤)x

s.t. Ax = b

x 2 RJ

xJ\I � 0.

Let consider the vector rf(x⇤) as the one which defines an objective linear
function and let y⇤ be an optimal solution of the dual program

max bTy

s.t. yTAj = rf(x⇤)j, j 2 I

yTAj  rf(x⇤)j, j 2 J \ I.

By the complementary slackness condition, Theorem 1.4, (y⇤)TAj = rf(x⇤)j
for all j 2 J \ I with x⇤

j
> 0, implying that � := y⇤ fulfills (ii).

For describing the characterization that defines the connection between LP
and USO we need to consider a specific problem. Let us fix a strictly convex
function f and consider for I ✓ J ✓ [n] we consider the convex program

SCP(I, J) min f(x)

s.t. x 2 RJ

xJ\I � 0.
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This is just the CP(I, J) from above, restricted to the strictly convex case,
and without any equality constraints. Since f is strictly convex and SCP(I, J)
is feasible, the program SCP(I, J) has a unique solution x⇤(I, J), for all pairs
I ✓ J . By applying Theorem 3.1 we see that x⇤ := x⇤(I, J) is optimal if and
only if

x⇤
[n]\J = 0, (3.2)

x⇤
J\I � 0, (3.3)

by condition (i), along with dual feasibility,

rf(x⇤)I = 0, (3.4)
rf(x⇤)J\I � 0, (3.5)

and complementarity

rf(x⇤)jx
⇤
j
= 0, j 2 J \ I, (3.6)

by condition (ii).
Let us focus on the case I = J , for some considerations that will be suit-

able for reaching our goal . By reading the equation above notice that

x⇤
[n]\J = 0,

rf(x⇤)J = 0.
(3.7)

Now, in the “set view" of hypercubes, we choose any vertex J 2 [n] and
check its orientation by means of the vector x⇤(J, J):

Lemma 3.1. For J 2 [n], j 2 J and I := J \ {j}, the following two statements
are equivalent

(i) x⇤(J, J)j > 0.

(ii) rf(x⇤(I, I))j < 0.

Notice that in this framework I and J represent two adjacent vertices of the
cube.

Proof. If x⇤(J, J)j > 0, then x⇤(J, J) is feasible and, thus, optimal for the
more restricted program SCP(I,J), i.e. the feasible region of SCP(I, J) is
contained in the SCP(J, J) one, therefore an optimal solution in the latter is
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optimal in the former as well. On the other hand, x⇤(J, J)j > 0 shows that
x⇤(J, J) 6= x⇤(I, I), because of the constraint x⇤(I, I)j = 0. This means we
have x⇤(I, I) 6= x⇤(I, J), which is the only possible reason being that (3.5)
fails for x⇤ = x⇤(I, I). This shows rf(x⇤(I, I))j < 0.

Conversely, rf(x⇤(I, I))j < 0 implies x⇤(I, I) 6= x⇤(I, J), again for the
conditions in Theorem 3.1, so x⇤(I, J)j > 0. Complementarity yields

rf(x⇤(I, J))j = 0,

so x⇤(I, J) is an optimal solution for the restricted program SCP(I,J), by (3.7).
This yields x⇤(J, J)j = x⇤(I, J)j > 0

Theorem 3.2. For J ✓ [n], j 2 J and I := J \ {j}, the edge orientation

I ! J : () x⇤(J, J)j > 0 (rf(x⇤(I, I))j < 0)

define a USO on an n-hypercube.

For lightening the notation in this Chapter the orientation function is denoted
by an arrow “!".

Proof. For understating that the above edge orientation is indeed a USO we
have to check that every face has a unique sink. We recall that faces can be
identified as intervals

[I, J ] := {F ✓ [n]|I ✓ F ✓ J}.

We claim that
S := I [ {j 2 J |x⇤(I, J)j > 0} (3.8)

is the desired sink of the face [I, J ], I ✓ J . First we observe that by the
definition of S, x⇤ = x⇤(I, J) satisfies

x⇤
[n]\S = 0 (3.9)

rf(x⇤)S = 0, (3.10)

by (3.4) and complementary (3.6). It follows that x⇤(I, J) = x⇤(S, S) by (3.7).
Therefore,

x⇤(S, S)j > 0, j 2 S \ I (3.11)
rf(x⇤(S, S))j � 0, j 2 J \ S, (3.12)
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by (3.5). According to the definition of the orientation, S is a sink of [I, J ].
Conversely, if S is a sink of [I, J ], then the previous inequalities hold, so

x⇤(S, S) is feasible for SCP(I, J), since (3.9) and (3.11) imply (3.2) and (3.3),
and it is feasible in the dual because of (3.10) and (3.12) imply (3.4) and (3.5).
Complementarity (3.6) comes from (3.9) and (3.10). Thus x⇤(S, S) = x⇤(I, J),
where (3.11) forces S to coincide with the set defined in (3.8).

We know that we are able to find a equivalent reduction of SCP to USO for
programs with quadratic objective function like

f(x) = xTQx+ uTx+ w

for some symmetric positive definite matrix Q 2 Rn⇥n.

So, given a general LP in a standard form with n variables, we define for
any ✏ > 0 a quadratic function f✏ by

f✏(x) := xT (ATA+ ✏2I)x� 2bTAx� 2✏cTx

= kAx� bk2 � 2✏cTx+ ✏2kxk2 � bT b.

Since (ATA + ✏2I) is positive definite for all ✏, f✏ is a strictly convex function.
Let us define the program SCP✏(I, J) as before with f✏ in place of f . We are
interested in the behavior for ✏ ! 0. We expect that in the limit, the program
lexicographically minimize the tuple

(kAx� bk2,�2cTx, kxk2).

In the feasible and bounded case, the solution x⇤
✏
(?, [n]) of SCP✏(?, [n]) should

therefore converge to the optimal LP solution of the minimum norm.
In order to understand the USO induced by f✏ we have to know the value of

x⇤
✏
(J, J), since Theorem 3.2. From the equation we spotted for the case I = J

we can notice that for finding this vector we have to solve the linear equation
system

rf(x)T
J

2
= (ATA+ ✏2I)xJ � AT

J
b� ✏cJ = 0 (3.13)

with x 2 RJ , which arise form (3.6).
The following result shows why it does make sense to take into account the

limiting of the orientation obtained by the program SCP✏(?, [n]).
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Lemma 3.2. Let ✏
�! be the USO on an n-hypercube induced by f✏, according

to Theorem (3.2). Then there exists a USO ! such that !=
✏
�! for ✏ small

enough.

Proof. Using Cramer’s rule for computing the solution x⇤
✏
(J, J)j of the system

defined in (3.13), we can see that the entries in x⇤(J, J) are all rational func-
tions in ✏. By Theorem 3.2, ✏

�! is defined by the sign of finitely many of these
rational functions.

Now, for any nonzero rational function r(✏) there exist a small � such that
neither the numerator nor the denominator has any zeros in (0, �). In this
interval the sign of r(✏) is fixed. The lemma is proved.

We stress the fact that the entries of the vector x⇤
✏
(J, J) are all rational

function in ✏ and that in a suitable interval (0, �), when � is small enough, both
the numerator and the denominator have no zeros in it. Then the responsible
for this orientation is only the smallest ✏-power term. In fact, this determine the
sign for ✏ ! 0. Therefore, our goal becomes to see at the coefficients of the
power series of x⇤

✏
(J, J). Moreover, since the limiting USO does not depend

on ✏ we want to find a way for computing it avoiding ✏.
For this purpose we should define different strictly convex and quadratic

auxiliary programs. The following programs are needed to compute directly
the coefficients of the power series. Notice that is clear that all the programs
are feasible and have only one optimal solution, except from the last one which
need a proof of its feasibility.
For J ✓ [n], set

b̄(J) = argmin (b� y)T (b� y)

s.t. Ax = y

x 2 RJ ,

x(J) = argmin xTx

s.t. Ax = b̄(J)

x 2 RJ ,

c̄(J) = argmin (c� x)T (c� x)

s.t. AT

J
y = xJ ,
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y(J) = argmin yTy

s.t. AT

J
y = c̄(J)J ,

c(J) = argmin (c� x)T (c� x)

s.t. Ax = 0

x 2 RJ ,

b(J) = argmin (b� y)T (b� y)

s.t. AT

J
y = 0,

t(J) = argmin xTx

s.t. Ax = y(J)

x 2 RJ .

If there are no constraints for the variables x and y, it means that they are free
and, thus, x 2 Rn and y 2 Rm.

It appears counter-intuitive the fact that we have to solve quadratic pro-
grams. For understanding the reason why it is suitable, we analyze the com-
putational cost of these problems. In fact, by assuming that also the last pro-
gram is feasible and, thus, has a unique solution, we can see that convex
programs with quadratic objective function can be solved in polynomial time
by using the optimality conditions stated in Theorem 3.1 with J = [n] and
I = ?. Indeed from the proof of the theorem, we obtain that for finding an op-
timal solution of a general convex problem we satisfy the relation (3.1) for any
x such that Ax = b. Notice that all of the programs we are taking into account
have only equality constraints, thus we can represent them by a general set of
constraints Ax = b. This means that we can rewrite any feasible solutions as
x = x⇤+v, where v 2 ker(A), the kernel of A. Thus, by substituting x = x⇤+v
in (3.1), we obtain the condition

rf(x⇤)v � 0, for any v 2 ker(A).

If a linear function is non negative on a subspace, then it must be zero on that
subspace, therefore we have the condition

rf(x⇤)v = 0, for any v 2 ker(A),
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or, in other words rf(x⇤) 2 ker(A)?, the orthogonal subspace of ker(A) in
Rn.

But, now, by using the fact that ker(A)? = C(AT ), the vector space spanned
by the columns of AT , the optimality condition can be expressed as rf(x⇤) 2
C(AT ), i.e. there exists a vector ⌫ 2 Rm such that

rf(x⇤) + AT⌫ = 0.

Therefore for finding the optimal solution we solve

Ax⇤ = b, rf(x⇤) + AT⌫ = 0, (3.14)

where x⇤ is the optimal solution. Therefore, if the program to be solved is
quadratic

min f(x) =
1

2
xTPx+ qTx

s.t. Ax = b,

where P is a quadratic matrix of order n, A 2 Rp⇥n and q 2 Rn, then the
relations (3.14) that we need to solve, are

Ax⇤ = b, Px⇤ + q + AT⌫ = 0,

which we can write as
✓

P AT

A 0

◆✓
x⇤

⌫⇤

◆
=

✓
�q
b

◆
.

We can notice that this system has n + m variables with n + m equations.
Therefore, when the matrix is non singular we have a unique optimal solution
(x⇤, ⌫⇤). If the matrix is singular but there exist at least a solution of the sys-
tem, then every solution (x⇤, ⌫⇤) is an optimal solution of the convex program.
Eventually, if the matrix is singular and has no solution then the problem is un-
bounded or infeasible. Indeed, let us suppose this is not infeasible. It means
that there exist v 2 Rn and w 2 Rm such that

Pv + ATw = 0, Av = 0 and � qTv + bTw > 0. (3.15)
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Therefore by taking a feasible solution x̂, we can study the whole line of feasi-
ble points x = x̂+ tv. By expanding up to the second order

f(x̂+ tv) = f(x̂) + t
�
vTPx̂+ qTv

�
+

t2

2
vTPv

=
(a)

f(x̂) + t
�
�x̂TATw + qTv

�
�

t2

2
vTATw

= f(x̂) + t(qTv � bTw),

where in (a) we have used the expressions (3.15) and the fact that P is
quadratic, thus symmetric. Hence the function decreases as t ! 1.

Therefore, it is suitable for us to consider quadratic problems because for
solving them we have to solve a linear system, which is a well-known polyno-
mial issue.

Let us take a step back and give a look at the auxiliary quadratic problems
we defined before. To get an intuition on what these values are, let us consider
for � 2 Rn and � 2 Rm the linear program

LP(J) max �Tx

s.t. Ax = �

x 2 RJ ,

along with its dual

LP�(J) min �Ty

s.t. AT

J
y = �J .

The vector � = b̄(J) is the vector closest to b such that LP(J) is feasible and
x̄(J) is the feasible solution with minimum norm. In the dual, � = c̄(J) is the
vector closest to c such that LP�(J) is feasible and y(J) is the feasible solution
with minimum norm. c(J) is the projection of c onto kerAJ , while b(J) is the
projection of b onto the kerAT

J
. In the following lemma we take into account

t(J) and we explain how it enters the picture and that it has a unique solution.

Lemma 3.3. For all J ✓ [n], the following holds.

(i) 2t(J) is the shortest vector that fulfills condition (ii) in Theorem 3.1 for
the program defining y(J).
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(ii) If b(J) 6= 0, then bT b(J) > 0, and if c(J) 6= 0, then cT c(J) > 0.

(iii) b = b(J) + b̄(J) and c = c(J) + c̄(J).

(iv) x(J) has the following alternative definition:

x(J) = argmin xTx

s.t. AT

J
Ax = AT

J
b

x 2 RJ .

(v) t(J) has the following alternative definition:

t(J) = argmin xTx

s.t. AT

J
Ax = c̄(J)J

x 2 RJ .

Proof. (i) Theorem 3.1 state that 2t(J) = �TAT

J
, for some vectors � 2 R|J |

and � = 2t(J)J is the shortest such vector by definition of t(J).
(ii) If b(J) 6= 0, the optimality of b(J) under a strictly convex function yields

(b� b(J))T (b� b(J)) < (b� 0)T (b� 0) = bT b.

The inequality 2bT b(J) > b(J)T b(J) � 0 follows. The argument for c(J) is the
same.

(iii) We only give the argument for b, the one for c is analogous. First of
all, notice that the program defining b̄(J) restricted to (xJ |y), can be written as
the program CP (I 0, J 0), by choosing properly J 0 and I 0:

min (b� y)T (b� y)

s.t. (A|� I)(x|y) = 0 (3.16)

x 2 RJ
0

xJ 0\I0 � 0.

The notation (·|·) means the juxtaposition of two matrices or two vectors. Now,
the vector coefficients of (x|y) are n+m, therefore J 0

✓ [n+m]. For obtaining
exactly the program b̄(J) we have to leave out the constraints xJ 0\I0 � 0 by
imposing J 0 = I 0 and to make the entries of y free we choose J 0 := J [ [n +
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1, n+m]. With such J 0 and I 0 we have obtained b̄(J) written in the CP (I 0, J 0)
way. Now, by using Theorem 3.1 we can show that

AJx
⇤ = b̄(J),

(0 T
|2(b̄(J)� b)) = �T (AJ |� I).

The former comes from the (i) optimality condition, in fact, by taking

(A|� I)(x⇤
|y⇤) = 0

and (x⇤
|y⇤) 2 RJ

0 , we can easily notice that, with y⇤ = b̄(J),

Ax⇤ = b̄(J), x⇤
2 RJ

) AJx
⇤ = b̄(J).

The latter comes form the (ii) condition: we can compute directly

rf ((x⇤
|y⇤)) = r

⇥
(b� y⇤)T (b� y⇤)

⇤
= �2(b� y⇤) = 2(b̄(J)� b)

and the condition holds for every j 2 J 0, so we obtain exactly the expression
above. Now, by setting ⌫⇤ = �/2 and µ = �2x⇤ we have that ⌫⇤ = b � b̄(J),
AT

J
⌫⇤ = 0 and 2(⌫⇤ � b) = �2b̄(J) = µTAT

J
. This means that ⌫⇤ and µ satisfy

Theorem 3.1 conditions for the program defined by b(J). Then b(J) = ⌫⇤ =
b� b̄(J) follows.

(iv) In proving AT

J
⌫⇤ = 0 in (iii) we have shown that AT

J
b̄(J) = AT

J
b.

Since any feasible linear system Mx = q is equivalent to MTMx = MT q,
we know that the system AJxJ = b̄(J) that yields x(J)J can be replaced by
AT

J
AJxJ = AT

J
b̄(J) = AT

J
b.

(v) Knowing from (i) that AJxJ = y(J) is feasible, we can replace it by
AT

J
AJxJ = AT

J
y(J) = c̄(J)J .

Here is the series expansion.

Theorem 3.3. For J ✓ [n], define

g�1(J) = c(J),

g0(J) = x(J),

g1(J) = t(J),
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and for i � 2,

g
i
(J) = argmin xTx

s.t. AT

J
Ax = �g

i�2(J)J (3.17)

x 2 RJ

Then for any k � 1,

x⇤
✏
(J, J) =

kX

i=�1

✏igi(J) +O(✏k+1),

where the big-O notation refers to the asymptotic behavior for ✏! 0.

With Lemma 3.3 (iv) and (v), any gi(J), i � 0, is by Theorem 3.1 of
the form 2gi(J)TJ = �TAT

J
AJ for some �. This guarantees that the programs

defining the gi(J) with i � 2 are feasible, so all the gi(J) are indeed well-
defined.

Proof. Let us write x✏(J, J) in the form

x✏(J, J) =
kX

i=�1

✏igi(J)� r✏(J), (3.18)

with r✏ 2 RJ the remainder term. The fact that x✏(J, J)J solves (3.13) implies
that r✏(J) must be the unique solution to the system

�
AT

J
AJ + ✏2I

�
xJ = ✏k+1gk�1(J)J + ✏k+2gk(J)J .

To see this plug (3.18) into (3.13)

0 =
�
AT

J
AJ + ✏2I

�
x✏(J, J)J � AT

J
b� ✏cJ

=
�
AT

J
AJ + ✏2I

�
 

kX

i=�1

✏igi(J)J � r✏(J)J

!
� AT

J
b� ✏cJ

and, eventually, we can read the part of x✏(J, J)J as

kX

i=�1

✏igi(J)J � r✏(J)J = ✏�1c(J)J + x(J)J + ✏t(J)J +
kX

i=2

✏igi(J)J � r✏(J)J .
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Then by using AJc(J)J = 0 and AT

J
AJx(J)J = AT

J
b (Lemma 3.3 (v)) we can

compute
�
AT

J
AJ + ✏2I

�
✏�1c(J)J = 0 + ✏c(J)J�

AT

J
AJ + ✏2I

�
x(J)J = AT

J
b+ ✏2x(J)J�

AT

J
AJ + ✏2I

�
✏t(J)J = ✏c̄(J) + ✏3t(J)J .

By using c = c(J) + c̄(J) (Lemma 3.3 (iii)) we see that some terms is can-
celled. Finally

✏2x(J)J + ✏3t(J)J +
kX

i=2

✏iAT

J
AJgi(J)J + ✏i+2gi(J)J �

�
AT

J
AJ + ✏2I

�
r✏(J)J =

=
(a)

kX

i=2

�✏igi�2(J)J +
k+2X

i=2

✏igi�2(J)J �
�
AT

J
AJ + ✏2I

�
r✏(J)J =

= ✏k+1gk�1(J)J + ✏k+2gk(J)J �
�
AT

J
AJ + ✏2I

�
r✏(J)J = 0,

where in (a) we have exploited the fact that gk(J) is the optimal solution of
(3.17), in particular it is a feasible solution. In other words we can state that
r✏(J)J is in the form

✏k+1
⇣�

AT

J
AJ + ✏2I

��1
(gk�1(J)J + ✏gk(J)J)

⌘
.

If we can show that for all i � 0,

s✏ :=
�
AT

J
AJ + ✏2I

��1
gi(J)J

converges as ✏! 0, we have shown r✏(J) = O
�
✏k+1

�
. By the remark preced-

ing this proof, we can write this system as
�
Q+ ✏2I

�
s✏ = Q�

for some vector � and symmetric matrix Q. Choose a diagonalizing transfor-
mation P such that Q = P�1DP , where D is a diagonal matrix with diagonal
entries a1, . . . , al, 0, . . . , 0, the first l of them non zero.Then the matrix equation
can be rewritten as

P�1(D + ✏2I)Ps✏ = P�1DP�,



CHAPTER 3. LP-INDUCED UNIQUE SINK ORIENTATIONS 61

which in turn is equivalent to (D + ✏2I)s0
✏
= D�0, with s0

✏
= Ps✏, �0 = P�. We

then get

s0
✏
=

✓
a1�01

a1 + ✏2
, . . . ,

al�0l
al + ✏2

, 0, . . . , 0

◆
,

meaning that s0
✏

and therefore s✏ = P�1s0
✏

converges.

This theorem states that we are able to read off the edge orientations in
the LP-induced USO from the first non zero coefficient in the power series
expansion. More precisely,

Corollary. Let J 2 [n], j 2 J and set I := J \ {j}. Furthermore, define

i(J, j) := min{i � �1|g
i
(J)j 6= 0}.

Then i(J, j) = 1 or i(J, j)  2|J |� 1, and the LP-induced USO ! derived in
the above Lemma induces the edge orientation

I ! J () g
i(J,j)j

> 0, (3.19)

where we set g1(J)j := 0.

Since our power series expansion also induces an expansion of rf(x⇤
✏
(J, J)),

we can compute the orientation of all the edges incident to a given vertex J in
the LP-induced USO by solving at most 2|J |+ 2 unconstrained quadratic pro-
grams, and hopefully, much less in most cases. This occurs to be our vertex
evaluation oracle. As we spotted before for compute these solutions it suffices
to solve linear systems.

Proof. We have
I

✏
�! J () x⇤

✏
(J, J)j > 0.

Then, according to Theorem 3.3 the first non zero value gi(J)j determines the
sign that defines the orientation I ! J in the limiting USO. For the bound on
i(J, j) in the finite case, recall that the numerator contains a monomial ✏i with
i  2|J |� 1, this is Cramer’s rule applied to the system (3.13). It follows that

|x⇤
✏
(J, J)j| = ⌦

�
✏2|J |�1

�

for ✏! 0, and the previous theorem implies that i(J, j)  2|J |�1. On the other
hand, i(J, j) = 1 implies x⇤

✏
(J, J)j = 0, so (3.19) gives the right orientation

also in this case.
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In conclusion, after computing all the orientation and the sink of the LP-
induced USO we prove that the vertex S ✓ [n], which is the unique sink of the
USO, tells us the solution of the LP considered.

Before seeing how the sink characterize the solution, we highlight the fol-
lowing result:

From Theorem 3.3 we know that

x⇤
✏
(S, S) =

c(S)

✏
+ x(S) + ✏t(S) +O(✏2), (3.20)

which implies

rf(x⇤
✏
(S, S))T

2
= AT (b̄(S)� b) + ✏(ATy(S)� c̄(S)) +O(✏2) (3.21)

using (3.13), Ac(S) = 0, Ax(S) = b̄(S), At(S) = y(S) and c = c(S) + c̄(S)
(Lemma (iii)).

For sufficiently small ✏, S is also the sink in ✏
�!, so x⇤

✏
(S, S) = x⇤

✏
(?, [n]).

Using the optimality criteria (3.3), (3.5) and (3.6), we deduce

x⇤
✏
(S, S) �0, (3.22)

rf(x⇤
✏
(S, S)) �0, (3.23)

rf(x⇤
✏
(S, S))jx

⇤
✏
(S, S)j =0, j 2 [n] (3.24)

And, finally, we can derive

Theorem 3.4. Consider the linear program

max c̄(S)Tx

s.t. Ax = b̄(S) (3.25)
x � 0,

along with its dual

min b̄(S)Ty (3.26)

s.t. ATy = c̄(S).

For sufficiently small ✏ > 0, the following statements hold.

(i) x(S) + c(S)/✏ is optimal for (3.25).
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(ii) y(S)� b(S)/✏ is optimal for (3.26).

Proof. By putting together (3.20) and (3.22) show that x(S)+ c(S)/✏ � 0, and
feasibility for (i) follows from the definition of c(S) and x(S). Analogously, by
combining (3.21) and (3.23) we deduce that y(S) � b(S)/✏ is feasible for (ii);
for this we recall b(S) = b� b̄(S) by Lemma 3.3.

To prove optimality, we argue as follows. From (3.24), we see that if x(S)j+
c(S)j/✏ > 0, then AT

j
(b̄(S) � b) = �AT

j
b(S) = 0 and AT

j
y(S) � c̄(S)j = 0,

since otherwise, the lower order terms of (3.20) and (3.21) cannot contribute
enough to reach complementarity in coordinate j for small ✏.

The latter observation implies the complementary slackness condition for
the pair of feasible solutions in (i) and (ii), and this shows that both are optimal
in their respective programs.

Finally we can prove the relation between the sink of the USO and the
solution of the LP that induces it. In the following let us denote as unbounded
ray for an LP an halfline whose tail is feasible and on which the objective
function is unbounded.

Theorem. Let S be the sink of the USO induced by the LP

max cTx

s.t. Ax = b

x � 0.

Then,

(i) If b̄(S) 6= b, the LP is infeasible. Equivalently, the LP

max c̄(S)Tx

s.t. Ax = b

x � 0.

is infeasible, and this is witnessed by the fact that

{y(S)�
b(S)

✏
|✏ > 0}

is an unbounded ray of the dual problem

min bTy

s.t. ATy = c̄(S).
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(ii) If b̄(S) = b and c̄(S) 6= c, the LP is feasible but unbounded, and this is
due to the fact that

{x(S) +
c(S)

2✏
|✏ > 0}

is an unbounded ray of the LP.

(iii) If b̄(S) = b and c̄(S) = c, then x(S) and y(S) is a pair of primal and dual
optimal solutions o the LP.

Proof. By weak duality, the existence of a dual unbounded ray implies infea-
sibility of the primal problem, so in order to show (i) and (ii), it remains to
prove that the given rays are unbounded. But it follows form cT c(S) > 0 and
bT b(S) > 0, see Lemma 3.3 (ii). Property (iii) is a corollary of the previous
theorem, under b(S) = b� b̄(S) = 0 and c(S) = c� c(S) = 0.



Chapter 4

Searching quantum algorithms

Finally we are going to present the results of our research. In the following
two sections are showed two different quantum algorithms for solving unique
sink orientation problems. By exploiting the technique and the ideas explained
in the previous chapters we are able to build quantum algorithms that out-
performs the best known classical algorithms for solving the USO problem.
For the sake of completeness we consider the best classical result. The
best known classical algorithm that solves this problem queries the oracle
O((1.467 . . .)n) times, where n is the dimension of the hypercube. It is straight-
forward to see that the Grover’s search algorithm for solving a USO problem
on an n-hypercube needs to query the oracle “only" O(

p
2n) = O((1.141 . . .)n)

times, which is already a better result than the best known classical algorithm.

4.1 Local Grover’s search

This is a deterministic quantum algorithm, i.e. the probability of succeed is 1,
based on the method of amplitude amplification, showed in Chapter 1.

Let us recall it briefly: if we have a quantum algorithm A that uses no
measurements and we know the probability a > 0 of measuring a specific
state then there exists a quantum algorithm that finds the state with certainty
using a number of applications of A and A

�1 which is ⇥( 1p
a
) in the worst

case. Therefore, the basic idea is to find an A such that the desired state can
be measured with a suitable probability.

The algorithm solves USOs on 4-hypercubes, so let us consider a general
C
�

4 . First of all, we take into account all of the nodes at once. Hence, we
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create the superposition of all the states that represent the nodes of C�4 . For
this purpose Hadamard gates are a suitable choice, because we known that
the probability of measuring any nodes in the superposition created by these
gates is uniform. In fact, by considering the superposition of 2n states,

H⌦n |0i =
1

p
2n

2n�1X

i=0

|ii,

we can notice that the likelihood of measuring the state that represent the sink,
that we denote as sink state, is exactly 1/2n. With the knowledge of the prob-
ability we can use amplitude amplification.

The local Grover search applies twice the amplitude amplification. The
first time it is used to solve a general C�2 . Let us take the below figure as an
example.

(00) (10)

(01) (11)

For solving this USO problem we need a quantum register of 2 qubits for rep-
resenting the nodes. We follow the amplitude amplification procedure. First of
all, we compute the superposition of all the vertices:

| i = H⌦2 |00i =
1

2
(|00i+ |01i+ |10i+ |11i) ,

Notice that A = H⌦2 is an invertible algorithm and the probability of measuring
the sink is a = 1/4. First of all, we define the operator Q := �R| iR|x̄i, where

R|x̄i = I2 � 2|11ih11|

is the reflection about the hyperplane perpendicular to the sink state and

R| i = AR|0iA
�1 = I3 � 2| ih |,

is the reflection about the hyperplane perpendicular to initial state, which is the
superposition of all the nodes. We denote as In the identity unitary transfor-
mation on n qubits and R|0i = In � 2|0ih0|. Notice that for implementing the
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operator R|x̄i we have to know the sink state |11i a priori. Of course this would
make this algorithm useless. We can fix this problem by means of an oracle.
Indeed, by adding an auxiliary register of size n, we define

U�|xi|0i := |xi|0 � s(x)i = |xi|s(x)i,

and, eventually we can apply a reflection R|0i on the auxiliary register for
changing the relative phase of the sink state. Indeed, by definition the only
vertex x such that s(x) = 0 is the unique sink. For the operator U� we do not
need to know the sink state because we use only the outmap s. For instance,
in the case of LP-induced USO it can be computed by solving linear systems.
As an example we show this procedure for the 2 USO we are analyzing. We
start from the superposition

1

2
(|00i+ |01i+ |10i+ |11i) |00i,

we apply the oracle U�

1

2
(|00i|11i+ |01i|01i+ |10i|10i+ |11i|00i)

and, at the end, the reflection R|0i on the auxiliary qubits

1

2
(|00i|11i+ |01i|01i+ |10i|10i � |11i|00i) .

Notice that we obtain the same action of the reflection R|x̄i without any knowl-
edge about the sink state.

For the sake of simplicity and for maintaining a consistent notation with the
one used for amplitude amplification, we continue to use R|x̄i for flipping the
phase of the sink state.

Eventually, we apply the operator Qm, with m = ⇡/4✓ � 1/2 = 1, where ✓
is such that sin2(✓) = a.

Therefore by applying the circuit

|0i
|0i A R|x̄i A

�1 �R|0i A

R| ?i

(C)
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we measure the sink state |11i with certainty. The reflection R| ?i = �R| i is
about the state | i.

Now, we apply for the second time the amplitude amplification. Before
proceeding, we recall the heritage property of USO hypercubes, which is cru-
cial for understanding this step. Given the outmap s of the orientation � and
A ✓ [n] a subset of directions, if we solve every USO problem on all the faces
generated by the directions A, then for finding the general sink it suffices to
find the unique sink in a lower dimensional USO problem. Let us show how we
can exploit this property. We start from the superposition of all the vertices:

| i =
1

4

15X

i=0

|ii =
1

2

3X

i0=0

|i0i ⌦
1

2

3X

i=0

|ii. (4.1)

Each state |ii := |i1 · · · i4i represents a direction on the hypercube. There-
fore, by dividing the qubits as in equation (4.1), we are choosing the subset of
directions A. In this case A = {3, 4} and the qubits taken in account are |i3i
and |i4i.

The idea is to solve locally the USO problem on the faces generated by
A. For succeeding in this it is sufficient to apply the same procedure showed
before for the 2-hypercube. In fact, if we focus on the second register we can
see that we can use amplitude amplification. In fact circuit (C) is an invertible
algorithm and the probability of measuring the local sink state for each face is
a = 1/4. Moreover, if we rewrite the expression (4.1) as

1

2

"
|00i ⌦

1

2

3X

i=0

|ii+ |01i ⌦
1

2

3X

i=0

|ii+ |10i ⌦
1

2

3X

i=0

|ii+ |11i ⌦
1

2

3X

i=0

|ii

#
,

notice that the first two qubits identifies the local USO problem we have to
solve. In Figure 4.1 there is an example of C�4 where the faces generated
by the set of direction A are spotted. Therefore, by applying the amplitude
amplification operator Q on the two last qubits we are solving the USO problem
on a superposition of 2-hypercubes. The result is a superposition of the sinks
of the faces spanned by A:

1

2
[|00i|sink00i+ |01i|sink01i+ |10i|sink10i+ |11i|sink11i] , (4.2)

where |sinkiji are the local sink states.
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|00i

|01i

|10i

|11i

Figure 4.1: Example of a 4-hypercube USO where the faces highlighted are
generated by the superposition of the last two qubits. We stress that the first
two qubits represent the different faces, that is, geometrically we are consid-
ering 2-hypercubes that belong to different subspaces of the quantum system
Hilbert space .

By referring to the Figure 4.1 this step could be represented graphically by

where state (4.2) is exactly the superposition of the red vertices.

Now we are ready to proceed with the amplitude amplification step. By
the definition of USO on cubes we are sure that in the sinks superposition
there is the global sink state which represents the unique sink of C�4 . More-
over, we know exactly that after a measurement we find the sink state as an
outcome with probability a = 1/4. Since we know a and since we have not
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used any measurements for solving the 2-hypercubes, we can apply ampli-
tude amplification again. Therefore, we define a new Q2 := �R|'iR|x̄i, where
|'i := A2|0i and R|x̄i is the reflection about the hyperplane orthogonal to the
sink state. A2 is the algorithm that has as output (4.2). As the previous step,
after m = 1 applications the method leads to the result. Then the circuit that
represents the procedure presented is:

H
H
H
H

Q

A2

R|x̄i A2 �R|0i A
�1
2

R|'?i

|0i
|0i
|0i
|0i

At the end we measure the unique sink of the whole C
�

4 with certainty.

Now, we show the query complexity of the algorithm. For obtaining it we
count the number of times in which the oracle operator U�i is applied. As we
stressed before we query the oracle at every application of the reflection R|x̄i.
The first part A2 is equivalent to the circuit (C), thus we can easily see that
we query the oracle only once. For the second part we can take into account
the two reflection separately. Straightforwardly in R|x̄i we query the oracle one
time. Instead, in the second reflection R| ?i there is another application of the
algorithm A2 and one application of its inverse, A�1

2 . Thus, for what we have
said above about the query complexity of the algorithm A2, the reflection R| ?i
queries two times the oracle. Therefore by denoting T (n) the query complexity
of the n-hypercube USO, we can sate

T (4) = T (2)|{z}
A2

+1 + 2T (2)| {z }
R| ?i

= 3T (2) + 1 = 3 · 1 + 1 = 4. (4.3)

We can see that the local Grover search outperforms the best known clas-
sical algorithm that finds the unique sink in a USO. Indeed, the best classical
algorithm queries to the oracle O((1.467 . . .)n) which is about 4.6314 . . . which
is greater that 4. Unfortunately, this is not the best algorithm for finding the
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unique sink in a USO. In fact, as we said in Chapter 1, the query complexity of
Grover’s search algorithm is

⇡

4

p

N �
1

2
,

which is 2.641 . . . and its ceiling is 3. Therefore, it is the best known algorithm
for finding the unique sink in 4-hypercubes.

In conclusion, we showed two different way to find the unique sink in the
4-hypercube with less queries than the best known classical algorithm. Both
of these quantum algorithms are interesting: the latter because is the best
algorithm we know for solving USO problem; the former because is obtained
by exploiting the heritage property of the USO.

4.2 Controlled sink sieve

This quantum algorithm exploits the properties of the outmap s of a USO on a
cube. In the presentation of this algorithm we use the “combinatorial view" of
hypercubes.

As we have seen in Chapter 3, given a LP with n variables we can define
a USO on an n-hypercube. For understanding such an orientation we take
into account any nodes at a time and to compute the outgoing edges from that
vertex by solving several linear systems. Notice that, at the end, we obtain
a vector which entries represents the edge orientations. In fact, whether an
entry of such vector is strictly greater then zero, then the edge is an ingoing
one, otherwise it is an outgoing one. Hence, by taking a general vertex w and
its vector that corresponds to the orientation, u = (ui)i=1,...,n, we can define a
map

w 7�! v = (vi)i=1,...,n, where vi =

⇢
0 if ui > 0
1 otherwise.

What we obtain at the end is a vector whose entries are 1 in the possible
outgoing directions and 0 otherwise. Notice that this is the outmap definition
in the “combinatorial view".

With the above definition we can use the map s as an oracle which takes
as inputs the vertices and outputs the edge orientations as vectors which en-
tries are only 1 or 0.
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The basic idea of the controlled sink sieve is tho exploits the bijectivity of
the outmap. Given a USO on a cube C

� and its sink o 2 V (C), we have that it
is the only vertex such that

s(o) =

0

B@
0
...
0

1

CA .

Therefore, we can implement a trivial quantum algorithm. Initialize two quan-
tum registers of n-size. In the first one we represent the vertices of the cube
and in the second one we store the output of the outmap s, which is a vector
of n entries. So, we apply an Hadamard gate at each qubit of the first register

�
H⌦n ⌦ In

�
|0i|0i =

 
1

p
2n

2n�1X

i=0

|ii

!
|0i (4.4)

and, then, we apply the outmap s implemented by means of the unitary oper-
ator Us, which acts like Us|vi|0i = |vi|0 � s(v)i = |vi|s(v)i. After applying Us

to the state (4.4), we obtain

1
p
2n

2n�1X

i=0

|ii|s(i)i =
1

p
2n

"
X

i 6=o

|ii|s(i)i+ |oi|0i

#
. (4.5)

Now, if we measure the first register we find the unique sink o with probability
1/2n. Notice that if we measure the second register we obtain the vector 0 with
probability 1/2n as well. And, furthermore, if we have measure o in the first
register or 0 in the second one, then we are sure to measure 0 or o respectively
in the other register, because after the first measurement the state collapses.
Therefore the problem of finding 0 in the second register is equivalent to the
USO problem and this is due to the definition of s for a USO.

Our current goal now is to create a quantum algorithm for measuring 0 in
the second register. For this purpose, we act on the second register maintain-
ing unchanged the link between a vertex and its outmap output. In fact, the
easiest way for having in the second register the vector 0 is to measure each
qubit and then apply a �x gate for changing the state if the measure gave |1i.
Notice that without any action on the first register the above procedure fails,
for example in a 1-hypercube

(0) (1)
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by starting from the superposition as (4.5)

|0i|1i+ |1i|0i
measure |1i
������! |0i|1i

apply I⌦�x
������! |0i|0i.

In the first step we have measured the second register with outcome |1i and,
therefore, the state collapses in the state |0i|1i. In the second step we apply
the gate �x to the second register. At the end, by measuring the first register,
we do not find the unique sink of the USO above. So, we define an algorithm
that takes into account the connection between the two registers.

Notice that it is possible to change a specific bit on the second register by
changing the correspondent bit on the representation of the vertex. In detail,
if we are in the node v 2 V (C) and we know that in s(v) the j-th entry is 1,
then we can flip the j-th entry of the node v. Afterwards, we are in the vertex
v � ej and the j-th entry of its outmap vector is 0, because we moved from
the head to the tail of the arc (v, v � ej) 2 A(C�). The problem that arises
now is that for following the above procedure we are suppose to store in the
second register the new vertex outmap output, i.e. we need to be able to reset
the second register. Fortunately, the operator Us, which is unitary and, thus,
invertible, with inverse Us itself. In fact, for any nodes v 2 V (C), we have

U2
s
|vi|0i = Us|vi|s(v)i = |vi|s(v)� s(v)i = |vi|0i.

So, we are able to reset the second register by applying a second time the
operator Us.

Now, the procedure is the following: create the superposition as in (4.5)
and measure the j-th qubit of the second register; if it is has as an outcome
|1i then apply the oracle Us for resetting the second register, flip the j-th qubit
in the first register and, eventually, apply again the operator Us for creating a
superposition similar to (4.5).

We show this algorithm for the 1-hypercube example above. We start with
the superposition of all the vertices in the first register and their correspondent
outmap evaluation on the second register

|0i|1i+ |1i|0i.

Then we measure the qubit of the second register. If we measure |0i we
have finished, because we have found the vector 0 on the second register.
Otherwise we follow the procedure

|0i|1i
apply Us
����! |0i|0i

apply �x ⌦ I
������! |1i|0i

apply Us again
�������! |1i|0i.
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Eventually, we measure the second register and we find the vector 0.

We generalize the algorithm for larger n.

Algorithm: Controlled sink sieve
1) We initialize the two quantum registers |0i|0i.
2) We compute the superposition as we have seen in (4.5).
3) We choose a qubit to be measured. Let us take the j-th one. If the
measurement outcome is |0i then pass to the next qubit, otherwise

⇧ Apply again Us for resetting the second register.
⇧ Apply a �x operator to the j-th qubit of the first register.
⇧ Restore the superposition by applying again Us.

Continue until all the qubits of the second register are measured.
4) Eventually, measure all the second register. If the result of the
measurement is the state |0i, then the first register is the sink of the
USO. Otherwise restart from (1).

As we can see from the fourth step of the above algorithm might fail. In fact,
by moving from a vertex to another we could change more than one entries of
the outmap, not only the one considered. Let us show an example.

Let C�2 be the following USO

(00) (10)

(01) (11)

At each step we will show the superposition of the nodes and we will mark
which nodes are involved in the superposition in the graph. At the beginning
we initialize the superposition like in (4.5)

1

2
(|00i|11i+|01i|10i+|10i|00i+|11i|01i)
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At this step all the vertices are still in the superposition because we have
used no measurements yet. Now let us suppose that we want to measure the
second qubit of the second register. For understanding what happens after
the measurement let us consider the above superposition as

1

2
[(|00i|1i+ |11i|0i)⌦ |1i+ (|01i|1i+ |10i|0i)⌦ |0i].

Therefore, if we measure it we have probability 1/2 of having |1i and probability
1/2 of having |0i. Let us suppose to have measured the state |1i. The state
collapses after the measurement and we obtain

1
p
2
(|00i|1i+ |11i|0i)⌦ |1i

Now we reset the second register by applying Us,

1
p
2
(|00i+ |11i)|00i

we flip the second qubit by using the �x gate

1
p
2
(|01i+ |10i)|00i

and, eventually, we restore the superposition with the operator Us.
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1
p
2
(|01i|10i+ |10i|00i)

Finally, we repeat the same procedure for the first qubit of the second register
and let us suppose that once again we have as an outcome the state |1i. Then
we obtain the following

|11i|01i

This example is one of the possible failures that the algorithm can output.
Notice that after measuring |1i the second time the state collapses into the
state |01i|10i. As we stressed before, after moving from the tail to the head of
the arc, both the qubits in the second register flip. The result state is |11i|01i.

From the example above we can understand that the choice of the order in
which the qubits are measured is important. In fact, if we choose the inverse
order in the above example, i.e. first we measure the first qubit and eventu-
ally the second one, the algorithm outputs the unique sink with probability 1,
although the possible outcomes of the measurements.

Unfortunately, we cannot insert in this thesis any discussion about the com-
putational complexity of this algorithm. Indeed, the probability of success of
this algorithm is strictly connected with the USO considered. For instance if
we take into account the USO on the 2-hypercube,
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the controlled sink sieve in this case outputs the unique sink with likelihood 1
for every choice of order and for any possible outcomes of the measurements.

Therefore, simulations are ongoing but we have not enough information for
analyzing the probability of measuring the unique sink in a general USO on an
n-hypercube.

Nevertheless, we present some considerations and some open problems
for this algorithm:

• We can notice that after a run of the algorithm, its query complexity is
at most 2n, because every time we measure the state |1i, we apply
the oracle Us twice. Therefore, since the algorithm is probabilistic, if we
consider p as the probability of measuring the sink in the worst case
scenario, then for finding the sink with almost certainty we run the algo-
rithm for O(1/p) times. So the algorithm would query the oracle O(2n/p)
times, in the worst case. If p depends on n we have a function that can
be compared with the best known algorithm for solving a USO problem,
which is the Grover’s search algorithm. Therefore, the controlled sink
sieve would be the best algorithm whether for large n

c ·
2n

p(n)
<
⇡

4

p

2n,

holds, where c is a constant and the right hand term is the query com-
plexity of the Grover’s algorithm.

• Further analysis can be done also for what concerns the geometry of the
USO. Starting from the fact that the success of the algorithm depends
on the USO, one can wonder whether there exist particular classes of
USO for which this algorithm is efficient. Furthermore, we can wonder
under which conditions the algorithm fails.





Conclusion

In this thesis, we presented two different quantum algorithms for solving the
unique sink orientation problem on an hypercube. In both cases, for accessing
to the information we needed an oracle mathematically defined as a surjective
function s. The algorithmic complexity of these algorithms is determined via
the number of times we call s for solving the task.

The first algorithm, the local Grover’s search, developed for the unique
sink orientation on a 4-hypercube, can find the unique sink by querying the
oracle 4 times. This result outperforms the best classical result that needs at
most 7 queries. Nevertheless, it is not the best known quantum algorithm: the
Grover’s search can find the sink (seen as a marked vertex in an undirected 4-
hypercube) with only 3 queries. The algorithm is based on a quantum method
called amplitude amplification. Amplitude amplification increases the probabil-
ity of measuring a specific state in the superposition | i created by applying an
invertible quantum algorithm A to an initial state |vi. This method for increas-
ing the likelihood uses the operator Q := R| iR�, where R is the reflection
about the state | i and R� is the reflection that has as unique eigenvector
associated to the eigenvalue �1 the state that we are looking for.

The importance of the algorithm we proposed lies in the exploitation of the
heritage property. This property states that we can divide the USO problem
on an n-hypercube in smaller USO problems on cube of smaller dimension.
Essentially the basic idea is to choose a suitable subset A of directions and
to solve all the USO spanned by A. After solving all of these problems if we
look at the outgoing directions of all the sinks obtained from the smaller USO
spanned by A we obtain a new USO problem on an (n� |A|)-hypercube. The
best classical algorithm is based on this idea, but it does not compute all of the
sinks of the smaller problems because solving them classically requires check-
ing all the nodes. On the other hand, our algorithm by exploiting superposition
can solve all the problem spanned by A just with one step.
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The second algorithm we introduced, the controlled sink sieve, is based on
the properties of the outmap s. The idea to exploit the quantum advantage is
to take into account the whole directed cube. In this case we need only 2n
qubits for implementing the vertices and a vector where the possible outgoing
directions are stored. We get an advantage because in the classical case
such implementation needs 22n strings of bits. The basic idea of the algorithm
is to check the possible outgoing directions stored in the second register by
measuring the qubits in a random order. When as an outcome we have the
state |0i we continue by measuring another qubit. Otherwise, when we obtain
the state |1i, we reset the whole second register, flipping the correspondent
qubit in the first register and then restore the outgoing edges information in the
second register. This procedure is repeated until in the second register all the
qubits are in the state |0i.

The probability of succeeding and the computational cost need to be stud-
ied more in detail because this algorithm has different behavior for each unique
sink orientation configuration. Extensive numerical simulation are ongoing but
cannot be finished in time for the submission. Moreover, it is necessary an
improved analysis for understanding whether this algorithm is suitable for only
acyclic unique sink orientation, i.e. graphs with no cycle, instead of general
ones.

Finally, although we are not able to show a more efficient algorithm yet, we
think that it is worthy to continue in this direction. Indeed, it has been shown
that Grover’s search is optimal for a search on an unstructured database [16].
Therefore there cannot exist any algorithms that are asymptotically better then
the Grover’s algorithm. Nevertheless, because of their definition, USO on hy-
percube can be considered as structured database. So, a significant speed up
could be achieved only by exploiting the USO properties.

Despite the USO problem is a possible key for finding a strongly-polynomial
algorithm for the LP, the only quantum works for this topic are the result ob-
tained by Bacon and an algorithm that recognize only whether an orientation
of a cube is a USO or not [3]. Therefore to the last of our knowledge our work
is the only one which presents specific quantum algorithms for solving USO
problem on hypercubes.



Appendix

Basic notion of quantum mechanics

The quantum theory is based on the Hilbert space formalism. An Hilbert space
is a vector space X endowed with the metric d such that the couple (X, d) is
a complete space. A quantum system is, indeed, a complex Hilbert space H.
We describe quantum state by means of unitary vectors of H and they from
an orthonormal basis of the space.

In this thesis all the quantum systems taken into account are composed by
a finite number of states, therefore we consider the following result:

Theorem. Two Hilbert spaces are isomorphic if and only if they have the same
dimension.

In particular, any N -dimensional complex Hilbert space is isomorphic to CN ,
the complex vector space endowed with the standard scalar product. There-
fore we represent the states by means of unitary complex vectors.

For instance, if we consider an half-spin particle, as an electron, the Hilbert
space that describes the spin systems is formalised as:

H = Span
⇢✓

1
0

◆
,

✓
0
1

◆�
= Span{|0i, |1i},

endowed with the standard complex scalar product:

hv, wi = v⇤w =
2X

i=1

v̄iwi = hv|wi.

In the right side of the two equations above we introduced a new notation for
the objects we are taking into account. This is called the bra-ket notation,
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which will be useful for making lighter the notation later.

Let us now formalize all this concepts by stating the postulates of quantum
mechanics.

Postulate 1. The state of a physical quantum system is completely described
by a unity vector | i, which is called the state vector, or the wave function, and
resides in the Hilbert space H associated with the system.

The notation | i is part of the bra-ket one introduced above. As you can see
when we wrote the scalar product h| i, | ii the notation would be very heavy,
therefore as explained above, we are going to identify | i⇤ = h | so that the
scalar product can be easily seen as h | i. Actually, we have different reasons
for justifying the use of Dirac notation, but these exceed the purposes of this
Appendix.

One of the advantages of using an Hilbert framework is the existence of
basis. Therefore for describing a quantum system we can choose a basis of
vectors H = Span{|�ii}i and for each | i 2 H we can rewrite it as

| i =
X

i

↵i|�ii, where ↵i = h�i| i.

The coefficients of the above sum are called amplitudes and they play a main
role on the description of physical system.

With this property we can highlight an important principle of quantum me-
chanics: the superposition principle. The idea is the following, if we take two
independent possible state which describe our system | 1i, | 2i 2 H, we
could consider the new state

| i = ↵| 1i+ �| 2i,

which is an allowed state whether |↵|2 + |�|2 = 1, because the new state | i
is a linear combination of the previous states and thus belongs in the vector
space generated by them and moreover it has unitary norm, therefore it be-
longs in H. Informally, one can think about a superposition of different states
in this way: if we take into account again | i, described above, one could say
that the system described by | i is simultaneously in the state | 1i and | 2i.

Now we have defined mathematically the basic objects we are interested
in. The next step is to understand how to describe the dynamics of the system.
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If we consider an Hamiltonian description of the energy of the system, i.e. if
there exists a self-adjoint operator Ĥ : H ! R, we state that

Postulate 2. The evolution of a closed quantum system in time of the wave
function | i is governed by the Schrödinger equations:

i~ @
@t

| (t)i = Ĥ| (t)i,

where i is the imaginary unit and ~ = h/2⇡, with the Planck constant h and Ĥ
is a self-adjoint operator which describes the energy of the system.

We must stress that Schrödinger equation is linear differential equation in time.
Therefore, we are able to describe the complete dynamics of the system only
by giving an initial state | 0i.

Moreover, by the linear framework we describe until now we also high-
lighted that by the superposition principle of the solutions of a linear differen-
tial equation whether | 1(t)i and | 2(t)i are two different solutions them also
| (t)i = ↵| 1(t)i+ �| 2(t)i is a solution. That means that U(t) is linear.

Finally, Notice that if the Hamiltonian operator is time-independent then a
solution of Schrödinger equation is

| (t)i = e�
i
~Ht

| 0i = U(t)| 0i,

where | 0i is a give initial state. By this solution we spot that the operator
U(t) is the exponential map of a self-adjoint operator, therefore it is a unitary
operator.

We pass now to the description of the quantum counterparts of the dynam-
ical variables as position, momentum and so on. We define these physical
objects as observables.

An observable in quantum mechanics is a physical dynamical quantity of
the system that we can measure. We consider the spectrum of an observable
O as the set of values that arise from a measurement of O to the system. All
the measurements are real number and therefore the spectrum of an observ-
able is a subset of R.

Postulate 3. We associate with any observables O a self-adjoint operator Â
on the Hilbert space H. The only possible outcome of a measurement of the
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observable O is one of the eigenvalues of the operator Â, which has a non
degenerate spectrum1.

By considering the eigenvalue equation for Â:

Â|ii = ai|ii,

where ai 2 R is an eigenvalue and {|ii} form an orthonormal basis of eigen-
vectors of the operator Â, and we consider the Parseval identity we can rewrite
any state vector | (t)i as

| (t)i =
X

i

 i(t)|ii,

then the probability that by measuring the observable O we get as an outcome
ai is:

Pi(t) = P (a = ai|t) = |hi| (t)i|2 = | i(t)|
2. (4.6)

By these first postulates we can stress different consequences that can help us
for understanding the purpose behind the choice of this formalization. We said
that the outcomes of a measurement are real values and, then, eigenvalues
of the operator Â which describes the observable O. This appears suitable by
taking into account the fact that Â is self-adjoint, therefore its eigenvalues are
real numbers. Moreover, they are an orthonormal basis of the whole Hilbert
space H and, since | (t)i is a unit vector, we have that

X

i

Pi(t) =
X

i

| i(t)|
2 = 1,

where Pi(t) and  i(t) are define in (4.6). Therefore the probabilities of getting
any outcome of O are normalized, i.e. the sum is equal to 1. This is exactly
the reason why we require states to have unit norm. Moreover, now it is easy
to see that if a state | 0i returns as an outcome ai with likelihood 1 it means
that

|h 0|ii|
2 = 1

but, now, we can notice that |h | i| is the inner product of H, therefore to get 1
is possible if and only if | 0i = |ii, that is | 0i is the eigenvector associated to

1In our discussion we are going to take into account only this kind of operator. Generally,
this postulate is stated also for operator with degenerate eigenspaces.
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the eigenvalue ai. For this reason we would call the state |ii eigenstate.

Considering eigenstates is also important because it can let us understand
deeper the nature of the superposition of the states. Let | 1i and | 2i be
eigenstates respectively associates to the eigenvalues a1 and a2. The super-
position principle tells us that the state

| i = �1| 1i+ �2| 2i,

where �1,�2 2 C are such that |�1|2 + |�2|2 = 1, so that | i has unit norm,
is an allowed state of the quantum system described by H. Therefore, if we
measure the state | i, with an observable which has both | 1i and | 2i as
eigenvectors, we measure a1 with probability |�1|2 and a2 with probability |�2|2.
However, we stress that | i is not equivalent to a statistical mixture of the state
| 1i and | 2i, taken with probabilities |�1|2 and |�2|2 respectively. Indeed let us
consider N identical physical system in the | i state. If | i is equivalent to a
statistical mixture then it would be an ensemble of |�1|2N systems in the state
| 1i and |�2|2N systems in the | 2i state. Though we are led to a different
result if we compute the probability P (bi) of measuring bi as an outcome from
| i for some different observable2 B̂. Now from (4.6) we get that

P (bi) = |hi| i|2

where |ii is an eigenvector of B̂ associated with b1. Thus

P (bi) = |�1hi| 1i+ �2hi| 2i|
2 = (4.7)

= |�1|
2
|hi| 1i|

2 + |�2|
2
|hi| 2i|

2 + 2 Re[�1�⇤2hi| 1ihi| 2i
⇤]. (4.8)

But now if we compute the probability with a classical statistical mixture we
obtain

Pmix(bi) = |�1|
2
|hi| 1i|

2 + |�2|
2
|hi| 2i|

2.

And so by comparing this with (4.7)

P (bi) = Pmix(bi) + 2 Re[�1�⇤2hi| 1ihi| 2i
⇤]. (4.9)

This means that the predictions of the quantum mechanical theory depend on
the complex number �1 and �2 not only in their modulus. The term on the

2From now on, without loss of generality, we identify the observables with their operator.
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equation (4.9) which spot the difference between the quantum system and the
statistical mixture is said interference term.

We now discuss the effect of a measurement on the state of the system.
we can see measurements as an interactions of more physical systems. From
this point of view after the interaction the systems have changed. Indeed if we
measure the observable Â that results in outcome ai and the measurement
does not destroy the system, by applying immediately the same Â we obtain
again ai as outcome with probability 1. For explaining this experimental phe-
nomenon we need to accept that the state function | i after being measured
collapse onto the eigenstate |ii of Â associated with the eigenvalue ai. We
now state the following postulate:

Postulate 4. If a system is described by the vector | i and we measure an
observable Â, obtaining the outcome ai, then immediately after the measure-
ment the state of the system is given by

Pi| ip
h |Pi| i

,

where Pi is the projector operator over the eigenspace corresponding to ai.

Notice, now, that by measuring the observable Â, the likelihood of obtaining
any outcome ai is given by

pi = P (ai) = h |Pi| i

It is easy to see that it is true since Postulate 3.
Form probability theory we know that the average of an observable Â is

given by hÂi =
P

i
aipi. Moreover we can notice that since Â is self-adjoint

then by the spectral sum property we have

Â =
X

i

aiPi,

and therefore

hÂi =
X

i

aih |Pi| i = h |

 
X

i

aiPi

!
| i = h |Â| i.
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Therefore when we talk about the result of a measurement we mean the ex-
pectation value of the state computed over the operator.

The last characterization about observables and expectation values leads
to some important considerations about the phases of wavefunctions. Usu-
ally in physics this term can assume different meanings depending upon the
context. Now we focus on what phase is in our case and which is its role in
the description of the states. Consider, for example, the state ei✓| i, where
| i is a state vector and ✓ is a real number. We say that the states ei✓| i and
| i are equal up to a global phase ei✓. Indeed, the state ei✓| i does not de-
scribe a state different than | i, this is due to the statistics of measurements.
If we have a system described by the state ei✓| i and we want to measure an
observable Â then we should compute

h |e�i✓Âei✓| i = e�i✓ei✓h |Â| i = h |Â| i.

Straightforwardly as we said before this means that the quantum system con-
sidered can be described by both | i and ei✓| i. On the other hand the relative
phase marks a difference between two state. Let us consider as an example
the states

|0i+ |1i
p
2

and
|0i � |1i

p
2

.

In the first case the amplitude of the state |1i is 1/
p
2 and in the second is

�1/
p
2. Nevertheless the probability of measuring the state |1i is 1/2 in both

the cases. The problem arises when we measure in a different basis of eigen-
vectors, i.e. when we want to measure with an operator Â that has a different
eigenbasis. But also the relative phases have to be considered as we spotted
above in (4.9), because it is the cause of the interference term in the compu-
tation of the probability.

We are interested in the description of composite quantum systems, that is
quantum system composed by two, or more, distinct quantum systems which
interact each others. Mathematically we describe this larger system in this
way:

Postulate 5. The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems. Moreover, if
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we have n numbered systems described by the states {| ii}i=1,...,n, then the
joint state of the global system is | i = | 1i⌦ · · ·⌦ | ni, where ⌦ is the tensor
product.

Heuristically, we can give the following reason for choosing the tensor product.
If we wanted to describe the composite system AB composed by the two
different systems A described by |Ai and B described by |Bi, then we would
describe the entire system by |Ai|Bi and by considering the superposition
principle we can notice that an easy way for describing it is, indeed, by means
of tensor product. Let us see it specifically with the following example: consider
two half spin particles, therefore H1,H2 = Span{|0i, |1i}, where |0i is the spin
down state and |1i is the spin up one, and the two following systems

System A: |Ai = ↵1|1i+ ↵0|0i, System B: |Bi = �1|1i+ �0|0i

Now,

|Ai|Bi = (↵1|1i+ ↵0|0i)(�1|1i+ �0|0i)

= ↵1�1|1i|1i+ ↵1�0|1i|0i+ ↵0�1|0i|1i+ ↵0�0|0i|0i

=
1X

i,j=0

↵i�j|ii|ji“=”
1X

i,j=0

↵i�j|ii ⌦ |ji

= (↵1|1i+ ↵0|0i)⌦ (�1|1i+ �0|0i)

= |Ai ⌦ |Bi

Of course this is not a derivation of the postulate, in fact it is true if and only
if we are able to substitute “= ” with =, which is exactly the consequence of
the postulate. Nevertheless this example can explain us why we chose the
framework of a tenor space for describing composite quantum systems.

For understanding deeply the next property of quantum mechanics it is
suitable to have a look at the basis of composite systems. This theoretical
result helps us to understand how the basis of the single systems are related
to the composite one:

Theorem 4.1. Let {Hi}i=1,...,n be a family of Hilbert spaces and

H =
nO

i=1

Hi
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be their tensor product. Then every element | i 2 H can be written as

| i =
tX

k=1

| 1i
k
⌦ · · ·⌦ | ni

k,

where | ii
k
2 Hi and t � 1.

In our case, for describing quantum systems we required states with unitary
norm therefore Theorem 4.1 holds up to normalization of the final state.

Let us consider again the example above of a composite system obtained
by two half-spin particles. They have only two elements in the basis: H1,H2 =
Span{|0i, |1i}. Therefore according to Theorem 4.1 we obtain that the basis
of the state H = H1 ⌦H2 is

{|0i ⌦ |0i, |0i ⌦ |1i, |1i ⌦ |0i, |1i ⌦ |1i}.

Thanks to Postulate 5 we can introduce now one counter-intuitive phe-
nomenon of quantum mechanics: entanglement. For the sake of simplicity let
us consider only a simple case. Let H = H1 ⌦ H2 be a composite system
made of two distinct ones. By Theorem 4.1 we have that a general element of
H is

| i =
X

i,j

cij|ii|ji

By definition a state is said entangled if it cannot be written as a simple tensor
product of a state |�1i belonging to H1 and a state |�2i belonging to H2. In
the other hand, if such states exist, the state

| i = |�1i ⌦ |�2i

is called separable. By considering the two half-spin particles we see that the
state

| 1i =
1
p
2
(|0i|0i+ |1i|1i)

is entangled. Instead,

| 2i =
1
p
2
(|0i|1i+ |1i|1i)

can be separated

| 2i =
1
p
2
(|0i+ |1i)⌦ |1i.
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The idea of entanglement is very related to information. Indeed, if we con-
sider the state | 1i and | 2i and we measure them on the second system we
obtain very different results. Let us define the observable P1 = |1ih1|, which
is a projector3 onto the eigenspace generated by the eigenvector |1i. If we
measured the second system by means of the operator (I⌦P1), which means
that we are applying the measurement only on the second system, in the state
| 2i, we obtain as outcome the state represented by |1i, thus the up spin, and
according to Postulate 3 the final state is

1
p
2
(|0i+ |1i)⌦ |1i

which is | 2i itself. And therefore we have no information about the first sys-
tem, which is still in a superposition of space and therefore inaccessible with-
out measurements.

But now, if we repeated the same measurement on | 1i we would obtain
as outcome or |0i or |1i both with probability 1/2. And in the case we obtained
as outcome |1i, for the other case is analogue, the final state would be

(I⌦ P1)| 1ip
h 1|(I⌦ P1)| 1i

=
1p
2
|1i|1i
1p
2

= |1i|1i

Therefore if we knew that the state is entangled, after applying the measure-
ment we would have information about the first system as well.

Finally, we have to analyze the tensor product for the operators as well.
Now, we are going to formalize this concept by considering the simple case
with a composite system of two distinct ones, but it is straightforward to gen-
eralize. Let H = H1 ⌦ H2, an operator A acting on H1 and an operator B
acting on H2. A and B can be considered as observables to be measured
or as unitary operator for evolving the system. Then considering the states
| 1i 2 H1 and | 2i 2 H2 we define

(A⌦ B)(| 1i ⌦ | 2i) := (A| 1i)⌦ (B| 2i).

Moreover we stress that this notation for operators is suitable in a tensor frame-
work due to Theorem 5. In fact if we have and entangled state | i 2 H and

3This notation is consistent. Indeed, if we have a vector v 2 Cn we straightforwardly see
that vv⇤ is an orthogonal projector onto the space spanned by v. Therefore if we consider
Dirac notation we obtain that |vihv| = vv⇤ is a projector.
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H = Span{|�ii|⇢ji}i,j , then

(A⌦ B)| i = (A⌦ B)
X

i,j

cij|�ii|⇢ji =
X

i,j

ci,j(A⌦ B)|�ii|⇢ji

=
X

i,j

cij(A|�ii)⌦ (B|⇢ji),

where |�ii 2 H1 and |⇢ji 2 H2.
And finally we wonder whether the notions of separability and entangled

hold for operators as well as states, and what are the consequences of these
property. Since both the space of unitary operators, over C, and the space of
Hermitian matrices, over R, are vector spaces, then we are allowed to consider
the tensor product of two of them.

We can state the correspondent definitions. Let M be an operator acting
on H. M is said to be non-separable if it cannot be written as a simple ten-
sor product of an operator A acting on H1 and an operator B acting on H2.
Conversely, if such operators exist the operator

M = A⌦ B

is called separable.
The concept of non-separability for operators is strictly related to entan-

glement. We show this connection by means of the two half-spin particles
example. Let us define the unitary operator M as follow:

M :

8
>><

>>:

|0i|0i 7! |0i|0i
|0i|1i 7! |0i|1i
|1i|0i 7! |1i|1i
|1i|1i 7! |1i|0i

(4.10)

This operator is clearly an unitary one. It is even more clear to spot the uni-
tarity when we give a matrix representation. This is possible because we are
working in finite dimension. Therefore we can have a matrix description by
computing the tensor product as the Kronecker product, i.e. given V and W
vector spaces over C, or R

·⌦ · : V ⇥W �! V ⌦W
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0

BBB@
v =

0

BBB@

v1
v2
...
vn

1

CCCA
,

0

BBB@

w1

w2
...
wk

1

CCCA
= w

1

CCCA
7! v ⌦ w =

0

BBBBBB@

...
vi · w1

...
vi · wk

...

1

CCCCCCA
,

for i = 1, . . . , n, v 2 V and w 2 W . Thus, in our case, if we consider H1,H2 =
Span{e1, e2}, where ei is a canonical basis vector, by computing Kronecker
product in (4.10) we can see the action of M as

M :

8
>><

>>:

e1 7! e1
e2 7! e2
e3 7! e4
e4 7! e3

And finally its matrix representation is

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA ,

which is clearly unitary.
Moreover this matrix is non-separable and it can create entanglement. In-

deed, if we consider the state

| i =
1
p
2
(|0i+ |1i)⌦ |0i,

which is not entangled. But, now, by applying M

M | i = M


1
p
2
(|0i|0i+ |1i|0i)

�
=

1
p
2
(|0i|0i+ |1i|1i),

which as we saw above is an entangled state.

Graph theory

A graph is an ordered pair of two sets G = (V,E) satisfying the relation E ✓

V ⇥ V , i.e. the set that contains every {v, w} such that v, w 2 V . To avoid
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notation ambiguities we shall require that V \ E = ?. The set V is called the
vertex set, or nodes set, and usually we refer at it with V (G). The set E is
called the set of edges and usually we refer at it with E(G). The usual way of
representing graphically graphs is by means of dot for each vertex and joining
two of these dots by a line if the corresponding two vertices form an edge. The
position of the nodes and the shape of lines are irrelevant, all the properties of
graphs are independent from its general graphical representation. Therefore
we say that two graphs G and H are isomorphic if they can be represented
by the same graph or, in a formal way, if there exist a bijective function f :
V (G) ! V (H) such that if {u, v} 2 E(G) then {f(u), f(v)} 2 E(H). This
function is called a graph isomorphism.

1 2

3
4

5 6

7 8

9 10

Figure 4.2: Graph with set of nodes V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and with
set of edges E = {{1, 2}, {1, 3}, {1, 7}, {2, 4}, {2, 8}, {3, 4}, {6, 8}, {9, 10}}.

A vertex v 2 V (G) is said to be incident to an edge e 2 E(G) when v 2 e
and in this case e is an edge at v. The vertices in an edge e are called ends.
Two nodes that are ends of the same edge are said to be adjacent. Adjacency
is a equivalence relation and we are going to use the notation x ⇠ y for saying
that {x, y} 2 E(G). Given a vertex v 2 V (G) we are going to call every other
node w 2 V (G) such that v ⇠ w a neighbour of v. We define the degree of a
vertex v 2 V (G) as its number of neighbours and we denote it with �(v).

A graph4 G is said to be regular when there exists an integer n � 1 such
that �(v) = n for any v 2 V (G).

Given a graph G, a subgraph H = (V 0, E 0) is a graph such that V 0
✓ V (G)

and
E 0

✓ E(G) \ (V 0
⇥ V 0) .

4From now on we refer to a graph G = (V,E) just with the first capital letter
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And given a subset V 0
✓ V we define as induced subgraph the subgraph in

which the edge set relation is an equality.

Now we gave the basic structure and the basic notion of what a graph is
and how to describe it. Let us give a look at different properties and classes of
graphs and the first basic substructure.

Given a graph G a path is a non empty subgraph P of G such that if
V (P ) = {x0, . . . , xk} then

1 

kX

j=1

|{xi} \ {xi, xj}|  2,

where i = 1, . . . , k and {xi, xj} 2 E(P ).

G P

Figure 4.3: Example of a path P as a subgraph of G and as a single graph.

We can think about paths as a sequences of distinct nodes, indeed if
V (P ) = {x0, . . . , xk} we could say that P = x0x1 · · · xk is the path and where
the first and the last vertices are called endpoints. In this way we know even
the edge set, in fact from the above sequence we can define as the set of
edges

E(P ) = {{v, w}|90  i < k : vw = xixi+1 or wv = xixi+1}.

Moreover it is straightforward to see that by defining paths in this way the
requirement (4.2) is satisfied. In this description of paths it is trivial to see that
if x̄ 6= xi, i = 1, . . . , k then both P 0 = x̄P and P 00 = Px̄ are paths.

We define the length of a path as the cardinality of the edge set, i.e. |E(P )|.
Every time we add a vertex to a path P we are building a new path P 0 which
length is increased by 1. And of course we can define the sum P + Q of two
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distinct paths P and Q, i.e. where all the nodes are distinct, whether at least
one endpoint of P is a adjacent to another endpoint of Q. The length of the
new path P +Q is the sum of the lengths.

We say that a graph G is connected if for any couple of vertices v, w 2

V (G) there exists a path P which has as endpoints v and w. If this property
does not hold the graph is said to be non connected.

The property of being connected is an equivalence relation on the vertex
set (it is straightforward to see). We define as connected components the
equivalence classes of this relation. We can notice that if a graph is connected
then it has a unique connected component.

Figure 4.4: An example of a connected graph and of a non connected one

We define now another important structure: cycles. If P = x0 · · · xk�1

is a path with length k � 3 and x0 ⇠ xk�1 then we can define the cycle
C := P + xk�1x0. Cycles are the only regular graph with degree 2. A graph
which does not have any cycle as a subgraph is called acyclic.

x0

x1

x2

x3

x4

Figure 4.5: A graph where is highlighted a cycle with 4 nodes; in this case the
sequence is C = x0x1x2x3.

Now we have to consider a specific class of graphs that are used when we
give an orientation to edges. Thus, we define a directed graph, or digraph,
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an ordered couple of sets D = (V,A), where V (D), in this case V , is called
the vertex set, or node set, and A(D), in this case A, is called the arcs set.
For avoiding misunderstandings from now on we refer to the graphs defined
previously as undirected graphs. Differently from the definition of undirected
graphs, the arcs set needs to be of the following form

A := {(v, w)|v, w 2 V (D)}.

Now we are interested on the edge orientations and this is also suggested
by the notation. In fact, in the definition of undirected graph edge the set is
an unordered pair of nodes {v, w} = {w, v} and, contrary, in this case the
edge (v, w) stress the fact that we are going from the node v to the node
w. Thus a vertex w 2 V (D) is adjacent to another vertex v 2 V (D) whether
(v, w) 2 A(D) and we denote this relation by means of v ! w. Like undirected
graphs we can represent digraphs by means of balls and links.

2
1

3 4

Figure 4.6: Example of digraph D = (V,A), where V = {1, 2, 3, 4} and A =
{(1, 1), (1, 3), (2, 1), (3, 1), (3, 2), (3, 3)}.

Moreover we can notice that we have no any constraints that relates vertex
set and arcs set and therefore loops are now allowed. An arc is said to be a
loop whether it has the form (v, v) with v 2 V (D).

Now that we have introduced the different basic structure of digraphs, we
want to present the concepts we showed for the undirected graph from a di-
graphs point of view.

Given an arc (v, w) 2 A(D), v and w are said to be respectively the tail
and the head of the arc. We redefine the degree of a vertex as �(v) = �+(v)+
��(v), where �+(v), called the ingoing degree, is the number of edges in which
v is the head and ��(v), called the outgoing degree, is the number of edges in
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which v is the head. A vertex v that has �+(v) = 0 is said to be source, on the
contrary a vertex v that has ��(v) = 0 is called sink.

Every digraph can be associated to an undirected graph in this way: given
D a digraph, we can define the undirected graph G = (V,E) where V = V (D)
and E is obtained from A(D) by leaving out all the loops and by changing
every couple (v, w) with {v, w}. This new undirected graph is called underlying
graph.

1

2

3

45

D

1

2

3

4
5

G

Figure 4.7: A digraph D = (V,A), where V = {1, 2, 3, 4, 5} and A =
{(1, 4), (2, 2), (2, 3), (3, 5), (4, 4), (5, 3)}, with its underlying graph G where
V (G) = V and E(G) = {{1, 4}, {2, 3}, {3, 5}}.

We say that H = (V 0, A0) is a subgraph of the digraph D if V 0
✓ V (D),

A0
✓ A(D) and the underlying graph of H is a subgraph of the underlying

graph of D. Given a subset of vertices V 0
✓ V (D) then we say that H is

induced by V 0 whether contains all the arcs that has as both the tails and the
heads in V 0.

By considering the underlying graph of a digraph we can also study its
property as an undirected graph. So for example we would say that a digraph
is connected whenever its underlying graph is.

Finally we define the digraph counterpart of paths and cycles, called di-
rected paths and directed cycles. We give directly the sequential notation. A
directed path is describe by a sequence of distinct nodes P = x0 · · · xk where
V (P ) = {x0, . . . , xk} is the nodes set and A(P ) = {(xi, xi+1)|0  i < k}. The
length of a directed path is |A(P )|. Given a digraph D, if for any v, w 2 V (D)
there exists a directed path P form v to w then D is said to be strictly con-
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nected. It is straightforward to see that for directed paths hold every property
of paths.

If P = x0 · · · xk�1 is a path with length k � 3 and xk�1 ! x0 then C :=
P + xk�1x0 is a directed cycle.
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Notation

� Sum in the integer modulo set Zn

2 or symmetric difference
⌦ Tensor product
? Empty set
(·|·) Juxtaposition of two matrices or two vectors
2A Power set of A
| i Dirac notation. It represent a state in quantum mechanics
⇥(f(n)) = {g(n)|9c1, c2 2 R : c1 · f(n)  g(n)  c2 · f(n), n ! 1}

⌦(f(n)) = {g(n)|9c 2 R : g(n) � c · f(n), n ! 1}

rf(x) Gradient vector of the function f
|A| Cardinality of the set A
A(D) Arc set of the digraph D
A† Conjugate transpose of the matrix A
B \ A Set difference
cT Transpose vector of c
C(A) Vector space spanned by the columns of A
E(G) Edge set of the graph G
In Identity gate over n qubits
i ! j Arch from i to j in a directed graph
Im(f) Image of the map f
ker(f) Kernel of the map f
dme Ceiling function
[n] ={1,. . . ,n}


