

www.dii.unipd.i

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

Relazione per la prova finale Analisi FEM per il calcolo delle concentrazioni di tensione e della deformata di componenti strutturali: confronto tra codici tradizionali e meshless

Tutor universitario: Prof. Alberto Campagnolo

Laureando: Matteo Panighel

Padova, 17/11/2023

Corso di Laurea in Ingegneria Meccanica

Tempo di soluzione

www.dii.unipd

di tensione e deformata (spostamenti e rotazioni) nei componenti strutturali

www.dii.unipd

Passi esecuzione analisi FEM

- 1) Condizioni di equilibrio del corpo
- 2) Spostamenti Δf
- 3) Deformazioni $\varepsilon = \frac{\Delta f}{f}$
- 4) Calcolo tensioni $\sigma = \sigma(\varepsilon, E, \nu)$

Fasi della relazione

- Addestramento telaio piano (1D) con SolidWorks Simulation
- 2 Addestramento piastra forata (2D) con tutti e 3 i software
- 3 Analisi albero intermedio di un riduttore ad ingranaggi in termini di concentrazione di tensioni, spostamenti e rotazioni con tutti e 3 i software

www.dii.unipd.i

Prima fase: si prende confidenza con l'analisi FEM attraverso l'analisi di un telaio piano (1D) mediante Solidworks Simulation

Come si esegue un'analisi?

- Modellazione geometrica
- Modellazione FEM (carichi, vincoli, mesh)
- Avvio simulazione
- Estrapolazione ed interpretazione risultati

Deformata in termini di spostamento dei nodi

Corrente superiore: IPE 270

Colonne: HE 100 B

Controventi: L 40x4

Corso di Laurea in Ingegneria Meccanica

Diagramma taglio colonne

Diagramma taglio corrente superiore

Diagramma sforzo normale

Corso di Laurea in Ingegneria Meccanica

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE ADDESTRAMENTO PIASTRA FORATA

Seconda fase: analisi di una piastra forata (2D) mediante tutti e 3 i software, in termini di concentrazione delle tensioni, confrontando i risultati con i valori disponibili in letteratura (Manuale del Peterson)

2

Ansys Workbench-Mechanical

PETERSON'S

Stress Concentration Factors

> Walter D. Pilkey Deborah F. Pilkey

Dal Manuale del Peterson:

2

$$K_{t_g} = 0,284 + \frac{2}{1 - \frac{d}{H}} - 0,600 \cdot \left(1 - \frac{d}{H}\right) + 1,32 \cdot \left(1 - \frac{d}{H}\right)^2 = 4,31$$

Con d = 20 mm (diametro del foro), h = 40 mm (altezza della piastra)

	K _{tg}	T [s]
Solidworks Simulation	4,35	4
Ansys Workbench-mechanical	4,35	1
Ansys Discovery	4,35	32
Letteratura (Peterson)	4,31	-

DI INGEGNERIA INDUSTRIALE ANALISI ALBERO INTERMEDIO DI UN RIDUTTORE AD INGRANAGGI

Terza fase:

3

•

Analisi di una sezione dell'albero intermedio di un riduttore ad ingranaggi (3D) mediante tutti e 3 i software, in termini di concentrazione delle tensioni, confrontando i risultati con i valori disponibili in letteratura

SolidWorks Simulation

Ansys Discovery

Ansys Workbench-Mechanical

	K _t	T [s]
Solidworks Simulation	2,07	16
Ansys Workbench- Mechanical	2,07	9
Ansys Discovery	2,05	52
Letteratura (Peterson)	2,04	-

DI INGEGNERIA INDUSTRIALE ANALISI ALBERO INTERMEDIO DI UN RIDUTTORE AD INGRANAGGI

Corso di Laurea in Ingegneria Meccanica

Oss: Non è possibile effettuare l'analisi con Ansys Discovery

www.dii.unipd.i

Solidworks Simulation	 User friendly Elevata accuratezza Velocità medio/elevata
Ansys Workbench-Mechanical	 Complessità di utilizzo Molte funzionalità Elevata accuratezza Velocità molto elevata
Ansys Discovery	 User-friendly (più di Solidworks) Limitato come funzionalità Elevata accuratezza Molto lento