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English abstract

In the econometric-statistical field, to quantify a cause and effect relationship it is

required a detailed preliminary work of knowledge of the context in which the studied

phenomenon occurs, in order to provide useful arguments to attribute a causal interpre-

tation to a correlation found empirically: ”Correlation does not imply causation”. The

causal diagrams, more precisely the ’Directed Acyclic Graphs’ (DAGs), are an effective

tool to synthesize and communicate the system of causal relationships that occur in the

context in which the causal inference analysis takes place and, therefore, to set up the

research work. This paper aims to explain, with simple words and examples, why causal

inference requires a preliminary knowledge of the context and, then, how to use the DAGs

to set your own research in order to find the searched cause-effect relationship. The paper

is thought for who approaches to this discipline with minimal statistical bases: simple

and multiple regression; graphs.

Italian abstract

In ambito econometrico-statistico, per quantificare una relazione causa effetto è richiesto

un dettagliato lavoro preliminare di conoscenza del contesto in cui si manifesta il fenomeno

studiato, al fine di fornire argomenti utili ad attribuire una interpretazione causale ad

una correlazione riscontrata empiricamente: “Correlazione non implica causalità”. I dia-

grammi causali, più precisamente i ’Directed Acyclic Graphs’ (DAGs), sono uno strumento

efficace per sintetizzare e comunicare il sistema di relazioni causali che si presentano nel

contesto in cui si svolge l’analisi di inferenza causale e, di conseguenza, per impostare il

lavoro di ricerca. Questo elaborato mira a spiegare, con parole semplici ed esempi, perchè

l’inferenza causale richiede una conoscenza preliminare del contesto e, poi, come utiliz-

zare il DAGs per impostare la propria ricerca al fine di trovare la relazione causa-effetto

ricercata. L’elaborato è pensato per chi si approccia a questa disciplina con minime basi

statistiche: regressione semplice e multipla; grafici.
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Chapter 1

Introduction

1.1 What is Causal Inference?

Causal Inference is that branch of econometrics that deals with identifying and quantifying

empirically - that is on the basis of observations collected from the real world [Hun21, p.

4] - relationships characterized by a cause-effect relationship.

1.2 What is a Causal Research Question?

Any causal inference problem begins with a causal research question, that is a question

whose answer is a numerically quantifiable cause-effect relationship. For example: ”How

does the hourly wage vary as a result of an increase in the level of education?” [Car99]

”Does the granting of a residence permit to an illegal immigrant on average reduce the

likelihood of this person committing a crime?” [Pin17] ”Does the introduction of a min-

imum wage have an impact on the unemployment rate?” [CK00] ”Does the presence of

organised crime in a certain Italian region have an impact on per capita GDP?” [Pin15].

We can identify two common elements that underlie each of these questions:

1. A variable whose variation is source of the causal effect and which we will call De-

terminant (then shortened D). The determinant is more commonly called Treat-

ment , since it often consists in subjecting or not a certain subject to a certain

situation, intervention.

2. A variable that varies because of the causal effect subjected and that we will call

Outcome (then shortened Y)

Therefore, defined these two elements, we have the possibility to give a general definition

1



Chapter 1. Introduction

of causal effect [Hun21, p. 89]:

Variable D has a causal effect on variable Y when a change in the value

assumed by D unilaterally changes the value assumed by Y, ceteris paribus

1.3 Data Generating Process, Identification and Re-

search Design

Our objective is to identify and quantify just the causal effect of D on Y. The identification

process can be simple in experimental environments, where a scientist can control all the

variables of the system in which he/she operates, but this is not the case in reality.

In fact, it often happens that the value assumed by a certain variable is the result of

several variables that affect the value of this one. For example, consider the causal effect

of family’s income on the individual’s probability of enrolling in academic studies for a

graduate student. The probability of enrolling in academic studies probably depends

on other factors, such as the individual’s ability or individual’s motivation. Here we

want an example as clear as possible, so we have inserted just another variable: the

parents’ schooling level. If we only want to evaluate the causal effect of family’s income

on individual’s probability of enrolling in academic studies, how can we do it? In other

words, how can we identify just the causal effect of family’s income, getting rid of the

causal effect generated by parents’ schooling level1 This example allows us to introduce

two fundamental concepts: the Data Generating Process and the identification. TheData

Generating Process (then shortenedDGP) is the set of underlying laws that determine

how the data we observe are generated [Hun21, p. 67]. Identification , instead, is that

situation in which it has been possible to isolate the searched causal effect, separating it

from every other possible source of variation coming from the other factors that are present

in our data generating process. Going back to our example, the DGP will be the set of

all the causal relations that exist in the system ”individual’s probability of enrolling in

academic studies”.

Family’s Income University

Parents’ schooling level

Since our goal is to recognize the effect of family’s income on the individual’s probability

of enrolling in academic studies, we will have obtained identification when, following a

certain procedure, we will have isolated the effect caused by family’s income compared

1If there were more variables the problem is the same: ”How to get rid of the causal effect of all the
variables except family’s income?”

2



1.4. Identification cannot be known

to the effect caused by parent’s schooling level. The protocol we intend to follow to

obtain identification, which will consist in the sequential application of different statistical-

econometric tools, is called Research Design .

1.4 Identification cannot be known

What makes causal inference complex is the fact that we can never be certain we have

achieved identification. An example is the best way to understand this concept. Let’s

suppose the true, but unknown, causal effect of family’s income is such that every 50.000$

the individual’s probability of enrolling in academic studies increases by 5%. But we got

3% with our research design. So we didn’t get identification: we’re underestimating the

real value. The problem is that there is no way to verify it, to know if we caught the

real value. For this reason research design is fundamental, because according to this our

result will acquire credibility. The more we see to research design the more our research

answer will acquire robustness.

1.5 To sum up

We have a question whose answer consists in a causal relationship, i.e. we have a causal

research question. We want to quantify this effect-causing relationship basing our research

on real-world observations. In real world cause-effect relations tend not to be distinct and

easily identifiable, since different variables interact with each other and jointly contribute

to determine more cause-effect relationships, also affecting the causal effect that we are

looking for. The set of all these relationships is called the Data Generating Process. Our

goal is to identify only the cause effect relationship that we are interested in, eliminating

any distortion from other variables in the DGP. In short, we want to identify our causal

effect : to obtain identification. The set of econometric operations and tools that we intend

to use to obtain identification is our research design.

1.6 Why is statistics not enough?

In causal inference the use of statistical tools, particularly the use of multiple regression,

is not sufficient to identify the searched causal effect. Why? Because statistical tools can

tell if there is correlation (association) between two variables, but not if there is a causal

relationship. To give a definition to correlation and causation we could say that:

Correlation (also ”Association”): two variables X and Y are cor-

related when they occur together following a certain relationship;

3



Chapter 1. Introduction

Causation : two variables X and Y are linked by a causal relationship

when they are correlated and we know that one causes the other.

So we can say that “correlation does not imply causation” [Wikd] and this is the reason

why we cannot rely only on statistical tools.

Suppose we have a variable Y regressed2 on D. The regression coefficient will tell us how Y

and D are related but, to say that D causes Y and that the regression coefficient represents

the causal effect, we must first have assumed in the DGP that Y is caused by D.

1.7 The Simpson’s Paradox

Another reason why causal inference requires prior knowledge of DGP is given by the

Simpson’s paradox, which says that ignoring even just one variable, the result could be

strongly distorted. Let’s take an example. ”Does a higher income bring greater happiness

to people?” [Cha21]. Collecting data on income and happiness and tracing a regression

line we get the relationship, the correlation, is positive and, based on our assumptions,

we say that income causes greater happiness.
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However, if we consider that the data come from two different countries, let’s suppose

Canada (green points) and Mexico (orange points), where the average income is very

different, we notice that in reality the relationship is negative3.

This is how, considering a variable that was previously hidden, the result changes. For

2That means there is a regression line like Y = β0 + β1D + ...+ E
3Thanks to Alessandro Miotto for providing me these charts.
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1.8. And now Causal Diagrams come
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this reason, prior knowledge of the DGP is essential.

1.8 And now Causal Diagrams come

At this point we are clear about what we want to achieve and we are aware of the risks

involved if we do not first acquire a solid knowledge of the DGP. What we have left to do

is to set the research design. How to do this? How to figure out whether to resort to a

Randomized Controlled Trial or to an Observational Method4? And are we sure that we

will be able to complete the experiment by adopting that set of actions/operations?

The point is, therefore, to understand which econometric tools to use or, more generally,

what actions we need to take to obtain identification, before to start ”digging in the

data” [Hun21]. A bit like building a house: nobody builds a house without the architect’s

project. The answer to this question - ”How to set the research design?” - depends on

how the DGP is structured.

So, the following question is: ”How do we get a clear idea of how the DGP is structured?”

Easy: causal diagrams ! Okay, maybe not so easy, but causal diagrams are a particularly

effective tool to set up research design, and not only that.

Causal diagrams are graphs that allow us to immediately visualize how the DGP is struc-

tured. Here are an example of a complex causal diagram. Imagine you have to keep in

mind a DGP like this. Impossible task.

4These are some Econometrics type of tools.
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Chapter 1. Introduction

Figure 1.1: Huntington-Klein [Hun21], figure 7.1, p.106

Once we understand how the DGP is structured we also have sufficient information to

decide what statistical-econometric tools to apply [Hun21, p.87, 115]. This is also im-

portant from data collection point of view: collecting data is in fact a costly operation

in terms of time and money, so it is appropriate, before the implementation of research

design, to have clear whether and which data to collect, so as to avoid waste of time and

money. Moreover, it must be considered it’s not always possible to obtain identification.

This is generally due to:

The impossibility of collecting data because a certain variable

is not measurable.

For example, the individual’s ability is definitely a relevant factor in

choosing whether to continue in the course of study, but how can we

uniquely measure the individual’s ability?

The impossibility to collect data because it would be too ex-

pensive.

To understand whether a glass of wine a day is good or bad for our body,

we should ask all the subjects involved in the experiment what they eat

and drink in addition to the glass of wine. It would have an excessive

cost to ask thousands of individuals to record what and how much they

eat and at what time of the day [See Hun21, chapter 5.4].

Therefore, causal diagrams allow us to understand, before starting the research, how we

think to obtain identification or if we cannot answer the causal research question with the

tools available.

So we figured out what causal diagrams are for, but how do we build them? How are they

used specifically? We will talk about this in the following chapters.

6



Chapter 2

Causal Diagrams: how are they

made?

2.1 Causal Diagrams or Directed Acyclic Graphs?

The causal diagrams we are going to analyze now are more properly called Directed

Acyclic Graphs (then shortened DAGs). ”They were developed in the mid-1990s by

the computer scientist Judea Pearl [Pea09] who was trying to develop a way for artificial

intelligence to think about causality” [Hun21, p.90].

DAGs are so called because they cannot contain cyclic causal effects. Here an example of

a cyclic causal effect.

D Y

AB

2.2 Basic elements: Nodes and Arrows

Causal diagrams are composed of two elements: nodes and arrows.

Nodes represent variables within the DGP. Each variable can take multiple values [Hun21,

p.91], but the way it will always be drawn is the same: a node. I’m going to draw Deter-

minant(D) and Outcome(Y) variables within a rounded rectangle, in order to recognize

them quickly.

D Y

7



Chapter 2. Causal Diagrams: how are they made?

All relevant variables in the DGP should be included, although we cannot measure or

see them. This pops up all the time in social science [Hun21, p. 93]. The variables that

cannot be measured are called unobserved variables o unmeasured variables . I’m

going to indicate them and the arrows that comes out from them with a light gray color.

A Unmeasured B

Arrows show the causal relationships between variables, between nodes. They only tell

us that one variable causes another, but nothing says about the sign and the type1 of the

causal effect [Hun21, p. 91].

Potentially everything could affect everything, but we need to focus just on the most

relevant relations [Hun21, p. 91]. Importance is subjective, and so DAGs could differ just

because two scientists have a different opinion about the importance of some variables

of the same DGP. Along the lines of “focusing on important stuff”, causal diagrams are

often drawn with a particular outcome variable in mind. This is done because it allows

you to ignore anything that is caused by that outcome variable2 [Hun21, p. 91].

Another important thing to underline is that, when one variable is caused by multiple

things, the diagram does not tell us exactly how those things come together3 [Hun21, p.

93].

2.3 Causal Effects

The causal effects that can be shown in DAGs are of two types and cannot be cyclic:

Direct Causal Effect : when simply a variable affects another variable

[Hun21, p. 96].

D Y

Indirect Causal Effect : when the causal effect between two variables

is mediated by a third variable (or more variables) [Hun21, p. 98]. Vari-

ables that interpose between the Treatment (D) and the Outcome (Y)

are called Mediators .

D A Y

D A ... Y

1It could be linear, quadratic, exponential and so on.
2This point is explained better in chapter 3.
3This aspect becomes so relevant when thinking about moderators.
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2.4. Fundamental assumptions

2.4 Fundamental assumptions

When there is an arrow this means that between those two variables there is a direct

causal relationship, but when the arrow is not there? “No arrow means no direct causal

effect” [Hun21, p.96]. This is a fundamental assumption.

As we said, there is a balancing act between omit or not [Hun21, p.96, 97] which is

essentially subjective. But, there are some assumptions on which is based the possibility

of obtaining identification, i.e. to answer the causal research question. These assumptions,

which may consist of the presence or absence of certain arrows between nodes, are called

identifying assumptions . These are important because, if they are incorrect, the

approach adopted to identify the answer of our research question is not going to work

[Hun21, p.97]. For example, to run an Instrumental Variables research design you need

the instrument (Z) to be relevant (the [Z → D] must be different from zero) and exogenous

(the exclusion restriction [Z → Y] must be zero). If one of these two is not satisfied, we

cannot use the IV econometric tool. The two conditions are identifying assumptions.

Z D Y

X

2.5 Common structures

Normally some particular structures turn up in DAGs. Recognize them is fundamental

to realize a research design that allows us to obtain identification.

2.5.1 Confounders

In statistics, a confounder is a variable that influences both the dependent variable and

independent variable, causing a spurious association [Wikc]. So, when we talk about

confounding structures with reference to DAG, the typical structure is this one4:

Confounder

A B

Confounders are one of the reasons why correlation does not imply causation. For example,

eating ice-cream and wearing shorts are two positively related variables, but none of us

would dare to say that one is the cause of the other. If we did, we would be wrong,

4Note that the confounder is a structure that do not necessarily affects the D and Y. It is simple a
structure between three variables.

9



Chapter 2. Causal Diagrams: how are they made?

because it is the outside temperature that determines whether to eat ice cream or whether

to wear shorts. So the outside temperature is the confounding variable [Hun21, p. 94].

Outside Temperature

Shorts Ice-cream

Let’s come back to our problem of identifying the causal effect of family’s income on

the individual’s probability of enrolling in academic studies. Parent’s schooling level is a

confounder. Why?

Family’s Income University

Parents’ schooling level

On one hand, we can assume that parents’ schooling level affects the family’s income

because we can assume, on average, the higher the parents’ schooling level, the higher

the family’s income.

On the other hand, we can assume that parents’ schooling level affects the child’s

probability of enrolling in academic studies. Why? Because of the so-called fam-

ily background : the higher the level of education of the parents, the greater the

incentives of these for the children to study at least as much as they did.

Talking about confounders, it’s important to underline that often confounders are also

unmeasurable variables. For example, individual’s ability is an unmeasurable variable and

it’s reasonable to assume it affects both the level of education acquired and the income

earned by the individual during working age.

Ability

Schooling level Income

Variables such as individual’s ability that represent general concepts and that cannot be

measured are called latent variables [Hun21, p. 94].

2.5.2 Colliders

In statistics, a variable is a collider when it is causally influenced by two or more vari-

ables. The name ”collider” reflects the fact that in graphical models, the arrow heads

10



2.5. Common structures

from variables that lead into the collider appear to ”collide” on the node that is the col-

lider [Wikb].

Collider

A B

One example to understand colliders is about movie stars. To be a movie star, you should

be either talented or beautiful, or both. So, movie star is a collider [Cun21, Chapter

3.1.6].

Movie Star

Talent Beauty

Another example can be given by whether or not you are part of an elite institution. To

enter a high-level institution you are either talented or you have worked hard. So, being

in an elite institution is a collider [Aga].

Elite Institution

Talent Hard work

Notice that, generally, a variable is a collider when the following logical reasoning occurs:

”The collider variable is caused by either the value of A (cause 1), or the value of B (cause

2), or both”.

We will see later colliders have some properties for which attention should be paid.

2.5.3 Moderators

Moderators are variables that modify the effect of one variable to another one [Hun21,

p. 99].

Moderators vs Mediators

We must keep in mind the difference between moderator and mediator concepts: mod-

erators moderate the effect that one variable cause to another; mediators are variables

that explain how one variable cause another, because they interpose between the causing

variable and the caused one.

11



Chapter 2. Causal Diagrams: how are they made?

Moderator variable

D Y

Moderator

Mediator variable

D Mediator Y

The two concepts are not mutually exclusive. Though, it’s important to recognize when

a variable is a moderator and/or a mediator, because this affect how we will manage that

variable.

Moderators examples

For instance, we want to calculate the effect the administration of a certain drug has on

the recovery from a pathology of the uterus. Clearly, the effect will be moderated by the

sex variable: only on those patients who have the uterus the effect will be observed.

Drug Recovery

Sex

The moderators are not always so clear. Let’s think about the effect of an increase in the

cost per litre of fuel on fuel consumption. This effect is moderated by income: those with

a higher income will suffer less from the upward changes in the price of fuel.

Fuel Price Fuel Consumption

Income

Problematic notation

Probably you have noticed that in the previous graphs the moderator is indicated with an

arrow that affects another arrow. This notation, though intuitive, is however incorrect.

Moderators in DAGs should be drawn as all other variables.

Not correct

D Y

M

Correct

D Y

M

So, we have the problem of recognizing when a variable is a moderator, because the correct

notation does not imply the variable to be a moderator. It could be simply a variable

that causes another variable (in this case the outcome).

A trick that can be adopted, as Huntington-Klein [Hun21, p. 100] suggests, is to insert

12



2.5. Common structures

the moderated effect (D x Mod) right on the diagram, as a mediator. The solution is not

formally correct, but it makes the interpretation of the DAG much more intuitive.

D Y

(D x Mod)

Mod

In the previous DAG, M, the moderator, has only a moderating effect on D. It’s not to

exclude, however, that a moderator can have its own causal effect - in addition to the

moderating one - on other variables and, why not, also on the outcome (see the red arrow).

D Y

(D x Mod)

Mod

13
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Chapter 3

How to draw Causal Diagrams?

Before starting to draw a DAG, it is essential to study the institutional environment of

our causal research question, that is to understand as much as possible about the variables

and the causal relationship of our DGP. Once we have done this or, at least, when we

think we have reached a good comprehension of our DGP, we can start drawing it. In

the first place we insert the treatment and the outcome variable. Then, we add all the

relevant variables in the DGP and finally we trace all the causal relationships between the

variables. Remember that we are focusing on the causal effect of treatment on outcome,

so every variable that is caused by the outcome and it is not connected in some way with

the treatment should be removed. In this example, the variable C should be removed.

D Y

A

B

C

E

In like manner for variables like E, that causes (and not caused by) the outcome and

are not connected to every other variable. This kind of variables should be removed too,

because they are not relevant to our objective of finding the effect of D on Y. However,

even if variables like C and E should be removed, initially it could be convenient to keep

them, because we could find a relevant relationship later.

Drawing suggestions I have reported here come from “The Effect: An Introduction to

Research Design and Causality” [Hun21, chapter 7], where you can find a more detailed

guideline to draw causal diagrams.
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Chapter 4

How to use Causal Diagrams?

4.1 Paths: what are they?

We have understood DAGs answer the purpose to set our research designs, but how

precisely? Studying paths.

Paths are the possible ways that, in a DAG, link the treatment variable (D) to the outcome

variable (Y) [Hun21, p. 116]. Graphically, paths are all possible roads that start from the

treatment and arrive at the outcome. For example, in the DAG below, all the possible

paths are:

I D → Y

II D → A → Y

III D → A → C → Y

IV D ← B → Y 1

D Y

A

B

C

So, each path shows us a possible way for which treatment and outcome are connected

to each others, but not necessarily by a causal link2. In order to obtain identification, we

will decide which paths we are interested in and which are not and, consequently, we will

set our research design [Hun21, p.116].

1Note that paths, to be such, do not necessarily have to have arrows all pointing in the same direction.
2For example, look at path IV where B is a confounder.
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4.2 How to find all the paths

In the previous example, recognizing all paths was relatively simple. But when DAGs

become complex, how can we be sure that we haven’t forgotten any of them? We use a

guideline that allows us to detect all of them at first glance. Nick Huntinghton-Klein, in

his book ”The Effect”, has developed the following algorithm [Hun21, p.117]:

1. Start at the treatment variable (D)

2. Follow one of the arrows coming in or out (either is fine!) of the treatment variable

to find another variable

3. Then, follow one of the arrows coming in or out of that variable

4. Keep repeating step 3 until you either come to a variable you’ve already visited (So

there is a loop! It cannot be in DAGs), or find the outcome variable (that’s a path.

Write it down)

5. Every time you either find a path or a loop, back up one and try a different arrow

in/out until you’ve tried them all. Then, back up again and try all those arrows

6. Once you’ve tried all the ways out of the treatment variable and all the eventual

paths, you’ve got all the paths!

This steps sequence allows us to recognise each path in the DAG we are working on. Let’s

try to apply it to the following DAG.

D Y

C

B

A

Let’s start from D and arrive at Y. This is the first path: [D → Y]

Let’s return to D and move towards C. From C we go to Y. This is the second

path: [D ← C → Y].

Given that C is linked to other nodes, let’s return to C and from here we move

towards A. A has a single link to Y, hence the third path is: [D ← C ← A → Y].

In A there are no links to other variables other than C or Y, so we return to C. C

also connects with B. We notice B in turn goes to Y. The fourth path is: [D ← C

← B → Y].

But from B another link goes to D. Then, the path would be [D ← C ← B → D]

18



4.3. Categorize the paths found

that is a loop! Therefore it’s not a path, because in DAGs there cannot be cyclic

paths. So we have to ask ourselves if the loop can be eliminated. If it cannot be

suppressed because the effect that the loop describes is relevant for our research,

then we have to adopt other tools that are not the Directed Acyclic Graphs, because

in these there cannot be loops.

In B the links to other variables are finished, so we return to C. In C also the

connections to other variables are finished. Let’s return to D. From D there is a

link that we hadn’t considered so far: [D ← B]. Then, from B you can connect to

Y. The fifth and final path is: [D ← B → Y].

At this point we have identified all the paths present in our DAG:

• D → Y

• D ← C → Y

• D ← C ← A → Y

• D ← C ← B → Y

• D ← C ← B → D (loop)

• D ← B → Y

4.3 Categorize the paths found

Once all paths are recognised and all cycles are eliminated - assuming they can be elim-

inated because they’re not sufficiently relevant for our research - we need to categorise

paths to understand how to treat them.

4.3.1 Front door and Back door paths

A first distinction that can be made is between front door and back door paths. Front

door paths are the paths where all the arrows face away from the treatment [Hun21,

p.121]. Conversely, back door paths are the paths where at least one arrow, somewhere

along the path, points towards the treatment variable [Hun21, p.121] Consider the following

DAG.

D Y

C

B

A
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Front door paths are:

• D → Y

• D → A → Y

Whereas back door paths are:

• D → C ← A → Y (note that C is a collider)

• D ← B → Y (note that B is a confounder)

Note that, when there is at least a collider or a confounder in the path, this will definitely

be a backdoor path.

4.3.2 Good and Bad paths

Front vs back door paths subdivision is useful to give a name to these two types of paths,

but since our goal is to obtain identification, and therefore to set the research design,

the subdivision between good paths and bad paths becomes more important. A causal

path is a good path if it is related to our research question, so, a path we are trying

to identify [Hun21, p.121]. Conversely, a bad path is a path that does not count for

our research question [Hun21, p.121]. So, it is the relevance with respect to our research

question the determinant of the paths goodness. For example, let’s consider this DAG

where the individual’s schooling level is the treatment and the probability of being hired

for a job the outcome.

Schooling Level Job

Ability

Skills

The front doors are two. What’s their interpretation?

schooling level → job : this is the so-called signalling effect, for which future

employees seek to increase their probability to be hired by achieving higher edu-

cational degrees. It is based on the assumption that the higher the individual’s

schooling level the higher the likelihood of being hired [Wike]. Let’s call this path

the signalling path for convenience.

schooling level → skills → job : this path is telling us the probability of being

hired depends on educational level, but because it increases the future employee’s

skills. Let’s call this path the skills path for convenience.
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4.4. Get identification: to close all the bad paths

Think of a firm that needs to hire a manager. It selects some candidates and then has to

decide which one to hire. The candidates’ probability of being hired depends on:

the educational level achieved : individuals with an executive degree have a

greater chance of being taken on rather than others with only a postgraduate degree,

regardless of their management ability3. This is the signalling path.

the management skills acquired during the studies : the higher the work abil-

ity acquired thanks to the studies, the higher the probability of being hired. This is

the skills path.

The weight of the paths depends on how the job selections and interviews are conducted.

If our research question is “How does the manager candidates’ schooling level determine

their probability of being hired?” therefore good paths are [schooling level → job] and

[schooling level → skills → job]. On the contrary, if our research question is “How does

the manager candidates’ schooling level determine their probability of being hired because

of the signalling effect?” hence, the only good path is [schooling level → job]. Instead,

if our research question is “How does the manager candidates’ schooling level determine

their probability of being hired because of the management tools acquired during their

educational path?” so, the only good path is [schooling level → skills → job].

To decide whether a path is good or not we need to clearly keep in mind what is our

research question. In our managers example, depending on the causal research question,

we will adopt different strategies to get identification.

4.4 Get identification: to close all the bad paths

We have just said there are good and bad paths. We are interested only in good paths,

that is we want to identify only the causal effect described by these ones, excluding the

bad paths. How to do this? The gold rule of identification says: “To get identification

you need to close all the bad paths and leave the good ones open”. This definition is

implicitly saying that there are open and closed paths. What does this mean? Let’s see

this distinction better.

4.4.1 Open and Closed paths

Imagine a path like a river, which starts to a certain point, the “treatment”, and flows

into the “outcome”. Along the river are located the path’s variables. The treatment

variable produces a wave, that is the “causal effect” produced by the treatment itself. If

3They may have obtained the degree by copying every exam.
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there are no obstacles, the wave advances through the variables, until it arrives at the

“outcome” one, producing its causal effect. Vice versa, if there is, let’s say, a dam, the

wave is blocked before to kick the outcome. If there are no obstacles the path is open

and, conversely, if there are, the path is closed. To give a formal definition: “A causal

path is open if all the variables along the path have variations in the data and a causal

path is closed if at least one of the variables along the path has no variation in the data”

[Hun21, p.122]. So, only if the path is open the causal effect can propagate along the path

and finally impact into the outcome.

With this trivial example we have explained the concept of d-separation (or d-connectedness):

“If all the paths between two nodes X and Y are blocked, then we say

that X and Y are d-separated. Similarly, if there exists at least one path

between X and Y that is unblocked, then we say that X and Y are d-

connected. [...] d-separation is such an important concept because it

implies conditional independence.” [Nea20, p.29]

So, when the path is open there is a causal relationship between the treatment and the

outcome and when the path is close, well, no.

Now, maybe, you are glimpsing how the story ends up: blocking all the bad paths we will

be able to observe only the causal effect we want to know. In other words, to close the

bad paths is a way to skim each distortion in our data that does not allow us to see the

searched causal effect.

Let’s return to our previous example. If our research question is “How does the manager

candidates’ schooling level determine their probability of being hired because of the sig-

nalling effect?” what we have to do, to get identification, is to close all the ”roads” except

[schooling level → job]. The next question is: “How to practically close a path?”

4.4.2 How to close a path? Controlling for

Controlling for (or adjusting for) a variable is a way to “remove all the variation

associated with that variable (the controlled variable) from all the other variables”

[Hun21, p.59]. Controlling for is a complex concept and our example can provide us an

easy way to catch it.

Let’s take an example similar to the manager candidates one. MBA dg is the Master in

Business and Administration degree grade. BP exp is the expertise in making a business

plan. JOB is the candidate’s probability of succeeding in application, i.e. the probability

of obtaining the job. CF are other confounder factors that we suppose to be measurable.
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4.4. Get identification: to close all the bad paths

MBA dg JOB

CF

BP exp

We want to know “How does the master degree grade affect the probability of being

hired because of the signalling effect?” Our hypothesis is that firms, when searching for a

manager, hire someone or not because he/she achieved a certain degree grade, regardless

of his/her real ability in making a business plan4. This is the signalling effect.

To identify our answer, we select a sample of MBA graduate students and a sample of

firms that are searching for a manager. Then, we invite each student to apply for the

manager job position in every firm inside our sample. We collect data on candidates’

degree grade, i.e. MBA dg, and their percentage value of job applications in which they

succeeded in the interview, obtaining a job offer (JOB). MBA dg takes values from 1 to

4, in relation to the degree grade class: 1 if “fail/borderline” (final grade of 40 - 49 %); 2

if “pass” (50 - 59 %); 3 if “merit” (60 - 69 %) and 4 if “distinction” (70+ %). Then, we

run a regression like this:

JOB = β0 + β1 ·MBA dg + E (4.1)

Suppose we get this result:

JOB = 0.21 + 0.15 ·MBA dg + Ê (4.2)

That 0.15 means the probability of being hired increases by 0.15 for each class upgrade.

Did we get identification? No, because we are not controlling for BP exp nor for CF. So

the 0.15 is not the real causal effect value of the signalling effect. To get it we adjust our

regression in order to control for BP exp and CF. How? Collecting data on BP exp and

all the confounder factors and adding them to the regression as control variables. Imagine

the BP exp is measured with a test that is administered to all the candidates sample5

in order to have a uniform ability assessment. Suppose in the test students can score 3

possible values: 1 if “low expertise”; 2 if “average” and “3 if “high”. Then, we run the

regression with new data and obtain this:

JOB = 0.02 + 0.04 ·MBA dg + 0.07 · BP exp+ 0.05 · CF + Ê (4.3)

4Even if the signallig effect exists, this is not a realistic hypothesis, but we are taking it for real just
for the sake of providing a clear example.

5Suppose we have all the money we need to conduct this experiment.
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Did we get identification? Yes, because we have closed all the bad paths controlling for

at least one variable in these. And so, the answer to our research question is that the

signalling effect is 0.04 on the MBA dg class upgrade. So, returning to our question

“What is controlling for?”, in this example controlling for BP exp we removed the source

of variation produced by MBA dg that impacts on JOB through BP exp and controlling

for CF we also skimmed the influence caused by the other confounder factors (CF). This

is also visible looking at the data: the MBA dg coefficient decreased from 0.15 to 0.04.

Why? Because adding other control variables the regression “was able to assign more

precisely to each variable the amount of variation it produced”. In other words, adding

the control variables regression was able to distinguish the causal effect produced by each

variable, instead of assigning only to MBA dg the most of the variation that the outcome,

JOB, showed in the data collected. As a matter of fact, the 0.04 coefficient has to be read

as:”The MBA dg increases the probability of being hired by 0.04 ceteris paribus, that is

keeping constant all the other variables”.

Adding a variable in a multiple regression is the most common way to control for that

variable. However, there are other methods that allow us to control for a variable. Which

one to choose depends on your causal question.

4.4.3 Pay attention to Colliders

When we close paths to get identification we need to pay attention to colliders because

of two reasons.

• They close the path where they are by default;

• If we control for them, we open up the paths.

Path closed by default

You may be asking why this happens. Nick Huntington-Klein provided us this intuitive

explanation:

“You can think of it this way: the collider variable doesn’t cause anything

else on the path. It’s just being caused by the variables to its left and

right on the path. So if we’re looking for alternate explanations of why

Treatment and Outcome might be related, the collider shuts that alternate

explanation down. If the path were [Treatment ← C → Outcome], without

a collider, then one reason why Treatment and Outcome vary together is

because C causes them both. But with a collider, [Treatment ← A → B ←

C → Outcome], C can affect Outcome, and C can affect B, but because B

doesn’t affect Treatment, C can no longer induce a relationship between
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4.4. Get identification: to close all the bad paths

Treatment and Outcome. B saved us.” [Hun21, p.124, 125]

Controlling for colliders open up paths

Controlling for a collider opens up the path/s because once you control for the collider the

two variables pointing to the collider become related6 [Hun21, p.125]. Brady Neal gives us

an intuitive example to explain this collider behavior:

“Imagine that you’re out dating men, and you notice that most of the nice

men you meet are not very good-looking, and most of the good-looking men

you meet are jerks. It seems that you have to choose between looks and

kindness. In other words, it seems like kindness and looks are negatively

associated. However, what if I also told you that there is an important

third variable here: availability (whether men are already in a relation-

ship or not)? And what if I told you that a man’s availability is largely

determined by their looks and kindness; if they are both good-looking and

kind, then they are in a relationship. The available men are the remain-

ing ones, the ones who are either not good-looking or not kind. You see

an association between looks and kindness because you’ve conditioned on

a collider (availability). You’re only looking at men who are not in a

relationship.” [Nea20, p.26, 27]

Availability

Looks Kindness

And here is the graphical representation of his example, where he assume “looks” and

“kindness” independent:

Figure 4.1: [Nea20, Figure 3.18, p.27]

6The formal explanation of this collider behavior is called “Berkson’s Paradox” [Wika].
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Even if it seems strange, it is misleading to control for every variable, because we could

accidentally control for a collider. For instance, we want to estimate how smoking affects

the probability of having a stroke.

Other Brain Damages

Smoking Stroke

If we regress stroke data on smoking data we can get identification according to this DAG.

But, if we also control for having other brain damages, then the path [smoking → other

brain damages → stroke] opens and then we do not have identification. Conditioning on

descendants of a collider also induces association in between the parents of the collider.

[...] In other words, a descendant of a collider can be thought of as a proxy for that

collider, so conditioning on the descendant is similar to conditioning on the collider itself.

[Nea20, p.28] In the following DAG, for instance, if we control for B, then [D → A ← Y]

opens up.

D Y

A

B

4.4.4 Pay attention to Moderators

When controlling for variables we need to pay attention to moderators because the rela-

tionship between a moderator and its moderated variable can take multiple forms, since

the moderator could describe different types of relationship7. For example [Hun21, p.99],

consider the following DAG, where M is the moderator8:

D Y

M

If we translate this DAG in a regression, it could take different forms because we do not

know how the moderator is affecting other variables:

I Y = β0 + β1D + β2M + E

II Y = β0 + β1D + β2M + β3M
2 + E

III Y = β0 + β1D + β2M + β3MD + E

IV Y = β0 + β1D + β2MD + E

7Check on Problematic Notation.
8We’re now using the right notation for moderators.
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Note that only in III and IV there is a moderating effect9. So, which is the right regres-

sion? It depends on our interpretation of the DGP. As you probably are realizing, to get

identification we need to take the right regression. This is the reason why we need to pay

attention to moderators.

4.4.5 The Backdoor Criterion

In DAGs theory it is more common to hear about “backdoor paths” instead of “bad

paths”, because usually the bad paths coincide with the backdoor paths. Given that, the

gold rule to get identification is called backdoor criterion , and it says:

“A set of variables W , satisfies the backdoor criterion relative to D and

Y if the following are true:

1. W blocks all backdoor paths from D to Y.

2. W does not contain any descendants of D10 [that are situated in front

door paths11] [Nea20, p.37]

If W satisfies the backdoor criterion we say that W is a sufficient adjustment set because

W is sufficient to adjust for to get the causal effect of D on Y [Inf20].

4.4.6 To Sum Up

Here’s a recap about how to block a path, taken from “Introduction to Causal Inference”

of Brady Neal [Nea20, p.28]:

“A path between nodes D and Y is blocked if either of the following is

true:

1. Along the path there is a chain [... → W → ...] or a

fork [... → W ← ...] where W is conditioned on.

2. There is a collider W on the path that is not conditioned on and none

of its descendants are conditioned on.

9Where there is the MD explanatory variable.
10because in the Backdoor Criterion all the front door paths are considered good paths, but we have

seen in [MBA dg → JOB] example that is not necessarily true.
11The part in squared brackets is added by me.
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4.5 The Placebo Test

So far we have talked about how to use DAGs to get identification, supposing the DAGs we

draw are complete, but it might happen we forget to put some relevant causal relationships

in our DAGs. How to be sure that we are not forgetting anything relevant? Placebo

Test . How does it work? An example is the best way to explain it. Consider the

following graph, where we want to evaluate the effect of a masterclass participation on

the individual’s sales volume of a sales team.

Masterclass Sales volume

Confounders

To measure the causal effect we split the sales team members into two groups: a treat-

ment group - that is a group made up of half of the sales team members and that will

attend the masterclass (the treatment) - and a control group - that is a group made

up of the other half of the sales team members and that will not receive the treatment.

What are we going to do is to compare, after the masterclass attendance (so after the

treatment is administered), if the sales volume (outcome), on average, is higher for the

treatment group compared to the control one. We can compare the two values of sales

volume only if the two groups are similar except for the masterclass attendance or not.

So, to control for every possible difference we adopt some strategy in order to keep track

of every possible confounding variable. In practice, we control for confounders into our

regression.

Sales volume = β0 + β1Masterclass+ β2Confounders+ E (4.4)

How to be sure we’re controlling for every relevant confounder? We carry out a Placebo

Test. How? We run the previous regression using Sales volume measured before the

Masterclass attendance as a dependent variable and check the value of β1. If we have

controlled for confounders in the right way, we’ll see β1 = 0, which means there are no

factors, except for the treatment administration, that affect the sales volume. On the

contrary, if we’ll see β1 6= 0, this means we are not controlling for some relevant variables

in confounders, and so we need to check which one is missing. This could happen, for

instance, if we are not able to accurately control for engagement, which reasonably affects

the masterclass effectiveness and the individual’s sales volume.
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Chapter 5

Not only closing backdoors

You can think at this point DAGs are an irreplaceable tool for causal inference. That’s

partially true and depends on how we are going to use DAGs. As we have seen so far,

they are a useful tool to identify backdoor paths and close them. However, not always

the DGP we are dealing with allows us to apply the backdoor criterion, that is closing all

the bad paths to get identification. This could be due to unmeasured variables that block

us in every possible way to close all the bad paths. So, in this type of situation, DAGs

are useless tools? For closing backdoor paths yes, but they can help us in finding another

strategy to get identification.

5.1 Exogenous source of variation

Suppose you are dealing with a DAG like this.

D Y

Confounders

There is no hope of closing backdoor paths. So, how can we get identification? One way

to get identification is to recognize an exogenous source of variation that determines only

D. What does this mean? Graphically this:

D Y

Confounders
Exogenous Source

So, it is a variable that triggers only the D, without being affected by other variables1.

1“Exogenous” means “without being affected by other variables” and “without affecting variables
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Why is this variable useful? Because it allows us, in some way, to close all the backdoor

paths and obtain the causal effect D → Y. The third variable can be generated by the

scientist or simply taken from real-world situations.

We talk about a third variable generated by the scientists when they assign or not some

individuals to a certain treatment in order to create a treatment group and a control group.

The previous example on masterclass and sales volume is an example of this kind of third

variables, because, in order to evaluate if the business masterclass increases individual’s

sales, scientists assign randomly individuals of the sample (Sales team) to the masterclass

or not and then compare their sales volume.

Masterclass Sales volume

Confounders
Assignment

When scientists decide whether or not individuals of the sample group are randomly

assigned to the treatment group or to the control one, we say this kind of experiment is

a Randomised Controlled Trial (RCT).

D Y

Confounders
RCT

On the contrary, we talk about third variables taken by real-world situations when an

exogenous source of variation even if it is not produced by scientists but, likewise RCT,

it allows us to answer our causal research question. This kind of third variables is called

natural experiment because randomization of the treatment occurs without a researcher

controlling the randomization [Hun21, p.133]. For example2 [example inspired by this

paper: AGI00], we want to estimate the elasticity of tuna demand curve, that is the

percentage decrease in tuna demand3 because of a 1% increase in tuna price. We have

data on the daily amount of tuna sold and the average selling price. The DAG is:

Price Demand

Confounders

The problem is: “Are we sure that demand does not affect the price too?” Unfortunately

except D”.
2In this example you won’t recognise a control and a treatment. This could happen when working

with treatments that are continuous variables, i.e. not binary as in the previous “masterclass - sales
volume” example.

3Quantity demanded for consumption
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not, because we know that in a competitive market quantity sold and price at which it is

sold are simultaneously determined by the equilibrium between demand and supply. The

DAG became so4:

Price Demand

Confounders

How can we get out of this situation? We can resort to a natural exogenous source of

variation: sea weather conditions. Sea weather conditions determine the availability of

tuna, so the tuna supply curve, because the better the weather conditions the larger the

quantity of tuna that can be sold. Then, given the basic economic demand fundamental for

which “price is inversely related to quantity available”, we can figure out the simultaneity

problem by tracing a new relationship that is [Sea weather conditions (Z) → Supply Curve

→ Price (D) → Demand (Y)].

Supply curve Price Demand

Confounders
Sea weather conditions

X

With this research design we can identify the causal effect of price on demand, and,

with some tricks, obtain the elasticity of the tuna demand curve5. We call sea weather

condition the instrumental variable (usually marked with Z) and we say this kind of

research design is an Instrumental Variables Research Design (IV). To adopt an

IV strategy we need the instruments to be exogenous and relevant6.

In conclusion, these examples aim to show you DAGs can be useful tools even if they

cannot be used to close all the backdoor paths, i.e. resort to the backdoor criterion.

DAGs don’t help us running an RCT or IV, but they make it easier to figure out when to

4This type of problem where also the outcome affects the treatment is called simultaneity , and
usually with instrumental variables research design the problem can be overcome.

5Probably you are asking yourself why we cannot simply regress price data on demand ones and then
measure the regression line slope, since the slope of the demand curve is its elasticity. It is not correct
because data on price and demand are given by the intersection between the demand curve and the supply
curve and we don’t see if and how the supply and the demand curves shift. So, the sea weather condition
is a variable that, for assumptions, causes only the supply curve shifting. This allows us to identify the
points along the stationary tuna demand curve (because it’s not influenced by sea weather conditions)
and estimate the elasticity of demand of tuna. It’s a tricky scenario, I know. . .

6We mentioned them exemplifying the identifying assumptions.
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resort to RCT or IV and which instrument to consider. So, as I said in the first chapter,

they help us set up the research design.

5.2 The Front Door Method

We have just seen DAGs help us understand where to adopt an RCT or IV research

design. However, sometimes we cannot resort to these methods because there are no valid

instruments or the RCT is not feasible. Hence, we are stuck with a DAG like this.

D Y

Confounders

What can we do? The Front Door Method (FDM) is a solution we can pursue where

DAGs like this:

D YF

Confounders

The FDM tells us we can identify the causal effect D → Y by isolating separately D →

F and F → Y. For example7, we want to estimate the glucose absorption impact on the

individual’s probability of contracting a cardiovascular disease.

Glucose Cardiovascular disease

Confounders

There are some confounders, such as individual’s stress, that block us in closing backdoor

paths. However, we know that glucose absorption increases glycaemia level, which in turn

affects the probability of contracting a cardiovascular disease.

Glucose Cardiovascular diseaseGlycaemia

Confounders

Adopting the FDM we can isolate the causal effects [Glucose → Glycaemia] and [Gly-

caemia → Cardiovascular disease] and therefore answer to our question [Glucose → Car-

7The following example is inspired from another very similar in “The Effect” of Huntington-Klein
[Hun21, p. 141 8.5].
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diovascular disease].

The FDM works when the “variable in the middle” has no link with other variables and

captures a large portion of the reason why Treatment affects Outcome [Hun21, p.141].

The FDM is another reason why DAGs could be useful even if we cannot use them to

close all the backdoor paths.
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Chapter 6

Conclusion

6.1 To Sum Up

As we have seen in this quick introduction guide, DAGs could be helpful in setting the

research design and, if our strategy consists in closing all the backdoor paths, they are an

effective starting point.

Now you are a step closer to winning the Economics Nobel Prize.

6.2 In short, my experience

During 2021 I attended an Econometric course held by professors Enrico Rettore1 and

Guglielmo Weber2. During exam preparation, as every student does (I think), I tried

to help friends and not only with some concepts that were a bit tricky. Unexpectedly,

a significant percentage (as a statistician would say) of these students find my expla-

nations really helpful. These kinds of situations happened in other exam preparations

too, but this time my support to other people was much more significant. So, after the

exam, I’ve started thinking about a master’s degree in this field. Talking about this with

Professor Rettore, he offered me the opportunity to do an internship at “FBK-IRVAPP:

Institute for the Evaluation of Public Policies”. There, with the help of Sergiu Constantin

Burlacu3, I learned the fundamentals concepts of Causal Inference4 by studying “Causal

Inference: The Mixtape” [chapters 1 to 4] [Cun21] and ”The Effect: An Introduction to

Research Design and Causality” [Chapters 1 to 11] [Hun21]. Besides that, I supported

the “S.m.a.i.l.e. - Simple methods for artificial intelligence” team in reporting activity

1Rettore’s Scholar page.
2Weber’s Scholar page.
3Burlacu’s Scholar page.
4RCT and the observational methods, that are IV, RDD, Diff in Diffs and Synthetic Control.
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and I contributed to the drafting of a proposal for an impact evaluation on an artificial

intelligence programme for financial market analysis. During these activities, I discovered

DAGs and I found them a great potential tool to approach Causal Inference5. Then, I

decided to write this Introduction to Causal Inference and DAGs remembering me helping

my friends during exam preparation. I hope this work can help someone one day because

yes, I have to say it: “I love helping people”.

5In fact, I wish I’d called this essay “Causal Inference for dummies”, but I thought this may get into
some copyright issues.
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