
Master Thesis in Computer Engineering

Error Cause Analysis of Laboratory Results with
the Help of AI

February 27, 2023

Master Candidate Supervisor

Andrea Matteazzi Prof. Gian Antonio Susto
Student ID 2010655 University of Padova

External Supervisors

Sandra Mack
Infineon

Dr. Anja Zernig
KAI

Academic Year
2022/2023

To my family
and friends

Abstract

In the electronics laboratory, a large amount of different devices need to be
tested, and the characterization of each of them generates a large amount of
data. Classical root cause analysis is inherently inefficient because it requires
manual inspection by experts, turning out to be costly and time consuming.
Furthermore, automatic evaluations through sequences of conditions for the
signals, ending up in hard-coded logical formulas, are still inappropriate. This
is due to the further necessity for experts, in order to design such formulas
specifically for each different product, and to the complexity of the data itself,
which may lead to the infeasibility of such approach.
For these reasons, in this thesis, first steps towards a machine learning (ML)
approach are investigated, laying the foundation into the transition to a ML root
cause analysis approach.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Industrial Problem . 1
1.1.2 Understanding the Data . 3

1.2 Research Questions . 5

2 Machine Learning Theory 7
2.1 Machine Learning . 7

2.1.1 Supervised and Unsupervised Learning 7
2.1.2 Learning Algorithm and Cost Function 8
2.1.3 Parameters and Hyperparameters 9
2.1.4 Data Split and Generalization Error 10
2.1.5 Overfitting and Underfitting 11

2.2 Anomaly detection . 13
2.3 Performance Measures . 18

2.3.1 Confusion Matrix . 18
2.3.2 F1 Score . 20
2.3.3 Matthews Correlation Coefficient 21

2.4 PCA . 22
2.5 DBSCAN . 24
2.6 Isolation Forest . 27
2.7 K Nearest Neighbors . 30

vii

CONTENTS

2.8 Artificial Neural Network . 31
2.8.1 Deep Feed-Forward Neural Network 32
2.8.2 Activation Function . 35
2.8.3 Regularization . 36

2.9 Convolutional Neural Network . 38
2.9.1 Convolution . 38
2.9.2 Convolutional and Locally Connected Layers 42

2.10 Autoencoder . 42
2.10.1 Autoencoders in Anomaly Detection 43
2.10.2 Dense Autoencoder . 46
2.10.3 Convolutional and Locally Connected Autoencoders . . . 46
2.10.4 Variational Autoencoder . 47

3 Model Analysis and Experimental Results 51
3.1 Unsupervised Approach . 53
3.2 Semi-Supervised Approach . 53

4 Conclusions and Future Works 67

References 69

viii

List of Figures

1.1 Error cause analysis of different devices from a specific product . 1
1.2 Error cause analysis of different products 2
1.3 Case study device and testing procedure 3
1.4 Outcomes of the case study testing procedure 3
1.5 Example of two "Not suspicious" samples 4
1.6 Example of "Not suspicious" vs "Suspicious" samples obtained

with same test parameters from two different DUTs 5
1.7 ML error cause analysis of different devices from a specific product 6
1.8 ML error cause analysis of different products 6

2.1 Training-validation-test split . 10
2.2 Bias-variance trade off [15] . 12
2.3 Underfitting and overfitting [15] 12
2.4 Anomalies [6] . 13
2.5 Using classification for anomaly detection [6] 16
2.6 Confusion matrix in binary classification 19
2.7 PCA with n=2 . 23
2.8 Example of 3 sample datasets [12] 24
2.9 For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑞 = core point, 𝑝 = border point [12] 25
2.10 For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑝 is directly density-reachable from 𝑞 [12] 25
2.11 For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑝 is density-reachable from 𝑞 [12] 26
2.12 For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑝 and 𝑞 are density-connected each other [12] . . 26
2.13 Isolating points via iForest [20] . 28
2.14 Averaged path lengths of 𝑥𝑖 and 𝑥𝑜 converge when the number of

trees increases [20] . 29
2.15 Example of KNN classification [28] 30
2.16 Artificial neural network . 31

xi

LIST OF FIGURES

2.17 Unit of an NN . 32
2.18 An intuitive, geometric explanation of the exponential advantage

of deeper piecewise linear activation function networks [15] . . . 33
2.19 Empirical results showing that deeper networks generalize better

when used to transcribe multi-digit numbers from photographs
of addresses [15] . 34

2.20 Logistic sigmoid [15] . 35
2.21 ReLU [15] . 36
2.22 Fully connected vs sparse connections 37
2.23 Convolutional as sparse fully-connected NN [17] 38
2.24 Convolution operation [15] . 40
2.25 Sparse interactions with a 3 size filter [15] 40
2.26 Efficiency of convolution [15] . 41
2.27 Convolutional layer . 42
2.28 AE architecture [15] . 42
2.29 AE building blocks [15] . 43
2.30 AE in anomaly detection . 45
2.31 DAE architecture . 46
2.32 CAE architecture . 46
2.33 VAE architecture . 48
2.34 Stochastic AE [15] . 49

3.1 Preprocessing steps . 52
3.2 PCA of the preprocessed data . 54
3.3 Confusion matrix KNN . 55
3.4 Histogram MAE reconstruction error of DAE 56
3.5 Confusion matrix DAE . 57
3.6 MAE of autoencoders based on convolutional and locally con-

nected layers . 58
3.7 Confusion matrices of CAE and LCAE 60
3.8 PCA of the hidden space of DAE 61
3.9 PCA of the hidden space of DVAE 62
3.10 KL divergence loss and MAE + KL divergence losses for DVAE

and CVAE . 63
3.11 Confusion matrices of DVAE and CVAE 65

xii

List of Tables

3.1 Formula performances . 51
3.2 iForest and DBSCAN performances 53
3.3 KNN performances . 54
3.4 DAE performances . 56
3.5 CAE and LCAE performances . 59
3.6 DVAE and CVAE performances . 64

xiii

List of Acronyms

ML machine learning

DUT device under test

MSE mean squared error

TP true positives

TN true negatives

FP false positives

FN false negatives

ACC accuracy

TPR true positive rate

TNR true negative rate

PPV positive predictive value

NPV negative predictive value

MCC Matthews correlation coefficient

PCA principal component analysis

DBSCAN density based spatial clustering of applications with noise

iForest isolation forest

KNN k nearest neighbors

NN neural network

xix

LIST OF TABLES

FNN feed-forward neural network

ReLU rectified linear unit

CNN convolutional neural network

AE autoencoder

DL deep learning

DAE dense autoencoder

CAE convolutional autoencoder

LCAE locally connected autoencoder

VAE variational autoencoder

KL Kullback-Leibler

MAE mean absolute error

DVAE dense variational autoencoder

CVAE convolutional variational autoencoder

xx

1
Introduction

1.1 Motivation

1.1.1 Industrial Problem

In the electronics laboratory, devices from a specific product need to be
inspected, whereas for each of them, multiple tests are performed in order to
check the compliance and reliability with the requirements of such a product.
For each product, an expert with background knowledge about the specific
product is needed in order to evaluate each single test result. In particular,
each single sample, i.e. each single test result per device, is labelled as "Not
suspicious" if it satisfies the technical requirements, or as "Suspicious" otherwise.
In Figure 1.1, different devices of a specific product are tested with a particular
testing procedure and evaluated by an expert.

Figure 1.1: Error cause analysis of different devices from a specific product

1

1.1. MOTIVATION

While in Figure 1.2, different products are tested and evaluated by different
experts, each of them with background knowledge about the specific product.

Figure 1.2: Error cause analysis of different products

Furthermore, since for each product type, a huge amount of devices need to
be tested, such manual root cause analysis turns out to be infeasible and an
automatic evaluation is needed instead. The state of the art in this automatic
approach is given by a hard-coded logical formula, in which many product-
specific measurement conditions are provided. However, there are intrinsic
issues in the use of a formula because first of all, it has to be designed specifically
by an expert with background knowledge about the product, secondly, due to
the complexity of the devices and hence, of the data, it may be hard to design
such a formula or it may have poor performances. Finally, since the formula
aims to detect the "Suspicious" samples, it may be not robust to future anomalies
of the devices, since it is designed based on the actual knowledge of the product
and hence, the actual knowledge of the possible anomalies.

2

CHAPTER 1. INTRODUCTION

1.1.2 Understanding the Data

The work is developed on a particular product and in a particular testing
procedure, resulting in a case study on a specific dataset.
Specifically, for each device under test (DUT) of the specific product, 156 mea-
surements are performed by varying some parameters of the testing procedure,
resulting in 156 different samples, each of them to be then labelled either as "Not
suspicious" or "Suspicious" as shown in Figure 1.3.

Figure 1.3: Case study device and testing procedure

Furthermore, in this particular root cause analysis, for each measurament of a
DUT, two signals are inspected. From Figure 1.4, it is possible to see that a
sample is indeed composed by two time series which correspond to signals: "IS
voltage" and "OUT voltage", ending up in a dimension of 3646 x 2.

Figure 1.4: Outcomes of the case study testing procedure

3

1.1. MOTIVATION

However, since the time range of each sample is the same, it is possible to ignore
the time dependence and treat all samples as vectors with one-to-one correspon-
dence between entries. Then, for each DUT, the resulting 156 samples differ each
other by mean, variance and waveform, for each of the two corresponding sig-
nals, as shown in Figure 1.5.

Figure 1.5: Example of two "Not suspicious" samples

Additionally, the patterns looked at in each sample are just intra-signal patterns,
meaning that it would be possible even to split the two signals and analyze them
separately. Another interesting characteristic of the data is that there is a one-
to-one relation between each sample and the testing parameters of the testing
procedure, through which such sample has been obtained. Indeed, a particular
combination of the testing parameters corresponds to a particular combination
of mean, variance and waveform of the sample’s signals.
An important aspect is given by the testing procedure through which the sam-
ples are obtained. In fact, for each combination of the testing parameters, the
resulting samples, corresponding to each DUT, are obtained in a systematic way,
meaning that the behavior of such samples is expected to be the same for each
timestamp, given that they are "Not suspicious".
Figure 1.6 shows an example of "Suspicious" sample. In fact, by looking at the
"OUT voltage" plot on the right, it can be noticed that the waveform presents
much less variations with respect to the one on the left. Further in this example,
the patterns are just intra-signal and can be also noticed that a sample may be
"Suspicious" just if one of the two signals is "Suspicious". Indeed, in this case,
"IS voltage" has a normal behavior in both samples.

4

CHAPTER 1. INTRODUCTION

Figure 1.6: Example of "Not suspicious" vs "Suspicious" samples obtained with
same test parameters from two different DUTs

The resulting dataset is composed by 50 DUTs, ending up in a dimension of
50 x 156 x 3646 x 2. Finally, it turns out to be unbalanced, with 5.8% of "Suspi-
cious" samples.

1.2 Research Questions

From the previous chapter, it is evident that the hard-coded approach presents
a lot of disadvantages. Therefore, the research questions of this thesis are for-
mulated with the aim of bridging these pitfalls.

1) Can an ML approach be used?
Figure 1.7 shows a possible ML error cause analysis pipeline which could
substitute the one in Figure 1.1. The samples need a preprocessing step
in order to be used as training data for the ML model, which will then
evaluate future samples.

2) Can the formula’s baseline performances be improved with an ML model?
Indeed, the case study devices have been previously labelled with a
product-specific formula providing the ground truth. A trained ML model
can then be tested and compared with the formula’s performances.

3) Can an ML approach be more robust to possible future anomalies?
This question is very hard to answer because of the lack of knowledge
of future anomalies but nevertheless, it is important to keep this question
in mind during the choice of ML approaches.

4) Can the developed ML approach be generalized to other similar products?
In Figure 1.8, the same data preprocessing and ML model architecture
are used for different products, while, in Figure 1.2, different products are
evaluated by different experts.

5

1.2. RESEARCH QUESTIONS

The content of the following chapters provides answers to these research ques-
tions.

Figure 1.7: ML error cause analysis of different devices from a specific product

Figure 1.8: ML error cause analysis of different products

6

2
Machine Learning Theory

2.1 Machine Learning

"The field of study that gives computers the ability to learn without being explicitly
programmed."
Arthur Samuel

"A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at task in T, as measured by P,
improves with experience E."
Tom Mitchell

2.1.1 Supervised and Unsupervised Learning

Since learning involves an interaction between the learner and the environ-
ment, one can divide learning tasks according to the nature of that interaction.
Such interaction is practically given by the experience E [26].
Viewing learning as a process of using experience to gain expertise, supervised
learning describes a scenario in which the experience, a training example, con-
tains significant information that is missing in the unseen test examples to which
the learned expertise is to be applied. In this setting, the acquired expertise is
aimed to predict that missing information for the test data. In such cases, we can
think of the environment as a teacher that supervises the learner by providing
the extra information (labels).

7

2.1. MACHINE LEARNING

In unsupervised learning, however, there is no distinction between training and
test data. The learner processes input data with the goal of coming up with
some summary, or compressed version of that data.
In the middle of these two learning paradigms, there is semi-supervised learn-
ing. Such learning paradigm involves the use of both, labeled and unlabeled
data. Hence, it is of great interest in machine learning and data mining because
it directly uses available unlabeled data to improve supervised learning tasks
when the labeled data are scarce or expensive.

2.1.2 Learning Algorithm and Cost Function

In the basic statistical learning setting [10][14], the learner has access to:

• Domain set X - set of all possible objects to make predictions about

• Label set Y - set of possible labels

• Training data S - learner’s input, for supervised learning: 𝑆 ⊆ 𝑋 × 𝑌, for
unsupervised learning: 𝑆 ⊆ 𝑋

• Learner’s output h - hypothesis ℎ : 𝑋 → 𝑌. The hypothesis h is produced
by learning algorithm A when training set S is given to it: ℎ = 𝐴(𝑆)

• Data-generation model - instances 𝑥 ∈ 𝑋 are generated by some probability
distribution 𝑥 ∼ 𝐷 and labelled according to a function 𝑓 : 𝑋 → 𝑌 both
not known to the learner

• Measure of success - probability the learner doesn’t predict the correct
label on random 𝑥 ∼ 𝐷, hence, a function 𝑒𝑟𝑟𝑜𝑟𝐷(ℎ)

Each ML model is associated a hypothesis space H and learning means choosing
an hypothesis ℎ ∈ 𝐻. The aim of the learning algorithm is to pick the hypothesis
ℎ ∈ 𝐻 which minimizes the measure of success, however the learner doesn’t
know the data-generation model and has access just to 𝑆 ∼ 𝐷𝑛 where 𝑛 = |𝑆 |.
Therefore, in practice the learning algorithm cannot minimize the measure of
success, also called generalization error, but it can just minimizes the so called
empirical error, which is an error defined through a given cost function (or loss
function) and based on S. The loss function is then a fundamental ingredients
in ML, since based on its choice, it may correspond different hypothesis picked
and such choice is task dependent.

8

CHAPTER 2. MACHINE LEARNING THEORY

2.1.3 Parameters and Hyperparameters

ML can be summarized as learning a function (a hypothesis) that maps in-
stances of the domain set to output variables in the label set [10][26]. The form of
the function is unknown and different ML models make different assumptions
about the form of the function and how it can be learned. Assumptions can
greatly simplify the learning process, but can also limit what can be learned.
A learning algorithm that simplifies the function to a known form and that sum-
marizes data with a set of parameters of fixed size (independent of the number of
training examples) is called parametric ML model. A parametric ML model de-
fines a corresponding parametric function, whose parameters are then learned
during the training, through the training set S, ending up in an hypothesis. On
the other hand, learning algorithms which do not make particular assumptions
about the kind of mapping function are known as non-parametric ML models.
These algorithms do not accept a specific form of the mapping function between
input and output data as true and they have the freedom to choose any func-
tional form from the training data. In the case of non-parametric models, the
number of parameters is dependent on the amount of training data.
In any case, the learning procedure involves the setting of parameters of the
model, which therefore define the hypothesis picked in the hypothesis space H
and whose final values depend then on the training set S.
However, an ML model may have some parameters, which define the space of
possible hypothesis that the model may represent and hence, which can not
be learned during training, called hyperparameters. These hyperparameters
have then to be defined during the definition of the ML model itself as input
parameters and they may affect the learning procedure and the choice of the
final hypothesis, hence, their tuning needs particular attention since it may lead
to over simplistic or over sophisticated hypothesis spaces.

9

2.1. MACHINE LEARNING

2.1.4 Data Split and Generalization Error

As written in the previous section, the goal of a learning algorithm is the
choice of a hypothesis which minimizes the generalization error 𝑒𝑟𝑟𝑜𝑟𝐷(ℎ), but
in practice it can just pick a hypothesis which minimizes the empirical error
𝑒𝑟𝑟𝑜𝑟𝑆(ℎ) [26]. Moreover it turns out that:

𝑒𝑟𝑟𝑜𝑟𝐷(ℎ) = 𝑒𝑟𝑟𝑜𝑟𝑆(ℎ) + 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(ℎ) (2.1)

Then, it is hard to estimate the generalization error from the empirical error
since h could be too much biased to the training set S. In order to derive a good
estimate of the generalization error it is sufficient to compute the loss function
with unseen data, that means, data not seen by the learning algorithm during
the training step. Also, in order to solve a task, usually multiple ML models are
tried and for each of them, multiple experiments varying the hyperparameters
are performed. Therefore, some estimation of the generalization error is needed
in order to choose the best ML model based on the resulting performances.
Such process is called model selection. For these reasons, in machine learning
it is common to perform the so called training-validation-test split in which,
the original dataset is randomly partitioned into three sets in such a way, that
most of the samples go in the training set and the remaining samples are equally
partitioned in validation and test set. Hence, all the ML models are trained on the

Figure 2.1: Training-validation-test split

training set and then, model selection is performed based on the validation set.
Finally, since the chosen ML model has been picked among all the experimented
ML models and with hyperparameters tuned based on the validation set, the
validation error turns out to be biased. Even if based on unseen data during
training, the validation error is not longer a good estimate of the generalization
error and the test set is used for such estimate instead.

10

CHAPTER 2. MACHINE LEARNING THEORY

2.1.5 Overfitting and Underfitting

The previous chapter motivated the need of having a good estimate of the
generalization error. It turns out that just considering the empirical loss may
lead to phenomena of underfitting and overfitting [15]. Suppose that the data-
generation model is composed by a function 𝑓 (𝑥) such that 𝑦 = 𝑓 (𝑥) + 𝜖, with
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 and 𝜖 normal noise with zero mean and variance 𝜎2. An ML model
is then an estimator �̂� (𝑥, 𝑆) of 𝑓 (𝑥) whereas �̂� (𝑥; 𝑆) is the hypothesis of the ML
model trained with 𝑆. In order to measure the degree of approximation, the
mean squared error (MSE) between �̂� (𝑥; 𝑆) and 𝑦 can be computed as:

𝑀𝑆𝐸 = E𝑆,𝜖[(𝑦 − �̂� (𝑥; 𝑆))2] = (𝐵𝑖𝑎𝑠𝑆[�̂� (𝑥; 𝑆)])2 +𝑉𝑎𝑟𝑆[�̂� (𝑥; 𝑆)] + 𝜎2 (2.2)

whereas:

• 𝐵𝑖𝑎𝑠𝑆[�̂� (𝑥, 𝑆)] = E𝑆[�̂� (𝑥; 𝑆)] − 𝑓 (𝑥) is the bias of the ML model

• 𝑉𝑎𝑟𝑆[�̂� (𝑥; 𝑆)] = E𝑆[(E𝑆[�̂� (𝑥; 𝑆)]− �̂� (𝑥; 𝑆))2] is the variance of the ML model

• 𝜎2 is the irreducible error

The bias term represents the error caused by the simplifying assumptions made
by the model, the variance term instead represents the error related to the over-
complexity of the model with respect to 𝑆.
Hence, the nature of these two terms is opposite. While too simple models lead
to the incapacity to approximate the real function well (ending up in high bias
and low variance, called underfitting), too complex models may lead to fit even
the noise in the training set 𝑆 (ending up in low bias and high variance, called
overfitting).
The complexity of an ML model is given by the complexity of its hypothesis
space. Therefore, through model selection, it is searched the best compromise
by tuning the hyperparameters. Additionally, some form of regularization is
usually performed, which is a way to limit the expressiveness of the models,
often by adding to the loss function some terms, which penalizes more complex
hypothesis.

11

2.1. MACHINE LEARNING

Such compromise is called bias-variance trade off [23], Figure 2.2.

Figure 2.2: Bias-variance trade off [15]

In practice, to understand the complexity of the model, the training and valida-
tion errors are compared and it turns out that, if both of them are high, it means
that the model is not complex enough and therefore, it is a case of underfitting.
While, if the training error is low but the validation error is still high then, it is
a case of overfitting, Figure 2.3.

Figure 2.3: Underfitting and overfitting [15]

12

CHAPTER 2. MACHINE LEARNING THEORY

2.2 Anomaly detection

Anomaly detection refers to the problem of finding patterns in data that
do not match the expected behavior [6]. Such patterns are often referred to as
anomalies or outliers.
Figure 2.4 illustrates anomalies in a simple 2-dimensional data set. The data has
two normal regions, 𝑁1 and𝑁2, since most observations lie in these two regions.
Points that are sufficiently far away from the regions, e.g., points 𝑜1 and 𝑜2, and
points in region 𝑂3, are anomalies.

Figure 2.4: Anomalies [6]

At an abstract level, an anomaly is defined as a pattern that does not conform to
expected normal behavior.
Therefore, a straightforward anomaly detection approach is to define a region
representing normal behavior and declare any observation in the data which
does not belong to this normal region as an anomaly.
Unfortunately, several factors make this apparently simple approach very chal-
lenging:

• Defining a normal region which encompasses every possible normal be-
havior is very difficult. In addition, the boundary between normal and
anomalous behavior is often not precise. Thus, an anomalous observation,
which lies close to the boundary, can actually be normal, and vice-versa

• When anomalies are the result of malicious actions, the malicious adver-
saries often adapt themselves to make the anomalous observations appear
like normal, thereby, making the task of defining normal behavior more
difficult

• In many domains, normal behavior keeps evolving and a current notion
of normal behavior might not be sufficiently representative in the future

13

2.2. ANOMALY DETECTION

• The exact notion of an anomaly is different for different application do-
mains. For example, in the medical domain a small deviation from normal
(e.g., fluctuations in body temperature) might be an anomaly, while sim-
ilar deviation in the stock market domain (e.g., fluctuations in the value
of a stock) might be considered as normal. Thus, transferring a technique
developed in one domain to another is not straightforward

• Availability of labeled data for training/validation for models used by
anomaly detection techniques is usually a major issue

• Often, the data contains noise which tends to be similar to the actual
anomalies and hence, is difficult to distinguish and remove

Due to the above challenges, the anomaly detection problem, in its most general
form, is not easy to solve. In fact, most of the existing anomaly detection tech-
niques solve a specific formulation of the problem. The formulation is induced
by various factors such as nature of the data, availability of labeled data, type
of anomalies to be detected, etc. Often, these factors are determined by the
application domain in which the anomalies need to be detected.
The labels associated with a data instance denote if that instance is normal or
anomalous. It should be noted that, obtaining labeled data which is accurate as
well as representative for all types of behaviors, is often prohibitively expensive.
Labeling is often done manually by a human expert and hence, requires sub-
stantial effort to obtain the labeled training data set. Typically, getting a labeled
set of anomalous data instances which covers all possible type of anomalous
behavior is more difficult than getting labels for normal behavior. Moreover,
the anomalous behavior is often dynamic in nature, e.g., new types of anoma-
lies might arise, for which there is no labeled training data available yet. In
certain cases, such as air traffic safety, anomalous instances would translate to
catastrophic events, and hence, will be very rare.

14

CHAPTER 2. MACHINE LEARNING THEORY

Based on the extent to which the labels are available, anomaly detection tech-
niques can operate in one of the following three modes:

• Supervised anomaly detection - techniques trained in supervised mode
assume the availability of a training data set, which has labeled instances
for normal as well as anomaly class. Typical approach in such cases is
to build a predictive model for normal vs anomaly classes. Any unseen
data instance is compared against the model to determine which class it
belongs to. There are two major issues that arise in supervised anomaly
detection. First, the anomalous instances are far fewer compared to the
normal instances in the training data. Issues that arise due to imbalanced
class distributions. Second, obtaining accurate and representative labels,
especially for the anomaly class is usually challenging. Other than these
two issues, the supervised anomaly detection problem is similar to build-
ing predictive models

• Semi-supervised anomaly detection - techniques that operate in a semi-
supervised mode, assume that the training data has labeled instances for
only the normal class. Since they do not require labels for the anomaly
class, they are more widely applicable than supervised techniques. The
typical approach used in such techniques is to build a model for the class
corresponding to normal behavior, and use the model to identify anomalies
in the test data

• Unsupervised anomaly detection - techniques that operate in unsuper-
vised mode do not require labeled training data, and thus are most widely
applicable. The techniques in this category make the implicit assumption
that normal instances are far more frequent than anomalies in the data.
If this assumption is not true, then such techniques suffer from high false
alarm rates. Many semi-supervised techniques can be adapted to operate
in an unsupervised mode by using a sample of the unlabeled data set as
training data. Such adaptation assumes that the training data contains
very few anomalies and the model learnt during training is robust to these
few anomalies

The focus of the majority of research activities on anomaly detection is about
point anomalies. Such type of anomaly is present if an individual data instance
can be considered as anomalous with respect to the rest of data.
For example, in Figure 2.4, points 𝑜1 and 𝑜2 as well as points in region 𝑂3 lie
outside the boundary of the normal regions, and hence, are point anomalies
since they are different from normal data points. Furthermore, based on the
assumptions made on the data, several anomaly detection techniques can be
distinguished:

• Classification based anomaly detection techniques - classification is used to
learn a model (classifier) from a set of labeled data instances (training) and
then, classify a test instance into one of the classes using the learnt model

15

2.2. ANOMALY DETECTION

(testing). Classification based anomaly detection techniques operate in a
similar two-phase fashion. The training phase learns a classifier using the
available labeled training data. The testing phase classifies a test instance
as normal or anomalous using the classifier. Classification based anomaly
detection techniques operate under the following general assumption: a
classifier that can distinguish between normal and anomalous classes can
be learnt in the given feature space.
Based on the labels available during the training phase, classification based
anomaly detection techniques can be grouped into two broad categories:
multi-class and one-class anomaly detection techniques.
Multi-class classification based anomaly detection techniques, Figure 2.5a,
assume that the training data contains labeled instances belonging to mul-
tiple normal classes. Such anomaly detection techniques learn a classifier
to distinguish between each normal class against the rest of the classes. A
test instance is considered anomalous if its not classified as normal by any
of the classifiers. If none of the classifiers are confident in classifying the
test instance as normal, the instance is declared to be anomalous.
One-class classification based anomaly detection techniques, Figure 2.5b,
assume that all training instances have only one class label. Such tech-
niques learn a discriminative boundary around the normal instances, us-
ing a one-class classification algorithm. Any test instance that does not fall
within the learnt boundary is declared as anomalous

(a) Multi-class Anomaly Detection

(b) One-class Anomaly Detection

Figure 2.5: Using classification for anomaly detection [6]

16

CHAPTER 2. MACHINE LEARNING THEORY

• Nearest neighbor based anomaly detection techniques - such techniques
are based on the following key assumption: normal data instances occur in
dense neighborhoods, while anomalies occur far from their closest neigh-
bors.
Nearest neighbor based anomaly detection techniques require a distance
or similarity measure defined between two data instances. Distance (or
similarity) between two data instances can be computed in different ways
and is typically required to be positive-definite and symmetric, but is not
required to satisfy the triangle inequality.
Nearest neighbor based anomaly detection techniques can be broadly
grouped into techniques that use the distance of a data instance to its
𝑘𝑡ℎ nearest neighbor as the anomaly score and techniques that compute
the relative density of each data instance to compute its anomaly score

• Clustering based anomaly detection techniques - clustering is used to
group similar data instances into clusters. Clustering is primarily an un-
supervised technique, though semi-supervised clustering has also been
explored.
Even though clustering and anomaly detection appear to be fundamen-
tally different from each other, several clustering based anomaly detection
techniques have been developed.
Clustering based anomaly detection techniques can be grouped into three
categories.
First category of clustering based techniques rely on the following assump-
tion: normal data instances belong to a cluster in the data, while anomalies
do not belong to any cluster.
Second category of clustering based techniques rely on the following as-
sumption: normal data instances lie close to their closest cluster centroid,
while anomalies are far away from their closest cluster centroid.
Note that if the anomalies in the data form clusters by themselves, the above
techniques will not be able to detect such anomalies. To address this issue
a third category of clustering based techniques have been proposed that
rely on the following assumption: normal data instances belong to large
and dense clusters, while anomalies belong to small or sparse clusters

• Statistical anomaly detection techniques - statistical anomaly detection
techniques are based on the following key assumption: normal data in-
stances occur in high probability regions of a stochastic model, while
anomalies occur in the low probability regions of the stochastic model.
Statistical techniques fit a statistical model (usually for normal behavior)
to the given data and then apply a statistical inference test to determine
if an unseen instance belongs to this model or not. Instances that have
a low probability to be generated from the learnt model, based on the
applied test statistic, are declared as anomalies. Both parametric as well
as non-parametric techniques have been applied to fit a statistical model.
While parametric techniques assume that the underlying distribution is
known and estimate the parameters from the given data, non-parametric
techniques do not generally assume knowledge about the underlying dis-
tribution

17

2.3. PERFORMANCE MEASURES

• Spectral anomaly detection techniques - spectral techniques try to find an
approximation of the data using a combination of attributes that capture
the bulk of variability in the data. Such techniques are based on the fol-
lowing key assumption: data can be embedded into a lower dimensional
subspace in which normal instances and anomalies appear significantly
different.
Thus, the general approach adopted by spectral anomaly detection tech-
niques is to determine such subspaces (embeddings, projections, etc.) in
which the anomalous instances can be easily identified. Such techniques
can work in an unsupervised as well as semi-supervised setting

2.3 Performance Measures

Usually, the loss function used by a learning algorithm doesn’t really cor-
respond to the performance measure which one is interested in optimizing.
Indeed, often such performance measure is not easy to directly optimize, and
another performance measure is used instead. This alternative loss function is
called surrogate loss function and it is an approximation of the original one, but
easier to optimize and usually convex.
So, in practice, first an ML models is found, based on the surrogate loss, and
then model selection and validation are performed, based on the original per-
formance measure [10][26].
In this section, some performance measures are explored.

2.3.1 Confusion Matrix

In machine learning and specifically in the classification task, a confusion
matrix is a specific table layout that allows visualization of the performance of an
algorithm [13]. Each row of the matrix represents the instances in an actual class
while each column represents the instances in a predicted class. Hence, taking
the row 𝑖 and the column 𝑗, the corresponding entry represents the number
of instances with true label 𝑖 predicted by an ML model as class 𝑗. Therefore,
the diagonal of this matrix represents all the instances correctly classified by an
ML model, while the other entries represents all the combinations of wrongly
classified instances.
In the case of binary classification, where each instance 𝑋 is mapped to one
element of the set {𝑝, 𝑛} of positive and negative class labels, the corresponding
confusion matrix is then a squared matrix of dimension 2, Figure 2.6.

18

CHAPTER 2. MACHINE LEARNING THEORY

Figure 2.6: Confusion matrix in binary classification

In the particular case of binary classification, as it is also possible to see in Figure
2.6, the four entries of the confusion matrix have specific names:

• True positives (TP) - the number of positive instances correctly classified
as positives

• True negatives (TN) - the number of negative instances correctly classified
as negatives

• False positives (FP) - the number of false instances wrongly classified as
positives

• False negatives (FN) - the number of positive instances wrongly classified
as negatives

It is also possible to represent the confusion matrix in percentage, by normalizing
each row of the matrix by the total number of instances of the corresponding
actual class.
Starting from the confusion matrix for binary classification, several important
metrics can be computed:

• Accuracy (ACC) - the proportion of correctly classified instances over all
the instances, computed as follows:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.3)

• Recall or true positive rate (TPR) - the proportion of correctly classified
positive instances over all the positive instances, computed as follows:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.4)

19

2.3. PERFORMANCE MEASURES

• Specificity or true negative rate (TNR) - the proportion of correctly classi-
fied negative instances over all the negative instances, computed as follows:

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (2.5)

• Precision or positive predictive value (PPV) - the proportion of correctly
classified positive instances over all the classified positive instances, com-
puted as follows:

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.6)

• Negative predictive value (NPV) - the proportion of correctly classified
negative instances over all the classified negative instances, computed as
follows:

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 (2.7)

2.3.2 F1 Score

Still in the scenario of binary classification, usually the positive instances are
more relevant than the negative ones. Therefore it is possible to compare ML
models based on the performance of just the positive instances. In particular,
the two metrics which measure the performance of an ML model on positive in-
stances are recall and precision, provided in Eq. (2.4) and Eq. (2.6), respectively.
Since these two metrics are optimizing in opposite directions, that means that
if you improve one, the other gets worse, some trade off is needed. Further,
usually a unique metric is preferred in order to compare models, hence, the so
called F1 score is introduced:

𝐹1 = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (2.8)

Basically, Eq. (2.8) is the harmonic mean between precision and recall and ranges
in [0, 1] interval, whereas 0 indicates poor performances and 1 perfect precision
and recall.
Equivalently, the F1 score can be defined for the negative instances by using
specificity and negative predictive value instead, provided in Eq. (2.5) and Eq.
(2.7), respectively.

20

CHAPTER 2. MACHINE LEARNING THEORY

2.3.3 Matthews Correlation Coefficient

Another interesting metric, to evaluate binary classifications and their con-
fusion matrices, is the Matthews correlation coefficient (MCC) [8]:

𝑀𝐶𝐶 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁√(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁)

(2.9)

MCC ranges in [-1, 1] interval, whereas -1 indicates poor performances, 1 perfect
performances and 0 means that the binary result is not better than a random flip
of a fair coin.
Accuracy and F1 score computed on confusion matrices have been (and still are)
among the most popular adopted metrics in binary classification tasks. How-
ever, these statistical measures can dangerously show overoptimistic inflated
results, especially on imbalanced datasets. MCC instead, is a more reliable sta-
tistical rate which produces a high score only if the prediction obtained good
results in all of the four confusion matrix categories (true positives, false neg-
atives, true negatives, and false positives), proportionally both to the size of
positive elements and the size of negative elements in the dataset. In fact, when
the dataset is unbalanced (the number of samples in one class is much larger
than the number of samples in the other classes), accuracy cannot be considered
a reliable measure anymore, because it provides an overoptimistic estimation of
the classifier ability on the majority class.

21

2.4. PCA

2.4 PCA

Dimensionality reduction is the process of taking data in a high dimensional
space and mapping it into a new space whose dimensionality is much smaller
[26][10]. There are several reasons to reduce the dimensionality of the data.
First, high dimensional data impose computational challenges. Moreover, in
some situations high dimensionality might lead to poor generalization abilities
of the learning algorithm. Finally, dimensionality reduction can be used for
interpretability of the data, for finding meaningful structure of the data, and for
illustration purposes.
Principal component analysis (PCA) is one of the most commonly used di-
mensionality reduction algorithm [18]. In PCA, both the compression and the
recovery are performed by linear transformations and the method finds the lin-
ear transformations for which the differences between the recovered vectors and
the original vectors are minimal in the least squared sense.
In particular, let 𝑥1, ..., 𝑥𝑚 be 𝑚 vectors in R𝑑. A matrix 𝑊 ∈ R𝑛,𝑑, where 𝑛 < 𝑑,
induces a mapping 𝑥 ↦→ 𝑊𝑥 where 𝑊𝑥 ∈ R𝑛 is the lower dimensionality rep-
resentation of 𝑥. Then, a second matrix 𝑈 ∈ R𝑑,𝑛 can be used to approximately
recover each original vector 𝑥 from its compressed version. That is, for a com-
pressed vector 𝑦 =𝑊𝑥, 𝑦 ∈ R𝑛 , it is possible to reconstruct �̃� = 𝑈𝑦, �̃� ∈ R𝑑.
In PCA, the compression matrix 𝑊 and the recovering matrix 𝑈 are found, so
that the total squared distance between the original and recovered vectors is
minimal:

arg min
𝑊𝑥∈R𝑛 ,𝑈∈R𝑑,𝑛

𝑛∑
𝑖=1

| |𝑥𝑖 −𝑈𝑊𝑥𝑖 | |2 (2.10)

Let𝑋 ∈ R𝑚,𝑑 the matrix whose 𝑖th row is 𝑥𝑇𝑖 and𝐴 = 𝑋𝑇𝑋,𝐴 ∈ R𝑑,𝑑. Then, being
𝑢1, ..., 𝑢𝑛 the 𝑛 the 𝑛 eigenvectors corresponding to the 𝑛 largest eigenvalues
𝜆1, ...,𝜆𝑛 of 𝐴, the solution to the PCA optimization problem given in Eq. (2.10)
is to set 𝑈 to be the matrix whose columns are 𝑢1, ..., 𝑢𝑛 and to set 𝑊 = 𝑈𝑇 .
Hence, the dimensionality reduction is performed as 𝑌 = 𝑋𝑊𝑇 ∈ R𝑚,𝑛 .
PCA is defined as an orthogonal linear transformation that transforms the data
to a new coordinate system, such that the greatest variance, by some scalar
projection of the data, comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on,
Figure 2.7.

22

CHAPTER 2. MACHINE LEARNING THEORY

Figure 2.7: PCA with n=2

Since each eigenvalue corresponds to a particular dimension, and the higher
its magnitude, the more is the variance associated to that dimension, by letting
𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑑, reducing the dimension to 𝑛 means to pick the first 𝑛 di-
mension of greater variance. To understand how much variance a particular
direction explains and hence, how good a dimensionality reduction of dimen-
sion 𝑛 approximates the original space of dimension 𝑑, the explained variance
ratio can be used.
For the 𝑖th dimension, its explained variance ratio is:

𝜋𝑖 =
𝜆𝑖∑𝑑
𝑗=1 𝜆 𝑗

(2.11)

And by selecting the first 𝑛 dimensions, the total explained variance ratio is:

Π𝑛 =
𝑛∑
𝑗=1

𝜋 𝑗 (2.12)

23

2.5. DBSCAN

2.5 DBSCAN

Density based spatial clustering of applications with noise (DBSCAN) is a
density-based clustering non-parametric algorithm [26][10][12]. The assump-
tion of a density-based clustering is that clusters are high-density regions sepa-
rated by low-density regions.
When looking at the sample sets of points depicted in Figure 2.8, it can easily and
unambiguously detect clusters of points and noise points not belonging to any
of those clusters. The main reason why it is possible to recognize the clusters, is
that within each cluster there are typical density of points, which is considerably
higher than outside of the cluster. The key idea in DBSCAN is that, for each

Figure 2.8: Example of 3 sample datasets [12]

point of a cluster, the neighborhood of a given radius 𝜖 has to contain at least a
minimum number of points, i.e. the density in the neighborhood has to exceed
some threshold. The shape of a neighborhood is determined by the choice of a
distance function for two points 𝑝 and 𝑞, denoted by 𝑑𝑖𝑠𝑡(𝑝, 𝑞).
Given a dataset 𝐷, the 𝜖-neighbourhood of a point p, denoted by 𝑁𝜖(𝑝), is
defined by:

𝑁𝜖(𝑝) = {𝑞 ∈ 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖} (2.13)

A naive approach could require, for each point in a cluster, that there are at
least a minimum number(𝑀𝑖𝑛𝑃𝑡𝑠) of points in an 𝜖-neighborhood of that point.
However, this approach fails because there are two kinds of points in a cluster,
which are points inside of the cluster (core points) and points on the border of the
cluster (border points). In general, an 𝜖-neighborhood of a border point contains
significantly less points than an 𝜖-neighborhood of a core point, Figure 2.9.
Therefore, one would have to set the minimum number of points to a relatively
low value, in order to include all points belonging to the same cluster. This

24

CHAPTER 2. MACHINE LEARNING THEORY

value, however, will not be characteristic for the respective cluster, particularly
in the presence of noise. Therefore, other requirements are needed. Defining a

Figure 2.9: For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑞 = core point, 𝑝 = border point [12]

core point as a point 𝑞, such that condition (2.14) with respect to 𝜖 and 𝑀𝑖𝑛𝑃𝑡𝑠

holds,
|𝑁𝜖(𝑞)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 (2.14)

a point 𝑝 is directly density-reachable from a point 𝑞 with respect to 𝜖 and
𝑀𝑖𝑛𝑃𝑡𝑠 if (2.15) holds.

(1) 𝑝 ∈ 𝑁𝜖(𝑞)
(2) |𝑁𝜖(𝑞)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠

(2.15)

Directly density-reachability is not symmetric. In Figure 2.10, the 𝑞 is not directly
density-reachable from 𝑝, since 𝑝 is border.

Figure 2.10: For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑝 is directly density-reachable from 𝑞 [12]

A point 𝑝 is density-reachable from a point 𝑞 with respect to 𝜖 and 𝑀𝑖𝑛𝑃𝑡𝑠

if there is a chain of points 𝑞𝑖 such that 𝑞𝑖+1 is directly density-reachable from
𝑞𝑖 , 𝑖 ∈ [1, 𝑛𝑞], 𝑞1 is directly density-reachable from 𝑞 and 𝑝 is directly density-
reachable from 𝑞𝑛𝑞 , and 𝑞 is a core point.

25

2.5. DBSCAN

Density-reachability is not symmetric as well. In Figure 2.11, 𝑞 is not directly
density-reachable from 𝑝, since 𝑝 is border.

Figure 2.11: For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑝 is density-reachable from 𝑞 [12]

A point 𝑝 is density-connected to point 𝑞 if there is a point 𝑠 such that 𝑝 and 𝑞

are density-reachable from 𝑠.
Density-connectivity is symmetric, Figure 2.12.

Figure 2.12: For 𝑀𝑖𝑛𝑃𝑡𝑠 = 6. 𝑝 and 𝑞 are density-connected each other [12]

Then in DBSCAN, a cluster is a maximal set of points density-connected. Border
points, which are not connected by density to any core point, are labeled as
noise.
DBSCAN is very sensitive to the values of 𝜖 and 𝑀𝑖𝑛𝑃𝑡𝑠, decreasing 𝜖 and
increasing 𝑀𝑖𝑛𝑃𝑡𝑠 reduces the cluster size and increases the number of noise
points.
Furthermore, DBSCAN doesn’t require to specify the number of clusters to be
returned as output (hyperparameter) and it can find clusters of any shape.

26

CHAPTER 2. MACHINE LEARNING THEORY

2.6 Isolation Forest

Most existing model-based approaches to anomaly detection, construct a
profile of normal instances, then identify instances that do not conform to the
normal profile as anomalies. Notable examples such as statistical methods,
classification-based methods, and clustering-based methods, all use this general
approach [6]. Two major drawbacks of this approach are:

• The anomaly detector is optimized to profile normal instances, but not
optimized to detect anomalies, as a consequence, the results of anomaly
detection might not be as good as expected, causing too many false alarms
(having normal instances identified as anomalies) or too few anomalies
being detected

• Many existing methods are constrained to low dimensional data and small
data size because of their high computational complexity

Isolation forest (iForest) instead, explicitly isolates anomalies rather than profiles
normal instances [20][27]. To achieve this, this method takes advantage of two
anomalies quantitative properties:

• They are the minority consisting of fewer instances

• They have attribute-values that are very different from those of normal
instances

In other words, anomalies are few and different, which make them more sus-
ceptible to isolation than normal points. In particular, this method builds an
ensemble of random trees for a given dataset (iTrees), then anomalies are those
instances which have short average path lengths on the iTrees.
Apart from the key difference of isolation versus profiling, iForest distinguishes
from existing model-based, distance-based and density-based methods in the
following ways:

• The isolation characteristic of iTrees enables them to build partial models
and exploit sub-sampling to an extent that is not feasible in existing meth-
ods. Since a large part of an iTree that isolates normal points is not needed
for anomaly detection, it does not need to be constructed

• iForest utilizes no distance or density measures to detect anomalies. This
eliminates major computational costs of distance calculation compared to
all distance-based methods and density-based methods

• iForest has the capacity to scale up to handle extremely large data sizes and
high-dimensional problems with a large number of irrelevant attributes

27

2.6. ISOLATION FOREST

Isolation means separating an instance from the rest of the instances. Since
anomalies are few and different, they are more susceptible to isolation. In
a data-induced random tree, partitioning of instances is repeated recursively
until all instances are isolated. This random partitioning produces noticeable
shorter paths for anomalies since:

• The fewer instances of anomalies result in a smaller number of partitions
and hence, shorter paths in a tree structure

• Instances with distinguishable attribute values are more likely to be sep-
arated in early partitioning. Hence, when a forest of random trees collec-
tively produce shorter path lengths for some particular points, then they
are highly likely to be anomalies

In Figures 2.13a and 2.13b, partitions are generated by randomly selecting an
attribute and then, randomly selecting a split value between the maximum and
minimum values of the selected attribute. Anomalies are more susceptible to
isolation and hence have short path lengths. Given a Gaussian distribution (135
points), a normal point 𝑥𝑖 requires twelve random partitions to be isolated; (b)
an anomaly 𝑥𝑜 requires only four partitions to be isolated.

(a) Isolating normal point 𝑥𝑖 (b) Isolating anomalous point 𝑥𝑜

Figure 2.13: Isolating points via iForest [20]

From Figure 2.14, it can be seen that anomalies are more susceptible to isolation
and hence have short path lengths. Given a Gaussian distribution (135 points), a
normal point 𝑥𝑖 , Figure 2.13a, requires twelve random partitions to be isolated;
an anomaly 𝑥𝑜 , Figure 2.13b, requires only four partitions to be isolated.

28

CHAPTER 2. MACHINE LEARNING THEORY

Figure 2.14: Averaged path lengths of 𝑥𝑖 and 𝑥𝑜 converge when the number of
trees increases [20]

Since recursive partitioning can be represented by a tree structure, the number
of partitions required to isolate a point, is equivalent to the path length from
the root node to a terminating node. In this example, the path length of 𝑥𝑖 is
greater than the path length of 𝑥𝑜 . Since each partition is randomly generated,
individual trees are generated with different sets of partitions. It is possible to
average path lengths over a number of trees to find the expected path length.
Figure 2.14 shows that the average path lengths of 𝑥𝑜 and 𝑥𝑖 converge when the
number of trees increases. Using 1000 trees, the average path lengths of 𝑥𝑜 and
𝑥𝑖 converge to 4.02 and 12.82, respectively. This shows that anomalies have path
lengths shorter than normal instances.
Anomaly detection using iForest is a two-stage process. The first (training) stage
builds isolation trees using sub-samples of the training set. The second (testing)
stage passes the test instances through isolation trees, to obtain an anomaly score
for each instance, based on the expected path length.

29

2.7. K NEAREST NEIGHBORS

2.7 K Nearest Neighbors

K nearest neighbors (KNN) algorithm is a non-parametric classification
method [9][25][28].
Given a training set 𝑆 ⊆ 𝑋 × 𝑌 of vectors in a multidimensional feature space,
each with a class label, the training phase of the algorithm consists only of storing
the feature vectors and class labels of the training samples. In the classification
phase, an unlabeled instance is classified by assigning the label which is most
frequent among the k training samples nearest to that instance. In particular,
k is a hyperparameter of the ML model. The word "nearest" implies a distance
metric and its choice is another hyperparameter of the model. Typically, dis-
tances are measured with a Minkowski distance (𝐿𝑝 norm).
The Minkowski distance of two vectors 𝑥 𝑗 and 𝑥𝑞 is defined as:

𝐿𝑝(𝑥 𝑗 , 𝑥𝑞) = (
∑
𝑖

|𝑥 𝑗,𝑖 − 𝑥𝑞,𝑖 |𝑝)
1
𝑝 (2.16)

In Figure 2.15, the test sample (green dot) should be classified either to blue
squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red
triangles because there are 2 triangles and only 1 square inside the inner circle.
If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2
triangles inside the outer circle).

Figure 2.15: Example of KNN classification [28]

30

CHAPTER 2. MACHINE LEARNING THEORY

2.8 Artificial Neural Network

An artificial neural network, or simply neural network (NN), is a system
consisting of interconnected units that compute nonlinear functions, called ac-
tivation functions:

• Input units represent input variables and constitute the input layer

• Output units represent output variables and constitute the output layer

• Hidden units represent internal variables which codify, after learning,
correlations among input and desired output variables and constitute one
or more hidden layers

Figure 2.16: Artificial neural network

Artificial neural network is a parametric model whose parameters are the
weights 𝑤 associated to connections among units and bias 𝑏 associated to each
unit itself [15][16][25].

31

2.8. ARTIFICIAL NEURAL NETWORK

In Figure 2.17, it is possible to see a unit of the NN, where 𝑤𝑖 and 𝑏 represent
the parameters of such unit, while the 𝑥𝑖 represent the inputs of the unit. The
output of the unit is then the output of a nonlinear function, 𝑓 , with as input the
linear combination of the parameters and inputs of the unit.

Figure 2.17: Unit of an NN

2.8.1 Deep Feed-Forward Neural Network

A feed-forward neural network (FNN), Figure 2.16, is a directed acyclic graph
in which the connections are directed from input to hidden and from hidden to
output units.
In this context, some architectural hyperparameters are important to state:

• Depth - the total number of layers in the FNN except input layer and hence,
since the output layer is fixed, related to the number of hidden layers

• Width - the maximum number of units in a layer of a FNN

• Activation function - the activation function to use for the units of each
layer

The use of this architecture introduces a bias in the hypothesis space. In fact
the functions parametrized with this model are complex functions which are
composition of simpler activation functions 𝑓 .
The Figure 2.16 represents the simplest feed-forward (or dense) neural network,
since it is composed by just one hidden layer.

32

CHAPTER 2. MACHINE LEARNING THEORY

Nevertheless, already for this architecture it holds the universal approximation
theorem:

A feed-forward network with a linear output layer and at least one hidden layer with any
squashing activation function, can approximate any continuous function and any func-
tion mapping from any finite dimensional discrete space to another, with any desirable
amount of error, given enough hidden units.

This theorem guarantees that a network exists, however it doesn’t guarantee
that the training algorithm will be able to learn it. In fact, in the worst case, an
exponential number of hidden units is required.
In this scenario, the use of deep FNN may reduce the number of units required
to represent a function. Indeed, for example piecewise linear FNNs, can rep-
resent functions with a number of regions that is exponential in the depth of
the network. Figure 2.18 illustrates how a network, with a particular piecewise
linear activation function, creates mirror images of the function computed on
top of some hidden unit, with respect to the input of that hidden unit. Each
hidden unit specifies where to fold the input space in order to create mirror
responses. By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of regular
(e.g., repeating) patterns.

Figure 2.18: An intuitive, geometric explanation of the exponential advantage
of deeper piecewise linear activation function networks [15]

33

2.8. ARTIFICIAL NEURAL NETWORK

Also, it turns out that empirically, a shallow (one hidden layer) neural network
may overfit more than a deeper NN, Figure 2.19. Indeed, in this case the test set
accuracy consistently increases with increasing depth.

Figure 2.19: Empirical results showing that deeper networks generalize better
when used to transcribe multi-digit numbers from photographs of addresses
[15]

Any time a specific machine learning algorithm is chosen, there is an implicitly
stating of some set of prior beliefs about what kind of function the algorithm
should learn. Choosing a deep model encodes a very general belief that the
function to learn should involve composition of several simpler functions. This
can be interpreted, from a representation learning point of view, as the belief
that the learning problem consists of discovering a set of underlying factors of
variation, that can in turn be described in terms of other simpler underlying
factors of variation.

34

CHAPTER 2. MACHINE LEARNING THEORY

2.8.2 Activation Function

From the universal approximation theorem and from Figure 2.18, it is evident
the importance of the choice for the activation function. Furthermore, it is
fundamental the choice of a nonlinear activation function. Indeed, it turns out
that even the more complex deep FNN, with just linear activation functions, is
equivalent to a shallow linear FNN. This is evident by the fact that an FNN is
just a composition of functions, each corresponding to each of its layers. Hence,
a composition of linear functions is equivalent to the simple linear function
computed by a shallow linear FNN [15]. The choice of the activation function
for the output layer instead, is tied to the task to solve and in particular, to the
specific output 𝑦 ∈ 𝑌 of the problem.
A common choice in the past for the hidden activation functions was the logistic
sigmoid (2.17), Figure 2.20.

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (2.17)

Figure 2.20: Logistic sigmoid [15]

However nowadays, for several optimization problems, it is unlikely used as
hidden activation function but nevertheless, it is widely used as output activation
function for modeling probability distributions. Indeed, a drawback of the
universal approximation theorem is that neural networks are very complex
models, whose associated parametric functions are a very complex nonlinear
functions and hence, hard to optimize. Since that this complex functions are
a composition of the hidden activation functions, it turns out that the use of
piecewise activation functions lead to better performance because of the more
guarantees associated to the use of convex optimization techniques.

35

2.8. ARTIFICIAL NEURAL NETWORK

In particular an extensively used function of this family is the rectified linear
unit (ReLU), defined as (2.18), Figure 2.21.

𝑔(𝑧) = 𝑚𝑎𝑥{0, 𝑧} (2.18)

Figure 2.21: ReLU [15]

2.8.3 Regularization

Since the complexity of NNs, often the problem of overfitting arises. In fact,
NNs have a large hypothesis space 𝐻 associated and hence, it is very likely
that the learning algorithm may find an hypothesis with high variance with
respect to the training set. For these reasons, it is fundamental to limit the
expressiveness of 𝐻 by adding some regularization to the loss function [15].
In NNs, the hypothesis space is associated with the weights and biases of the
NNs and adding a regularization, means to introduce some preference about
the choice of the parameters of the network.
One of the oldest regularization techniques is the parameter norm penalties. Let
be 𝜃 the set of parameters of the network and 𝐽(𝜃; 𝑆) the original loss function
for the problem. Then the parameter norm penalties regularized loss function
is:

𝐽(𝜃; 𝑆) = 𝐽(𝜃; 𝑆) + 𝛼Ω(𝜃) (2.19)

whereas Ω(𝜃) is a weight norm and 𝛼 is a hyperparameter for the trade off
between the optimization of the original loss and the parameter norm penalties,
hence, for the bias and variance trade off.

36

CHAPTER 2. MACHINE LEARNING THEORY

This regularization, is also a form of the more general sparse representation
regularization, which leads to sparse representation of the hidden space [17],
Figure 2.22.

Figure 2.22: Fully connected vs sparse connections

Given ℎ to be the hidden layers representation, that is, the set of all the hid-
den unit pre-activations (linear combinations for the hidden units, before the
activation function is applied), the sparse representation regularization is:

𝐽(𝜃; 𝑆) = 𝐽(𝜃; 𝑆) + 𝛼Ω(ℎ) (2.20)

Induce sparsity in the network indeed, it turns out to improve generalization
and robustness but also to improve performance for inference and/or training.
Another form of regularization is the early stopping. The idea underlying this
approach is to return the model with the lowest validation loss. In particular,
it stops the training if no improvement of the validation loss is obtained after
𝑁 consecutive epochs of the training procedure, with 𝑁 as hyperparameter.
The regularization, in this case, is given by limiting the parameter space to a
neighbourhood of the initial parameter values, that means, imposing a gaussian
prior in the parameter space with respect to the initial values.

37

2.9. CONVOLUTIONAL NEURAL NETWORK

2.9 Convolutional Neural Network

As said previously, already a shallow FNN, in principle, has expressiveness
enough to solve any problem [15]. However, in practice, it is hard to find a
good hypothesis without overfitting. Regularization techniques may help by
introducing some bias in the hypothesis space but still, for some problems this
turns out to be not enough. Indeed, since the number of parameters of a feed-
forward neural network depends by the dimension of the input feature space,
this number may become huge for high dimensional problems.
Convolutional neural network (CNN) is an example of NN, in which some
architectural constraints are introduced, in order to limit the expressiveness of
the hypothesis space 𝐻 in such a way to prefer the more problem-dependent
hypothesis [11][15][17].
As shown in Figure 2.23, the convolution operator itself and its variants can be
seen as a sparse version of fully connected layers. Instead of connecting every
pair of neurons in the input and output layers, the connections are pruned in
order to contain only local surroundings.

Figure 2.23: Convolutional as sparse fully-connected NN [17]

This architecture introduces a preference in learning local features of the input
and hence, turns out to be state of the art in those problems whose input contains
such features like image classification.

2.9.1 Convolution

The basic operation in dense neural networks is affine transformations: a
vector is received as input and is multiplied with a matrix, to produce an output
(to which a bias vector is usually added before passing the result through a non-
linear function). This is applicable to any type of input, be it an image, a sound
clip or an unordered collection of features. Whatever their dimensionality, their

38

CHAPTER 2. MACHINE LEARNING THEORY

representation can always be flattened into a vector before the transformation
[11]. However, images, sound clips and many other similar kinds of data have
an intrinsic structure. More formally, they share these important properties:

• They are stored as multi-dimensional arrays

• They feature one or more axes for which ordering matters (e.g., width and
height axes for an image, time axis for a sound clip)

• One axis, called the channel axis, is used to access different views of the
data (e.g., the red, green and blue channels of a color image, or the left and
right channels of a stereo audio track)

These properties are not exploited when an affine transformation is applied; in
fact, all the axes are treated in the same way and the topological information is
not taken into account. Still, taking advantage of the implicit structure of the
data may prove very handy in solving some tasks, like computer vision and
speech recognition, and in these cases it would be best to preserve it. This is
where discrete convolutions come into play. A discrete convolution is a linear
transformation that preserves this notion of ordering.
For filter (or kernel) 𝑓 and input 𝑥 the convolution is defined as:

𝑠(𝑡) = (𝑓 ∗ 𝑥)(𝑡) =
∞∑

𝑎=−∞
𝑥(𝑡 − 𝑎) 𝑓 (𝑎) (2.21)

Whereas 𝑠(𝑡) is called feature map.
In practice, the filter is defined to be zero everywhere except for a finite set of
points and (2.21) for a 𝑚 size filter becomes (2.22), Figure 2.24.

𝑠(𝑡) = (𝑓 ∗ 𝑥)(𝑡) =
𝑚−1∑
𝑎=0

𝑥(𝑡 − 𝑎) 𝑓 (𝑎) (2.22)

39

2.9. CONVOLUTIONAL NEURAL NETWORK

Figure 2.24: Convolution operation [15]

The main properties of convolution operator are:

• Sparse interactions. Achieved by using a filter smaller than the input.
From Figure 2.25 indeed, it is possible to see that each single input feature
contributes to just a portion on the size of the filter to the output. While
each output depends by just a portion on the size of the filter to the input

• Parameter sharing. Each member of the filter is used at every position
in the input. Instead of learning a separate set of parameters for each
location, only one set is learnt

Figure 2.25: Sparse interactions with a 3 size filter [15]

40

CHAPTER 2. MACHINE LEARNING THEORY

These two properties lead to computational and memory efficiency. In particular,
with the sparse interaction property, each output is computed by using just a
small portion of the input: computational efficiency. While, with the parameter
sharing property, the number of parameters to store in a layer doesn’t depend
by the input, but just by the size of the kernel: memory efficiency [15].

Figure 2.26: Efficiency of convolution [15]

In general, the use of convolution leads to an output with a different shape with
respect to the input. Transposed convolution is a transformation going in the
opposite direction of a normal convolution, i.e., from something that has the
shape of the output of some convolution to something that has the shape of
its input, while maintaining a connectivity pattern that is compatible with said
convolution [11].

41

2.10. AUTOENCODER

2.9.2 Convolutional and Locally Connected Layers

A convolutional layer consists in the application of the convolution operation
to its input by a learnable filter, whose dimension is an hyperparameter. The
resulting feature map is finally the input of an activation function, Figure 2.27.
If the parameter sharing property of the convolution is removed, then such
operation is called unshared convolution. Locally connected layer is therefore
like a convolutional layer which performs unshared convolution [21].

Figure 2.27: Convolutional layer

2.10 Autoencoder

The general idea underlying autoencoder (AE) is to learn a compressed
and/or sparse representation ℎ of the input 𝑥 by learning the identity function
𝑟 = 𝑔(𝑓 (𝑥)), 𝑟 ≈ 𝑥 with some constraints [1][15], Figure 2.28.

Figure 2.28: AE architecture [15]

This can be achieved by imposing a loss function of the type:

ℒ = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (2.23)

42

CHAPTER 2. MACHINE LEARNING THEORY

where the reconstruction error can be defined as any function which measures
the dissimilarity between 𝑥 and 𝑟.
In particular the mapping 𝑓 : 𝑥 ↦→ ℎ is called encoder and the mapping 𝑔 : ℎ ↦→ 𝑟

is called decoder and both these functions turn out to be NNs, Figure 2.29.

Figure 2.29: AE building blocks [15]

The constraints in the identity function can be imposed:

• On the architecture of the network: undercomplete AE

• Adding a regularizing term to the loss: overcomplete AE

In undercomplete AEs in particular, the hidden space ℎ has a lower dimension
than the input 𝑥. Therefore, the mapping 𝑓 : 𝑥 ↦→ ℎ has to discard some infor-
mation and hence, has to learn what are the relevant informations.
Furthermore, it turns out that, if both the encoder and the decoder are linear neu-
ral networks, then 𝑓 (𝑥) ≈𝑊𝑥 and 𝑔(ℎ) ≈ 𝑈ℎwhere𝑊 and𝑈 are respectively the
compression and recovering matrices of PCA. Hence, the linear undercomplete
AE mimics the PCA behavior. Therefore, the use of nonlinear activation func-
tions in AEs allows to learn nonlinear dimensionality reductions of the input [3].

2.10.1 Autoencoders in Anomaly Detection

Deep learning (DL) is a subset of ML that achieves good performance and
flexibility by learning to represent the data as a nested hierarchy of concepts
within layers of the deep neural network. DL outperforms the traditional ML as
the scale of data increases. In recent years, DL-based anomaly detection algo-
rithms have become increasingly popular and have been applied for a diverse set
of tasks; studies have shown that deep learning completely surpasses traditional
methods [5].

43

2.10. AUTOENCODER

The motivations and challenges in the use of deep anomaly detection techniques
are:

• Performance of traditional algorithms in detecting outliers is sub-optimal
on the image and sequence datasets since it fails to capture complex struc-
tures in the data

• Need for large-scale anomaly detection. As the volume of data increases
then, it becomes nearly impossible for the traditional methods to scale to
such large scale data to find outliers

• Deep anomaly detection techniques learn hierarchical discriminative fea-
tures from data. This automatic feature learning capability eliminates the
need of developing manual features by domain experts, therefore advo-
cates to solve the problem end-to-end taking raw input data in domains
such as text and speech recognition

• The boundary between normal and anomalous (erroneous) behavior is
often not precisely defined in several data domains and is continually
evolving. This lack of well-defined representative normal boundary poses
challenges for both conventional and deep learning-based algorithms

Since the labels of normal instances are far more easy to obtain than anomalies,
as a result, semi-supervised deep anomaly detection techniques are more widely
adopted, these techniques leverage existing labels of single (normally positive
class) to separate outliers. One common way of using deep AE in anomaly
detection, is to train them in a semi-supervised way on data samples with no
anomalies. With sufficient training samples of normal class, AE would produce
low reconstruction errors for normal instances, over unusual events. Semi-
supervised deep anomaly detection techniques methods rely on at least one of
the following assumptions to score a data instance as an anomaly:

• Proximity and continuity. Points which are close to each other both in
input space and learned feature space are more likely to share the same
label

• Robust features are learned within hidden layers of deep neural network
layers and retain the discriminative attributes for separating normal from
outlier data points

AEs represent data within multiple hidden layers by reconstructing the input
data, effectively learning an identity function. The AEs, when trained solely
on normal data instances (which are the majority in anomaly detection tasks),
fail to reconstruct the anomalous data samples, therefore, producing a large
reconstruction error. Given an input 𝑥 and let �̃� be the reconstruction obtained
from an AE. Then, the reconstruction error can be used in order to discriminate

44

CHAPTER 2. MACHINE LEARNING THEORY

between normal and abnormal data [22].
In Figure 2.30, an AE, trained with just normal instances, learns an hidden
space based on the training samples (prototypical normal patterns). Then,
in the testing procedure, a new normal input is mapped close to a similar
prototypical normal pattern. While an abnormal input is mapped far from
any prototypical normal patterns, since different to any sample seen during the
training procedure. Hence, since the AE maps back the closest prototypical
normal pattern with respect to the input, the reconstruction error of a normal
point will be lower than the one of an abnormal point. This because a normal
point is closer than an abnormal point to a prototypical normal point in the
hidden space.
Several variants of AE architectures are proposed, whose choice depends on the
nature of data, producing promising results in anomaly detection.

Figure 2.30: AE in anomaly detection

45

2.10. AUTOENCODER

2.10.2 Dense Autoencoder

Dense autoencoder (DAE) is a particular architecture of undercomplete AE
in which, both the encoder and the decoder are implemented with dense neural
networks [24], Figure 2.31.

Figure 2.31: DAE architecture

2.10.3 Convolutional and Locally Connected Autoencoders

Convolutional autoencoder (CAE) is a particular architecture of undercom-
plete AE in which, the encoder is implemented with convolutional and dense
layers. While the decoder is implemented with dense and transposed convolu-
tional layers, in order to reconstruct the original input with the original shape
[24], Figure 2.32.

Figure 2.32: CAE architecture

Locally connected autoencoder (LCAE) is a variant of CAE in which the con-
volutional layers are implemented as unshared convolutions (locally conected
layers).

46

CHAPTER 2. MACHINE LEARNING THEORY

2.10.4 Variational Autoencoder

One major division in ML is generative versus discriminative modeling.
Discriminative models learn the probability of a label 𝑦 based on a data point
𝑥. In mathematical terms, this is denoted as 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 |𝑥). In order to categorize a
data point into a class, it is needed to learn a mapping between the data and the
classes. This mapping can be described as a probability distribution where each
label will compete with the other ones for probability density over a specific
data point.
Generative models, on the other hand, learn a probability distribution over
the data points without external labels. Mathematically this is formulated as
𝑝𝑚𝑜𝑑𝑒𝑙(𝑥). This probability density effectively describes the behavior of the train-
ing data and enables to generate novel data by sampling from the distribution.
Ideally, the model has to learn a probability density 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) which will be
identical to the density of the data 𝑝(𝑥), hence, 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) ≃ 𝑝(𝑥).
In this class of models, it can be distinguished the explicitly density estimation
models, which explicitly define and solve for 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) and the implicit density
estimation models, which learn to sample from 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) without explicitly de-
fine it.
Explicit density models can either compute exactly the density function or try to
model it with latent variables. Latent variables are variables that are not directly
observed and which describe or explain the data in a simpler way. In mathemat-
ical form, data points 𝑥 that follow a probability distribution 𝑝(𝑥), are mapped
into latent variables 𝑧 that follow a distribution 𝑝(𝑧) [2][7][19]. In particular:

• The prior distribution 𝑝(𝑧) models the behavior of the latent variables

• The likelihood 𝑝(𝑥 |𝑧)defines how to map latent variables to the data points

• The joint distribution 𝑝(𝑥, 𝑧) = 𝑝(𝑥 |𝑧)𝑝(𝑧) is the multiplication of the like-
lihood and the prior and describes the model

• The marginal distribution 𝑝(𝑥) is the distribution of the original data and
it is the ultimate goal of the model

• The posterior distribution 𝑝(𝑧 |𝑥) describes the latent variables that can be
produced by a specific data point

Then, in latent variables models, generation refers to the process of computing
the data point 𝑥 from the latent variable 𝑧 and hence, it is defined by the likeli-
hood 𝑝(𝑥 |𝑧). While, inference is the process of finding the latent variable 𝑧 from

47

2.10. AUTOENCODER

the data point 𝑥 and is formulated by the posterior distribution 𝑝(𝑧 |𝑥).
Given a latent variables model, which has to learn a probability distribution
𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) = 𝑝𝜃(𝑥) parametrized over 𝜃, its objective is to learn 𝜃 such that
𝑝𝜃(𝑥) ≃ 𝑝(𝑥).
This could be achieved through maximum likelihood estimation, a well estab-
lished technique of estimating the parameters of a probability distribution so that
the distribution fits the observed data. In particular this can be accomplished
maximizing the log-likelihood function:

�̂� = arg max
𝜃

∑
𝑖

log 𝑝𝜃(𝑥𝑖) (2.24)

In order to optimize (2.24), it is necessary to compute the marginal:

𝑝𝜃(𝑥) =
∫

𝑝𝜃(𝑥, 𝑧)𝑑𝑧 (2.25)

However, such integral turns out to be intractable. The intractability of 𝑝𝜃(𝑥) is
related to the intractability of the posterior distribution 𝑝𝜃(𝑧 |𝑥) since the joint
distribution 𝑝𝜃(𝑥, 𝑧) is tractable to compute:

𝑝𝜃(𝑧 |𝑥) = 𝑝𝜃(𝑥, 𝑧)
𝑝𝜃(𝑥) (2.26)

Approximate inference techniques allow to approximate the posterior 𝑝𝜃(𝑧 |𝑥)
and hence, the marginal likelihood 𝑝𝜃(𝑥).
Variational autoencoder (VAE), Figure 2.33, is a deep latent variable model,
which is a latent variable model 𝑝𝜃(𝑥, 𝑧) whose distributions are parameterized
by neural networks.

Figure 2.33: VAE architecture

Furthermore, VAE implements approximate inference techniques by introduc-
ing a parametric inference model 𝑞𝜙(𝑧 |𝑥). This model, also called encoder, is a

48

CHAPTER 2. MACHINE LEARNING THEORY

neural network which is optimized in order to have:

𝑞𝜙(𝑧 |𝑥) ≃ 𝑝𝜃(𝑧 |𝑥) (2.27)

While the decoder is a neural network which implements the likelihood 𝑝𝜃(𝑥 |𝑧).
In particular, as can also be seen in Figure 2.33, a common choice is the factorized
Gaussian encoder, in which the encoder computes mean 𝜇𝑧 |𝑥 and standard
deviation 𝜎𝑧 |𝑥 so that, given 𝜖 ∼ 𝒩(0, 𝐼):

𝑧 = 𝜇𝑧 |𝑥 + 𝜎𝑧 |𝑥 ⊙ 𝜖 (2.28)

or equivalently:
𝑧 ∼ 𝒩(𝜇𝑧 |𝑥 , 𝑑𝑖𝑎𝑔(𝜎2

𝑧 |𝑥)) (2.29)

VAE is a special case of AE because, even if its architectural affinity with AEs,
there are significant differences both in the goal and in the mathematical formu-
lation. Indeed, VAE is a generative model and differently from the architecture
in Figure 2.28, in which the encoder learns two deterministic functions, genera-
tive models learn probability distributions, Figure 2.34.

Figure 2.34: Stochastic AE [15]

Indeed, the loss function of VAE turns out to be:

ℒ𝜃,𝜙 = −E𝑧∼𝑞𝜙(𝑧 |𝑥)(𝑙𝑜𝑔(𝑝𝜃(𝑥 |𝑧))) + 𝐷𝐾𝐿(𝑞𝜙(𝑧 |𝑥) | | 𝑝𝜃(𝑧)) (2.30)

whereas:

• −E𝑧∼𝑞𝜙(𝑧 |𝑥)(𝑙𝑜𝑔(𝑝𝜃(𝑥 |𝑧))) is the negative log-likelihood of the original input
being reconstructed and hence, it is the reconstruction error

49

2.10. AUTOENCODER

• 𝐷𝐾𝐿(𝑞𝜙(𝑧 |𝑥) | | 𝑝𝜃(𝑧)) is the Kullback-Leibler (KL) divergence and forces
𝑞𝜙(𝑧 |𝑥) to be 𝑞𝜙(𝑧 |𝑥) ≃ 𝑝𝜃(𝑧). Hence, it can be seen as a regularization
term over the latent space, which forces the hidden representation to follow
the prior distribution 𝑝𝜃(𝑧)

Usually, the prior is assumed to be factorized unit Gaussian 𝑝𝜃(𝑧) = 𝒩(0, 𝐼) and
since the factorized Gaussian encoder 𝑞𝜙(𝑧 |𝑥) = 𝒩(𝜇𝑧 |𝑥 , 𝑑𝑖𝑎𝑔(𝜎2

𝑧 |𝑥)), the loss
function becomes:

ℒ = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 + 𝐷𝐾𝐿(𝒩(𝜇𝑧 |𝑥 , 𝑑𝑖𝑎𝑔(𝜎2
𝑧 |𝑥)) | | 𝒩(0, 𝐼)) (2.31)

As in the case of AEs, several variants of VAE architectures are proposed, based
on the implementations of the encoder and decoder parts, in order to adapt the
architecture to different domains and improve its performance.
An important variant of VAE is the 𝛽-VAE [4]. Indeed, it is a modification of
VAE framework that introduces an adjustable hyperparameter 𝛽 to the original
VAE loss:

ℒ𝜃,𝜙 = −E𝑧∼𝑞𝜙(𝑧 |𝑥)(𝑙𝑜𝑔(𝑝𝜃(𝑥 |𝑧))) + 𝛽 𝐷𝐾𝐿(𝑞𝜙(𝑧 |𝑥) | | 𝑝𝜃(𝑧)) (2.32)

Well chosen values of 𝛽, result in more disentangled latent representations z. A
disentangled representation can be defined as one where single latent units are
sensitive to changes in single generative factors, while being relatively invari-
ant to changes in other factors. For example, a model trained on a dataset of
3D objects might learn independent latent units sensitive to single independent
data generative factors, such as object identity, position, scale, lighting or color.
A disentangled representation is therefore factorized and often interpretable,
whereby different independent latent units learn to encode different indepen-
dent ground-truth generative factors of variation in the data.
The stronger pressure for the posterior 𝑞𝜙(𝑧 |𝑥) to match the factorized unit
Gaussian prior 𝑝𝜃(𝑧), introduced by the 𝛽-VAE objective, puts extra constraints
on the implicit capacity of the latent space z and extra pressures for it, to be
factorized while still being sufficient to reconstruct the input data . Higher val-
ues of 𝛽 necessary to encourage disentangling often lead to a trade-off between
the fidelity of 𝛽-VAE reconstructions and the disentangled nature of its latent
space. It turns out that, reconstructing under this constrained latent space, en-
courages embedding the data points on a set of representational axes, where
nearby points on the axes are also close in data space.

50

3
Model Analysis and Experimental

Results

In order to answer to the research questions [1.2], it is important to define
first for which metrics the novel approach should be optimized in addition to
a corresponding baseline. Since the goal of this anomaly detection problem
is to detect suspicious samples, while keeping the number of false suspicious
samples low, the main metric for which the different models will be compared
is the F1 score (2.8) between TNR (2.5) and NPV (2.7). Although, for similar F1
score, the model with lower TNR is preferable, since the importance in detecting
anomalies.

Model TNR NPV MCC F1-SCORE

FORMULA 0.961 0.889 0.921 0.923

Table 3.1: Formula performances

Before training any model, it is important to preprocess the data in order to
make them suitable as input for an ML approach. Here, the crucial point is the
downsampling step, because it allows to really simplify the problem by reducing
drastically the size of each signal from 3646 to 156 and hence, the number of
input features for an ML model. In particular, the applied downsampling tech-
nique is based on Fourier transformations and it has been empirically chosen and
validated by experts. Such downsampling can be performed because it turns

51

out that the sampling rate, through which the signals are measured, is too high
for the nature of such signals. Indeed, it can be noticed that the original signals
present many flat regions where the variations are minimal, therefore, a small
amount of points is needed in order to represent such signals. Furthermore, the
patterns of interest are related to more global characteristics, hence, some pos-
sible small variations introduced in the signals with the downsampling method
do not affect the patterns quality. Then, a simple smoothing window operation
is performed in order to remove the noise introduced by downsampling. These
first two operations are performed signal-wise. Finally, it is important to scale
the signals to a fixed range of variations. Therefore, first the mean is subtracted
and then, the signals are normalized to the [0, 1] interval through min-max
normalization. Such two operations are still performed signal-wise:

(1) 𝑥′ = 𝑥 − E[𝑥]
(2) 𝑥′′ = 𝑥′ − 𝑚𝑖𝑛(𝑋′)

𝑚𝑎𝑥(𝑋′) − 𝑚𝑖𝑛(𝑋′)
(3.1)

whereas 𝑋′ is the training set after the zero mean operation and 𝑚𝑎𝑥(𝑋′) and
𝑚𝑖𝑛(𝑋′) operations are computed along all features of the instances of 𝑋′.

The preprocessing procedure has been kept as simple and general as possi-
ble, with the idea to possibly generalize it to other similar products, as required
by the fourth research question [1.2].

Figure 3.1: Preprocessing steps

52

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

3.1 Unsupervised Approach

Since one aim of the thesis is to keep the procedure as general as possible
and to reduce the effort on building a model, in order to possibly be generalized
to other similar product datasets, an unsupervised approach looks very inter-
esting.

Model TNR NPV MCC F1-SCORE

IFOREST 0.996 0.123 0.26 0.219
DBSCAN 0.996 0.514 0.694 0.678

Table 3.2: iForest and DBSCAN performances

It turns out that an unsupervised approach doesn’t provide good results, since
an high number of false negative is provided. Indeed, from Table 3.2, the NPV
is low with both the models.
This behavior is fully explainable by the data, because inside the "Not suspicious"
samples, there are as many different variations with different distributions of
patterns, so that the ones with a lower probability distributions are marked as
"Suspicious" variations.

3.2 Semi-Supervised Approach

With labelled data, the idea underlying the semi-supervised approach is to
train a supervised model with just the normal, in this case "Not suspicious",
data in order to learn the normal behavior and then test the likelihood of a test
instance to be generated by the utilized model. With this approach in fact, first
of all it is possible to overcome the unbalancedness of the data and also, it is
possible to be more robust to future anomalies, since the "Suspicious" samples
are not used during the training procedure. Hence, the models are not biased to
the "Suspicious" samples seen just so far. In this scenario, to test the feasibility
of such approach, a simple model is first experimented: KNN.
In fact, by looking at both "Not suspicious" and "Suspicious" samples, after the
preprocessing, in a two dimensional space through PCA, Figure 3.2, it is possi-
ble to see that the "Not suspicious" samples are somehow clustered, while the

53

3.2. SEMI-SUPERVISED APPROACH

"Suspicious" samples are slightly separated from the "Not suspicious" ones.

Figure 3.2: PCA of the preprocessed data

Therefore, by training a KNN with just "Not suspicious" data, the idea is that
then, during the testing, the distance to the neighbors of a "Not suspicious" sam-
ple should be lower than the one of a "Suspicious" sample. In particular, given
a sample, the average distance between its k=5 nearest neighbors is computed
and then a threshold on such a distance is used in order to discriminate between
"Not suspicious" and "Suspicious".

Model TNR NPV MCC F1-SCORE

KNN 0.961 0.944 0.943 0.952

Table 3.3: KNN performances

The results of KNN are satisfactory in terms of F1 score, however the TNR re-
mains the same as the formula in Table 3.1. This means that KNN is not complex
enough to capture all the features of the normal data and then is not able to dis-
criminate the "Suspicious" data properly.

54

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

Indeed, from Figure 3.3, it is possible to see that 3.9% of "Suspicious" data are
wrongly classified as "Not suspicious".

Figure 3.3: Confusion matrix KNN

In order to capture more features of the "Not suspicious" samples, more com-
plex models are needed, but at the same time too complex models may lead to
overfitting since there are not so many examples for each type of variation.
For these reasons, an undercomplete autoencoder looks appealing, since, thanks
to its architecture constraints, it doesn’t need to learn many parameters and this
it may prevent overfitting.
Exploiting the fact that there are not inter-patterns between the two signals
of a sample, it is possible to instantiate two DAEs with the same architecture,
each trained with a different input signal, and then combine the two resulting
reconstruction errors in order to discriminate among "Not suspicious" and "Sus-
picious" samples. With mean absolute error (MAE) between the original signal
𝑥 and the reconstructed signal �̃� as reconstruction error:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

|𝑥𝑖 − �̃� 𝑖 | (3.2)

55

3.2. SEMI-SUPERVISED APPROACH

In Figure 3.4, it is possible to see the distribution of the combined MAE losses of
the two DAEs in the validation data. All the data are bounded within a certain
MAE value, meaning that the threshold for discriminate among "Not suspicious"
and "Suspicious" samples has to be looked at in such range of values.

Figure 3.4: Histogram MAE reconstruction error of DAE

Model TNR NPV MCC F1-SCORE

DAE 0.995 0.969 0.978 0.982

Table 3.4: DAE performances

The use of two separated autoencoders leads to good results because this permits
to keep the architecture simpler in terms of parameters to train, hence, avoiding
overfitting.

56

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

Indeed, the percentage of wrongly classified "Suspicious" samples is drastically
decreased, as can be seen in Figure 3.5, compared with the one of KNN in Figure
3.3.

Figure 3.5: Confusion matrix DAE

The main drawback of a DAE is that, for example in the first hidden layer, each
unit takes as input the whole signal, whereas the patterns looked at are local.
Therefore convolutional and locally connected layers, hence, CAE and LCAE,
can be used instead. In this way, it is possible to instantiate just a single model
for the samples, by using each signal as a channel, and at the same time, to
reduce the number of parameters to train, thanks to parameters sharing and
local connectivity properties.

57

3.2. SEMI-SUPERVISED APPROACH

In Figure 3.6, it is possible to see the distributions of the MAE loss of CAE and
LCAE in the validation data. All the data are bounded within a certain MAE
value, meaning that the threshold for discriminate among "Not suspicious" and
"Suspicious" samples has to be looked at in such range of values.

(a) Histogram MAE reconstruction error of CAE

(b) Histogram MAE reconstruction error of LCAE

Figure 3.6: MAE of autoencoders based on convolutional and locally connected
layers

58

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

Model TNR NPV MCC F1-SCORE

CAE 0.998 0.973 0.982 0.985
LCAE 0.995 0.982 0.986 0.989

Table 3.5: CAE and LCAE performances

The bias encoded with the convolutional layers properties leads to an improve-
ment in the performances, further decreasing the percentage of wrongly clas-
sified samples, Figure 3.7. Despite the better F1 score given by LCAE, the
percentage of wrongly classified anomalies in CAE is lower. This makes CAE
more preferable, since it is better in detecting "Suspicious" samples.

59

3.2. SEMI-SUPERVISED APPROACH

(a) Confusion matrix CAE

(b) Confusion matrix LCAE

Figure 3.7: Confusion matrices of CAE and LCAE

60

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

A limitation of an autoencoder is that there are not guarantees about its hidden
space, because it just optimizes for the reconstruction error, in this case MAE.
This means that the manifold is not taken as optimization target. In fact in Figure
3.8, the hidden space results very discrete and bad clustered.

Figure 3.8: PCA of the hidden space of DAE

By using a variation of 𝛽-VAE, it is possible to add a hidden space regularization
term to the loss function (3.3) whereas 𝛼 and 𝛽 are two hyperparameters for the
trade off between the reconstruction error and the regularization of the hidden
space.

ℒ = 𝛼 ·𝑀𝐴𝐸 + 𝛽 · 𝐷𝐾𝐿(𝒩(𝜇𝑧 |𝑥 , 𝑑𝑖𝑎𝑔(𝜎2
𝑧 |𝑥)) | | 𝒩(0, 𝐼)) (3.3)

Two types of VAE are tested, one based on dense layers: dense variational au-
toencoder (DVAE), which then discriminates for just KL divergence and the other
based on convolutional layers: convolutional variational autoencoder (CVAE),
which then discriminates for both MAE and KL divergence.

61

3.2. SEMI-SUPERVISED APPROACH

In Figure 3.9, it is possible to see the hidden space of DVAE. In this case the
explained variance ratio is low in each dimension because the hidden space
has a distribution very close to a multivariate normal distribution, hence all
dimensions have more or less the same variance.

Figure 3.9: PCA of the hidden space of DVAE

62

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

In Figure 3.10, it is possible to see the distribution of the loss for DVAE and
CVAE in the validation data. All the data are bounded within a certain loss
value, meaning that the threshold for discriminate among "Not suspicious" and
"Suspicious" samples has to be looked at in such range of values.

(a) Histogram KL divergence loss of DVAE

(b) Histogram MAE + KL divergence losses of CVAE

Figure 3.10: KL divergence loss and MAE + KL divergence losses for DVAE and
CVAE

63

3.2. SEMI-SUPERVISED APPROACH

Model TNR NPV MCC F1-SCORE

DVAE 0.998 0.993 0.994 0.995
CVAE 0.998 0.967 0.978 0.982

Table 3.6: DVAE and CVAE performances

It is possible to see a net improvement of the performances in the DVAE, com-
pared to the previous models. In fact, from Figure 3.9, the "Suspicious" points
are mapped in the tail of a multivariate Gaussian distribution, hence the proba-
bility of such points is low in the imposed multivariate normal distribution and
then, it is possible to discriminate by the KL divergence.
Indeed, from Figure 3.11, the percentage of wrongly classified samples in DVAE
is the lowest achieved.

64

CHAPTER 3. MODEL ANALYSIS AND EXPERIMENTAL RESULTS

(a) Confusion matrix DVAE

(b) Confusion matrix CVAE

Figure 3.11: Confusion matrices of DVAE and CVAE

65

4
Conclusions and Future Works

In this thesis, several models have been experimented and it turns out that
models based on semi-supervised learning have the best results. The success in
the performances provided by those models surely confirm the first two research
questions [1.2].
Since the extremely positive results given by the DVAE, further work has been
done for the deployment of such a model. Furthermore, additional experiments
have been done, with the same preprocessing procedure combined with DVAE,
using samples coming from another similar product, and due to the positive
outcomes, even the fourth question can be confirmed with some extent. The
nature of the semi-supervised learning, combined with the distributional con-
traints in the hidden space imposed by DVAE, reasonably ensure robustness to
future anomalies as the third question requires.
To conclude, the semi-supervised learning approach combined with the use of
an autoencoder architecture is definitely the right approach for this particular
anomaly detection problem.

67

References

[1] Devansh Arpit et al. Why Regularized Auto-Encoders learn Sparse Represen-
tation? 2015. doi: 10.48550/ARXIV.1505.05561.

[2] Andrea Asperti. Variance Loss in Variational Autoencoders. 2020. doi: 10.
48550/ARXIV.2002.09860.

[3] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2020. doi:
10.48550/ARXIV.2003.05991.

[4] Christopher P. Burgess et al. Understanding disentangling in -VAE. 2018. doi:
10.48550/ARXIV.1804.03599.

[5] Raghavendra Chalapathy and Sanjay Chawla. Deep Learning for Anomaly
Detection: A Survey. 2019. doi: 10.48550/ARXIV.1901.03407.

[6] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detec-
tion: A Survey”. In: ACM Comput. Surv. 41.3 (2009). doi: 10.1145/1541880.
1541882.

[7] Taoli Cheng et al. Variational Autoencoders for Anomalous Jet Tagging. 2020.
doi: 10.48550/ARXIV.2007.01850.

[8] Jurman G. Chicco D. “The advantages of the Matthews correlation coef-
ficient (MCC) over F1 score and accuracy in binary classification evalu-
ation”. In: BMC Genomics 27 (2020), pp. 861–874. doi: 10.1186/s12864-
019-6413-7.

[9] Taurus T. Dang, Henry Y.T. Ngan, and Wei Liu. “Distance-based k-nearest
neighbors outlier detection method in large-scale traffic data”. In: 2015
IEEE International Conference on Digital Signal Processing (DSP). 2015, pp. 507–
510. doi: 10.1109/ICDSP.2015.7251924.

69

https://doi.org/10.48550/ARXIV.1505.05561
https://doi.org/10.48550/ARXIV.2002.09860
https://doi.org/10.48550/ARXIV.2002.09860
https://doi.org/10.48550/ARXIV.2003.05991
https://doi.org/10.48550/ARXIV.1804.03599
https://doi.org/10.48550/ARXIV.1901.03407
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.48550/ARXIV.2007.01850
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1109/ICDSP.2015.7251924

REFERENCES

[10] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics
for Machine Learning. Cambridge University Press, 2020. doi: 10.1017/
9781108679930.

[11] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. 2016. doi: 10.48550/ARXIV.1603.07285.

[12] Martin Ester et al. “A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise”. In: Proceedings of the Second In-
ternational Conference on Knowledge Discovery and Data Mining. Portland,
Oregon: AAAI Press, 1996, pp. 226–231.

[13] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition
Letters 27.8 (2006), pp. 861–874. doi: https://doi.org/10.1016/j.
patrec.2005.10.010.

[14] Trevor Hastie Gareth James Daniela Witten and Robert Tibshirani. An
Introduction to Statistical Learning. Springer New York, 2013. doi: 10.1007/
978-1-4614-7138-7.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. doi: 10.1007/s10710-017-9314-z.

[16] Kevin Gurney. An Introduction to Neural Networks. CRC Press, 1997. doi:
10.1201/9781315273570.

[17] Torsten Hoefler et al. Sparsity in Deep Learning: Pruning and growth for
efficient inference and training in neural networks. 2021. doi: 10.48550/ARXIV.
2102.00554.

[18] Ian T. Jolliffe and Jorge Cadima. “Principal component analysis: a review
and recent developments”. In: Royal Society (2016). doi: 10.1098/rsta.
2015.0202.

[19] Diederik P. Kingma and Max Welling. “An Introduction to Variational
Autoencoders”. In: Foundations and Trendső in Machine Learning 12 (2019),
pp. 307–392. doi: 10.1561/2200000056.

[20] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In:
2008 Eighth IEEE International Conference on Data Mining. 2008, pp. 413–422.
doi: 10.1109/ICDM.2008.17.

70

https://doi.org/10.1017/9781108679930
https://doi.org/10.1017/9781108679930
https://doi.org/10.48550/ARXIV.1603.07285
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1201/9781315273570
https://doi.org/10.48550/ARXIV.2102.00554
https://doi.org/10.48550/ARXIV.2102.00554
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1561/2200000056
https://doi.org/10.1109/ICDM.2008.17

REFERENCES

[21] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[22] Manpreet Singh Minhas and John Zelek. “Semi-supervised Anomaly De-
tection using AutoEncoders”. In: (2020). doi: 10.48550/ARXIV.2001.
03674.

[23] Brady Neal. On the Bias-Variance Tradeoff: Textbooks Need an Update. 2019.
doi: 10.48550/ARXIV.1912.08286.

[24] Alexandrine Ribeiro et al. Deep Dense and Convolutional Autoencoders for
Unsupervised Anomaly Detection in Machine Condition Sounds. 2020. doi:
10.48550/ARXIV.2006.10417.

[25] Russell and S. Norvig. “Artificial Intelligence: A Modern Approach”. In:
Prentice Hall, Englewood Cliffs, NJ (2010).

[26] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014. doi:10.1017/
CBO9781107298019.

[27] Gian Antonio Susto, Alessandro Beghi, and Seán McLoone. “Anomaly
detection through on-line isolation Forest: An application to plasma etch-
ing”. In: 2017 28th Annual SEMI Advanced Semiconductor Manufacturing
Conference (ASMC). 2017, pp. 89–94. doi: 10.1109/ASMC.2017.7969205.

[28] Kashvi Taunk et al. “A Brief Review of Nearest Neighbor Algorithm for
Learning and Classification”. In: 2019 International Conference on Intelligent
Computing and Control Systems (ICCS). 2019, pp. 1255–1260. doi: 10.1109/
ICCS45141.2019.9065747.

71

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.48550/ARXIV.2001.03674
https://doi.org/10.48550/ARXIV.2001.03674
https://doi.org/10.48550/ARXIV.1912.08286
https://doi.org/10.48550/ARXIV.2006.10417
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1109/ASMC.2017.7969205
https://doi.org/10.1109/ICCS45141.2019.9065747
https://doi.org/10.1109/ICCS45141.2019.9065747

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Industrial Problem
	Understanding the Data

	Research Questions

	Machine Learning Theory
	Machine Learning
	Supervised and Unsupervised Learning
	Learning Algorithm and Cost Function
	Parameters and Hyperparameters
	Data Split and Generalization Error
	Overfitting and Underfitting

	Anomaly detection
	Performance Measures
	Confusion Matrix
	F1 Score
	Matthews Correlation Coefficient

	PCA
	DBSCAN
	Isolation Forest
	K Nearest Neighbors
	Artificial Neural Network
	Deep Feed-Forward Neural Network
	Activation Function
	Regularization

	Convolutional Neural Network
	Convolution
	Convolutional and Locally Connected Layers

	Autoencoder
	Autoencoders in Anomaly Detection
	Dense Autoencoder
	Convolutional and Locally Connected Autoencoders
	Variational Autoencoder

	Model Analysis and Experimental Results
	Unsupervised Approach
	Semi-Supervised Approach

	Conclusions and Future Works
	References

