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Introduction

The aim of this thesis is to give an exhaustive explanation of the paper ”A
modular construction of unramified p-extensions of Q(µp)” by Kenneth A. Ribet
[19].
Let us consider the cyclotomic extension Q(µp) of Q for µp a primitive p-th root
of unity, p an odd prime. Recall that the class number of Q(µp) is the (finite)
number of ideal classes [I]∼ for I a fractional ideal in Q(µp) (where I ∼ J if, and
only if, there exist non-zero a, b ∈ Q(µp) such that (a)I = (b)J). We say that
p is irregular if p divides the class number of Q(µp). An important criterion,
due to Kummer, states that p is irregular if, and only if, there exists an even
integer k, 2 ≤ k ≤ p−3, such that p | Bk where Bk is the k-th Bernoulli number
defined by

x

ex − 1
+
x

2
− 1 =

∑

n≥2

Bn
n!
xn.

The aim of Ribet’s paper is to give a stronger version of the Kummer’s crite-
rion involving the Galois representation of Gal(Q/Q) over the Fp-vector space
A/Ap for A the ideal class group of Q(µp). To prove this criterion we will show
that, given a particular representation, the criterion is proved and then we will
construct such a particular representation using tools of arithmetic geometry.
In Chapter 1, after stating the stronger version of Kummer’s criterion, we state
two theorems: the first one is equivalent to the criterion and involves unramified
p-extension of Q(µp) while the second, and main one, deals with Galois repre-
sentations. We prove that the last one implies Kummer’s criterion and we use
all the remaining of the thesis for the proof of this main theorem. In Chapter
2 we begin studying the properties of reductions of reducible representations
while in Chapter 3 we will study particular Eisenstein series that are congruent
to some cusp forms. Then such a cusp form defined in Chapter 3 will be used
in Chapter 4 to construct, via the Shimura variety attached to it, the Galois
representation required in the main theorem of Chapter 1. Finally, in Chapter 5
we end the proof of such a theorem. All the needing tools used in these chapters
are stated in the two appendices at the end of this thesis.
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Chapter 1

A stronger version of the
Kummer’s criterion

Let us consider the (finite) ideal class group A of the cyclotomic field Q(µp) and
let us define C to be the Fp-vector space A/Ap such that dimFp

C = p-rank of

A. Let us notice that the Galois group Gal(Q/Q) acts on the vector space C via
the Galois group ∆ = Gal(Q(µp)/Q), then consider the Galois representation

ρ : ∆ = Gal(Q(µp)/Q)→ GL(C)

and the standard cyclotomic character

χ : ∆→ F∗
p given by σ 7→ χ(σ)

where σ(µp) = µ
χ(σ)
p . Then, since all characters of ∆ are powers of the standard

character χ, χ generates the character group of ∆. Hence we may notice that,
since ∆ ∼= (Z /pZ)∗, |∆| = p− 1 is coprime with the characteristic p of Fp then,
by Maschke’s Theorem ([11] Corollary 1.6), we have that C may be written in
a canonical way as the direct sum

C =
⊕

i mod p−1

C(χi)

where C(χi) = {c ∈ C | σ(c) = χi(σ)(c) for every σ ∈ ∆}.

Let us now state the stronger version of the Kummer ’s criterion.

Theorem 1.1. Let k be an even integer such that 2 ≤ k ≤ p− 3. Then p | Bk
if, and only if, C(χ1−k) ̸= 0.

The statement C(χ1−k) ̸= 0 implies p | Bk is known as Herbrand’s Theorem
and its proof, that we are now going to show, does not involve any further
construction.
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Definition 1.2. Let χ : (Z /nZ)∗ → C be a Dirichlet character and f ∈ Z≥0 be
the conductor of χ (i.e. the smallest positive integer such that χ factors through
(Z /f Z)∗). For n ≥ 0, let us define the generalized Bernoulli numbers Bn,χ by

f∑

a=1

χ(a)xeax

efx − 1
=

∞∑

n=0

Bn,χ
xn

n!

Lemma 1.3 ([23] (Corollary 5.15)). Let χ be the standard cyclotomic character
and let n be an odd integer, n ̸≡ −1 (mod p−1). Then the following equivalence
holds

B1,χn ≡ Bn+1

n+ 1
mod p.

Proof (of Herbrand’s Theorem). Let us consider the generalized Bernoulli num-
ber B1,χk−1 then, by [15] Theorem 2.3, we have that B1,χk−1 annihilates C(χ1−k)
1. Now, by Lemma 1.3, we have that

B1,χk−1 ≡ Bk
k

mod p

then, if p ∤ Bk, we obtain that B1,χk−1 ≡ a (mod p) for some a ∈ F∗
p and so

C(χ1−k) = 0.

The main purpose of this paper is to prove the converse statement of the Her-
brand’s Theorem but, instead of proving it directly, we will prove an equivalent
theorem.

Theorem 1.4. Let p | Bk. Then there exists a Galois extension E/Q containing
Q(µp) such that:

1. The extension E/Q(µp) is unramified;

2. The group H = Gal(E/Q(µp)) is a non-zero abelian group of type (p, . . . , p);

3. If σ ∈ G = Gal(E/Q), τ ∈ H, then στσ−1 = χ(σ)1−kτ .

Let us now show the equivalence between Theorem 1.1 and Theorem 1.4.

Proof. Let us show that 1. and 2. of Theorem 1.4 are equivalent to C ̸= 0.
By definition of the Hilbert class field of Q(µp) we have that it is the maximal
unramified abelian extension E of Q(µp) such that Gal(E/Q(µp)) ∼= A, where
A is the ideal class group. Then the Artin map A→ Gal(E/Q(µp)) is obviously
an isomorphism. Let us now prove that 3 is equivalent to C(χ1−k) ̸= 0.
(⇒) Let us consider the tower E/Q(µp)/Q of field extensions where, by assump-
tion, E/Q is a Galois extension and E/Q(µp) is an unramified abelian extension.
Then there is a well-known ([22], Theorem 11.5) functoriality formula for the
Artin symbol [

E/Q(µp)

·

]
: A→ Gal(E/Q(µp))

1That means that B1,χk−1C(χ1−k) = 0.
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given by

σ

[
E/Q(µp)

a

]
σ−1 =

[
E/Q(µp)

σa

]
(1.1)

where a is a fractional ideal of Q(µp), σ ∈ Gal(E/Q). Let us consider τ ∈
Gal(E/Q(µp)) and let H be the Hilbert class field of Q(µp) then the Artin
symbol for E/Q(µp) is a quotient of the Artin symbol for H/Q(µp) and hence
it is surjective. Therefore there exists a fractional ideal a of Q(µp) such that

[
E/Q(µp)

a

]
= τ.

By 3 we have that there exists k such that

στσ−1 = χ1−k(σ)τ

then, by (1.1), we have

[
E/Q(µp)

σa

]
= στσ−1

= χ1−k(σ)τ

= χ1−k(σ)

[
E/Q(µp)

a

]

=

[
E/Q(µp)

χ1−k(σ)a

]

Then χ1−k(σ)a belongs to the same ideal class of σa modulo the kernel of the
Artin symbol that is Ap. Then we obtain that C(χ1−k) ̸= 0.
(⇐) Let us assume that C(χ1−k) ̸= 0 then there exists a fractional ideal a of
Q(µp) such that σa = χ1−k(σ)a for every σ ∈ G then, we have that

[
E/Q(µp)

σa

]
=

[
E/Q(µp)

χ1−k(σ)a

]

and so, setting again τ =
[
E/Q(µp)

a

]
, we obtain using (1.1), that στσ−1 =

χ1−k(σ)τ .

Now, instead of proving Theorem 1.4, we will state (and then prove in the
remaining part of the paper) a Theorem involving Galois representations that
implies 1.4.

Theorem 1.5. Let p | Bk. Then there exists a finite field F ⊇ Fp and a
continuous representation

ρ : Gal(Q/Q)→ GL2(F)

such that:
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i. ρ is unramified at all primes l ̸= p;

ii. The representation ρ is reducible over F such that it is isomorphic to

a representation of the form

(
1 ∗
0 χk−1

)
i.e. ρ is an extension of the 1-

dimensional representation with character χk−1 by the trivial 1-dimensional
representation;

iii. The image of ρ has order divisible by p i.e. ρ is not diagonalizable;

iv. Let Dp be a decomposition group for p in Gal(Q/Q), then ρ(Dp) has order
prime to p i.e. ρ|Dp is diagonalizable.

Let us now prove that this Theorem implies Theorem 1.4 where we substitute
Q(µp) with its subfield Q(µ1−k

p ) of degree (p − 1)/(p − 1, k − 1) that is fixed

by kerχ1−k.Then this version of Theorem 1.4 obviously will imply the initial
version of it.

Proof. • Let us show that there exists a Galois extension E/Q containing
Q(µ1−k

p ). Since ker ρ is an open in Gal(Q/Q), then, by definition of Krull

topology, ker ρ contains Gal(Q/E) for E/Q a Galois extension. Then we
may write ρ : Gal(E/Q) ↪→ GL2(Fp) with χ : Gal(E/Q) ↪→ Fp factoring
through ∆ = Gal(Q(µp)/Q) and so, by ii), Q(µ1−k

p ) ⊆ E.

• Let us show that E/Q(µ1−k
p ) is Galois. Let σ ∈ Gal(E/Q) such that σ

fixes Q(µ1−k
p ). Then

ρ(σ) =

(
1 ∗
0 χk−1

)
(σ) =

(
1 ∗
0 χk−1(σ)

)
=

(
1 ∗
0 1

)

where we use that χk−1 = χ1−k and that the fixed field of kerχ1−k is

Q(µ1−k
p ). Then, since the matrices of the type

(
1 ∗
0 1

)
form a normal

subgroup of ρ(Gal(E/Q)), we have that E/Q(µ1−k
p ) is a Galois extension.

Moreover, Gal(E/Q(µ1−k
p )) is obviously abelian.

• Let us show that E/Q(µ1−k
p ) has type (p, . . . , p). Indeed, the elements(

1 ∗
0 1

)
of ρ(Gal(E/Q(µ1−k

p ))) are such that

(
1 ∗
0 1

)p
=

(
1 p∗
0 1

)
=

(
1 0
0 1

)
.

• Let us show that E/Q(µ1−k
p ) is non trivial. By iii) we have that ρ has

image of order divisible by p then there exists a matrix of order p, then, as
Gal(Q(µ1−k

p )/Q) has order (p−1)/(p−1, k−1) coprime to p, we have that

the matrices of order p belong to ρ(Gal((E/Q(µ1−k
p ))). Hence E/Q(µ1−k

p )
is non-trivial.
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• Let us show that Q(µ1−k
p )/Q is totally ramified at p. Let us consider the

extension Q(µ1−k
p )/Q, then we have that gef = [Q(µ1−k

p ) : Q] = p−1
(p−1,k−1)

where e and f are the ramification index and the inertia degree of p in
Q(µ1−k

p ) and g the number of factors in which p splits. We claim that

e = p−1
(p−1,k−1) i.e. p is totally ramified in Q(µ1−k

p ). Let P a prime in

Q(µp) over p, then e(P|p) = φ(p) = p − 1. Since the ramification index
is multiplicative in tower we have that, for P a prime over p in Q(µ1−k

p ),
e(P|p) = e(P|P )e(P |p) then, if we assume by contradiction that e(P |p) <

p−1
(p−1,k−1) , then e(P|P ) > (p−1, k−1) = [Q(µp) : Q(µ1−k

p )], contradiction.

• Let us show that E/Q(µ1−k
p ) is unramified. By i) we have that ρ is unram-

ified at every prime l ̸= p then it remains to show only that E/Q(µ1−k
p )

is unramified at p, then let us show that E/Q(µ1−k
p ) is totally unramified

at the unique prime P over p. By iv) we have that the decomposition
group Dp at p is such that ρ(Dp) has order prime to p i.e. Dp has order
prime to p. But the ramification index e(Q|p) of p in E divides the order
of Dp and the ramification index e(Q|P ) of P in E divides p then, by the
tower multiplicativity of the ramification index we have that E/Q(µ1−k

p )
is totally unramified also at p.

• Let σ ∈ Gal(E/Q), τ ∈ Gal(E/Q(µ1−k
p )), then we show that στσ−1 =

χ(σ)1−kτ . Let us notice that

ρ(σ) =

(
1 aσ
0 χk−1(σ)

)
and ρ(τ) =

(
1 aτ
0 1

)

since kerχ1−k fixes Gal(Q/Q(µ1−k
p )) ⊇ Gal(E/Q(µ1−k

p )), then we have to
show that the following equality holds

ρ(σ)ρ(τ)ρ(σ)−1 = χ1−k(σ)ρ(τ).

We have

ρ(σ)ρ(τ)ρ(σ)−1 =

(
1 aσ
0 χk−1(σ)

)(
1 aτ
0 1

)(
1 −aσχ1−k(σ)
0 χ1−k(σ)

)

=

(
1 aσ
0 χk−1(σ)

)(
1 0
0 χ1−k(σ)

)

=

(
1 aσχ

1−k(σ)
0 1(σ)

)

=

(
1 aσ
0 1

)χ1−k(σ)

= χ(σ)1−k · ρ(τ)
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Chapter 2

Reductions of Reducible
Representations

The aim of this section is to define the notion of reduction of a representation
and to study its structure.

Let us consider a finite extension K of the p-adic numbers Qp and let O be
its ring of integers with residue field F and uniformizing parameter π. Let us
consider a free module V of rank 2 over K.

Definition 2.1. With notations as above, a lattice T in V is a free O-module
of rank 2 in V such that it generates V over K, i.e. T ·K = V .

To give the definition of reduction of a representation we firstly have to study
the stability of lattices under the action of groups.

Definition 2.2. Let ρ : G→ GL(V ) be a representation of a group G in V . A
lattice T in V is said to be stable if ρ(g)(T ) = T for every g ∈ G.

For p-adic Galois representations we have the following result about stable
lattices.

Proposition 2.3. Let ρ : G→ GL(V ) be a p-adic Galois representation. Then
there exists at least one lattice T of V stable under the action of G.

Proof. Let L be a lattice in V and define H to be the stabilizer of L in G, i.e.

H = {g ∈ G | g.L = L}

where
G× V → V given by (g, v) 7→ g.v

is a 2-dimensional p-adic representation as in Definition B.32 1. Then H is open
in G. Indeed, let {l1, l2} be a basis of L and, for i = 1, 2, let fi : G → V given
by g 7→ g.li. Then

H = {g ∈ G | g.l1 ∈ L} ∩ {g ∈ G | g.l2 ∈ L} = f−1
1 (L) ∩ f−1

2 (L).

1equivalent to the one in Definition B.31
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Hence, since G is compact and H is open, G/H is finite. Therefore the lattice
T =

⋃
g∈G/H ρ(g)L is, by construction, stable under the action of G.

Now, since T is G-stable, also πT is G-stable by linearity. Then we may
define an action of G on T/πT by g(t + πT ) = ρ(g)(t) + πT . It is well-defined
since, if we consider t′ in the same coset of t, t−t′ ∈ πT and so ρ(g)(t−t′) ∈ πT .
Let us notice that T/πT is free of rank 2 over F .

Let us now introduce the notion of reduction of a representation.

Definition 2.4. Let ρ : G → GL(V ) be a p-adic Galois representation, T a
G-stable lattice in V . With notations as above, the map ρ : G→ GL(T/πT ) is
called the reduction of ρ attached to T .

Let us now give the definition of semisimplification of a representation.

Definition 2.5. Let ρ : G→ GL(V ) be a representation as above. A filtration
0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V of V is called a Jordan-Hölder series if, for
every j = 1, . . . , n, Vj is a subrepresentation and Vj/Vj−1 is simple. Then the
semisimplification of V is

⊕n
j=1 Vj/Vj−1.

By the Brauer-Nesbitt theorem ([5] Theorem 30.16) we have that the semisim-
plification of the reduction ρ does not depend on the choice of the lattice T .
Hence, up to semisimplifications, reductions of p-adic representations are unique
and so, ρ is unique if one reduction (and thus any reduction) is simple.

Let us recall that we want to prove Theorem 1.5 and so let us consider the
opposite situation, i.e. let us assume that the reduction ρ : G → GL2(F ) of
ρ : G→ GL(V ) is reducible. Then the semisimplifications of ρ are described by
φ1 ⊕ φ2, where φ1, φ2 : G → F ∗ are characters not depending on the choice of
the lattice T . Hence a reduction ρ of a representation ρ may be written, in a
matricial way, as (

φ1 ∗
0 φ2

)
or

(
φ1 0
∗ φ2

)
.

Let us now study a criterion for the semisimplicity of such a reduction. It
will be useful in the next chapters.

Lemma 2.6. Let F be a field of characteristic p. A representation ρ : G →
GL2(F ) is diagonalizable, i.e. semisimple, if, and only if, its image has order
prime to p.

Proof. Let α be an element in the image of ρ, i.e. α ∈ GL2(F ). Then, in the
algebraic closure F , α has a Jordan form of the type

A =

(
a 1
0 a

)
or B =

(
a 0
0 d

)

for a, d ∈ F ∗
. Let us now take n ≥ 1, then we have that

An =

(
an nan−1

0 an

)
and Bn =

(
an 0
0 dn

)
.

14



Then we may notice that A is not semisimple but has order divisible by p (since
otherwise nan−1 ̸≡ 0 mod p) while B is semisimple but has order not divisible
by p (otherwise an = apan−p = aan−p).

Recalling that we are considering representations such that their reductions
are reducible, let us study the form of these reductions.

Proposition 2.7. Let ρ : G → GL2(K) be a simple representation with all
its reductions that are reducible. Let φ1, φ2 be the characters associated to the
reductions of ρ. Then G leaves stable some lattice T ⊆ V for which the associated

reduction is of the form

(
φ1 ∗
0 φ2

)
but is not semisimple.

Proof. Let us begin the proof with two observations that will be useful in the
following.

1. Let T be a G-stable lattice of V with an O-basis, then the representation
ρ : G → GL2(K) can be seen as ρ : G → GL2(O) and any M ∈ GL2(K)
such that Mρ(G)M−1 ⊆ GL2(O) defines another G-stable lattice MT
together with a basis of it. Hence the reduction attached to this new
lattice is the map

G→Mρ(G)M−1 ↪→ GL2(O)→ GL2(F ).

2. Let P =

(
1 0
0 π

)
, where π is the uniformizer defined at the beginning of

this chapter. Then, doing some obvious computations, we have that the
following equality holds.

P

(
a πb
c d

)
P−1 =

(
a b
πc d

)
(2.1)

Let us now start the proof.

1. We may assume that the reduction ρ is always of the form

(
φ1 ∗
0 φ2

)
.

Indeed, with the same notations as above, let ρ : G → GL2(O) be the
representation, T a G-stable lattice in V with an O-basis and assume that

ρ has the form

(
φ1 0
∗ φ2

)
, then, using (2.1), we obtain

(
φ1 0
∗ φ2

)
≡
(
φ1 πb
∗ φ2

)
(2.1)⇒

(
φ1 b
π∗ φ2

)
≡
(
φ1 b
0 φ2

)
.

2. Let us now assume by contradiction that every reduction ρ of the form(
φ1 ∗
0 φ2

)
is semisimple. Then, if we prove that ρ is reducible, the proof is

complete because we obtain a contradiction (indeed, ρ was by assumption

15



simple). To prove that ρ is reducible, starting with M0 = I2 the identity
matrix, we will construct inductively a convergent sequence of matrices

Mi =

(
1 ti
0 1

)
such that Miρ(G)M

−1
i ⊆ GL2(O) consists of matrices

whose lower-left corner entries are divisible by π and whose upper-right
corner entries are divisible by πi. Then, with such a converging sequence,

we will obtain that the matrix M =

(
1 t
0 1

)
, where t = limi ti, is such

that Mρ(G)M−1 are matrices with upper-right corner entries equal to 0.
Hence the representation ρ will be reducible. Let us now show that the
sequence {Mi}i above converges. Let us notice that we can reformulate the
induction in the following way. Let us assume that Miρ(G)M

−1
i consists

of matrices of the form

(
a πib
πc d

)
for a, b, c, d ∈ O. Using equation (2.1)

we then obtain

P iMiρ(G)M
−1
i P−i =

(
a b

πi+1 d

)
.

Hence the representation given by

g 7→ P iMiρ(g)M
−1
i P−1(mod π)

is of the form

(
φ1 ∗
0 φ2

)
since the representation g 7→ ρ(g)( mod π) is of

this form. By assumption we have that this representation is semisimple
then we may choose an element u ∈ O such that the mod π representation

is diagonalized by the matrix U =

(
1 u
0 1

)
. This means that there exists

an element u ∈ O such that UP iMiρ(G)M
−1
i P−iU−1 consists of matrices

of the form

(
α πβ

πi+1γ δ

)
. Then, conjugating by P−i we obtain

(P−iUP iMi)ρ(G)(P
−iUP iMi)

−1 =

(
α πi+1β
πc d

)

and so, setting

Mi+1 = P−iUP iMi =

(
1 ti + πiu
0 1

)
,

we may continue the induction. Using this last formula we may also notice
that the sequence {Mi}i converges.
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Chapter 3

A congruence between a
cusp form and an Eisenstein
series

First of all, let us warning the reader that all the needing definitions and results
related to modular forms are given, without proofs, in Appendix A.

Let p be an odd prime and let us consider a Dirichlet character modulo p
ε : (Z /pZ)∗ → C that could be also the trivial character. For a modular form
f of weight k on Γ1(p), let us now give a definition regarding the character.

Definition 3.1. With notations as above, let us define the modular form f ∈
Mk(Γ1(p)), k = 1, 2, to be of type ε if it satisfies

f

[(
a b
c d

)]

k

= ε(d)f

for every

(
a b
c d

)
∈ Γ0(p).

Remark 3.2. For a modular form f ∈Mk(Γ1(p)), being of type ε is equivalent
to say that

⟨d⟩f = ε(d)f

for every

(
a b
c d

)
∈ Γ0(p) where ⟨d⟩ is the Diamond operator defined in Defini-

tion A.36 for (d, p) = 1.

We are interested in particular types of modular forms of type ε called cusp
forms and semi-cusp forms.

Definition 3.3. Let f be a modular form. For every τ ∈ H the q-expansion of
f(τ) is the series

∑
n≥0 an(f)q

n where q = e2πiτ .

With this definition we can define the notions of cusp forms and semi-cusp
forms.

17



Definition 3.4. Let f ∈Mk(Γ1(p)) be a modular form of type ε. It is called a

cusp form if its q-expansion and that of f [

(
0 −1
p 0

)
]k both have the coefficient

a0 equal to 0. If only the q-expansion of f begins with 0 then f is called a
semi-cusp form.

Remark 3.5. Let us notice that the definition above agrees with the one in
Definition A.17 since the two q-expansions considered above are the two q-
expansions related to the two cusp forms (0 and ∞) of Γ0(p).

Let us now associate to the character ε some Eisenstein series.
First of all let us recall a usual definition about characters.

Definition 3.6. A character ε is said to be even (resp. odd) if ε(−1) = 1 (resp.
ε(−1) = −1).

Then, thanks to Theorem A.30, we know that for a non-trivial even1 char-
acter ε of modulo p there exist two Eisenstein series of weight 2 and type ε on
Γ1(p). Indeed, E2(p, ε) has basis {G2,ε = E1,ε,1

2 , s2,ε = Eε,1,12 } given by

G2,ε = E1,ε,1
2 (τ) = E1,ε

2 (τ) = L(−1, ε)/2 +
∑

n≥1

∑

d|n

ε(d)dqn,

s2,ε = Eε,1,12 (τ) = Eε,12 (τ) =
∑

n≥1

∑

d|n

ε(n/d)dqn

where L(s, χ) =
∑
n≥1

χ(n)
ns , for χ a Dirichlet character and s ∈ C such that

Re s > 1, is the L-Dirichlet function.

Remark 3.7. Let us notice that the Eisenstein series s2,ε is only a semi-cusp
form since it vanishes only at the cusp of Γ0(p) corresponding to ∞.

Then, by Proposition A.27, the space of modular forms of weight 2 and type
ε is generated by the cusp forms and the two Eisenstein series G2,ε and s2,ε.

Again by Theorem A.31, we have that there exists only one Eisenstein series
of weight 1 and type ε given by

G1,ε = Eε,1,11 (τ) = L(0, ε)/2 +
∑

n≥1

∑

d|n

ε(d)qn

where ε is an odd character2.
Let us notice that by Theorem A.42, the Eisenstein series of weight 2 de-

fined above are eigenforms for the Hecke operators Tn, when (n, p) = 1, with
eigenvalues

TnG2,ε = TnE
1,ε,1
2 = (1 + nε(n))G2,ε,

Tns2,ε = TnE
ε,1,1
2 = (ε(n) + n)s2,ε.

1Indeed, by Theorem A.30, ε · 1(−1) = 1.
2Indeed, by Theorem A.31, ε · 1(−1) = −1.
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In order to construct the cusp form that will be used in the proof of Theorem
1.5, we firstly have to study some results about congruences of some Eisenstein
series.

From now on, let us fix a prime p of Q(µp−1) lying over p, with p splitting
completely in Q(µp−1)

3 and µp−1 the group of complex (p−1)-th roots of unity.
Then let us consider the unique character

ω : (Z /pZ)∗
∼=→ µp−1

such that ω(d) ≡ d mod p for every d ∈ Z4.
Let us now study the form of the two Eisenstein series G1,ωk−1 and G2,ωk−2

defined above.

Lemma 3.8. Let k be an even integer, 2 ≤ k ≤ p − 3. Then the modular
forms G2,ωk−2 and G1,ωk−1 have p-integral q-expansions in Q(µp−1) which are
congruent modulo p to the q-expansion

Gk = −Bk
2k

+
∑

n≥1

∑

d|n

dk−1qn.

Proof. From the definitions of Eisenstein series given above we have

G2,ωk−2 =
L(−1, ωk−2)

2
+
∑

n≥1

∑

d|n

ωk−2(d)dqn

G1,ωk−1 =
L(0, ωk−1)

2
+
∑

n≥1

∑

d|n

ωk−1(d)qn.

Then, if we consider the terms for n ≥ 1, their coefficients are respectively
ωk−2(d)d and ωk−1(d). But ω is defined such that ω(d) ≡ d mod p and so
we obtain ωk−2(d)d ≡ dk−1 ≡ ωk−1(d) mod p. Hence it remains to prove the
congruence only for the constant terms of the two series. Let us recall that the

Dirichlet L-function L(s, ε) =
∑
n≥1

ε(n)
ns , where ε is a character mod k, may be

written as

L(s, ε) =
1

ks

k∑

r=1

ε(r)ζ(s,
r

k
)

where ζ(s, a) is the Hurwitz-zeta function such that

ζ(0, a) =
1

2
− a and ζ(−n, a) = −Bn+1(a)

n+ 1

3Indeed, p splits completely in the cyclotomic field Q(µp−1) if, and only if, p ≡ 1 mod
p− 1.

4It is known also as Teichmüller character.
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for Bn+1(a) the (n + 1)-Bernoulli polynomial. Since in our situation we are
considering characters modulo p, we obtain

L(0, ε) =

p∑

n=1

ε(n)ζ(0,
n

p
)

=

p−1∑

n=1

ε(n)(
1

2
− n

p
) + ε(p)ζ(0, 1)

= −1

p

(
p−1∑

n=1

ε(n)(n− p

2
)

)

and

L(−1, ε) = p

p∑

n=1

ε(n)ζ(−1, n
p
)

= p

p∑

n=1

ε(n)

(
−B2(n/p)

2

)

= p

(
p−1∑

n=1

ε(n)(−
∑2
k=0

(
2
k

)
B2−k · (n/p)k
2

)

)
+ pε(p)

(
−B2(1)

2

)

= p

(
p−1∑

n=1

−ε(n)
2

(
1

6
− n

p
+ (

n

p
)2
))

= − 1

2p

p−1∑

n=1

(
p2

6
− np+ n2

)
ε(n).

Now, by a consequence of the Hensel’s lemma ([3] Section 3.2)5, we have that
ω(n) ≡ np mod p2 and so, applying this equivalence in the above equalities for
ε = ωk−1 and ωk−2 respectively, we obtain

pL(0, ωk−1) ≡ −
p−1∑

n=1

np(k−1)+1 mod p2

pL(−1, ωk−2) ≡ −1

2

p−1∑

n=1

np(k−2)+2 mod p2.

Moreover, by [1] result 8.8 pag.385, we have that

pBt ≡
p−1∑

n=1

nt mod p2

and, by the Kummer’s congruences ([23] Corollary 5.14),

Bt
t
≡ Bt+p−1

t+ p− 1
mod p.

5Applied to the polynomial f(x) = xp−1 − 1 and the element np.
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Hence we obtain

L(0, ωk−1) ≡ −Bp(k−1)+1 ≡ −(p(k − 1) + 1)
Bk+p−1

k + p− 1
≡ −Bk

k
mod p

L(−1, ωk−2) ≡ −1

2
B2+p(k−2) ≡ −

1

2
(2 + p(k − 2))

Bp(k−1)+1

p(k − 1) + 1
≡ −Bk

k
mod p

where we used also that 1 + p(k − 1) ≡ k ≡ 2 + p(k − 2) mod (p− 1).

This lemma has an immediate corollary.

Corollary 3.9. Let k,m, n be even integers, 2 ≤ k,m, n ≤ p − 3, such that
n+m ≡ k mod (p− 1). Then the product

G1,ωn−1G1,ωm−1

is a modular form of weight 2 and type ωk−2 with a p-integral q-expansion in
Q(µp−1). Moreover, its constant term is a p-unit provided that neither Bn nor
Bm are divisible by p.

Proof. The product G1,ωn−1G1,ωm−1 is clearly a modular form of weight 2 and
type ωn−1ωm−1 ≡ ωk−2 mod (p − 1). Then, by Lemma 3.8, we have that it
has a p-integral q-expansion in Q(µp−1) and its constant term is a p-unit if
p ∤ Bn, Bm.

Let us now construct a particular modular form of weight 2 and type ωk−2

that will be used to define a semi-cusp form.

Theorem 3.10. Let k be an even integer, 2 ≤ k ≤ p − 3. Then there exists
a modular form g of weight 2 and type ωk−2 whose q-expansion coefficients are
p-integers in Q(µp−1) and whose constant term is 1.

Proof. Let us notice that it suffices to construct such a g with constant term
being a p-unit. Then, multiplying by another unit, we will obtain constant term
equal to 1. Let us divide our proof in cases.

1. Let p ∤ Bk. Then, by Lemma 3.8, we may choose g = G2,ωk−2 .

2. Let p ∤ BnBm for m,n even integers as in Corollary 3.9. Then we may
choose g = G1,ωn−1G1,ωm−1 .

3. Let p | BnBm, where n,m are defined as in Corollary 3.9, and let t be the
number of even integers n, 2 ≤ n ≤ p − 3, such that p | Bn. Since there
exist (p− 1)/2 Bernoulli numbers Bn for 2 ≤ n ≤ p− 3 even, to show the
theorem it suffices to show that p divides less than (p− 1)/4 of them, i.e.
we want to show that t < p−1

4 . Let us now show that pt | h−, where h−
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is the negative part of the class number of Q(µp)
6. By [12] pag. 250, we

have that the negative part h− may be written as

h− = αp

p−1∏

k=2k even

L(0, ωk−1).

Then, arguing as in the proof of Lemma 3.8, we obtain that

h− = αp

p−1∏

k=2k even

−Bk
2k
.

Hence, by definition of t, pt | h−.
Then, since by the claim pt | h−, it will suffice to show that h− < p(p−1)/47.
By [2] result 1.7 pag. 266, we may write

h− = ± D

p(p−3)/2

where D is a determinant of dimension (p−1)/2 whose entries are integers
between 1 and p− 1. Then, by Hadamard’s inequality8, we have that

|D| ≤ (p− 1)(p−1)/2(
p− 1

2
)(p−1)/4

and so we obtain that

h− ≤ (p− 1)(p−1)/2(
p− 1

2
)(p−1)/4p−(p−3)/2

< p(p−1)/2(p/2)(p−1)/4p−(p−3)/2

= p(p+3)/42−(p−1)/4.

If p ≤ 19 then, by [23] Chap. II, h− = 1 and so obviously h− < p(p−1)/4.
If p > 19 then, since p ≤ 2(p−1)/4, h− < p(p+3)/42−(p−1)/4 ≤ p(p−1)/4.

From now on, let us fix an even integer k, 2 ≤ k ≤ p − 3, such that p | Bk
and let us set ε = ωk−2. By the fact that B2 = 1

6 , we may refine the limitation
for k and consider even k such that 4 ≤ k ≤ p− 3, hence ε will be a non-trivial
even character. Moreover, all the modular forms that we will consider will be
of weight 2 and type ε.

Under these assumption, let us now notice that the previous results give us
a semi-cusp form equivalent to the Eisenstein series G2,ε.

6Recall that the negative part h− of the class number h of Q(µp) is defined by h−h+ = h,
where h+ is the class number of the real cyclotomic field of Q(µp).

7Indeed, if h− | p(p−1)/4 then, as pt | h−, pt < p(p−1)/4 and so t < (p− 1)/4.
8Let A be a n× n matrix whose entries are bounded by C, then | det(A)| ≤ Cnnn/2.
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Proposition 3.11. There exists a semi-cusp form f =
∑
n≥1 anq

n such that:

1. The coefficients an are p-integers in Q(µp−1)

2. f ≡ Gk ≡ G2,ε (mod p) in q-expansions.

Proof. Let c be the constant term of the Eisenstein series G2,ε and let us define
f as f = G2,ε − c · g, where g is the g defined in Theorem 3.10. Then, as the
constant term of g is 1, the constant term of the q-expansion of f will be 0
and so f is, by definition, a semi-cusp form. Moreover, by Lemma 3.8, we have
that G2,ε ≡ Gk (mod p) and so, in particular, c ≡ −Bk

2k (mod p). Since by
assumption p | Bk, then p | c and so f ≡ G2,ε (mod p).

Let us now prove that the semi-cusp form defined in Proposition 3.11 is
actually a cusp form that is also an eigenform for some Hecke operators.

Proposition 3.12. There exists a non-zero cusp form f ′ of type ε which is
an eigenform for all the Hecke operators Tn with (n, p) = 1 and which has the
property that for each prime l ̸= p the eigenvalue λ(l) of Tl acting on f ′ satisfies

λ(l) ≡ 1 + lk−1 ≡ 1 + ε(l)l (modM),

whereM is a certain prime (independent from l) lying over p in the field
Q(µp−1, λ(n)) generated by the eigenvalues over Q(µp−1).

Proof. Let us prove this proposition by steps.

1. Let us consider the semi-cusp form f defined in Proposition 3.11. By
loc.cit. we have that f ≡ G2,ε (mod p) and so, by Theorem A.42, it is a
(mod p)-eigenform for the Hecke operators Tn, (n, p) = 1.

2. We have already noticed before Lemma 3.8 that, for primes l ̸= p, TlG2,ε =
(1 + ε(l)l)G2,ε hence, by the previous step, Tlf ≡ (1 + ε(l)l)f (mod p).
Let us now recall that ε = ωk−2 is a non-trivial even character such that
ω(l) ≡ l (mod p), hence ωk−2(l)l ≡ lk−1 (mod p) that means that the
eigenvalue λ(l) of f under Tl is λ(l) ≡ 1 + lk−1 (mod p).

3. By the Deligne-Serre’s lemma [8] 6.11, we obtain a semi-cusp form f ′ as
in the statement.

4. It remains only to show that such a semi-cusp form f ′ is indeed a cusp
form. Since we have already noticed that the space of the semi-cusp forms
is generated by the cusp forms and the semi-cusp form s2,ε, it suffices to
show that f ′ ̸= s2,ε. Again thanks to the facts before Lemma 3.8, we
have that Tls2,ε = (l + ε(l))s2,ε hence we would have l + ε(l) ≡ 1 + lε(l)
(mod p) but this cannot happen since ε(l) ̸≡ 1 (indeed, ε is non-trivial by
assumption).
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In the next proposition we will see that the cusp-form f ′ defined in Proposi-
tion 3.12 is an eigenform for Tn for every n and not only for the n’s not divisible
by p.

Proposition 3.13. Let f ′ be a form as in the statement of Proposition 3.12.
Then f ′ is an eigenform for all Hecke operators Tn (including those for which
p | n). Hence, after replacing f ′ by a multiple f̃ of f ′, we have

f̃ =

∞∑

n=1

λ(n)qn

with Tnf̃ = λ(n)f̃ .

Proof. Let f ′ be defined as in Proposition 3.12, then it is an eigenform for Tn
when (n, p) = 1 and so, by [9] Exercise 5.8.4, f ′ is an oldform or a newform. If
we assume that f ′ is an oldform, then f ′ has to belong to S2(Γ1(p))

old that is
the trivial space since M2(SL2(Z)) is the trivial space by Remark A.8. Hence
f ′ is a newform. Applying [9] Theorem 5.8.2 a), we then obtain that f ′ is a
Hecke eigenform for every positive n ∈ Z such that a suitable scalar multiple f̃
is a newform of weight 2 and type ε with the property that Tnf̃ = λ(n)f̃ where
f̃ =

∑∞
n=1 λ(n)q

n.

We can then summarize all the previous propositions in the statement of the
next theorem.

Theorem 3.14. There exists a cusp form f =
∑
n≥1 anq

n of weight 2 and some
type ε which is a normalized, i.e. a1 = 1, eigenform for all Hecke operators Tn
and which satisfies

al ≡ 1 + lk−1 ≡ 1 + ε(l)l (mod p)

for all primes l ̸= p, where p is a certain prime ideal over p in the field K
generated by the coefficients of f , which does not depend on l.
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Chapter 4

Construction and study of
the (mod p) representation

In Chapter 3 we have studied particular cusp forms that turned out to be
eigenforms for every Hecke operator of the type Tn. In this chapter we will use
such results to construct the mod p representation Theorem 1.5.

By Theorem B.40 we have that the representation ρ associated to the cusp
form f is unramified at every prime l ̸= p. Then, to prove Theorem 1.5 points
ii) and iii), it remains only to show that there exists a lattice in the represen-

tation such that the associated reduction of ρ is of the form

(
1 ∗
0 χk−1

)
and

it’s not semisimple. But thanks to Proposition 2.7 we have only to show that
the representation ρ is irreducible and to find a lattice such that the associated
reduction is reducible. Then we will only have to prove that this reduction has
semisimplification of the form 1⊕ χk−1.

Let us now assume p | Bk for some k even integer, 2 ≤ k ≤ p − 3, and
consider the cusp eigenform f ∈ S2(p, ε = ωk−2) defined in Theorem 3.14. Let

ρ : GQ = Gal(Q/Q)→ GL(Vp(Af ))

be the representation defined in Theorem B.40. By construction we have that
f ≡ Gk mod p, then, by Theorem 3.14, al ≡ 1+lk−1 mod p. Hence, by Theorem
B.40, we have that an absolute Frobenius element Frobl over l acts on Vp(Af )
with

Tr(Frobl) = al and det(Frobl) = lε(l). (4.1)

By Theorem B.28 we have that any system of absolute Frobenius elements
F is dense in GQ hence, since ρ, and then its determinant, is continuous, the
determinant may be uniquely extended from F ⊆ GQ to a continuous homo-
morphism GQ → Kp, where Kp is the completion of the field K at p. Then
Frobl → l is extended uniquely by the standard cyclotomic character

χ∗ : GQ → Z×
p ⊆ K×

p .

25



Hence the character ε may be seen as a character of GQ via ε : σ 7→ ε(χ∗(σ)).
Therefore, det ρ = χ∗ε.

Let us now show that the representation ρ is irreducible.

Proposition 4.1. The Kp-representation ρ is irreducible.

Proof. Let us assume by contradiction that the representation ρ is reducible.
Then its semisimplification, that is unique by the Jordan-Hölder theorem, is
abelian and described by two characters ρ1, ρ2 : GQ → K∗

p . By [21] Theorem
pag.III-20, ρ is then locally algebraic and so, by loc. cit. pag.III-4, there exist
integers ni, i = 1, 2, such that ρi = χni

∗ on an open subgroup of an inertia group
for p in GQ. Then we may write ρi = χni

∗ εi where εi is a character of finite
order ramified only at p. Hence, regarding εi as Dirichlet characters, we obtain
from (4.1) that for every l ̸= p the following equivalence hold

lε(l) = ln1+n2ε1(l)ε2(l) (4.2)

al = ln1ε1(l) + ln2ε2(l). (4.3)

Hence, from (4.2), we obtain that n1 + n2 = 1 that means that, without loss
of generality, n1 ≥ 1 and n2 ≤ 0. From (4.3) we get that |al| ≥ l − 11 for
every l ̸= p. But if l ≥ 7, since, by [6], we have that |al| ≤ 2

√
l, then we get a

contradiction.

We have just showed that the representation ρ is irreducible then, by Propo-
sition 2.7, it remains to show that there exists a lattice such that the associated
reduction is of the form of Proposition 2.7.

The next proposition will prove that any GQ-invariant lattice would suffice
for our aim. But, before it, let us denote by χ the reduction modulo p of χ∗, i.e.

χ : GQ
χ∗→ Z∗

p → F∗
p ↪→ F∗.

Proposition 4.2. There exists an Op-lattice T ⊆ Vp(Af ) invariant by GQ for
which the action of GQ on T/πT may be described matricially by

(
1 ∗
0 χk−1

)

and is furthermore not semisimple.

Proof. By Proposition 4.1 we have that ρ is irreducible and so, by Proposition
2.7, it suffices to find a lattice such that the reduction is reducible and so the
representation ρ will not be semisimple. By Brauer-Nesbitt theorem [5], we
have that the reduction has a well-defined semisimplification, then it suffices to
find a lattice T such that the associated reduction has semisimplification of the
form 1⊕ χk−1. Let T be a GQ-stable lattice then, by Theorem B.40, for every

1Indeed, |al| = |ε1(l)ln1 + ε2(l)ln2 | ≥ |ε1(l)ln1 | − |ε2(l)ln2 | ≥ l − 1 since εi(l) is a root of
unity.
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prime l ̸= p, there exists an absolute Frobenius element for l acting on T/πT
such that

Tr(Frobl) ≡ al and det(Frobl) ≡ lε(l) (mod π).

By Theorem 3.14 we have that f ≡ Gk (mod π) and so we obtain

al ≡ lk−1 + 1 and lε(l) ≡ lk−1 (mod π).

Hence, since by construction lk−1 ≡ χk−1 (mod π) and by the fact that the set
of Frobenius element is dense in GQ, we have that GQ acts on T/πT with

Tr ≡ 1 + χk−1 and det ≡ χk−1 (mod π)

and so every σ ∈ GQ has the same characteristic roots as a representation of the
form 1 ⊕ χk−12. Hence, by Brauer-Nesbitt theorem, these two representations
have the same semisimplification. Hence the reduction associated to the lattice
T has semisimplification 1⊕ χk−1 as wanted.

It remains only to prove point iv) of Theorem 1.5. This will be done in the
next chapter.

2Indeed, the characteristic polynomial of σ ∈ GQ is x2 − Trx+ det and it’s the same one
of that of 1⊕ χk−1 since Tr(1⊕ χk−1) = 1 + χk−1 and det(1⊕ χk−1) = χk−1.
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Chapter 5

Diagonalizability of the
(mod p) restriction

Let us set M = T/πT as in Proposition 4.2. We want to show that M is the
representation space for the representation ρ of Theorem 1.5 for which point iv)
is satisfied.

Let us consider the subgroup Gal(Q/Q(µp)
+) of GQ corresponding to the

real cyclotomic field Q(µp)
+ = Q(µp + µ−1

p ). Now, since the ramification index
of p in Q(µp) is e(P|p) = φ(p) = p− 1, then p is totally ramified in Q(µp) and
so also in its subfield Q(µp)

+. Then let p be the unique prime in Q(µp)
+ lying

over p and consider its decomposition group D in Gal(Q/Q(µp)
+). To verify

point iv) of Theorem 1.5 it is then sufficient to show that the action of D on
M is semisimple, i.e. that Im(D) ⊆ Aut(M) has order prime to p (thanks to
Lemma 2.6). Indeed, if it is true, then, by the fact that p ∤ [Q(µp)

+ : Q], we
have that also p does not divide the order of the decomposition group for GQ.

To prove this claim it will be convenient to let E be the completion of the real
cyclotomic field Q(µp)

+ at p and to identify D with the Galois group Gal(E/E).
We will, at first, show that the Gal(E/E)-module M has some properties and
then, using them, we will prove the claim.

Let us first give the notion of Neron model for an abelian variety.

Definition 5.1. Let A be an abelian variety over the field E. The Neron model
of A over E is the the smooth separated scheme A over the ring of integers R
with fiber A, i.e. such that the following diagram commutes

A A

SpecE SpecR
.

Remark 5.2. Since A is an abelian variety, the Neron model A is unique, up
to isomorphism, and it’s a commutative group scheme over R.
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Let us now study the properties of the Galois module M .

Proposition 5.3. The Gal(E/E)-module M is the Galois module attached to a
finite flat commutative group scheme of type (p, . . . , p) over the ring of integers
R of E.

Proof. Let Ap be the abelian variety associated to the modular form f via the
Eichler-Shimura relation and let us replace Ap by A where A is an abelian variety
that is Q-isogeneous to Ap and such that its ring of Q-endomorphisms is the
ring of integers O of K. Hence we have that M = T/πT is isomorphic to A[p],
where A[p] = {a ∈ A | pa = 0A} is the ”kernel of p” on A. Let us now recall that
the module of the p-division points of an abelian variety is the module whose
elements are the points of A of order p. Then, since p | p, M is a submodule of
the module N of p-division points of A. By the Deligne-Rapoport Theorem ([7]
Example 3.7), the abelian variety A acquires good reduction everywhere over E
and so there exists a unique, up to isomorphism, Neron model A over A. Let us
now consider the map ”multiplication by p” on the Neron model, i.e. the map

m : A → A

(defined over points as a 7→ pa) and let us set Ap to be the scheme-theoretic
kernel of the map m, i.e.

A A

Ap = kerm SpecR

m

eA .

Let us notice that, since the Neron model A, by Remark 5.2, is a group scheme
over R, also its scheme-theoretic kernel Ap is a group scheme over R. Moreover,
since the map m is an isogeny ([17] Theorem 7.2), its kernel Ap is finite flat of
type (p, . . . , p). Then N is the Galois module attached to Ap, i.e.

N Ap

SpecE SpecR

.

Let us consider the closure M of M in Ap, where M is the smallest closed
subscheme of Ap such that M = M ⊗SpecR SpecE1, then M is the Galois
module associated toM, that is

M ⊆ A M⊆ Ap

SpecE SpecR

.

1[18] Chapter 2
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Thanks to this last proposition and by the previous observations done in
this work, we can write down some properties of the module M :

1. By Chapter 2, M is free of rank 2 over the residue field F of Op where Op

is the completion of O at p.

2. Since the reduction of the representation constructed in Chapter 4 has the

form

(
1 ∗
0 χk−1

)
, D acts trivial on a 1-dimensional subspace X of M and

via the character χk−1 on the quotient Y =M/X.

3. By Proposition 5.3, M is the Galois module attached to a finite flat group
schemeM of type (p, . . . , p) over R.

Let us now finally end the proof of Theorem 1.5 by proving that the image
of D is diagonalizable, i.e., by Lemma 2.6, it has a prime-to-p order.

Theorem 5.4. The image of D in AutM has prime-to-p order.

Proof. Let X be the closure of X inM, i.e. X = X ⊗SpecR SpecE. Then, by
fact 2 above, the D-module attached to X is the trivial module X. Moreover,
since the real cyclotomic field Q(µp)

+ = Q(µp + µ−1
p ) of degree [Q(µp)

+ : Q] =
(p−1)/2 is totally ramified over p, we have that the absolute ramification index
of p in the completion E is (p − 1)/2 < p − 1. Since E has characteristic 0, X
is a non-zero constant étale group scheme and, by [18] Theorem 3.3.3, X is a
group scheme over R. HenceM cannot be connected. Indeed, ifM would be
connected, then, by the short exact sequence

0→M0 →M→Met → 0,

we would have that M0 = M and Met = 0 where Met is the largest étale
quotient ofM. ButM has the non-zero étale subgroup X , contradiction.
Let us now consider the canonical exact sequence of D-modules

0→M0 →M →Met → 0 (5.1)

where M0 is associated to the largest connected subgroup ofM and Met to the
largest étale quotient of M. Since M has a Galois-compatible F-vector space
structure, by [18] Proposition 3.3.2, M is a group scheme in F-vector spaces
and so, in particular, the sequence (5.1) is an exact sequence of F-vector spaces.
Let us notice that M0 ̸=M , beingM not connected, and that Met ̸=M being
Met unramified (as it is étale) but M not unramified (since it has the quotient
Y =M/X). Hence, by fact 1, M0 has dimension 1 and has image in M distinct
from X2. Therefore, D leaves stable X (by 2) and the line M0 distinct from
X. Let us eventually notice that every element of order p in AutM , that is

of the form

(
1 ∗
0 χk−1

)
, leaves stable a unique line in M , hence D has order

prime-to-p in AutM .

2Indeed, M/M0 ∼= Met ̸= Y , being Y not unramified, hence M0 ̸= X.
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Appendix A

Modular forms and Hecke
operators

In this chapter we will state all the needing facts about modular forms and
Hecke operators that will be used in the work above. All the results are taken
from [9].

A.1 Modular forms and cusp forms

Definition A.1. The modular group is the group

SL2(Z) = {
(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1}

with generators the two matrices

γ1 =

(
1 1
0 1

)
and γ2 =

(
0 −1
1 0

)
.

Remark A.2. 1. Every element of the modular group SL2(Z) can be viewed

as an automorphism of the Riemann sphere Ĉ = C ∪ {∞}. Hence it is of
the form (

a b
c d

)
(τ) =

aτ + b

cτ + d
, τ ∈ Ĉ.

2. Every pair ±γ ∈ SL2(Z) gives the same transformation in Ĉ, i.e. the
modular group may be seen as SL2(Z)/{±1};

3. The group of such transformations is generated by τ 7→ τ+1 and τ 7→ −1
τ .

Definition A.3. The upper half plane is the space H = {τ ∈ C | Im τ > 0}.
Remark A.4. Let γ ∈ SL2(Z) and τ ∈ H. Then Im(γ(τ)) = Im τ

|cτ+d|2 > 0 and so

γ(τ) ∈ H. Hence the modular group SL2(Z) maps H to itself.
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Definition A.5. Let k be an integer. A meromorphic function f : H → C is
weakly modular of weight k if f(γ(τ)) = (cτ +d)kf(τ) for every γ ∈ SL2(Z), τ ∈
H.
Remark A.6. 1. If f(γ(τ)) = (cτ + d)kf(τ) for γ1, γ2 the two generators of

SL2(Z) then it holds for every γ ∈ SL2(Z). Hence it suffices to check if
f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ).

2. f(τ) and f(γ(τ)) have the same zeros and poles.

Definition A.7. Let k be an integer. A function f : H → C is a modular form
of weight k if:

i. f is holomorphic on H;

ii. f is weakly modular of weight k;

iii. f is holomorphic at ∞, i.e. the function f̃ , expressing f as a function in
q = e2πiτ , can be extended to a holomorphic function in 0.

The set of modular forms of weight k is denoted byMk(SL2(Z)).

Remark A.8. The set of modular formsMk(SL2(Z)) is a vector space of finite
dimension and, by [9] Theorem 3.5.2,Mk(SL2(Z)) = {0} for k ≤ 4 even integer.

Definition A.9. Let us define the set of modular formsM(SL2(Z)) as

M(SL2(Z)) =
⊕

k∈Z

Mk(SL2(Z)).

It is a graded ring.

Definition A.10. Let k be an integer. A cusp form of weight k is a modular
form of weight k whose Fourier expansion has leading coefficient a0 = 0, i.e.

f(τ) =

∞∑

n=1

anq
n, q = e2πiτ .

The set of cusp forms of weight k is denoted by Sk(SL2(Z)).

Remark A.11. 1. A modular form is a cusp form if limIm τ→∞ f(τ) = 0;

2. Sk(SL2(Z)) is a vector subspace ofMk(SL2(Z));

3. S(SL2(Z)) =
⊕

k∈Z
Sk(SL2(Z)) is an ideal inM(SL2(Z)).

A.2 Congruence subgroups

Definition A.12. Let N be a positive integer. The principal congruence sub-
group of level N is

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(
1 0
0 1

)
mod N}.

32



Remark A.13. 1. Γ(1) = SL2(Z);

2. Let us consider the surjection φ : SL2(Z))→ SL2(Z /N Z)). Then Γ(N) =
ker(φ) and so Γ(N) ⊴ SL2(Z).

Definition A.14. Let Γ be a subgroup of SL2(Z). It is a congruence subgroup if
there exists an N ∈ Z>0 such that Γ(N) ⊆ Γ. Then Γ is a congruence subgroup
of level N .

Remark A.15. The fact that [SL2(Z) : Γ(N)] is finite implies that Γ has finite
index in SL2(Z).

example 1. Let us now consider some important congruence subgroups that
are not principal.

1. Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod N}.

2. Γ1(N) = {
(
a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡
(
1 ∗
0 1

)
mod N}

Then we may notice that Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z).
Moreover, let us consider the surjective maps

ψ1 : Γ1(N)→ Z /N Z given by

(
a b
c d

)
7→ b mod N

and

ψ2 : Γ0(N)→ (Z /N Z)∗ given by

(
a b
c d

)
7→ d mod N,

then Γ(N) = ker(ψ1) ⊴ Γ1(N) (with [Γ(N) : Γ1(N)] = N) and Γ1(N) =
ker(ψ2) ⊴ Γ0(N) (with [Γ0(N) : Γ1(N)] = φ(N), where φ is the Euler function).

Definition A.16. 1. Let γ ∈ SL2(Z). The factor of automorphy is j(γ, τ) =
cτ + d ∈ C∗.

2. Let γ ∈ SL2(Z) and k be an integer. The weight-k operator [γ]k on func-
tions f : H → C is defined by

(f [γ]k)(τ) = j(γ, τ)−kf(γ(τ)), τ ∈ H.

(Let us notice that if f is meromorphic then f [γ]k is also meromorphic
with same zeros and poles of f).

Definition A.17. Let Γ be a congruence subgroup of SL2(Z), k an integer. A
function f : H → C is a modular form of weight k with respect to Γ if:

i. f is holomorphic;

ii. f is weight-k invariant under Γ, i.e. f [γ]k = f for every γ ∈ Γ;

iii. f [α]k is holomorphic at ∞ for every α ∈ SL2(Z).
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If, in addition, a0 = 0 in the Fourier expansion of f [α]k for every α ∈ SL2(Z),
then f is a cusp form of weight k with respect to Γ.
The modular forms (resp. cusp forms) of weight k with respect to Γ are denoted
byMk(Γ) (resp. Sk(Γ)).
Remark A.18. Let us notice that S(Γ) =⊕k∈Z Sk(Γ) ⊴M(Γ) =

⊕
k∈ZMk(Γ).

Definition A.19. Let Γ be a congruence subgroup of SL2(Z). The cusps of Γ
are the Γ-equivalence classes of Q ∪ {∞}.

Lemma A.20. If Γ = Γ0(p), where p is a prime, then its cusps are only the
two classes of ∞ and 0.

Definition A.21. Let χ : (Z /N Z)∗ → C be a Dirichlet character1. Then the
χ-eigenspace ofMk(Γ1(N)) is

Mk(N,χ) = {f ∈Mk(Γ1(N)) | f [γ]k = χ(dγ)f for every γ =

(
aγ bγ
cγ dγ

)
∈ Γ0(N)}.

Analogously,

Sk(N,χ) = {f ∈ Sk(Γ1(N)) | f [γ]k = χ(dγ)f for every γ =

(
aγ bγ
cγ dγ

)
∈ Γ0(N)}.

Remark A.22. The vector spaceMk(Γ1(N)) of modular forms decomposes as
the direct sum of the eigenspaces, i.e.

Mk(Γ1(N)) =
⊕

χ

Mk(N,χ).

The same holds also for the space Sk(Γ1(N)) of cusp forms.

A.3 Modular curves

Definition A.23. Let Γ be a congruence subgroup of SL2(Z) acting from the
left on the upper half plane H. The modular curve is

Y (Γ) = Γ\H = {Γτ | τ ∈ H}.

Let now Γ be a congruence subgroup of SL2(Z). We want to compactify the
modular curve Y (Γ).

Definition A.24. Let H∗ = H ∪ Q ∪ {∞}. Than the compact modular curve
associated to Γ is

X(Γ) = Γ\H∗ = Y (Γ) ∪ Γ\(Q ∪ {∞}).

For the congruence subgroups Γ0(N),Γ1(N) and Γ(N) we writeX0(N), X1(N)
and X(N).

1i.e. χ : (Z /N Z)∗ → C∗ is a homomorphism of multiplicative groups.
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A.4 Eisenstein series of weight 1 and 2

In this section we will study Eisenstein series of weight 1 and 2 for the congruence
subgroup Γ1(N) of SL2(Z).

Definition A.25. Let Γ be a congruence subgroup of SL2(Z) and k an integer.
The weight-k Eisenstein space for Γ is the quotient space of the modular forms
by the cusp forms, i.e.

Ek(Γ) =Mk(Γ)/Sk(Γ).
Let now χ be a Dirichlet character moduloN , then we define the χ-eigenspace

of the Eisenstein space Ek(Γ1(N)) in the following way.

Definition A.26. Let χ be a Dirichlet character modulo N . The χ-eigenspace
of the Eisenstein series Ek(Γ1(N)) is

Ek(N,χ) = Ek(Γ1(N)) ∩Mk(N,χ).

Proposition A.27. Let Γ be a congruence subgroup of SL2(Z). Then the Eisen-
stein space is linearly disjoint from the cusp forms, i.e.

Mk(Γ) = Sk(Γ)⊕ Ek(Γ).

Moreover, if χ is a Dirichlet character modulo N , the χ-eigenspace of the Eisen-
stein space is linearly disjoint from that of the cusp forms, i.e.

Mk(N,χ) = Sk(N,χ)⊕ Ek(N,χ).

Remark A.28. The decomposition in Remark A.22 holds also for the Eisenstein
space of Γ1(N), i.e.

Ek(Γ1(N)) =
⊕

k

Ek(N,χ).

For the aim of this paper we are interested only in the Eisenstein series of
weight 1 and 2 then let us start studying the Eisenstein space of Γ1(N) of weight
2.

Let AN,2 be the set of triples (ψ, φ, t) such that ψ and φ are primitive2

Dirichlet characters modulo u and v with (ψφ)(−1) = 1 and t is an integer such
that 1 < tuv | N .

Definition A.29. For any triple (ψ, φ, t) ∈ AN,2 let us define

Eψ,φ,t2 (τ) =

{
Eψ,φ2 (tτ) unless ψ = φ = 1,

E1,1
2 (τ)− tE1,1

2 (tτ) if ψ = φ = 1

where
Eψ,φ2 (τ) = δ(ψ)L(−1, φ) + 2

∑

n≥1

σψ,φ1 (n)qn, q = e2πiτ

2A Dirichlet character modulo N is called primitive if it is not induced by any other
character except itself, i.e. there exists no Dirichlet character χ2 ̸= χ of modulo N2 | N such
that χ2(n) = χ(n) for n ∈ (Z /N Z)∗.
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with

δ(ψ) =

{
1 ψ = 1

0 otherwise
, σψ,φk−1(n) =

∑

0<d|n

ψ(n/d)φ(d)dk−1.

Then:

Theorem A.30. Let N be a positive integer. The set

{Eψ,φ,t2 | (ψ, φ, t) ∈ AN,2}
is a basis of the Eisenstein space E2(Γ1(N)). Moreover, for any character χ
modulo N , the set

{Eψ,φ,t2 | (ψ, φ, t) ∈ AN,2, ψφ = χ}
is a basis of the χ-eigenspace Ek(N,χ).

Let us study the Eisenstein space of weight 1. Analogously to the case k = 2,
let AN,1 be the set of triples ({ψ, φ}, t) such that {ψ,φ} is an unordered pair of
primitive Dirichlet characters modulo u and v such that (ψφ)(−1) = −1 and t
is a positive integer such that 1 < tuv | N . For any triple ({ψ, φ}, t) ∈ AN,1 let
us define

Eψ,φ,t1 (τ) = Eψ,φ1 (tτ)

where

Eψ,φ1 (τ) = δ(φ)L(0, ψ) + δ(ψ)L(0, φ) + 2
∑

n≥1

σψ,φ0 (n)qn, q = e2πiτ

with δ(ψ), δ(φ) and σψ,φ0 (n) defined as in Definition A.29. Then,

Theorem A.31. Let N be a positive integer. The set

{Eψ,φ,t1 | ({ψ, φ}, t) ∈ AN,1}
is a basis of the Eisenstein space E1(Γ1(N)). Moreover, for any character χ
modulo N , the set

{Eψ,φ,t1 | ({ψ,φ}, t) ∈ AN,1, ψφ = χ}
is a basis for the χ-eigenspace E1(N,χ).

A.5 Hecke operators

Definition A.32. Let Γ1,Γ2 ⊆ SL2(Z) be congruence subgroups so that, in
particular,

Γ1,Γ2 ⊆ GL+
2 (Q) = {

(
a b
c d

)
∈ GL2(Q) | ad− bc > 0}.

Then, for every α ∈ GL+
2 (Q), the set

Γ1αΓ2 = {γ1αγ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}
is a double coset in GL+

2 (Q).
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Remark A.33. i. The double cosets defined above transform modular forms
with respect to Γ1 into modular forms with respect to Γ2.

ii. Γ1\Γ1αΓ2 is finite.

Using Remark A.33 we may give the following definition.

Definition A.34. Let α ∈ GL+
2 (Q) and Γ1,Γ2 ∈ SL2(Z) be congruence sub-

groups. Then the weight-k Γ1αΓ2 operator takes f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑

j

f [βj ]k

where the {βj} are orbit representatives, i.e. Γ1αΓ2 =
⋃
j Γ1βj disjoint union.

Remark A.35. The weight-k Γ1αΓ2 operator sends Mk(Γ1) to Mk(Γ2) and
Sk(Γ1) to Sk(Γ2).

Definition A.36. Let Γ1 = Γ2 = Γ1(N) and α ∈ Γ0(N). Let us consider the
weight-k double coset operator [Γ1αΓ2]k sending f ∈Mk(Γ1(N)) to f [Γ1(N)αΓ1(N)]k =
f [α]k. Then we define an Hecke operator, called diamond operator,

⟨d⟩ :Mk(Γ1(N))→Mk(Γ1(N)) given by f 7→ ⟨d⟩f = f [α]k

for any α =

(
a′ b′

c′ d′

)
∈ Γ0(N) with d′ ≡ d (mod N).

Remark A.37. Let χ : (Z /N Z)∗ → C be a character. Then the space
Mk(N,χ) (defined in A.21), is the χ-eigenspace of the diamond operator, i.e.

Mk(N,χ) = {f ∈Mk(Γ1(N)) | ⟨d⟩f = χ(d)f for every d ∈ (Z /N Z)∗}.

Hence the diamond operator ⟨d⟩ respects the decomposition Mk(Γ1(N)) =
⊕χMk(N,χ), operating on the eigenspace associated to each character χ as
multiplication by χ(d).

Definition A.38. Let Γ1 = Γ2 = Γ1(N) and α =

(
1 0
0 p

)
, p a prime number.

Then we define another Hecke operator given by the weight-k double coset
operator

Tp :Mk(Γ1(N))→Mk(Γ1(N)) given by f 7→ Tpf = f [Γ1(N)

(
1 0
0 p

)
Γ1(N)]k

where the double coset is

Γ1(N)

(
1 0
0 p

)
Γ1(N) =

{
γ ∈M2(Z) | γ ≡

(
1 ∗
0 p

)
(mod N), det γ = p

}
.

Remark A.39. The two Hecke operators defined in A.36 and A.38 commute,
i.e.

⟨d⟩Tpf = Tp⟨d⟩f.
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Proposition A.40. Let N be a positive integer, Γ1 = Γ2 = Γ1(N) and α =(
1 0
0 p

)
for p a prime. Then the operator Tp = [Γ1αΓ2]k on Mk(Γ1(N)) is

given by

Tpf =





∑p−1
j=0 f

[(
1 j

o p

)]

k

if p | N

∑p−1
j=0 f

[(
1 j

0 p

)]

k

+ f

[(
m n

N p

)(
p 0

0 1

)]

k

if p ∤ N, where mp− nN = 1.

Proposition A.41. Let f ∈ Mk(Γ1(N)). Since

(
1 1
0 1

)
∈ Γ1(N), then f has

period 1 and so it has a Fourier expansion

f(τ) =

∞∑

n=0

an(f)q
n, q = e2πiτ .

Moreover, let χ : (Z /N Z)∗ → C∗ be a character. If f ∈ Mk(N,χ), then also
Tpf ∈Mk(N,χ) and its Fourier expansion is

(Tpf)(τ) =

∞∑

n=0

(anp(f) + χ(p)pk−1an/p(f))q
n, q = e2πiτ

where an/p = 0 if n/p /∈ Z.

Let us now study how these Hecke operators act on Eisenstein series of
weight k.

Let χ be a Dirichlet character modulo N , ψ, φ primitive characters modulo
u and v such that (ψφ)(−1) = (−1)k, t be a positive integer such that tuv | N
and p a prime. Then,

Theorem A.42. Excluding the case k = 2, ψ = φ = 1, we have that

TpE
ψ,φ,t
k (ψ(p) + φ(p)pk−1)Eψ,φ,tk if uv = N or if p ∤ N.

Moreover,

TpE
1,1,t
2 = (1 + 1(p)p)E1,1,t

2 if t is a prime and N is a power of t or if p ∤ N .

In addition,

⟨d⟩Eψ,φ,tk = χ(d)Eψ,φ,tk for all d relatively prime to N .

The last proposition hence shows that Eisenstein series are also eigenvectors
of the Hecke operators.

Let us now give the definitions A.36 and A.38 for n a positive integer, not
necessarily a prime number.
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Definition A.43. Let n be a positive integer.

1.

{
⟨n⟩ = n mod N if (n,N) = 1

⟨n⟩ = 0 if (n,N) > 1;

2. T1 = 1, Tpr = TpTpr−1 − pr−1⟨p⟩Tpr−2 for r ≥ 2 so that Tn =
∏
Tpei

i
for

n =
∏
peii .

The Hecke operators defined above define an algebra of endomorphisms of
S2(Γ1(N)).

Definition A.44. The Hecke algebra over Z is the algebra of endomorphisms
of S2(Γ1(N)) generated over Z by the Hecke operators, i.e. it is

TZ = Z[{Tn, ⟨n⟩ | n ∈ Z>0}].

Analogously, we may define the Hecke algebra TC over C.

A.6 Eigenforms

Let us provide the space Sk(Γ1(N)) of cusp forms with an inner product, called
Petersson inner product. Then, on this space, let us notice that the two Hecke
operators ⟨n⟩ and Tn, for (n,N) = 1, are normal, i.e. they both have an adjoint
operator that commutes with them.
Hence, from the Spectral Theorem of linear algebra, we obtain that, given a
commutative family of normal operators on a finite dimensional space provided
with an inner product, the space has an orthogonal basis of simoultaneous eigen-
vectors for the operators. Since each such vector is a modular form then it’s
called eigenform.

Theorem A.45. The space Sk(Γ1(N)) of cusp forms has an orthogonal basis
of simoultaneous eigenforms for the Hecke operators {⟨n⟩, Tn | (n,N) = 1}.

A.7 Oldforms and newforms

Definition A.46. Let d be a divisor of N and consider the map

id : Sk(Γ1(Nd
−1))× Sk(Γ1(Nd

−1))→ Sk(Γ1(N)) given by (f, g) 7→ f + g[αd]k

where αd =

(
d 0
0 1

)
.

1. The subspace of Sk(Γ1(N)) of the oldforms at level N is

Sk(Γ1(N))old =
∑

p|N,p prime

ip(Sk(Γ1(Np
−1))× Sk(Γ1(Np

−1));
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2. The subspace of Sk(Γ1(N)) of the newforms at level N is the orthogonal
complement of the space of oldforms with respect to the Petersson inner
product, i.e.

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥.

Proposition A.47. The subspaces Sk(Γ1(N))old and Sk(Γ1(N))new are stable
under the Hecke operators ⟨n⟩ and Tn for every positive integer n.

A.8 Hecke eigenforms

Definition A.48. Let f ∈Mk(Γ1(N)) be a non-zero modular form.

i. If f is an eigenform for the Hecke operators ⟨n⟩ and Tn for every positive
integer n, then it is called a (Hecke) eigenform;

ii. The eigenform f(τ) =
∑∞
n=0 an(f)q

n is said to be normalized if a1(f) = 1;

iii. A normalized eigenform in Sk(Γ1(N))new is called a newform.

Remark A.49. Let f ∈ Sk(Γ1(N)) be an eigenform for the Hecke operators
⟨n⟩ and Tn for (n,N) = 1. Then, for every such an n, there exist eigenvalues
cn, dn ∈ C such that ⟨n⟩f = cnf and Tnf = dnf . Hence dn = an(f)/a1(f) for
f(τ) =

∑∞
m=0 am(f)qm Fourier expansion of f .
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Appendix B

The Eichler-Shimura
relation

In this appendix we will state all the definitions and theorems that will be useful
for Chapter 4. All the results are taken from [9] Chapters 6-9.

B.1 Jacobian and abelian varieties

Let us consider X to be a compact Riemann surface of genus g, then we may
see X as a sphere with g handles. Let A1, . . . , Ag be longitudinal loops around
each handle and B1, . . . , Bg be latitudinal loops around each handle.

Definition B.1. The (first) homology group H1(X,Z) of X is the free abelian
group generated by integration over the Ai and the Bi of rank 2g, i.e.

H1(X,Z) = Z

∫

A1

⊕ · · · ⊕ Z

∫

Ag

⊕Z

∫

B1

⊕ · · · ⊕ Z

∫

Bg

∼= Z2g .

Hence the elements of H1(X,Z) are maps that sends holomorphic differen-
tials on X to complex numbers. In fact, the homology group H1(X,Z) is a
subgroup of the dual space Ω1

hol(X)∧ = HomC(Ω
1
hol(X),C), where Ω1

hol(X) is
the space of the holomorphic differentials.

Then we may define the Jacobian of X.

Definition B.2. The Jacobian of X is the quotient group

Jac(X) = Ω1
hol(X)∧/H1(X,Z).

Moreover, this quotient is, complex analytically, a g-dimensional complex torus
Cg/Λg.

Let us now consider the function field C(X) of the compact Riemann surface
X.
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Definition B.3. The degree-0 divisor group of X is

Div0(X) = {
∑

x∈X

nxx | nx ∈ Z, nx = 0 for almost all x,
∑

x

nx = 0}

and the subgroup of principal divisors is

Divl(X) = {δ ∈ Div0(X) | δ = div(f) for some f ∈ C(X)}.

Then the degree-0 divisor class group of X (or the degree-0 Picard group of X)
is

Pic0(X) = Div0(X)/Divl(X).

Let us consider the well-defined map

Div0(X)→ Jac(X) given by
∑

x

nxx 7→
∑

x

nx

∫ x

x0

.

Then we have the following theorem.

Theorem B.4 (Abel’s theorem). The map defined above descends to divisor
classes inducing an isomorphism

Pic0(X)
∼=→ Jac(X) given by [

∑

x

nxx] 7→
∑

x

nx

∫ x

x0

.

Let us consider the compact modular curve X0(N) associated to the con-
gruence subgroup X0(N). We denote its Jacobian by

J0(N) = Jac(X0(N)).

Let Γ be congruence subgroup of SL2(Z). By [9] Section 3.3, there exists a
linear isomorphism φ : S2(Γ) → Ω1

hol(X(Γ)), then, passing to the dual spaces,
we obtain

S2(Γ)∧ = φ∧(Ω1
hol(X(Γ))∧).

Let now H1(X(Γ),Z) be denoting φ∧(Ω1
hol(X(Γ),Z)) for Γ a congruence sub-

group of SL2(Z) and let us define the Jacobian of X(Γ).

Definition B.5. The Jacobian of X(Γ) is

Jac(X(Γ)) = S2(Γ)∧/H1(X(Γ),Z).

Since the double coset operator acts on Jacobians as composition with its
action on modular forms1 then we may state the following proposition for the
double coset operators given by the Hecke operators Tn and ⟨d⟩.
Proposition B.6. The Hecke operators T = Tp, ⟨d⟩ act by composition on the
Jacobian associated to Γ1(N) as

T : J1(N)→ J1(N) given by [ψ] 7→ [ψ ◦ T ] for ψ ∈ S2(Γ1(N))∧

and similarly for Tp on J0(N).

1[9] pag.228 for details.
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Hence we have that the Hecke algebra defined in A.44 consists of endomor-
phisms of the free finitely generated Z-module H1(X1(N),Z) and this leads to
some facts.

Proposition B.7. 1. The Hecke algebra is a finitely generated Z-module.

2. Let f(τ) =
∑
n≥1 an(f)q

n, q = e2πiτ , be a normalized eigenform in
S2(Γ1(N)). Then the image Z[an(f)] of the homomorphism

λf : T→ C such that Tf = λf (T )f

is a finitely-generated Z-module. Hence it lies in the number field Kf

generated by the Fourier coefficients of f . Then, if we set If = ker(λf ) =
{T ∈ TZ | Tf = 0}, we have T/If ∼= Z[an(f)] =: Of of rank [Kf : Q].

We are now ready to define the notion of abelian varieties associated to a
normalized eigenform.

Definition B.8. Let f be a normalized eigenform in S2(Γ1(N)). The abelian
variety associated to f is defined as the quotient

Af = J1(N)/IfJ1(N).

Proposition B.9. The abelian variety Af is isomorphic to a complex torus of
dimension [Kf : Q] where Kf is the number field of the newform f ∈ S2(Γ1(N)).

Then TZ/If , and so its isomorphic image Z[{an}], acts on Af . Moreover,
since by Proposition B.7 λf (Tp) = ap(f), the following diagram commutes

J1(N) J1(N)

Af Af

Tp

ap(f)

where the map ap(f) is given by (ap(f)φ)(f
σ) = (ap(f))

σ(φ(f))σ for φ ∈ Af ,
σ : Kf → C embedding and fσ =

∑
n≥1 an(f)

σqn.
Then it is natural to expect that Jacobian factors through abelian varieties.

For this, let us firstly give the notion of an isogeny.

Definition B.10. An isogeny is a holomorphic homomorphism between com-
plex tori that surjects and has finite kernel.

Let us now define an equivalence relation ∼ on newforms given by f ′ ∼ f
if, and only if, f ′ = fσ for some automorphism σ : C→ C. Every class [f ] has
cardinality [Kf : Q] and it consists of newforms. Then:

Theorem B.11. There exists an isogeny between the Jacobian associated to
Γ1(N) and a direct sum of abelian varieties associated to equivalence classes of
newforms

J1(N)→
⊕

f

A
mf

f

where the sum is taken over a set of representatives f ∈ S2(Γ1(Mf )) for Mf

dividing N and mf the number of divisors of N/Mf .
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B.2 Modular curves as algebraic curves

Let us consider the modular curve X1(N) defined in A.24. This section shows
that it can be seen as an algebraic curve over Q.

Proposition B.12. The field of meromorphic functions on X1(N) is

C(X1(N)) = C(j, f1)

where f1(τ) = g2(τ)
g3(τ)

℘τ (1/N), with g2, g3 suitable multiple of Eisenstein series

and ℘ the Weierstrass function.

Let us now define the notion of a universal elliptic curve.

Definition B.13. The universal elliptic curve Ej over Q(j) is given by

y2 = 4x3 − (
27j

j − 1728
)x− (

27j

j − 1728
)

and has j-invariant the variable j.

Let E be an elliptic curve. For any positive integer N let us define the map

[N ] : E → E given by [N ]P = P + · · ·+ P.

Then we denote by E [N ] the group of N -torsion points of E , i.e.

E [N ] = {P ∈ E | [N ]P = 0E}.

It is isomorphic to (Z /N Z)2.
Let us now consider the Galois group HQ = Gal(Q(µN , j, Ej [N ])/Q(j)),

where µN is the group of complex N -th roots of unity and Q(j) is the field of
rational functions of j. Then the representation

ρ : HQ → GL2(Z /N Z),

defined by [
Pστ
Qστ

]
= ρ(σ)

[
Pτ
Qτ

]
, σ ∈ HQ,

describes how HQ permutes Ej [N ].
Since µN is fixed by σ ∈ HQ, then we have that HQ = (Q(j, Ej [N ])/(Q(j)).

Theorem B.14. Let HQ be the Galois group Gal(Q(j, Ej [N ])/Q(j)). Then
there exists an isomorphism

ρ : HQ

∼=→ GL2(Z /N Z)

and every intermediate field K, with corresponding group HK ≤ HQ, is the func-
tion field of an algebraic curve over Q if, and only if, det ρ : HK → (Z /N Z)∗

is surjective.

Then, by [9] Section 7.7, we may see the modular curveX1(N) as an algebraic
curve over Q.

44



B.3 Reduction of curves to finite fields

In this section we will show that we can reduce algebraic curves over Q to
algebraic curves over finite fields.

First of all, let us recall that the localization of Z at p is

Z(p) = {x/y | x, y ∈ Z, y /∈ pZ},

that is a local subring of Q with maximal ideal pZ(p). Since there exists a
natural isomorphism Z /pZ ∼= Z(p) /pZ(p), then the reduction map

∼: Z(p) → Fp given by α̃ = α+ pZ(p)

is a well-defined surjective map.
Then, the definition of reducing an algebraic curve over Q to an algebraic

curve over Fp uses the localization Z(p).

Definition B.15. Let C be a non-singular affine algebraic curve over Q, de-
fined by polynomials φ1, . . . , φm ∈ Z(p)[x1, . . . , xn]. Then C has good reduction
modulo p (or at p) if

1. the ideal I = (φ1, . . . , φm) of Z(p)[x1, . . . , xn] is prime;

2. the reduced polynomials φ̃1, . . . , φ̃m ∈ Fp[x1, . . . , xn] define a non-singular

affine algebraic curve C̃ over Fp.

In this case C̃ is the reduction of C at p.

Theorem B.16. Let C be a non-singular projective algebraic curve over Q with
good reduction at p. Then the reduction map C → C̃ is surjective.

Let us now study how maps between reductions work.

Theorem B.17. Let C and C ′ be non-singular projective algebraic curves over
Q with good reduction at p, C ′ with positive genus. Then, for any morphism
h : C → C ′ over Q of non-singular projective algebraic curves over Q with good
reduction at p, the following diagram commutes

C C ′

C̃ C̃ ′

h

h̃

Theorem B.18. Let C be a non-singular projective algebraic curve over Q with
good reduction at p. Then the map induced by reduction on degree-0 divisors

Div0(C)→ Div0(C̃) given by
∑

nP (P ) 7→
∑

nP (P̃ )

induces a surjective map of Picard groups

Pic0(C)→ Pic0(C̃) given by [
∑

nP (P )] 7→ [
∑

nP (P̃ )].
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B.4 The Eichler-Shimura relation

Let N be a positive integer, p ∤ N a prime. In this section we will describe the
Hecke operator Tp at the level of Picard groups of reduced modular curves, i.e.

T̃p : Pic
0(X̃1(N))→ Pic0(X̃1(N)).

Let us first define the notion of an enhanced elliptic curve for Γ1(N) and its
moduli space.

Definition B.19. An enhanced elliptic curve for Γ1(N) is an ordered pair
(E,Q) where E is an elliptic curve and Q ∈ E is a point of order N2. Two
such pairs (E,Q) and (E′, Q′) are equivalent if there exists an isomorphism

E
∼=→ E′ taking Q to Q′.

The moduli space S1(N) for Γ1(N) is the set of equivalence classes [E,Q].

Theorem B.20. The moduli space S1(N) for Γ1(N) is in bijection with the
modular curve Y1(N).

Let now Div(S1(N)) be the divisor group of the moduli space S1(N). Then
the Hecke operator Tp acts on it in the following way.

Proposition B.21. There exists a map

Tp : Div(S1(N))→ Div(S1(N)) given by [E,Q] 7→
∑

C

[E/C,Q+ C]

where the sum is taken over all order p subgroups C ⊆ E such that C ∩ ⟨Q⟩ =
{0E}.

Remark B.22. Since we are considering p ∤ N , in Proposition B.21 C is taken
over all order p subgroups of E.

Moreover, let us define the reduction of an elliptic curve over the field of
algebraic numbers Q.
The localization of the ring of algebraic integers Z at a maximal ideal p is

Z(p) = {x/y | x, y ∈ Z, y /∈ p}.

Proposition B.23. Let E be an elliptic curve over Q, p be a maximal ideal of
Z. Then the reduction Ẽ is ordinary if Ẽ[p] ∼= Z /pZ.

Let us now study how reduction of equivalence classes in the moduli space
S1(N) works.

Lemma B.24. Let E be an elliptic curve over Q with ordinary reduction at p,
Q ∈ E a point of order N , p ∤ N . Let C0 be the kernel of the reduction map

2i.e. NQ = 0 but nQ ̸= 0 for every 0 < n < N .
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E[p]→ Ẽ[p], i.e. an order-p-subgroup of E. Then, for any order-p-subgroup C
of E, we have

[Ẽ/C, Q̃/C] =

{
[Ẽσp , Q̃σp ] if C = C0,

[Ẽσ
−1

p , [p]Q̃σ
−1

p ] if C ̸= C0

where σp : x→ xp is the Frobenius map.

Remark B.25. By [9] Exercise 8.7.1, Lemma B.24 may be extended also to
elliptic curves with supersingular reduction.

We are now ready to state the Eichler-Shimura relation.

Theorem B.26 (Eichler-Shimura relation). Let p ∤ N . Then the following
diagram commutes

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N)).

Tp

T̃p=σp∗+⟨̃p⟩
∗
σ∗

p

where the upper and lower stars mean the pullback and pushforward maps.

B.5 Galois representations

Let now Q be the algebraic closure of Q and GQ the absolute Galois group
Gal(Q/Q). For a prime p ∈ Z, let p ∈ Z be a maximal ideal over it and consider
the reduction map Z → Fp. Let now GFp

be the absoulte Galois group of Fp,
then the reduction map

Dp = {σ ∈ GQ | σ(p) = p} → GFp

is surjective.

Definition B.27. An absolute Frobenius element over p is any preimage Frobp ∈
Dp of the Frobenius automorphism σp ∈ GFp

. It is defined up to the inertia

group Ip = {σ ∈ Dp | σ(x) ≡ x (mod p) for all x ∈ Z} of p.
Theorem B.28. For each maximal ideal p of Z lying over any but a finite set
of rational primes p, choose an absolute Frobenius element Frobp. Then the set
of such elements forms a dense subset of GQ.

Let us now give the definition of a p-adic Galois representation.

Definition B.29. Let d be a positive integer. A d-dimensional p-adic Galois
representation is a continuous homomorphism

ρ : GQ → GLd(L)

where L is a finite extension field of Qp. If ρ′ : GQ → GLd(L) is another
such a representation and there exists a matrix m ∈ GLd(L) such that ρ′(σ) =
m−1ρ(σ)m for all σ ∈ GQ, then ρ and ρ′ are equivalent.
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Remark B.30. Every finite extension field L of Qp is of the form Kλ for some
number field K and maximal ideal λ | p of OK . For such an L, the ring
OL = OK,λ is independent from K and λ. Moreover, the ring OL is a lattice in
L, i.e. there exists a Zp-basis of OL that is also a Qp-basis of L.

Definition B.31. Let ρ be a Galois representation and let p be a prime. Then
ρ is unramified at p if Ip ⊆ ker ρ for any maximal ideal p ⊆ Z lying over p.

Let us now give a second definition of p-adic Galois representation, where it
is seen as a vector space over Qp with GQ-module structure.

Definition B.32. Let d be a positive integer. A d-dimensional p-adic Galois
representation is a d-dimensional topological vector space V over L, where L is
a finite extension field of Qp, that is also a GQ-module such that the action

V ×GQ → V given by (v, σ) 7→ vσ

is continuous. If V ′ is another such representation and there exists a contin-

uous GQ-module isomorphism of L-vector spaces V
∼=→ V ′, then V and V ′ are

equivalent.

Using Definition B.32, we have

Proposition B.33. Let ρ : GQ → GLd(L) be a Galois representation. Then ρ
is similar to a Galois representation ρ′ : GQ → GLd(OL).

B.6 Galois representations and modular forms

In this section we will associate Galois representations to modular curves and
then we will decompose them into 2-dimensional representations associated to
modular forms.

Let N be a positive integer, p a prime and X1(N) a modular curve, i.e. a
projective non-singular algebraic curve over Q, with genus g.

Definition B.34. The p-adic Tate module of X1(N) is

Talp(Pic
0(X1(N))) = lim←−

n

{Pic0(X1(N))[pn]}.

Remark B.35. The p-adic Tate module Talp(Pic
0(X1(N))) is isomorphic to

Z2g
p .

Since for every n there exists a commutative diagram of the form

GQ

Aut(Pic0(X1(N))[pn]) Aut(Pic0(X1(N))[pn+1])

,

we have a continuous homomorphism

ρX1(N),p : GQ → GL2g(Zp) ⊆ GL2g(Qp)
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that is the 2g-dimensional Galois representation attached to X1(N).
Let us now study how the Hecke operator acts on Tate modules.

Theorem B.36. Let p be a prime, N a positive integer. The Galois represen-
tation ρX1(N),p is unramified at every prime l ∤ pN . For any such p, let p ⊆ Z
be any maximal ideal over p. Then ρX1(N),p(Frobp) satisfied the polynomial
equation

x2 − Tlx+ ⟨l⟩l = 0.

Up to this point we have defined Tate modules for Picard groups. Let us
now study Tate modules for modular forms.

Definition B.37. Let f ∈ S2(N,χ) be a normalized eigenform. The p-adic
Tate module for the abelian variety Af is

Talp(Af ) = lim←−
n

{Af [pn]} ∼= Z2d
p

where d = [Kf : Q].

Let us now notice that the absolute Galois group GQ acts on Talp(Af ).

Lemma B.38. The map Pic0(X1(N))[pn] → Af [p
n] is a surjection and its

kernel is stable under GQ.

Hence GQ acts on Af [p
n] and so also on Talp(Af ). Choosing coordinates

appropriately we obtain a Galois representation

ρAf ,p : GQ → GL2d(Qp)

unramified at all primes l ∤ pN . Moreover, for every maximal ideal p ⊆ Z over
l, we have that ρAf ,p(Frobp) satisfies the polynomial equation

x2 − ap(f)x+ χ(p)p = 0.

The Tate module Talp(Af ) has rank 2d over Zp and the tensor product
Vp(Af ) = Talp(Af )⊗Q is a module over Kf ⊗Q Qp =

∏
λ|lKf,λ. Moreover:

Lemma B.39. Vp(Af ) is a free module of rank 2 over Kf ⊗Q Qp.

Then the absolute Galois group GQ acts linearly on Vp(Af ) ∼= (Kf ⊗Q Qp)2.
Finally, we have the 2-dimensional representation associated to modular forms.

Theorem B.40. Let f ∈ S2(N,χ) be a normalized eigenform with number field
Kf . Let p be a prime. For each maximal ideal λ of OKf

lying over p there exists
a 2-dimensional Galois representation

ρf,λ : GQ → GL2(Kf,λ).

This representation is unramified at every prime l ∤ pN and for every maximal
ideal p ⊆ Z over l we have that ρf,λ(Frobp) satisfies the polynomial equation

x2 − al(f)x+ χ(l)l = 0.

In particular, if f ∈ S2(Γ0(N)), then the relation is x2 − ap(f)x+ p = 0.
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