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Abstract

Nowadays, the relevance of distributed renewable generation is growing and, given their
unpredictable nature, the management of this typology of power plants is absolutely
important. This thesis takes into consideration a retailer that has the challenging task of
operating an energy community composed of a number of domestic loads, a photovoltaic
power plant and a storage system. This community is connected to the main grid, therefore
the retailer can also interact with the electricity market.
A model has been realized to help the aggregator (or the retailer) to take the best decisions
concerning the bids in the Day-ahead Market; the aim is to provide electricity to the
loads minimizing the costs. At 12 p.m. the energy to purchase or sell in each hour
of the following day has to be scheduled and each player of the electricity market has
to fulfill the programs of injection. In addition, since the retailer has to balance the
instantaneous power flow, it is possible to buy/sell electricity in a Balancing Market,
but this is more expensive/less profitable because different prices are applied to the two
markets mentioned. The participation to the Balancing Market is seen as an unbalance
for the main grid, therefore the aggregator has to be responsible for the power flow coming
from its community.
Dealing with renewable sources is a challenge, in particular for their unpredictable nature.
For this reason a stochastic approach has been implemented, considering the uncertainty
of solar production and, of course, of energy demand and electricity price. To deal with
this stochasticity a data analysis aimed at the scenarios creation have been realized. The
model is based on two-stage stochastic programming. To show its efficiency the stochastic
model is finally compared with another model based on a naive deterministic approach.
The analysis showed that in the simulation performed, a significant cost reduction can be
achieved when implementing a stochastic optimization compared to a deterministic one.
Further improvement of the model could go in the direction of an expansion of the data
analysis in order to create more accurate scenarios.
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Nomenclature

Set
S Set of photovoltaic pruduction scenarios
R Set of electricity price scenarios
U Set of load scenarios
T Set of time steps

Parameters
PVt,s Photovoltaic production at time t in scenario s [kW]
Dt,u Demand of load at time t in scenario u [kW]
Csellt,r Sales price of electricity in the day-ahead market at time t in

scenario r
[e/kWh]

Cbuyt,r Purchasing price of electricity in the day-ahead market at time
t in scenario r

[e/kWh]

Csell,Bt,r Sales price of electricity in the balancing market at time t in
scenario r

[e/kWh]

Cbuy,Bt,r Purchasing price of electricity in the balancing market at time
t in scenario r

[e/kWh]

Cavg,r Average daily price in scenario r [e/kWh]
πs,t Probability of scenario s at time t
πr,t Probability of scenario r at time t
πu,t Probability of scenario u at time t
η Storage efficiency

α Price ratio
Cbuyt,r

Csellt,r

β Unbalance penalty for the Balancing Market
Emax Maximum energy storage level [kWh]
Emin Minimum energy storage level [kWh]
Pmaxsell Maximum power sold to the grid each time step [kW]
Pmaxbuy Maximum power purchased from the grid each time step [kW]
∆Pmaxsell,B Maximum power sold to the grid in the balancing market each

time step
[kW]

∆Pmaxbuy,B Maximum power purchased from the grid in the balancing
market each time step

[kW]

Pmaxch Maximum power charge each time step [kW]
Pmaxdisch Maximum power discharge each time step [kW]
Smax Photovoltaic power plant capacity [kW]
Dmax Maximum power demand [kW]
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Variables
pcht Power charge at time t [kW]
pdischt Power discharge at time t [kW]
elevelt Storage energy level at time t [kWh]
∆psell,Bt Power sold to the grid in the Balancing market at time t [kW]
∆pbuy,Bt Power purchased from the grid in the Balancing market at time

t
[kW]

psellt Power sold to the grid in the Day-ahead market at time t [kW]
pbuyt Power purchased from the grid in the Day-ahead market at time

t
[kW]
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1
Research motivations

1.1 The role of renewable energy sources

The International Renewable Energy Agency (IRENA) mentioned in the Roadmap for a
Renewable Energy Future [1] that

the world can reach its sustainable energy and climate change objectives by
doubling the share of renewable energy by 2030.

This is one of the biggest challenges that the world has been facing in the past years and
will face in the next decades. According to the International Energy Agency (IEA)[2]
one of the main sector in which the consumption of renewable sources is growing is the
electricity generation therefore the importance of this sector is intended to grow in the next
years. Figure 1.1 shows the growth of the electricity generated from renewable sources in
Europe and it is clear that among all the wind and photovoltaic production are responsible
of this growing.

Figure 1.1: Electricity generated from renewable sources in Europe (2003-2013) [3]
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To follow these trends of renewable sources the energy system has to be reconsidered in
all its features. First of all concerning the generation: from the centralized generation of
large power plants to distributed generation in which many small production poles are
dislocated in the territory. Associated with this, there are many technical difficulties that
have to be considered [4] [5], for example the flow of energy in the network since the
production poles often correspond to consumption poles. The small-scale decentralized
energy installations coincides with the emergence of so-called prosumer [6], an entity that
is both a consumer and a producer because owns a small power plant connected to the
main grid. Moreover, what makes the renewable sources different from the traditional
fossil sources is their unpredictable nature [7]: it is not possible to know certainly the
future electricity production from renewable energy. For this reason in the last years the
storage systems have been growing for relevance as a technology that can partially solve
the problem of unpredictable production [8]. Along with the technical issues related to the
distributed generation, also the framework of the electricity market plays an important
role since the prosumer has to communicate with it.

All this aspects contribute to the growth of the concept of Smart Grid ([9] and [10])
in which energy production from small power plant and storage system are considered
together and properly managed in order to satisfy the energy demand. At a lower
level the idea of Micro Grid can be investigated, in which a small network that may
be connected to the main grid has to be operated [11]. The optimization performs a key
task in this background in which minimizing the costs for power purchasing (or maximizing
the revenues from power selling) is the main objective [12]. Nevertheless, considering the
increasing penetration of renewable energy, a new approach in the optimization field is
requested; not only the energy demand but also the production has a degree of uncertainty
that has to be forecasted therefore a stochastic approach has to be implemented [13].

1.2 Research questions
It is in the framework mentioned that this study takes part. One of the most important
issues related to the increasing penetration of renewable energy system into the electric
power grid is dealing with the intermittent nature of the sources; another issue concerns
the participations of the consumer in the electricity market aiming at minimizing the costs
for obtaining electric energy. Therefore the objective of this study is trying to answer the
following questions:

• how can an energy community grid-connected, formed of loads, renewable power
plants and storage system, be properly operated?

• how can the prosumer (and therefore the energy community) interact with an
electricity market?

• how can the retailer face the issue of the unpredictable nature of renewable sources?

6



2
Background

2.1 Previous studies

In literature many studies focused on the control of Micro Grid. All this works offer
optimization models that need the basis of Operational Reseach to build the mathematical
formulation of the real problem. This branch of mathematics helps to make better decisions
and to define which strategy has to be followed.
For the issue facing in this studies the linear programming and integer-linear programming
(also called linear optimization) is the most popular; in which an objective function has
to be maximized (or minimized) and a number of linear constraints have to be satisfied.

In [14] a centralized control for microgrids is presented. The microgrid is a low-voltage
distribution network composed of distributed generators, storage systems and controllable
loads that can be operated either isolated or connected to the main grid. In this study
two market policies are considered, in the first one the microgrid controller aims to serve
the total energy demand using its distributed generators as much as possible, without
exporting to the main grid, the objective function to minimize is the total cost; in the
second policy the microgrid participates to the electricity market buying and selling active
and reactive power, the objective function is maximizing the revenue. The approach
adopted does not consider any stochasticity. In a similar way in [15] the minimization of
the costs of residential households in a smartgrid is investigated; each household may have
a renewable generations and a part of the load that can be controlled. A figure called load
serving entity aims to coordinate the energy consumption of the smartgrid; the model is
here formulated as a stochastic programming problem. [16] offers a comparison between a
stochastic and a deterministic approach to optimize the management of a microgrid; in the
stochastic approach the aleatory inputs have been divided into two types: market-related
inputs and power-related inputs. The market-related inputs are treated through a scenario
approach while the power-related inputs are treated by mean-risk approach. The results
show that the optimization is better when the uncertainty is taken into account. Paper
[17] considers a system formed of two microgrids and a wind farm connected to the main
distribution grid. Each microgrid is assumed to have a total load capacity of 10 MW with
2 MW of controllable loads coming from water heaters, refrigerators and climate control of
houses; this study focus on the economic benefits that can be achieved from peak shaving
of the aggregated microgrids.
Other papers, such as [18], consider only the figure of a load aggregator that has to provide

7
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energy to a number of loads, taking advantage of an electric energy storage, without
considering local production from distributed generators. In this case the point is focused
more on the best bids in the electricity market: the optimal scheduling in the day-ahead
market and the optimal operation in the real-time balancing market.

2.2 The Electricity Market today
This section is dedicated to a brief presentation of the main electricity markets existing in
Italy.
The Italian Electricity Market (figure 2.1) consists of the Spot Electricity Market (MPE),
of the Forward Electricity Market(MTE) and of the Platform for physical delivery of
financial contracts concluded on IDEX (CDE) [19].

Figure 2.1: Italian Electricity Market structure [19]

The most of energy is treaded on the MPE and it is mainly formed of:

• Day-ahead Market (MGP)
• Intra-day Market (MI)
• Ancillary Service Market (MSD)

In MGP hourly energy blocks are traded for the next day. Participants submit offers/bids
where they specify the quantity and the minimum/maximum price at which they are
willing to sell/purchase. Bids/offers are accepted after the closure of the market sitting
based on the economic merit-order criterion and the capacity limits between zones. The
price is determined, for each hour, by the intersection of demand and supply curves and
whenever the transmission capacity limits are saturated the price is differentiated from
zone to zone. These zones are identified by Terna S.p.A. (the italian Transmission System
Operator) and they are:

- North
- North-Central
- South-Central
- Sardegna
- South
- Sicilia

8



Chapter 2. Background

The accepted demand bids pertaining to consuming units are valuated at the PUN ("Prezzo
Unico Nazionale") that is the average of the zonal prices weighted for the quantities
purchased in each zone. The MGP sitting opens at 8.00 a.m. of the ninth day before
the day of delivery and closes at 12 p.m. of the day before the day of delivery. The final
results of the MGP are made known at 12.55 p.m. of the day before the day of delivery.
The Intra-day Market (MI) allows the players to adjust the scheduling of the MGP by
submitting additional supply offers or demand bids. The MI takes in five different sessions:
MI1, MI2, MI3, MI4, MI5. The offers are selected with the same method of the MGP: the
economic merit-order criterion. Unlike in MGP, the accepted demand bids are valuated
at the zonal price. In figure 2.2 the timeline of MGP and MI is shown.

 

 

CHANGE TO THE TIMING OF THE ITALIAN ELECTRICITY MARKET, TRANSITIONAL MANAGEMENT OF 
DIFFERENCES IN PAYMENT TIME LIMITS AND GO-LIVE OF THE IBWT PROJECT FOR MARKET COUPLING ON 
ITALIAN BORDERS 
 

Further to previous announcements - the one issued on 2 Feb. 2015 by GME and the other parties to the 
Italian Borders Market Coupling Project (IBWT project) indicating 24 February 2015 (day of flow: 25 
February 2015) as the go-live date for the IBWT market coupling between Italy, France, Austria and 
Slovenia; and the one issued on 19 Dec. 2014 by GME and Terna about the change to the timing of the 
Italian electricity market - GME confirms to market participants and dispatching users holding generating 
units authorised for the MSD that, from 10 February 2015 (in respect of the day of flow of 11 February 
2015), the new timing referred to in Technical Rule no. 03 rev5 MPE (“Timing of activities for the sessions of 
the MGP, MI and MSD”) will enter into force (the Technical Rule will enter into force upon its publication on 
GME’s website on the same date).   

In particular, 

- from 10 February 2015 (day of flow: 11 February 2015), the time of closing of the sitting for entry 
of bids/offers into the MGP (see announcement published on 18 Dec. 2014 on the websites of the 
two companies) will be shifted to 12:00; 

- from 11 February 2015 (day of flow: 11 February 2015), the new session of the Intra-Day Market 
and the new substage of the scheduling stage of the MSD (referring to the hourly periods from the 
ninth to the twelfth day of flow) will become operational.  

For your convenience, you will find below the timeline of activities for the market sittings in respect of the 
day of flow D (11 February 2015), which will go into effect on 10 February 2015. 

 

TIMELINE OF ACTIVITIES ON THE MPE IN RESPECT OF THE DAY D 

  MGP MI1 MI2 MSD1 MB1 MI3 MSD2 MB2 MI4 MSD3 MB3 MI5 MSD4 MB4 MB5 

Reference 
Day D–1 D 

Preliminary 
information  11.30 15.00 16.30 n.a. n.a. 3.45 n.a. n.a. 7.45 n.a. n.a. 11.30 n.a. n.a. n.a. 

Opening of 
sitting 8.00* 12.55 12.55 12.55  ° 17.30** ° 22.30**  17.30**  ° 22.30**  17.30**  ° 22.30**  22.30**  

Closing of 
sitting 12.00 15.00 16.30 17.30 ° 3.45 ° 7.00 7.45 ° 11.00 11.30 ° 15.00 21.00 

Provisional 
results 12.42 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Final results 12.55 15.30 17.00 21.10 # 4.15 6.15 # 8.15 10.15 # 12.00 14.15 # # 

* the time refers to the day D-9          **the time refers to the day D-1        ° Use is made of bids/offers entered into the MSD1          # Dispatching Rules          

Figure 2.2: Timeline of the Spot Electricity Market (MPE) [19]

The Ancillary Service Market (MSD) is the venue where Terna S.p.A. procures the resources
for the real-time balancing, for managing the system relief of intra-zonal congestion and for
the creation of energy reserve. Terna acts as central counterparty and the offers accepted
are remunerated at the price offered (pay-as-bid). The MSD consists of:

• ex-ante MSD
• Balancing Market (MB)

In the ex-ante MSD, Terna accepts energy demand bids and supply offers in order to relieve
residual congestions and to create reserve margins. The ex-ante MSD is made of four
sessions: MSD1, MSD2, MSD3, MSD4. Moreover, through the Balancing Market (MB),
Terna accepts energy demand bids and supply offers to provide its service of secondary
control and to balance real-time the power flow. The MB consists of five sessions.

2.3 Introduction to stochastic programming

In this section a brief introduction to stochastic programming is given. In many applications
a deterministic approach, in which all parameters are fixed and supposed to be known, is
not good enough because a random event has to be taken into accont. For example, to
perform a good optimization in energy systems with high penetration of renewable energy

Università degli studi di Padova 9
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it is important to deal with the unpredictable nature of this sources. Therefore to achieve
this goal a new approach has been considered whenever the parameters are unknown at
the time the decisions have to be made [13].

In probability theory a probability distribution function (pdf) is a function that describes
the density of probability in each point of the sample space [20]. For the sake of semplicity,
in figure 2.3 an example of uniform distribution function is reported in which the value of
the function within the range[a, b] is costant and equal to

f(x) = 1
b− a

= 1
8− 2 = 0.1667 (2.1)

This means that the random variable x has the same probability to assume one of the
values in the range [a, b]. It’s important to note that the range [a, b] is formed of infinite
numbers, since the variable x can assume an infinite number of values.

Figure 2.3: Uniform probability distribution function

The probability that the variable x falls within a particular range is the integral of the
distribution function over the range considered. For instance, the probability that the
random variable x falls within the range [4,5] is equal to the yellow area in figure 2.4 and
it can be evaluated through the following integral:

∫ 5

4
f(x)dx =

∫ 5

4

1
8− 2dx = 0.1667 (2.2)

Obviously the integral over the whole range (i.e. the whole area under the function) gives
1 as result.
On the other hand, if the random variable can fall only on a discrete number of values, the
function that gives to each value the probability of realization is called probability mass
function (pmf) [20]. The easiest example of pms is that of a fair die (figure 2.5) in which
each value has the same probability to be actualized. The sum of all the probabilities
must be 1.

10



Chapter 2. Background

Figure 2.4: Uniform probability distribution function

Stochastic programming deals with probability mass function [21] [22]. Therefore, if in
the problem considered the random variable can assume infinite values within a specific
range, stochastic programming provides a discretization, making the assumption that only
a fixed number of values can be realized. If the probability distribution function is uniform,
the discretization can be random since each value has the same probability to be realized.

In the following example a simple optimization problem in which stochastic programming
can be applied is presented.

Be δ the unknown demand of coal for tomorrow. To satisfy δ a company can
extract today a quantity of coal equal to x. Tomorrow, after the value of δ is
shown, the company can adjust the production of coal with the extraction of
the quantity y. The time sequence of the events is shown below.

dedide on x ⇒ δ is shown ⇒ decide on y

Data: δ has the same probability to fall within the range [20,30]. The extraction
of coal today costs 10x. The extraction of coal tomorrow costs 15y.

In the problem presented the aim is to find the best value of x that minimize the costs.
Once the uncertain parameter δ will be show, the value of y can be evaluated.
To solve this problem with a stochastic programming approach the first idea is to chose
a fixed number of values of δ within the range [20, 30]. A reasonable choice can be:
δi ∈ [21, 24, 25, 26, 29]; in other words five possible scenarios have been created. One way
(method A) to formulate the optimization problem is the following:

Min
x,y

10x+ 15y (2.3a)

s.t. x+ y ≥ δi , ∀i (2.3b)

Università degli studi di Padova 11
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Figure 2.5: Probability mass function of a fair die

where 2.3a is the objective function (i.e. the expectation of the costs) and 2.3b is the
coal-demand constraint that must be satisfied for each value of δi. The result of this
optimization can be easily evaluated noting that δi = 29 is the worst case hence the result
is:

x = 29; y = 0; fopt = 290 (2.4)

where fopt is the optimal value of the objective function. Method A considers the variables
x and y in the same way, even if y is chosen after the uncertain parameter δ is revealed.
Another approach of the stochastic programming makes a distinction between two typologies
of decisions: the first-stage decisions, that have to be taken immediately (the variable
x in the previous problem), and the second-stage decisions also called recourse actions
(the variable y in the previous problem), that can be deferred. Another way to call
these two sets of actions that reflects the time sequence of the decisions is here-and-
now and wait-and-see actions. The difference between this two typologies of decisions is
that the first-stage decisions are scenario-indipendent while the second-stage decisions are
scenario-dependent. In the case considered the five scenarios have the same probability of
realization: π1 = π2 = ... = π5 = 0.2. This approach is also known as two-stage stochastic
programming with recourse where the term recourse refers to the action taken after the
realization of the uncertain data. This approach (method B) is presented below.

Min
x,y

10x+ 15
∑
i

πiyi (2.5a)

s.t. x+ yi ≥ δi , ∀i (2.5b)

The result of method B is:

x = 24 (2.6)

y1 = 0; y2 = 0; y3 = 1; y4 = 2; y5 = 5 (2.7)

12
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fopt = 264 (2.8)

With this formulation the result of the first-stage decision (variable x) is unique while
the second-stage decision (variable y) has a different solutions depending on the scenario
considered. In 2.5a the expectation of the costs is formulated weighting each scenario
according to its probability of realization. It is clear that it’s more advisable to solve the
problem with the method B since the objective function is better minimized; method A is
a simpler stochastic approach that does not consider any recourse action.

Summing up what just explained, two-stage stochastic programming with recourse provides
a good strategy whenever a decision has to be taken before the realization of some random
events. A more formal mathematical formulation is here shown.

Min
x∈Rn

g(x) := cTx+ E[Q(x, ξ)] (2.9a)

s.t. Ax = b (2.9b)
x ≥ 0 (2.9c)

where Q(x, ξ) is the optimal value of the second stage problem:

Min
y∈Rm

qT y (2.10a)

s.t. Tx+Wy = h (2.10b)
y ≥ 0 (2.10c)

The consequence of taking decisions before some random events occur is that some constraints
may not be satisfied for some specific scenarios of the random events. The feasibility is
restored by means of recourse actions after the realization of the uncertain data. With
the letters x and y, first-stage and second-stage decisions are respectively indicated. The
vectors c ∈ Rn, b ∈ Rm and the matrix A ∈ Rm×n are supposed to be known. ξ :=
(q, h, T,W ) are the data of the second stage problem and therefore they are characterized
by uncertainty. Optimization problem 2.9 states that in the first stage what is minimized
is the cost of the here and now decisions plus the expected cost of the optimal second-stage
decisions. Expectation operator is denoted by E[·]. The second-stage problem 2.10 can
be seen as a description of the optimal behaviour after the uncertain data are revealed;
similarly, the term Wy can be seen as a correction to restore the feasibility violated in
the first-stage problem. The expectation operator in the first-stage problem is taken in
respect to the probability distribution of each element of the vector ξ; therefore stochastic
programming is based on the assumption of knowing the probability distribution of random
variables. It is assumed that the uncertain data ξ can be represented by a set of scenarios
ξ1...ξK along with their probability of realization π1...πK . In this way the expectation
problem in 2.9a can be formulated as:

E[Q(x, ξ)] =
∑
k∈K

πkQ(x, ξk) (2.11)

and the two-stage stochastic problem can be seen in the following way:
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Min
x,y

cTx+
∑
k∈K

πkq
T
k yk (2.12a)

s.t. Tkx+Wkyk = hk , ∀k ∈ K (2.12b)
x ∈ Rn (2.12c)
yk ∈ Rm , ∀k ∈ K (2.12d)

The result of 2.12 is the optimal solution of the first-stage problem x, and the optimal
solution of the second-stage problem yk for each scenario.

The optimization model presented in this work is based on two-stage stochastic programming
with recourse.
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Part II

Modeling
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3
Model set-up

In this study the role of a new figure, a smart retailer (in literature also known as energy
aggregator), growing for relevance in the framework mentioned, will be presented. The
aggregator leads an energy community and has to provide electricity to the loads that
belong to it. To achieve this objective it can make use of a photovoltaic power plant and
can interact with the main grid, buying or selling electricity depending on the solar energy
available. Furthermore the loads are connected to an energy storage system that can be
properly managed in order to satisfy the power balance. In Figure 3.1 and 3.2 it is shown
how each element of the energy community is related to the others.

Figure 3.1: Energy community structure

The aim of the aggregator is to find the best strategy in order to minimize the costs of
power purchasing. For instance, it can decide to buy electricity to charge the battery when
prices are low and, on the other hand, it can sell electricity to the grid in case of high
prices. Therefore the flow of energy will depend both on the electricity price and on the
energy available from the solar production and the storage.
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Figure 3.2: Energy community connections

The smart retailer we consider in this study interacts with the electricity market making
daily bids for the 24 hours of the following day (i.e. it takes part to the day-ahead
market). For this purpose, a stochastic model has been built. This model is made of the
Day-ahead model that defines the bids in the day-ahead market and the Real-time model
that simulates a possible storage strategy. Once the behaviour of the battery is defined,
the energy to buy/sell in the balancing market to balance the power flow of the energy
community is consequently set.
Figure 3.3 clarifies better the time sequence with which the two models are run. It can
be noted that the Day-ahead model is run once a day (at midday) to decide how much
energy to buy or to sell for the 24 hours of the next day, while the Real-time model is run
every hour of the day to decide how to manage the storage system in the following hour.
This strategy also shows how to resort to the balancing market for the power balance that
must be satisfied each instant. In the following figures hourly intervals are indicated with
t0, t1, t2...t23 where t0 means the interval from 12 a.m. to 1 a.m.

Figure 3.3: Time sequence with which the Day-ahead model and the Real-time
model are run

The overall result of the optimization is a combination of the two models because, as can
be seen in Figure 3.4, some terms that in the Day-ahead model play the role of decision
variables (i.e. psellt and pbuyt ), in the Real-time model are considered input parameters.
Finally in Figure 3.5 the overall algorithm is presented.
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Figure 3.4: Explanation of the relationship between the two models

Figure 3.5: Algorithm to set the power scheduling and the storage strategy
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The result obtained following this scheme will be finally compared with another model,
called naive model, that is based on a deterministic approach and on a simpler storage
strategy. After having presented in detail the Day-ahead model and the Real-time model,
the naive model will be described. Finally, this part concludes with the data analysis and
the explanation of scenarios creation.

3.1 Assumptions
As just explained, the main objective of this study is to realize a model that helps the
retailer to take the decisions for the participation in the electricity market.
This market is made of a daily session in which the players make bids for the 24 hours
of the following day, this session is called Day-ahead Market and each bid concerns the
energy to buy/sell in a time interval of one hour. No negotiations are expected but the
participants are responsible for the bids made and they must satisfy them: the following
day they have to buy/sell what stated the day before. The closure of the sitting is at
12 p.m. and, as a result, the day-ahead price for the following day is shown. The Intra-
day market has not been taken into consideration in this electricity market, therefore the
retailer has not the possibilities to adjust its offers/bids. Concerning the power necessary
to balance the instantaneous power flow, each participant can buy/sell on the Balancing
Market. No bids on the balancing market are considered, this market is just seen as a
possibility for the player to adjust any infeasibility with the power balance.
Since for the main network the participation in the Balancing market is seen as an
imbalance in relation to the program of injection concluded in the Day-ahead Market,
the player that causes this imbalance has to pay a penalty. This means that the energy
purchased in the Balancing Market is more expensive than the energy purchased in the
Day-ahead Market and, similarly, selling energy in the Day-ahead Market is more profitable
than selling in the Balancing Market. It is assumed that this penalty is linked to the day-
ahead price through a fixed parameter.
In this sense the electricity market gives high responsibility to the players and this can be
well integrated in the framework mentioned in 1.1 in which the distributed generation is
growing and the issue of the unpredictable nature of renewable sources has to be faced.

Considering the solar production, no possibilities of photovoltaic curtailment are taken
into account, therefore the retailer has to make use of the whole production, providing
electricity to the loads, charging the battery or selling energy to the grid. Similarly, load
shedding is not considered as well.
Some simplifications have been adopted for the storage systems, in particular it is assumed
that the power charge/discharge is always constant (no dependence on the state of charge).
Moreover the charge/discharge cycles are not considered. The transmission in each connection
line of the scheme 3.2 is assumed to be ideal.
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4
Stochastic Model

In this chapter the main model (Day-ahed model) will be first presented and following the
storage strategy (Real-time model) will be explained.

4.1 Day-ahead Model

The Day-ahead model is an optimization model that the energy aggregator uses to schedule
the power to buy or to sell in the day-ahead market for the following day. The aim is to
find the best strategy in order to minimize the costs.
The inputs for this model are the parameters PVt, Dt, Ct that correspond to the solar
production, the energy consumption and the electricity price, while the output are the
power scheduled psellt and pbuyt . Time steps of one hour are considered.
Even if this work is based on a stochastic model, a first deterministic approach is presented
in which the smart retailer supposes to have only one profile available for each input
parameters. Following we accept to have a prediction of solar production, demand and
prices hence the model turns into a stochastic problem and a set of scenarios for each of
these parameters has to be considered.

As already mentioned it is supposed to run the Day-ahead model at 12 p.m. (i.e. at
the end of t11) to schedule the power to sell or buy for the 24 hours of the next day. In
Figure 4.1 the idea of the day-ahead model can be visualized. It’s important to notice that
between the instant in which this model is run end the next day, there are 12 time steps
that have to be considered in the optimization (from t12 to t23 of the current day). This
because at the beginning of each day the energy level in the storage system is not fixed
but depends on the storage strategy adopted in the previous hours. It’s for this reason
that the number of time steps T in the model is 36 but, for the first 12 time steps, the
quantity of energy to be sold or bought is already fixed and corresponds to the result of
the optimization run the day before of the current day.

In the following descriptions capital letters have been used to identify parameters, while
lowercase to identify variables. To avoid misunderstandings it’s important to clarify that
quantities indicated with the letter p, that refers to the concept of power, are often referred
to quantity of energy as well; this is allowed because the time step considered is always
one hour and in this period the power is assumed to be constant.
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Figure 4.1: Visualization of Day-ahead model

Deterministic approach

Θ = pbuyt , psellt

T = [1, ..., 36]
T0 = [1, ..., 12]

Min
Θ

∑
t∈T

Cbuyt pbuyt − Csellt psellt − Cavgelevelt=36 (4.1a)

s.t. Dt = PVt + pbuyt − psellt + pdischt − pcht , ∀t ∈ T (4.1b)
Emin ≤ elevelt ≤ Emax , ∀t ∈ T (4.1c)

pbuyt ≤ Pmaxbuy , ∀t ∈ T (4.1d)
psellt ≤ Pmaxsell , ∀t ∈ T (4.1e)
pcht ≤ Pmaxch , ∀t ∈ T (4.1f)
pdischt ≤ Pmaxdisch , ∀t ∈ T (4.1g)

elevelt = elevelt−1 + ηpcht −
pdischt

η
, ∀t ∈ T (4.1h)

Cavg =
∑
t∈T Ct
T

(4.1i)

pbuyt = pbuyfixed,t , ∀t ∈ T0 (4.1j)

psellt = psellfixed,t , ∀t ∈ T0 (4.1k)

The objective function 4.1a shows the cost to minimize, that is the cost of purchasing
energy minus the revenue obtained from the selling of electricity to the grid. Two different
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prices are applied to the energy bought and sold, according to the relation:

α = Cbuyt

Csellt

(4.2)

where α is bigger then one. Hence for the aggregator it is not convenient to sell the energy
that it has bought form the grid but it is incentivized to use the energy produced from the
photovoltaic power plan. The last addend of the cost funtion, Cavg, represents the value
given to the energy in the storage system at the end of the day. It’s important to introduce
this addend otherwise we should expect, as result of the optimisation, the storage system
at its minimum level at the end of the day, as the consumption of the energy in the storage
has no price.
Concerning the constraints of the model, 4.1b is the power balance that has to be satisfied
each time step. On the same side of the power flow, there are the solar production, the
energy purchased from the grid and the energy discharged from the battery; while, on the
other hand, there are the consumption, the energy sold to the grid and the energy used to
charge the storage. 4.1c guarantes that the energy level is always included in the technical
limits of minimum and maximum level of the battery. As it will be shown in the next
sections the result of the model is analyzed for different types of storage system, therefore
Emin and Emax change with the battery considered.
The constraints 4.1d and 4.1e refer to the maximum energy that can be purchased and
sold each time step and they have been evaluated in the following way:

pbuyt ≤ Pmaxbuy = Pmaxch + 1.2Dmax (4.3)

psellt ≤ Pmaxsell = Pmaxdisch + Smax (4.4)

Equation 4.3 states that the maximum energy purchased is equal to the maximum energy
that can be charged in the battery plus the maximum energy demand, 20% increased;
while equation 4.4 states that the maximum energy that can be sold is equal to the solar
power plant capacity plus the maximum energy that can be discharged from the battery.
Two constraints have been introduced to model the maximum energy that can be charged
and discharged each time step (4.1f and 4.1g). An accurate approach would consider
this limit depending on the state of charge of the battery but, in this study, a simpler
approach has been adopted, dealing with constant value of Pmaxch and Pmaxdisch depending on
the typology of battery considered.
4.1h defines the energy level in the storage at each time step; this value is evaluated
according to the charging/discharging decision in the same time step and the energy level
in the previous time step. When t = 1 the term elevelt−1 refers to the storage level when the
model is run. The charging (as well as the discharging) is consider not to be ideal but an
efficiency η is taken into account. Because of the non-ideal behavior of the battery, the
effective energy stored is pcht η, less than the power charged pcht ; while in the discharging
fase, the energy withdrown is pdischt /η, more than the effective energy available pdischt for
the loads or for selling.
Finally, the last two constraints 4.1j and 4.1k, as already mentioned, guarantee that pbuyt

and psellt in the first 12 time steps (that belong to the current day of model running) match
the pbuyt and psellt already scheduled in the previous day.
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Stochastic approach

In the stochastic model a set of scenarios is introduced for each parameter: with the letter
S the set of solar producion scenarios is indicated, R refers to the set of electricity price
scenarios and U is the set for energy consumption scenarios.
With this approach the model takes the chatacteristics of a two-stage problem and the
decision variables are partitioned into two sets. The first-stage variables are those that have
to be decided before the actual realization of the uncertain parameters becomes available;
once the random events occur, the value of the second stage or recourse variables can be
decided. The objective is to choose the first-stage variables is order to minimize the sum
of of the first-stage costs and the expected value of the random second-stage or recourse
costs. In the case considered the first-stage variables (here-and-now varaibles, scenario
independent as alredy expleined) are psellt and pbuyt that define the energy to buy/sell the
following day in period t, while the recourse variables (wait-and-see variables, scenario
dependent) are ∆psell,Bt,s,r,u ∆pbuy,Bt,s,r,u,pcht,s,r,u,pdischt,s,r,u,elevelt,s,r,u. The second-stage variables ∆psell,Bt,s,r,u

∆pbuy,Bt,s,r,u, that define the energy to sell/buy in the real time market (balancing market), can
also be interpreted as correction actions as they are used to compensate any infeasibility
from the first-stage variables.
The final model is obtained adding the stochasticity of the parameters one by one: at the
beginning only solar production is considered unkown, then price uncertainty is added and
finally also power consumption stochasticity is taken into account.

PV stochasticity

Θ = pbuyt , psellt ,∆psell,Bt,s ,∆pbuy,Bt,s

T = [1, ..., 36]
T0 = [1, ..., 12]

Min
Θ

∑
t∈T
·
∑
s∈S

πs,t ·
[(
Cbuyt · pbuyt − Csellt · psellt

)
+

+
(
Cbuy,Bt ·∆pbuy,Bt,s − Csell,Bt ·∆psell,Bt,s

)
− Cavgelevelt=36

]
(4.5a)

subject to Dt = PVt,s + pbuyt − psellt +

+ pdischt,s − pcht,s + ∆pbuy,Bt,s −∆psell,Bt,s , ∀t ∈ T ,∀s ∈ S

(4.5b)

Emin ≤ elevelt,s ≤ Emax , ∀t ∈ T ,∀s ∈ S (4.5c)

pbuyt ≤ Pmaxbuy , ∀t ∈ T (4.5d)
psellt ≤ Pmaxsell , ∀t ∈ T (4.5e)
pcht,s ≤ Pmaxch , ∀t ∈ T ,∀s ∈ S (4.5f)
pdischt,s ≤ Pmaxdisch , ∀t ∈ T ,∀s ∈ S (4.5g)

elevelt,s = elevelt−1,s + ηpcht,s −
pdischt,s

η
, ∀t ∈ T ,∀s ∈ S (4.5h)

Cavg =
∑
t∈T Ct
T

(4.5i)

pbuyt = pbuyfixed,t , ∀t ∈ T0 (4.5j)

psellt = psellfixed,t , ∀t ∈ T0 (4.5k)
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PV and price stochasticity

Θ = pbuyt , psellt ,∆psell,Bt,s,r ,∆pbuy,Bt,s,r

T = [1, ..., 36]
T0 = [1, ..., 12]

Min
Θ

∑
t∈T
·
∑
s∈S

πs,t ·
∑
r∈R

πr,t ·
[(
Cbuyt,r · p

buy
t − Csellt,r · psellt

)
+

+
(
Cbuy,Bt,r ·∆pbuy,Bt,s,r − C

sell,B
t,r ·∆psell,Bt,s,r

)
− Cavg,relevelt=36

]
(4.6a)

subject to Dt = PVt,s + pbuyt − psellt + pdischt,s,r − pcht,s,r +

+ ∆pbuy,Bt,s,r −∆psell,Bt,s,r , ∀t ∈ T ,∀s ∈ S , ∀r ∈ R

(4.6b)

Emin ≤ elevelt,s,r ≤ Emax , ∀t ∈ T ,∀s ∈ S , ∀r ∈ R (4.6c)

pbuyt ≤ Pmaxbuy , ∀t ∈ T (4.6d)
psellt ≤ Pmaxsell , ∀t ∈ T (4.6e)
pcht,s,r ≤ Pmaxch , ∀t ∈ T ,∀s ∈ S∀r ∈ R (4.6f)
pdischt,s,r ≤ Pmaxdisch , ∀t ∈ T ,∀s ∈ S∀r ∈ R (4.6g)

elevelt,s,r = elevelt−1,s,r + ηpcht,s,r −
pdischt,s,r

η
, ∀t ∈ T ,∀s ∈ S , ∀r ∈ R (4.6h)

Cavg,r =
∑
t∈T Ct,r
T

, ∀r ∈ R (4.6i)

pbuyt = pbuyfixed,t , ∀t ∈ T0 (4.6j)

psellt = psellfixed,t , ∀t ∈ T0 (4.6k)
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PV price and load stochasticity

Θ = pbuyt , psellt ,∆psell,Bt,s,r,u,∆p
buy,B
t,s,r,u

T = [1, ..., 36]
T0 = [1, ..., 12]

Min
Θ

∑
t∈T
·
∑
s∈S

πs,t ·
∑
r∈R

πr,t ·
∑
u∈U

πu,t ·
[(
Cbuyt,r · p

buy
t − Csellt,r · psellt

)
+

+
(
Cbuy,Bt,r ·∆pbuy,Bt,s,r,u − C

sell,B
t,r ·∆psell,Bt,s,r,u

)
− Cavg,relevelt=36

]
(4.7a)

subject to Dt,u = PVt,s + pbuyt − psellt + pdischt,s,r,u − pcht,s,r,u +

+ ∆pbuy,Bt,s,r,u −∆psell,Bt,s,r,u ,∀t ∈ T , ∀s ∈ S , ∀r ∈ R , ∀u ∈ U

(4.7b)

Emin ≤ elevelt,s,r,u ≤ Emax , ∀t ∈ T ,∀s ∈ S , ∀r ∈ R , ∀u ∈ U (4.7c)

pbuyt ≤ Pmaxbuy , ∀t ∈ T (4.7d)
psellt ≤ Pmaxsell , ∀t ∈ T (4.7e)

∆pbuy,Bt,s,r,u ≤ ∆Pmaxbuy,B , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.7f)

∆psell,Bt,s,r,u ≤ ∆Pmaxsell,B , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.7g)
pcht,s,r,u ≤ Pmaxch , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.7h)
pdischt,s,r,u ≤ Pmaxdisch , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.7i)

elevelt,s,r,u = elevelt−1,s,r,u + ηpcht,s,r,u −
pdischt,s,r,u

η
, ∀t ∈ T ,∀s ∈ S , ∀r ∈ R , ∀u ∈ U (4.7j)

Cavg,r =
∑
t∈T Ct,r
T

,∀r ∈ R (4.7k)

pbuyt = pbuyfixed,t , ∀t ∈ T0 (4.7l)

psellt = psellfixed,t , ∀t ∈ T0 (4.7m)

Dealing with a stochastic apporach, each scenario of each set is weighted accordig to its
probability of realizaion (i.e. πs,t, πr,t, πu,t ); since the receding optimization horizon covers
more the one day, it is possible that the 36 time steps belong to days in which the scenarios
considered have a different probability associated. From this the requirement to give a
temporal dependence to each probability. The main difference with the deterministic
model is the introduction of a new term in the cost function. This term is introduced to
model the action of the energy aggregator in the balancing market. The power scheduled
psellt and pbuyt must be the same for all the possible scenarios bacause the retailer has to
make a bid in the day-ahead market, therefore to follow the power balance the aggregator
has to resort to the balancing market buying or selling ∆pbuy,Bt,s,r,u,∆p

sell,B
t,s,r,u according to

the scenarios that will be realized. The only result of this optimization that will be
implemented is the value of the here-and-now variables. The wait-and-seen variables
depend on the scenarios, therefore only with the Real-time model will be disclosed.
In the balancing market a different price has been adopted:

Cbuy,Bt,r = Cbuyt,r · β (4.8)

Csell,Bt,r =
Csellt,r

β
(4.9)
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Since β is bigger than 1 it’s much more advantageous for the aggregator to buy and sell
in the day-ahead market and to resort to the balancing market only if necessary.
Two new constraints have been introduced in the stochastic model to define the maximum
energy that can be purchased or sold in the balancing market: 4.7f and 4.7g. They can
be interpreted as a correction of the worst case of power unbalanced caused by a non-
optimal power scheduling and storage strategy. Tables 4.1 and 4.2 (in which variables and
parameters in the same column belong to the same direction of the power flow) show when
the two worst cases can happen.

Table 4.1: Evaluation of the maximum energy purchased in the balancing market
(Worst case A)

pbuyt = 0 psellt = Pmaxsell

pdischt = 0 pcht = Pmaxch

PVt = 0 Dt = Dmax

⇓ ⇓

∆pbuy,Bt = Pmaxsell + Pmaxch +Dmax ∆psell,Bt = 0

Table 4.2: Evaluation of the maximum energy sold in the balancing market (Worst
case B)

pbuyt = Pmaxbuy psellt = 0
pdischt = Pmaxdisch pcht = 0

PVt = Smax Dt = 0

⇓ ⇓

∆pbuy,Bt = 0 ∆psell,Bt = Pmaxbuy + Pmaxdisch + Smax

Therefore, from equations 4.3 and 4.4, ∆Pmaxbuy,Band∆Pmaxsell,B can be written in the following
way:

∆Pmaxbuy,B,∆Pmaxsell,B = Pmaxbuy + Pmaxsell = Pmaxch + Pmaxdisch + Smax +Dmax (4.10)

The others constraints are equal to those explained in the deterministic approach, with
the only difference that they must be satisfied for each scenario of the sets S,R and U .

Università degli studi di Padova 27



Stochastic Optimization Model for a Smart Retailer

4.2 Real-time Model

To run the Day-ahead model, an important role is played by the level of energy in the
storage system at the end of t11 (i.e. at the time in which the model is run). For this
reason another model has been built to simulate what the behaviour of the storage could
be. This model (called Real-time) is run each hour of the day to set the storage sytem
strategy for the following hour. Once the solar production and the energy consumption is
known, also the quantity of energy to buy and sell in the balancing market is defined. In
figure 4.2 the model can be visalizaed. The receding optimization horizon is N time steps,
but only the result of t+ 1 (i.e the time step called i) is implemented. This model can be
better represented with the algorithm shown in Figure 3.5 and here presented.

Figure 4.2: Visualization of Real-time model

Inizialization:

• Actual period : t

• Obtain the actual load and solar production in period t

Algorithm:

1. Select the receding optimization horizon N (e.g. 10 hours)

2. Obtain the scheduled P buyt , P sellt from the day-ahead optimization and the electricity
price Cbuy,Bt , Csell,Bt , t ∈ [i, ..., t+N ]

3. Obtain the forecasted load and solar production for t ∈ [i, ..., t+N ]

4. Modify the probability of the scenarios according to the load and solar production
in period t

5. Solve the minimization problem:

Θ = ∆psell,Bt,s,u ,∆pbuy,Bt,s,u t ∈ [i, ..., t+N ], s ∈ S, u ∈ U
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Min
Θ

i+N∑
t=i

∑
s∈S

πs,t ·
∑
u∈U

πu,t
[(

∆pbuy,Bt,s,u Cbuy,Bt −∆psell,Bt,s,u Csell,Bt

)
− Cavgγelevelt=N

]
(4.11a)

subject to Dt,u = PVt,s + P buyt − P sellt + pdischt,s,u − pcht,s,u +

+ ∆P buy,Bt,s,u −∆P sell,Bt,s,u , ∀t ∈ [i, ..., t+N ] ,∀s ∈ S , ∀u ∈ U

(4.11b)

Emin ≤ elevelt,s,u ≤ Emax , ∀t ∈ [i, ..., t+N ] , ∀s ∈ S , ∀u ∈ U (4.11c)

∆pbuy,Bt,s,u ≤ ∆Pmaxbuy,B , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.11d)

∆psell,Bt,s,u ≤ ∆Pmaxsell,B , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.11e)
pcht,s,u ≤ Pmaxch , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.11f)
pdischt,s,u ≤ Pmaxdisch , ∀t ∈ T ,∀s ∈ S∀r ∈ R , ∀u ∈ U (4.11g)

elevelt,s,u = elevelt−1 + ηpcht,s,u −
pdischt,s,u

η
, t = i ,∀s ∈ S , ∀u ∈ U (4.11h)

elevelt,s,u = elevelt−1,s,u + ηpcht,s,u −
pdischt,s,u

η
, ∀t ∈ [i+ 1, ..., t+N ] ,∀s ∈ S , ∀u ∈ U

(4.11i)

Cavg =
∑
t∈T Ct
T

, ∀t ∈ [i, ..., t+N ] (4.11j)

pcht,s,u = pch,i , t = i ,∀s ∈ S , ∀u ∈ U (4.11k)
pdischt,s,u = pdisch,i , t = i ,∀s ∈ S , ∀u ∈ U (4.11l)
elevelt,s,u = elevel,i , t = i ,∀s ∈ S , ∀u ∈ U (4.11m)

6. Move to the next period t+ 1 and show the real load and solar production

7. Implement the period operation i of the storage system: pch,i, pdisch,i

8. Obtain the actual ∆psell,Bt+1 ,∆pbuy,Bt+1 for the power balance

9. Repeat the algorithm from step 1

Again, it may happen that the receding optimization horizon belongs to two different days
in which the probability associated to each scenario is not the same, hence the probabilities
πs,t, πu,t have a temporal dipendence. Since this model is run each hour, the probabiliy
associeted to each scenario of the following time steps can be properly improved acording
to the actual value of solar production and energy consumption. A probability called
πrealt is evaluated for each time step of the optimization horizon and for each scenario,
comparing the distance between the actual value in time t and the values from t + 1 to
t + N of each scenario (step 4 of the algorithm). A higher probability will be given to
the scenario that has a value closer to the actual value. Finally, a new probability called
πnewt is evaluated taking into account both πrealt and πoldt where πoldt is that one used
in the previous optimization. This method is used both for S and U . The probability
πs,t, πu,t in 4.11a is intended to be πnewt . Below the steps to update the probabilities of
solar production scenarios are reported.
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1. at,s =| PVnow − PVt,s | +k ∀s ∈ S , ∀t ∈ [i, ..., t+N ]
bt = 1∑

s∈S
1/at,s

∀t ∈ [i, ..., t+N ]

πrealt,s = bt
at,s

∀s ∈ S , ∀t ∈ [i, ..., t+N ]

2. πnewt,s = λπoldt,s + (1− λ)πrealt,s ∀s ∈ S , ∀t ∈ [i, ..., t+N ]

3. πoldt,s = πnewt,s ∀s ∈ S , ∀t ∈ [i, ..., t+N ]

The distance between two values is shifted through a constant k to avoid any infeasibility
in the following steps. The new probability is obtained giving two different weights to
πrealt,s and πoldt,s . Higher is the parameter λ, higher is the weight given to πoldt,s .
Since at the end of the algorithm the probabilities πnewt,s becomes the πoldt,s for the next
optimization and the temporal horizon is shifted of one time step, it turns out that another
value has to be used for πoldt=i+N,s. This is the meaning of the red box in Figure 4.3 in which
N = 10 has been used. The value that has been given to πoldt=i+N,s is the one evaluated at
the scenario creation time.

Figure 4.3: Probability update in the Real-time model

Step 5 of the algorithm includes the optimization problem; in the objective function 4.11a
the cost of power purchasing in the balancing market has to be minimized. The last
term, as arealdy explained in the previous model, gives the value to the energy in the
storage system at the end of the receding optimization horizon. The parameter γ has
been introduced because the value given to the energy in the storage can be differently set
depending on the conditions of use of the battery to implement. The constraints 4.11b to
4.11j have already been explained, while, 4.11k to 4.11m are introduced to force that in
the following step t+ 1 the decision variables pch,i, pdisch,i, elevel,i are scenario indipendent,
since they rapresent the storage system strategy to be applied. It can be noted that
in this case no scenarios for electricity prices are considered. This because, as already
explained, it is assumed that the penalty for any unbalance is linked to the day-ahead
price through the fixed parameter β (see 4.8 and 4.9). The electricity market shows the
day-ahead price at 12 p.m., therefore the retailer knows the purchasing/selling price in
the Balancing market for the whole receding optimization horizon (obviously if N<12).
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With this assumption this model does not consider any stochasticty for the price hence
the computational complexity is much lower compared with the Day-ahead model. Once
the optimization is concluded it is possible to move to the period t+ 1 and to implement
the storage strategy for this period. The solar production and the energy consumption are
shown as well and finally it is possible to evaluate the energy to buy or sell in the balancing
market to balance the power flow. Now it is possible to repeat the algorithm from step 1
to decide how to charge/discharge the battery in the following time step. Moving forward
in this way, after t11 (i.e. 12 p.m.) the Day-ahead model can be run knowing the current
battery level.
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5
Naive Model

Another model has been built to make a comparison with the stochastic optimization
model previously presented. Also in these case the aim is to operate an energy community
that has the same characteristics already mentioned.

The retailer has to schedule the energy to buy or sell for the following day and to
accomplish this it decides to bid according to the solar production and energy demand
forcasted for the next day; in coherence with the model presented in chapter 4, this model
is called Day-ahead naive model and it is run once a day at 12.00. Morever, as already
explained, to get more significant results a secondary model is run every hour to define
the storage strategy for the following hour and to show the partecipation in the balancing
market; this model is called Real-time naive model.
Differently from the stochastic model in which a cost function is intended to be minimized,
the Day-ahead naive model is based on a strategy much simpler. A detrministic approach
has been considered and to define the value of solar production and energy consumption
a persistence model has been adopted. The idea of the persistence model is that for the
following day the profile of these two parameters is the same of the profile in the prevoius
day. Moreover, for the power scheduling strategy, the electrcity price doesn’t play any
role; according to the value PV forecast

t and Dforecast
t , the energy to buy or sell in the

following day is evaluated, without taking into account the storage system. In figure 5.1
the bidding stretegy in the day-ahead market can be better visualized. The figure reports
the profile of the solar production and energy consumption forcasted for the following day;
if in the considered time step the load is higher than the photovoltaic, a purchasing offer
correspondig to pbuyt = Dforecast

t − PV forecast
t will be done for that period. In the same

way if the solar production is higher the energy psellt = PV forecast
t −Dforecast

t will be sold
in that period.

Consistently with the optimization model, a storage strategy to implement each hour is
performed in the comparison model as well. To decide how to charge/discharge the battery
during the following hour, the algorithm shown below has been implemented.
Inizialization:

• Actual period : t

• Obtain the actual load and solar production in period t: PVt, Dt

Algorithm:
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Figure 5.1: Day-ahead naive model strategy

1. Obtain the scheduled P buyt+1 , P
sell
t+1 from the Day-ahead comparison model

2. Obtain the forcasted load and solar production for t+1 : PV forecast
t+1 , Dforecast

t+1 where
PV forecast

t+1 = PVt and Dforecast
t+1 = Dt

3. Evaluate γ = Dforecast
t+1 + P sellt+1 − PV

forecast
t+1 − P buyt+1

If γ > 0 :

If elevelt − γ
η ≥ E

min :

pcht+1 = 0

pdischt+1 = min(Pmaxdisch, γ)

elevelt+1 = elevelt − pdisch
t+1
η

else :

pcht+1 = 0

pdischt+1 = min(Pmaxdisch, (elevelt − Emin) · η)

elevelt+1 = Emin
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If γ < 0 :

If elevelt + |γ| · η ≥ Emax :

pcht+1 = min(Pmaxch , |γ|)

pdischt+1 = 0

elevelt+1 = elevelt + pcht+1 · η

else :

pcht+1 = min(Pmaxch ,
Emax−elevel

t
η )

pdischt+1 = 0

elevelt+1 = Emax

4. Move to the next period t+ 1 and show the real load and solar production:PVt+1 −
Dt+1

5. Implement the strategy t+ 1 of the storage system: pcht+1, p
disch
t+1

6. Obtain the actual ∆psell,Bt+1 ,∆pbuy,Bt+1 for the power balance

7. Repeat the algorithm from step 1

In step 2 the idea of persistence model is adopted: the retailer foresees for the next time
step the same solar production and energy demand of the current time step. Knowing the
bid in the day-ahead market for t + 1 (P buyt and P sellt ) it is possible to evaluate γ which
meaning is the unbalance foresight for the next hour. The storage stretegy for t + 1 is
set according to γ and in step 3 it is shown: the retailer uses the battery to restore the
balance respecting its operational limits. Once moved to the next time step, the real load
and production are shown and the storage strategy is implemented. Finally it is possible
to evaluate the effective partecipation in the balancing market to balance the power flow
in the following way:

∆psell,Bt+1 = max(PVt+1 + P buyt+1 + P discht+1 −Dt+1 − P sellt+1 − P cht+1, 0) (5.1)

∆pbuy,Bt+1 = max(Dt+1 + P sellt+1 + P cht+1 − PVt+1 − P buyt+1 − P
disch
t+1 , 0) (5.2)
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6
Data analysis

In the stochastic model previously presented an important role is played by the profile of
each stochastic parameter within the time frame considered. The uncertain parameters
are:

• the solar production: PV
• the price of electricity: C
• the energy demand: D

Stochastic programming deals the uncertainty considering for each stochastic parameter
a set of scenarios with a probability of realization associated. Letters S,R,U have been
used to indicate solar production,electricity price and energy demand respectively. S =
[s1, s2, ..., sk] is the set of solar production scenarios, R = [r1, r2, ..., rk] is the set of
electricity price scenarios and finally U = [u1, u2, ..., uk] is the set of energy demand
scenarios.
From the data available it has been important to realize a data analysis in order to create
the scenarios mentioned. All data available are hourly aggregated and they concern:

• the production of a photovoltaic power plant
• the price of electricity in the italian market (PUN)
• the consumption of a domestic load (P ≤ 3kW )

6.1 Data sources

PV

Concerning the solar production an on-line platform called Renewables Ninja [23] has been
used. This web portal allows the user to run simulations of the hourly power output from
solar power plants. The input used for the simulation are:

- Peak power: 400kW
- Latitude: 45.536 ; Longitude: 11.564 (Vicenza)
- System loss: 10 %
- Tilt angle: 35◦
- Azimuth angle: perfectly south oriented

The simulation has been run for one year and for each day the daily profile has been
evaluated and plotted. In figure 6.1 the profile of a representative day for each season
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has been reported, while in figure 6.2 the solar production profile for five random days of
January can be seen.

Figure 6.1: Solar production in 4 representative days of the year

Figure 6.2: Solar production in five random days of January

For the completeness of the analysis in figure 6.3, on the left side, the average daily
solar production of January is reported, while on the right side the variance of the data
belonging to the same hour has been shown.
Afterwards the curves obtained have been compared with the curves of maximum production
for the same power plant. These curves were calculated by means of PVGIS [24]. Having
the global clear-sky irradiance and considering a constant performance ratio (PR = 0.8)
we obtain:

PR = Eout/Ppeak
Irr/Istc

Eout = PR · Ppeak ·
Irr

Istc
(6.1)
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Figure 6.3: Average solar production and variance in January

It’s important to notice that PVGIS provides the value of irradiance just for a typical
day for each month. Hence, to find the irradiance for every day of the year, the linear
interpolation between two consecutive month has been adopted.
In Figure 6.4 is pointed out the difference between the maximum production obtained
with PVGIS and real production obtined with Renewables Ninja in a random day of the
year.

Figure 6.4: Comparison between real production evaluated through Renewables
Ninja and maximum production evaluated through PVGIS
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Electricity price

Concerning the price of electricity, the data of PUN 2013 (Prezzo Unico Nazionale) have
been downloaded directly from the GME website (Gestore del Mercato Elettrico) [19]. In
figure 6.5 the daily profile for four representative days of the year has been reported.

Figure 6.5: Electricity price in 4 representative days of the year

It can be seen how the price is different according to the season. In figure 6.6 the price in
two working days of January has been compared with the price during two non-working
days of the same month. When the national load is higher (working days) the electricity
price is higher.

Figure 6.6: Electricity price in two working days and two non-working days

As for the solar production, the averave electricity price in the first month of the year has
been evaluate as well as the variance of each hour. (Figure 6.7)
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Figure 6.7: Average electricity price and variance in January

Energy demand

Finally, the average energy consumption of a domestic load (P ≤ 3kW ), hourly aggregated
for one year, was provided by AIM Vicenza Spa [25]. Be Pt the load of a single electricity
consumption at time t, the energy consumption of n load at time t can be evaluate as:

Pn,t = n · Pt (6.2)

In figure 6.8 the daily profile of a representative day for each season has been reported.
The daily profile is different according to the season but even more significant is the figure

Figure 6.8: Power consumption in 4 representative days of the year

6.9 in which the energy consumption in two working days and two non-working days
of the same month (January) has been compared. It can be easily seen that in a non
working-days the a domestic load in much higher.
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Figure 6.9: Power consumption in two working days and two non-working days

6.2 Creation of scenarios

In this section the method adopted for the creation of scenarios will be described. Starting
from a set Γ made of n curves, a clustering has been performed aiming at obtaining k
representative curves of Γ, each of them with a probability of realization associated. The
algorithm adopted is called k-means [26] and it is here presented.

Inizialization: Set a number f of parameters that characterize each curve of Γ, hence
each curve can be identified by a point in fD-space

1. k curves are randomly elected from Γ as initial representative of k clusters. The f
parameters of each representative curve define the "centroid" of the cluster.

2. The euclidean distance of each curve of Γ from each of these six centroids is evaluated.

3. All curves in Γ are divided and grouped in the k clusters according to the centroid
they are most close to.

4. New centroids are evaluated for each cluster as the average of the parameters of the
curves grouped to the same cluster. Afterwards, the curve with the closest distance
to this new centroid becomes the new representative curve of the cluster.

5. Having k new centroids and k new representative curves, the process starts again
from point 2 until the composition of the clusters is not changing during two consecutive
iterations.

At the end of the process the representative curve for each gruop is evaluated as the average
of all the profiles belonging to that group. In this way k curves of Γ are elected. The
probability of realization of the k profiles is evaluated as the ratio between the numbers
of curves associated the cluster and the total number of curves belonging to Γ.
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PV

The realistic daily profiles of solar production, obtained with the simulation, have been
normalized in respect to the maximum production evaluated with PVGIS for the same
day. Therefore for each day of the year an α curve has been obtained in the following way:

αt = PV max
t − PV real

t

PV max
t

;∀t ∈ [0, 1, .., 23] (6.3)

The 365 α-profiles have been divided into four groups according to the metereological
seasons:

• winter: from 1 December to 28 February (n = 90)
• spring: from 1 March to 31 May (n = 92)
• summer: from 1 June to 31 August (n = 92)
• autumn: from 1 September to 30 November (n = 91)

For each group, 8 representative curves [αt,s1 , αt,s2 , ..., αt,sk=8 ] have been selected through
the k-means algorithm. The initialization of the algorithm has been done considering 24
paramteres for each curve (i.e. the values in each hour). Therefore, for each day, knowing
its maximum production and the α-curves, it is possible to get the 8 scenarios of solar
production in the following way:

PVt,s = PV max
t − αt,s · PV max

t ; ∀t ∈ [0, 1, .., 23], ∀s ∈ S = [s1, s2, ..., sk=8] (6.4)

In figure 6.10 the 8 scenarios of possible production refering to a specific winter day (11th
January) can be visualized. The legend reports the probability of realization associated
to each curve.

Figure 6.10: Solar production scenarios for a specific winter day (11th January)

Electricity price

Concerning electricity prices, as explained, the profile is different depending on the season
and the tipology of the day (working or non-working day). Hence the 365 profiles have
been divided in the following way:
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working days:

winter (n = 62, k = 8)

spring (n = 63, k = 8)

summer (n = 64, k = 8)

autumn (n = 64, k = 8)

non-working days:

winter (n = 28, k = 5)

spring (n = 29, k = 5)

summer (n = 28, k = 5)

autumn (n = 27, k = 5)

For each of these groups the k-means algorithm has been implemented and the result is a
set of 5 scenarios R = [r1, r2, ..., r5] if it refers to a non-working day, or a set of 8 scenarios
R = [r1, r2, ..., r8] if it rerefers to a working day. In figure 6.11 and 6.12 the scenarios for
winter days can be visualized.

Figure 6.11: Electricity price scenarios for a winter working day

Especially during the night and during the price peaks the scenarios are very different one
to another. With the stochastic approach it is important to take into consideration all
these possibilities. In figure 6.11 the scenario r3 is the most likely to be realized with a
probability associated of 25%.
Concerning the electricity price scenarios for a winter non-working day, it can be noted

that the scenarios r1, r3, r4, r5 have the same trends, while r2 has a different profile
especially at 8 a.m. and 8 p.m.. Therefore it can reasonably be expected that r2 has
the lowest probability of realization: 3.5%

44



Chapter 6. Data analysis

Figure 6.12: Electricity price scenarios for a winter non-working day

Energy demand

As for the electricity price, the 365 load profiles have been divided considering the season
and the typoloy of the day. The k-means algorithm has been implemented and the set
U = [u1, u2, ..., uk] has been evaluated where k = 5 if the day is holiday or k = 8 if it is
working. In figure 6.13 and 6.14 the scenarios for winter days can be visualized.

Figure 6.13: Power consumption scenarios for a winter working day
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Figure 6.14: Power consumption scenarios for a winter non-working day

For a winter working day, the 8 scenarios created are very similar to one another, while
this can not be stated for a winter non-working day. In figure 6.14 the 5 scenarios have
the same evolution but the energy demand is very different. There are two daily peaks,
one in the morning (7 a.m. if working day, 9 a.m. if holiday) and one in the evening (7
p.m.). These peaks are also reflected in the electricity price profile: high demand, means
high price.
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7
Model Validation

The two models are implemented in Python and for the optimizaton the solver used is
Guorbi. In Appendix it is possible to analyze the main scripts realized.
In this chapter the stochastic model and the naive model will be validated and the results
will be compared.

7.1 Stochastic model
Since the data analysis holds an important role in the results of the optimization model, it
is first shown the model validation, i.e. it is shown that the model is efficient independently
from how the scenarios have been created. This is shown because the main task of this
study is to realize a valuable Day-ahead model, therefore minor effort has been focused
on the creation of scenarios.

For the sake of simplicity 2 scenarios have been considered for each unknown parameter:

• solar production: S = [s1, s2]
• electricity price: R = [r1, r2]
• energy demand: U = [u1, u2]

and 50% probability of realization has been given to each scenario. The Day-ahead model
is run with these input parameters. As already explained, the variables can be divided in
two sets:

- here-and now: psellt and pbuyt ,∀t ∈ T

- wait-and-see: ∆psell,Bt,s,r,u ∆pbuy,Bt,s,r,u,pcht,s,r,u,pdischt,s,r,u,elevelt,s,r,u,∀t ∈ T, ∀s ∈ S,∀r ∈ R,∀u ∈ U

The wait-and-see variables are scenario dependent. Indicating with W = [w1, w2, ..., w8]
the 8 possible scenarios foreseen, there are 8 possible values for each wait-and-see variables.
The set W is made of the following scenarios:

• w1 = s1, r1, u1
• w2 = s1, r1, u2
• w3 = s1, r2, u2
• w4 = s1, r2, u1
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• w5 = s2, r1, u1
• w6 = s2, r1, u2
• w7 = s2, r2, u2
• w8 = s2, r2, u1

and for each w ∈W the probability of realization is: π1 = ... = π8 = 0.5 · 0.5 · 0.5 = 0.125.

Once the optimization is completed, psellt and pbuyt ,∀t ∈ T are fixed because they are
scenario indipendent. On the other hand, from all the possible values of ∆psell,Bt,w ,∆pbuy,Bt,w , pcht,w,

pdischt,w , elevelt,w ,∀t ∈ T, ∀w ∈ W one scenario w ∈ W is randomly selected, therefore also the
wait-and-see variables are fixed. In this way there is no need to run the Real-time model
since one of the possible scenarios belonging to W will be realized. Consequently also the
participation in the balancing market is shown.

The model has been run for 365 times and the same scenarios have been adopted for
each simulation. This simulation is called in-sample since one of the scenarios expected is
actually realized.
The simulations have been run for different storage typology and, as expected, the costs
are low when bigger capacity is adopted. This is because bigger capacity means higher
flexibility therefore more possibilities to manage the energy. Figure 7.1 shows the cumulative
operative costs. No investment costs are taken into account. For each time step the
operative cost is evaluated in the following way:

costt = pbuyt Cbuyt − psellt Csellt + ∆pbuy,Bt Cbuy,Bt −∆psell,Bt Csell,Bt (7.1)

Figure 7.1: In-sample simulation of the stochastic model with different storage
capacity (α = 1.3 and β = 1.8)
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The characteristics of the batteries considered in the simulations are here reported:

• Emin = 5kWh;Emax = 25kWh;Pmaxch = Pmaxdisch = 10kWh

• Emin = 7kWh;Emax = 50kWh;Pmaxch = Pmaxdisch = 20kWh

• Emin = 10kWh;Emax = 100kWh;Pmaxch = Pmaxdisch = 40kWh

• Emin = 20kWh;Emax = 200kWh;Pmaxch = Pmaxdisch = 60kWh

These choices have been done according to the batteries now available on the market [27].
For all the simulations the number of load considered is 250.
To obtain the curves shown in 7.1 the value of α and β mentioned in 4.2 and 4.8 was set
in the following way:

- α = 1.3
- β = 1.8

It’s reasonable to expect that increasing the value of α and β, the cost for the retailer
increases. So, for example, considering α = 1.5 and β = 2.0 the costs are shown in 7.2.

Figure 7.2: In-sample simulation of the stochastic model with different storage
capacity(α = 1.5 and β = 2.0)

Different values of α and β have been tried and in table 7.1 it is possible to compare the
final costs.

Table 7.1: Operative costs with the stochastic model. Simulations in-sample [e]

Storage [kWh] α = 1.3;β = 1.8 α = 1.5;β = 1.8 α = 1.5;β = 2.0
25 1905 4484 5197
50 1647 4115 4837
100 1208 3476 4190
200 628 2533 3227
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7.2 Naive model
Also the naive model has been run with the in-sample mode. The profiles of solar
production, consumption and electricity price that can be actually realized after each
simulation are the same of those mentioned for the optimization model. The strategy for
the power scheduling has already been explained in chapter 5. Concerning the storage
strategy, the scheme of chapter 5 is followed, but in this case the value of pcht and
pdischt is decided after the solar production and energy demand are revealed; otherwise
the comparison with the stochastic model would be unfair.
In figure 7.3 it is possible to see the outcome of the in-sample simulations for the naive
model, while in table 7.2 the result for different values of α and β is shown. Also in this
case, it can be noted that increasing the size of the battery, the operative costs can be
reduced; the same typology of battery adopted for the stochastic model have been used
for the naive model. Of course, changing the characteristics of the electricity market, the
results are different: if the penalty for the unbalance is higher, the final costs are higher.
As it will be shown in the next section, the costs reached with the deterministic approach
are much higher compared with the final costs of the stochastic approach.

Figure 7.3: In-sample simulation of the naive model with different storage capacity
(α = 1.3 and β = 1.8)

Table 7.2: Operative costs with the naive model. Simulations in-sample [e]

Storage [kWh] α = 1.3;β = 1.8 α = 1.5;β = 1.8 α = 1.5;β = 2.0
25 4914 8875 11376
50 4758 8658 11117
100 4467 8258 10618
200 3981 7627 9836
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7.3 Comparison between the two models

To compare the results of the two models it has been important to build a vector of 365
elements made of the random scenarios realized each simulation. The same vector has
been applied to both models.

In the following graphics ( 7.4 and 7.5) it is shown for different storage typology that the
result obtained with the stochastic model is much satisfying. The meaning of ∆end is the
difference between the final cost of the naive model and the final cost of the stochastic
model.

Figure 7.4: Optimization Model vs Comparison Model. Storage: 25 kWh (α = 1.3
and β = 1.8)

Figure 7.5: Optimization Model vs Comparison Model. Storage: 200 kWh (α = 1.3
and β = 1.8)

Università degli studi di Padova 53



Stochastic Optimization Model for a Smart Retailer

It is interesting to notice how the final gap between the two models increases adopting a
larger battery. This means that the optimization performs better as the capacity of the
storage increases because the retailer can optimize a higher quantity of energy.
The value of α and β affects the gap between the two models as well. Increasing α and β
increases the gap. In figure 7.6 and in table 7.3 it is possible to see how the gap changes
when α and β are modified.

Figure 7.6: Optimization Model vs Comparison Model. Storage: 200 kWh (α = 1.5
and β = 2.0)

Table 7.3: Difference between the final operative costs of the naive model and the
final operative costs of the stochastic model [e]

Storage [kWh] α = 1.3;β = 1.8 α = 1.5;β = 1.8 α = 1.5;β = 2.0
25 3008 4391 6179
50 3110 4542 6279
100 3258 4782 6427
200 3353 5093 6609

Considering the graphics above illustrated, it is clear that the stochastic model performs
always much better than the naive model. It is possible to reach a high cost reduction if the
power scheduling in the Day-ahead market is properly decided. An optimized participation
in the electricity market is much more important when the penalty for any imbalance
caused to the main grid (i.e. the meaning of the parameter β) is high. In the same way
when a big difference is set between the purchasing price and the selling price (i.e. the
meaning of the parameter α) the stochastic optimization results much more convenient.
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8
Results

In this chapter the combination of the Day-ahead model and the Real-time model will be
shown and the result will be compared with the naive model.
The results are obtained considering the following characteristic of the energy community:

• loads: n = 250

• storage: Emin = 10kWh;Emax = 100kWh;Pmaxch = Pmaxdisch = 40kWh

• photovoltaic power plant: Pp = 400kW (see chapter 6.1)

while the parameters that characterize the electricity market have been defined in the
following way:

• α = 1.3

• β = 1.8

The stochastic model has been implemented for one year, therefore the Day-ahead model
has been run 365 time while the Real-time model has been run for 8760 times. The
Real-time model has been implemented with a receding optimization horizon of 10 hours
(N=10). Considering the values of electriciy price and energy demand actually realized,
the year 2013 has been taken as reference. PUN 2013 has been downloaded from GME
website while the energy consumption was provided by AIM Vicenza Spa. For a realistic
solar production, the platform Renewables Ninja was adopted. This simulation is called
out-of-sample since the profile actually realized is different from any scenarios forecasted
and the time computing is much longer than the in-sample simulation. Each Real-time
model takes 0.07s on average while each Day-ahead model takes 10s on average.

The results have been organized like in the table 8.1. In the first column the day of the year
and the time step is indicated, while in the other columns the variables and parameters
for each hour are reported. The meaning of the color of each column is the direction of
the power flow: same color means same direction.
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Figure 8.1: Table of results in an Excel workbook

In the table above, it can be noted that the power flow is always balanced:

pbuyt + PVt + ∆pbuy,Bt + pdischt = psellt +Dt + ∆psell,Bt + pcht ; ∀t ∈ [t0, t1, ..., t23] (8.1)

Moreover, it is important to underline that the optimization never chooses to buy and sell
in the same time step. This because different prices have been considered for purchasing
and selling the energy from/to the main grid, therefore the objective function is minimized
if pbuyt or psellt are equal to zero (the same is true for ∆pbuy,Bt and ∆psell,Bt ). Similarly, it
never happens that the storage is charged and discharged in the same time step. In this
case the reason is the efficiency η that has been considered; since the energy level of the
storage plays a significant role in the optimization, it is appropriate that or pdischt or pcht
is equal to zero.

Also the comparison model has been run considering the same energy community, the
same electricity market and the same realization of solar production, energy demand and
prices. In figure 8.2 the cumulative costs are plotted and it is possible to see the difference
between the two models. In the same picture it is also possible to observe the costs if
a perfect forecast was available and they can be obtained running the day-ahead model
presented in chapter 4.1 (deterministic approach) considering perfect profiles of each input
parameter.

56



Chapter 8. Results

Figure 8.2: Comparison between the stochastic model and the naive model.
Simulation out-of-sample

As expected the costs achievable with a perfect forecast would be much lower; in this case
there is no need to run the Real-time model since the retailer knows in advance how to
charge/discharge the battery. When the yellow curve has a negative derivative it means
that the aggregator is selling more energy than what it is buying.
The most important result concerns the cost reduction that is possible to reach when a
stochastic approach is implemented and in figure 8.3 the savings that can be achieved
each day is shown. When they are negative, the naive model is performing better but, on
average, the stochastic model can guarantee a savings of 10eeach day. To have a better
performance of the stochastic optimization model a more accurate scenarios creations
should have be realized.

Figure 8.3: Difference between the operative costs of the naive model and the
operative costs of the stochastic model at the end of each day
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8.1 Electricity market participation
In this section it is possible to analyze how the retailer participates at the electricity
market. A summer day has been taken as reference and, in the following graphics, the
day-ahead bids and the balancing market participation can be observed for both models.
In figure 8.4 it is shown the quantity of energy purchased in the day-ahead market and
it is clear that with the stochastic model the retailer buys more energy when the prices
are low (during the night). In the evening, when the prices are high, it is expected that
the aggregator buys less energy but this is not always happening; therefore this point can
be set as a level of criticality. If the forecasting was more accurate, it is clear that this
would happen. On the other hand, figure 8.5 shows the energy sold to the main grid in the

Figure 8.4: Energy purchased in the Day-ahead market (pbuy
t )

day-ahead market. With the naive model the retailer sells much more energy but, if the
solar production is less than the one expected, it has to buy on the balancing market to
restore the power flow. This can be seen in figure 8.6 where the naive model shows all its
weakness since more energy is purchased real-time compared with the stochastic model.
This is what, most of all, makes the stochastic model performing better.

Figure 8.5: Energy sold in the Day-ahead market (psell
t )
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Figure 8.6: Energy purchased in the Balancing market (∆pbuy,B
t )

8.2 Storage strategy

In this section the charging/discharging operations of the storage system will be compared
for two consecutive summer days. Figures 8.8 and 8.9 show that the strategy adopted with
the stochastic model is more convenient since the state of charge, indicated on the right
y-axis, is always within the maximum and minimum level. On the other hand, the battery
of the naive model is often full discharged; therefore the retailer must turn to the balancing
market to buy energy, because it can not further discharge the storage. This means that
adopting a stochastic approach the storage capacity can be better managed and this gives
higher flexibility to the retailer. Moreover it is clear that an accurate management of the
battery is linked both to the solar production and the electricity price profile (figure 8.7).
This can be seen in figure 8.8 where, from 3 a.m. to 7 a.m. when the price is low, the
battery is charged while, at 8 p.m. when the price is high, the battery is discharged. This
does not happen with the naive model because also when the price is low the storage is
discharged.
It can be noted that the stochastic model does not always take the best decision, since it
has not perfect information. In the case considered, at 8 p.m. when the price is high the
energy discharged is pdischt ≤ Pmaxdisch but this is because it is preferable to have a safe margin
for the following hours. Of course the storage strategy can be improved through a more
accurate forecasting. Moreover, also the receding optimization horizon (N time steps)
implemented in the Real-time model plays an important role in these kind of decisions;
increasing the number of time steps the retailer can set the value of pcht and pdischt in a
different and probably better way. The parameter γ mentioned in 4.11a is significant as
well; this simulation has been run setting γ = 0.2. Increasing this value, the optimization
tends to keep the state of charge higher, while choosing γ smaller, less energy would be in
the storage at the end of the optimization horizon.
All these aspects have to be taken into consideration to properly operate the storage
system. Since the aim of this thesis is to present an efficient model for a smart retailer that
has to take part to the day-ahead market, only one simulation has been done. Changing
the values of the parameters mentioned above the results of the stochastic model may be
different but it will always perform better than the naive model.
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Figure 8.7: PV load and price in two consecutive summer days

Figure 8.8: Storage strategy with stochastic model in two consecutive summer days

Figure 8.9: Storage strategy with naive model in two consecutive summer days
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8.3 Lower bound

The last step that has been considered concerns the Real-time model. When it was
previously presented, a restrictive assumption has been made: to decide the storage
strategy to implement for the whole following hour. This is clearly a simplification since
the management of the storage can be decided for a period much shorter (for instance 30
minutes, or 15 minutes), but for computational reasons time step of one hour have been
adopted.
This section wants to show the hypothetical costs that would have reached if a perfect
foresight of solar production and energy demand was available for the following hour.
These costs are represented with a dotted line in figure 8.10. Even in this case, the

Figure 8.10: Comparison between the two models considering the lower bound

stochastic model shows its advantages.
Another interpretation that can be given to these lines is the lower bound of the costs for
the retailer. If the storage strategy is set for a period shorter than one hour, the costs fall
within the highlighted region. It results that to reduce the operative costs is convenient
to choose how to charge/discharge the battery for a period as short as possible.

8.4 Revenues

The last section of this chapter takes a look to the revenues of the retailer. Since the aim
of the aggregator is providing electric energy to its loads, the revenues come from selling
electricity to them. It is supposed that a Time-of-use pricing is applied, with two different
rates:

• peak (F1): working days from monday to friday from 8.00 a.m. to 7.00 p.m.;

• off-peak (F2): non-working days and working days from 7.00 p.m. to 8.00 a.m.

In F1 0.07e/kWh has been applied, while 0.05e/kWh in F2.
In figure 8.11 the revenues obtained with the two different models are presented. Obviously
the curve representing the stochastic model shows higher revenues. In can be noted that
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Figure 8.11: Comparison between the revenues of the retailer with the stochastic
model and the naive model

in the first and in the last part of the year the derivative is negative, this because in that
period (winter and autumn) less solar production is available and much more energy must
be purchased in the electricity market.
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9
Conclusions

This work draws on a background in which small renewable power plants are growing in
number and they have to be integrated in the current power system. It is realistic that in
the future also the owner of these power plants will be responsible for the energy injected
in the main grid, therefore he will have to face the issue of the unpredictable nature of
renewable sources.
This thesis presents a model for a retailer that has to take smart decisions pertaining to
its participation in an electricity market. The retailer is seen from the main grid as a
prosumer since it operates an energy community grid-connected formed of:

• loads;
• photovoltaic power plants;
• storage system.

The aim of the retailer is to provide electricity to the loads, minimizing the operative
costs, while no investment costs have been considered. To achieve this goal, a model has
been realized taking into account the stochasticity of each unknown parameter: energy
demand, solar production, electricity price.

The results show that if an optimization strategy is implemented, it is possible to operate
an energy community obtaining a significant cost reduction. Realizing a data analysis has
been essential to run the stochastic model but, finally, this model showed its advantages
compared to a deterministic approach. Dealing with uncertain parameters, the naive
model, based on a deterministic approach, does not always take the best decisions for
the power scheduling while the stochastic model, having different scenarios as input, can
guarantee more precise choices. It has been shown how the creation of scenarios plays an
important role in the performance of the model, therefore this is certainly a crucial matter
that the retailer has to face in order to realize an optimal scheduling.
Also a possible storage strategy has been presented through the Real-time model and it can
be observed that following a stochastic approach the charging/discharging decisions are
more advisable. The retailer charges the battery when the prices are low and discharges
the battery when the prices are high. This strategy is less clear with the naive model.
Increasing the storage dimensions means more flexibility therefore a more considerable
saving can be reached. All these considerations contribute to answer the research questions
expressed in 1.2.
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In the particular case considered, the retailer can reduce the operative costs of one year
from 26026 e to 22326 e (14% reduction) implementing the stochastic model. This
reduction depends on the components of the energy community and their characteristics.
Moreover, also the features of the electricity market can modify the results: a stochastic
approach is even more preferable if higher penalty are taken into account for any unbalance
caused by the retailer.

This thesis showed how it is possible to introduce renewable sources into the electric
power system. Optimizing the aggregated loads and the storage system, the energy
requirements of a community grid-connected can be properly managed by means of a
stochastic approach.

9.1 Further improvement
In this thesis the main focus was on the model realization, but to achieve better results
a more accurate forecasting can be implemented. This is the first improvement that can
be implemented in order to help the retailer in taking the right decisions. Concerning
the model, some features can be introduced to better describe the reality, such as the
charging/discharging limits depending on the state of charge and the charge/discharge
cycles.
The most important improvement that can be realized refers to a potential demand
response. In this work all loads have been considered fixed but a strategy that can be
implemented to reduce the costs of energy supply is the load shifting. When few solar
production or high electricity price are forecast, the retailer can decide to shift some loads
(for example 20 % of the total load) to a following period. This ways, the purchasing of
expensive electricity or an excessive use of the storage can be avoided.
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DAY-AHEAD STOCHASTIC MODEL 
 
# -*- coding: utf-8 -*- 
""" 
Created on Mon May 23 16:17:13 2016 
 
@author: paolo 
""" 
import pandas as pd 
import gurobipy as gb 
import xlrd 
import numpy as np 
import natsort as nt 
 
 
#%% Build Model 
  
class AGG_base(object): 
    pass 
 
class AGG_model: 
    def __init__(self): 
        self.data = AGG_base() 
        self.variables = AGG_base() 
        self.constraints = AGG_base() 
        self._load_data() 
        self._build_model() 
     
    def optimize(self): 
        self.model.optimize() 
     
    def _load_data(self): 
        #Load Sets 
        self.data.time_1=time_1 
        self.data.time = time 
        self.data.scen_pv = scen_pv 
        self.data.scen_price = scen_price 
        self.data.scen_load = scen_load 
        #Load Parameters 
        self.data.PV_scen = PV_scen 
        self.data.PV_prob = PV_prob 
        self.data.Load_scen = Load_scen 
        self.data.Load_prob = Load_prob 
        self.data.Prices_scen = Prices_scen 
        self.data.Prices_prob = Prices_prob 
        self.data.eff_batt = eff_batt 
        self.data.buy_ratio = buy_ratio 
        self.data.E_max_batt = E_max_batt 
        self.data.P_max_sell = P_max_sell 
        self.data.P_max_buy = P_max_buy 
        self.data.P_max_delta_sell=P_max_delta_sell 
        self.data.P_max_delta_buy=P_max_delta_buy         
        self.data.E_min_batt = E_min_batt 
        self.data.P_max_ch = P_max_ch 
        self.data.P_max_disch = P_max_disch 
        self.data.a = a 
        self.data.c_avg = c_avg 
        self.data.initial_level=initial_level 
        self.data.P_sell_fixed=P_sell_fixed 
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        self.data.P_buy_fixed=P_buy_fixed 
                 
         
     
    def _build_model(self): 
        self.model = gb.Model() 
        self._build_variables() 
        self._build_objective() 
        self._build_constraints() 
     
    def _build_variables(self): 
        time = self.data.time 
        scen_pv = self.data.scen_pv 
        scen_price = self.data.scen_price 
        m = self.model 
         
        self.variables.P_ch = {} #Charge Battery 
        self.variables.P_disch = {} #Discharge Battery 
        self.variables.P_level = {} #Level of Battery 
        self.variables.P_sell = {} #Sell to the grid day-ahead 
        self.variables.P_buy = {} #Buy from the grid day-ahead 
        self.variables.delta_sell = {} #Sell to the grid real time  
        self.variables.delta_buy = {} #Buy from the grid real time 
 
         
         
        for s in scen_pv:  
            for r in scen_price: 
                for u in scen_load: 
                    for t in time: 
                        self.variables.P_ch[t,s,r,u]    = m.addVar() 
                        self.variables.P_disch[t,s,r,u] = m.addVar() 
                        self.variables.P_level[t,s,r,u]   = m.addVar() 
                        self.variables.delta_sell[t,s,r,u] = m.addVar() 
                        self.variables.delta_buy[t,s,r,u] = m.addVar() 
             
        for t in time: 
            self.variables.P_buy[t] = m.addVar() 
            self.variables.P_sell[t]  = m.addVar() 
                         
             
        m.update() 
 
    def _build_objective(self):  
        scen_pv = self.data.scen_pv 
        scen_price = self.data.scen_price 
        scen_load = self.data.scen_load 
        time=self.data.time 
        m = self.model 
         
            
        m.setObjective( 
            
gb.quicksum(self.data.PV_prob[s][t]*self.data.Prices_prob[r][t]*self.data.Load_p
rob[u][t]* \ 
                        
((self.data.Prices_scen[r][t]*self.data.buy_ratio*self.variables.P_buy[t]- \ 
                        self.data.Prices_scen[r][t] * self.variables.P_sell[t] ) 
+ \ 
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                        (self.data.Prices_scen[r][t] * self.data.buy_ratio * 
self.data.a * self.variables.delta_buy[t,s,r,u] - \ 
                        self.data.Prices_scen[r][t] / self.data.a * 
self.variables.delta_sell[t,s,r,u]))\ 
                        for t in time for s in scen_pv for r in scen_price for u 
in scen_load)- \ 
                        
gb.quicksum(self.data.PV_prob[s][time[34]]*self.data.Prices_prob[r][time[34]]*se
lf.data.Load_prob[u][time[34]]*\ 
                        (self.data.c_avg[r] * 
self.variables.P_level[time[34],s,r,u])for s in scen_pv for r in scen_price \ 
                        for u in scen_load),         
 
            gb.GRB.MINIMIZE) 
 
                     
    def _build_constraints(self): 
        scen_pv = self.data.scen_pv 
        scen_price = self.data.scen_price 
        scen_load = self.data.scen_load 
        time=self.data.time 
        time_1=self.data.time_1 
        m=self.model 
 
         
        #power balance 
        self.constraints.power_balance = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv:           
                    for t in time: 
                        self.constraints.power_balance[t,s,r,u] = m.addConstr( 
                            self.data.Load_scen[u][t], 
                            gb.GRB.EQUAL, 
                            self.data.PV_scen[s][t] + \ 
                            self.variables.P_buy[t] - \ 
                            self.variables.P_sell[t] + \ 
                            self.variables.P_disch[t,s,r,u] - \ 
                            self.variables.P_ch[t,s,r,u] + \ 
                            self.variables.delta_buy[t,s,r,u] -\ 
                            self.variables.delta_sell[t,s,r,u]) 
         
        #maximum battery level 
        self.constraints.batt_lev_max = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time: 
                        self.constraints.batt_lev_max[t,s,r,u] = m.addConstr( 
                            self.variables.P_level[t,s,r,u], 
                            gb.GRB.LESS_EQUAL, 
                            self.data.E_max_batt) 
                
        #minimum battery level 
        self.constraints.batt_lev_min = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time: 
                        self.constraints.batt_lev_min[t,s,r,u] = m.addConstr( 
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                            self.variables.P_level[t,s,r,u], 
                            gb.GRB.GREATER_EQUAL, 
                            self.data.E_min_batt) 
         
        #maximum energy sell day-ahead 
        self.constraints.max_sell = {} 
        for t in time: 
            self.constraints.max_sell[t] = m.addConstr( 
                self.variables.P_sell[t], 
                gb.GRB.LESS_EQUAL, 
                self.data.P_max_sell) 
 
        #maximum energy buy day-ahead 
        self.constraints.max_buy = {} 
        for t in time: 
            self.constraints.max_buy[t] = m.addConstr( 
                self.variables.P_buy[t], 
                gb.GRB.LESS_EQUAL, 
                self.data.P_max_buy) 
 
        #maximum energy delta_sell 
        self.constraints.max_delta_sell = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time: 
                        self.constraints.max_delta_sell[t,s,r,u] = m.addConstr( 
                            self.variables.delta_sell[t,s,r,u], 
                            gb.GRB.LESS_EQUAL, 
                            self.data.P_max_delta_sell) 
                             
 
        #maximum energy delta_buy 
        self.constraints.max_delta_buy = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time: 
                        self.constraints.max_delta_buy[t,s,r,u] = m.addConstr( 
                            self.variables.delta_buy[t,s,r,u], 
                            gb.GRB.LESS_EQUAL, 
                            self.data.P_max_delta_buy) 
 
 
 
 
 
 
                 
        #maximum energy charge 
        self.constraints.max_ch = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time: 
                        self.constraints.max_ch[t,s,r,u] = m.addConstr( 
                            self.variables.P_ch[t,s,r,u], 
                            gb.GRB.LESS_EQUAL, 
                            self.data.P_max_ch) 
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        #maximum energy discharge 
        self.constraints.max_disch = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time: 
                        self.constraints.max_disch[t,s,r,u] = m.addConstr( 
                            self.variables.P_disch[t,s,r,u], 
                            gb.GRB.LESS_EQUAL, 
                            self.data.P_max_disch) 
 
 
 
        #initial level battery 
        self.constraints.init = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    self.constraints.init[s,r,u] = m.addConstr(      
                        self.variables.P_level[time[0],s,r,u], 
                        gb.GRB.EQUAL, 
                        self.data.initial_level + 
self.variables.P_ch[time[0],s,r,u] * self.data.eff_batt - 
self.variables.P_disch[time[0],s,r,u] / self.data.eff_batt) 
 
 
            
        #delta level battery     
        self.constraints.delta_lev_batt = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t1,t2 in zip(time[1:], time[:-1]): 
                        self.constraints.delta_lev_batt[t1,s,r,u] = m.addConstr( 
                            self.variables.P_level[t1,s,r,u], 
                            gb.GRB.EQUAL, 
                            self.variables.P_level[t2,s,r,u] + 
self.variables.P_ch[t1,s,r,u] * self.data.eff_batt - 
self.variables.P_disch[t1,s,r,u] / self.data.eff_batt) 
 
                         
 
        # buy and sell fixed in time_1 
        self.constraints.sell_fixed = {} 
        for u in scen_load: 
            for r in scen_price: 
                for s in scen_pv: 
                    for t in time_1: 
                        self.constraints.sell_fixed[t,s,r,u] = m.addConstr( 
                            self.variables.P_sell[t], 
                            gb.GRB.EQUAL, 
                            self.data.P_sell_fixed[t]) 
         
 
 
        self.constraints.buy_fixed = {} 
        for u in scen_load: 
            for r in scen_price: 
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                for s in scen_pv: 
                    for t in time_1: 
                        self.constraints.buy_fixed[t,s,r,u] = m.addConstr( 
                            self.variables.P_buy[t], 
                            gb.GRB.EQUAL, 
                            self.data.P_buy_fixed[t]) 
                             
 
 
#%% Solve         
AGG_optim = AGG_model() 
AGG_optim.optimize() 
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REAL-TIME STOCHASTIC MODEL 
 
# -*- coding: utf-8 -*- 
""" 
Created on Wed Jul 13 09:14:09 2016 
 
@author: paolo 
""" 
 
import pandas as pd 
import gurobipy as gb 
import xlrd 
import numpy as np 
import natsort as nt 
 
 
#%% Build Model 
 
class AGG_real_time(object): 
    pass 
 
class AGG_model: 
    def __init__(self): 
        self.data = AGG_real_time() 
        self.variables = AGG_real_time() 
        self.constraints = AGG_real_time() 
        self._load_data() 
        self._build_model() 
     
    def optimize(self): 
        self.model.optimize() 
 
    def _load_data(self): 
        #Load Sets 
        self.data.time_now = time_now 
        self.data.time = time 
        self.data.scen_pv = scen_pv 
        self.data.scen_load = scen_load 
        #Load Parameters 
        self.data.price = price 
        self.data.PV_scen = PV_scen 
        self.data.PV_prob = PV_prob_new 
        self.data.Load_scen = Load_scen 
        self.data.Load_prob = Load_prob_new 
        self.data.P_sell = P_sell 
        self.data.P_buy = P_buy 
        self.data.eff_batt = eff_batt 
        self.data.buy_ratio = buy_ratio 
        self.data.E_max_batt = E_max_batt 
        self.data.P_max_delta_sell = P_max_delta_sell 
        self.data.P_max_delta_buy = P_max_delta_buy 
        self.data.E_min_batt = E_min_batt 
        self.data.P_max_ch = P_max_ch 
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        self.data.P_max_disch = P_max_disch 
        self.data.a = a 
        self.data.c_avg = c_avg 
        self.data.P_level_now = P_level_now 
     
 
    def _build_model(self): 
        self.model = gb.Model() 
        self._build_variables() 
        self._build_objective() 
        self._build_constraints() 
 
 
    def _build_variables(self): 
        time = self.data.time 
        scen_pv = self.data.scen_pv 
        scen_load_fest = self.data.scen_load 
        m = self.model 
         
        self.variables.P_ch = {} #Charge Battery 
        self.variables.P_disch = {} #Discharge Battery 
        self.variables.P_level = {} #Level of Battery 
        self.variables.delta_sell = {} #Sell to the grid real time  
        self.variables.delta_buy = {} #Buy from the grid real time 
         
        self.variables.P_ch_i = {} #Charge Battery 
        self.variables.P_disch_i = {} #Discharge Battery 
        self.variables.P_level_i = {} #Level of Battery 
 
          
        for s in scen_pv:  
            for u in scen_load: 
                for t in time: 
                    self.variables.P_ch[t,s,u]    = m.addVar() 
                    self.variables.P_disch[t,s,u] = m.addVar() 
                    self.variables.P_level[t,s,u]   = m.addVar() 
                    self.variables.delta_sell[t,s,u] = m.addVar() 
                    self.variables.delta_buy[t,s,u] = m.addVar() 
 
 
        self.variables.P_ch_i        = m.addVar() 
        self.variables.P_disch_i     = m.addVar() 
        self.variables.P_level_i     = m.addVar() 
             
        m.update() 
  
 
    def _build_objective(self):  
        scen_pv = self.data.scen_pv 
        scen_load = self.data.scen_load 
        time=self.data.time 
        m = self.model 
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        m.setObjective( 
            gb.quicksum(self.data.PV_prob[s][t]*self.data.Load_prob[u][t]*\ 
                        (self.data.price[t] *self.data.a * self.data.buy_ratio * self.variables.delta_buy[t,s,u] -\ 
                        self.data.price[t] / self.data.a * self.variables.delta_sell[t,s,u]) for t in time for s in scen_pv \ 
                        for u in scen_load) -
gb.quicksum(self.data.PV_prob[s][time[9]]*self.data.Load_prob[u][time[9]]*\ 
                        (self.data.c_avg * self.variables.P_level[time[9],s,u])for s in scen_pv for u in scen_load), 
            gb.GRB.MINIMIZE) 
 
    def _build_constraints(self): 
        scen_pv = self.data.scen_pv 
        scen_load = self.data.scen_load 
        time=self.data.time 
        time_now = self.data.time_now 
        m=self.model 
 
         
        #power balance 
        self.constraints.power_balance = {} 
        for u in scen_load: 
            for s in scen_pv:           
                for t in time: 
                    self.constraints.power_balance[t,s,u] = m.addConstr( 
                        self.data.Load_scen[u][t], 
                        gb.GRB.EQUAL, 
                        self.data.PV_scen[s][t] + \ 
                        self.data.P_buy[t] - \ 
                        self.data.P_sell[t] + \ 
                        self.variables.P_disch[t,s,u] - \ 
                        self.variables.P_ch[t,s,u] + \ 
                        self.variables.delta_buy[t,s,u] -\ 
                        self.variables.delta_sell[t,s,u]) 
 
        #maximum battery level 
        self.constraints.batt_lev_max = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t in time: 
                    self.constraints.batt_lev_max[t,s,u] = m.addConstr( 
                        self.variables.P_level[t,s,u], 
                        gb.GRB.LESS_EQUAL, 
                        self.data.E_max_batt) 
                             
#minimum battery level 
        self.constraints.batt_lev_min = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t in time: 
                    self.constraints.batt_lev_min[t,s,u] = m.addConstr( 
                        self.variables.P_level[t,s,u], 
                        gb.GRB.GREATER_EQUAL, 
                        self.data.E_min_batt) 
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        #maximum energy delta_sell  
        self.constraints.max_sell = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t in time: 
                    self.constraints.max_sell[t,s,u] = m.addConstr( 
                        self.variables.delta_sell[t,s,u], 
                        gb.GRB.LESS_EQUAL, 
                        self.data.P_max_delta_sell) 
 
 
        #maximum energy delta_buy 
        self.constraints.max_buy = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t in time: 
                    self.constraints.max_buy[t,s,u] = m.addConstr( 
                        self.variables.delta_buy[t,s,u], 
                        gb.GRB.LESS_EQUAL, 
                        self.data.P_max_delta_buy) 
              
        #maximum energy charge 
        self.constraints.max_ch = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t in time: 
                    self.constraints.max_ch[t,s,u] = m.addConstr( 
                        self.variables.P_ch[t,s,u], 
                        gb.GRB.LESS_EQUAL, 
                        self.data.P_max_ch) 
                             
        #maximum energy discharge 
        self.constraints.max_disch = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t in time: 
                    self.constraints.max_disch[t,s,u] = m.addConstr( 
                        self.variables.P_disch[t,s,u], 
                        gb.GRB.LESS_EQUAL, 
                        self.data.P_max_disch) 
 
 
        #initial level battery 
        self.constraints.init = {} 
        for u in scen_load: 
            for s in scen_pv: 
                self.constraints.init[s,u] = m.addConstr( 
                    self.variables.P_level[time[0],s,u], 
                    gb.GRB.EQUAL, 
                    self.data.P_level_now[time_now] + self.variables.P_ch[time[0],s,u] * self.data.eff_batt - 
self.variables.P_disch[time[0],s,u] / self.data.eff_batt) 
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        #delta level battery   
        self.constraints.delta_lev_batt = {} 
        for u in scen_load: 
            for s in scen_pv: 
                for t1,t2 in zip(time[1:], time[:-1]): 
                    self.constraints.delta_lev_batt = m.addConstr( 
                        self.variables.P_level[t1,s,u], 
                        gb.GRB.EQUAL, 
                        self.variables.P_level[t2,s,u] + self.variables.P_ch[t1,s,u] * self.data.eff_batt - 
self.variables.P_disch[t1,s,u] / self.data.eff_batt) 
  
        #P_ch_i P_disch_i P_level_i indipendent from scenario 
          
        self.constraints.P_ch_i = {} 
        for u in scen_load: 
            for s in scen_pv: 
                self.constraints.P_ch_i[s,u] = m.addConstr( 
                    self.variables.P_ch[time[0],s,u], 
                    gb.GRB.EQUAL, 
                    self.variables.P_ch_i) 
 
        self.constraints.P_disch_i = {} 
        for u in scen_load: 
            for s in scen_pv: 
                self.constraints.P_disch_i[s,u] = m.addConstr( 
                    self.variables.P_disch[time[0],s,u], 
                    gb.GRB.EQUAL, 
                    self.variables.P_disch_i)             
 
        self.constraints.P_level_i = {} 
        for u in scen_load: 
            for s in scen_pv: 
                self.constraints.P_level_i[s,u] = m.addConstr( 
                    self.variables.P_level[time[0],s,u], 
                    gb.GRB.EQUAL, 
                    self.variables.P_level_i)  
                         
#%% Solve         
AGG_optim = AGG_model() 
AGG_optim.optimize() 
print AGG_optim.model.SolCount 
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