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Abstract

In industrial contexts, anomaly detection is crucial for identifying de-

viations from normal operating conditions, ensuring proactive main-

tenance, minimising downtime, and optimising the reliability and effi-

ciency of industrial processes. Advanced machinery, constantly mon-

itored by diverse sensors, generates multiple temporal sequences of

data that can be analysed for evaluating performance. Within this

setting, this thesis delves into a real-world scenario, focusing on the

analysis of multivariate time series data produced by a set of filling

machines for dairy products. Initially, the study conducts an in-depth

analysis of the signals generated by the machinery and dedicates itself

to collecting and preprocessing a dataset for following analyses. Sub-

sequently, the Temporal Fusion Transformer (TFT), a cutting-edge

deep learning model, is employed to effectively capture the complex

temporal patterns inherent in industrial process signals and detect

anomalies within the dataset. By addressing the challenge of dealing

with intricate real-world data, this research aims to unravel their la-

tent complexities and enhance anomaly detection precision through

the utilisation of advanced deep learning models.
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Chapter 1

Introduction

Industrial machinery are the backbone of modern manufacturing processes, driv-

ing efficiency, productivity, and innovation across various industries.These equip-

ments play a critical role in ensuring smooth operations and delivering high-

quality products to consumers. However, the reliable performance of industrial

machinery is not guaranteed, as they are susceptible to various anomalies that can

compromise their functionality, safety, and efficiency. Anomalies, defined as devi-

ations from normal patterns or behaviours, can manifest in various forms within

industrial contexts, ranging from equipment malfunctions to safety hazards and

security breaches. For this reason, detecting those deviations is an important

task to enhance the understanding of the apparatus, enabling data-driven deci-

sions regarding hardware improvement or maintenance prediction.

One of the key challenges in detecting anomalies in industrial machinery lies

in the nature of the signals they produce during operation. Typically, these sig-

nals are complex, multivariate time series data encompassing various sensor read-

ings, including pressure, vibration frequency, temperature, and electrical currents,

among others. For this reason, anomaly detection in industrial context requires

advanced techniques that can deal with such intricate signals by leveraging, for

example, advanced deep learning models tailored to identify anomalies.

Multivariate time series anomaly detection in industrial machinery is essential

for several reasons. Firstly, anomalies in machinery signals can signify potential

malfunctions or failures, which, if left undetected, can lead to costly downtime,

production delays, and equipment damage. By detecting anomalies early, main-

tenance teams can intervene promptly, preventing critical failures and minimising

disruptions to production schedules. Secondly, industrial machinery often oper-

ates under harsh and demanding conditions, leading to wear and tear over time.
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2 Chapter 1. Introduction

Anomaly detection allows for the early identification of degradation or deterio-

ration in machinery performance, enabling proactive maintenance and extending

the lifespan of equipment. This predictive maintenance approach helps optimise

maintenance schedules, reduce repair costs, and maximise operational efficiency.

In this thesis, a multivariate anomaly detection analysis is conducted on a

real-world case involving an industrial machine responsible for dairy product

packaging, focusing specifically on the signals produced by the cap-applicator

module. The study delved into the complexities associated with creating a real-

world model and outlined the various steps involved. In this chapter, the goals

and challenges of the present study are delineated. Specifically, we outline the

overarching objectives that motivate our research endeavours and identify the key

challenges that must be addressed to achieve these aims successfully. In Ch.2, a

comprehensive literature review is conducted to assess the current state-of-the-art

models available in the field. This review aims to provide a thorough examina-

tion of existing methodologies in anomaly detection and time series forecasting.

By examining the cutting-edge advancements in the literature, this section seeks

to establish a foundational understanding of the landscape of available models,

thereby informing the subsequent discussions and analyses within this thesis. In

Ch.3 the methodology used for processing the data and fulfilling the task is de-

scribed. The investigation begins with data collection, where sensor readings from

the cap applicator module are gathered from cloud storage. Next, preprocessing

steps is employed to clean and prepare the collected data for further steps. Sub-

sequently, a multivariate time-series forecasting model, called Temporal Fusion

Transformer, is developed, trained with the preprocessed data, and utilized for

anomaly detection. Lastly, the performance of the model is evaluated in Ch.4.

1.1 Problem Definition

1.1.1 Machine Description

The machines under investigation in our study are packaging and filling machines

employed in the food and beverage sector, specifically designed for the accurate

filling of aseptic cartons with various liquids, including both consumables such as

milk, eggs, and dairy products, as well as industrial solutions like detergents and

chemicals. These machines, all produced by the same manufacturer, are avail-

able in both single-line and dual-line production configurations. The production

process consists of numerous systematic steps. Initially, a stack of cartons is gen-
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tly introduced into the machine, where each carton is individually retrieved and

placed onto a rolling conveyor system. Here, the carton undergoes the bottom

forming phase, during which a series of mechanical processes, including mold-

ing into a three-dimensional shape through mechanical presses, occur before its

bottom is folded and securely welded.

For machines equipped with cap-applicator modules, an additional step en-

sues, wherein caps are seamlessly affixed onto the carton tops. The caps are

transferred from an external cap warehouse through a tube system to the point

of application inside the machine. Here, they are positioned on the inside of the

carton in order to be welded. This task is accomplished through the application

of ultrasound technology, where a specialised hollow metal cylinder, known as a

sonotrode, melds the plastic cap to the cardboard container, ensuring a secure

seal. The precise wave signals are generated by a generator, which transmits

energy to the transducer. The transducer converts this energy into ultrasonic

mechanical waves, which are subsequently transmitted to the sonotrode for ap-

plication. This micro welding fuses the cap flange to the cardboard, creating a

hermetic connection. The correct execution of welding is verified through estab-

lished testing procedures.

Following these initial stages, the cartons proceed through a thorough disin-

fection process, where they are enveloped in a fine mist of specialised cleaning

agents. Once sanitised, the designated liquid for filling is precisely metered and

dispensed, and then dropped in one go to comple the filling process. Finally, as

the carton reaches the end of the conveyor belt, the top is hermetically sealed,

and the completed package is smoothly ejected from the machine.

1.1.2 Goal

The primary objective of this study is to develop an effective method for detect-

ing anomalies within industrial signals, specifically tailored to real-world scenar-

ios, with a particular focus on the dairy packaging machinery available to us.

This goal is pursued through the implementation and testing of state-of-the-art

deep learning models. The underlying premise of this research is that industrial

machinery, responsible for production lines, typically operates in repetitive and

predictable patterns. Consequently, we anticipate that by forecasting the signals

produced by the machinery, we can accurately predict its standard behaviour.

In contrast, anomalies are expected to exhibit less predictability, resulting in a

greater discrepancy between real data and forecasted values. This work empha-
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sizes the development of a high-level solution applicable to various machines, thus

maintaining a broad dataset encompassing all the available machines of a certain

version. Consequently, the model avoids incorporating solutions tailored specif-

ically for individual machines or training on unbalanced datasets. It is worth

noting that this study represents the first exploration of this dataset. As such, it

serves as a pioneering analysis of the data’s properties, without precedent upon

which to build.

1.1.3 Challenges of the Dataset:

Studying a real case scenario can lead to intrinsic challenges and difficulties related

to the dataset characteristics or to the methodology. Some of those challenges

are listed in this section.

Unsupervised nature of anomaly detection Anomaly detection is typically

an unsupervised task due to the inherent difficulty in obtaining labelled anoma-

lies. Unlike supervised learning tasks, where the model is trained on labelled

data, anomaly detection often relies on identifying patterns or deviations in data

that do not conform to expected behaviour. Labelling anomalies requires expert

domain knowledge and is often subjective, making it challenging to create a com-

prehensive labelled dataset for training. As a result, unsupervised methods that

focus on detecting deviations from normal patterns without explicit labelling of

anomalies are commonly employed in anomaly detection tasks.

Ambiguity in anomaly definition Finding a unique definition of what anomalies

are is non-trivial, especially in the industrial sector. In effect, what may appear

anomalous in certain settings could be entirely normal under different operating

conditions. Moreover, anomalies might be of different kinds, such as single events

far from the standard behaviour or collective drift during a certain time interval.

Lack of clean dataset Building a model capable of correctly identifying anoma-

lies in new datasets becomes inherently challenging when the dataset used for

training contains itself untracked anomalies. In such a scenario, there is a risk

that the model may inadvertently learn to anticipate the presence of anomalies

within the time series data. This situation can lead to both false negatives, where

genuine anomalies go undetected because the model perceives them as normal

data points, and false positives, where the model incorrectly identifies standard
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data points as anomalies due to discrepancies between the expected and actual

data behaviours.

Uncharted analysis territory The complexity of the study undertaken in this

study is underscored by the lack of prior exploration and analysis of the dataset

under consideration. To date, the dataset remains indeed largely unexplored,

with limited existing knowledge or precedents available for reference. Further-

more, the absence of established machine learning models tailored to this specific

dataset compounds the challenge, requiring the development of novel approaches

to effectively extract insights and detect anomalies.

Diverse machine models The analysis of the data aims to be applicable to a

broad range of machinery. However, the dataset comprises signals from various

machine versions, resulting in distinct signals for each machine. This poses a

significant challenge for the selected anomaly detection model, as it necessitates

a consistent set of signals across all machines. Therefore, training a single AI

architecture to accommodate different models is inherently difficult. Additionally,

machines may feature either a single or double production line, resulting in sensor

signals being recorded either once or for both lines in two separate variables ( A

and B).

Variation in recipe settings Industrial machinery frequently operates using

different configurations, referred to as ”recipes,” tailored to specific customer

requirements. These recipe settings can significantly change the behaviour of the

machine. Moreover, similar configurations are recorded with different recipe IDs

for different customers, making the actions of the machines less consistent.

Variable and fragmented production The machines have an inconstant and

unpredictable duration of the production state. This leads to inconsistencies in

the length of the useful segments within the dataset. As a consequence, the data

collected may encompass periods of differing durations, making it challenging to

establish uniform intervals for analysis. These fluctuations in production dura-

tions contribute to the complexity of the dataset, requiring adaptable method-

ologies capable of accommodating such variability.

Misalignment between alarm logs and anomalies The industrial machinery

under analysis automatically logs alarms as they occur, storing them in a ded-
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icated database. However, it is important to note that alarms do not always

correspond to anomalies within the dataset. In some instances, these two phe-

nomena can be entirely disconnected. For example, an alarm may trigger without

any corresponding anomaly in the sensor data, or conversely, an anomaly in the

sensor readings may occur without triggering an alarm in the system.



Chapter 2

State of the art

2.1 Time Series

Time series, a fundamental concept in the realm of statistics and data analysis,

represents a sequence of data points ordered chronologically. Unlike traditional

datasets, where each observation is independent, time series data exhibits a tem-

poral dependency, wherein each data point is associated with a specific time

index. At its core, time series data comprises a sequence of observations collected

at equally spaced intervals over a defined period. Each observation, typically rep-

resenting a measurement or value recorded at a specific time point, is arranged

chronologically, creating a sequential dataset where the ordering of observations

is significant. This unique characteristic allows analysts to explore and under-

stand patterns, trends, and behaviours that evolve over time, making time series

analysis an invaluable tool across various domains such as industrial processes [1],

healthcare [2], meteorology [3] and beyond. Time series can encompass various

types of data, including numerical, categorical, or even textual, depending on the

context of the analysis. These data sequences may exhibit different patterns and

structures, ranging from simple trends and seasonal variations to more complex

dependencies and irregular fluctuations.

Time series can be divided into univariate or multivariate, depending on the

number of variables that are recorded simultaneously.

• Univariate time series consists of a single variable or data stream ob-

served or measured over time, in which each data point represents the value

of that variable at a specific time instance. Univariate time series analysis

focuses solely on understanding and modelling the patterns, trends, and

behaviours inherent in that single variable.

7
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• Multivariate time series, in contrast, involve multiple variables or data

streams observed or measured simultaneously over time. Each observation

in the dataset consists of values for multiple variables recorded at the same

time point. For example multivariate time signals could be recorded by

monitoring the temperature, pressure, and millimetres of rain in a certain

area, obtaining three standalone signals describing physical quantities that

could be interconnected in a non-trivial manner. Multivariate time series

analysis aims, therefore, to explore and model the relationships, dependen-

cies, and interactions among these variables over time. This type of analysis

enables a deeper understanding of complex systems where the behavior of

one variable may influence or be influenced by others.

A time series is said to be stationary if its statistical properties do not change

over time, i.e. if the mean, variance, and autocorrelation structure remain con-

stant. This property, ideal for modelling and analysis, is hard to find in a real-

world scenario, where volatile features interfere and nonstationarity is encoun-

tered. One primary cause can be seasonality, which manifests as repeating pat-

terns or fluctuations within a specific period, such as daily, weekly, monthly, etc.

For instance, consider the daily operation of machinery in an industrial setting:

if a particular machine is active only during the day, there could be seasonal-

ity in the signals registered by the machine, with production levels fluctuating

predictably throughout the day. Furthermore, the nonstationarity might be due

to change points, that is, specific time instances or periods within a time series

where the underlying data distribution experiences significant shifts or changes.

For example, if machinery operates with different settings, there will be a change

point in the time series that registers the machine’s state whenever the settings

are changed. Lastly, time series data may exhibit concept drift [4] when a progres-

sive change in the environment in which data are produced may lead to changes

in the underlying statistical distribution of a data stream over time. For example,

if an industrial machine ages or undergoes wear and tear, its performance may

degrade gradually over time, leading to changes in the behavior of the machine

captured by sensor signals.

2.2 Anomaly Detection

Anomaly detection, also known as outlier detection, is a vital task in data anal-

ysis and machine learning. It encompasses the task of identifying data instances
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that exhibit substantial deviations from the typical patterns observed within a

dataset. More precisely, an anomaly can be defined as an observation that de-

viates so much from the other observations as to arouse suspicions that it was

generated by a different mechanism [5]. This field has witnessed extensive explo-

ration across various domains, finding applications in critical areas such as fraud

detection, public health, structural defect detection, and image processing [6].

In recent years, the advent of deep learning methodologies has revolutionised

anomaly detection, enabling the development of sophisticated models capable of

learning intricate representations from complex data types such as temporal se-

quences [7], spatial distributions [8], and graph structures [9]. This evolution

has boosted the exploration of deep anomaly detection methods, showcasing re-

markable advancements in addressing intricate detection challenges encountered

in real-world scenarios.

In particular, anomaly detection has a relevant role in the context of In-

dustry 4.0. This branch, often referred to as the fourth industrial revolution,

addresses the paradigm shift in manufacturing and production marked by the

integration of advanced digital technologies such as Internet of Things (IoT), ar-

tificial intelligence, big data analytics, and automation, that aim to create smart,

interconnected systems for optimising processes and enhance efficiency [10]. In

this context, anomaly detection offers powerful tools for identifying irregulari-

ties within the vast volumes of data generated by sensors and IoT devices in

smart factories. By continuously monitoring sensor data, production metrics, and

other critical parameters, anomaly detection enables the early detection of equip-

ment malfunctions [11], process inefficiencies, or potential security threats [12],

facilitating interventions to maintain operational integrity and minimise disrup-

tions. This approach lays the foundation for predictive maintenance strategies,

where maintenance interventions are planned based on actual equipment condi-

tion rather than predetermined schedules. Moreover, anomaly detection plays a

crucial role in quality control processes [13], ensuring product consistency and reli-

ability amidst the complexities of modern manufacturing processes. By analysing

data from various stages of the production, deviations from established quality

standards or specifications can indeed be promptly detected, allowing for timely

interventions to rectify issues, preventing the production of defective products

and minimising waste.

In particular, one of the most common signal types in Industry 4.0 is the

time series. This stems from the fact that sensors commonly generate time series
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data to monitor the real-time condition of industrial machinery. For this reason,

numerous methods for spotting outliers in this data type have been developed [14].

2.2.1 Anomaly Taxonomy

The term ”anomaly” has neither a univocal nor a precise definition, but is in-

stead a general term that includes different types of deviation from the standard

behaviour. This means that different types of anomalies, each offering unique

challenges and insights, can be identified [15].

• Point Anomalies are characterised by individual data points that deviate

significantly from the norm. This kind of anomaly could signify noise,

errors, or rare events. Several techniques exist for identifying anomalies

of this kind, exploiting the fact that the anomaly is significantly distant

from the other data points. In time series analysis, the classical approach

involves establishing upper and lower control limits based on historical data

and assessing whether a specific data point falls outside these limits.

• Contextual anomalies depend on the surrounding circumstances or con-

textual information for their identification. Those are points that do not

exceed the control limits but show unusual behaviour with respect to nor-

mal data. For time series this translates, for example, to a sudden change

in a periodic or predictable trend.

• Collective anomalies, also known as group anomalies, involve subsets of

data exhibiting aberrant behaviour collectively. Those points might appear

to exhibit normal behaviour when examined individually, but they raise sus-

picions when considered collectively. Since they are not easily recognisable

at first glance, long-term contexts are particularly important in detecting

them.

• Series anomalies, or abnormal time series, are anomalies that specifically

occur in multivariate time series when the relationships of a certain time

series with other time series in the dataset are significantly different from

those observed between the remaining series.

Other types of classifications specifically designed for time series are possible,

such as the one proposed in [16], that consider different scenarios of anomalous

behaviour for data over time. This taxonomy is visible in Tab.2.1
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Category Description

Missing Most data are missing and the frequency drops to 0
Outlier One or more outliers appear in the image as spikes
Minor vibration Response oscillates with a small amplitude compared to

normal sensor data
Square Vibration response oscillates abnormally within a limit-

ing range
Trend The data has an unexpected and obvious non-stationary

and monotonous trend
Drift The data has an unexpected and obvious non-stationary

trend with random drift

Table 2.1: Bao et al. detailed classification of anomalies in time series

2.2.2 Types of Supervision

Anomaly detection methods vary in their approach depending on the availability

of labelled anomalies.

Supervised Supervised anomaly detection algorithms require labelled instances

of both normal and anomalous behaviour for training. However, obtaining a fully

labelled dataset is not common in anomaly detection and can be a challenging

task. Consequently, these methods are rarely employed, and there is limited

research focus on them. As a result, there are no algorithms specifically designed

for this task [17], but existing classifiers such as random forests [18] or neural

networks are often utilised.

Semi-supervised Semi-supervised algorithms combine elements of both super-

vised and unsupervised approaches, utilising a combination of labelled and un-

labelled data to identify anomalies. In a semi-supervised setting, the algorithm

typically receives a small amount of labelled data , along with a larger amount

of unlabelled data. There are several types of semi-supervised techniques, for

example, incomplete supervision, where only a subset of training data is given

with labels, inexact supervision, where the training data are given with only

coarse-grained labels, and inaccurate supervision, where the given labels are not

always ground-truth [19]. For instance, some incomplete semi-supervised models

for anomaly detection are trained only on normal samples, and detect anomalies

that deviate from the normal representations learned during the training pro-

cess [20].
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Unsupervised Unsupervised anomaly detection algorithms operate without the

need for labelled data and aim to identify anomalies based solely on the charac-

teristics of the data itself. These algorithms seek to detect instances that deviate

significantly from the norm without prior knowledge of what constitutes normal

or anomalous behaviour, finding points that do not follow the underlying prob-

ability distribution. The strength of these methods lies in the fact that, since

they do not need labels, they can be applied to any type of raw data, making

them suitable for scenarios where labelled anomalies are unavailable. Moreover,

the abundance of different algorithms provides a wide range of options to choose

from, based on the specific characteristics of the data and the requirements of the

application. This diversity allows for flexibility in selecting the most appropriate

approach for a given problem domain, enhancing the versatility and effectiveness

of unsupervised anomaly detection in practical applications. However, there are

some cons to consider. First of all, unsupervised algorithms may flag normal

instances, that deviate significantly from the majority of the data, as anomalies.

For this reason, interpreting the results and distinguishing between true anoma-

lies and normal data can be challenging, especially when the context is complex

and the definition of an anomaly has some degree of uncertainty. On the other

hand, algorithms may produce false positives, leading to a higher rate of false

alarms and decreased confidence in the detected anomalies. In this framework,

determining appropriate threshold values that balance the trade-off between false

positives and false negatives for identifying anomalies can be difficult and requires

careful consideration of the domain.

2.2.3 Algorithms

As previously emphasised, unsupervised methods are the preferred choice in sce-

narios where labelled data is scarce, that is a common occurrence in many practi-

cal applications. In the context of this study, which centres on anomaly detection

within time series data, the forthcoming section will undertake a thorough exam-

ination of classical methods and deep learning algorithms tailored specifically for

this purpose.

Classical Methods

Z-score One of the initial methods for anomaly detection, though simplistic,

is the Z-score (also known as the standard score). This score is computed for

each data point by subtracting the mean of the time series and then dividing by
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the standard deviation. Anomalies are commonly flagged as data points whose

Z-scores surpass a predefined threshold. Hence, this approach proves useful for

pinpointing point anomalies within univariate time series. However, it has some

limitations in capturing more complex anomalies or patterns in multivariate or

highly dynamic time series data.

Distance-based Distance-based methods offer another avenue for anomaly de-

tection. These methods exploit the distances between data points, identifying

outliers as those that deviate significantly from their neighbouring points. They

are applicable to time series analysis, where data points may exhibit stationarity,

clustering around certain values, or gradual changes without abrupt jumps. Oper-

ating in multidimensional spaces, these algorithms naturally handle multivariate

time series data. An example of such algorithms is DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) [21]. Renowned for its capacity

to detect clusters of varying shapes and sizes within a dataset while remaining

robust to noise, DBSCAN differs from traditional clustering algorithms like K-

means [22], since it does not require a priori specification of the number of clusters.

Instead, it groups closely packed points based on their density, forming clusters

around regions of high density separated by areas of low density. Isolated points

in low density regions are automatically mapped as noise or anomalies. Some-

times, these methods employ feature extraction to obtain more informative and

clusterable data. Additionally, they may utilise kernel methods to map the time

series into a higher-dimensional space [23]. This process aids in capturing non-

linear relationships and complexities within the data, enhancing the clustering

performance.

Isolation Forest Isolation Forest [24] is an anomaly detection method based on

the concept of isolating anomalies within a dataset by constructing specific deci-

sion trees called isolation trees. At each step, the algorithm randomly selects a

feature and a split value within the range of that feature, recursively partitioning

the data until all points are isolated or a maximum tree depth is reached. The

number of partitions needed to isolate a data point serves as its isolation depth.

Multiple isolation trees are constructed independently, with each tree contribut-

ing to the anomaly detection process. An anomaly score is then calculated for

each data point based on the average isolation depth across all trees. Points with

lower average isolation depths are considered anomalies. This approach lever-

ages the intuition that anomalies are typically isolated more quickly than normal
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data points, as they deviate from the majority of the dataset. Isolation Forest

technique offers scalability and is intrinsically multivariate, making it suitable for

time series analysis [25]. However, its performance can be sensitive to the choice

of hyperparameters, such as the number of trees in the ensemble and the max-

imum tree depth. Suboptimal hyperparameter selection may lead to decreased

detection accuracy.

ARIMA Autoregressive Integrated Moving Average (ARIMA) models [26] are

widely used statistical methods renowned for their effectiveness in time series

forecasting. These methods are also recognised for their utility in anomaly detec-

tion tasks, leveraging their ability to capture temporal dependencies and patterns

within sequential data. ARIMA models are particularly useful when the data ex-

hibit non-stationarity since they are able to capture both seasonality and drift.

The name ARIMA itself provides insights into its key components:

AR Auto-regressive: This component captures the relationship between an ob-

servation and a number of lagged observations (i.e., its own past values),

modelling the dependency of the current value on its previous values. Given

a random variable X at time step t, the autoregressive part of order p is

given by: AR(p) : Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + εt where {φi}
p
i=1

are auto-correlation coefficients and ε is white noise.

I Integrated: This component refers to differencing the time series data to

make it stationary. Differencing involves subtracting consecutive obser-

vations to remove trends or seasonality. Hence, a point at timestep t is

Xt = XT −Xt−1. The order d account for the number of times a difference

is applied to make data stationary.

MA Moving Average: This component accounts for the dependency between

an observation and a residual error from a moving average model applied

to lagged observations, capturing short-term fluctuations in the data. The

moving average part at time step t of order q is given by MA(q) : Xt =

εt−θ1εt−1−θ2εt−2−. . .−θqεt−q where {θi}
q
i=1 are moving-average coefficients

and εt denotes a model prediction error at time step t.

Despite the model’s power and suitability for many applications, it is essential

to properly tune the model parameters and validate its performance to ensure

accurate forecasting results. Additionally, ARIMA can only analyse univariate
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time series; for multivariate series, a variant exists called VARIMA (Vector Au-

toregressive Integrated Moving Average) [27].

In addition to the aforementioned techniques, several other algorithms can serve

the same purpose. For example, time series can be analysed in the frequency

domain [28] leveraging methods such as the Fourier transform, the wavelet trans-

form [29] or the Power Spectral Density (PSD). Moreover some methods can be

borrowed from other areas of research, such as Saliency Detection [30]. This

technique, traditionally utilised for computer vision, focuses on identifying the

most salient or significant features within the data that deviate from the norm.

By highlighting these salient features, anomalies can be detected based on their

deviation from the expected patterns or distributions, providing valuable insights

into potential anomalies within the time series data [31].

Deep Learning Techniques

Traditionally, anomaly detection has relied on statistical methods, machine learn-

ing algorithms, and domain-specific rules to identify deviations from normal be-

haviour in datasets. While these approaches have shown effectiveness in many

scenarios, they often struggle to handle the complexities and nuances present

in modern data environments. On the other hand, deep learning techniques

have shown promising results and improved detection performance on complex

datasets with respect to shallow methods [32]. By leveraging neural networks with

multiple layers and innovative architectures, deep learning models can indeed au-

tomatically learn useful features from raw data and perform end-to-end anomaly

detection. In the context of time series, there are three conceptual paradigms

that can be applied [33], namely Deep Learning for Feature Extraction, Learning

Feature Representations of Normality,and End-to-end Anomaly Score Learning.

Deep Learning for Feature Extraction This paradigm involves utilising deep

learning architectures to automatically extract relevant features from time series

data. Specifically, it aims to extract a low-dimensional feature representation

from data in higher dimensions that is potentially not linearly separable. The

anomaly scoring, i.e., the process of assigning a label to each value indicating

whether the data are anomalous or not, is independent of the feature extraction.

The use of deep learning is appropriate since these algorithms have shown better

capability in extracting meaningful features [34]. This class of methods can lever-
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age well-known models, such as AlexNet [35] or ResNet [36], for feature extrac-

tion, including the use of their pre-trained version if the data is suitable. Other

research instead focuses on training deep feature extraction models from scratch,

leveraging architectures like the auto-encoder for feature extraction [37]. These

algorithms have shown good utility, especially when used to detect anomalies

in high-dimensional data, such as video samples, where dimensionality reduction

can aid in reducing the complexity of the problem while extracting valuable infor-

mation. Anomaly scoring is computed on the extracted features using traditional

machine learning methods, such as one-class SVMs [38] or unsupervised classi-

fication methods like clustering [39]. Since many anomaly scoring methods are

readily available, various combinations of feature-extractor and anomaly-scorer

can be explored. However, having the two processes disjointed can lead to sub-

optimal anomaly scores.

Learning Feature Representations of Normality The methods in this cate-

gory blend feature learning with anomaly scoring. One way of implementing

such algorithms is by optimising a generic feature learning objective function.

Despite these functions are not specifically designed for anomaly detection, they

can still capture key underlying data regularities. The key idea is that if the

model learns to reconstruct or forecast data, standard data will be predicted

with more precision than anomalous data. Consequently, outliers will yield a

higher reconstruction/prediction error, highlighting their atypical nature. For

example, auto-encoders (AE) compress data into a low-dimensional space that

only retains the relevant features. This property can be exploited by evaluat-

ing the reconstruction error, which will be higher for anomalies, that are indeed

hardly captured by the model. Some variants, like sparse AE [40] or variational

AE [41] might enhance the robustness of anomaly detection. Moreover, the auto-

encoder structure can be implemented using many different species of layers. For

example, Gugulothu et al. [42] combine an auto-encoder with a recurrent neu-

ral network for detecting anomalies in high-dimentional timeseries, while Kieu

et al. [7] use an ensemble of recurrent auto-encoder for outlier detection. Never-

theless, the feature representations derived from auto-encoders may exhibit bias

due to infrequent patterns and the existence of outliers or anomalies within the

training dataset.

Another idea for identifying anomalies is by using a Generative Adversarial

Network (GAN) [43]. This model operates on a dual neural network architecture
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comprising a generator and a discriminator. The generator synthesises new data

instances by processing random noise as input, whereas the discriminator eval-

uates these samples, discerning between genuine data from the training set and

counterfeit data from the generator. Through an adversarial training process,

the generator and discriminator engage in a competitive interplay: the generator

strives to produce samples indistinguishable from authentic data, while the dis-

criminator attempt to accurately classify real and fake samples. This dynamic

feedback loop continues iteratively until equilibrium is ideally reached, where the

generator generates realistic samples that confound the discriminator. The de-

tection of anomalies by using this framework is based on the idea that normal

data can be better generated from the feature space, and so it is expected that

anomalies will have fewer highly similar generated counterparts. There are sev-

eral famous examples of GANs used for this purpose, such as AnoGAN [44] or

GANomaly [20]. In the time series realm, GANs are used for detecting anomalies

in multivariate time series [45, 46].

A third approach for harnessing the reconstruction error, particularly in time

series data, involves utilising advanced forecasting models, such as Recurrent

Neural Networks (RNNs) or Transformer architectures. These models excel at

predicting future values of the time series data for multiple time steps ahead.

Anomalies are identified when the reconstruction error surpasses a predefined

threshold. This method capitalises on the ability of these models to capture

intricate and long-term temporal dependencies [47, 48].

Other methods leverage self-supervised learning, that is, evaluating the con-

formity of data instances to normality by examining their alignment with an

ensemble of predictive models, where each model is trained to forecast one fea-

ture based on the remaining features in the dataset. These methods are based on

cross-feature analysis and are designed to check the consistency of the different

series, finding anomalies where data shows inconsistency [49].

A second macro-class of algorithms is Anomaly Measure-dependent Feature

Learning. This category of methods focuses on acquiring feature representations

tailored to optimise a specific anomaly measure already in place. This includes

distance-based anomaly detection, which trains neural networks to extract fea-

tures designed to enhance the performance of certain distance-based anomaly

measures [50]. Additionally, it encompasses deep one-class classification tech-

niques [51], which leverage neural networks in conjunction with one-class Sup-

port Vector Machines [52]. Lastly, this category includes deep clustering-based
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algorithms, which learn to encode data in a manner conducive to easy clustering,

distinguishing them from anomalies [53].

End-to-end Anomaly Score Learning This methodology involves training deep

learning models in an end-to-end fashion to directly predict anomaly scores

for each data point by simultaneously learning the feature extraction and the

anomaly scores into a single cohesive framework. Rather than relying on pre-

existing deep learning models for feature extraction, this category of methods

integrates discriminative or order information directly into the anomaly scoring

network, therefore enhancing the optimization of anomaly scores. For example,

ranking models aim to directly learn how to prioritise or rank items based on

their relevance to a given context by optimising a scoring function that assigns a

numerical score to each item in a given set, with higher scores indicating greater

relevance or priority [54]. Other strategies use a prior distribution for encoding

and guiding anomaly score learning. For example, Pang et al. [55] use a Gaussian

prior to encode the anomaly scores and enable their direct optimization. Lastly,

some researches instead use the likelihood maximization of the events for anomaly

learning, assuming that anomalies are low-probability events.

2.3 Time Series Forecasting

In anomaly detection for time series data, a prevalent and effective technique in-

volves forecasting the series and inspecting the reconstruction error by comparing

the predicted time series with the original data [15]. This approach has demon-

strated its efficacy in various domains due to its ability to capture deviations from

expected patterns. Consequently, below follows a brief review of both established

and cutting-edge deep learning models tailored for time series forecasting.

2.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [56] have emerged as a successful class of

neural network architectures uniquely designed to handle sequential data with

temporal dependencies. Unlike traditional feedforward neural networks, RNNs

possess the ability to retain memory of past inputs, allowing them to capture and

process sequential information effectively. This distinctive capability has made

RNNs indispensable in various domains, including natural language processing

[57], time series analysis [58], and more.
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The overall structure of an RNN resembles that of standard neural networks:

it is composed of an input, a hidden, and an output layer, and exploits weights,

biases, and activation functions to make predictions. However, this model also

features a feedback loop that retains the value obtained by the neuron after

the activation function and combines it with the input of the next time step.

This is called a hidden state, which serves as memory to retain information from

previous time steps. The hidden state is updated recursively using the current

input and the previous hidden state. Despite the input sequence potentially

having multiple time steps, the number of parameters to train does not increase,

as they are shared across all time steps. Hence, RNNs can handle sequences of

variable lengths, making them suitable for a wide range of sequential data tasks.

The outcome of the output layer contains, for every instant, the prediction for

the following time step, enabling the process of sequential data both input-wise

and output-wise. Therefore, multiple combinations of types of input and output

are possible. For instance, singular input with sequential output finds utility in

image captioning, while sequential input with a single output suits document

classification. Moreover, when both input and output are sequential, RNNs can

meticulously analyse video content frame by frame or forecast temporal trends in

time series.

However, training RNNs poses notable challenges, primarily the issue of van-

ishing gradients. As each time step effectively acts as a layer in a feedforward net-

work, training an RNN for extended temporal sequences results in exponentially

diminishing gradients and information decay over time. This leads to smaller

steps in the gradient descent algorithm, i.e. a much slower learning of the opti-

mal parameter values. On the other hand, if feedback weights are greater than 1,

there is a risk of a mirror issue called exploding gradient. To mitigate this prob-

lem, the common solution is leverage the gating mechanisms, prominently em-

bodied by Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM)

cells. These gating mechanisms enable RNNs to discern when to retain or discard

temporal information, thereby enhancing the vanishing gradient.

Long Short-Term memory

Long Short-Term Memory (LSTM) [59] addresses the vanishing gradient problem

by introducing gated mechanisms that regulate the flow of information through

the network and capture long-range dependencies in sequential data. The LSTM

structure consists of multiple memory cells interconnected through various gating
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mechanisms, allowing it to effectively retain and manipulate information over

extended time intervals. In particular, the model utilises two different feedback

lines, one for short-term memory and the other for long-term memory, connected

by three different gates. The long-term memory is stored inside the cell state,

flowing through the entire network and being modified only by linear interactions

(summation and multiplication). It can retain information over long sequences

and is regulated by the gates. On the other hand, short-term memory is stored

inside the hidden state. This is used as input through the LSTM cell and is

updated at each time step depending on its value, the input of the network, and

the cell state. The gates of the LSTM cell include the forget, input, and output

gates, as described below.

• The Forget Gate determines the proportion of information from the pre-

vious cell state to discard or retain. It takes the previous value of the

short-term memory and the current input as input, sums them (using ap-

propriate weights and bias), and produces a value between 0 and 1 through

a sigmoid function. For instance, a value of 1 indicates that all long-term

memory will be retained, while a value of 0 will erase all previous memory.

The cell state is then scaled by this proportion.

• The Input Gate determines which new information should be added to

the cell state. It is composed of two similar sub-modules: one designed

to compute a ”potential long-term memory” value that will be summed to

the new long-term memory, and the other for computing the percentage of

this memory that should be remembered. Both modules take in input the

hidden state and the network’s input and perform operations similar to the

forget gate. However, in one case, the activation function is the hyperbolic

tangent, obtaining a value between −1 and 1, while in the other, the sigmoid

function is used again. The results of the two sub-modules are multiplied

together and then summed to the cell state.

• The Output Gate determines which parts of the cell state should be

returned as the new hidden state for the short-term memory while the cell

state remains untouched. The module takes input, for the third time, the

current input and the hidden state value, summing them and applying a

sigmoid function. The cell state value is processed with a tanh function

and then multiplied by the result of the previous computation, obtaining

an updated value for the hidden state.
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Figure 2.1: LSTM cell diagram [60]

Gated Residual Unit

Similar to LSTM, Gated Residual Unit (GRU) networks [61] incorporate gated

mechanisms to control the flow of information and address the vanishing gradient

problem. GRU cells have a simplified architecture compared to LSTM, with fewer

parameters, making them computationally more efficient. In particular, GRU

does not have the cell state but uses the hidden state to transmit information

itself. The unit is composed by two different gates: the reset gate and the update

gate.

• The Reset Gate controls the degree to which the previous hidden state

should be ignored when computing the new candidate hidden state. It is

similar to the LSTM’s forget gate: it takes in input the input data xt and

the hidden state ht−1, combining them and applying a sigmoid activation

function. The result rt determine the percentage of past information that

should be discarded before computing the new candidate hidden state. This

value rt is multiplied element-wise by the hidden state ht−1 and summed to

the input xt; the hyperbolic tangent activation function is then applied to

obtain a candidate hidden state h̃t in the range between −1 and 1.

• The Update Gate determines how much of the past information should

be retained and how much of the new information should be added to

the current hidden state. It takes input from the previous hidden state

ht−1 and the current input xt and produces an update gate vector using a

sigmoid activation function. The update gate value zt ranges between 0 and

1, where 1 indicates keeping all the previous information and 0 indicates

ignoring it entirely. The final hidden state is computed by combining the
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Figure 2.2: GRU cell diagram [62]

previous hidden state ht−1 and the new candidate hidden state h̃t based

on the update gate zt. It interpolates between the previous hidden state

and the new candidate hidden state, with the update gate determining

the balance between the two. The final hidden state ht is computed as

ht = (1 − zt) · ht−1 + zt · h̃t.

2.3.2 Transformer

Transformers have emerged as a powerful architecture in the domain of artificial

intelligence and machine learning, particularly renowned for their exceptional

performance in natural language processing tasks. Originally introduced in 2017

by Vaswani et al. [63], transformers have since become a cornerstone in various

applications beyond text processing, including time series forecasting. Unlike

traditional recurrent neural networks, which rely on sequential processing or lo-

cal receptive fields, transformers leverage a self-attention mechanism to capture

global dependencies within a sequence of data. This self-attention mechanism

allows transformers to effectively model complex relationships across different

positions in the input sequence, making them particularly adept at capturing

long-range dependencies.

The transformer architecture, developed originally for sequence-to-sequence

word-related tasks, is made of the the following building blocks:

Word Embeddings In order to facilitate the integration of input and output

words into numerical data for utilisation in neural networks, a pivotal step in-

volves converting them into numerical representations. Word embedding, a com-

monly employed technique in neural networks, serves this purpose effectively.
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The underlying principle of word embedding leverages a simple neural network

architecture wherein each word and symbol within the target vocabulary corre-

sponds to a distinct input node. Notably, an additional input node is designated

to represent the symbol EOS, denoting end of sentence or end of sequence. Given

the potential variability in the vocabulary, encompassing words, word fragments,

and symbols, each input is referred to as a token. The same word embedding

network is re-utilised for every input word or symbol, ensuring uniformity across

input sentences of varying lengths.

Positional Encoding Positional encoding is a fundamental technique employed

by Transformers to preserve the sequential order of words within a sentence. The

position of a word is encoded with a sequence of values having the same dimension

as the word embedding. Numerical values denoting word order are derived from

a sequence generated by alternating sine and cosine functions with increasing

wavelength. This way of selecting the values ensures that a distinct vector is

assigned to each possible position. To integrate positional information with word

embeddings, the positional values are summed to the embedding values, enabling

Transformers to effectively retain and utilise information regarding word order.

Self-Attention Mechanism The self-attention mechanism is the core compo-

nent of the transformer architecture. It allows the model to weigh the importance

of each element in the input sequence with respect to every other element, in-

cluding itself, enabling it to capture long-range dependencies and relationships

within the sequence. To compute the self-attention weights, the input embed-

dings are transformed into three sets of vectors: query, key, and value. These

transformations are achieved through learned linear projections.

• The query vectors represent the elements of the sequence for which we want

to compute attention weights.

• The key vectors represent the elements that we want to compare against to

determine the relevance of each query.

• The value vectors represent the information associated with each element

in the sequence.

Therefore we first do a dot product between the query and the transpose

of the key matrix. The output of this dot product can be called an attention

filter. At the start of the training process, the contents of the attention filter are
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more or less random numbers, but once the training process is done, they take

on more meaningful values that are, in fact, attention scores. To ensure that

more similar words exert greater influence on the encoding of the word under

consideration, the calculated similarities are passed through a softmax function.

The softmax function preserves the order of input values while transforming them

into probabilities, thus determining the relative contribution of each input word

to the encoding of the word being examined. The attention weights are hence

used to compute a weighted sum of the corresponding value vectors, where el-

ements with higher attention weights contribute more to the final output. The

resulting vector represents the output of the attention mechanism for each query.

Eventually, the embedded words are summed to their attention value, computing

the residual connection. This process ensures that each word’s representation is

informed by its relationship with other words in the sentence, facilitating compre-

hensive understanding and modelling of word associations within the Transformer

architecture.

Multi-Head Attention In practice, the transformer employs multi-head atten-

tion, where the self-attention mechanism is applied multiple times in parallel,

each with its own set of query, key, and value projections. This allows the model

to attend to different aspects of the input sequence simultaneously, enhancing its

ability to capture diverse patterns and relationships.

Decoder The decoder part of the transformer has an analogous structure to

the encoder block, i.e. a word embedding network, a positional encoding, a

multi-head attention layer, and finally a residual connection operation. It has

to be emphasised that the target dictionary undergoes its own word embedding.

For example, if the task is translating words from English to Italian, the input

word embedding would encode the English dictionary, while the output word

embedding would encode the Italian one.

Encoder-Decoder Attention The self-attention mechanism keeps track of how

the different elements are related within a sequence. Similarly, the encoder-

decoder attention is a set of queries, keys, and values that learn the relationships

between the input and the output sequence. This is a crucial step in order to

correctly preserve the important information contained in the input and correctly

predict the output sequence. The set of vectors utilised for encoder-decoder

attention differs from those employed in self-attention, as it learns a distinct
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set of weights. On top of the encoder-decoder attention layer, another residual

connection is performed in order to keep the embedded information.

Final Fully Connected Layer The final output is produced by a fully connected

layer, i.e. a single set of weights and biases applied to the input vector. The

output layer has the same dimension as the output dictionary; hence, the output

values are processed with a softmax activation function in order to derive which

word (or value) has the highest probability.

2.3.3 Temporal Fusion Transformer

The Temporal Fusion Transformer (TFT) [64] represents a cutting-edge deep

learning model specifically tailored for time series forecasting. Leveraging the ar-

chitecture of transformers, it aims to achieve remarkable accuracy while providing

a thorough understanding of temporal dynamics. This is achieved through care-

ful organisation of its components and the introduction of novel strategies. The

TFT is engineered for multi-horizon forecasting, meaning it can predict outcomes

for multiple time steps ahead. Additionally, it operates in a multivariate man-

ner, capable of processing input from and forecasting outcomes for multiple time

series simultaneously. Furthermore, the TFT is characterised by its probabilistic

nature. Instead of generating single data points for each time step, it produces a

set of quantiles that represent a probability distribution for the forecasted point.

To capture both local and long-range dependencies, the model integrates various

strategies across its architecture, including LSTM and self-attention mechanisms.

In pursuit of interpretability, the TFT implements features such as multi-head

attention. This aids users in identifying globally-important variables for the pre-

diction task, significant events, and persistent temporal patterns.

Input type The model is designed to accommodate diverse inputs, processing

them through distinct structures. Specifically, it incorporates past inputs, future

inputs, and static metadata. Past inputs represent the data points from the time

series that are already known, i.e., the historical observations collected. Future

inputs denote the events that are anticipated to occur in the future. Static meta-

data encompasses supplementary information associated with the time series that

remains constant over time. To illustrate this concept with an example, consider

a chain of retail store’s business that seeks to forecast sales of a particular prod-

uct. Past inputs would include historical sales data for the product over previous



26 Chapter 2. State of the art

Figure 2.3: TFT architecture as depicted in the original paper [64]

periods, perhaps daily, weekly, or monthly records. Additionally, it might in-

corporate time series data on factors such as pricing fluctuations or inventory

levels. Future inputs could encompass upcoming holidays or special events that

are expected to impact sales. Static metadata might instead include information

such as store locations, size, etc., i.e. details that remain constant over time and

provide context for understanding sales patterns.

Model overview The TFT model is made of multiple different building blocks

designed to effectively capture the information contained in the provided time

series. Time series are passed to a Variable Selection Network that determines

the relevance of each variable. Data is then processed by a sequence-to-sequence

layer, i.e. an LSTM encoder-decoder, and by a temporal self-attention decoder

that utilises interpretable multi-head attention, to capture both the dependencies

from close data and far ones. The result of the model is a quantile forecast pre-

diction. In contrast to other time-series forecasting architectures, TFT is metic-

ulously designed to incorporate information from static metadata; therefore, it

utilises different encoders to generate four distinct context vectors from the static

covariance. These vectors are strategically integrated into various parts of the

temporal fusion decoder, where static variables play a crucial role in process-

ing, namely contexts for temporal variable selection, local processing of temporal

features, and enhancement of temporal features with static information.

Gated Resudual Network One of the most important building blocks of the

TFT is the gating mechanism. This component is designed to provide the model
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with the flexibility to apply non-linear processing only where necessary. Such a

feature is particularly important when the precise relationship between exogenous

inputs and targets is unknown in advance, making it challenging to anticipate

which variables are relevant. The gating mechanism is performed by the Gated

Residual Network (GRN), which is the building block of TFT designed to address

this challenge.

The GRN takes a primary input a and an optional context vector c and yields

a processed output as follows:

GRNω(a, c) = LayerNorm (a + GLUω (η1)) , (2.1)

η1 = W 1,ωη2 + b1,ω, (2.2)

η2 = ELU (W 2,ωa + W 3,ωc + b2,ω) , (2.3)

GLUω(γ) = σ (W 4,ωγ + b4,ω) » (W 5,ωγ + b5,ω) (2.4)

Where η1, η2 ∈ R
dmodel are two intermediate layers and W

·,ω and b
·,ω are weights

and biases of the model. ELU is the Exponential Linear Unit [65] activation

function that acts as an identity function when the argument is much greater

than zero, and linearly when the output is much less than zero. GLU is instead

the Gated Linear Unit [66], an activation function that allows the suppression of

any parts of the architecture that are not required for a given dataset, providing

adaptive depth and network complexity to accommodate a wide range of datasets

and scenarios. It exploit the sigmoid σ (·) and the element-wise Hadamard prod-

uct ». During training, dropout is applied before the gating layer and layer

normalisation to enhance the model’s robustness and generalization capabilities.

Eventually, the GRN perform Layer Normalisation [67] to stabilise the training of

neural networks by normalising the inputs to neurons within each layer, thereby

reducing the impact of internal covariate shift and improving the network’s con-

vergence and generalization performance.

Variable Selection Network One of the challenges when dealing with mul-

tivariate time series is understanding which variables are relevant for a spe-

cific case. The TFT is specifically designed to provide instance-wise variable

selection through one of its building blocks, known as the Variable Selection

Network, which is utilised for analysing both static and time-dependent data.

This approach not only identifies the most influential variables for prediction but

also eliminates unnecessary noisy inputs, thereby enhancing performance. Given
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that many real-world time series datasets contain features with limited predic-

tive value, variable selection optimises model performance by focusing learn-

ing capacity on the most relevant variables. Static, past, and future inputs

use three different Variable Selection Networks. Categorical variables are rep-

resented as features with entity embedding [68], while continuous variables un-

dergo a linear transformation so that they are mapped into a dmodel-dimentional

vector. Each of these transformed inputs ξ
(i)
t is stored in a flattened vector

Ξt =
[

ξ
(1)
t , . . . , ξ

(n)
t

]

. Both Ξt and the context vector cs, obtained by the static

covariate encoder, are taken to obtain the vector of variable selection weights

vχt
= Softmax

(

GRNvχ (Ξt, cs)
)

. Each transformed input is also processed by its

own GRN as ξ̃
(j)
t = GRNξ̃(j)

(

ξ
(j)
t

)

. At last, the processed features are weighted

by their variable selection weights and combined: ξ̃t =
∑mχ

j=1 v
(j)
χt ξ̃

(j)
t

Interpretable Multi-Head Attention In transformer-based architecture the multi-

head attention mechanism [63] scales values V according to the relationship be-

tween keys K and queries Q as: Attention (Q,K,V) = A(Q,K)V in which

A(·) is a normalisation function. The standard multi-head attention mechanism

trains multiple heads in parallel, each conducting its own attention computation

simultaneously. The results of these computations are then concatenated and

multiplied by head-specific weights. However, this approach lacks interpretabil-

ity. Therefore, TFT adopts an interpretable multi-head attention mechanism.

This solution utilises a shared value matrix and additive averaging of attention

matrices instead of concatenation. This enhances interpretability by ensuring

that attention values are not disregarded.

Temporal Fusion Decoder The decoder part of the TFT is composed of mul-

tiple different layers. Firstly,data is enhanced levering by the local context by

utilising an LSTM encoder-decoder [59]. Past data is fed to the encoder, while

future data is progressively passed to the decoder. Static metadata influences

local processing through context vectors from static covariate encoders. A gated

skip connection is also employed for enhanced connectivity. The following layer

is called Static Enrichment Layer and utilises shared-weight gated residual net-

works to enrich temporal features with static information from covariate encoders.

Afterwards, interpretable multi-head attention is performed to grasp long-range

dependencies effectively. All enriched temporal features are consolidated into

a single matrix, and multi-head attention is applied at each forecast time. To
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preserve causal information flow, decoder masking is applied. Eventually, an ad-

ditional shared-weight gated residual network is applied across the layer. The

output of the model is a prediction of different percentiles at each future time

step, called quantile forecasts; during the training the quantile loss is minimised,

summed across all quantile outputs [69].
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Chapter 3

Model

3.1 Data Acquisition

The initial step of this data analysis involves collecting the necessary data from

the online dataset where it is stored. Crafting well-constructed queries is crucial

for accessing relevant information within the dataset and also for performing a

portion of the preprocessing and cleaning directly during the fetching phase. All

the industrial machines of our interest automatically store data coming from their

sensors in an Influx dataframe. InfluxDB is an open-source time-series database

created by InfluxData and designed to handle high write and query loads while

providing high availability and scalability. It uses a SQL-like query language

called InfluxQL, which allows for complex queries on time-stamped data in real-

time. Machine metadata, such as the serial number or the model name, is instead

stored on a Mongo database, a widely used open-source NoSQL database man-

agement system that provides a flexible, scalable, and high-performance solution

for storing and managing data.

The process of storing data involves several steps. Initially, the sensors bring

the signals to the PLC, or Programmable Logic Controller, which is the pro-

grammable device controlling the machine. Variables are sent to an edge node

using the Modbus protocol, commonly used in industrial automation for PLC

communication. The edge node is a network node usually located near devices

or sensors that collect data, and it is used to process or transmit data directly

to the cloud or other processing systems. This node transmits data to the cloud

via MQTTs, a lightweight messaging protocol for device communication with

bandwidth or network restrictions, often used in IoT applications. In particular,

MQTTs differs from MQTT since it adds security through SSL/TLS encryption

31
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for data exchange. Besides the node, there’s an edge gateway, a concentrator

of connections to and from the machine, functioning as a firewall and managing

information routing for security. Once it reaches the cloud, namely AWS (Ama-

zon Web Services), a well-known cloud-services platform, data is processed using

a protocol with a centralised broker for scalability. Subsequently, the pipeline

receiving data streams transforms them into KPIs, or Key Performance Indica-

tors, which are used to evaluate process, project, or organisational performance.

The architecture is serverless, designed to execute necessary functions without

direct server management. Servers are hence able to adjust their numbers based

on machine traffic conditions. For instance, at 7 in the morning, when machines

activate, the architecture expands tenfold before returning to its normal size.

Metadata information, which contains customer details, is instead exported from

the company’s local database to MongoDB through periodic calls.

Data are collected using a specifically designed Python function that can

retrieve them according to some parameters, such as the list of desired vari-

ables or the start and stop times for data retrieval. Firstly, the function exploits

a Python library called influxdb-client, which handles the connection with

the server and facilitates data transfer. The process begins by initialising an

InfluxDBClient object. This object is instantiated by providing specific in-

formation, notably the URL of the InfluxDB server API, which identifies the

database’s location, an authentication token, and the name of the organisation.

Once the client object is instantiated, it is possible to initialised a query client

with the .query api() method. The query structure is written in InfluxQL lan-

guage, and it is stored inside a multi-line string. Writing the query is completed

at run-time using the built-in .format() method with the addition of information

provided by the user or collected from the metadata. The script retrieves meta-

data about machines from a MongoDB database using the MongoClient function

of the pymongo package. It begins by establishing a connection to the database

by passing a token to the client. Then the machines collection is accessed within

the specified database, and documents are retrieved if the activation date field

exists, i.e. if the machine has been put into production. For each machine docu-

ment found, it is stored in a dictionary where the serial number acts as the key.

This dictionary is exploited for checking which machines are active and which

are their respective models. Subsequently, the InfluxDB query is finalised by

incorporating user-supplied details. Finally, it is executed once for each distinct

machine, either within a user-defined list or across all potential machines. Ini-
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tially, the query filters data corresponding to the provided serial number. Then, it

selects specific fields referring to the different signal variables and pivots the data,

organising it by time while creating distinct columns for each field. A separate

table is generated for each variable to apply a time aggregation function, allowing

for data point resampling across broader time windows. This involves applying

functions such as mean, max, or selecting the initial value. The choice of function

for each variable can be tailored according to specific requirements. Afterward,

the query removes all unnecessary columns, sorts them by ascending time, and

combines all data tables into a single one using the union operation. Eventually,

the table is yielded as a Pandas dataframe. This process is repeated for each

required machine’s serial, and the final output has the shape of a dictionary of

Pandas dataframes.

A similar function is performed for fetching data related to the alarm logs.

Since the query does not perform any resampling, it turns out to be much simpler.

Data are selected within a certain range and filtered depending on the serial

number of the different machines. Then they are filtered again depending on the

code associated with the alarms that we want to collect. At last data, the are

pivoted and returned in a Pandas dataframe for each machine.

Metadata are collected using a function named get machines(), which is de-

signed to retrieve machine information from a MongoDB database. The function

first establishes a connection to the database using the pymongo library, then,

within a try-except block, accesses a specific collection named ”machines” and

queries for documents where the activationDate field exists. For each document

retrieved from the query, the function extracts the serial number of the machine

and stores it as the key in a dictionary, while the entire document is stored as

the value. Finally, the function ensures that the MongoDB client connection is

closed, and it returns the result dictionary containing the metadata of machines

retrieved from the database. A similar function can instead acquire the metadata

of the alarms, that are fetched from a different collection.

3.1.1 Signal Description

The collected dataset is organised into Pandas dataframes. Various relevant sig-

nals can be gathered. In particular, the ST signal represents the status of the

machine at a certain timestamp. This signal is a 32-bit integer that uses each bit

to store different information, such as whether production is active, if the machine

is running slower than expected, or if the cleaning procedure of the machine is in
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progress. Since the signal is collected as an integer, it needs to be converted into

a binary representation for a correct analysis of the information contained.

Another relevant signal is RA, which represents the identification number of

the selected recipe. The format is a 32-bit integer that records which recipe is

selected, indicating how the machine should behave according to preset param-

eters. Different recipes are selected for different carton sizes or products to be

packed. Unfortunately, the recipe numbers vary for each customer, rendering

them unreliable for providing information about the machine’s behavior.

Signal Parameter Unit

PVCA Current Welding Energy %×10
PVCF Sonotrode Operative Frequency Hz
PVCP Current Welding Power W
PVCPP Current Welding Power Percent %
PVWT Welding Duration Set Point (if no energy control) ms
PVWE Applied Energy at Last Sealed Cap J
PVWP Applied Power at Last Sealed Cap %×10
SPWE Welding Energy Set Point (when energy control) J
SCAC Caps applicator counter h×10

Table 3.1: Cap applicator parameters

The cap-applicator module record many measurements acquired from the

different sensors present in the machinery. Tab.3.1 shows the characteristics of

the different signals. These signals encompass a range of parameters critical

for monitoring and controlling the welding process. They include measurements

related to the current welding operation, such as the percentage of welding energy

utilised, the supplied power, its percentage compared to the maximum possible

value, and the sonotrode frequency. Additionally, another set of signals tracks

the settings used for the previous welding of a cap on the carton, including the

applied energy and power percentage. Finally, other variables record the machine

settings in terms of welding duration or energy value. Parameters are typically

differentiated into line A parameters, denoted by the suffix ” A”, and line B

parameters, distinguished by the suffix ” B”, with the exception of the SCAC

variable, which tracks the number of caps applied globally.

Since this work is primarily focused on the cap applicator, no other signals

were collected at this stage, facilitating the development of a playground model

for initial analysis and exploration, which, however, has all the desired charac-

teristics. This opens up to the possibility of expanding the model by collecting
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and integrating new variables. Additionally, the volume of collected data, con-

sisting solely of signals from the cap applicator, already raises concerns about

the resource requirements for training the deep learning model. This necessitates

enhancing the allocated resources for further explorations.

Alarm Description The machinery is capable of generating alarm signals when

various issues are detected. The alarm variable ASR is an integer code of three to

four digits that uniquely corresponds to a particular warning. These signals are

saved in real-time on the cloud platform in the same manner as sensor signals.

Each alarm signal is saved along with its ASR code, the timestamp of when it

was recorded, and the machinery that produced it. The alarm signals for the cap

applicator encompass a wide spectrum of severity, ranging from minor issues such

as cap shortages or absences in the slit or caps not loaded on the positioner to

more serious anomalies like alarms received from the ultrasonic generator, which

likely indicate a component failure.

3.2 Data Visualization

After gathering the data, an important step consists to perform proper data

visualisation in order to collect visual information about the dataset that will

be useful for subsequent analysis, comparison with machinery specialists, and

decision-making processes. To fulfil this requirement, a dashboard was developed

using Bokeh [70], a Python library designed for data visualisation that provides

an array of tools for generating interactive plots. The dashboard, visible in Fig.3.1

and 3.2 is composed of two different tabs, one for detailed data visualisation and

another for the comparison between industrial signals and the occurrence of alarm

events. The dashboard has the following characteristics:

• A TextInput bar for selecting the folder in which data is stored

• A MultiSelect widget for visualising multiple plots at the same time

• A RadioButtonGroup that allows to select a specific signal to visualise

• Another RadioButtonGroup for selecting signals coming from production

line A, production line B or both.

• A resample Button that plots a mean signal by resampling the data in a

time-window given by the user inside a TextInput bar.
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• The main plot, displaying the visual representation of the data time series.

Each distinct data file is depicted using unique colours, while the two sep-

arate production lines of the same machine are distinguished by different

point shapes (circles or triangles). When the resample function is enabled,

the dots become more translucent, and a delicate line representing the mov-

ing average is superimposed. Furthermore, the axis labels and graph title

adjust dynamically based on the selected signal and are updated with the

appropriate name and unit of measure. The interactive plot includes default

tools such as panning and zooming, enhancing its usability.

• An additional smaller plot, displaying histograms of the data points for

each production line of every machine. Histograms belonging to the same

machine are depicted with the same color but distinct filling patterns. These

histograms feature horizontally oriented bars and share the y-axis with the

main plot, ensuring that when one is moved, the other adjusts accordingly.

• A DataTable, present in the second tab, that displays the alarms recorded

for a particular data interval. The table reports the alarm codes, their

descriptions, and the number of times each has occurred. By selecting one

or more lines, the corresponding alarms are shown as vertical lines on the

main plot, with their identifying codes next to each line.

3.3 Preliminary Analysis

After the development of a visualisation dashboard, it is possible to undertake a

comparative assessment with the experts within the organisation to discern the

potential insights retrievable from the signals. Consequently, a significant segment

of the initial endeavour has been dedicated to ascertaining whether indications

of machinery malfunction are discernible within the signals. Notably, the signals

exhibit a scattered distribution, exhibiting erratic or volatile behaviour charac-

terised by abrupt fluctuations or irregular movements, thus lacking a discernible

regular pattern.

Preliminary analyses encompass the inspection of correlation matrices and

Principal Component Analysis (PCA) on the signals. Correlation matrices allow

for the exploration of linear relationships between variables, providing insights

into potential dependencies among signal components. Meanwhile, PCA seeks to
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Figure 3.1: Dashboard for advanced time-series visualisation

Figure 3.2: Dashboard for time-series and alarm visualisation
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uncover the underlying structure within the signal data by identifying orthogonal

axes of maximal variance.

Correlation Matrix The correlation matrix is a square matrix that summarises

the correlations between pairs of variables in a dataset. In essence, it quanti-

fies the strength and direction of the linear relationship between variables. Each

entry in the matrix represents the correlation coefficient between two variables,

ranging from -1 to 1. A correlation coefficient close to 1 indicates a strong pos-

itive relationship, meaning that as one signal increases in value, the other tends

to increase as well. Conversely, a value close to -1 signifies a strong negative

relationship, indicating that as one signal increases, the other tends to decrease.

A correlation coefficient near 0 suggests little to no linear correlation between

the variables. By analysing the correlation matrix of the different signals of the

cap-applicator, it is possible to gain a first insight into the interdependencies of

signals.

Figure 3.3: Correlation matrix of the cap applicator signals

From Fig.3.3 we can identify some notable information. In primis, it is notable
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that the majority of the variable pairs show almost no correlation. This suggests

that all the variables are indeed meaningful and that there is no redundant in-

formation stored. There are, however, some notable correlations to underline. In

particular, signals registered by the two different lines of production are usually

highly correlated (corr( A, B) > 0.85), which is easily explained since the two

lines work simultaneously and it is hence likely that they will register similar

outputs.

Principal Component Analysis Principal Component Analysis (PCA) [71] is

a dimensionality reduction technique widely used in data analysis. The funda-

mental idea behind this technique is to transform a dataset containing possibly

correlated variables into a new set of uncorrelated variables called principal com-

ponents, which are linear combinations of the original variables and are ordered in

such a way that the first few capture the maximum variance present in the data.

PCA achieves this transformation by finding the eigenvectors and eigenvalues of

the covariance matrix of the original data, with the eigenvectors representing the

directions of maximum variance and the eigenvalues indicating the magnitude of

variance along these directions. Through this process, PCA allows for the extrac-

tion of meaningful patterns and structures from complex datasets. Therefore, by

retaining only the most significant principal components, PCA helps to simplify

the dataset while preserving as much of the original information as possible. This

technique can be leveraged in multivariate time series analysis to estimate the

independence of variables. In the context of such analysis, where each channel

of the series represents a dimension, performing PCA facilitates the determina-

tion of the number of dimensions that would be needed if various channels were

subjected to those linear combinations.

To establish the amount of information contained in each dimension extracted

by PCA, the proportion of variance explained by each principal component is ex-

amined. This is typically achieved by analysing the eigenvalues of the covariance

or correlation matrix, that represent the amount of variance captured by each

principal component. A common practice is to calculate the proportion of vari-

ance explained (PVE) by each principal component, which is obtained by dividing

the eigenvalue of each principal component by the sum of all eigenvalues. This

provides a percentage that indicates the proportion of total variance captured by

each dimension. Before performing PCA, it is common practice to scale the data

using techniques such as min-max scaling. Scaling is essential because PCA is sen-
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sitive to the magnitude of the variables involved. When variables have different

scales or units, those with larger scales can dominate the variance calculations,

leading to biased results. Leveraging scikit-learn MinMaxScaler, we transform

the data so that each variable is confined to a range between 0 and 1, ensuring

that all variables contribute equally to the following analysis.

# PVE (%)

PC1 43.70

PC2 22.32

PC3 11.72

PC4 7.57

PC5 4.77

PC6 3.32

PC7 2.30

PC8 1.79

PC9 1.24

PC10 0.71

Figure 3.4: Proportion of variance explained by the 10 most relevant principal components (left)
and cumulative explained variance (right)

The results of the PCA analysis for the entire dataset are visible in Fig.3.4. It

can be noticed that the variance is well split among different principal components

(PCs). In particular, the first nine PCs contribute at least to explain 1% of the

variance each. This well-distributed variance across multiple PCs implies that no

single component dominates the variability in the dataset, suggesting that the

underlying structure of the data is complex and multidimensional and reinforcing

the request for a multivariate approach.

Alarm analysis The preliminary analysis of signals in our study prompted the

consideration of incorporating the alarm log information to further enrich our

understanding of the anomalous events. To gain insights into alarm behaviour

across different machines, we conducted initial analyses focusing on alarm pat-

terns and occurrences. The proposed methodology combines DBSCAN clustering

technique [21] and Apriori pattern detection [72] to identify common clusters of

alarm logs within a time series dataset.
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First, the DBSCAN algorithm is applied to cluster the alarm logs based

on their distance in the temporal space. In particular, DBSCAN evaluates the

clusters based on their spatial density, defining clusters as regions of high density

separated by regions of low density. This allows DBSCAN to identify clusters of

varying shapes and sizes, effectively distinguishing between core points and noise.

Subsequently, the Apriori algorithm is employed for association rule mining on

the clustered alarm logs. The Apriori algorithm [72] is a renowned method for

frequent pattern discovery that helps identify associations among items in large

datasets. The algorithm exploits the so-called apriori property, which asserts that

any subset of a frequent itemset must also be frequent. The Apriori algorithm

efficiently extracts frequent itemsets by iteratively discovering increasingly larger

itemsets from the dataset. It begins by identifying all frequent individual items,

then extends these sets by one item at a time, checking if the resulting set meets

the minimum support threshold. If a set does not meet the threshold, its supersets

are pruned. This process continues until no further extension of frequent itemsets

is possible. This algorithm is thus utilised to identify patterns between different

alarms occurring together, defining itemsets representing commonly occurring

alarm combinations within each DBSCAN cluster. Association rules extracted

from these itemsets specify relationships between alarms and their occurrences

within clusters.

The analysis was deliberately conducted using basic approaches to ascertain

the potential for integrating alarm signals with sensor time series data. By adopt-

ing a simple approach, we aimed to gain initial insights into the feasibility and

effectiveness of combining these two types of data streams. This methodology,

however, has shown no relevant results, and no meaningful recurrent set of error

have been found. Moreover, in the literature previous researches have already

explored advanced techniques for alarm forecasting using similar signals [73, 74].

Nevertheless, this study diverges in focus: rather than delving into complex fore-

casting models tailored specifically for alarm prediction, it is primarily interested

in the exploration and analysis of time series derived from the signals themselves.

This strategic decision stems from the understanding that alarm signals have

already been extensively investigated in this context, and our aim is to comple-

ment this existing knowledge by investigating the temporal patterns and trends

inherent in the sensor data.
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3.4 Preprocessing

Before feeding the collected data into our model as a training dataset, it is im-

portant to preprocess the data to ensure its suitability for analysis. Preprocess-

ing serves as a crucial preparatory step, involving various techniques aimed at

cleaning, transforming, and structuring the raw data into a format conducive to

subsequent analysis.

Initially, the data retrieved from online storage and stored locally is accessed

by reading through multiple CSV files, each corresponding to a different machine.

These files are then converted into Pandas dataframes. During this process, any

accompanying metadata and alarm logs are automatically excluded, ensuring that

only sensor data is preserved.

After loading the dataset, the initial step involves retaining only the segments

of data during which the machine was actively engaged in production. This en-

sures that subsequent analyses focus solely on pertinent periods, particularly for

anomaly detection within the operational phases of the cap applicator module.

To achieve this, the status column undergoes conversion from integer to binary

representation using the appropriate Numpy function, binary repr, which re-

turns the input number as a string of bits. Subsequently, the bit corresponding

to the active production status is mapped to a new column, while the original

status column, now redundant, is discarded.

Now that the periods of production have been identified, the next step involves

filtering the dataset to exclude periods devoid of production activity. However,

it is common for machines to briefly halt production, resulting in intermittent

data entries reflecting these pauses, as visible in Fig.3.5. To address this, we

have chosen to categorise instances where machines cease production for less

than two data points (equivalent to two minutes) as periods of active production.

Conversely, instances where there are gaps of at least 3 data points between

two active production periods are treated as belonging to distinct time series.

Furthermore, only time series containing more than 16 data points (Fig.3.6) are

deemed suitable for model training, as smaller series may lead to errors due

to insufficient input size. The selected time series are still retained within the

same dataframe to expedite operations. However, each one is assigned a unique

identifier to facilitate their separation at a later stage.

Given that the cloud storage is optimised to conserve memory, data points are

only recorded when a change in value occurs. Consequently, gaps in the dataset

emerge, with NaN (Not a Number) placeholders indicating missing values. To
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Figure 3.5: Distribution of consicutive session of production (above) or rest (below) before prepro-
cessing divided by lenght

Figure 3.6: Distribution of consicutive session of production (above) or rest (below) after prepro-
cessing divided by lenght
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address this, a Pandas fillna() operation with forward fill option is employed

to replace NaN entries with the last known value, thereby reconstructing the

original data sequence. The sparsity of the dataset can be observed in Fig.3.7

Figure 3.7: Distribution of data (black) and missing values (white) along the time series for different
variables.

To ensure consistency, the datetime index of the dataframe is converted to

type datetime64. Additionally, timezone information is stripped away for unifor-

mity, as the location of production is not relevant to the analysis, and to mitigate

potential errors in subsequent steps. Thereafter, irrelevant metadata, such as the

CSV file source, is removed from the dataset. Furthermore, the recipe column is

discarded since, as previously discussed, this signal is unreliable for forecasting

as it strongly depends on the individual machine that produces it. The next step

involves ensuring that all data points are uniformly spaced in time by resampling

them at one-minute intervals. This time interval was chosen as it aligns with the

standard sampling rate of the machinery for most of the signals. Therefore, it

serves both to fill in missing minutes where the data remained unchanged and

to standardise all values, as the data may have been sampled with millisecond

errors, resulting in varying time intervals. Finally, the data is converted into

TimeSeries format suitable for analysis using the Darts [75] library.

After performing common preprocessing, the entire dataset must be parti-

tioned into three subsets: training, validation, and test datasets. The validation

set serves the purpose of monitoring model performance during training to mit-

igate overfitting and tune hyperparameters, while the test set is reserved for

evaluating performance upon completion of training. Specifically, 10% of the

dataset has been allocated for both the test and validation subsets, leaving 80%

of the dataset for the training set. The dataset is then rescaled using the Scikit-

Learn [76] function MinMaxScaler, which updates the data by linearly transform-

ing each feature to a [0, 1] range, preserving the original distribution. Rescaling
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data before training a model is crucial for several reasons. Firstly, it ensures

normalisation across features, preventing biases caused by features with larger

scales from dominating those with smaller scales during training. Therefore, it

allows all features to contribute equally to the model’s predictions by bringing

them to a similar scale, typically with decimal values in the [0, 1] range. Sec-

ondly, rescaled data often leads to faster convergence during the training process,

as gradient-based optimisation algorithms converge faster when features are on

similar scales. Additionally, rescaling helps prevent numerical instability issues

that may arise due to large differences in feature scales, thereby improving the

stability of computations.

The model needs access to future covariates to function correctly. Future

covariates are time series data that are already known for future time periods

and do not need to be predicted. These series typically represent the passage of

time, such as minutes, hours, or days of the week. They are often represented

by periodic signals that rise and fall over time. For instance, minutes within an

hour can be depicted by values that gradually increase from 0 to 60, forming a

sawtooth pattern. This approach is valuable as it enables the model to capture

time related patterns present in the data. In our dataset, there are no future co-

variates available for the model other than these synthetic time series. A fictional

example of meaningful future covariates could be, for instance, the expected num-

ber of filled cartons per hour. However, the machinery does not autonomously

generate any forecasted values that could aid in training the model.

3.5 Model Design and Implementation

The model selected for anomaly detection is the Temporal Fusion Transformer

(TFT), discussed in Section 2.3.3.

This model has been retained as suitable for the following analysis due to

some relevant properties:

• State-of-the-Art Performance: Given the complexity of the problem,

models that have already demonstrated strong performance on time series

forecasting benchmarks are preferred. As shown in the original paper, the

TFT model has shown promising results in this regard, making it a suitable

candidate for the tasks.

• Multivariate Analysis: The TFT model natively supports multivariate
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analysis, allowing for the incorporation of the multiple sensor signals of the

examined dataset into the framework.

• Handling Diverse Time Series: The TFT model is capable of handling

multiple time series of varying lengths. This flexibility accommodates the

diverse nature of the preprocessed data, which includes different sizes of the

time series due to the non-fixed duration of the production phase of each

machine.

• Contextual Understanding: TFT leverages both Long Short-Term Mem-

ory (LSTM) networks and attention mechanisms to capture contextual in-

formation from both short and long sequences of data. This enables the

model to effectively understand the temporal dependencies and contextual

nuances present in the time series data, enhancing its ability to make ac-

curate forecasts. The LSTM component is particularly useful for capturing

context by focusing on nearby data points, such as understanding the phase

of production at a given time. Meanwhile, the attention mechanism allows

the model to detect differences in production over longer time periods; This

can, for example, make the model learn how a signal behaves as the com-

ponent it refers to heats up after prolonged operation.

• Interpretability: TFT provides built-in interpretability features that iden-

tify which data features are most indicative of machine behaviour over time.

This insight aids in understanding the underlying patterns contributing to

anomalies and enhances the interpretability of the model’s predictions.

Limitations Although the selected architecture seems promising, it might not

suit perfectly for the task, and some limitations must be taken into account.

Firstly, the model is incapable of processing time series data featuring varying

sets of variables. In other words, the dataset must maintain consistent time

series structures with corresponding columns addressing relevant signal channels

without the introduction or removal of any of them. Additionally, the model

lacks the ability to manage columns entirely populated with NaN (not a number)

values. While the model can automatically adapt to sparse missing points during

the learning phase, it cannot guarantee this adaptability when confronted with

portions of the datasets containing entirely missing columns. This limitation

arises when the proportion of missing data becomes significant, rendering it no

longer negligible. To the best of our knowledge, this problem is not addressed
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in literature. This limitation significantly restricts the scope of analysis, as it

requires consistent series across all data points. The chosen dataset is limited to

machines of a particular model and cannot be generalised to analyse the entire

spectrum of machines produced by the industry under consideration. Specifically,

the machinery choice is centred around a particular machine model that features

a double production line, representing the dataset with the largest volume of

available data.

Another limitation arises from the fact that the TFT model demands sub-

stantial computational resources, even when utilising specific parameter settings

aimed at compressing the model as much as possible. Expanding the model

and its capabilities would thus require an allocation of computational resources

beyond current capacity, necessitating the introduction of additional resources.

Additionally, there are limitations in evaluating global trends due to the possible

variation of a certain signal for a certain machine due to wear. The model does

not consider the individual context and temporal evolution of each machine but

instead aggregates data from different machines with varying levels of wear. This

hinders the model’s ability to accurately assess overall trends and patterns.

3.5.1 Implementation

The TFT model has been implemented in Python using the Darts [75] package.

Darts, short for ”Differentiable Architecture for Time Series,” is a library de-

signed for time series forecasting and analysis that offers a comprehensive suite

of tools and algorithms tailored for dealing with temporal data. Moreover, it

offers numerous tools for anomaly detection within a simple framework. In par-

ticular, the TFT model is implemented adopting the homonymous sub-models

from PyTorch-Forecasting [77]. The decision to utilise a pre-existing package ap-

pears natural given the circumstance that it pertains to an analysis of data that

has not been previously examined. It is not prudent to allocate resources towards

reconstructing an existing model, especially considering that this is an initial ap-

plication of the model to this dataset. While a rationale for rebuilding the model

from scratch could involve potential future customisation, such an undertaking

is unnecessary at this juncture. Furthermore, the implementation provided by

Darts is optimised for resource management.

Despite the advantageous feature of the TFT model in incorporating cate-

gorical covariates to contextualise various time series data, we are constrained

from their utilisation in our study. Our primary objective is to develop a gen-
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eralised predictive model that does not rely on machine-specific information but

rather can accurately forecast signals, irrespective of machine identity. Available

covariate options include machine metadata, encompassing parameters such as

production type, hygiene standards, and location, among others. Furthermore,

the signal RA, i.e. the type of recipe configured by each machine during a specific

time series, is considered. However, the latter covariate, denoting a unique code

assigned to the configuration of settings and controls for packaging a particular

product, is rendered impractical due to its non-standardised assignment process

across machines. Additionally, the absence of a universal encoding hampers the

interpretation of these recipes, which are typically tailored to meet specific cus-

tomer demands.

Parameters In Darts the TFT is implemented using the TFTModel class. In

particular, the architecture is defined by specifying a set of parameters when

initialising the object.

• input chunk length: Determines the size of the input window or the num-

ber of time steps considered as input to the model at once. When the length

of the input series exceeds the specified length, it is divided into multiple

inputs, each of which consists of a contiguous segment of the series with a

length equal to the input length, ensuring that the entire series is processed

in chunks of the specified size.

• output chunk length: Specifies the output size, i.e. the number of points

forecasted into the future. Since the model is intrinsically probabilistic the

real output size will be this quantity times the number of quantiles predicted

for each point. This is also the length of the future covariate into the future.

• hidden size: Defines the number of units (neurons) in the hidden layers

of the neural network, determining the complexity and representational

capacity of the model. It is the most relevant hyperparameter that regulates

the trade-off between the dimension of the model and the computational

cost.

• lstm layers: Specifies the number of LSTM (Long Short-Term Memory)

layers in the recurrent part of the network, both for the encoder and the

decoder.
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• num attention heads: Indicates the number of interpretable attention heads

used in the attention mechanism, allowing the model to focus on different

parts of the input sequence during processing.

• full attention: A boolean value indicating whether to use full attention,

that is, passing to the attention heads also the present and future time step,

in addition to the past values, for computing the attention.

• dropout: Specifies the dropout rate, determining the proportion of units

randomly dropped out during training to prevent overfitting by adding noise

to the network [78].

• batch size: Specifies the mini-batch size, indicating the number of samples

are processed together in each training iteration. A smaller mini-batch

size require less memory usage and compute the gradient using less data,

resulting in faster computation but also slower and more noisy convergence.

• n epochs: Specifies the number of training epochs, indicating how many

times the entire dataset is passed forward and backward through the neural

network during training.

• likelihood: Specifies the likelihood function used for probabilistic fore-

casts. By default, TFT uses quantile regression, determining which per-

centiles of the output distribution the model should predict. The set of per-

centiles that is used can be specified as an argument of the QuantileRegression

function.

• optimizer kwargs: A dictionary where the optimizer parameters can be

specified. The most important of them is the learning rate, which controls

how much the model weights are updated in response to the loss gradient.

• pl trainer kwargs: A dictionary where parameters passed to the PyTorch

Lightning Trainer can be specified. Various settings can be configured here,

such as enabling GPU usage and introducing an EarlyStopping mecha-

nism. The latter is particularly useful for terminating training if the valida-

tion loss ceases to decrease, indicating that the model is no longer learning

generalisable information.

Dataset The collected dataset, after preprocessing, has the following features:
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• Contains two years of data, collected from February 2022 up to February

2024

• Data are fetched from 15 machines, which represent all available machines

of the version in question, equipped with both double-line production and

cap applicator modules

• Each time series contains 17 components, representing the different signals

collected from the cap applicator sensors

• The total duration of the collected time series, i.e., the sum of all available

data when machines are in production, lasts for 479 days and 12 hours,

with a sampling frequency of one minute

• The whole dataset is divided into 13 594 series, of which 11 010 for the

training set, 1 360 for the validation set and 1 224 for the test set

• The average duration of each time series is 50 minutes and 47 seconds.

Machine id N. samples Proportion (%) Tot. Duration (h) Avg Duration (min)

1385 313 2.1 256.2 36.0

1448 1579 10.4 728.1 59.0

1452 359 2.4 675.7 53.3

1456 1169 7.7 474.9 74.1

1465 502 3.3 533.1 28.1

1468 2637 17.3 446.1 44.9

1477 965 6.3 368.4 24.6

1483 358 2.4 339.6 55.9

1484 1788 11.8 389.8 55.0

1488 1016 6.7 249.9 63.6

1491 1817 11.9 390.7 36.6

1498 132 0.9 301.6 61.8

1499 386 2.5 257.2 40.2

1503 1471 9.7 193.2 29.9

1505 723 4.8 203.2 42.0

Table 3.2: Dataset attribute per machine

For training, only the initial 64 minutes of each time series were utilised. This

decision is justified by the potential bias introduced by analysing unbalanced

time series, which could result in the predominance of longer time series, possibly

originating from the same machine. Additionally, the selection of 64 data points

aligns with a power of two approximation to the dataset’s mean duration of
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approximately 50 minutes. This is achieved by setting the max samples per ts

parameter in the .fit method of the TFT model.

Metrics Two different metrics have been used for evaluating the performance of

the model, namely Mean Square Error and Symmetric Mean Absolute Percentage

Error. The mean square error (MSE), denoted mathematically as:

MSE =
1

n

n
∑

t=1

(yt − ŷt)
2

is a fundamental metric in performance evaluation, particularly in regression

analysis and predictive modeling. It quantifies the average squared difference

between the actual values (yt) and the predicted values (ŷt) produced by a model

across n observations. Given that the model was trained using the Quantile

Loss rather than the MSE, it follows that the MSE can be regarded as a metric

unaffected by the training process, thus providing an independent evaluation of

performance.

The symmetric Mean Absolute Percentage Error (sMAPE) is instead a com-

monly used metric for evaluating the accuracy of forecasting models. The formula

for calculating sMAPE is as follows:

sMAPE =
100%

n

n
∑

t=1

|yt − ŷt|
1
2

(|yt| + |ŷt|)

where yt represents the actual value, ŷt denotes the predicted value, and

n indicates the total number of observations. Unlike the Mean Square Error

(MSE), which measures the average squared difference between actual and pre-

dicted values, sMAPE calculates the percentage difference between them. This

characteristic makes sMAPE particularly useful in scenarios where the scale of

the data varies significantly or when the emphasis is on relative errors rather

than absolute differences. Additionally, sMAPE is symmetric in nature, meaning

that it treats overestimation and underestimation of values equally, providing a

balanced measure of forecasting accuracy.
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Chapter 4

Result

4.1 Training

The deep learning model is trained on a MSI Laptop equipped with an NVIDIA

GeForce RTX 3050 GPU (4 GB GDDR6), an Intel Core i7-1280P CPU (14 cores,

3.60 GHz), and 16 GB of LPDDR4x-SDRAM. The system run on Windows Linux

Subsystem and utilises TensorFlow 2.3.0 for model training. Additionally, the

training process relies on CUDA Toolkit 12.1 GPU acceleration.

The hyperparameters of the model, visible in Tab.4.1 have been carefully

selected to strike a balance between model effectiveness and computational effi-

ciency. Given the computational demands of the model and our limited computa-

tional resources, we aimed to design a model that is both reasonable and effective

while minimising the number of parameters requiring tuning during training.

This approach not only ensures that the model is tractable within our resource

constraints but also optimises the training process by reducing the burden of

hyperparameter tuning. Moreover, an EarlyStopping callback, which halts the

training process when the validation loss fails to improve for a specified number of

epochs, is implemented to prevent overfitting and optimise model generalisation.

With this selection of hyperparameters, the architecture includes about 15 000

trainable parameters.

The model was trained for a total of 9 epochs before being stopped early due to

achieving validation stationarity. This process, which encompassed training and

evaluation, lasted approximately 3 hours to complete. Detailed plots depicting

the evolution of the quantile loss for both the training and validation sets can be

found in Fig.4.1.
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Hyperparameter Value

Epochs 100
Input Size 8
Output Size 4
Hidden Layers 8
Recurrent Layers 1
Attention Heads 4
Batch Size 32
Learning Rate 1 × 10−4

Dropout Rate 0.3

Table 4.1: Hyper-parameter Information for TFT Training

Figure 4.1: Evolution of the Quantile Loss during the training of the TFT

4.2 Performances evaluation

To evaluate the performance of the model, we utilised time-series data and em-

ployed the trained model to forecast future points. Specifically, all series were

forecasted from their 8th point onwards, corresponding to the input size of the

model. Subsequently, we evaluated the model’s performance using two metrics:

Mean Squared Error (MSE) and symmetric Mean Absolute Percentage Error

(sMAPE). These metrics were computed pointwise for each time series, treating

each timestep as a point in a multidimensional space, where different variables

represent different dimensions. This approach was facilitated by the prior rescal-

ing of our time-series data, ensuring that no individual feature unduly influenced

the distance between true and predicted values. The outcomes of the two met-
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rics are visible in Tab.4.2. It can be observed that the values of the test set are

comparable to those of the training set for both metrics; hence, it can be claimed

that a good degree of generalisation of the model has been reached. However,

it is worth noting that the sMAPE exceeds 50% for both the training and test

sets. This implies that, on average, the difference between the true value and the

forecasted one is approximately half of the average absolute value of the two.

Training Set Test Set

MSE 0.018 0.020
sMAPE 52.3% 51.6%

Table 4.2: Performance Metrics for the TFT

4.2.1 Comparison with Other Models

To assess the efficacy of implementing the TFT, we evaluated its performance

against a simpler model. Specifically, we considered a recurrent neural network

with long short-term memory units. The chosen architecture features an input

size window of 4 time steps, a hidden dimension comprising 32 neurons, and a

single hidden layer. Additionally, we set the learning rate to 1 × 10−3 and the

batch size to 100. Training was limited to a maximum of epochs, with early

stopping based on validation set performance.

The model consists of approximately 7 700 trainable parameters. Training

continued for 12 epochs until it reached the minimum validation loss, which oc-

curred after approximately 2:30 hours. The results of the latter model are visible

in Tab.4.3.

Upon evaluating the performance of the two models, it becomes apparent that

while TFT demonstrates similar behaviour, its performance falls slightly short

when compared to the LSTM. Despite the promising outcomes in the original

study, our findings suggest a marginal deviation from the performance achieved

by the alternative model. Although our model exhibits promising capabilities and

holds potential for further refinement, these findings highlight how optimisation

of the TFT model is necessary to achieve optimal performance levels.
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Training Set Test Set

MSE 0.008 0.014
sMAPE 44.32% 43.98%

Table 4.3: Performance Metrics for the LSTM

4.3 Anomaly Detection Model

Anomaly evaluation is conducted on the test set, where anomaly scores are as-

signed based on the 2-norm between the true and predicted values. This approach

allows for the identification of both point anomalies and anomalous time series.

Point anomalies are identified as points with a high anomaly score, whereas for

detecting anomalous time series, the anomaly score is averaged over each time

series, resulting in fact in the root MSE. To assign a label to anomalous points or

time series, a threshold must be set. To determine a reasonable threshold value,

histograms are computed for both point anomalies and time series anomalies, as

depicted in Fig.4.2 and Fig.4.3, respectively. The threshold is then determined

by calculating the anomaly score value for the 99th percentile, which separates

the top 1% of points with the highest scores. It can be observed that the distri-

Figure 4.2: Distribution of the anomaly score per data point. Threshold value: 0.81

bution of the anomaly score per data point exhibits a densely populated region

of points with low scores, alongside a long tail of points with significantly higher

values. This results in over 6% of the points having an anomaly score greater

than 1. Conversely, the distribution related to the time series scores shows a

bell-shaped distribution, with only a few outliers having higher values. In this

case, the threshold value falls approximately at the end of the more densely pop-

ulated region, indicating that only a small percentage of the time series are fully
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Figure 4.3: Distribution of the average anomaly score per time series. Threshold value: 1.46

anomalous.

Below, we analyse relevant examples of time series compared with the model’s

prediction. We begin by considering a time series marked as completely anoma-

lous. In Fig.4.4, the signals of Current Welding Energy for two different pro-

duction lines are depicted. We can observe how the model expects both lines to

be active, while one of the lines is currently inactive, resulting in anomalous be-

haviour. However, upon examining time series in the region with lower anomaly

scores, severe discrepancies between the prediction and actual data are also ev-

ident. Particularly, the set of time series with low anomaly scores is typically

populated by short-duration series where, at times, as seen in Fig.4.5, the ma-

chine either does not output signals or produces constant signals, while the model

predicts a variable signal over time. Finally, we also analyse the region of the

time series with intermediate anomaly scores. This region is indeed populated

by standard-length time series that exhibit a better degree of approximation,

although they are not always able to predict simple and repetitive patterns, as

shown in Fig.4.6.

4.4 Model Interpretability

Despite the Temporal Fusion Transformer’s performance being found to be slightly

inferior to that of other models, this architecture remains valuable due to its em-

phasis on promoting the interpretability of results that allows for insights into

the relevance of different variables in the dataset. In particular, the TFT employs

two different mechanisms to aid in interpreting the results. The first one utilises

the interpretable multi-head attention mechanism. Through this architecture, it
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Figure 4.4: True and forecasted time series of an outlier (Anomaly score: 1.46). Here are repre-
sented the current welding energies of the two lines of production over time

Figure 4.5: True and forecasted time series of a sample with a low anomaly score (0.29)
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Figure 4.6: True and forecasted time series of a sample with average anomaly score (0.41)

becomes possible to extract information regarding the behaviour of the different

attention heads by observing their attention levels over time. Unfortunately, dur-

ing our training, the attention heads all converged on the same attention profile.

Consequently, in Fig.4.7, the mean attention value is depicted, representing the

value of each head (as they coincide). It is notable that the model assigns higher

attention to points closer in time, progressively decreasing for further points.

Figure 4.7: Mean attention value of the TFT for predicting a time series

The second mechanism that enhances the interpretability of the network in-

volves leveraging the weights of the variable selection network. This enables the

observation of which variables have been given more consideration in the data
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forecasting process, encompassing both the time series variables and the covari-

ates. The results of this analysis are visible in Fig.4.8. We can notice that there

are no abrupt changes in the variable importance, indicating that the model con-

siders all variables in the prediction. It is interesting that the welding energy set

points (SPWE) of the two lines are found at the extremes of the graph. This

could signify that the two signals usually behave in a similar manner. However,

the fact that only a variable per line is mainly considered is not a trend for all

the signals. For example, the applied energy at last sealed cap (PVWE) signals

are both high in the rankings, as is the applied power at last sealed cap (PVWP).

It should be noted, however, that these results may be influenced by the un-

satisfactory forecasting performance. It is uncertain whether the variables are

weighted based on their actual ability to provide information about the data or if

they are assessed using almost random values that do not contribute to a deeper

understanding. This last statement is reinforced by the significance of future co-

variates. It can be observed that the temporal covariate representing the year is

given the highest importance, despite temporal series typically lasting only a few

hours. Conversely, the hour covariate, which could theoretically be more useful,

is assigned a lower degree of importance.
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Figure 4.8: Variable-selection feature importance of the TFTModel. In the encoder are present all
the input variables, while in the decoder are represented the future covariates
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Chapter 5

Conclusions

The objective of this study was to develop a robust anomaly detection method ap-

plicable to real-world scenarios involving dairy packaging machinery. Specifically,

our focus was on detecting anomalies within the cap-applicator module, which

stands as a delicate component of the machinery undergoing examination. The

task has been achieved by training an advanced deep learning model designed for

multivariate time series forecasting, namely the Temporal Fusion Transformer.

It’s worth noting that this analysis stands out as a pioneering endeavour in

the examination of the machine-generated dataset, thus holding significant value

for the company, as it marks one of the initial instances of data analysis for this

specific dataset. Consequently, the retrieval and preprocessing of the data was an

important step of this study, serving as a foundation for potential future inves-

tigations across various fields that could benefit from utilising the same dataset.

In particular, through the analysis of the sensor signals from the cap applicator

module, it was revealed that these time series typically lack correlation. This

observation implies that each signal offers distinct and independent insights, en-

hancing our comprehension of the observed system from diverse perspectives.

Furthermore, a dashboard has been created for data visualisation objectives, em-

powering users to compare various datasets and their distributions. Moreover,

this dashboard allows the visualisation of the occurrence of alarm signals con-

cerning sensor data, facilitating the straightforward identification of when these

alarms arise in relation to the dataset.

In conclusion, the TFT model has been successfully implemented within our

framework, and the training conducted using our dataset of interest has resulted

in reaching a minimum for the validation loss. Leveraging this properly trained

TFT model, it was possible to identify various anomalies within the dataset,
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including both point anomalies and anomalous time series instances. Despite

these achievements, it is noteworthy that the TFT model currently trails behind

other established models of time-series forecasting, such as LSTM, in terms of

predictive performance. This discrepancy may stem from several factors, includ-

ing hyperparameter tuning, implementation choices, and the complexity of the

dataset. Nonetheless, the TFT model demonstrates competence in identifying

certain plausibly anomalous time series instances, suggesting its potential utility

in our real-world application. Finally, we have capitalised on the interpretability

of the TFT by analysing the interpretable multi-head attention mechanism and

the variable selection weights. This analysis has yielded valuable insights into

the model’s inner workings and decision-making process, as well as the underly-

ing data patterns, and the relative importance of different sensors in predicting

future data points.

5.1 Future Works and Final Suggestions

Building upon the insights gained from the present study, several promising di-

rections emerge for future research. Firstly, there is potential for fine-tuning the

model’s hyperparameters to optimise its efficiency. This involves using packages

for hyperparameter optimisations, such as Optuna, to achieve the best possible

performance. Moreover, exploring the effects of increased computational power

and larger model sizes on performance could yield valuable insights. By lever-

aging more computational resources and scaling up the model, we may uncover

improvements in predictive accuracy and anomaly detection capabilities. Ad-

ditionally, refining the anomaly detection system beyond forecasting is crucial.

Various methods can be explored in order to improve the accuracy of the anomaly

identification model, including evaluating different metrics for the anomaly score

or implementing techniques that utilise metric ensembles. Furthermore, exploring

additional practices for determining a good threshold to distinguish anomalous

data from normal behaviour is warranted. Another avenue worth exploring is

bidirectional time series forecasting. Traditional forecasting methods typically

operate in a unidirectional manner, predicting future values based on past obser-

vations. However, bidirectional forecasting considers both past and future data

points, allowing for a more comprehensive understanding of temporal patterns.

This approach would enable us to detect anomalies in the early stages of time

series, providing a deeper understanding of machine operations and rare events



5.1 Future Works and Final Suggestions 65

during initial production phases.

A natural extension of the model entails its expansion to encompass all sig-

nals emanating from the machinery, rather than solely focusing on the cap ap-

plicator module. However, such a generalisation cannot be achieved through a

straightforward expansion of the existing model. This limitation arises due to the

heterogeneous nature of machinery, where certain units are equipped with the cap

applicator, thereby generating signals specific to this module, while others lack

this component, resulting in a notable absence of corresponding signals. As ev-

idenced previously, the model encounters challenges in effectively learning from

multivariate time series characterised by incomplete feature sets. Consequently,

a pragmatic approach involves the implementation of an ensemble model com-

prising two distinct components: one tailored to the studied module and another

trained on the remaining signals emanating from diverse machinery configura-

tions.

Incorporating alarm signals as temporal covariates could further improve

anomaly detection capabilities, providing valuable contextual information on crit-

ical events or abnormal conditions in industrial processes. By integrating alarm

signals as additional features in the time series data, we can enhance the model’s

ability to identify and respond to anomalies in real-time. However, effective en-

coding of alarm signals within one or more time series has to be carefully studied

in order to ensure compatibility with existing anomaly detection frameworks.

Finally, investing resources in constructing an expert-certified anomaly dataset

could significantly advance anomaly detection methodologies. This dataset would

consist of labelled examples of known anomalies, verified by domain experts based

on their impact on production, safety, or quality. Moreover, this approach could

facilitate the development of semi-supervised frameworks, leveraging both la-

belled and unlabelled data to enhance anomaly detection accuracy and adapt-

ability.

All these proposed advancements hold the potential to greatly benefit the

company. Through a comprehensive analysis of the anomalies identified by this

model, the door is opened to optimising machinery performance. By leveraging

data-driven solutions tailored to address specific issues, productivity can be en-

hanced, operational inefficiencies mitigated, and overall equipment effectiveness

maximised, helping the continuous improvement and innovation of the company’s

processes.
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