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Abstract

This work covers the problem of object recognition and 6 DOF pose estimation in

a point cloud data structure, using PCL (Point Cloud Library). The result of the

computation will be used for bin picking purposes, but it can also be applied to

any context that require to �nd and align a speci�c pattern. The goal is to align

an object model to all the visible instances of it in an input cloud. The algorithm

that will be presented is based on local geometry FPFH descriptors that are

computed on a set of uniform keypoints of the point clouds. Correspondences

(best match) between such features will be �ltered with RANSAC procedure:

from this data comes a rough alignment, that will be re�ned by ICP algorithm.

Robust dedicated validation functions will guide the entire process with a greedy

approach. Parallelism has also been implemented using OpenMP API. Time

and e�ectiveness will be deeply discussed, since the target industrial application

imposes strict constraints of performance and robustness.

The result of the proposed solution is really appreciable, since the algorithm is

able to recognize almost all the present objects, with a minimal percentage of

false negatives and an almost zero false positives rate. Experiments have been

conducted on a large dataset, that was acquired with a triangulation system

made up by one camera and two intersecting lasers as structured light sources.

Such vision system has been mounted �rst on a �xed position over a conveyor

belt, then on a moving robotic arm, in order to cover a larger area.
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Chapter 1

Introduction

1.1 Overview

Nowadays robotic systems used in industrial production play an increasing im-

portant role that will shape the mainstream business technology in the near

future. Most systems based on robot manipulators used in manufacturing com-

panies do not include advanced sensors for environment perception. In fact, this

kinds of robots are only programmed to play the same sequence of movements

continuously, hence they are blind towards the world they are embedded in.

In these conditions, they absolutely need a structured input and a completely

known environment, in order to work properly. This requirement is di�cult to

obtain, especially for limited production batches that are likely to exist in small

and medium-sized businesses. The work cell may be recon�gured, the products

may vary in shape and size or can be positioned randomly from the previous

production processes.

Enabling a robot manipulator to have perception of the environment in which it

operates can drastically improve the �exibility of the system, making it versatile

to di�erent jobs at will.

In this context, this work aims to design a 3D vision system that is able to solve

the problem of the bin-picking, that turns into the visual identi�cation of poses

of the objects in the container.

A vision algorithm will be proposed, which is capable of �nding the position and

orientation of the target within the container : the accuracy has to be enough

to permit the robot manipulator to grab the object without causing issues like

damages or errors.

6



CHAPTER 1. INTRODUCTION 7

This step encloses most of the �intelligence� of the system, since after identi�ca-

tion of the pose of an object, the physical pick, collision detection and following

industrial processes are treated in the same way as before.

In this work we have been using PCL (Point Cloud Library), an Open-Source

framework that deals with 3D data structures, which is getting widely spread

among the community of robotic applications since its launch on May 2011.

Combining this powerful platform with prior knowledge of laser triangulation

techniques (with correlated 2D image processing) to obtain a dataset, is an

excellent choice to approach to this kinds of unexplored problems.

Being successful with these applications means increasing production, saving

time and money, supplying Just-In-Time orders, re-qualifying the manpower,

providing low-cost solutions for both small and big businesses and being the �rst

mover towards a disruptive technology market that is able to change perspectives

even in the near future.

1.2 The bin picking problem

The bin picking problem consists in:

1. Obtain a dataset that represents the bin (like images or 3D scans)

2. Identify all the objects in the bin, that are all their 6 DOF poses

3. Choose the best object in the set, the one with minimum occlusions to

avoid collisions

4. De�ne a picking point for the chosen object, and then evaluate if the pick

is feasible

5. De�ne a path to let the robot manipulator pick the object without dam-

aging anything

6. Manage errors in the picking sequence, like wrong identi�cations or wrong

pick, and try again.

In this thesis steps 2 and 3 are fully covered: the main goals are the robust

identi�cation of the objects using point clouds as datasets and evaluating their

goodness for the picking process. The other points are not part of this thesis,

and they should be handled separately.
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1.3 The bin picking working cell

This section contains a brief description of the components of the bin picking

system.

� Robot manipulator: the kinematic chain (usually with 6 or 7 joints) that

moves on the bin and can be con�gured with di�erent tools, depending on

the desired actions.

� Gripper: the tool mounted on the TCP (Tool Center Point) of the robot

manipulator that deals with the grasping of the object.

� Vision system: they are mainly sensors (such as cameras) and lights (struc-

tured lights, lasers, illuminators).

� Vision support structure: it can be a �xed structure (for 2D cameras) or a

robot on which the system is mounted (for 3D scanning systems); in this

last case the robot can be either the same manipulator that takes care of

the pick, or an additional Cartesian coordinate robot, also called linear

robot.

� Computer to run the heavy computations of the vision algorithms.

� Coordinator: action must be synchronized, and such coordination can be

obtained by a PLC or even the same computer that links all the robots

and the the vision tools; in a fully automated system there is also the

need to de�ne a communication protocol to trigger actions between each

component.

Each component works on a Cartesian reference system on its own, but they

absolutely need to agree on a common reference system through translations of

inputs and/or outputs. Such translations are provided by sophisticated calibra-

tion procedures that are performed during the setup of the system.



Chapter 2

Hardware & Software tools

2.1 Overview on 3D Scanners

The actual methods to provide 3D scans are very di�erent and have advantages

and disadvantages basing on the application.

In the current state of the art of the strategies that avoid the contact with the

object scanned, there are three main categories: the stereo vision, the time-of

�ight cameras and the structured light.

� Stereo vision: this passive method is low cost but the accuracy depends

on features and textures of the scanned object.

� Time-of �ight cameras: this active method is used for long range appli-

cations (10-100m) and have limited accuracy, low resolution, and a lot of

computation complexity.

� Structured light: this active method is based on the projection of a known

light pattern on the object to be scanned, such that the way that the

pattern deforms when striking surfaces allows vision systems (one or more

cameras) to calculate the depth and surface information of the objects

in the scene. There are a lot of light patterns that can be used in this

application such as:

� infrared points, used for example in the Microsoft Kinect

� stripe light patterns, that require a pattern analysis using Fourier

transform and Gray code

� laser planes, that require triangulation calculations.

In the following sections the laser triangulation system will be presented.

9
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2.2 The 2.5D vision system

The scanning system is made up by 3 main hardware components:

� 1 sensor: that is a high resolution camera placed in the middle.

� 2 structured light projectors: that are lasers placed symmetrically respect

to the camera.

Figure 2.1: Dual laser/Single camera 3D scanning system

The lasers produce a 5mW power, 640 to 670 nm wavelength red colored planes

that hit the scene projecting two segmented lines, depending on the actual

objects.

The triangulation technique works by calculating the height basing on the devi-

ation of the laser light from its natural course. The procedure takes the data of

the camera (captures presenting all the lines of the planes) and calculates the

height of each pixel in the line, hence providing at each frame a line of height

values.

More precisely, the camera has the following characteristics: 4:3 ratio, 28 fps,

1600x1200 resolution.

2.2.1 Conveyor belt

In this layout the scanning system is �xed on a mechanical support over the

moving conveyor belt.
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The speed of the conveyor belt used for this work was set in the range 10 to 30

mm/s, hence the quality of the resulting point cloud is high and focused on a

small area.

Figure 2.2: The conveyor belt system: lasers and camera are occluded by the
aluminum structure

2.2.2 Robotic Arm

In this layout the scanning system is mounted on the moving robotic arm over

the �xed area to be scanned.

The speed of the scanning that has been used for this work was set in the range

30 to 60 mm/s, hence the quality of the resulting point cloud is lower, while

enlarging the scanned area.

Figure 2.3: The robotic arm, while calibrating and scanning
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2.3 The Point Cloud Library

The Point Cloud Library (or PCL) is a large scale, open project for 2D/3D image

and point cloud processing. The PCL framework contains numerous state-of-

the art algorithms including �ltering, feature estimation, surface reconstruction,

registration, model �tting and segmentation. These algorithms can be used, for

example, to �lter outliers from noisy data, stitch 3D point clouds together,

segment relevant parts of a scene, extract keypoints and compute descriptors to

recognize objects in the world based on their geometric appearance, and create

surfaces from point clouds and visualize them.

PCL is released under the terms of the BSD license and is open source software.

It is free for commercial and research use.

PCL is cross-platform, and has been successfully compiled and deployed on

Linux, MacOS, Windows, and Android/iOS. To simplify development, PCL is

split into a series of smaller code libraries, that can be compiled separately.

This modularity is important for distributing PCL on platforms with reduced

computational or size constraints.

2.3.1 Details

In version 1.6 of the framework there are several modules:

� common: contains the common data structures and methods used by

the majority of PCL libraries. The core data structures include the Point-

Cloud class and a multitude of point types that are used to represent

points, surface normals, RGB color values and feature descriptors. It also

contains numerous functions for computing distances/norms, means and

covariances, angular conversions and geometric transformations.

� features: contains data structures and mechanisms for 3D feature esti-

mation from point cloud data. 3D features are representations at a certain

3D point or position in space, which describe geometrical patterns based

on the information available around the point. The data space selected

around the query point is usually referred as the k-neighborhood.

� �lters: contains outlier and noise removal mechanisms for 3D point cloud

data �ltering applications. It also contains generic �lters used to extract

subsets of point cloud, or to exclude parts of it. It provides a voxel-grid

class to down-sample a point cloud by intersecting it with a lattice of

points.
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� geometry: reserved for future work, it will contain computational geom-

etry data structures and algorithms.

� io: contains classes and functions for reading and writing point cloud data

(PCD and PLY) �les, as well as capturing point clouds from a variety of

(OpenNI compatible) sensing devices

� kdtree: provides the kd-tree data-structure, using FLANN implemen-

tation, that allows for fast nearest neighbor searches. A Kd-tree (k-

dimensional tree, in most cases in this work it is a 3d-tree) is a space-

partitioning data structure that stores a set of k-dimensional points in a

tree structure that enables e�cient range searches and nearest neighbor

searches. Nearest neighbor searches are a core operation when working

with point cloud data and can be used to �nd correspondences between

groups of points or feature descriptors or to de�ne the local neighborhood

around a point or points.

� keypoints: contains implementations of several point cloud keypoint de-

tection algorithms. Keypoints (also referred to as interest points) are

points in an image or point cloud that are stable, distinctive, and can be

identi�ed using a well-de�ned detection criteria. Typically, the number of

interest points in a point cloud will be much smaller than the total number

of points in the cloud, and when used in combination with local feature

descriptors at each keypoint, the keypoints and descriptors can be used to

form a compact but distinctive representation of the original data. Harris,

Narf, Sift and Uniform keypoints are implemented in the current version.

� octree: provides e�cient methods for creating a hierarchical tree data

structure from point cloud data. This enables spatial partitioning, down-

sampling and search operations on the point data set. Each octree node

the has either eight children or no children. The root node describes a cu-

bic bounding box which encapsulates all points. At every tree level, this

space becomes subdivided by a factor of 2 which results in an increased

voxel resolution.

� registration: contains many point cloud registration algorithms for both

organized an unorganized (general purpose) datasets, including ICP, cor-

respondence �nding and rejection, transformation estimators.

� sample_consensus: holds SAmple Consensus (SAC) methods like RANSAC

and models like planes and cylinders. These can combined freely in order

to detect speci�c models and their paramters in point clouds. Some of the

models implemented in this library include: lines, planes, cylinders, and

spheres. Plane �tting is often applied to the task of detecting common
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indoor surfaces, such as walls, �oors, and table tops. Other models can be

used to detect and segment objects with common geometric structures.

� search: provides methods for searching for nearest neighbors using di�er-

ent data structures, including kd-trees, octrees, brute force and specialized

search for organized datasets.

� segmentation: contains algorithms for segmenting a point cloud into dis-

tinct clusters. These algorithms are best suited to processing a point cloud

that is composed of a number of spatially isolated regions. In such cases,

clustering is often used to break the cloud down into its constituent parts,

which can then be processed independently. It also contains algorithms

to �nd di�erences between two point cloud, that can be used for example

for quality inspection purposes.

� surface: deals with reconstructing the original surfaces from 3D scans.

Depending on the task at hand, this can be for example the convex/concave

hull, a mesh representation or a smoothed/resampled surface with nor-

mals. Creating a convex or concave hull is useful for example when there

is a need for a simpli�ed surface representation or when boundaries need

to be extracted. Meshing is a general way to create a surface out of points

which algorithms are based on marching cubes. Smoothing and resampling

can be important if the cloud is noisy, or if it is composed of multiple scans

that are not aligned perfectly. The complexity of the surface estimation

can be adjusted, and normals can be estimated in the same step if needed.

� visualization: this library was built for the purpose of being able to

quickly prototype and visualize the results of algorithms operating on 3D

point cloud data. Similar to OpenCV's highgui routines for displaying 2D

images and for drawing basic 2D shapes on screen. The package makes use

of the VTK library for 3D rendering for range image and 2D operations.

Point clouds, normals, range images, correspondences can be added to the

viewer window.

2.3.2 Development

The project is being developed by a large number of engineers and scientists

from many di�erent organizations, geographically distributed all around the

world.

The project is �nancially supported by Open Perception, Willow Garage, NVidia,

Google, Toyota, Trimble, Urban Robotics, Honda Research Institute, Sandia In-

telligent Systems and Robotics, Dinast, Optronic, Velodyne, CogniMem Tech-

nologies, Fotonic, and Ocular Robotics.
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Version 1.0.0 has been released on May 2011 and until today the project has

reached a good level of maturity, since the library is progressively more and

more used in academic and industrial application.



Chapter 3

Registration

The registration is a very common technique in literature used to combine sev-

eral datasets into a global consistent model.

The key idea is to identify corresponding points between the data sets and

�nd a transformation that minimizes the distance (alignment error) between

corresponding points. This process is repeated until the alignment errors fall

below a given threshold: at this point the registration is said to be complete.

A motivation example is given by �gure below, where a set of six individual

datasets has been acquired using a tilting 2D laser unit. Each individual scan

represents only a small part of the surrounding world, so the registration is

required to obtain a merged point cloud model.

Figure 3.1: Example of the classical registration problem

Using techniques and algorithms provided by literature, it is also possible to

16
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use the registration to align similar objects themselves, or a single object to a

big scene. In this case we speak about object recognition problem, but it is very

similar to the registration problem.

The Point Cloud Library, at current release 1.6, does not support object recog-

nition algorithms, so an original solution had to be found. The OpenSource

community however is developing new modules that deal with recognition of

objects in the scene basing on correspondence grouping.

The �gure below shows the results of the PCL developers trying to match the

milk cartoon in the scene.

Figure 3.2: Results of the experimental �Object recognition module�, available
in trunk PCL library not-yet-released.

3.0.3 De�nition of the problem

Our goal is to �nd the coordinates of the picking point of the best objects to

peek that are placed in random positions inside the scene scanned by the laser

triangulation system. Since the picking point may vary depending on the object,

we will simply �nd the roto-translation matrices that move the object from a

known position to in instance of it the world cloud: the alignment with the

object found should be nearly perfect

3.0.3.1 Input

To achieve the goal we �rst have to de�ne the input:

� The object : the point cloud of the part of the object to �nd that must be

visible in order to recognize its pose. That is, the model of our object, the
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pattern that we have to match. This object is pre-scanned with the same

system and edited manually to remove noise and useless parts.

� The world : the noisy point cloud of the entire scene acquired with the

scanning system. This scene contains the surface of the bin where all the

same objects are placed in a random pose.

3.0.3.2 Output

The output of the algorithm is a set M of roto-translation matrices Mi used to

align the object point cloud to the most part of the visible objects in the world

point cloud (n objects).

M = {M1,M2, · · ·Mn}

This kind of rigid transformation is a 4x4 matrix that contains a 3x3 rotation

matrix R and a translation 3D vector t

Mi =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1


With each matrix there is a validation score vi ∈ R that measures the goodness

of the alignment, as described in the following sections.

V = {v1, v2, · · · vn}

Hence, each alignment provided by this algorithm is described by the couple

{Mi, vi}: the matrix and its validation score.

The algorithm also outputs a visualizer provided by the PCL library, where the

results of the application of the transformations are applied. The user can then

visually estimate the goodness of the results.

3.0.4 Work�ow of the general registration process

The computational steps for two datasets are straightforward:

1. from a set of points, identify interest points (i.e., keypoints) that best

represent the scene in both datasets;
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2. at each keypoint, compute a feature descriptor;

3. from the set of feature descriptors together with their XYZ positions in the

two datasets, estimate a set of correspondences, based on the similarities

between features and positions;

4. data is assumed to be noisy and not all correspondences are valid, so reject

those bad correspondences that contribute negatively to the registration

process;

5. from the remaining set of good correspondences, estimate a rough trans-

formation.

6. the steps 3-4-5 are iterated faster in the ICP algorithm to achieve a perfect

alignment

Figure 3.3: Work�ow of a general registration problem

3.1 Validation Functions

In order to verify the correctness of any registration we can perform, we need a

robust validation function, that is capable of telling a good alignment to a bad
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one.

In the PCL library there is a class called TransformationValidationEuclidean,

whose purpose is to calculate a double score parameter using two generic datasets

and a maxRange parameter: the pair of points whose distance is less than

maxRange are taken into account. This method is too generic, in our case the

application outputs a lot of false positives.

For our needs three di�erent validation functions have been developed:

1. Euclidean distance validation function: it is used in the initial registration

to �nd out the best match using the square distances between points.

2. Percent of outliers validation function: it is used in the �nal registration

to recognize occlusions using the number of outliers points.

3. Normal angles validation function: it has been tried together with the Eu-

clidean distance validation function, but results are much worse, spending

much more computation time.

The detailed description of the functions are given below.

3.1.1 Euclidean Distance validation function

It is used while performing the initial rough registration.

Figure 3.4: Blue = Object cloud. Red World cloud.
Three examples of the calculation of the Euclidean Score: the mean value of the
green segments

3.1.1.1 Description of the function

A new speci�c-purpose �tness score that uses squared distances has been made

as follows.

� [input] the world cloud consisting of n points
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� [input] the object model cloud consisting of m points.

� [output] a single �oat score that represents the grade of alignment of the

object into the world:

� 0 means perfect alignment.

� FLT_MAX (3.40282 · 1038) means worst alignment

score =
1

m

m−1∑
i=0

minn−1
j=0 ‖ object.i− world.j ‖2

where object.i and world.j represent respectively the 3D vectors containing the

coordinates of the points.

Algorithm 3.1 Pseudo code for the Euclidean distance validation function

1. for each point object.i �nd the nearest point world.j

2. calculate the squared distance

3. calculate the mean value of all squared distances

3.1.1.2 Results

This formula appears to be a very good method to roughly validate the achieved

results, because it is based on squared distances (that penalize even the smaller

distance object-world).

Figure 3.5: Examples of application of Euclidean distance Validation Function
A: wrong registration: score=11.8
B: completely wrong registration: score=42.5



CHAPTER 3. REGISTRATION 22

The drawbacks of this approach are:

� the possible presence of occlusions: in this case the score grows very fast,

compromising the entire e�ectiveness of the registration process. The key

to avoid this is based on choosing the right object cloud.

� a wrong alignment can maintain small distances between object and world:

in this case the score remains low and we cannot tell if the alignment is

correct.

Figure 3.6: The case of occlusions: the score grows fast
A: nearly absence of occlusion: score=1.04
B: some occlusion: score=6.38
C: hard occlusion: score=12.63

3.1.1.3 Performance: O(n · logn)

We take n as the size of the input (number of keypoints of the world cloud)

because m is O(n).

The search of the nearest point is done by the fast KD-Tree-FLANN implemen-

tation available in PCL library.

The function has to be fast, so it is not performed on the original clouds, but

on a down-sampled version of them. Note that because of the 1
m in the formula,

the score is independent from the size of the input, but the more points means

the more accuracy.

� Construction of the KD-Tree: O(n · logn)

� Find nearest for each object point: O(m · logn)
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� Total: O(n · logn) because m is O(n)

Note that n is not the size of the world cloud, but the size of the down-sampled

world cloud (with uniform keypoints), that is much smaller.

3.1.2 Percent of outliers validation function

It is used while performing the �nal �ne registration.

3.1.2.1 Description of the function

A simpler but more e�ective �tness score to recognize occlusions and bad match-

ing has been developed.

Figure 3.7: Blue = Object cloud. Red = World cloud.
Three examples of the calculation of the Euclidean Score: the percent of black
(furthest) segments on all blue points.

� [input] the world cloud consisting of n points (so n is the size of the input)

� [input] the object model cloud consisting of m points.

� [output] a single �oat score that represents the percent of outliers basing

on a small distance threshold.

� 0 means perfect alignment: 0% of outliers

� 100 means worst alignment: 100% of outliers

score =
100

m

m−1∑
i=0

1 if minn−1
j=0 ‖ object.i− world.j ‖> distanceThreshold

0 otherwise

where object.i and world.j represent respectively the 3D vectors containing the

coordinates of the points. In other words: no matter if the distance is high,

each outliers counts as 1.
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Algorithm 3.2 Pseudo code for the Percent of outliers validation function

1. for each point object.i �nd the nearest point world.j

2. calculate the distance: if it is greater than the distanceThreshold it is an
outlier

3. calculate the percent of outliers by dividing the sum by m and multiplying
for 100

3.1.2.2 Results

This function is required because the previous one is not sensible to particular

cases like the one shown in �gure, where euclidean distances are small but the

alignment is wrong. As shown, this function is able to tell a wrong alignment

from a good one, meanwhile the euclidean distance function cannot discriminate

a false positive.

Figure 3.8: Comparison between Validation Functions.
(Top) Euclidean distance validation function.
Really good score on the left: 1.8 - Quite good score on the right: 7.4
(Bottom) Percent of outliers validation function.
Really good score on the left: 2.4 - Really bad score on the right : 37.2

In other words, the euclidean distance validation function is not capable of
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telling an occlusion to a wrong alignment: the score is nearly the same.

For our kinds of objects the threshold for this functions has been set at 4.0 mm.

3.1.2.3 Performance O(n · logn)

The cloud is down-sampled for the computation in this case too. The perfor-

mance is the same as the Euclidean distance validation function.

3.1.3 Normal Angles Validation Function

This function has been tried to take the place of the Percent of outliers validation

function in order to score the �nal registration, but the low performance of this

procedure made it a bad choice if a good performance is required.

3.1.3.1 Description of the function

This function is very similar to the euclidean distance validation function, but it

is based on the squared di�erences of angles between the normals of the object

cloud and the normals of the world cloud. More precisely, the normals taken

into account are calculated on each point in the object cloud and its closest

neighbor.

� [input] the world cloud consisting of n points (so n is the size of the input)

� [input] the object model cloud consisting of m points.

� [output] a single �oat score that represents the grade of alignment of the

object into the world:

� 0 means perfect alignment: 0° of di�erence between normals for all

the points

� 1802 means worst alignment: 180° means that all the normals are

opposite



CHAPTER 3. REGISTRATION 26

Algorithm 3.3 Pseudo code for the Normal Angles validation function

1. compute normals for each point of object and world cloud with a �xed
given radius (5mm)

2. for each point object.i

(a) �nd the nearest point world.j

(b) calculate the squared distance of the angles between normal.object.i
and normal.world.j

3. calculate the mean value of all squared distances

3.1.3.2 Results

Tests are shown in the following section, in comparison with the other two.

This function is not good for our case, both for quality of the results and time

consumption.

3.1.3.3 Performance O(n · k + n · logn)

This algorithm is slower than the Euclidean Distance algorithm described above,

because the �rst step is the most complex.

For each point of the input clouds it has to �nd the normals using the neighbor-

ing points within a �xed given radius of 5mm. Hence, said k the average number

of neighbors within this radius, the complexity of this �rst step is O(2n · k).

The other steps involve only the building of the KD-Tree (n · log(n) ) and the

n-times search on it (log(n)), so the complexity remains O(n · logn).

3.1.4 Comparison between validation functions

Results are presented with an image, scores and times of the three functions

compared.

The time in milliseconds presented in the following tables have been obtained

using a AMD Quadcore processor @ 3.0 Ghz with 2 Gb RAM
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Figure 3.9: Comparison between di�erent validation scores. See the following
table for the data.

Capital letters refer to the above image: A, B, C are the correct attempts; D,

E, F are wrong.

Scores (applied on downsampled clouds) A B C D E F

Euclidean Distance 1.0 5.7 13 22 83 70

Percent of Outliers 4.4 12 18 50 66 71

Normal Angles 112 1100 1200 1100 2500 11000

Note that the function Angles does not recognize any di�erence between B - C

that are correct, and D that is completely wrong.

Time [ms] (applied on downsampled clouds) A B C D E F

Euclidean Distance 6 7 6 6 7 7

Percent of Outliers 6 9 6 7 8 8

Normal Angles 53 46 50 50 50 51

The above results are computed on down-sampled clouds during the �nal regis-

tration procedure.

Note that there is one order of magnitude of time di�erence between Normal

Angles validation function and the other two.

For completeness now the tables with the same functions applied to the original

(not down-sampled) clouds are shown.

Scores (applied on original clouds) A B C D E F

Euclidean Distance 0.5 5.4 13 21 82 69

Percent of Outliers 2.5 10 18 46 62 67

Normal Angles 64 820 1100 1300 2400 11000
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The di�erences of angle scores between correct and incorrect examples are still

not noticeable.

Time [ms] (applied on original clouds) A B C D E F

Euclidean Distance 22 25 27 27 36 38

Percent of Outliers 23 28 27 28 38 39

Normal Angles 339 329 301 321 321 324

Even the results performed on the original clouds present an order of magnitude

of di�erence between Validation Function Angles and the other two functions.

Note that in every case the Percent Of Outliers functions shows a lot of di�erence

between C (that is the worst of the correct attempts) and D ( that is the best

of wrong attempts).

3.2 Keypoints

Keypoints, generally speaking, are special points found in a point cloud, that

are likely to be found in another similar point cloud. They are also known as

�points of interest�: in fact they should be able to describe e�ectively the entire

cloud using much less data.

They are usually placed at corners of shapes and where the color/brightness

gradient is changing fast. There are various methods to �nd keypoints, and

each technique has its speci�c output.

3.2.1 NARF Keypoints

Narf keypoints are computed using a range image provided by the input stream.

In this case the input stream is the point cloud itself, so there is no availability of

a range image. However it is possible to obtain a range image from it, providing

the 3 coordinates of the view and the 3 angles of the rotation around the axis.

Even if the range image was reconstructed, the results were extremely slow and

not globally relevant because NARF keypoints are very sensible to the viewpoint

(i.e. position from which the scene is viewed).

3.2.2 Harris Keypoints

The Harris method is mainly used to �nd corners in a 2D image. PCL com-

munity has ported the same algorithm to work with 3D to 6D point clouds. In

this work I have tested the e�ectiveness of the 3D HarrisKeypoints with all of
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the 5 methods implemented in the PCL library: HARRIS, LOWE, TOMASI,

CURVATURE, NOBLE.

Figure 3.10: Comparison between the 5 variants of Harris Keypoints and the
Uniform Keypoints (bottom right)

Harris keypoint detection is extremely slow, deeply depending on the input

parameters. It however provides points at the corners that are important in

other applications, but are less useful in this one.In fact, since the alignment

is based on correspondence between descriptors and not between points, it is

better to have more keypoints to compute better features.
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3.2.3 Uniform Sampling

The uniform sampling for keypoints works somewhat like the voxel �lter, that

is:

� a grid of cubes (with edge = keypoint leafSize) is built.

� for each cube the centroid of the present points is computed and it is set

as the voxel for that cube.

For the uniform keypoints another step is added to the algorithm:

� the point of the source cloud nearest to the computed voxel is set as the

keypoint for that cube.

Hence, the di�erence between voxels and uniform keypoints is: the uniform

keypoint belongs to the source cloud, the voxel does not; that is, keypoints are

a subset of the input cloud, voxels are not.

The uniform keypoint has been chosen because voxels introduce new points and

then more noise a�ecting results.

Figure 3.11: Uniform keypoints found on the world cloud

3.3 Features

Features (or descriptors), generally speaking, are structures containing data that

describes the dataset.

They are very important to computer vision because most algorithms are per-

formed using mainly them: features are placed somewhat between the real world

and the computational world.

There are two main kinds of features:
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� Local features: there are as many features as the size of input. These kind

of features are often based on neighbors, so they can describe a particular

set of adjacent points. If we take a 2D image for example, a local feature

for a point could be the gradient of brightness with neighbors.

� Global features: there is just one descriptor for the entire dataset. If

we take a 2D image for example, a global feature could be the average

brightness or the average color, or a data structure containing many of

this global characteristics.

3.3.1 PFH - (Persistent) Point Feature Histogram

PFH descriptors are a local features based on surface normals, XYZ 3D data

and curvature, and they are capable to store the representation of the geometry

around a speci�c point.

They contain an approximation of the geometry of a point using information

about its k -nearest neighbors that are interconnected in a mesh (k2connections).

Figure 3.12: For the point pqeach edge of the mesh of the k-neighbors is com-
puted

The pcl::PFHEstimation class is the PCL implementation that computes this

kind of feature.

3.3.1.1 Input

� 3D x, y, z point coordinates (n points)

� Normals of the input points, computed with a normal radius rn

� Feature radius rf ≥ rn of the sphere around the point in which �nd

neighbors or number of neighbors to consider (k neighbors).
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3.3.1.2 Output

The result of the function is an array of 125 �oat values (125 bytes) that rep-

resents the histogram of the so called �bins� which encodes the neighborhood's

geometrical properties and provides an overall point density and pose invariant

multi-value feature. This feature is stored in the pcl::PFHSignature125 type.

Figure 3.13: PFH histograms: di�erent geometrical patterns (top), and compu-
tation with di�erent radii (bottom).

3.3.1.3 Complexity O(n · k2)

Since all pairs of neighbors are taken into account, for each of the n points,

there are k2 pairs to consider.

The overall complexity of the algorithm is O(n · k2)

3.3.2 FPFH - Fast Point Feature Histogram

This algorithm computes the Simpli�ed-PFH (SPFH) and the Fast-PFH (FPFH)

reducing drastically the computation complexity and time comparing to the

computation of the PFH, but maintaining most of its information.
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Figure 3.14: For the point pqonly the edge between itself and the k-neighbors
are computed

The key di�erences between PFH and FPFH computation procedure are:

� The PFH of the point is computed with all the mesh of its neighbors (O(k2)

connections), the FPFH takes into account only the O(k) connections

between itself and its neighbors.

� There are two steps of computation: in the �rst step the SPFH of all points

are computed, in the second step for each point the values of neighbor's

SPFH are used to weight the �nal FPFH histogram. At high level we can

say that:

� The PFH of the point contains all and only the information provided

by its k neighbors (at distance r).

� The FPFH of the point does not contain all the relationships between

its neighbors, and contains some relationship between its neighbor's

neighbors (at distance 2r).

Most of the discriminative power of the FPFH is retained, but with no doubts

some �ne details are lost.

3.3.2.1 Input

The input of this function is the same as the input of PFH features. Note that

if we take the radius used to compute normals as 80% of the radius used to

compute features, there is only one radius parameter in this calculation.

rn = 0.8 · rf
rf = rf
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The e�ectiveness of the features really depends on the chosen radius, hence the

entire procedure from the feature calculation is repeated iteratively for di�erent

radii: rf ∈ R [expressed in millimeters].

1. for each feature radius rf ∈ R

(a) �nd world and object FPFH features using radius rf

(b) proceed to next steps...

3.3.2.2 Output

The result of the function is an array of 33 �oat values (33 bytes) that represents

the FPFH histogram, that is stored in the pcl::PFHSignature33 type.

Figure 3.15: Comparison between PFH (top) and FPFH (bottom). They are
di�erent, but the pattern in the B/W square are very similar.

3.3.2.3 Complexity O(n · k)

Since only point-to-neighbors connections are taken into account, for each of

the n points, there are k pairs to consider.

The overall complexity of the algorithm is O(n · k)
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3.3.2.4 The parallel implementation

In the PCL library there is an optimized implementation of the algorithm that

is multi threaded using Open MP library: pcl::FPFHEstimationOMP.

This class speeds up the overall performance by a factor of the number of pro-

cessors in the machine, that is a big deal.

3.3.3 VFH - Viewpoint Feature Histogram

The Viewpoint Feature Histogram (VFH) descriptor is a global feature es-

timated on a point cloud using points, normals and FPFH features. The

pcl::VFHEstimation class is used to �nd this kind of feature

The default VFH implementation contains:

� 45*3 binning subdivisions for the extended FPFH values (that are com-

puted on the entire cloud).

� 45 binning subdivisions for the distances between each point and the cen-

troid

� 128 binning subdivisions for the viewpoint component, that uses di�erence

between viewpoint normal and surface normal.

which results in a 308-byte array of �oat values that are stored in a pcl::VFHSignature308

point type.

Having just one feature for the object could be useful, but it is extremely di�cult

to segment a single object in the world cloud, so the VFH feature for the world

cloud contains too much noise and it is not exploitable in this case. After some

testing, I have chosen not to use this type of feature.

3.4 Correspondences

After features have been computed, then the correspondences �nding algorithm

is performed.

A correspondence is simply a couple of features (object.feature ; world.feature)

that have similar corresponding values. Since features are computed at each

keypoint, this step discover similarities between object keypoints and world

keypoints, using features computed on them.
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3.4.1 Correspondences �nding

The PCL class pcl::registration::CorrespondenceEstimation can �nd this kind of

information, given only the dataset of the object features and the world features.

In particular:

� Object features (small dataset) are the ones we want to �nd in the world

cloud, so we use them all.

� World features (big dataset) contain a lot of data, which makes it di�cult

to perform a robust search-and-match: it is better to use a Divide &

Conquer strategy.

The problem of introducing a lot of false information and wrong data that

de�nitely compromise the overall registration, can be avoided with few general

heuristics to group the world features.

These methods have been tried.

� Global �nding: �nd correspondences on the entire world cloud (no group-

ing)

� Sphere �nding: �nd correspondences iteratively on parts of the world cloud

enclosed into spheres

� Cluster �nding: �nd correspondences iteratively on every cluster of the

world cloud

3.4.1.1 Global

Finding correspondences on the entire world cloud is the �rst test done. It is

not an heuristic, but the �rst brute-force procedure that tries to match all the

world features with the object features.

The results are very bad, since the object features can be coupled with any

world feature, at any distance: for example 2 features that are really close each

other in the object, can be coupled respectively with 2 features that are very

far each other in the world, that is impossible.

From this weakness comes the opportunity of grouping the dataset of world

feature into sets that maintain a limited distance.
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Figure 3.16: Correspondences found using all the world cloud. The distance
between them is much larger than the size of the object.

3.4.1.2 Spheres

The �rst heuristic approach is to try with spheres: before we have to �nd the

radius of the object, then construct the spheres in the world cloud.

We de�ne the radius rad of the object as the maximum distance between the

centroid of the object and its points.

1. build a 3D grid in the world cloud, with resolution res.

2. in each cross of the grid place the center of a sphere of radius rad.

3. for each sphere built:

(a) �nd the correspondences between all the object features and the sub-

set of world features that are placed inside the sphere

(b) proceed to next steps...

Figure 3.17: Correspondences found using spheres of world cloud. The key idea
is that a good set of correspondences can not be larger than the object size.
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This method seems valid, but it has a huge drawback: the performance.

In fact the number of spheres that can be constructed is:

nspheres ≈
width · height · depth

res3

This huge number of spheres consumes a lot of computation time, because for

each sphere a new estimation and all the following steps are performed.

Two strategies to avoid this brute-force approach are to �lter spheres

3.4.1.3 Clusters

The best heuristic comes from a simple reason: the target object, as a single

piece appears in the point cloud as single cluster. Splitting a point cloud into

clusters means decomposing it into regions of space based on the euclidean

distance between points.

The PCL function pcl::extractEuclideanClusters can perform this calculation,

given:

� the input cloud

� the search method (KD-Tree)

� a spatial tolerance or threshold

� a mincluster cardinality of each cluster found

� a maxcluster cardinality of each cluster found

The mincluster parameter can be tuned between 0 and the cardinality of the

object cloud: mincluster = k· ‖ object.cloud ‖ where k ∈ [0, 1]

The maxcluster parameter can be tuned greater than the world point cloud

cardinality : maxcluster = h· ‖ world.cloud ‖where h ≥ 1

If the threshold is too small, the same object can be split into di�erent clusters,

if it is too big many objects can be grouped together. For this reason we have

to choose the smallest threshold that does not divide a single object.

At the beginning, a good threshold has been proven to be slightly grater than the

input cloud resolution (10% more): in fact with this parameter the single objects

are not assigned to di�erent clusters. During the test phase the parameter has

been �ne-tuned.
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Figure 3.18: Clustering of the same cloud (resolution=1.0mm) with di�erent
tolerances:
(�rst) small tolerance leads to wrong clustering
(second) right tolerance can almost separate objects
(third, fourth) big tolerance make objects to be joined together

After cluster extraction has been performed, the correspondences can be found.

Here there are the summary of this method.

1. Clusterize the world cloud with tolerance tol > res slightly grater than

the cloud resolution res.
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2. for each cluster found:

(a) �nd the correspondences between all the object features and the sub-

set of world features that belong to the cluster

(b) proceed to next steps...

The major bene�ts using this approach instead the spheres is that there number

of clusters is much lower, so the computation maintains the required perfor-

mance.

nclusters = O(
‖ world.cloud ‖

mincluster
)� nspheres

3.4.2 Correspondences �ltering

When correspondences have been found it is possible to reject some of them

based on speci�c condition that will be now presented. The base PCL class

that does this job is pcl::registration::CorrespondenceRejector that is inherited

by all following classes.

3.4.2.1 Rejector by Distance

All the correspondences that exceed a distance threshold are rejected. The cor-

respondence distance is the measure between corresponding keypoints of object

and world clouds.

This method is not good for our task, because an object in the world cloud can

be both near to or far from the object cloud.

3.4.2.2 Rejector by Median Distance

The median distance between all the correspondences is computed, then all the

correspondences that exceed a deviation threshold from that mean value are

rejected.

This method too is not good for our task for the same reason of the distance

rejector

3.4.2.3 Rejector by Feature

The pcl class implements a correspondence rejection method based on a set of

feature descriptors. Given an input feature space, the method checks if each
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feature in the object cloud has a correspondence in the world cloud, either by

checking the �rst K (given) point correspondences, or by de�ning a tolerance

threshold via a radius in feature space.

This method has been put aside because the results were not good for the task.

3.4.2.4 Rejector by Surface Normal

The pcl class implements a simple correspondence rejection method based on

the angle between the normals at correspondent points. This method could not

be tried because of some bugs in the pcl library v.1.6 that created collisions

between header �les, preventing the compile step to end successfully.

3.4.2.5 Rejector by Random Sample Consensus Model

The pcl class implements a correspondence rejection using Random Sample Con-

sensus to identify inliers (and reject outliers). RANSAC is a non-deterministic

iterative method to estimate parameters of a mathematical model, from a set

of observed data which contains outliers. In this case the model is the object,

and the observed data is the world cluster.

The rejector has some input parameters:

� the object cloud and the world cloud

� the non �ltered correspondences given by the previous step

� the number of iterations, set as 50

� the inlier threshold th, a parameter used internally to discriminate inliers

to outliers.

This threshold is really sensible, and the result of the function depends hardly

on this parameter, that ranging in the interval th ∈ T , a�ects unpredictably the

output.

Since the values in that range are good to try RANSAC method, all of them

are tried (integer numbers) iteratively, taking only the threshold that gave the

best result.

Hence the pseudo-code of the correspondence �ltering is:

1. for each inlier threshold th ∈ T

(a) �lter correspondences with RANSAC algorithm performing 50 itera-

tions with threshold th

(b) proceed to next steps...
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3.5 Initial Alignment

3.5.1 Using features and correspondences

The initial alignment, that is the 4x4 roto-translation matrix of the rough align-

ment, is computed using the �ltered correspondences.

There are two classes in the PCL library that can estimate this transformation,

without any parameter:

� pcl::registration::TransformationEstimationLM - (Levenberg-Marquardt):

this is an iterative least-squares based algorithm. The result of this trans-

formation does not bring always the best score

� pcl::registration::TransformationEstimationSVD - (Singular Value Decom-

position): this is a closed-form solution based on the singular value de-

composition of a covariance matrix of the data, providing the best possible

solution in a single step. The results are very good, so this method has

been adopted for this work.

This procedure proved to be the most e�ective because it is general purpose and

based on local features that can discriminate the important parts of any object.

3.5.2 Using Principal Component Analysis

Principal Component Analysis, or simply PCA, is a statistical procedure con-

cerned with extrapolating data from the covariance structure of a set of vari-

ables.

In our case PCA can �nd out, basing on the 3D dataset, a coordinate system,

or the three orthogonal axis in which the data varies more. That is, the output

of the procedure is the set of three eigenvectors:

� U that represent the principal direction

� V that is the second most important direction, perpendicular to U

� W the third direction, perpendicular to U and V

Vectors U, V, W represent the orthonormal 3D basis and are called the principal

components. If we transform each (X, Y, Z) coordinate into its corresponding

(U, V, W) value, the data is decorrelated, meaning that the covariance between

each couple of variables is zero.
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Summarizing with few words, for a given set of data principal component anal-

ysis can �nd the axis system de�ned by the principal directions of variance.

With the use of PCA it is possible to �nd the main directions of the object model

cloud AND of the input cluster of the world cloud: then it is possible to compute

a transformation that aligns the axis found. The result can be e�ective especially

on particular objects, where a principal direction is clearly distinguishable. For

such considerations, this procedure is not so general purpose, introducing a lot

of bias due to wrong clustering, and it will be not considered anymore in this

work.

3.6 Fine Alignment

The �nal alignment, that is the 4x4 roto-translation matrix that perfectly

matches the point clouds, is computed using object cloud and the world cloud.

Not that the input is the entire world cloud, and not the corresponding cluster

found in the initial procedure.

3.6.1 ICP - Iterative Closest Point

When the initial rough alignment has been performed, the algorithm switches

to the �nal procedure that is done by the ICP algorithm, implemented in the

PCL library.

ICP works by iteratively minimize distances between internally found corre-

spondences. In each iteration a new transformation matrix is computed. Cor-

respondences used are found only on near points (there is a threshold) and then

only small transformation is computed at each iteration.

The algorithm has 3 termination conditions:

� The number of iterations has reached the maximum speci�ed by user

� The epsilon change value between the two last iteration is smaller than a

value speci�ed by the user

� A �tness function computed internally has reached a threshold speci�ed

by the user

Only the �rst two condition have been set: 50 maximum iterations and an

epsilon equal to 10−7
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3.6.2 ICP-NL - Iterative Closest Point - Non Linear

This is an ICP variant that uses non linear Levenberg-Marquardt optimization

backend. The results provided by this function did not give appreciable results.



Chapter 4

Recognition Algorithms

Here there are the pseudo-code of the �nal algorithms using all the best proce-

dures among all the ones described in the previous chapter.

4.1 Algorithm 1: separated FPFH

In this algorithm there are many initial transformations for the same world

cluster: the one with best score is elected to be the best initial transformation

for that cluster. Each transformation is computed on correspondences coming

from a set of FPFH with the same radius.

� The advantage is:

� we have as many attempts as the number of radii used in the FPFH

computations. Example: for cluster A the best correspondences are

found using radius X for FPFH, for cluster B the best correspon-

dences are found using radius Y for FPFH. The more number of

attempts, the more probability to �nd a good transformation.

� The disadvantages are:

� the number of �ltered correspondences is low and subject to noise

� we have more computation complexity because there are 3 nested

loops

� the optimal set of correspondences may be (surely is) made up of

correspondences that are found using di�erent radii for FPFH

45
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Algorithm 4.1 Multiple object recognition: algorithm 1

1. Initial alignment: for each cluster of the world cloud:

(a) �nd uniform keypoints on object and world cluster cloud (initial leaf-
Size)

(b) for each FPFH radius:

i. �nd FPFH features on object and world cluster cloud

ii. �nd correspondences between computed features

iii. for each SAC threshold:

A. �lter correspondences with RANSAC method

B. estimate transformation matrix that minimizes distances

C. compute euclidean distance validation score

D. keep the transformation with best score

2. keep only initial transformations with a good score

3. Final alignment:

(a) �nd uniform keypoints on object and world cloud (�nal leafSize)

(b) perform ICP algorithm on keypoints to �nd the �nal transformation

(c) compute percent of outliers validation score

(d) if the score is better than before, then transform

4. keep only �nal transformations with a good score

5. compute transformation matrices by multiplying initial and �nal matrices

6. return matrices and �nal scores

Obviously some details for performance purposes have been omitted, in order

to maintain simplicity in the explanation of the algorithm.

4.1.1 Performance

O[nclusters · nFPFH.Radii · nSAC.Thresholds + ICPcomplexity]

Note that there are 3 nested loops, and the performance depends mainly on the

settings of the following three parameters: the cluster tolerance that discrim-

inates the number of clusters found, the cardinality of the set of FPFH radii,

the cardinality of the set of SAC thresholds.
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4.2 Algorithm 2: merged FPFH

In this algorithm there are only one initial transformations for each world cluster.

Each transformation is computed on correspondences coming from sets of FPFH

with di�erent radii

� The advantage are:

� in the initial transformation we have the best correspondences using

information about neighbors at di�erent radii

� the set of correspondences is so big that the noise of outliers is un-

relevant

� there are only 2 innested loops, that improves slightly the computa-

tion time

� The disadvantage are:

� that we have only one try: if the initial step goes wrong we will not

be able to continue to �nal alignment
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Algorithm 4.2 Multiple object recognition: algorithm 2

1. Initial alignment: for each cluster of the world cloud:

(a) �nd uniform keypoints on object and world cluster cloud (initial leaf-
Size)

(b) for each FPFH radius:

i. �nd FPFH features on object and world cluster cloud

ii. �nd correspondences between computed features and add to the
total correspondences set

iii. �lter correspondences maintaining the best for the same feature

(c) (at this point we have only one big set of correspondences)

(d) for each SAC threshold:

i. �lter correspondences with RANSAC method

ii. estimate transformation matrix that minimizes distances

iii. compute euclidean distance validation score

iv. keep the transformation with best score

2. keep only initial transformations with a good score

3. Final alignment:

(a) �nd uniform keypoints on object and world cloud (�nal leafSize)

(b) perform ICP algorithm on keypoints to �nd the �nal transformation

(c) compute percent of outliers validation score

(d) if the score is better than before, then transform

4. keep only �nal transformations with a good score

5. compute transformation matrices by multiplying initial and �nal matrices

6. return matrices and �nal scores

Obviously some details for performance purposes have been omitted, in order

to maintain simplicity in the explanation of the algorithm.

4.2.1 Performance

O[nclusters · (nFPFH.Radii + nSAC.Thresholds) + ICPcomplexity]

Note that there are only 2 nested loops, and the performance depends mainly on

the settings of the following parameters: the cluster tolerance that discriminates

the number of clusters found and the cardinality of the set of FPFH radii.
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4.3 Free parameters

Here are now described the numerical parameters that have been chosen, but

can be modi�ed as the programmer wants.

1. Resolution of the scan (initial voxel grid �lter) = 1.0 [mm]

2. Cluster tolerance, as percentage (>100%) of the resolution of the scan =

150%

3. Cluster min size, as percentage (<100%) of the object size = 30%

4. Cluster max size, as percentage (>100%) of the object size = 300%

5. Initial leafSize to calculate keypoints for initial transformation = 3.0 [mm]

6. Radii of FPFH to try = R = {10, 15, 20, 25, 30} [mm]

7. Normal radius to compute FPFH, as percentage (<100%) of the FPFH

radius = 80%

8. RANSAC inlier thresholds to try = T = 1, 2, 3, ..., 18, 19, 20 [mm]

9. Euclidean distance score threshold for initial alignment = 100.0 [no-dimensional

score]

10. Final leafSize to calculate keypoints for initial transformation = 2.0 [mm]

11. ICP termination conditions= 50 iterations or 10−7epsilon

12. Percent of outliers score threshold for �nal alignment = 20%

With these parameters set, the algorithm is really general purpose for many

small objects of a volume around 10−3m3.

If the object increases in size, di�erent (greater) parameters for 1. 4. 5. 7. 9.

of the list (metric measures) should be set.

4.4 Parallelization with OpenMP

The grade of parallelism that can be achieved in this work is very high, both

because we are working on point clouds ( that are structures based on sets of

not ordered N-dimensional points) and we are dealing with clusters that do not

require to be computed sequentially.
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4.4.1 The OpenMP API

The OpenMP Application Program Interface (API) supports multi-platform

shared-memory parallel programming in C/C++ and Fortran on all architec-

tures, including Unix platforms and Windows NT platforms. Jointly de�ned

by a group of major computer hardware and software vendors, OpenMP is

a portable, scalable model that gives shared-memory parallel programmers a

simple and �exible interface for developing parallel applications for platforms

ranging from the desktop to the supercomputer.

4.4.2 The parallel for loop constructs

Algorithm 4.3 How does the code change between a sequential and a OpenMP
parallel for loop

the case of the sequential for loop

1. for ( int i=0 ; i<N ; i++ )

(a) Do stu�...

The case of the OpenMP parallel for loop

1. #pragma omp parallel for

2. for ( int i=0 ; i<N ; i++ )

(a) Do stu�...

Figure 4.1: Work�ow of a parallel algorithm with OpenMP.
Note the master thread (blue) that is always active and manages the assigned
team (black)
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4.4.2.1 Parallel

An OpenMP program begins as a single thread of execution, called the initial

thread. The initial thread executes sequentially, as if enclosed in an implicit

task region, called the initial task region, that is de�ned by an implicit inactive

parallel region surrounding the whole program.

When any thread encounters a �parallel� construct, the thread creates a team

of itself and zero or more additional threads and becomes the master of the new

team. A set of implicit tasks, one per thread, is generated. The code for each

task is de�ned by the code inside the parallel construct. Each task is assigned

to a di�erent thread in the team and becomes tied; that is, it is always executed

by the thread to which it is initially assigned. The task region of the task being

executed by the encountering thread is suspended, and each member of the new

team executes its implicit task. There is an implicit barrier at the end of the

parallel construct. Only the master thread resumes execution beyond the end

of the parallel construct, resuming the task region that was suspended upon

encountering the parallel construct. Any number of parallel constructs can be

speci�ed in a single program.

4.4.2.2 For Loop

The loop construct speci�es that the iterations of one or more associated loops

will be executed in parallel by threads in the team in the context of their implicit

tasks. The iterations are distributed across threads that already exist in the

team executing the parallel region to which the loop region binds.

There are several scheduling options, but leaving the settings as �auto� makes the

compiler and the runtime environment choose how to distribute the iterations

across threads. Most of the time all the n iterations are divided into the m

number of processors and each block of the loop is executed at the same time,

giving a best-case speedup factor equal to the number of processors.
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Tests & Results

5.1 Objects and datasets

5.1.1 Description of the objects

5.1.1.1 Object A

It is a sheet of steel bent strongly to form angles close to 90°. Height, width

and depth are comparable.

Figure 5.1: Object A

The models used for the matching are the following: one is the entire view of

the object from the top, the other is the cut of the minimal visible part that

has to match with the world cloud
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Figure 5.2: Model used for object A in the algorithm:
(left) Entire object viewed from the top
(right) Cut of the object that represents the minimal part that has to match

5.1.1.2 Object B

It is a sheet of steel slightly bent, it can be considered as a planar object. depth

is minimal.

Figure 5.3: Object B

The model used for the matching is the following.

Figure 5.4: Model used for object B in the algorithm:

5.1.1.3 Object C

It is a pipe of steel bent in two points.
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Figure 5.5: Object C

The models used for the matching are the following: one is the entire view of

the object from the top, the other is the cut of the minimal visible part that

has to match with the world cloud. Note that with the entire object used as

model, the algorithm cannot align the objects posed on the other side: in fact

the model is taken only from a point of view. For this special case, the pick is

good even if the object is posed on the other side, hence the symmetrical model

has been obtained by cutting the edges of the entire one.

Figure 5.6: Model used for object C in the algorithm:
(top) Entire object viewed from the top
(bottom) Cut of the object that represents the minimal part that has to match

5.1.2 Description of the dataset

5.1.2.1 Conveyor belt scans

� 10 scans for object A

� 10 scans for object B
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� 10 scans for object C

� 10 scans for object A + B

� 10 scans for object B + C

� 10 scans for object C + A

� 10 scans for object A-Decr

� 10 scans for object B-Decr

� 10 scans for object C-Decr

Totaling 90 scans.

The operator �+� means that the objects of di�erent types are posed together

under the laser system.

The tag �-Decr� means that consecutive scans are taken decrementing the num-

ber of objects by one at each scan.

5.1.2.2 Robotic arm scans

For these scans object B has been ignored: we concentrate on the objects A and

C, so B is used only to provide a random basement for the other objects.

� 10 scans for object A

� 10 scans for object A over B

� 10 scans for object A over B and C

� 10 scans for object C

� 10 scans for object C over B

� 10 scans for object C over B and A

� 20 scans for object A+B+C mixed

� 20 scans for object A+B+C-Box mixed inside a box

Totaling 100 scans.

Each object has 70 input clouds that contain several instances of it.
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5.2 The machine used for tests

The physical machine used has the following speci�cs:

� AMD Phenom II x4 core, 3.0Ghz

� 4GB RAM 1666Mhz

� Hard Disk drive 160Gb 7200rpm

� OS Microsoft Windows 7 Professional

Graphic card is not used for computation, but only for the visualization widget,

so the details of GPU is omitted.

Then a virtual machine has been created on this host system using VMWare

Player tools. The assigned resources to guest system are the following:

� 4 Processors (sharing with the host)

� 2GB RAM

� Hard Disk drive 16Gb

� OS Ubuntu Linux 12.04 LTS with XFCE, a lightweight Desktop Manager

Test have been performed on the virtual machine, keeping the host system as

idle as possible.

5.3 Determining the best cluster parameters and

the best algorithm

In this section I will present the tests conducted on objects A and B to �nd out

the best parameters to use with clusters and the best algorithm among 1 and 2.

The dataset used is only the one taken with the conveyor belt.

5.3.1 The cluster threshold

One of the most important parameters in the overall work is the cluster thresh-

old: setting it too small will split the same objects into di�erent parts, setting

it too large will merge di�erent objects in the same calculation with high prob-

ability of false positives.
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This parameter must be greater than the resolution of the cloud when it is

loaded.

Since this resolution has been set to 1.0, the study of the parameter has been

conducted in the range [1.1 ; 1.9] with a precision of 0.1.

5.3.1.1 Tests on object A

This test is performed on 40 input samples: A, A+B, C+A, A-Decr with the

following settings:

� input Voxel Resolution= 1.0

� min/max Cluster Size relative to object size= 0.2 / 10.0

� initial/�nal ScoreThreshold= 200.0 / 20.0

� initial/�nal Resolution= 3.0 / 2.0

� Radii FPFH R = {10, 15, 20}

� SAC ThresholdsT = 1, 3, 5, ..., 15, 17, 19

� OpenMP parallelism: active

The results are presented in a graph form:

� The total computation time includes loading of PCD �les (approx 10Mb

each) and complete registration process for the entire set of 40 input

clouds.

� The recognition rate is given by the division of the number of objects

totally recognized by the number of �les processed.

� The average initial score is the Euclidean Distance validation score com-

puted at the end of the initial alignment

� The average �nal score is the Percent of Outliers validation score computed

at the end of the �nal alignment
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Figure 5.7: Test results to determine the cluster parameters and the best algo-
rithm:
(top left) Algorithm 2 is faster
(bottom left) Algorithm 1 �nds more objects
(top right) Algorithm 1 is more accurate in the initial phase
(bottom right) There is no signi�cant di�erence between �nal scores

5.3.1.2 Tests on object B

This test is performed on 40 input samples: B, A+B, B+C, C-Decr with the

following settings:

� input Voxel Resolution= 1.0

� min/max Cluster Size relative to object size= 0.4 / 10.0

� initial/�nal ScoreThreshold= 200.0 / 20.0

� initial/�nal Resolution= 3.0 / 2.0

� Radii FPFH R = {10, 15, 20}

� SAC ThresholdsT = 1, 3, 5, ..., 15, 17, 19

� OpenMP parallelism: active

The results are presented in a graph form:
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Figure 5.8: Test results to determine the cluster parameters and the best algo-
rithm:
(top left) Algorithm 2 is faster
(bottom left) Algorithm 1 �nds more objects
(top right) Algorithm 1 is more accurate in the initial phase
(bottom right) There is no signi�cant di�erence between �nal scores

5.3.1.3 Conclusions

The threshold too close to 1 produces high initial scores, which means poor

registration quality. On the other hand the more it increases, the more time is

consumed and the less recognition rate is shown.

The best setting for this parameter is 1.5.

5.3.2 The cluster min-max parameter

These parameters a�ect the number of cluster tried in the initial alignment and

consequently the time of the computation.

The parameters have these constraints: 0 < mincluster < 1 and maxcluster > 1

and can be chosen according to the object type:

� mincluster : if the object is clearly distinguishable from the others and

does not have overlapping/hidden parts it is better closer to 1. Elsewhere
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if the object is more �di�cult� to segment clearly it is better closer to 0.

In this test: minclusterobjectA = 0.2 and minclusterobjectB = 0.4 .

� maxcluster: with this parameter set as low as possible (recommended at

least 2 or 3) we can avoid doing calculation on too large clusters. In this

test the parameter has been set to 10.

5.3.3 The best algorithm

The di�erence between the two algorithms consists on the initial alignment, and

there is no doubt that the Algorithm 1 has a better performance in terms of

recognition rate that is due to the big di�erence of initial score between the two.

Obviously this performance requires an average of 20% more computation time.

5.4 False negative / False positives

We are now going to evaluate the performance of the algorithm basing on the

rates of false positives and false negatives.

5.4.1 False positives

There is a false positive when the algorithm classi�es as good an alignment that

is not.

In our case a good alignment is able to overlap correctly the object with an

instance of it in the world cloud. On the other hand a false positive can show a

wrong rotation of 180° or any other wrong alignment.

There are some particular alignments that �nd an object that cannot be picked,

that is hardly occluded by other objects. In the test I have split the classi�cation

between false positives and non-pickable objects (because they are substantially

correct)

5.4.2 False negatives

There is a false negative when the algorithm classi�es as bad a registration on a

cluster which contains a visible object. That is, when a visible object is skipped

by the algorithm.
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5.4.3 Classi�cation by cycles

A cycle of computation is de�ned by the run of the algorithm on a particular

world cloud: the acquisition system provides to the algorithm a point cloud on

which the algorithm is performed.

5.4.3.1 Good cycle

A cycle is de�ned good if the algorithm is able to recognize a pickable object in

the world cloud, labeling it with the best score threshold.

5.4.3.2 Bad cycle

A cycle is de�ned bad if the algorithm enter one of these 2 states:

� False best: The object with best �nal score IS a false positive or a not

pickable object: in this case the picking system or the �nal product would

be subject to damage.

� Starvation: NO object among all the �present� can be recognized: in this

case the picking system would be lead to starvation.

When no objects of the world cloud are pickable, then the classi�cation is NOT

considered as a bad cycle.

5.5 Final tests on Conveyor Belt Data

For this section the following parameters remain �xed:

� Algorithm = 1

� input Voxel Resolution= 1.0

� cluster threshold relative to input voxel resolution= 1.5

� min/max Cluster Size relative to object size= 0.3 / 10.0

� SAC ThresholdsT = 1, 3, 5, ..., 15, 17, 19

� OpenMP parallelism: active
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5.5.1 Con�guration for tests

5.5.1.1 On object A

This test have been made using the model for object A (not cut).

The dataset used is taken with the conveyor belt system: A, A+B, A+C, A-Decr

� A:

� initial/�nal Resolution= 3.0 / 2.0

� initial/�nal ScoreThreshold= 200.0 / 20.0

� Radii FPFH R = {5, 10, 15, 20}

5.5.1.2 On object B

This test have been made using the only model available for object B

The dataset used is taken with the conveyor belt system: B, A+B, B+C, B-Decr

� B:

� initial/�nal Resolution= 3.0 / 2.0

� initial/�nal ScoreThreshold= 200.0 / 20.0

� Radii FPFH R = {5, 10, 15, 20}

5.5.1.3 On object C (C1 - C2 - C3)

The following tests have been made using the model for object C (not cut).

Symmetric objects are not considered good.

The dataset used is taken with the conveyor belt system: C, A+C, B+C, C-

Decr.

� C1:

� initial/�nal Resolution= 3.0 / 2.0

� initial/�nal ScoreThreshold= 200.0 / 20.0

� Radii FPFH R = {5, 10, 15, 20}

This model used is the same.

The dataset used is the same.
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� C2:

� initial/�nal Resolution= 2.0 / 1.5

� initial/�nal ScoreThreshold= 200.0 / 25.0

� Radii FPFH R = {5, 9, 13, 17}

The following test has been made using the CUT model for object C. Conse-

quentially the number of pickable objects grows.

The dataset used is the same.

� C3:

� initial/�nal Resolution= 2.0 / 1.5

� initial/�nal ScoreThreshold= 100.0 / 15.0

� Radii FPFH R = {3, 6, 9, 12}

5.5.2 Test results

Results are presented here in absolute numeric form:

Property Symbol A B C1 C2 C3

N. of �les processed F 40 40 40 40 40

N. of pickable objects in the

cloud

P 102 79 80 80 149

Subset of the pickable objects

recognized

R 88 58 46 64 104

False Negatives (not recognized) FN 14 21 34 16 45

Files with at least one false

positive (wrong alignment)

FP 1 0 19 28 17

Files with at least one

unpickable objects (aligned

correctly)

NP 9 5 6 11 10

Bad cycle due to false best

(wrong best object)

FB 0 0 9 7 6

Bad cycle due to starvation (no

objects)

S 1 3 4 2 1

Then the compared results in percent form are:
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Property Formula A B C1 C2 C3

Recognition rate R
P % 86% 73% 58% 80% 70%

False Negatives (not recognized) FN
P % 14% 27% 42% 20% 30%

Percent of clouds that

experience false positives FP
F % 2% 0% 47% 70% 42%

Percent of clouds that

experience unpickable objects NP
F % 22% 12% 15% 27% 25%

Bad cycle due to false best

(wrong best object) FB
F % 0% 0% 22% 17% 15%

Bad cycle due to starvation (no

objects) S
F % 2% 7% 10% 5% 2%

Note that with di�erent values of the parameter, the last row will converge to

0%: that is some object will be surely found, but the risk to �nd false positive

increases, just like the computation time.

5.6 Final tests on Robotic Arm Data

For this section the following parameters remain �xed:

� Algorithm = 1

� input Voxel Resolution= 1.0

� cluster threshold relative to input voxel resolution= 1.8

� min/max Cluster Size relative to object size= 0.3 / 5.0

� SAC ThresholdsT = 1, 3, 5, ..., 15, 17, 19

� OpenMP parallelism: NOT active

Note that:

1. The cluster threshold has been increased because the resolution given by

the robotic arm scans is much smaller than the one provided by the con-

veyor belt scans.

2. The max cluster size has been decreased to 5.0 for speed (too big clusters

are ignored).

3. OpenMP is not active because we want to measure the e�ective time

complexity of each part of the registration process.
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5.6.1 Con�guration for tests

5.6.1.1 On object A

The following test has been made using the model for object A (not cut).

The dataset used is taken with the robotic arm system: A, A overB, A overBC,

ABC, ABC Box

� A:

� initial/�nal Resolution= 3.0 / 2.0

� initial/�nal ScoreThreshold= 100.0 / 20.0

� Radii FPFH R = {5, 10, 15, 20}

5.6.1.2 On object C

The following test has been made using the CUT model for object C. The

symmetry of the object makes each side recognizable.

The dataset used is taken with the robotic arm system: C, C overB, C overAB,

ABC, ABC Box

� C:

� initial/�nal Resolution= 2.0 / 1.5

� initial/�nal ScoreThreshold= 100.0 / 15.0

� Radii FPFH R = {3, 6, 9, 12}

5.6.2 Test results

Results are presented here in absolute numeric form:
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Property Symbol A C

N. of �les processed F 70 70

N. of pickable objects in the

cloud

P 234 263

Subset of the pickable objects

recognized

R 198 151

False Negatives (not recognized) FN 36 112

Files with at least one false

positive or unpickable

FP 14 40

Bad cycle due to false best

(wrong best object)

FB 2 7

Bad cycle due to starvation (no

objects)

S 0 5

Then the compared results in percent form are:

Property Formula A C

Recognition rate R
P % 85% 57%

False Negatives (not recognized) FN
P % 15% 43%

Percent of clouds that

experience false positives FP
F % 20% 57%

Bad cycle due to false best

(wrong best object) FB
F % 3% 10%

Bad cycle due to starvation (no

objects) S
F % 0% 7%

Note that the quality of the scan for robotic arm was not so good, so the object

C has poorer results due to the fact that it is smaller.

Moreover, Object C even if smaller, it is heavier so during the random move-

ments of di�erent object it tended to place beneath the other objects, making

it more occluded.

5.7 Time Performance Tests

This tests have been made by changing the number of processors assigned to

the virtual machine where the software runs:

� Single processor: there is only one processor assigned to the VM. Normals,

FPFH features, are all computed in a single thread.
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� Multi processor (x4) without parallelism: the VM has 4 processors but

the OpenMP feature is disabled. Hence Only normals and FPFH features

are computed using all processors.

� Multi processor (x4) with parallelism: with this feature enabled, each

cluster is processed by a separate thread, that is assigned to a di�erent

processor. Hence the overall computation time is reduced a lot, while the

normals and FPFH features time consumption increases because other

processors are busy with their assigned cluster.

Note that each time presented here contains also the computation of keypoints,

FPFH of the model: this data can be precomputed o�ine, reducing the com-

putation time of the algorithm.

5.7.1 On conveyor belt data

This calculation has been performed basing on 20 di�erent clouds of object A

with the same con�guration chosen in the �nal tests.

5.7.1.1 Single processor Virtual Machine

The average time for an input sets is 7.0 s

Percentage are shown in the pie chart

Figure 5.9: Pie chart with the time consumption percentage for each step of the
algorithm
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5.7.1.2 Multi processor (x4) VM without parallelism

The average time for an input sets: 5.6 s

Percentage are shown in the pie chart

Figure 5.10: Pie chart with the time consumption percentage for each step of
the algorithm

5.7.1.3 Multi processor (x4) VM with parallelism

The average time for an input sets: 2.9 s

It is not possible to see each phase of the algorithm because they are mixed to-

gether. Hence in this pie chart i had to merge and see the overall time percentage

of the initial alignment AND the �nal alignment.

� Initial alignment contains: clustering, keypoints, FPFH features, Corresp.

�nd, Corresp. �lter, Euclidean score.

� Initial alignment contains: Final ICP, Percent score.
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Figure 5.11: Pie chart with the time consumption percentage for the main steps
of the algorithm

5.7.2 On robotic arm data

This calculation has been performed basing on 20 di�erent clouds of object A

with the same con�guration chosen in the �nal tests.

5.7.2.1 Single processor Virtual Machine

The average time for an input sets is 14.1 s

Percentage are shown in the pie chart

Figure 5.12: Pie chart with the time consumption percentage for each step of
the algorithm
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5.7.2.2 Multi processor (x4) VM without parallelism

The average time for an input sets: 12.5 s

Percentage are shown in the pie chart

Figure 5.13: Pie chart with the time consumption percentage for each step of
the algorithm

5.7.2.3 Multi processor (x4) VM with parallelism

The average time for an input sets: 5.3 s

It is not possible to see each phase of the algorithm because they are mixed to-

gether. Hence in this pie chart i had to merge and see the overall time percentage

of the initial alignment AND the �nal alignment.

� Initial alignment contains: clustering, keypoints, FPFH features, Corresp.

�nd, Corresp. �lter, Euclidean score.

� Initial alignment contains: Final ICP, Percent score.
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Figure 5.14: Pie chart with the time consumption percentage for the main steps
of the algorithm



Chapter 6

Conclusions

In this work I have developed a robust and high con�gurable algorithm, able to

�nd all the occurrences of a pattern in a point cloud dataset using Point Cloud

Library framework.

Applying such algorithm on 3D scans of a bin, taking a single object as the

model or pattern, the system can autonomously �nd the 6-Degrees-Of-Freedom

poses of almost all the present objects. In this context the recognition is given

by moving the model on the input point cloud, in a way that most of the points

are aligned.

This process is guided by validation functions that give a value of the �picka-

bility� of the objects, that measures the level of occlusion and the accuracy of

the guess. An important parameter to evaluate such goodness is the distance

between the actual object in the bin and its expected position, given by the

alignment.

The following three parameters have always been taken as strict requirements

for the entire work, due to the high e�ciency and reliability that the industrial

target needs. In the end of the project they have been all successfully achieved.

� The algorithm is general purpose: it could not be meant to recognize

one particular object, failing with other ones. To achieve this feature, the

initial guesses are obtained by correspondences between FPFH descrip-

tors, that really care only about local geometry. Parameters are highly

con�gurable, in order to �t any particular case.

� The algorithm is reliable and robust. Multiple iteration over the steps

of the procedure have been implemented, so the probability to skip a good

solution falls down. The user can con�gure how many iterations perform

and on which parameters.
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� It is fast, and gives an answer in 1 to 10 seconds. I have chosen fast

keypoints and fast descriptors, implemented parallelism on CPU and given

control to the user between speed and accuracy.

Considering the overall work, this system has been proved to be a successful so-

lution to the given problem, and it can be directly applied in industrial contexts,

with the modi�cations of the speci�c cases.
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