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Introduction

The aim of the thesis is to improve the probabilistic model used for one-way
hash chains in Fvaluating the Security of One-way key Chains in TESLA-
based GNSS Navigation Message Authentication Schemes by Caparra, Stu-
raro, Laurenti and Wullems [4].

In the first chapter we introduce some fundamental notions and useful
results that will be used throughout the thesis. Then we give a description
of what hash chains are and which are their applications. In particular, we
focus on the TESLA protocol, in order to have a better understanding of the
model we will be working on.

In the second chapter we define a probabilistic model for hash chain fol-
lowing the one presented in [4] and then we proceed to study its properties.
Then we analyze the attack described in the above-mentioned article and
derive general upper and lower bounds on the probability of success of the
attack, by relaxing an assumption made in the paper which proves unneces-
sary.

In the final chapter we aim to find a probability distribution that well
approximate our model, at least asymptotically. To do so we aim to give an
upper bound on the Kullback—Leibler Divergence between the model and our
target distribution to later derive an upper bound on the total variational
distance through Pinsker inequality. Unfortunately we could not complete
the task and we conclude the thesis with an intermediate result about these
bounds.
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Chapter 1

Preliminaries

1.1 Basic definitions

Definition 1.1. A random oracle is a theoretical black box that responds
to every query with a random response chosen uniformly from its output
domain. In particular, a random oracle is a function f: X — Y, where
flz) ~UY) for all z € X with f(x1),..., f(zyn) independent for distinct
T1y...,Tn € X.

Definition 1.2. A discrete time martingale is a discrete time sequence of
random variables (X;),cy that satisfies

El[Xp]] < oo (1.1)
E[Xp|X1,.. ., Xno1] = Xp_1 (1.2)

for all n € N, i.e. the conditional expected value of the next observation,
given all the past observations, is equal to the most recent observation.

In particular if (X;),.y is a finite state Markov chain we have that con-
dition (1.1) is satisfied and condition (1.2) become

E[X,|X1,..., Xn-1] = E[X| Xn-1] = Xn—1

Definition 1.3. The Stirling numbers of the second kind {Z} are the number
of ways to partition a set of n elements into k non-empty subsets. They can

be computed as
Ly (M-
kS Rl i)t

They can also be characterized as the numbers that arise when expressinng
powers of some x € N in terms of the falling factorials

Zn:{Z}xk:x" (1.3)

k=0



4 CHAPTER 1. PRELIMINARIES

k __ z!
where x=% = k)

Lemma 1.4. Let X be a (n,p) binomial random variable. Then the d*
moment of X 1is

XY = ki {Z}nkpk

A complete proof of the previous statement can be found in [8].

Lemma 1.5. Let {as},c, {90} en be two sequences in R and b € R\ {0}. If
the recursive relation agy1 = bag + g¢ holds, then

-1 g
ay = bt (a() + bmﬁl)
m=0
Proof. We have
agy1 bayg ge

2 N R N A

Let Ay = 7. Then

i
App1 — Ay = g

pé+1
/—1 /—1 g
(Am+1 - Am) = AZ - AO - bmnll
m=0 m=0
a -1 g
l m
ﬁ AO + bm—i—l
m=0
/—1 g
_ it m
ag = b (ao + Z bm-i—l)
m=0

1.2 Problem description

The aim of the thesis is to improve the probabilistic model used for one-way
hash chains in [4]. We will now give some contexual information about what
a hash chain is and some of its applications.

One-way hash chains are build on one-way hash functions. A one-way
hash function H: X* — Y maps an input of any length to a fixed-length
bit string. The function H should be simple to compute yet must be com-
putationally infeasible to invert in general.



1.2. PROBLEM DESCRIPTION 5

Definition 1.6. Let H: X* — X* be a hash function with the same input
and output alphabet and hy € XP. A time invariant one-way hash chain is

the list of values
h17h27h3a .. '7hn

where hy = H(hi—1) for 1 <i<mn.

Given an element h; of a one-way hash chain, it is possible to verify
that a previous element h;_; belong to the sequence simply by computing
HI(hi—;). On the other hand it should be difficult to get previous elements
of the chain, due to the properties of the hash function H.

An application of time invariant one-way hash chains is given by Hu,
Johnson and Perrig in 6], where they design the SEAD (Secure Efficient Ad
hoc Distance vector) routing protocol. In this protocol the hash chains are
used in routing updates to authenticate the distance to the destination node
for each entry of the routing table and to prevent attackers from generating
false values to mislead others nodes.

In long time invariant one-way hash chains loops could arise when exixts
some r € X such that H(x) = H’(z) for some j € N. This is a problem
since when a loop is detected it is possible to get previous elements of the
chain simply by repeating the elements of the loop in the reverse order over
and over. To avoid the presence of loops and make the chain more robust it
is possible to define time varying hash chains.

Definition 1.7. Let H: X* x N — X? be a hash function and hg € X°. A
time varying one-way hash chain is the list of values

hlahQahfia' . 'ahn
where h; = H(h;j—1,1) for 1 <i<n.

When dealing with time varying hash chain we will denote for simplicity
the hash function by H;, with H;(k) := H(k,1).

The application we will consider in this thesis is the TESLA (Timed Effi-
cient Stream Loss-Tolerant Authentication) protocol. The TESLA protocol
provides data authentication for messages sequences without relying on com-
puting the digital signature of every message. A complete description of the
TESLA protocol can be found in [10]; we will give here a simplified overview
of the protocol that will be useful in our discussion.

First the sender creates a generator key kg used to develop a sequence of
keys ko, k1, ..., kr using a time varying one-way hash function H;, where k; =
H;(k;—1). Then the final key k7, can be securely delivered to the receiver. We
assume that in this passage the receiver can verify that the key comes from
the true source. For the following messages the sender can use the previous
keys of the chain to authenticate the source of the messages. Indeed, due
to the properties of the hash function an attacker cannot generate previous
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value of the chain and, on the other hand, it is easy for the receiver to verify
that H;(k;—1) = k;, which prove that the sender is the original source.

Given this context we have to make sure that the attacker cannot find
easily some key k such that (Hp_j0---0 H;j4q 0 H;)(k) = k.

Since in the TESLA protocol the function H; is a pseudo-random function
and therefore in general not injective, for long sequences we could have that
the image of large portions of the domain are sets of only few elements.
This constitues a problem because it means that, given the key kr, there
is a significant probability that random element b in the domain satisfies
(HL—l O0---0 H’H—l o) HZ)(]{) - kL.

This unwanted behaviour make the hash chain vulnerable to various at-
tack, since one of the assumed properties of the hash chain is that it is difficult
to get previous elements of the chain. However, numerical experimentation
show that this phenomenom is negligible if the length of the hash chain is
small compared to the cardinality of the domain of the hash function.



Chapter 2

Probabilistic model

2.1 Definition

In this section we will define the probabilistic model for the hash chain that
we will use throughout the thesis.

The time varying hash function will be represented as a random oracle
fi: N = N, where [IN| = N > 1, ie. fi(a),a € N,i=1,...,L —1
are independent random variables uniformly distributed in N. For each
beN,i=0,...,L—1,let us denote by J; j(b) = ][f,f]_l({b})\ the cardinal-
ity of the preimage of b under ff = fio fix10---0 fj_1. By extension we
consider f} as the identity function on A" and J; ;(b) = 1 for all b.

We will denote by J; ¢ the vector [J; ¢(b1), ..., Jie(bn)], where by, ..., by
is the complete list of the elements of N .
Then, by denoting 1 = [1,...,1] the random vector

Jiiv1 = [Jiiv1(01), ..., Jiis1(bN)]

has the (N, %) multinomial distribution

0 for Y e #N

by, (C) = N!
- {Hbe/\f cp! ﬁ for > penrco =N

(2.1)

and the marginal distribution of each J;;41(b) is a (IV, %) binomial

PJiia(€) = <JZ> Ni <1 - &)N (2.2)

On the other hand we can write J; ;(b) recursively as

Jij(b) = Z Jii+1(a) (2.3)
aclf? 17 ({b})

7
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and since J;;11(a) has a (N, +) binomial distribution for all a € N we
can say that, conditioned on the cardinality || f+1]_1({b})] = Jit1,;(b), the
distribution of J; ;(b) is a (IV, %ﬂ(b)) binomial.

In the following section we will show that J; ;(b) is time homogeneous with
respect to j. This fact allows us to omit the initial time ¢ and write the
probability of J;(b) conditioned to Jy_1(b) as

pater = (V)12 (1 0y 24

It is therefore natural consider Jy(b) as a discrete time Markov chain with

binomial transition probability, i.e.

{M@:lVMN’ 25)

Ji—1(b
Tj(0)|j-1(6) ~ BN, 5 )
In the same way we can write the vector J, as a Markov chain defined

{Joz(L“.J)

as

(2.6)

where M (N, J}; L) is the multinomial distribution.

However we are not interested in studying the distribution of the preim-
age of the entire set N, but instead we will only consider a small sub-
set {b1,...,bn} of it. Then we can write a similar random vector J; =
[Jj(b1),...,J;(bm)] that consists of the first m entries of J;. The corre-

sponding Markov hain will be then

{Jb:(L”.J)
N! (bl)al‘“(b

Pa;1a;-(alb) = oy (&

2\3
V@
3
=
|
2\\5

where a =Y /" a; and b= >"1" | b;.
To conclude we want to consider the random variable ||J;||, = 7 J;(b;).
Since J;(b;)|Jj-1(b;) has a (NN, ‘]J*Tl(b)) binomial distribution, their sum will

have a (NN, W) binomial distribution, therefore we can write ||Je||; as

another Markov chain given by

||JO||1 =m (2 8)
N .
1Tl I Taly ~ BN, Wity

We can see that ||J;||; and Jy are the same Markov chain with different

starting point, so for simplicity we will use Jy to indicate both |[ flj ]_1({b})]
and [|Jy];.
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2.2 Properties

In this section we will investigate the basic properties of some of the Markov
chain previously defined, in particular of J,.

2.2.1 Time homogeneity and absorbing states

The chain J; ;4 with 7 fixed is time-homegeneous with respect to ¢ since

Jiite = Hff]fl({b})\ for some b € A/ and we assumed f; mutually indepen-
dent for all j € N.

On the other hand when ¢ is fixed J; ;¢ is stationary with respect to %
for the same reason. Then from now on we will omit ¢ and write only the
index /.

Moreover, since the initial state Jy is equal to 1 the chain is non-stationary.
We observe that the two initial states that make the chain stationary are 0
and N. In particular 0 and N are the only two absorbing state of the chain
while 1, ..., N —1 are all transient. This is easily derived from the transition
probability of Jj.

We can make similar observations for Jy. The absorbing states of this
chain are the vectors [0,...,0] and [z1,...,zy] with 2; = N,z; = 0 for all
1<i<m,i#u

To visualize what these states represent in our model, we recall that
Jo = [Je(b1), ..., Je(by)] is the vector of the cardinality of the preimage
of some by,...,b, € N through f; o fix10---0 f,_1. Therefore the zero
vector represents the case in which by, ..., b,, have an empty preimage, while
[z1,...,2m] with 2z = N,z; = 0 for all 1 < i < m,i # 7 the case in which
the preimage of b; is the entire set N.

2.2.2 Martingale

It is easy to notice that all the Markov chains defined in section 2.1 are
Martingales, i.e. we have that, using for example Jy,

ElJe|Je1] = Joa (2.9)

This follows from the fact that the distribution of J, given J, 1 is a

(N, sz\; L) binomial distribution, from which we can derive the expected value.
Then, if J;1 = m, m < N we can write that

E[Jy|Ji =m]=m WY e&N (2.10)

Similar results can be stated for J; and J, with the same argument.
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2.2.3 Moments

We will now aim to get the momets of the random variable J,.
To find the higher moments of J; we can use a recursive formulation.
Indeed, since Jy11|Jp has a binomial distribution, we have

d
BT 1)) = Z{Z}Nk(j;i) @.11)

k=1

where NE= N(N —1)--- (N —k+1).
Then taking the expectation on J; we obtain

d k
BB = Bl = 3 { b R B (2.12)
k=1

We have now a formula for the generic d-moment of J; that depends on the
moments of its previous steps Jy_1,...,Jy. In order to find a closed formula

let’s define 4 ( " )
Nt NN-1)---(N—-i+1
1 i i (2.13)

We are now ready to give a generic formula for the d-moment of J,

Proposition 2.1. Let J; be the previously defined Markov chain. Then

d
T =" aic (2.14)
=1

where a; ; is the coefficent of cf of the j-moment of Jp and in particular

d—1
{ } Gk fori<d—1 (2.15)
Cq — G
k=1
aqdq = m? — Z aiq (2.16)
=i

Proof. Let’s prove it by induction on £. For £ = 0 we have E[J§] = m?,

while our formula give us

d d—1 d—1
J§) = Zai,d = Zai,dﬂLmd—Za@d:md (2.17)
i=1 i=1 i=i

Assume E[J; 9 = Z o Wi, ch for all d € N, j < £. We know that
d-1
[Je] = CdE Jg 1 + { }CkE Je 1] (218)
k=1
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We can apply the result of (1.5) using ap = J¢, b = cg and g, = Zg;} {z}ckE[Jf_l]
and obtain

-1 —d—1 (d k
> k1 ks kB[]
B = (4 3 Him ity (219
m=0 d
-1 d—1
ef d d| ¢k k
= chy(m?+ Y {k} cy+1E[Jm]> (2.20)
m=0 k=1
ol d-1(-1 ” k N
= Cd (m =+ ]{} W ZaLkCi ) (221)
k=1 m=0 d i=1
R d-10-1 k iy m
= chm + TN b Zak(&> (2.22)
k=1m=0 i=1
-1 k 1w
Y A | , )
— chmd 4 ! ; { k}k ;k mzzo () (2.23)
d—1 k ¢ ¢
_ d 1 ¢ —c
k=1 i=1 d @
d—1 k ¢ ¢
d ¢ —c;
0. d d 7
=cym® + { }ck Z Qi fp——" (2.25)
o k) T T
d-1d-1 . o
=ctm? + {k}ck%i’kc(c{; —c) (2.26)
i=1 k=i v
Now, if we define
L (d ai
Qig = — cp—= fori<d-—1 2.27
y g{k} e fori s (227)
d—1
agq=m? — Z @, d (2.28)
i=1
we can then conclude
d
ElJf) = aiaci (2.29)
i=1

We write down the coefficent of the first four moments of J,
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a2 = mN a2 = m2 — Q12

_ _3 _ .3
a13=a12N a3 = 5a22N ass3 =m" —agz3 — a3

2 9N—11 4 2
arg =a13N  azs = 5(5y=g)a23N azs=2a33N aga=m"— 7 1G4

We now prove two simple propositions that give a simpler formulation
for some of these coefficents.

Proposition 2.2. In equation (2.14), we have a; j = mNI~t for all j € N.

Proof. Assume a1 ; = mN7 1 for all j <d. Then

d
d+ 1} a1k
aldgp1 = — cp—— 2.30
Lt kz{ o (2.30)
zd:{d—i- 1}Nk mN*—1 (2.31)
1 Nk cgy1 — 1 .
d
1 d+ 1}N’f
= —-m— — 2.32
PRSI S 29
Now, since
1 N1

Cay1 —1  Nd+l — N+l

and by the charaterization of the Stirling numbers of the second kind

d+1
1
> {dz }N’f = (2.33)
k=1
we have
d+1 k
d+1) N= d
— =N 2.34
{0 (234
k=1
Nt I (d 41| NE
— =N¢ 2.
Nt ; { N } N (2.35)
d
d+1 NE Nd+1 _ pd+l
{ k: }N N (2.36)
k=1
Therefore we can conclude that
a1,d+1 = mNd (2.37)
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Proposition 2.3. In equation (2.14), we have

1\ N
agq+1 = {dji_ }dad,d (2.38)
foralld e N
We have indeed
d+1 a

ad,d+1 = —{ d }Cdcdﬂdi o (2.39)

d+1 Nd  Ndt
- _{ d }ad’de NTH _ N Nd (2.40)

d+ 1| N

= — 2.41
{0 o (2.41)

2.3 Attack model

Using the results of the previous section we can evaluate the probability
of success of the attack described in section V of [4]. In the article they
assume that J; has a compound Poisson distribution; we will now evaluate
this probability without thia assumption.

We consider an attack that aims to find k2+1, cee l%iH such that fi(ifz‘-u) =

ki, fiv1(k 1+2) = k:l+1,..., fivro— 1(k2+g) = k‘H_g 1, where k; is the last dis-
closed key of the chain,. To do so the attacker picks N4 random and inde-
pendent values in N as guesses for k;y,

ko ~UWN), j=1,...,Na
and recursively apply the hash function up to
= fit k), j=1,...,Na

For each guess the attacker checks whether lAcf coincides with the actual k;,
and in case of success he can use the chain ]%i+17 R IQ:HZ to make the victim
accept his messages as authentic.

The success event of this attack can be written as

S(i, 0, Ny) = US (i, 0) (2.42)

where the success event for a single guess ¢ is

Sj(i, 0) = {k] = ki} (2.43)
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Observe that, conditioned on the realization ff“ (N), the I%f ¢ are iid. with
probability mass distribution

5 ; Jii
Pl = bl £ = == (2.44)
N
Then we can evaluate the conditioned single attempt probability
PIS;(i, 0)|f*1 =) Plk] = alfA1P[K] = al £
aeN (245)
= Z H-i—f( )
aEN
and therefore obtain its average over the realization of ffM as
. 1
P[S;(i,0] = 2 Elis(a)diire(a)] (2.46)
aeN
1
= NE[Ji,LJi,i+A€] (247)
Proposition 2.4. E[J; 1.J; ¢ = E[J; z+€] forall L > ¢.
Proof. 1t is sufficient to prove that
ElJi.clJiivel = Jiite (2.48)
and then condition E[J; 1,J; j+¢] on J; ite.
We have then
ElJip|\Jiivel = EIE[J; | Jin—1, - Jiivel|Jii
[Ji,LlJiivel = E[E[Ji,L| i, i+l Jiive] (2.49)

= E[Ji r—1]Jiite)

since J; 1, is a Martingale. Iterating this argument we can easily prove (2.48).
Then

ElJi1Jiive) =E[E[J; L] Jiive]Jiive]

2.50
B2, (250)

O
Therefore the success probability of a single attempt can be rewritten as

PIS;(5,0] = B2 (251)
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In the same way we can write the joint success probability for two distinct

guesses j, j' on the same chain k;, ..., k¢
PIS;(i,0) 0 Sy (i, 0)1 £ = > Plk! = ol fIPIE] = a| f{* P[] = al £
aeN
(2.52)
= Z N3 Ji,p(a)Jiive(a)Jiive(a) (2.53)
aeN
= Z N3 lL zz-l—é( ) (2'54)
aeN N
And again
P[S;(i,£) N Sj( N3 > ElJis(a)J}iela)] (2.55)
aeN
3 Z E zz—i—Z (256)
aeN
1 3

Finally we can derive lower and upper bounds for the success probability
of the attack with N4 independent guessed on the same chain section, as

Ny Na
> P[S;(i,¢ ZZP (1,0) N Sy (i,0)] < P[UYA S;(i,0)] <Y P[S;(5,0)]
Jj=1 J=135'<y Jj=1
(2.58)
NAE[J}] Na(Na—1)ELJ}] oY NAE[J?]
_ < A < LT ted
(2.59)
From section 2.2 we have
E[J2)=(1—-N)d+ N (2.60)
E[J}] = ¢ + %N(l — N)(c5 — ) + N2(1 — ) (2.61)
and using Taylor series expansions
l
E[Jf]=¢+1+ O(+) (2.62)
3 5 2
3192 9 ha
E[J;] = 2€ +2€+1+O(N) (2.63)

Then, if ¢ < N we can rewrite (2.59) as

2
Na(l+1)  NaWNa-DEE+50+2) _,  Nall+1l) (5
N AN?2 N



16 CHAPTER 2. PROBABILISTIC MODEL

The equation (2.64) is the same obtained in [9] under the assumption
that Jy has a compound Poisson distribution. The following graph shows
the upper and lower bound on the probability of success of the attack using
the approximate model (2.64) and the exact one (2.59) varying the number
of possible keys V.

[ =¥= approximate lower bound
~ =¥= approximate upper bound
i @ exact lower bound

- @' pyact upper bound

~—

Probability of success
»
L

107t

T T T T
271 2= 2% 224

Cardinality of key set N

Figure 2.1: Probability of success vs N for Ny = 29 ¢ = 21!

We can see that the upper bounds are almost identical and that therefore
the assumption that Jy, has a compound distribution is unnecessary.

Moreover we can calculate these bounds with a fixed N and varying the
length of the hash chain /.

ul
o =¥- approximate lower bound P ]

== approximate upper bound -
+@ exact lower bound
@ exact upper bound -

107t

Prebability of success

T T T T T T T
28 29 21 n 212 713 214

Hash chain length

Figure 2.2: Probability of success vs £ for Ny =29 N = 223
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As expected increasing ¢ the bounds grow as well and for values of /¢
greater than 2'3 the upper bound is close to 1.
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Chapter 3

Approximate distribution

In this chapter we aim to find an approximation to the distribution of the
random vector Jy = [Jy(b1), ..., Jo(by)] defined as in 2.1, where by, ..., by, €
N and m < N = |N/|. In particular we want to prove that, for £,m < |N|,
Jy is close to a random vector whose elements are independent on each other.

We know that the transition probability at the step £ conditioned on the
step £ — 1 has a multinomial distribution

m

Pya, ., (ylz) = }_[1 ﬁ(ﬁ) (N —y)

x N-y

(1- N) (3.1)

where x =Yz and y = > 0 i
Arenbaev in [3] and Deheuvels & Pfeifer in [5] have found some bounds
on the total variational distance between the distribution S defined as

_yrp N

Ps(l) = I m(l —p)N! (32)
=1
with | = z:il l7, S Nyp = Z;ilpi? and
mT = (7T1,...,7Tm),

which is a vector of independent Poisson random variables with parameters
npi,...,NPm. We notice that Jq has the same distribution of S when p; = %
for all 4.

Considering these results we will try to find some bounds on the distance
between Jy; and a new Markov chain Jlf defined as

, 1 ifz=(1,..1)eNm
JO(x)_{o ita£(1,...,1) eNm (33)

with transition probability given by

m —x;

. e g
Pryap_ (yle) = [ [ ¥ (3.4)
i=1 v

19
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ie. JJ|J]_; is a vector of independent Poisson random variables with pa-
rameters J;_.

However it turned out pretty impractical to apply the results concerning
the total variational distance of [3] and [5] to our distributions, so in order
to find an approximation we will introduce the Kullback-Leibler divergence.

3.1 Kullback-Leibler divergence

Definition 3.1. The Kullback-Leibler divergence between two probability
mass distributions P and Q on X is defined as

x)

DPQ) = Y P(a)log SE@
zeX (3'5)

= Ep|log g]

It is easy to prove that the Kullback-Leibler divergence is always non-
negative and is equal to zero if and only if P = Q.

However, it is not a distance since it is not simmetric and does not
satisfy the triangle inequality. Nonetheless we can derive an upper bound on
the total variational distance from the KL divergence through the Pinsker’s
inequality, which we state here.

Theorem 3.2 (Pinsker’s Inequality). Let P, Q be two discrete probability
distributions, then

AP.Q) < \/3D(PIQ) (36)

Since we do not have an explicit description of the distribution Jp, but
only of Jy|Jy—1 we will introduce a slightly different type of KL divergence.

Definition 3.3. Let X, X' and Y,Y’ be probability distribution on respec-
tively X and Y and XX',YY' their joint distribution. The conditional
Kullback-Leibler divergence between X'|X and X'|X is defined as

P T
De(Pyix||Pyxr) = ) Px(x) Y Prix(yle) log<PYX((y||))>
zeX yey YIxiE (3.7)
B Py x
= EXY [log(PY/X’ )]

We have that D¢ (PY‘X\ |Py/|X/) > 0 with equality if and only if Py x (y|)
Py x:(ylz) for all y and = with Py x (y|z) > 0.

Proposition 3.4. Using tha same notation of definition (3.3), the following
relation holds

D(Pxy||Px1yr) = D(Px||Px') + Do(Py x| | Py x7)- (3-8)
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Proof. We have

P x,
D(Pxyl|Pxiy) => > Pxy(z,y)log PX/Y,((x ))
3 xX'yi\T,Y

B e Px (x) Py x (y|z)
= ;%:PXY( ,y)1 gPX/(:E)quX'(?JW)

Px(z)
= P 1
zm:zy: v (2, y) log P (1)
Py x (ylz)
+ Pxy(z,y)log ———~
ZZ xv( Py x:(ylz)
(PX||PX') + De(Py x| Py x1)

3.2 Bounds on the divergence
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(3.11)

(3.12)

We can now write an upper bound on the KL divergence between Jp and Jj

using the conditional divergence.

Lemma 3.5. Let J, and Jj defined as in 3.1 and 3.4. Then

l
D(Jy||J7) < ZDC(PJilJi_IHPJ{\J{_I)
=1

Proof. Rewriting proposition (3.4) with Jy and J; we have

D(Pyg:|Pyza; ) = D(Py,_ ||Py; ) + Do(Py, 0, 1Pz,

£—1

and by exchanging the roles of the distributions

D(Pyg, |Py;.0;_) = D(Py,||Py;) + Dc(Py,_y15,|| Py 172)

£—1

Since DC(PJe_l‘JZHPJLIW) > 0 we can conclude
D(Je||T7) < D(Jp-1l|Ti—1) + De(Paya, | Py )

Then, knowing that Jy = J§ we have

l
D(JEH*U) < ZDC(PJHJquPJ{\J{A)
=1

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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We will now focus on Dc(Py,1,_, || Py, ) for a generic £.
Proposition 3.6. Let J; and J; defined as in 3.1 and 3.4. Then

(N = Jo)!)
(N — Jp_p) V=)

N!
Dc(Pyy g, |Pyya;_ ) =log —x — E[log

¥ +m (3.18)

Proof. Let © = (x1,...,Zm), Yy = Y1,y Ym),x =21+ -+ T, and y =
Y1+ - Ym. We have

s =TT (3 - 5)™

=1 yl' o y)'
el
Py (yle) =[] =¥ ] (3.20)
i=1 v
and therefore
Pya._, (ylz) N! 1 z\N-y
log =2~ —— —log ——F——(1— = (3.21)
Py (yle) (N —y)le—® Nv ( N)
Hence
Py,15,.,(y|z)
Dc(P Py ) =E]|l S 22
c(Py,a, 1P ,) [Og PJ;ng(yW)} (3.22)
N! 1 x\N—y
=FEllog —— -1+ 2
°8 (N —y)le—® Ny< N) } (3.23)
= Eflog N! — log(N — y)! + = + log(N — 2)N ¥ —1og NV] (3.24)
= log N1 ~log N + E[z] — Eflog((N — y)1)] + Ellog(N — )"~
(3.25)
e M (N —y)!

where the expectations are meant respect to the joint probability Py, j, ;.
We notice that although the expectations are on Py, j, , they only de-
pend on the sums z = z1+- - -+ xp = || Jo—1||; and y = y1+- - - +ym = || Je|l;-
As we saw in section 2.1, ||Jy||; has the same distribution of .Jj.
Therefore we will consider the expectations in equation (3.26) taken on
Jy, Jo—1, so we can say that Flz| = E[Jy_1] = m. O

We will now give a lower bound on the second term of equation (3.18).
Lemma 3.7. Let J; and Jj defined as in 3.1 and 3.4. Then

(N = Jo—1)!
(N — Jéfl)(N_Je_l)

(N = Jo)! }

E|:10g (N _ J‘eil)(N_Je)

> F [Iog (3.27)
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Proof. Consider E[log(N — J;—1)"" 9], we have

Ellog(N — Ji_) =79 = B[(N = J;) log(N — J;_1)] (3.28)
= E[E[(N — Jo)log(N — Jo—1)|Je—1]]  (3.29)
= E[E[(N — Jo)|Je—1]log(N — Je—1)]  (3.30)
= E[(N — E[Ji|Je-1]) log(N — Jp-1)]  (3.31)
= E[(N — Jo—1)log(N — Jr—1)] (3.32)
= Ellog(N — Jp_1)N71)] (3.33)

To conclude we just need to prove that Eflog((N — Jy)!)] > Ellog((N —
Jo—1)!)]-

To do so we replace the factorial with the gamma function I' and knowing
that log I is convex on positive reals we can use Jensen’s inequality and state
the following:

Ellog((N — Jp))] = E[log I'(N — J; + 1)] (3.34)
= E[EllogT(N — Jg) + 1| Je-1]] (3.35)
> Eflog D(E[(N = Jg + 1)|Je-1])] (3.36)
log (N — Jp—1 +1)] (3.37)
log((N — Je-1)!)] (3.38)

— B
2

Combining proposition (3.6) with lemma (3.7) we get the following result

I(N+1) o TN = Jea+1)

NN g(N_Jgil)(N—Je—ﬂ
(3.39)

Dc(Pryg_ |Pyya;_,) < log

We notice that now the expectation depends only on J,_1.
We can now prove the last bound we obtained on the conditional proba-
bility between J; and Jj.

Proposition 3.8. Let Jy and J; defined as in 3.1 and 3.4. Then

1
DBy 1Prya;_,) < = Ellog(1 = 2n(Je-1))] (3.40)

where

823 — 4(6N + 1)a2 + (24N? + 8N + 1)z + 55
8N3 +4N2+ N + &

Zn(z) = (3.41)

Proof. Starting from equation (3.39), we can use an approximation of I' given
by Ramanujian in [2] and then proved by Karatsuba and Alzer in [1] and [7].
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In particular we will use the following double inequality

1 1

ﬁ(n)n</8n3 +4n?+n+— <T(n+l) < ﬁ(n)n€/8n3 +4n? +n+ —
e 100 e ( 35)
3.42

that holds for all n > 0.
Define the polynomial Q(z) = 823 + 422 + 2.

We will use the right inequality for the term log % and the left one for

T(N—J,,+1) .
E[log (NfJe,l)Z‘Nl‘Jffl)] e

I'(N+1) IR 1

=) {/QN) + o 4
N <VT(S) RN+ 55 (3.43)
(N +1) 1 1 1
log NN <3 logm — N + 6 log(Q(N) + @) (3.44)
and
(N —Ji1+1 1 N=Je 1
(]\f ~ 7 1)N—J[_)1 > V7 () QN = Jem1) + 155 (3.45)
N —Jp1+1) 1 1 1
! Slogm — N+ Jp 1 + 1 N—Jpq)+ —
N g N g BT Je1 + 5 1og(QIN = Je1) + 155)
(3.46)
(N —Jei-1+1) 1 1 1
El “logm — N “ENog(Q(N — Jioy) + ——
s (N — Jz_l)N‘Jffl] > glogm =N+ m+ GElog(QN = Jer) + 155)]
(3.47)

Using the inequalities (3.44) and (3.47) in equation (3.39) we get
8N3 +4N? + N + &

1
DC’(PJ Jr_ HP/ ’ )ng[log
eMe—a I Tp1 Ty 6 8(]\7 — Jg_l)g + 4(N — Jg_1)2 + N —Jp_1+ 17(1)0

(3.48)
Rearranging the right term we get the conclusion. O

3.3 Numerical validation

In this final section we aim to find a numerical lower bound on E[log(1 —
zn(Jr—1))]. Knowing that Jy—1 € N, J,_1 < N, we have zn(Jy—1) € (0,1)
and since log(1 —y) > —y — 42 for 0 < y < I, we can write

Eflog(1 — zn(Je-1))] =

Z P(z)log(l — zy(x)) + Z P(z)log(1l — zn(x))

x: zN(:c)S% T: zN(z)>%
> P(z)(=zn(z) = 2A(2) + Y P(z)log(l — 2n(2))
x: ZN(I)S% x: zN(ac)>%

(3.49)
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where P(z) = Py, ,(x).
Now we observe that

Y. P@)(—zn(z) = (@) = El=zn(Jem1) = 2 (Je=1)] - (3.50)

x: ZN(J?)S%

and

> P(x)log(l - zn(x)) > log(1 — max 2y (2)) > P(x) (3.51)
T: zN(z)>% x: ZN($)>%

and that max, zy(x) =

It is easy to show that if z < % we have zy(x) < %

zn(N), so we can conclude

Ellog(1—2xy (Jo1))] = El—2y (Jo1) =22 (Je )+ P (1 > %)log(l—zN(N))
(3.52)
Clearly E[—2zn(Je—1) — 2%/ (Jr—1)] depends only on the moments E[Jg ,] for
d < 6, for which we have already derived a closed formula. The last thing to
do is give an upper bound to P(Jy_1 > %) or equivalently a lower bound on

N
P(Jé—l < g

) (3.53)

If Jy = m with probability 1, let kg, k1, ko,...,k¢_1 be an increasing
sequence of natural numbers with kg = m and k;_1 = % We have

-1
N
P(Ji—1 < E) > HP<J1' < kil Jim1 < ki—q) (3.54)
-1
> [[Pi < kil iy = kia) (3.55)
i1

We can calculate P(J; < k;|Ji—1 = ki—1) using the cumulative distribution
function of the binomial distribution which give us

L (n— ki, 1+ k) (3.56)

ki
N

N -1
P(Jr <) > Hlfl_
where
Ln—k1+Fk) = (n—k:)(Z)

is the regularized incomplete beta function.
Then we can write

/CE R — )Rt (3.57)

0

1 N
De(Paya |1Pryar_,) < 5 (Blen () +24 (i) =Pt > ) log(1=2(N))

(3.58)
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In the following graph we can see the values of the bound (3.58) for
four different values of ¢ as a function of N, with a fixed m equal to 8. To
calculate P(Jy—1 > %) we used the formula (3.56) where the ko, k1, ..., ke—1
are evenly spaced integers between m and N.

~~~~~ e ~
100 . = Tl
- .‘-"'-. “H‘-
. S Fe
Y BEL S .
8 < <
o ~ < “
B 1g-1 ‘~“\ s My
210 g ~ i
<
= S &
= . ~,
E ‘\‘ \\
5 S >
5 102 ag b
4 kY
5 \
(W] ~ \
.
-~
=== length 8 T
W79 - fengthe 0 TTmEeal %
L ~,
=== length24| FEsea R
length 32 G
T T T T T T
29 2]'3 211 2].2 2]3 21‘-

Cardinality of key set N

Figure 3.1: Conditional divergence vs N for m = 8

We can see that althought the value of the divergence decreases as N
grows, even for small values of ¢ as 32 this bound on the conditional diver-
gence is useless.
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