
DOUBLE MASTER’S DEGREE

MASTER IN MATHEMATICS - M2 MATH

Discrete Mean Field Optimal Stopping:
Theoretical Analysis and Deep Learning

Algorithms

SPONSORED BY NEW YORK UNIVERSITY

Supervisor: Candidate:
Prof. Mathieu Lauriere (NYU-Shanghai) Lorenzo Magnino
Co-Supervisor: Italian Student Number: 2087940
Prof. Markus Fischer (Unipd) French Student Number: 22300035

September 2024 - Academic Year 2023/2024

2

Preface

“You can know the name of a bird in all the languages of the world, but when you’re

finished, you’ll know absolutely nothing whatever about the bird. . . So let’s look at the

bird and see what it’s doing — that’s what counts. I learned very early the difference

between knowing the name of something and knowing something.”

— Richard P. Feynman, “What Do You Care What Other People Think?”: Further
Adventures of a Curious Character

Everyone searches for their “why” in the things they do and aspire to accomplish. Simply
asking this question and beginning the search, I believe, is already an important step.
Over these past two years, my search has begun, and while I am still not certain if I have
found my “why” in doing research, I am sure that in the process, I felt at home. I believe
in ideas and in the determination not to accept what is perceived as established.
I was fortunate enough, seven months ago, to meet Mathieu, who was the right person at
the right time. I owe much of this achievement to his trust in me and his willingness to
join me on my adventure in Shanghai. In him, I found a kind and generous person, driven
by curiosity, who allowed me to express myself fully. He opened the doors of research
wide for me, acting as much more than a supervisor, and I cannot thank him enough.
I am also grateful to New York University - Shanghai for sponsoring me during my time
in China.
I want to thank all the people who were by my side during these two years, starting
with my family, who never stopped supporting me in every choice I made. I want to
express my gratitude to the friends I found in Paris, especially those at the Saint Ouen
residence, who became my refuge for almost a year of my life. To my lifelong friends
from Pordenone, who have shown me how strong and vital our bond is, I am deeply
thankful. I know you won’t be able to take these words seriously, and reading them
together will probably end in laughter—that’s also why you are so important to me.
With the hope of never ceasing to look “beyond the numbers.”

Lorenzo Magnino
September 2024

3

4

Abstract

Optimal stopping is a fundamental problem in optimization, which has found applications in
risk management, finance, economics, and recently in fields of computer science, for example
in the paradigm of exploration and exploitation in learning algorithms. Here we consider an
extension of the standard framework in which a large population of agents cooperatively try to
solve a collection of optimal stopping problems. We call multi-agent optimal stopping (MAOS)
this problem. The agents interact through the population distribution of states. We study two
variants of the problem: in the asynchronous stopping problem, the agents can stop independently,
while in the synchronous version, they stop according to the same probabilities. However, the
finite-agent problem is hard to solve numerically. Letting the number of agents tend to infinity, we
turn to the mean field version of the problem, that we call mean field optimal stopping (MFOS)
problem. We prove that it provides an approximately optimal solution for the MAOS problem.
Since the usual setting of MFOS is not Markovian, we extend our space so as to establish a
dynamic programming principle. Based on this, we propose two deep learning methods for the
MFOS problem: the first one directly aims at learning the optimal decision by simulating whole
trajectories, while the second one uses the DPP to efficiently learn stopping decisions using
backward induction. We develop a theoretical analysis of the algorithm proving the convergence
of the value. We present numerical experiments to illustrate the efficacy of our methods. We
believe this framework lays the foundation for new advancements in the study of optimal stopping
framework.

5

6

Contents

List of Figures 7

List of Algorithms 9

Notation 14

1 Introduction 17

2 Framework and Motivations 23
2.1 Motivations: multi agent model with common noise 23
2.2 Mean Field Model . 24
2.3 Convergence of the measure and ✏-optimality approximation 27

3 Dynamic Programming 31
3.1 Generale case . 31
3.2 Synchronous Stopping Times . 33

4 Deep Learning Methods: Theoretical Analysis 35
4.1 Algorithms . 35
4.2 Convergence analysis of the algorithms . 35

5 Experiments 45
5.1 Architecture . 45
5.2 Experiments . 46

5.2.1 Towards the Uniform 1D . 46
5.2.2 Towards the uniform 2D . 48
5.2.3 Drones Match the Target Distribution 51

Conclusion 57

7

8 CONTENTS

List of Figures

5.1 Example 1. DA results. Top: Evolution of the distribution and stopping prob-
ability at every time step. Bottom: training and testing losses after training.

. 47
5.2 Example 1. DPP results. Top:Evolution of the distribution and stopping prob-

ability at every time step. Bottom: training and testing losses after training.
. 48

5.3 Example 2. DA results: Top -Evolution of the distribution and stopping prob-
ability at every time step. Bottom- training and testing losses after training.

. 49
5.4 Example 2. DPP results: Top -Evolution of the distribution and stopping prob-

ability at every time step. Bottom- training and testing losses after training.
. 50

5.5 Heat map of the target distribution ⇢ . 51
5.6 3D plot of the target distribution ⇢ . 51
5.7 Example 3. DA results. Top: Evolution of the distribution and stopping prob-

ability at every time step. Bottom - training and testing losses after training.
. 52

5.8 Example 3. Direct Approach: 3D Evolution of the mass 53
5.9 Example 3. DPP results. Top: Evolution of the distribution and stopping prob-

ability at every time step. Bottom- training and testing losses after training.
. 54

5.10 Example 3. DPP 3D Evolution of the mass 55

9

10 LIST OF FIGURES

List of Algorithms

1 Direct Approach for MFOS . 36
2 Dynamic Programming Approach for MFOS 37

11

12 LIST OF ALGORITHMS

13

14 LIST OF ALGORITHMS

Notation

Symbol Description

MULTI AGENT SETTING

X state space

Xi
n state of agent i at time n

↵ vector of pure stopping decisions.

X↵
n vectors of states at time n driven by vectors of controls ↵

pin(X
↵
n) probability of agent i to stop at time n

µN,↵
n proportion of agents at x a time n.

µ0 initial distribution of the agents

Be(p) Bernoulli distribution of parameter p

⇡i(·|X↵
n) distribution of the control ↵ of the player i

✏i, ✏0 random noise of the player i and the common noise

F (n, x, µ, ✏, ✏0) transition function

⌧ i first time for player i at which the decision is to stop

f(n, x, µ),�(x, µ), g(µ) running cost, stopping cost, terminal cost

P(X) set of probability distributions on X

JN (↵) social cost (objective function)

MEAN FIELD SETTING

A↵n "alive" condition of at time n of the representative player

Y ↵
n extended state at time n of the representative player

S extended state space

LIST OF ALGORITHMS 15

Symbol Description

J(↵) mean field social cost

F0
n filtration at time n of the common noise process

L(Y ↵
n |F0

n) law of the process Y ↵
n conditioned on the filtration F0

n

⌫↵n (x, a) proportion of the mass in state x that has "alive" condition equal to a

⌫pX first marginal of ⌫pn

F̄ mean field dynamics

H set of all function that represent a stopping probability

B0 the set of all possible realization of the common noise

P0(z ! x) transition probability to go from z to x condition on the common noise

E0 expectation under P0

Pn,T set of all policies defined in [n, T]

|| · || L1 norm

 (n, ⌫, p)
represent the combination between the running cost and the stopping
cost at time n

Vn(⌫) value function at time n when we start with distribution ⌫

⌫n,⌫,pm detailed distribution at time m > n conditioned on initial conditions.

16 LIST OF ALGORITHMS

Chapter 1

Introduction

What do a crowd motion, a flock of birds and stock market have in common? All these phenomena
can be described by a mathematical theory called mean field theory. Originated in 2006 ? and
? to model decision problems in systems of interacting agents, mean field theory describes two
types of situations: the first when each agent that is part of the population (each bird in the
flock, particles in the ensemble they form etc..) acts to achieve (maximize or minimize) its
own gain or cost while the second when a central planner controls each agent with the goal of
maximizing/minimizing a social gain/cost. The former is called Mean Field Games while the
latter Mean Field Control, which has gained great interest in recent years and this thesis focuses
on the latter type of study.

Mean Field Control (MFC): The main idea of that model is that when the agents we
consider are defined as indistinguishable, that is, possessing the same characteristics and are
interchangeable with each other, then when their number becomes very large, their behavior can
be described by a representative agent. Such an agent acts as a function of the macroscopic state
of the system and is described by the distribution of the population. Our framework lies on finite
state space and discrete time space with finite horizon. Going a little bit deeper in the description,
every agent i follows a dynamic

Xi,↵
n+1 = F (n,Xi,↵

n , µ↵,N
n ,↵i

n, ✏
i
n+1, ✏

0
n+1) Xi,↵

0 = ⇠i,

where Xi,↵
n+1 is the state of agent i at time n+ 1 controlled by ↵i

n and the transition that depend
on the empirical distribution of the population defined as µ↵,N

n := 1
N

PN
i=1 �Xi,↵

n
, a presence

of individual noise ✏in+1 and the presence of the common noise ✏0n+1. While individual noise is
different (actually i.i.d) for each agent, common noise is thought of as a random source acting
on each component of the population in the same way (for example, the intensity and direction
of the wind for each bird within a flock). Note also how the dynamics of each agent at a given
instant is affected by the distribution of the entire population at the same instant (µN,↵

n within the
formula) and this term is called mean field interaction. The entire population of N agents want to
solve the problem of minimazing the social cost described by

17

18 CHAPTER 1. INTRODUCTION

sup
↵2A

E
"
1

N

NX

i=1

TX

n=0

f i(n,Xi,↵
n , µN,↵

n) + g(µN,↵
T)

#

where f describes a running cost (i.e a cost that it is payed at every time step) and g is the
terminal cost. When the number of agents tends to infinity the contribution of each individual
agent through the empirical distribution becomes zero, and thus the agents become independent.
In this situation, an averaging effect takes place and due to the symmetry of the problem we have
the so called propagation of chaos phenomenon:

1

N

NX

i=0

�Xi,↵
n

! L(X↵
n), as N ! 1.

In this mean field regime, each agent follows a dynamics of the McKean - Vlasov type described
by

X↵
n+1 = F (n,X↵

n ,L(X↵
n |F0

n),↵n, ✏n+1, ✏
0
n+1) X↵

0 ⇠ µ0,

where µ0 is the initial distribution of the system and L(X↵
n |F0

n) is the law of the agent at time n
conditioned on the filtration at time n generated by the common noise process (we can think the
filtration as the "story", i.e all the realizations, of the common noise process up to time n). The
social cost is now formulated as

sup
↵2A

E
"

TX

n=0

f(n,X↵
n ,L(X↵

n |F0
n) + g(L(X↵

T |F0
T))

#
.

The mean field optimal stopping belonges, in some extent, to this type of class. But let us take a
step back and briefly describe what the problem of optimal stopping is.

Optimal Stopping: Optimal stopping theory is a field that focuses on determining the most
advantageous moment to halt a particular process in order to achieve the greatest expected reward
or the smallest expected cost. This concept has widespread applications across various domains,
including finance, where it assists in identifying the ideal time to buy or sell assets for maximum
profit. In the context of gambling, optimal stopping strategies guide players on when to quit to
maximize winnings or minimize losses. Furthermore, it applies to search and matching problems,
such as determining the best time to accept a job offer during a job hunt. Beyond these areas,
optimal stopping theory is utilized in fields such as healthcare decision-making, quality control
processes, and even online algorithms, demonstrating its versatility and importance in making
timely and strategic decisions across diverse scenarios. From the probabilistic point a view, given
a filtration F a stopping time ⌧ is a non negative random variable such that {⌧ = n} 2 Fn for
every n = 0, . . . , T (i.e it is possible to know if n it is the right moment to stop only with the
information that I have from the beginning up to time n). The optimal stopping problems want to
solve the following question: given a dynamical system Z and a reward function � the goal is to
find the optimal time ⌧ in order to maximize E [�(Z⌧)].
This setting can be extended to a multi-agent context in which each agent follows a stopped
dynamic, and the cost can also be extended making us find ourselves in a similar situation as

19

before in the context of mean-field control. In this case the control ↵ is when we decide to stop
each agent and unlike most cases of mean filed control this affects the whole trajectory from that
moment on. It is therefore referred to as non-Markovian setting. This aspect will play a crucial
role in our discussion and we are going to highlight the possible connections and differences to
MFC.

Dynamic Programming Principle As written in ?: "Life can only be understood going

backwards, but it must be lived going forward. - Kierkegaard". Formalized by Richard Bellman
in the 1950s the dynamic programming principle stands that the optimal solution of a problem
can be decomposed through the optimal solutions of the subproblems associated to it. A key
aspect in applying this method is that the problem we are studying need to verifies the so called
"Principle of Optimality" that states that "An optimal policy has the property that whatever the
initial state and decisions are, the remaining decisions must constitute an optimal policy with
regard to state resulting from the first decision". In shortste path problems (where the goal is to
find the shortest path from A to B in a specific graph) it means that the shortest path between two
nodes contains the shortest paths between intermediate nodes. A central element of this method is
the Bellman’s Equation. It is a recursive relationship between the value (expected payoff/cost) of
a given time and the value of the next time step. In this way the problem can be decomposed into
subproblems and solved by backward induction. In the literature most of the times it is described
by the following formula

V (s) = max
a

⇢
r(s, a) + �

X

s0

P (s0|s, a)V (s0)

�

where V (s) is the value of the state s, a is the action, r(s, a) is the reward when we are in state s
and we use the action a, P (s0|s, a) is the probability to go from s to s0 when the action a is used
and finally � is the discount factor that permits us to taking into account more the present than
the future reward. In our formulation this formula will have the following form:

Vn(s) = sup
a

⇢
 (n, s, a) + E

⇥
Vn+1(s

0)|s, a
⇤�

Developing a dynamic programming principle (DPP) for a problem gives the opportunity to
develop algorithms that perform better than other method.

Deep Learning Methods: Deep learning has become a cornerstone of modern artificial
intelligence, powering advancements in diverse fields such as image recognition, natural language
processing, and autonomous systems. To tackle the MFOS problem numerically, we consider
two deep learning-based approaches grounded in distinct formulations:

1. Direct Approach (DA): The first approach attempts to directly minimize the mean-
field social cost J(p) by optimizing over all possible stopping probability functions
p : {0, . . . , T} ⇥ X ! [0, 1]. Here, a time-dependent neural network is employed to
parameterize the stopping decision, and training involves iteratively updating the network
weights to reduce the total social cost across the population.

20 CHAPTER 1. INTRODUCTION

2. Dynamic Programming Approach (DP): The second, more structured approach leverages
the Dynamic Programming Principle (DPP). This method involves solving for the optimal
stopping probability via backward induction. For each timestep n, the algorithm learns
the true value function Vn(⌫) by solving an optimization problem over one-step stopping
probabilities, effectively training a sequence of neural networks backward in time.

Both approaches utilize deep learning’s ability to handle high-dimensional spaces and non-linear
dependencies. In the DA, the stopping decision is learned holistically across all time steps, which
can be seen as a global optimization problem. On the other hand, the Dynamic Programming
Approach breaks down the problem into a series of smaller, more manageable optimization tasks,
making use of the recursive nature of the problem.
The DA provides a straightforward application of deep learning to the MFOS problem, but it
may struggle with the curse of dimensionality and local minima due to the complexity of directly
optimizing the entire social cost. The DPP mitigates some of these challenges by focusing on
optimizing at each time step independently, though it requires careful coordination across the
different time steps to ensure consistency in the learned stopping policies.

Related Works
Optimal stopping. Optimal stopping (OS) problems model situations in which the goal is to stop
a dynamical system so as to minimize a cost. To make the models more realistic, randomness is
incorporated in the dynamics. A typical optimal stopping problems (in discrete time) is the famous
problem of Job search (also called House Selling or Secretary problem) [Lippman and McCall,
1976]. Another important example (in continuous time) is the pricing of American options in
finance [Björk, 2009]. More recently, there are also applications in machine learning [Wang
et al., 1993]. From the theoretical viewpoint, optimal stopping served as an important step in the
development of the optimal control theory, since many ideas have been developed in the former
setting before being extended to the more complex optimal control setting. See [Shiryaev, 2007]
for more background. In general, there are no explicit solutions, which justified the introduction
of various numerical methods.
Computational methods. Typical numerical methods to solve such problems rely on a
characterization of the value function through a backward equation. In continuous time and space,
it takes the form of a partial differential equation, which can be solved using methods such as
finite elements [Achdou and Pironneau, 2005]. The problem can also be solved using probabilistic
methods such as [Bally and Pagès, 2003]. However, except in some special cases, the classical
methods do not scale well to problems with high dimensional states. In the recent years, deep
learning methods have leveraged the power of deep neural networks to tackle optimal problems
in high dimension. Becker et al. [2019] proposed to learn the stopping decision at each time step
using a deep network by exploiting dynamic programming, and Herrera et al. [2023] extended
the approach using randomized neural networks. Several other approaches have been proposed,
particularly for continuous time OS problems, such as learning the stopping boundary [Reppen
et al., 2022].

21

Multi-agent optimal stopping. Many real-world scenarios involve several agents and not
just one, for instance in finance [Kobylanski et al., 2011], economics [Rosenberg et al., 2007,
Kleinberg et al., 2021], and robotics [Crowther, 2023]. The problem’s complexity increases with
the number of agents and quickly becomes intractable unless simplifying approximations are
made. In this work, we will focus on a class of multi-agent optimal stopping (MAOS) problems
in which the agents cooperate to minimize a social cost, and both the dynamics and the cost
depend only on the individual agent’s state and the empirical distribution of agents. This allows
us to approximate the solution using a mean field optimal stopping (MFOS) problem. MFOS has
recently been studied in continuous time and spaces [Talbi et al., 2023, 2022]. In the present work,
we focus on discrete time and finite space models for the agents. However, since the optimal
stopping decisions and the value functions are functions of the whole population distribution as
we will show, the problem is intrinsically high dimensional, which motivates the use of deep
learning methods.
Mean Field Control. In the discrete time mean field control [?] describe stochastic optimal
control problem of nonlinear mean-field systems and reformulate the problem as a deterministic
problem providing a dynamic programming principle in the general form. For other work
related of MFC see [Bensoussan et al., 2013, Carmona and Delarue, 2018]. Applications
include crowd motion [Achdou and Lasry, 2019], flocking [Fornasier and Solombrino, 2014],
finance [Carmona and Laurière, 2021] opinion dynamics [Liang and Wang, 2019], and artificial
collective behavior [Gu et al., 2021, Cui et al., 2024], among others.

Main Contributions
Our contribution are the follwing:

• we present a discrete time and space MAOS with common noise and its MFOS limit
with the presence of randomized stopping times and we show that MFOS provides an
approximately otpimal stopping rule for MAOS, and and the quality of approximation
increases with the number of agents in the system.

• we prove a Dynamic Programming Principle for MFOS problems in two different setting:
asynchronous stopping decision and asynchronous stopping decision.

• we develop a theoretical analysis for the convergence of the algorithm.

• we propose two deep learning method in order to solve MFOS, by learning the optimal
stopping decisions as a function of the whole population distribution.

• we present numerical experiments through three example of increasing complexity in order
to validate our model.

22 CHAPTER 1. INTRODUCTION

Organization
The thesis unfolds as follows. In the next chapter we present the main framework describing the
mean field model. Furthermore we discuss the motivation of the mean field setting due to the finite
multi agent problem. We prove how the first one approximate well the latter presenting the famous
result known as propagation of chaos. In Chapter 3 we establish the dynamic programming
principle for both synchronous and asynchronous stopping decision. In chapter 4 we present the
algorithms that we used for the experiments and we study the convergence. Finally last chapter
present the experiments done and we conclude with conclusion, consideration and further works.

Chapter 2

Framework and Motivations

2.1 Motivations: multi agent model with common noise

The mean field problem that we will solve is motivated by the N -agent problem that we are about
to describe. Let T be a time horizon and let N be the number of agents that are interacting. Let
X be a finite state space. Each agent i has a state denoted by Xi

n at time n. At time n, each agent
stops with probability pin(X

↵
n). We introduce ↵i

n a random variable taking value 0 if the agents
continue and 1 if it stops. We denote by ⇡i(·|X↵

n) = Be(pin(X
↵
n)) its distribution, which is a

Bernoulli distribution. We denote by X↵
n = (X1

n, . . . , X
N
n) and ↵ = (↵1, . . . ,↵N) the vectors

of states and stopping decisions at time n.
Dynamics. We assume that the agents are indistinguishable and interact in a symmetric fashion,
i.e. through their empirical distribution µN,↵

n (x) := 1
N

PN
i=1 �Xi,↵

n
(x), which is the proportion

of agents at x at time n.The states evolve according to: for every i = 0, . . . , N ,

8
>><

>>:

Xi,↵
0 ⇠ m0

↵i
n ⇠ ⇡i(·|X↵

n), Xi,↵
n+1 =

(
F (n,Xi,↵

n , µN,↵
n , ✏in+1, ✏

0
n+1), if

Pn
m=0 ↵

i
m = 0

Xi,↵
n , otherwise,

(2.1)

where ✏in is a random noise impacting the evolution of agent i, m0 is the initial distribution and
✏0n is the common noise that affects the dynamics of all agents equally. Let us define the stopping
time for agent i: ⌧ i = inf{n � 0 :

Pn
m=0 ↵

i
m � 1}, which the first time for player i at which

the decision is to stop.
Objective function. Let us consider the running cost f : J0, T K⇥X ⇥P(X) ! R, where P(X)
denotes the set of probability distributions on X . Then let us consider � : X ⇥ P(X) ! R,
where �(x, µ) denotes the cost that an agent incurs if she stops at x and the current population
distribution is µ. As a terminal cost we are going to define g : P(X) ! R which depends only
on the distribution of agents at the terminal stage. The goal for the all the N agents is collectively
minimize the following social cost function:

23

24 CHAPTER 2. FRAMEWORK AND MOTIVATIONS

JN (↵) = E

2

4 1

N

NX

i=0

0

@
⌧ i�1X

n=0

f(n,Xi,↵
n , µN,↵

n) + �(Xi,↵
⌧ i , µN,↵

⌧ i) + g(µN,↵
T)

1

A

3

5 , (2.2)

with the convention that if ⌧ i = 0 then the second summation is not computed for that agent i. In
other words, the problem consists in finding (↵1, . . . ,↵N) 2 argmin JN .

2.2 Mean Field Model
As mentioned earlier, if we let the number of players tend to infinity, we expect, thanks to condi-

tional propagation of chaos type results, that the states will become "conditionally" independent
and each state will have the same evolution, which will be a non-linear Markov chain. This
is the equivalent of conditional McKean-Vlasov dynamics. Furthermore, it can be expected
that by solving the limiting problem, we obtain an approximate solution for the problem with
N < +1 agents. More precisely, passing formally to the limit in the dynamics (2.1), we obtain
the following evolution:

8
><

>:

X↵
0 ⇠ µ0

↵n ⇠ ⇡(·|X↵
n) = Be(pn(X

↵
n)), X↵

n+1 =

(
F (n,X↵

n , µ
↵
n, ✏n+1, ✏0n+1), if

Pn
m=0 ↵m = 0

X↵
n , otherwise,

(2.3)
where pn(x) denotes the probability with which the agent continues if she is in state x at time
n, and µ↵n is the distribution of X↵

n itself conditioned on the common noise, which we may also
denote by L(X↵

n |F0
n), where F0 contains the realization of the common noise until time n.

We want to emphasize the fact that the introduction of randomized stop times for individual
agents is crucial for our purpose and differs from the randomization of the central planner on
policies.
We can define, in the same way we did before, the first time in which the control ↵ is 1 as
⌧ := inf{n � 0 :

Pn
m=0 ↵m � 1}. Then the social cost function in the mean field problem is

defined as:

J(↵) = E
"
⌧�1X

n=0

f(n,X↵
n , µ

↵
n) + �(X

↵
⌧ , µ

↵
⌧) + g(µ↵T)

#
. (2.4)

Notice that here the expectation has the effect of averaging over the whole population, so there is
no counterpart to the empirical average that appears in the finite agent cost (2.2). To stress the
dependence on the initial distribution, we will sometimes write J(↵,m0).
We want to show with an example that the extension to randomized stopping times is necessary
in the mean-field formulation, because when we try to plug an optimal strategy into the N -agent
problem, we notice that the latter is no longer optimal.

Example 1 (Why do we need randomization in the control?). Let us consider the following

scenario: we take the state space X = {D,C} and initial distribution µ0 = 3/4�D + 1/4�C;

2.2. MEAN FIELD MODEL 25

transition function F (D,x, µ, ✏) = C, F (C, x, µ, ✏) = D, meaning that the system at any time

step, can stop or switch the state. We take as social cost:

�(x, µ) =

(
1 if µ(x) 1/2

5 if µ(x) > 1/2.
(2.5)

Notice that without allowing the randomized stopping rule the optimal value we can achieve
is V ⇤ = 3/4 · 5 + 1/4 · 1 = 4, which corresponds to stop all the distribution (in every state)
at time n = 0. In the end, this formulation cannot reflect the optimum in the association of N
agents. Indeed when we plug this policy into the N agent formulation we obtained the value
V N = 1/N(3N/4 ·5+N/4 ·1) = 4, which is not optimal since we can use the strategy (which is
going to be optimal for the N -agent problem) to stop, at time 0, only the 1/3 of players in state D,
allowing the others to change state. This leads to a final configuration of m1 = 1/2�D + 1/2�C
and a value of V ⇤,N = 1/N(N/4 · 5 + 3N/4 · 1) = 2 < V N = 4.
In particular, we want to emphasize the fact that, without allowing a randomized stopping time
in the MF formulation, we find an optimal state-dependent strategy, which corresponds , in the
problem with finite agents, to the fact that every player in the same state will have the same
stopping time.

Mean Field model with extended state: A key step towards building efficient algorithms
is dynamic programming, which relies on Markovian property. However, in its current form the
above problem is not Markovian. In fact a player who stops at time n = m must remain stationary
in the interval Jm+ 1, T K and when this information is not contained in the state variable we are
unable to take it into account.
To make the system Markovian, we need keep track of the information about whether the player’s
process has been stopped in the past. This information is not contained in the state so we need
to extend the state. Let A↵ = (A↵n)n=0,...,T the process such that A↵n = 0 if the agent has
already stopped before time n, and 1 otherwise. It is important to notice that if the agent is
stopped precisely at time n then, we still have A↵n = 1 but A↵m = 0 for every m > n. We
define the extended state as: Y ↵

n = (X↵
n , A

↵
n) which takes value in the extended state space

S := X ⇥ {0, 1}
At this point we introduce the probabilistic framework for a rigorous formulation of our problem.

Probabilistic framework: Let S be a finite state space and let T be a finite time horizon.
Denote by P(S) the set of probability distributions on S , that we identify with the simplex on S ,
i.e., P(S) = {⌫ 2 [0, 1]|S| :

P
y2S ⌫(y) = 1}. Let (✏0n)n=0,...,T be a stochastic process playing

the role of the common noise such that ✏0n+1 is independent of ✏01, . . . , ✏0n and ✏0 = 0 and let call
(F0

n)n=0,...,T its canonical completed filtration. However to handle the extra randomness given
by probability to stop or not (defined by a Bernoulli distribution) we are going to extend our
space. In order to do this we recall the fact that a Bernoulli distribution of a parameter p can be
built from a random noise U distributed as a uniform distribution on the interval [0, 1]. Indeed
if the result of the random variable U = u is less than p then the Bernoulli gives 1 as result, 0
otherwise. Let (⌦,G,P) the probability space where ⌦ := ⌦E ⇥ ⌦U := {(✏0k, uk)k=0,...,T } with

26 CHAPTER 2. FRAMEWORK AND MOTIVATIONS

(✏0k)k=0,...,T independent from (uk)k=0,...,T and for every k = 0, . . . , T , uk ⇠ U [0, 1] (notice that
the distribution of ✏0 can be arbitrary while er are fixing the uniform distribution in [0, 1] for u
since we are going to construct a "controlled" Bernoulli distribution starting from this uniform
distribution). P is the probability measure define in this extended space and G is the �-algebra
that contains all the measurable events.
Then, the dynamics (2.3) of the representative player can be rewritten as:

8
>>>>>><

>>>>>>:

X↵
0 ⇠ µ0, A↵0 = 1

↵n ⇠ ⇡(·|X↵
n) = Be(pn(X

↵
n))

A↵n+1 = A↵n · (1� ↵n)

X↵
n+1 =

(
F (n,X↵

n , µ
↵
n, ✏n+1, ✏0n+1), if A↵n · (1� ↵n) = 1

X↵
n , otherwise.

(2.6)

The idea of extending the state using the extra information is similar to [Talbi et al., 2023] in
continuous time and space. The mean field social cost (2.4) can rewritten as:

J(↵) = E
 TX

n=0

(f(n,X↵
n , µ

↵
n)A

↵
n(1� ↵n) + �(X

↵
n , µ

↵
n)A

↵
n↵n) + g(µ↵T)

�
(2.7)

Actually, notice that the part of expectation amounts to taking a sum with respect to the extended
state’s distribution. Indeed we handle to type of randomness due to the presence of the common
noise and the control (↵). Let us denote by ⌫pn = L(Y ↵

n |F0
n) the distribution at time n conditioned

on the common noise. We are going to denote ⌫pX the first marginal of ⌫p (sometimes also denoted
by µ). We want to stress the fact that it does not really depend on ↵ but only on the stopping
probability p, so we use the superscript p when referring to ⌫. Note that with the presence of
common noise the limit distribution ⌫ is not deterministic, but it is a random variable that evolves
conditionally with respect to the common noise. This distribution evolves according to the mean
field dynamics:

(
⌫p0(x, 0) = 0, ⌫p0(x, 1) = µ0(x), x 2 X ,

⌫pn+1 = F̄ (⌫pn, pn, ✏
0
n+1),

(2.8)

where the function F̄ is defined as follows. We denote by H the set of all function h : X ! [0, 1],
which represents a stopping probability (for each state) and by B0 the set of of all possible
realization of the common noise. Then, F̄ : P(S) ⇥ H ⇥ B0 ! P(S) is defined by: for
every x 2 X , a 2 {0, 1}, F̄ (⌫, h, ✏0) is the distribution generated by doing one step, starting
from ⌫, using the stopping probabilities h, according to the realization of the common noise ✏0.
Mathematically,

2.3. CONVERGENCE OF THE MEASURE AND ✏-OPTIMALITY APPROXIMATION27

(F̄ (⌫, h, ✏0))(x, a) =

✓
⌫(x, 0) + ⌫(x, 1)h(x)

◆
(1� a) +

+

✓X

z2X

⌫(z, 1)

✓
P(z ! x|✏0)(1� h(z))

◆◆
a

=

✓
⌫(x, 0) + ⌫(x, 1)h(x)

◆
(1� a) +

✓X

z2X

⌫(z, 1)

✓
P0(z ! x)(1� h(z))

◆◆
a

(2.9)

where P(z ! x|✏0) is the transition matrix associated to the unstopped process X conditionally
to the common noise, i.e. it is the probability to go from the state z to the state x knowing that
we are not going to stop in x and we can observe the realization of ✏0. Notice that in general
the transitions may depend on ⌫ itself. So the last equation can be written more succinctly in a
matrix-vector product but the transition matrix depends on ⌫ itself, which is why this type of
dynamics is sometimes referred to a non-linear dynamics.
The mean field social cost can be rewritten purely in terms of the distribution as follows:

J(p) = E0

2

4
TX

n=0

X

(x,a)2S

⇣
f(n, x, ⌫pX,n)a(1� pn(x))⌫

p
n(x, a) + ⌫pn(x, a)�(x, ⌫

p
X,n)apn(x)

⌘
+ g(⌫pX,T)

3

5

(2.10)
where the only randomness that we have to handle with E0 is the realization of the common
noise. Furthermore p : {0, . . . , T}⇥ X ! [0, 1] is the function that associates at every time step
and state the probability to stop (in that state at that time). Let us define P0,T the set of all such
functions.
The link with the above formulation is that ↵n(x) is distributed according to Be(pn(x)), and
⌫pn := L(Y ↵

n |F0
n) is the extended state’s distribution. Moreover, ⌫pn(x, 0) is the mass in x that has

stopped. Last, L(X↵
n |F0

n) = ⌫pX,n =
P

a2{0,1} ⌫
p
n(·, a) is the first marginal of this distribution.

2.3 Convergence of the measure and ✏-optimality approx-
imation

In this section we want to provide two main results for our discussion. The first regard the
convergence of the measures, also called conditional propagation of chaos, while the second is to
recover the approximate solution for the finite agent model.
These two results are classics in the literature and are fundamental to solving the mean-field
control problem to retrieve finite-agent solutions.
Let us recall the extended-state dynamics and the cost for the N -agent problem. Let us fix the
following notation ⌫N,p

m := 1
N

PN
i=1 �Y i,↵

m
and ⌫pm := L(Y ↵

m|F0
m) .

28 CHAPTER 2. FRAMEWORK AND MOTIVATIONS

8
>>>>>>><

>>>>>>>:

Xi,↵
0 ⇠ µ0, Ai,↵

0 = 1

↵i
n ⇠ ⇡in(·|Xi,↵

n) = Be(pn(X
i,↵
n))

Ai,↵
n+1 = Ai,↵

n · (1� ↵i
n)

Xi,↵
n+1 =

(
F (n,Xi,↵

n , 1
N

PN
j=0 �Xj,↵

n
, ✏in+1, ✏

0
n+1), if Ai,↵

n · (1� ↵i
n) = 1

Xi,↵
n , otherwise.

(2.11)

The social cost is defined as:

JN (↵1, . . . ,↵N) = E

1

N

NX

i=0

✓ TX

n=0

f(n,Xi,↵
n , µN,↵

n)Ai,↵
n (1� ↵i

n)+

+ �(Xi,↵
n , µN,↵

n)Ai,↵
n ↵i

n + g(µN,↵
T)

◆�
,

that we can rewrite only in terms of the distribution and using the control p instead of ↵ as

JN (p, . . . , p) = E
 X

(x,a)2S

✓ TX

n=0

⌫N,p
n (x, a)f(n, x, µN,↵

n)a(1� pn(x))+

+ ⌫N,p
n (x, a)�(x, µN,↵

n)apn(x) + g(µN,↵
T)

◆�
=

= E
 TX

n=0

 (n, ⌫N,p
n , pn) + g(µN,↵

T)

�
,

(2.12)

with defined as (n, ⌫, p) :=
P

(x,a)2S f(n, x, ⌫X,n)a(1�pn(x))⌫n(x, a)+⌫n(x, a)�(x, ⌫X,n)apn(x).
Let us define ||µ� ⌫|| :=

P
y2S |µ(y)� ⌫(y)|.

Assumption 1. Let Lp > 0 and let us define P := {p : [0, T] ⇥ X ⇥ P(S) ! [0, 1] :
p is Lp-Lipschitz}, the set of all possible admissible policies. Let K > 0 and let us assume

that the mean field dynamics satisifies: |F̄ (⌫, p, e)� F̄ (⌫ 0, p0, e)| C(e)(k⌫ � ⌫ 0k+ |p� p0|)
with C(e) K for e 2 B0

where B0
is the set of all possible realization of the common

noise. Assume also that the function : J0, T K ⇥ P(X ⇥ {0, 1}) ⇥ P(X) ! R defined

as (n, ⌫, p) :=
P

(x,a)2S f(n, x, ⌫X,n)a(1 � pn(x))⌫n(x, a) + ⌫n(x, a)�(x, ⌫X,n)apn(x) is

L -Lipschitz uniformly with respect to time and the terminal cost g is Lg-Lipschitz.

Summing up, these hypotheses allow us to say that if we start from two distributions that are close
to each other (or converge to each other) then the images through these functions will remain
close to each other (or converge to each other).

Lemma 1 (Conditional propagation of chaos). Suppose Assumption 1 holds. Given the dynamics

(2.11), (2.6) it holds for every n = 0, . . . , T :

sup
p2Pn,T

E
⇥
k⌫N,p

n � ⌫pnk
⇤
 (K(1 + Lp)

n + 1)

p
2|X |p
N

(2.13)

2.3. CONVERGENCE OF THE MEASURE AND ✏-OPTIMALITY APPROXIMATION29

Proof. We are going to follow an induction argument over the time steps:
Initialization: for n = 0, since the samples are iid at time 0, by the law of large numbers (LLN)
we have:

sup
p2P

E
h
k⌫N,p

0 � ⌫p0k
i

p
2|X |p
N

using that E[||µ� ⌫||1] |S|E[||µ� ⌫||2].
Induction step: assume now that (2.13) holds at time n. Using triangle inequality, at time n+ 1
we have, for any p 2 P ,

E
h
k⌫N,p

n+1 � ⌫pn+1k
i

 E
h
k⌫N,p

n+1 � F̄ (⌫N,p
n , pn(⌫

N,p
n), ✏0n+1)k

i
+ E

⇥
kF̄ (⌫N,p

n , pn(⌫
N,p
n), ✏0n+1)� ⌫pn+1k

⇤

where we recall the expression of F̄ described by (2.9).
For the second term, by continuity property of F̄ and p(⌫) we can write :

E
⇥
kF̄ (⌫N,p

n , pn(⌫
N,p
n))� ⌫pn+1k

⇤
=

= E
⇥
kF̄ (⌫N,p

n , pn(⌫
N,p
n), ✏0n+1)� F̄ (⌫pn, pn(⌫

p
n), ✏

0
n+1)k

⇤

 E
⇥
C(✏0n+1)(k⌫N,p

n � ⌫pnk+ |pn(⌫N,p
n)� pn(⌫

p
n)|)

⇤

 E
⇥
K(k⌫N,p

n � ⌫pnk+ Lpk⌫N,p
n � ⌫pnk)

⇤

= K(1 + Lp)E
⇥
k⌫N,p

n � ⌫pnk
⇤
 K(1 + Lp)

n+1E[||⌫N,p
0 � ⌫p0 ||]

 K(1 + Lp)
n+1

p
2|X|p
N

where we used that by induction step assuming that for every n, C(✏0n+1) is bounded by the
constant K independent of p 2 P .
For the first term we have:

E
h���⌫N,p

n+1 � F̄ (⌫N,p
n , pn(⌫

N,p
n), ✏0n+1)

���
i
=

= E
"�����

1

N

NX

i=1

�Y i,↵
n+1

� F̄ (⌫N,p
n , pn(⌫

N,p
n), ✏0n+1)

�����

#
=

= E

2

4

������

X

y2S

1

N

NX

i=1

�Y i,↵
n+1

(y)� F̄ (⌫N,p
n , pn(⌫

N,p
n), ✏0n+1)(y)

������

3

5 =

=
X

y2S

E
"�����

1

N

NX

i=1

�Y i,↵
n+1

(y)� F̄ (⌫N,p
n , pn(⌫

N,p
n), ✏0n+1)(y)

�����

#
=

=
X

y2S

E
"
E
"�����

1

N

NX

i=1

�Y i,↵
n+1

(y)� F̄ (⌫N,p
n , pn(⌫

N,p
n), ✏0n+1)(y)

�����

����Y
p
n

##

=
X

y2S

E
"
E
"�����

1

N

NX

i=1

�Y i,↵
n+1

(y)� E
"
1

N

NX

i=1

�Y i,↵
n+1

(y)

����Y
p
n

#�����

����Y
p
n

##

p
2|X|p
N

30 CHAPTER 2. FRAMEWORK AND MOTIVATIONS

by the LLN, where again the bound is independent of p 2 P . So we have obtained by induction
that:

sup
p2P

E
⇥
k⌫N,p

n � ⌫pnk
⇤
 (K(1 + Lp)

n + 1)

p
2|X|p
N

for every time step n = 0, . . . , T .

Then we are ready to state the following theorem:

Theorem 2 ("-approximate optimality for finite agent model). If p⇤ is the optimal policy for the

MFOS problem and p̂ is the optimal policy for the N -agent problem (when all the agents have to

use the same policy), then: as N ! +1,

JN (p⇤, . . . , p⇤)� JN (p̂, . . . , p̂) ! 0.

with rate of convergence O
✓

1
p
N

◆
(the precise bound is given in the proof).

Proof. We can write:

JN (p⇤, . . . , p⇤)� JN (p̂, . . . , p̂) =

✓
JN (p⇤, . . . , p⇤)� J(p⇤)

◆
+

✓
J(p⇤)� J(p̂)

◆
+

✓
J(p̂)� JN (p̂)

◆

Notice first that we can bound this term simply deleting the second term in the r.h.s noticing
J(p⇤) � J(p̂) 0 since p⇤ is optimal for the mean field cost J(p). For the first term we can
write:

JN (p⇤, . . . , p⇤)� J(p⇤) =

= E
"

TX

n=0

 (n, ⌫N,p⇤
n , p⇤n(⌫

N,p⇤
n)) + g(µN,p⇤

T)

#
�

TX

n=0

 (n, ⌫p
⇤

n , p⇤n(⌫
p⇤
n)) + g(µp⇤

T) =

=
TX

n=0

E
h
 (n, ⌫N,p⇤

n , p⇤n(⌫
N,p⇤
n))� (n, ⌫p⇤n , p⇤n(⌫

p⇤
n)) + g(µN,p⇤

T)� g(µp⇤

T)
i

TX

n=0

E
h
L (

���⌫N,p⇤
n � ⌫p

⇤
n

���+
���p⇤n(⌫N,p⇤)� p⇤n(⌫

p⇤
n)

���) + LgkµN,p⇤

T � µp⇤

T k
i

TX

n=0

E
h
L (1 + Lp)

���⌫N,p⇤
n � ⌫p

⇤
n

���+ LgkµN,p⇤

T � µp⇤

T k
i

 (L (1 + Lp) + Lg)T sup
n2{0,...,T}

sup
p2P

E
h���⌫N,p⇤

n � ⌫p
⇤

n

���
i

by Lemma 1. For the last term J(p̂) � JN (p̂) we can apply the same argument that we just
described. In the following way we obtain:

JN (p⇤, . . . , p⇤)� JN (p̂, . . . , p̂) (L (1 + Lp) + Lg)T
⇥
1 +KT (1 + Lp)

T
⇤
p

2|X|p
N

Chapter 3

Dynamic Programming

Our motivation for developing a dynamic programming principle (DPP) for our formulation
comes from both the literature and numerical purposes. Dynamic programming (DP) appears
very often in the literature, encompassing fields such as economics, control theory, finance,
development of computer programs to the ability of a computer to master the game of chess, Go,
and many others. In the control theory of a dynamic system in particular, it has been studied and
used very often to find solutions to a given optimization problem. Moreover, implementing an
algorithm that founds on DPP often leads to precise optimal solutions that perform better than
other methods. The main idea of the DPP is to decompose a multi-level defined problem to a
smaller sub-problem. Specifically, in our setting, the decision to stop the agent at a time interval
[0, T] will be decomposed into a binary decision at each time recursively: “if we know an optimal
decision from time m = 1 onward, then the problem reduces to the decision of whether or not to
stop the agent at time m = 0.”

3.1 Generale case
We introduce the dynamical form of the social cost (2.10) as:

Vn(⌫) := inf
p2Pn,T

J(p(x), ⌫)

:= inf
p2Pn,T

E0

 X

(x,a)2S

TX

n=0

f(n, x, ⌫n,⌫,pX,n)a(1� pn(x))⌫
n,⌫,p
n (x, a) +

+ ⌫n,⌫,pn (x, a)�(x, ⌫n,⌫,pX,n)apn(x) + g(⌫n,⌫,pX,T)

�
,

(3.1)

where Pn,T is the set of all possible function p : {n, . . . , T}⇥ X ! [0, 1] and ⌫p,⌫,n denotes the
distribution of the process that starts at time n with a given distribution ⌫; it satisfies (2.8) but
starting at time n instead of 0 with ⌫p,⌫,nn = ⌫.
The optimal value at time 0 will be denoted: V ⇤(⌫) = V0(⌫), which is also equal to infp J(p, ⌫).
With this definition we can now state and prove the following DPP.

31

32 CHAPTER 3. DYNAMIC PROGRAMMING

Theorem 3 (Dynamic Programming Principle). For the dynamics given by (2.6) and the value

function given by (3.1) the following dynamic programming principle holds:

8
>>>>>><

>>>>>>:

Vn(⌫) = inf
h2H

X

(x,a)2S

⌫(x, a)�(x, ⌫X)ah(x) + ⌫(x, a)f(n, x, ⌫X)a(1� h(x))

+ E0
⇥
Vn+1(F̄ (⌫, h, ✏0n+1))

⇤
.

VT (⌫) =
X

(x,a)2S

⌫pT (x, a)�(x, ⌫
p
X,T)a+ g(⌫pX,T)

(3.2)

where ⌫X is the first marginal of the distribution ⌫, i.e., ⌫X(x) = ⌫(x, 0)+⌫(x, 1) and E0
is the ex-

pectation over the realization of the common noise . The sequence of optimizers defines an optimal

stopping decision that we will denote by h⇤ : {0, . . . , T�1}⇥X⇥P(S) ! [0, 1] and satisfies: for

every n 2 {0, . . . , T � 1} and every ⌫ 2 P(S), Vn(⌫) =
P

(x,a)2S ⌫(x, a)�(x, ⌫X)ah⇤n(x, ⌫) +

⌫(x, a)f(n, x, ⌫X)a(1� h⇤n(x, ⌫)) + E0
⇥
Vn+1(F̄ (⌫, h⇤n(x, ⌫), ✏

0
n+1))

⇤
.

Proof. To prove this result, we will show that actually the mean field optimal stopping problem
can be reduce to a mean field optimal control problem in discrete time and continuous space.
Then we can apply the well-studied dynamic programming principle for mean field Markov
decision processes (MFMDPs). We have:

Vn(⌫) := inf
p2Pn,T

E0

 X

(x,a)2S

TX

m=n

f(m,x, ⌫n,⌫,pX,m)a(1� pm(x))⌫n,⌫,pm (x, a) +

+ ⌫n,⌫,pm (x, a)�(x, ⌫n,⌫,pX,m)apm(x) + g(⌫n,⌫,pX,T)

�
=

= inf
p2Pn,T

E0

"
TX

m=n

 (m, ⌫n,⌫,pm , pm) + g(⌫n,⌫,pX,T)

#
,

where : [|n, T |]⇥ P(S)⇥ Pn,T ! R and it is defined by,

 (n, ⌫, p) :=
X

(x,a)2S

f(n, x, ⌫X,n)a(1� pn(x))⌫n(x, a) + ⌫n(x, a)�(x, ⌫X,n)apn(x). (3.3)

We can then define the process Z⌫ := (Zp
n)n=0,...T as Zp

0 = z := ⌫ and Zp
n+1 := F̄ (Zp

n, pn, ✏0n+1).
We also denote as Zp,1

m := ⌫n,⌫,pX,m the first marginal of this process. With this notation our value
function can be written as:

Vn(⌫) := Vn(z) = inf
p2Pn+1

E0

"
TX

m=n

 (m,Zp
m, pm) + g(Zp,1

T)

#
.

and we recognize a well studied control problem for which the DPP is:

Vn(z) = inf
h2H

 (n, z, h) + E0
⇥
Vn+1(F̄ (z, h, ✏0n+1)

⇤
,

where H is the set of all functions h : X ! [0, 1]. Eventually we can conclude by proceeding
backward, getting our initial notation.

3.2. SYNCHRONOUS STOPPING TIMES 33

3.2 Synchronous Stopping Times
Actually we can show that this DPP still holds for a restricted class of randomized stopping times
in which all the agents (regardless of their own state) have the same probability of stopping. Let
P̃n,T be the set of p : {0, . . . , T} ! [0, 1]. Notice that here pn does not depend on the individual
state x. At every time step n = m every agent has the same probability to stop pm, i.e for every
x 2 X at time n = m, pn(x) = pn. We call this set as synchronous stopping times. Let us define:

Ṽn(⌫) := inf
p2P̃n,T

J(p, ⌫) := inf
p2P̃n,T

E0

 X

(x,a)2S

TX

m=n

f(m,x, ⌫n,⌫,pX,m)a(1� pm)⌫n,⌫,pm (x, a) +

+ ⌫n,⌫,pm (x, a)�(x, ⌫n,⌫,pX,m)apm + g(⌫n,⌫,pX,T)

�

Then it is easy to extend our previous result described in Theorem 3.

Theorem 4 (Dynamic Programming Principle for Synchronous Stopping Times). For the setting

of synchronous stopping times, the value function satisfies:

8
>>><

>>>:

Ṽn(⌫) = inf
h2[0,1]

X

(x,a)2S

⌫(x, a)�(x, ⌫X)ah+ ⌫(x, a)f(n, x, ⌫X)a(1� h) + E0
h
Ṽn+1(F̄ (⌫, h, ✏0n+1))

i
.

ṼT (⌫) =
X

(x,a)2S

⌫pT (x, a)�(x, ⌫
p
X,T)a+ g(⌫pX,T)

(3.4)

The proof follows the same argument as the one of Theorem 3 so we omit it.

34 CHAPTER 3. DYNAMIC PROGRAMMING

Chapter 4

Deep Learning Methods: Theoretical
Analysis

4.1 Algorithms
To address the MFOS problem numerically, we have two approaches based on two different
formulations. As the most naive approach, we can attempt to directly minimize the mean-field
social cost J(p) stated in (2.10), where we optimize over all the possible stopping probability
functions p : {0, . . . , T} ⇥ X ! [0, 1]. A more ideal treatment is to leverage the Dynamic
Programming Principle (DPP) discussed in Theorem 3 and solve for the optimal stopping
probability using induction backward in time. For each of the timestep n, we implicitly learn the
true value function Vn(⌫) by solving the optimization problem in (3.2), where we search over
all possible one-step stopping probability function h : X ! [0, 1] for each time n. We refer to
the method of directly optimizing mean-field social cost as the direct approach (DA) and the
attempt to solve MFOS via backward induction of the DPP approach.To alleviate the notations,
we denote: ̄(⌫, h) =

P
x2X ⌫(x, 1) (x, ⌫X)h(x), which represents the one-step mean field

cost. In the code, optim_up denotes one update performed by the optimizer (e.g. Adam in our
simulations). Pseudocodes are shown in algorithms 1 and 2

4.2 Convergence analysis of the algorithms
In this section we want to provide a convergence analysis of the estimator V M

0 of the value
function Vn, where M represent the training sample size. Note that we are going to study the
algorithm at the mean field level. In particular we are going to analyse the convergence of the
DP-algorithm where at each step t we are going to approximate the optimal policy by our neural
network keeping track of all the approximations we have already made in the interval [t+ 1, T]
(we proceed backward in time). Our interest relies on how the finite size M of the training set
affect the convergence of our algorithm, so we are going to assume that the optimizer find the
exact argmin at each iteration. Our goal is to show that as the size of our training set goes to

35

36 CHAPTER 4. DEEP LEARNING METHODS: THEORETICAL ANALYSIS

Algorithm 1 Direct Approach for MFOS
Require: Time-dependent stopping decision neural network: ✓ : {0, . . . , T} ⇥ X ⇥

P(S) ! [0, 1], cost function , mean-field dynamic transition F̄ , time horizon T ,
max training iteration Niter.

1: for k = 0, . . . , Niter � 1 do
2: Uniformly sample initial distribution ⌫p0 from the probability simplex on R2|X |

and a common noise trajectory (e0n)
T�1
n=0

3: for n = 0, . . . , T � 1 do
4: pn(x) = ✓(x, ⌫pn, n; ✓k) for any x 2 X . Compute stopping probability
5: `n =

P
x2X (n, ⌫

p
n, pn)(x) . Compute loss at time n

6: ⌫pn+1 = F̄ (⌫pn, pn, e
0
n) . Simulate MF dynamic

7: end for
8: Compute `T = g(⌫pX,T)

9: ` =
PT

n=0 `n . Compute the total loss
10: ✓k+1 = optimizer_up(✓k, `(✓k)) . AdamW optimizer step
11: end for
12: return ✓Niter

infinity our neural network can compute the exact optimal value.
Let us recall our mean field setting: our process is the distribution of the population at each time
step (⌫pn)n=0,...,T (when we measure not only the proportion of people in a given state but also the
proportion among them that has stopped or not) and it is controlled by the policy p that represent
at each time step and each state the probability to stop in that state at that time; this process
follow the dynamics given by (2.9) so, ⌫pn+1 = F̄ (⌫pn, pn, ✏0n+1); the social cost associated to this

dynamics is J(p) := E0
hPT

n=0 (n, ⌫
p
n, pn) + g(⌫pX,T)

i
where is defined in (3.3). We define

the class of one-layer neural networks that are going to approximate the optimal policy as:

AM :=

⇢
⌫ 2 P(S) ! A(⌫;�) = (A1(⌫;�), . . . , Aq(⌫;�)) 2 [0, 1]X , |X | = q,

Ai(⌫;�) = �

0

@
KX

j=1

cij(aij · ⌫ + bij)+ + c0j

1

A , i = 1, . . . , q

� = (aij , bij , cij)i,j , ai,j 2 Rd, ||aij || ⌘, bij , cij 2 R,
KX

i=0

cij �

�

(4.1)

where K represent the neurons and � and ⌘ are usually referred to in the literature as respectively
total variation and kernel. In this way we are working with a neural networks that have one
hidden layer, rectified linear activation function and � as output layer.
Using a one layer Neural Network (NN) denoted by A(⌫;�) 2 AM (where M is the size of
the training sample) we are going approximate our optimal policy learning backward in time

4.2. CONVERGENCE ANALYSIS OF THE ALGORITHMS 37

Algorithm 2 Dynamic Programming Approach for MFOS
Require: A sequence of stopping decision neural network: n

✓ : X ⇥ P(S) ! [0, 1] for
n 2 {0, . . . , T � 1}, cost function , mean-field dynamic transition F̄ , time horizon
T , max training iteration Niter.

1: Set T
✓ = 1 since all distribution stopped at time T .

2: for n = T � 1, . . . , 0 do . Train backward in time
3: for k = 0, . . . , Niter � 1 do
4: Uniformly sample initial distribution ⌫pn from the probability simplex on

R2|X |

5: for m = n, . . . , T do
6: if m = n then
7: pm(x) = m

✓ (x, ⌫
p
m; ✓

n
k) . Compute with NN for current time

8: else
9: pm(x) = m

✓ (x, ⌫
p
m; ✓

m,⇤) . Compute with trained NN from future
time

10: end if
11: `m =

P
x2X (m, ⌫pm, pm)(x) . Compute loss at time m

12: ⌫pm+1 = F̄ (⌫pm, pm, e
0
n) . Simulate MF dynamic

13: end for
14: Compute `T = g(⌫pX,T)

15: ` =
PT

m=n `m . Compute the total loss from time n to T
16: ✓nk+1 = optimizer_up(✓mk , `(✓

n
k)) . AdamW optimizer step

17: end for
18: Set ✓n,⇤ = ✓nNiter

. Stored trained weight
19: end for
20: return (n

✓nNiter
)T�1
n=0

38 CHAPTER 4. DEEP LEARNING METHODS: THEORETICAL ANALYSIS

our parameter �, in the following sense: at every time step n we keep track of all approximated
optimal policies p̂k, that we have already approximated, for k = n+ 1, . . . , T � 1 and we search
for

�̂n 2 argmin
�

E0
h
 (n, ⌫n, A(⌫n;�)) + ẐA

n+1

i
, (4.2)

where ⌫n ⇠ ⇢n (sample training distribution) and we denoted by ẐA
n+1 :=

PT�1
k=n+1 (k, ⌫̂

�
k , p̂

�
k(⌫̂

�
k))+

g(⌫̂�X,T) with ⌫̂�n+1 = F̄ (⌫n, A(⌫n;�), ✏0n+1) and ⌫̂�k+1 = F̄ (⌫̂�k , p̂
�
k(⌫̂

�
n), ✏0n+1) for every k =

n+ 1, . . . , T � 1.
Given an estimate p̂k, k = n+ 1, . . . , T � 1 the approximated policy p̂n is estimated by using
a training sample (⌫(m)

n , (✏(m),0
k+1)T�1

k=n), for m = 0, . . . ,M for simulating the trajectory and
optimizing � of A(·,�) by a stochastic Gradient Descent method (ADAMW). We are going
to denote (p̂Mk)T�1

k=n to underline the fact that we are approximating the optimal policy using a
training sample of size M . The estimated value function is defined by:

V̂n
M

:= EM

"
T�1X

k=n

 (k, ⌫̂n,⌫k , p̂Mk (⌫̂n,⌫k)) + g(⌫̂n,⌫X,T)

#
=: J

(p̂Mk)T�1
k=n

n , (4.3)

where EM is the expectation conditioned on the training set used for computing (p̂Mk)k, and
(⌫̂n,⌫k)k is driven by the estimated optimal controls.
In practice at every time steps we generate a training sample for ⌫(m)

n , m = 1, . . . ,M and
samples for the common noise (✏(m)

k)Tk=n+1 for m = 1, . . . ,M , then we consider the policy

p̂n 2 argmin
A2AM

Ĵ
A,(p̂Mk)
n,M := argmin

A2AM

1

M

MX

m=1

 (n, ⌫(m)

n , A(⌫(m)
n)) + Ẑ(m),A

n+1

�

where Ĵ
A,(p̂Mk)
n,M is the empirical cost function and p̂n := A(·; �̂n). So we are computing and

approximation of p̂ using Stochastic Gradient Descent (SGD) method.
The analysis of the convergence of a similar algorithm has been studied by ?. Their framework
is not mean field and therefore differs form ours in several aspects. For that reason we cannot
apply their result as a "black-box" but we are going to prove it from scratch. Note that our initial
purpose is to solve the N -agent problem so finally we want to ensure that the assumptions on it
bring to "good" formulation of the mean field problem.

Assumption 5. We are going to make assumptions on the transition probability, the dependence

on the initial distribution, the cost function, the dynamics and the neural network.

(H-1) - Dynamics: for the convergence of the algorithm we introduce a perturbed dynamics,

defining the role of the common noise in the following sense: at every time step the system

evolve according to F (n, x, µ, e), a transition function without the presence of the common

noise. After that the whole mass (stopped and non stopped) is perturbed by the common noise.

Another property that we want to achieve a continuity property of the mean filed dynamics

4.2. CONVERGENCE ANALYSIS OF THE ALGORITHMS 39

F̄ and this derive from a corresponding property of the N -agent setting in which Y p,i
n+1 =

D(n, Y p,i
n , ⌫N,p

n , pn, ✏in+1, ✏
0
n+1) as described in (2.11). We assume that

|D(n, y, ⌫N , p, e, e0)�D(n, y1, ⌫1,N , p1, e, e0)| C̃(e)C(e0)(|y�y1|+k⌫N�⌫1,Nk+kp�p1k)

with C̃(e) K̃ for every e and C(e0) K for every e0.

This property brings to the continuity property of F̄ described in Assumptions 1.

(H-2) - Transition probability: In the setting of assumption H-1, . In particular :

P p(⌫, d⌫ 0) = r(⌫, p; ⌫ 0)⇢(d⌫ 0)

where P p(⌫, d⌫ 0) is the transition kernel of our system and

r(⌫, p; ⌫ 0) krk1 1 8⌫, ⌫ 0 2 P(S) , 8p 2 P
|r(⌫1, p1; ⌫ 0)� r(⌫2, p2; ⌫

0)| Lr(k⌫1 � ⌫2k+ |p1 � p2|) 8⌫1, ⌫2, ⌫ 0 2 P(S) , 8p1, p2 2 P0,T .

(4.4)

Then we want that our sampling distribution has a bigger support than ⇢ in order to have for

every f : P(S) ! R bounded and Lipschitz function and for every control p 2 P the following

inequality: Z Z
f(⌫ 0)P p(⌫, d⌫ 0)⌘sampl(d⌫

0) K

Z
f(⌫ 0)⌘sampl(d⌫

0)

where ⌘sampl is the training distribution used to sample.

(H-3) - Cost function: as mentioned in Assumption 1 we have the Lipschitz property and the

boundness derive from the compactness of the state space and the control space. Notice that

these properties are not strictly related to the mean field model since the cost function are the

same as in the finite agent framework.

(H-4) - Neural network : Recalling the definition of the class of neural network that we are going

to work with, defined in (4.1) we assume the following:

K, ⌘, � ����!
M!1

1 �T�1⌘T�2

r
log(M)

M
����!
M!1

0

Remark 1. Assumption H-3 permits us to have a proper random dynamics for at least every

initial distribution. In particular, this means that it is possible for an agent who has stopped to be

“reborn” and continue to spread. Thus, it is possible for an agent to receive multiple stop costs

each time it decides to stop.

Remark 2. Assumption H-3 assumes that our transition probability (at mean field level) has a

density with respect to a distribution ⇢ with bounded and Lr-Lipschitz density (notice that, at

every time step we have a sample distribution for ⌫(m)
n and a sample distribution for (✏(m)

k+1)
T�1
k=n).

Before state the main theorem of this section regarding the convergence of the value we now give
a regularity property of the value. In particular we have,

40 CHAPTER 4. DEEP LEARNING METHODS: THEORETICAL ANALYSIS

Proposition 1. Under the Assumptions 5, for every n = 0, . . . , T the value function Vn is

bounded and Lipschitz continuous and for every n = 0, . . . , T the optimal control p⇤n 2 L1(⇢),
where ⇢ is the training sample distribution.

Proof. Due to the assumption on the running and the terminal cost we can write:

Vn(⌫) := inf
p2Pn,T

E0

"
TX

m=n

 (m, ⌫n,⌫,pm , pm) + g(⌫n,⌫,pX,T)

#

 (T � n)k k1 + kgk1

for every n = 0, . . . , N and for every initial distribution ⌫. For the Lipschitz property, for every
initial distirbution ⌫, µ 2 P(X) and for every control p we have,

|Jn(p, ⌫)� Jn(p, µ)| =
����E

0

"
TX

m=n

 (m, ⌫n,⌫,pm , pm) + g(⌫n,⌫,pX,T)

#
� E0

"
TX

m=n

 (m, ⌫n,µ,pm , pm) + g(µn,µ,p
X,T)

����

����E

0

"
L

TX

m=n

✓
k⌫n,⌫,pm � µn,µ,p

m k+ |pm(⌫n,⌫,pm)� pm(⌫n,⌫,pm)|
◆
+ Lgk⌫n,⌫,pX,T � µn,µ,p

X,T k
����

����E

0

"
L

TX

m=n

✓
sup

l2[|n,T |]
k⌫n,⌫,pl � µn,µ,p

l k+ Lp sup
l2[|n,T |]

k⌫n,⌫,pl � µn,⌫,p
l k

◆
+ Lg sup

l2[|n,T |]
k⌫n,⌫,pX,l � µn,µ,p

X,l k
����

����L (T � n)

✓
Ck⌫ � µk+ LpCk⌫ � µk

◆
+ LgCk⌫ � µk

����

✓
L (T � n)C(1 + Lp) + LgC

◆
k⌫ � µk.

Notice that here we used the Lipschitz property of the cost functions and the control function
with respect to the measure and then the dependency of the initial value express by:

E0

"
sup

l2[|n,T |]
k⌫n,⌫,pl � µn,µ,p

l k
#
 Ck⌫ � µk

where µl and ⌫l are driven by the same dynamics F̄ but with different initial distribution. This
last inequality can be easily proved by induction noticing that

E0 [k⌫n,⌫,p1 � µn,µ,p
1 k] = E0

⇥
kF̄ (n, ⌫, p, ✏0)� F̄ (n, µ, p, ✏0)k

⇤
 C(✏0)||µ� ⌫||.

Taking the infumum over Pn,T we end up with the Lipschitz property for the value function.
Regarding the L1 property of the optimal control we can first argue by a measurable selection
theorem that for every n = 0, . . . , T, p⇤n : P(S) ! [0, 1]X can be chosen measurable with respect
to ⇢. Finally, from the finiteness of space

Z

P(S)
kp⇤n(⌫)kd⇢(⌫) < 1.

4.2. CONVERGENCE ANALYSIS OF THE ALGORITHMS 41

Theorem 6 (Convergence of the value). When assumptions 5 holds we obtain the following result

on the convergence of the value:

E
h
V̂ M
n (⌫n)� Vn(⌫n)

i
=O

✓
�T�n�1⌘T�n�2

p
M

+ sup
nkT�1

inf
A2AM

E [|A(⌫k)� p⇤k(⌫k)|]
◆ (4.5)

where E stands for the expectation over the training set used to evaluate the approximated optimal

policies (p̂Mk)nkT�1, as well as the path (⌫n)nkT controlled by the latter.

Proof. We can write,

EM

h
V̂ M
n (⌫n)� Vn(⌫n)

i
= EM

h
V̂ M
n (⌫n)

i
� inf

A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�

+ inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
� EM [Vn(⌫n)]

= EM

h
V̂ M
n (⌫n)

i
� Ĵ

(p̂Mk)T�1
k=n

n,M + Ĵ
(p̂Mk)T�1

k=n
n,M � inf

A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�

+ inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
� EM [Vn(⌫n)]

(4.6)

where Ĵ
A,(p̂Mk)T�1

k=n+1

n,M := 1
M

PM
m=1[(n, ⌫

(m)
n , A(⌫(m)

n)) + Ẑ(m),A
n+1], the empirical cost function

from n to T , associated with the sequence of controls (A, (p̂MK)T�1
k=n+1) and training set, where

ẐA
n+1 is defined in (4.2).

Step 1: let us analyse the first therm of the r.h.s of this inequality. We have,

EM

h
V̂ M
n (⌫n)

i
� Ĵ

(p̂Mk)T�1
k=n

n,M = EM

J
(p̂Mk)T�1

k=n
n (⌫n)

�
� Ĵ

(p̂Mk)T�1
k=n

n,M

 ✏esti
n .

(4.7)

where
✏esti
n := sup

A2AM

����Ĵ
A,(p̂Mk)T�1

k=n+1

n,M � EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

� ���� (4.8)

is the estimation error at time n associated with the algorithm.
Moreover, for any A 2 AM ,

Ĵ
A,(p̂Mk)T�1

k=n+1

n,M � EM

J
A,(âMk)T�1

k=n+1
n (⌫n)

�
 ✏esti

n

Recalling that p̂Mn = argminA2AM
Ĵ
A,(p̂Mk)T�1

k=n+1

n,M we can take the infimum over AM we get,

Ĵ
(p̂Mk)T�1

k=n
n,M � inf

A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
 ✏esti

n

42 CHAPTER 4. DEEP LEARNING METHODS: THEORETICAL ANALYSIS

Pluggin this inequality into (4.7) we obtain the following:

EM

h
V̂ M
n (⌫n)

i
� inf

A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
 2✏esti

n . (4.9)

Step 2: let us proceed to the analysis of the second term of the equality (4.6). Using the tower
property for Jn and the dynamic programming principle for Vn, as stated in theorem 3, with the
optimal control p⇤n at time n, we can write

inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
� EM [Vn(⌫n)]

= ✏approx
n + inf

A2AX
EM

⇢
 (⌫n, A(⌫n)) + EA

n

J
(p̂Mk)T�1

k=n+1
n+1 (⌫n+1)

��

� EM

 (⌫n, p

⇤

n(⌫n)) + Ep⇤n
n [Vn+1(⌫n+1)]

�

 ✏approx
n + EMEp⇤n

n

J
(p̂Mk)T�1

k=n+1
n+1 (⌫n+1)� Vn+1(⌫n+1)

�
,

where

✏approx
n := inf

A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
� inf

A2AX
EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
(4.10)

is the approximation error at time n (notice that the first term is always bigger than the second
one since AM ⇢ AX). It measures how well the regression function can be approximated by
means of neural networks function in AM (AX is the set of Borelian functions from the state
space X into the control space A := [0, 1]X ; note that the class of neural network is not dense in
the set AX). The notation EA

n [·] stands for the expectation conditioned by ⌫n at time n and the
training set, when the action A is followed at time n. Now let us assume that ⌫n 2 P(S⇤) and
p⇤n 2 P⇤

n,T , i.e we are in the framework where the assumptions on the transition probability (4.4)
are satisfied and therefore we can write,

inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
� EM [Vn(⌫n)]

 ✏approx
n + krk1

Z
[Ĵ

(p̂Mk)T�1
k=n+1

n+1 (⌫ 0)� Vn+1(⌫
0)]⇢(d⌫ 0)

= ✏approx
n + krk1EM

h
V̂ M
n+1(⌫n+1)� Vn+1(⌫n+1)

i

with ⌫n+1 ⇠ ⇢.
Step 3: using the previous steps and the first decomposition (4.6), we have

EM

h
V̂ M
n (⌫n)� Vn(⌫n)

i
= EM

h
V̂ M
n (⌫n)

i
� inf

A2AM

EM

J
A,(p̂Mk)T�1

k=n
n (⌫n)

�

+ inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n
n (⌫n)

�
� EM [Vn(⌫n)]

 2✏estim
n + ✏approx

n + krk1EM

h
V̂ M
n+1(⌫n+1 � Vn+1(⌫n+1)

i

4.2. CONVERGENCE ANALYSIS OF THE ALGORITHMS 43

By induction we simply have

EM

h
V̂ M
n (⌫n)� Vn(⌫n)

i

T�1X

k=n

(2✏esti
k + ✏approx

k). (4.11)

Our goal now is to derive the behaviour of these two errors when the sample size goes to infinity.
In particular we rely on the following lemma:

Lemma 2 (Convergence of the errors). For n = 0, . . . , T the following holds as M ! 1

E[✏esti

n] = O
✓
�T�n�1⌘T�n�2

p
M

◆
(4.12)

E[✏approx

n] = O
✓
�T�n�1⌘T�n�2

p
M

+ sup
nkT�1

inf
A 2AM

E[|A(⌫k)� p⇤k(⌫k)|]
◆

(4.13)

Proof. First result: the order of convergence of the estimation error can be prove the same as
Lemma 4.10 of Hure et. al (2021). The main idea is to use a copy of the process ⌫n and an
additional randomness using random signs. Second result: For the second result we can follow
Hure et. al paying attention when our framework slightly differ from their formulation. Here we
are going to give all the main ideas highlighting the differences with their method. In particular
let (p̂kM)T�1

k=n+1 be the sequence of the estimated controls at time k = n + 1, . . . , T � 1. The
cost function associated with A is characterized by the following Bellman equation:

8
><

>:

J
A,(p̂Mk)T�1

k=n+1

N (⌫) = g(⌫)

J
A,(p̂Mk)T�1

k=n+1
n (⌫) = (n, ⌫, A(⌫)) + EA

n,⌫

J
A,(p̂Mk)T�1

k=n+1
n+1 (⌫n+1)

�
.

(4.14)

Adding and subtracting E[Vn(⌫n)] we can show that

✏approx
n inf

A2AM

EM [J
A,(p̂Mk)T�1

k=n+1
n (⌫n)]� E[Vn(⌫n)],

and then we can apply DPP to obtain

min
A2AM

EM [J
A,(p̂Mk)T�1

k=n+1
n (⌫n)]� E[Vn(⌫n)]

 inf
A2AM

EM

 (n, ⌫n, A(⌫n)) + EA

n

J
(p̂Mk)T�1

k=n+1
n+1 (⌫n+1)

��
�

� E
h
 (n, ⌫n, p

⇤(⌫n)) + Ep⇤
n [Vn+1(⌫n+1)]

i

Then, for all the distributions and the controls, using assumption (4.4), we can write

EM

 (n, ⌫n, A(⌫n)) + EA

n

J
(p̂Mk)T�1

k=n+1
n+1 (⌫n+1)

��
� E

 (n, ⌫n, p

⇤(⌫n)) + Ep⇤
n [Vn+1(⌫n+1)]

�

 (L + kVn+1kLr)E[kA(⌫n)� p⇤(⌫n)]+

krk1 inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n+2
n+1 (⌫n+1)� Vn+1(⌫n+1)

�
+ 2krk1✏esti

n+1.

44 CHAPTER 4. DEEP LEARNING METHODS: THEORETICAL ANALYSIS

Pluggin this last inequality in the previous we obtain

E

inf
A2AM

EM

J
A,(p̂Mk)T�1

k=n+1
n (⌫n)

�
� E[Vn(⌫n)]

�

= O
✓

sup
n+1kT�1

E[✏esti
k] + sup

nkT�1
inf

A2AM

E[|A(⌫n)� p⇤(⌫n)|]
◆
.

Now we use the first result of this lemma regarding the order of convergence of the expected
value of the estimation error to complete the proof.

Putting all the elements together, we have shown that

EM

h
V̂ M
n (⌫n)� Vn(⌫n)

i

T�1X

k=n

(2✏esti
k + ✏approx

k) =

= O
✓
�T�n�1⌘T�n�2

p
M

+ sup
nkT�1

inf
A2AM

E [|A(⌫k)� p⇤k(⌫k)|]
◆
.

The first of the rate of convergence should be seen as the estimation error due to the approximation
of the optimal controls by means of neural networks in AM using the empirical cost functional
J
A,(p̂Mk)
n,M . Notice that we can conclude that our algorithm converge when the second term of the

convergence in (4.5) goes to 0 as M goes to infinity.

Proposition 2. In the previous setting we have:

sup
nkT�1

inf
A2AM

E [|A(⌫k)� p⇤(⌫k)|]
M!1����! 0 (4.15)

Furthermore if we assume the optimal control p⇤k is c� Lipschitz for k = n, . . . , T � 1, then

we also have the following rate of convergence,

sup
nkT�1

inf
A2AM

E [|A(⌫k)� p⇤(⌫k)|] c
⇣�
c

⌘
�2d/(d+1)

log
⇣�
c

⌘
+ �K�(d+3)/(2d), (4.16)

where d := |P(X)|, the dimension of the mean field state space and � is defined is (4.1).

Proof. The proof rely on Proposition 4.1 Hure et al (2021) but, despite their approach, we have
proved a regularity property of the optimal control (proposition 1) instead of assuming it. In
particular, in order to apply their result, we need at least p⇤ 2 L1(⇢) where ⇢ is the distribution
defined in 5 and we have proven it in 1.

Chapter 5

Experiments

In this section we provide three examples of increasing complexity. We want to give value to
our methods on situations that increasingly approach a real-world dimension. The first example
serves as a test to show the validity of our algorithms and in doing so solves a task that at this level
can still be solved by the human mind quite easily. The second example is a two-dimensional
extension of the previous one and tests the response of the algorithms when the dimensionality
of the problem increases. These finally lead to the main example we tested in this thesis, which
simulates the “intelligent” formation of a flock of drones. Starting from a chaotic situation, the
set of robots must form a target distribution decided to their own. The goal is then to stop the
correct portion of the population at the right time. Such a task is not easily solved by the human
mind and as the size increases solving such a problem becomes prohibitive. We then demonstrate
the great impact our method can have for this type of problem. Each example is solved by both
methods described in the previous section, and the results show the evolution of the stoppered
and unstopped mass at each instant, the strategy (the probability of stoppering agents in each
state) at each instant by the central planner, and the results after training the training error and
testing error.

5.1 Architecture
In this section, we will described the architecture of our Neural Network. For the direct approach,
the neural network takes an input time t, while for the DPP approach, the neural network does
not need time input.
In general, our neural network has the following structure. Our neural network takes an input pair
(x, t), where x is the spatial input, t is the time. If t is a needed input, then it is passed through
a module to generate a standard sinusoidal embedding and then fed to 2 fully connected layers
with Sigmoid Linear Unit (SiLU) and generate an output tout. Spatial input x is passed through
an MLP with k residual blocks, each containing 4 linear layers with hidden dimension D and
SiLU activation. This generates an output yout. Our final output out is computed through,

out = Outmod(GroupNorm(yout + tout))

45

46 CHAPTER 5. EXPERIMENTS

where Outmod is an out module that consists of 3 fully connected layers with hidden dimension
D and SiLU activation, GroupNorm stands for group normalization. If t is not a needed input,
then set tout = 0. For all the test cases we have experimented with, we use k = 3, D = 128 for
all the 1D experiments and k = 5, D = 256 for the 2D experiments.

5.2 Experiments

5.2.1 Towards the Uniform 1D

In this first example we are going to consider only a stopping cost, i.e every agent pays a cost
only when he decided to stop. In particular we are going to solve the following example: there
are 5 stations and all the agents start from the first one; at every time step they move to the
right unless they are in the last station where they must stay there; the goal of this example is
that stopping an agent has a cost related to how much people are in the same station (avoiding
stooping in a crowd station). The mathematical details are expressed below. We take state
space X = {0, 1, 2, 3, 4}, time horizon T = 4, transition function F (n, x, µ, ✏) = x + 1, with
absorbing boundary at x = 4 (meaning that once at 4, the agent does not move anymore), and as
stopping cost function �(x, µ) = µ(x) which depends on the mean field only through the state
of the agent (this is sometimes called local dependence). For the testing distribution, we take
a distribution concentrated on state x = 0, denoted as µ0 = �0. It can be seen that the optimal
strategy consists in spreading the mass to make it as close as uniform as possible (hence the
name of this example). First, we explain how the optimal value is computed. Since the agents
move deterministically to the right, the only option to freeze some mass at a state x is to do it
at time n. It can be seen that: for every n = 0, . . . , T and for every x 2 X , we want to have
pn(x = n) = 1

T+1�n1x=n for n < T and pn(x) = 1 for n = T . Actually notice that for all
x 6= n the choice of pn is arbitrary so, at every time-step n we can apply the same pn for every
state x. This brings us to optimize over the set of synchronous stopping times. Indeed it is optimal
to stop someone before the time horizon T, otherwise we are going to pay µ(x) = 1 at the end
and the best way to do it is to spread the distribution over the state space. Then we can compute
the optimal value and obtain: V ⇤,�0 := T+2

2(T+1) .

Direct Approach Results: Figure 5.1 shows the results of the experiments for the Direct
Approach. The first set of images shows the evolution of the mass (the red one describes the mass
that was stopped while the blue one refers to the mass that was not stopped) from the beginning
of the problem to the end, and the final state is shown as the last image. It can be seen that a
uniform distribution of states was achieved at the end. Also note that, as shown in the second
set of images, the decision to stop a certain percentage of mass is independent of whether or not
there is mass in that specific state. In fact, at time 0 the optimal decision is to stop all agents in
state 4 even if there is no mass. This ensures robustness with respect to the initial distribution. In
the last images the training loss and the testing loss are shown. The red line in the second image
is the optimal loss computed theoretically.

5.2. EXPERIMENTS 47

Figure 5.1: Example 1. DA results. Top: Evolution of the distribution and stopping
probability at every time step. Bottom: training and testing losses after training.

Dynamic Programming Results: Figure 5.2 shows the results of the experiments when using
the DPP approach for our algorithm. The results regarding the evolution of the mass are similar
while we can see a difference in the decision probability. Then we plot the testing and the training
loss for every time step.

The two methods in this example are comparable and both obtained excellent performance
comparing with the benchmark value computed theoretically. This first example is fundamental
to show how the neural network learn the optimal policies and obtain the optimal value.

48 CHAPTER 5. EXPERIMENTS

Figure 5.2: Example 1. DPP results. Top:Evolution of the distribution
and stopping probability at every time step. Bottom: training and
testing losses after training.

5.2.2 Towards the uniform 2D
In this example we extend the previous framework to a 2-dimension grid. We take state space
X = {0, 1, 2, 3, 4} ⇥ {0, 1, 2, 3, 4}, time horizon T = 4, transition function F (n, x, µ, ✏) =
x + (1, 0) which means that the agent deterministically moves to the state on the right on the
same row, with absorbing boundary at x = 4, and cost function �(x, µ) = µ(x) which depends
on the mean field only through the state of the agent (this is sometimes called local dependence).
For the testing distribution, we take a distribution concentrated on state x = 0, denoted as
µ0 = 1/2�(0,0)+1/3�(0,2)+1/6�(0,1). As in the 1D case, it can be seen that the optimal strategy

5.2. EXPERIMENTS 49

consists in spreading the mass to make it as close as uniform as possible. However, the mass will
not be uniform over the grid since rows have different masses.
Direct Approach Results: Figure 5.3 shows the results for the experiments conducted by the
direct approach. Differently from before, we can see that the evolution of mass is described by a
2D heat map divided into two sectors. The top one shows the arrested mass in each grid state,
while the bottom one describes the mass that has not yet been stopped. Also the optimal policy is
described by a 2D heat map. No benchmark value is compute here.

Figure 5.3: Example 2. DA results: Top -Evolution of the distribution and
stopping probability at every time step. Bottom- training and testing losses after
training.

Dynamics Programming Approach Results: Figure 5.4 shows the results for the experiments
conducted by the dynamics programming approach. We can see that the final state is slightly
different and it seems that the direct approach perform better on the task (getting towards a
uniform distribution along the rows that has positive mass in the initial step). However, as you

50 CHAPTER 5. EXPERIMENTS

can see, in the last set of images of both the results the testing loss and the training loss are
comparable meaning that even if the final configuration in the DPP approach seem to be far from
the goal the cost is still close to the optimal one.

Figure 5.4: Example 2. DPP results: Top -Evolution of the distribution and
stopping probability at every time step. Bottom- training and testing losses
after training.

5.2. EXPERIMENTS 51

5.2.3 Drones Match the Target Distribution
This example want to explore a little bit more the potential of our method and try to model a real
world scenario. We want to get able to let our drones start with a noisy random initial configuration
and then during time reach the final desired configuration. In order to do this the cost at every time
step will be represented by the distance between the detailed distribution at that time step and the
target distribution that we want to achieve. Furthermore we implement a common noise dynamics.
The introduction of the common noise let the problem be more realistic to real - world scenarios.
For example we can think this common noise as an obstacle positioned in the second row of our
grid that change position in the row at every time step. Then the neural network will be take that
into account when learn the optimal policy. In details we take as a state space a 4 ⇥ 4 square
grid X := {0, 1, 2, 3}⇥ {0, 1, 2, 3}. The time horizon is set to T = 20. As a transition function,
we take the uniform dynamic distribution over the neighbors in the following sense: given a
state x = (x1, x2) the transition to the next state is chosen with equal probability from the set
{(x1 + 1, x2), (x1 � 1, x2), (x1, x2 + 1), (x1, x2 � 1)} whenever all these states exist. When we
consider a state on the boundary, the distribution is distributed over the possible neighbors. The
common noise is taken uniformly in the second line of the grid at every time step. In other words
it eliminate a possible neighbour in the second line at every time step. As mentioned above, we
want to reach a desired target configuration, which we denote by ⇢. We take as target distribution
the letter "O" defined by ⇢ = 1

8(�0,1 + �0,2 + �1,0 + �2,0 + �3,1 + �3,2 + �2,3 + �1,3) (Figures 5.5
and 5.6) . To do this we construct as a social cost function the terminal cost g⇢(µ) = ||µ� ⇢||22.
So far, running and stopping costs have not been considered. As first step we introduce as initial
distribution the uniform distribution over the simplex, i.e µ0 ⇠ U(P(X)). This task is by no
means trivial if you want to solve it “by hand,” and this therefore shows the effectiveness of our
method when scaling to very complex situations.

Figure 5.5: Heat map of the target dis-
tribution ⇢

Figure 5.6: 3D plot of the target distri-
bution ⇢

Direct Approach Results: Figure 5.7 shows the results for the experiments conducted by the

52 CHAPTER 5. EXPERIMENTS

direct approach. We are showing only some steps of the evolution due to the limit space. It can
be seen that in the second row we have a 0 mass square for every time step and this is linked to a
presence of an obstacle (common noise). From a random initial distribution it can be seen that
the algorithm perform well on creating the target distribution. Differently from before we now
give also a view on the evolution of the 3D mass over time without separate form the stopped
mass and the mass that has not been stopped yet. Note that since the state space is discrete we
use a spline interpolation to give a better idea of what is happening. For a precise evolution of the
mass we can see at the 2D heatmap. Note that the testing and the stopping loss are very close to
zero since the mass is spread over several states and we have only a terminal cost that is defined
by a L2 norm.

Figure 5.7: Example 3. DA results. Top: Evolution of the distribution and stopping
probability at every time step. Bottom - training and testing losses after training.

Dynamic programming Results: Figure 5.9 shows the results for the experiments conducted
by the dynamic programming approach. Due to the computational complexity and limited
computational resources developing an efficient dynamics programming principle is not trivial.
However we can see that our algorithm performs well on the task.

5.2. EXPERIMENTS 53

Figure 5.8: Example 3. Direct Approach: 3D Evolution of the mass

54 CHAPTER 5. EXPERIMENTS

Figure 5.9: Example 3. DPP results. Top: Evolution of the distribution and stopping
probability at every time step. Bottom- training and testing losses after training.

5.2. EXPERIMENTS 55

Figure 5.10: Example 3. DPP 3D Evolution of the mass

56 CHAPTER 5. EXPERIMENTS

Conclusion

In this thesis we presented the problem of optimal stopping a regime mean field in discrete time
and space. We generalized the pure decision space to randomized decisions. From what we know
this is the first work in which such a framework is presented.

We motivated our mean field model by the finite agent environment and proved that an opti-
mal solution in the former is approximation of the optimal solution of the latter (propagation
of chaos and ✏ optimality approximation). This is a fundamental aspect since it allows, when
the number of agents tends to infinity, to analyse the solution of the model at the mean-field regime

We also extended the cost function by developing our model with the presence of a running cost
and a terminal cost in addition to the usual stopping cost present in optimal stopping problems.
Of fundamental importance to this work is the introduction of an additional random variable
that described the state (stopped or not) of each agent. With such an extended space our model
becomes Markovian, a crucial aspect for the formulation of a dynamic programming principle.
To demonstrate this principle, a pivotal aspect that should be emphasized was the reduction of
our problem to a Mean Field Control problem. Such a reduction is not trivial but allows us to
extend the techniques that can be used considering that the literature of MFC is more developed
and richer than the Mean Field optimal stopping problems.

We have thus provided a dynamic programming principle for two classes of stopping times:
asynchronous stopping and synchronous stopping. In the former case the central planner can
decide to stop each individual agent at different times while in the latter the stopping of the entire
population occurs at a single instant .

We furthermore provided two deep learning algorithms to solve several examples of increasing
complexity. The first one builds on the principle of dynamic programming demonstrated in this
paper while the second one attempts to directly minimize the mean field social cost sampling the
whole trajectories and optimizing over all possible stopping probability functions. We performed
an in-depth theoretical analysis of the algorithm, demonstrating its convergence in a simpler
environment aware of the difficulties of having a general and detailed theoretical analysis of the
algorithm.

Eventually we described three scenarios through three different examples of increasing complexity.

57

58 CHAPTER 5. EXPERIMENTS

The last it meant to be a simulation of a real world application with the intelligent formation of a
target distribution by a flock of drones

Future Works: There are several aspects that can be improved and be studied deeply.

• The different classes of stopping times analyzed can be extended

• Multiple real-world finite-agent examples can be studied and implemented in order to have
a real application of our model

• The theoretical analysis of the algorithm can be done in a more general framework

• Different algorithms can be implemented and tested

However, we believe that this work opens horizons for the development of optimal stopping prob-
lems, which have gained increasing importance in recent years by modeling different situations
and real-world applications.

Bibliography

Yves Achdou and Jean-Michel Lasry. Mean field games for modeling crowd motion. Contribu-

tions to partial differential equations and applications, pages 17–42, 2019.

Yves Achdou and Olivier Pironneau. Computational methods for option pricing. SIAM, 2005.

Vlad Bally and Gilles Pagès. A quantization algorithm for solving multidimensional discrete-time
optimal stopping problems. Bernoulli, 9(6):1003–1049, 2003.

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping. Journal of

Machine Learning Research, 20(74):1–25, 2019.

Alain Bensoussan, Jens Frehse, and Sheung Chi Phillip Yam. Mean field games and mean

field type control theory. Springer Briefs in Mathematics. Springer, New York, 2013. ISBN
978-1-4614-8507-0; 978-1-4614-8508-7.

Tomas Björk. Arbitrage theory in continuous time. Oxford university press, 2009.

René Carmona and François Delarue. Probabilistic theory of mean field games with applications.

I, volume 83 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018. ISBN
978-3-319-56437-1; 978-3-319-58920-6. Mean field FBSDEs, control, and games.

René Carmona and Mathieu Laurière. Deep learning for mean field games and mean field control
with applications to finance. arXiv preprint arXiv:2107.04568, 2021.

Trey D Crowther. Optimal stopping of multi-robot exploration for unknown, bounded environ-
ments. 2023.

Kai Cui, Sascha H Hauck, Christian Fabian, and Heinz Koeppl. Learning decentralized partially
observable mean field control for artificial collective behavior. In The Twelfth International

Conference on Learning Representations, 2024.

Massimo Fornasier and Francesco Solombrino. Mean-field optimal control. ESAIM: Control,

Optimisation and Calculus of Variations, 20(4):1123–1152, 2014.

Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Mean-field controls with Q-learning for
cooperative MARL: convergence and complexity analysis. SIAM Journal on Mathematics of

Data Science, 3(4):1168–1196, 2021.

59

60 BIBLIOGRAPHY

Calypso Herrera, Florian Krach, Pierre Ruyssen, and Josef Teichmann. Optimal stopping via
randomized neural networks. Frontiers of Mathematical Finance, pages 0–0, 2023.

Jon Kleinberg, Robert Kleinberg, and Sigal Oren. Optimal stopping with behaviorally biased
agents: The role of loss aversion and changing reference points. In Proceedings of the 22nd

ACM Conference on Economics and Computation, pages 681–682, 2021.

Magdalena Kobylanski, Marie-Claire Quenez, and Elisabeth Rouy-Mironescu. Optimal multiple
stopping time problem. 2011.

Yong Liang and Bingchang Wang. Robust mean field social optimal control with applications to
opinion dynamics. In 2019 IEEE 15th International Conference on Control and Automation

(ICCA), pages 1079–1084, 2019. doi: 10.1109/ICCA.2019.8899655.

Steven A Lippman and John J McCall. The economics of job search: A survey. Economic inquiry,
14(2):155–189, 1976.

A Max Reppen, H Mete Soner, and Valentin Tissot-Daguette. Neural optimal stopping boundary.
arXiv preprint arXiv:2205.04595, 2022.

Dinah Rosenberg, Eilon Solan, and Nicolas Vieille. Social learning in one-arm bandit problems.
Econometrica, 75(6):1591–1611, 2007.

Albert N Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media, 2007.

Mehdi Talbi, Nizar Touzi, and Jianfeng Zhang. From finite population optimal stopping to mean
field optimal stopping. arXiv preprint arXiv:2210.16004, 2022.

Mehdi Talbi, Nizar Touzi, and Jianfeng Zhang. Dynamic programming equation for the mean
field optimal stopping problem. SIAM Journal on Control and Optimization, 61(4):2140–2164,
2023.

Changfeng Wang, Santosh Venkatesh, and J Judd. Optimal stopping and effective machine
complexity in learning. Advances in neural information processing systems, 6, 1993.

	List of Figures
	List of Algorithms
	Notation
	Introduction
	Framework and Motivations
	Motivations: multi agent model with common noise
	Mean Field Model
	Convergence of the measure and -optimality approximation

	Dynamic Programming
	Generale case
	Synchronous Stopping Times

	Deep Learning Methods: Theoretical Analysis
	Algorithms
	Convergence analysis of the algorithms

	Experiments
	Architecture
	Experiments
	Towards the Uniform 1D
	Towards the uniform 2D
	Drones Match the Target Distribution

	Conclusion

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:
	pbs@ARFix@49:
	pbs@ARFix@50:
	pbs@ARFix@51:
	pbs@ARFix@52:
	pbs@ARFix@53:
	pbs@ARFix@54:
	pbs@ARFix@55:
	pbs@ARFix@56:
	pbs@ARFix@57:
	pbs@ARFix@58:
	pbs@ARFix@59:
	pbs@ARFix@60:

