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Abstract

Euclidean wormholes have attracted a renewed interest in Quantum Gravity as relevant saddle points in
the path integral. To understand them, we still need to fully describe them from a String Theory point
of view. The best way we can do this is by dimensional uplift from a lower dimensional Supergravity
theory, where we can describe them properly. One way to have such a solution for space-time geometry
is by using axions. This is why we try to embed the four-dimensional Giddings-Strominger wormhole
solution in String Theory. The Supergravity model we chose is a N = 8 dyonically gauged ISO(7)
maximal Supergravity, whose embedding into massive Type IIA String Theory is well known and
reviewed in this work. We tried to recover for the őrst time wormhole solutions in such a workframe
and managed to őnd signiőcant bounds for this solution. In order to őnd these results, we analyzed the
particle content of dyonic ISO(7) theory in multiple subsectors of interest and identiőed good axio-
dilaton pair candidates. Then we proceeded to approximate our solutions to expand our theory around
a vacuum Giddings-Strominger solution with AdS4 asymptotic behavior with a method implemented
in previous works. In conclusion, we attempted to embed in this theory a gauged Supergravity theory
with no scalar and found possible embeddings within the vacua of our model. This made it possible
to assert that traversable wormhole solutions can be successfully embedded in String Theory starting
from this never before analyzed model.
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Chapter 0

Overview

This thesis work is partitioned in the following manner:

• Chapter 1 is dedicated to an introduction to the main theoretical frameworks we work in, namely
String Theory and Supergravity. Furthermore, a short overview is given on Anti-deSitter geome-
tries, which we will often encounter in the work, instanton solutions and the traversable wormhole
features.

• In Chapter 2 we discuss the process of dimensional reduction and compactiőcation, outlining
the main results one wishes to recover using such a method. We also retrace Kaluza-Klein
dimensional reduction, the őrst attempt at recovering new őeld content by means of dymensional
reduction, and Freund-Rubin dimensional compactiőcation, which set up the research őeld of
ŕux compactiőcation.

• The content of Chapter 3 is centered on introducing Giddings-Strominger wormholes. We őrst
repropose and analyze the Lagrangian treated in their őrst paper introducing the matter and
then give some stability bound for the solution.

• Chapter 4 is concerned with the dimensional reduction of a massless Type IIA String theory
to a four-dimensional Supergravity theory. First we introduce the lower dimensional wormhole
solution and then őnd a match between such a conőguration and a the aforementioned ten-
dimensional String theory. We survey the obtained solution before passing on to an introduction
to a Type IIB String theory reduction to the same four-dimensional wormhole solution.

• In Chapter 5, we delve into the proper embedding of the ISO(7) dyonically gauged Supergravity
into massive Type IIA.

• With Chapter 6, we shift our focus to the SU(3)-invariant subsector of the ISO(7) model, showing
its action, its equations of motion and analyzing the vacuum conőgurations of the theory, trying
to őnd new ones. We also shortly review the attractor solution of this subsector.

• In Chapter 7, we examine the possibility of having a Giddings-Strominger wormhole solution in
the dyonically gauged ISO(7) model, with particular stress on its SU(3)-invariant subsector. We
apply őeld truncations in order to recover a desired axio-dilaton pair, we give a general solution
for a generalized GS wormhole with an AdS background and őnd asymptotic solutions by means
of justiőed approximations. Finally, we embed in our model a previously studied gauged N = 2
Supergravity theory with no scalar multiplets. We őnd positive response when asked if wormhole
solutions can eventually be embedded in String Theory in our model.

• Chapter 8 contains the comprehensive conclusions we drew from this thesis work.

• In Chapter 9 we report some outlooks on the traversable wormhole solutions we found of partic-
ular interest.
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• In Appendix A we derive the switch in sign of the kinetical term of the action for the axion from
a path integral perspective.

• Appendix B is focused on giving the explicit form of the scalar matrix of the SU(3) and G2-
invariant subsectors of the ISO(7) theory.

• In Appendix C we check the consistency of the truncation of massless Type IIA String theory of
Chapter 4.
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Chapter 1

Introduction

The tools and methods we used in this thesis project are the ones provided by two main frameworks
we used to derive our results: String Theory and Supergravity. We will shortly introduce to the most
prominent features of the two that were used in this work in Chapter 1.1 and 1.2.
The model we work with in this thesis displays a spacially asymptotic behaviour typical of many
theories derived from the String Theory frame. This is the geometry of a so called Anti-deSitter space,
which will be concisely treated in Chapter 1.3.
String theory and Supergravity have each their own proper formalism, but they can be related looking
at low-energy modes of the former, a concept which will profusely be used in our work to derive a lower
dimensional theory.
We will work with Euclidean actions, objects arising in the path integral formulation, yielding the so
called instanton solutions. We will brieŕy introduce to the latter and their use in Quantum Gravity in
Chapter 1.4.
We will focus on a peculiar geometry solution, namely the traversable wormhole of Giddings and
Strominger, which will be described in Chapter 3 in its main aspects. These solutions are an example
of traversable wormholes, whose features and criticalities will be discussed in Chapter 1.5.

1.1 String Theory

Many references have been used during this Master’s thesis work to grasp the fundamentals of String
theory. To mention only some of them, we would like to refer to [1], [2], [3], [4] and [5].

1.1.1 Birth and growth of String Theory

String theory was born in the 1960s as a tool to explain some features of QCD concerning hadrons.
When QCD was introduced, String Theory was not immediately discarded as it had been proven that it
could describe a spin-2 particle which is identiőed as the graviton gµν , the boson associated to gravity.
The theory could not only incorporate gravity, but also a much broader spectrum of particle, including
matter, conőgurating as a Uniőcation Theory and as such garnering increasing attention. Therefore,
String theory represents a theory of gravity with a consistent quantum formalism.

The őrst kind of string that was introduced was the so called "bosonic string", carrying as its name
suggests bosonic degrees of freedom only. Such a spectrum presented a pivotal ŕaw, an imaginary
mass state known as tachyon, bringing in an undesired instability of the vacuum. The effort to correct
such an unacceptable prediction of the bosonic string let to requiring supersymmetry invariance on
the string and inherently to introducing fermionic degrees of freedom. Moreover, theoretical physics
needed to erase undesired anomalies arising in the theory. The Green-Schwarz mechanism introduces
additional őelds exploiting SuperSymmetry, called "anomalous gauge őelds" or "anomalous currents"
that couple to the gauge őelds of the theory in a way that cancels out anomalies. In such a way
the Superstring was born and a period known as the First Superstring Revolution, taking place
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between the mid-eighties and the mid-ninties, inaugurated a thriving age for String Theory.

Superstring can be formulated in őve different frameworks: Type IIA theory, Type IIB, Type I,
heterotic SO(32) and heterotic E8×E8 theories. All of these theories live in the critical 10 dimensions
of Superstring Theory. It later turned out that all of these theories are related by duality relations
and that they all can be seen as dual theories of an eleven-dimensional theory: the M theory. The
period during which these relations were found is known as the Second Superstring Revolution,
and the plethora of newfound concepts in String Theory included the understanding of p-branes and
the introduction of AdS/CFT correspondence.

1.1.2 The bosonic string

To understand the very basics of string theory, we introduce the őrst action one deals with when
studying strings, the bosonic string action

S = −Ts
2

∫

dτdσ
√−γγabGMN∂

aXM∂bXN (1.1)

where γab is a metric which deőnes the so called "world-sheet", the two-dimensional surface on along
which the one-dimensional string moves. Ts is the so called string tension, and it can be expressed as

Ts =
1

2πα′ (1.2)

where α′ is called Regge slope and is a parameter of high interest since it sets the string scale ls ≡√
α′.

From our deőnitions, we notice that, depending on the presence of bounds on our world-sheet, one can
have both open and closed strings. Moreover, one can orientate the world-sheet manifoldt in order to
have oriented strings.
One őnds a critical dimensionality for bosonic string theory, which is D=26. To obtain the physical
content of the theory, i.e. the "spectrum", one needs to require on-shellness. By doing so with this
amount of dimensions, one őnd that the spectrum of the string, arising from "vibration" of the latter,
contains a spin = 2 bosonic state which incorporates gravity naturally in the theory.
Naturally, if one is interested in studying the phenomenological implications of String Theory, what is
relevant will be studying the low energy limits of the framework. With such a purpose, we are brought
to derive the lowest-lying states in the tower of increasingly massive particles the theory predicts. We
őnd that there exist some massless states, which are interpreted as different particles. These present
different values of the spin and are
• a symmetric rank-2 tensor gMN , the dilaton or metric;
• an anti-symmetric 2-form BMN ;
• a scalar őeld ϕ, called the dilaton.
As anticipated, the theory predicts the existence of a m2 < 0 particle, the tachyon, later eliminated
by supersymmetry.

1.1.3 The superstring

The request of supersymmetric invariance in a theory expands the usual Poincaré symmetry group in-
troducing some new conserved charges named "supercharges". The new transformations under which
our theory needs to be invariant mix bosonic and fermionic degrees of freedom. The number of con-
served supercharges in the theory can vary, thus giving birth to so called extended supersymmetry.
As anticipated, the theories arising from imposing supersymmetry to the bosonic string are 5, and they
are the ones written at the beginning of this paragraph. All of these theories have a critical number
of dimensions equal to 10. In 10 dimensions, killing spinors which are Weyl-Majorana have each 16
independent components. An N = 2 supersymmetry, as we have in the case of Type IIB and Type
IIA theories, thus requires the conservation of 16 × 2 = 32 independent supercharges.
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Super-transformations invariance imposes some boundary conditions on the fermionic degrees of free-
dom. Such boundary conditions can be satisőed with two different periodic impositions on the func-
tions, thus yielding different sectors on open and closed strings, differing in the boundary condition
choice. These are called the Neveu-Schwarz and Ramond sectors.
Distinguishing between left-moving and right-moving modes on the string, one can consider these
modes having different or the same chiralities. Upon making this choice and quantizing the theory,
one őnds that the two resulting theories are different, and they provide a different spectrum, sectorized
accordingly to the previously deőned boundary conditions. Thus, one őnds the two theories, which are
called Type IIA in the case of opposed chiralities for left and right-moving modes and Type IIB in
the case of identical chirality, display the following ground-state content [2]:

NS-NS sector NS-R = SN-R sector R-R sector

dilaton ϕ gravtino ψαµ 1-form AM
Type IIA two-form BMN dilatino λα

graviton gMN (opposite chiralities) 3-form AMNL

dilaton ϕ gravtino ψαµ 0-form χ

Type IIB two-form BMN dilatino λα 2-form AMN

graviton gMN (same chiralities) 4-form AMNLO

Table 1.1: Massless particle content for Type IIA and Type IIB String Theory.

The main focus in this thesis, at least for what concerns the particle content of the action, will
be on bosonic degrees of freedom, thus we will neglect for now the mixed sectors. As we notice, the
NS-NS sector is the same for both the theories, and it yields the action, in the Jordan frame (i.e. the
workframe with a coupled Ricci scalar in the Lagrangian) [6]:

SNS =
1

2k2

∫

d10x
√
−Ge−2ϕ

(

R+ 4∂Mϕ∂
Mϕ− 1

2
H2

3

)

(1.3)

where H3 is the őeld-strength tensor associated to B2.
Upon deőning the n-forms of the R-R sector, one can derive the associated őeld-strengths which will
enter the Lagrangian.
Since the őeld-strengths we will deal with in dimensionally reducing String Theory to 4-dimensional
Supergravity will be the ones present in Type IIA, we only write them down as:

F2 = dA1 F4 = dA3 − dB ∧ C1 (1.4)

They enter the String R-R action as (see also (6.7))

SR,A =
1

2k2

∫

−
∑

n=2,4

∗Fn ∧ Fn −
1

2
B ∧ dA3 ∧ dA3 (1.5)

This action is built in such a way to yield the correct equations of motion.

We also notice that the gravitational term in (1.3) is not the usual one, but is multiplied by a factor
e.2ϕ, which puts the action in the so called "string frame" and emerges in taking the low-energy
approximation of the string action. One can reabsorb it in the metric obtaining an action in the
Einstein frame, leaving just a constant equal to an exponentiation of the vacuum expectation value
for the dilaton. This term e−2ϕ0 contributes to the gravitational coupling. Indeed, by referring to the
4-dimensional gravitational coupling, i.e. Planck mass, one can write

M2
p,10 =

1

k210g
2
s

(1.6)

where we have deőned the string coupling gs = eϕ0 .
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1.1.4 Gauge fields and Dp-branes

In string theory, branes and gauge őelds are interconnected in a profound way, providing a crucial
aspect of the theory’s framework [7]. The gauge őelds arise, in Type IIA and IIB, from the R-R sector
of the theory, as it has been made clear in the previous section. Let us summarize their relation:

Figure 1.1: [8] Example of open strings interacting
with D2-branes.

◦ Branes: Branes are extended objects (mem-
branes) of various dimensions (0-dimensional
point particles, 1-dimensional strings, 2-dimensional
membranes, etc.) that are allowed to exist within
the spacetime of string theory. The most well-
known examples are D-branes (Dirichlet-branes),
which are surfaces where open strings can end
with speciőc boundary conditions for the gauge
őelds on their surface.
◦ Gauge Fields: Gauge őelds are fundamental
őelds in quantum őeld theory that are associated with forces, such as electromagnetism (described by
the electromagnetic őeld) or the strong and weak nuclear forces (described by gluon and W/Z boson
őelds, respectively). They mediate the interactions between particles with speciőc charges.
◦ Open Strings and D-branes: Open strings have endpoints that can attach to D-branes, leading
to the emergence of gauge őelds on the brane’s surface. The endpoints of open strings can move freely
on the brane, allowing the interaction of particles with the gauge őelds living on the brane. Realizing
non-Abelian gauge theories on branes in string theory involves the use of multiple coincident D-branes.
Non-Abelian gauge theories arise from non-commuting gauge őelds, which are associated with non-
Abelian gauge groups like SU(N) or SO(N). In string theory, each open string has Chan-Paton factors
associated with its endpoints. These factors represent the charges of the open string endpoints under
the gauge group. In the case of multiple D-branes, the Chan-Paton factors allow for interactions be-
tween different D-branes, leading to non-Abelian gauge theories.

In summary, branes and gauge őelds in string theory are intertwined due to the interactions of open
strings with D-branes, which give rise to gauge őelds on the brane’s surface. The gauge őelds intro-
duced in the theory can either be linked to an Abelian or non-Abelian gauge theory, depending on the
presence of coincident Dp-branes.

1.2 Supergravity

Supergravity contemplates a very broad landscape of concepts and subtleties that we will not be able
to cover in the least. We refer to [9], [10] for a full coverage of the subject.

Supersymmetry as generally intended discusses globally symmetric theories under transformations
mixing bosonic and fermionic d.o.f.’s of what is known as the "chiral multiplet", containing, for
N = 1, one scalar ϕ and one chiral fermion őeld χ.
When one tries to make this invariance local (depending on speciőc coordinates in space-time), new
degrees of freedom arise as a consequence. This leads to the formulation of the pure N = 1 Supergravity
Lagrangian as

Lsugra =
M2
p

2

√−gR− 1

2
ψ̄µγ

µνρ∂νψρ + Lint(gµν , ψµ) (1.7)

where γµνρ is an anti-symmetrization of γ matrices, while:
• gµν is a spin-2 tensor őeld know as the graviton (or metric);
• ψµ is a spin-3/2 őeld knows as the gravitino, holding both space-time and spinorial indices.
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This lagrangian is invariant under supersymmetry transformations [9]:

δgµν =
1

Mp
ϵ̄γ(µψν)

δψµ =Mp∂µϵ

(1.8)

where we have introduced a spinorial quantity, ϵ. Due to the fact that it has the same role that the
killing vector holds in regular symmetric shifts, it is called killing spinor.

Important considerations can then be made on the geometry of manifolds in Supersymmetry: őrst of
all, it is useful in general to formulate a theory with a number nC of chiral multiplets. In this case we
write the generalized scalar őelds kinetic term as

gmn̄(ϕ, ϕ
∗)(∂µϕm)(∂µϕ∗n̄) (1.9)

where gmn̄ is the metric parametrizing a scalar manifold Mscalar which is called "target space".
Also, a function called superpotential W (ϕ, ϕ∗) arises, which can be recast in such a way to yield a
scalar potential for our nC scalar őelds.
Moreover, for geometric and symmetry considerations, the N = 1 target space for scalars is a complex
manifold with holonomy group ⊆ U(nC), called Kahler manifold.
On top of that, this structure introduces another potential, called accordingly Kahler potential

K(ϕ, ϕ∗), so that the target space metric gmn̄ can be written as ∂m∂n̄K.
When coupled to Supergravity, these Kahler manifolds gets restricted to a subclass known as Kahler-

Hodge manifolds.

1.2.1 Extended Supergravity

One may want to extend the N = 1 case to a more generic theory with a higher number of supercharges.
In the case of interest of N = 2 Supergravity, we introduce new multiplets bringing new őelds into the
theory. These are called N = 2 vector multiplet and hypermultiplet and are made of a N = 1
vector multiplet (Aµ, λ) plus a chiral multiplet (χ, ϕ), where ϕ is complex and thus hold two d.o.f.’s,
and two chiral multiplets with 4 scalar degrees of freedom in total, respectively.

Figure 1.2: The structure of a chiral multiplet in N = 1 Supersymmetry and the structures of the
vector and hypermultiplet in N = 2 Supersymmetry. We called the two different Supercharges Q1

and Q2. All of the fermions are Majorana, all of the scalars are complex. In N = 1, we showed the
full structure of the multiplet, comprehending the "anti-multiplet", the complex conjugate of the őrst
one. For N = 2, both for vector and hypermultiplet, a mirror structure for anti-particles is intended
in order to conserve CPT-invariance. The vector multiplet can be regarder at as being built up of one
vector and one chiral multiplet in N = 1. The hypermuliplet can be viewed as being composed of two
N = 1 chiral multiplets. For symmetry reasons ϕ and ψ need to be different, complex scalars, as much
as χ and λ need to represent different Majorana fermions. Therefore we will have 4 different bosonic
degrees of freedom.
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The structures of these multiplets set different conditions on the geometry of their target spaces.
The total scalar space indeed factorizes into

MN=2
scalar = Mvector ×Mhyper (1.10)

where Mvector turns out to be a so-called Special Kahler manifold, while Mhyper in Supergravity
is a Quaternionic-Kahler manifold.
Geometry conditions on Special Kahler manifold set a particular form for the Kahler potential K =
−log i(XI F̄I− X̄IFI) where XI are the scalar őelds and FI are holomorphic functions of them and are
usually collected in a symplectic vector V := (XI FJ)

T . This structure introduces a function F (X)
known as the prepotential in terms of which both the Kahler potential and the gauge kinetic matrix
NIJ can be written.
The latter arises in extended theories (with vector őelds introduced by means of vector multiplets or
the standard Supergravity multiplet in N = 2), where the symmetry requirements induce a structure
of the kinetic gauge term that depends on scalar őelds. We can generally write

e−1Lkin =
1

4
(ImNIJ)F

I
µνF

µνJ − 1

8
(ReNIJ)ϵ

µνρσF IµνF
J
ρσ, ImNIJ = IIJ , ReNIJ = RIJ (1.11)

It is important to mention that ungauged theories display a duality under the exchange of electric
and magnetic őelds, that requires a particular formalism in building our action. This duality shows
effectively as a symplectic-transformations invariance, rotating electric and magnetic vector őelds.

1.2.2 Gauged extended Supergravity

We will be interested in our work to turn on gauge őelds and thus implement minimal coupling between
vector bosons and matter in extended Supergravity with nV vectorial multiplet (inherently, nV vector
bosons).
One may wonder why we want a gauged theory. The answer is that if we want a scalar potential in
extended supergravities, which we do want since a mass for the scalars is experimentally required, the
only way to achieve this is by gauging isometries of the scalar manifold in the Supergravity theory.
Due to the request of invariance under multiple supersymmetries, the freedom of choosing couplings
will be further restricted and this will reŕect on the potential as well.

To maintain the symplectic-convariant structure of the action we talked about above, which is generally
undermined by gauging, a particular formalism, know as embedding tensor formalism is introduced.
First, we need to gauge a subgroup of GU ⊆ Sp(2nV , R), which is the subgroup of the symplectic group
that leaves the equations of motion of the Lagrangian invariant, implementing a symmetry called U-
symmetry. We associate to each of the gauged generators tα a combination of vector őelds that are
going to become the gauge őelds of our theory. In turn, we deőne the embedding tensor

Θα
M , α = 1, ..., dimGU

, M = 1, ..., 2nV (1.12)

so that the M -dimensional gauge algebra generators XM and inherently covariant derivatives Dµ can
be written as

XM = Θα
M tα Dµ = ∂µ −AMµ Θα

M tα where AMµ = (AIµ, AµI) (1.13)

The embedding tensor thus tells us which ones among the electric and magnetic vector őelds enter the
gauging. This clearly breaks the previous invariance under GU .
Furthermore, the gauging introduces tensor őelds in the theory, needed to effectively have a gauge
invariance of the theory.

We shall mention also that in gauged extended SuGra, the scalar manifold is usually represented, to
simplify calculations, by a coset G

H . Given a basis of the algebra of the coset manifold tG/H , one can

parametrize the scalars by giving a so-called coset representative V(ϕ) = et1ϕ1 ...et(d[G]−d[H])ϕ(d[G]−d[H])

or in group indices as a vector V ijM , where M = 1, ..., dimG/H are indices parametrizing the generators
of the coset, while i, j put the representative in a representation of G.
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1.3 Anti-deSitter

Anti-deSitter spaces play a fundamental role in gauged Supergravity theories and often appear as
vacuum solutions of Supergravity theories. They also hold a prominent spot in String Theory as part
of the AdS/CFT correspondence [11]. The discussion follows [12] and [13].

The AdS metric is a solution of the generically D-dimensional gravitational action

S =
1

2k2D

∫

dDx
√

|g|(R− 2Λ) (1.14)

where we take a negative valued Cosmological Constant Λ = − (D−1)(D−2)
2l2

, where l is called carachter-
istic AdS length and it indeed has the dimension in natural units of [E]−1.
The action (1.14) yields the vacuum equation of motion

Rµν −
1

2
Rgµν =

(D − 1)(D − 2)

2l2
gµν (1.15)

which as expected reduces to vacuum Minkowski for l → ∞.
The equation of motion thus yields a Ricci tensor proportional to the metric

Rµν = k(D − 1)gµν (1.16)

and thus the AdSD metric is an Einstein metric.

We can embed our D-dimensional Anti-deSitter space in a pseudo-Euclidean (D+1)-dimensional space,
parametrized by XA, with A = 0, .., D. The signature of such a higher dimensional space is

ηAB =















−1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 0 −1















(1.17)

Figure 1.3: [14] Embedding of a 2-
dimensional AdS space in 3 dimen-
sions.

such that the embedding of AdS in this (D+1)-dimensional
space deőnes a (D+1)-hyperboloid of equation

−(X0)2 +
D−1
∑

i=1

(Xi)2 − (XD)2 = −l2 (1.18)

As it is clear from expression (1.18), the isometry group of
AdSD is SO(D-1,2).

We now wish to deőne a coordinate parametrization of the
AdSD metric. We can induce such a metric from the hyper-
boloid embedding (1.18), őnding a set of coordinates xµ, with
µ = 0, ..., D − 1 such that the previously referenced relation is
satisőed.
• If one choses to deőne

Xi = rxi
D−1
∑

i=1

(xi)2 = 1

X0 =
√

l2 + r2sin(t/l) XD =
√

l2 + r2cos(t/l)

(1.19)
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where the x1 parametrize a (D-1)-dimensional sphere of unitary radius.
The induced metric turns out to be

ds2 = −
(

1 +
r2

l2

)

dt2 +

(

1 +
r2

l2

)−1

dr2 + r2dΩ2
D−2 (1.20)

where we notice we have deőned a spherically symmetric metric with periodic time t with period 2π
l

and we considered the observer in the AdSD space as sitting at r=0.
We notice that, differently from dS space, we have no cosmological horizon.
• We can also give a covering of AdSD in a conformally ŕat parametrization, by scaling time t = lτ
and deőning a new "radial" coordinate ρ =

√

1 + r2/l2, obtaining

ds2 =
l2

cos2ρ
[−dτ2 + (dρ2 + sin2ρdΩ2

D−2)] (1.21)

where the conformal factor l2

cos2ρ
multiplies a static ŕat space.

1.3.1 AdS-Schwarschild space-time

With the purpose of őnding AdS-Wormhole metric solutions in mind, we write down the main features
of a metric describing a black hole in an AdS background.
Since both Schwarzschild and AdS are Einstein (they are both vacuum solutions) and spherically
symmetric, we use both conditions to őnd, in four dimensions,

ds2 = −h(r)dt2 + 1

h(r)
dr2 + r2dΩ2

2 (1.22)

with

h(r) =

(

1 +
r2

l2
− r0

r

)

(1.23)

where the term ∝ 1
r is the usual term appearing in the gravitational potential in ŕat space-time, with

r0 proportional to the mass of the body and is identiőed as

r0 =
2GM

c2
(1.24)

The metric displays a curvature singularity at r = 0 and a coordinate singularity at a single őnite value
of r that acts as a event horizon, beyond which light cannot escape.
The metric has two notable continuous limits:

• for r0 → 0 we recover AdS metric;

• for l → ∞ we recover the Schwarzschild metric.

1.4 Instantons

The discussion we do in the following is introductory to the topic. A broad coverage of the deőnition
and general use of instantons can be found in [15] and [16], while for a discourse on the features of
instantons in Supergravity one should check [17].

Instantons are a type of classical solution to the equations of motion in quantum őeld theories. These
solutions are typically characterized by having őnite action, and they play a signiőcant role in under-
standing various nonperturbative phenomena in particle physics and condensed matter physics.
Instantons are essential in the study of quantum tunneling and the breaking of symmetries. For
instance, in QCD, instantons are associated with non-perturbative effects inducing chiral symmetry
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breaking, a spontaneous symmetry breaking which leads to the quarks having mass. Instantons ap-
pear in theories where the classical equations of motion allow for transitions between different classical
vacua (lowest energy states) that would otherwise be forbidden by classical considerations. In quantum
mechanics, particles can tunnel through energy barriers that they wouldn’t classically have enough en-
ergy to overcome. Instantons provide a mathematical framework to describe such tunneling processes in
quantum őeld theories.

Figure 1.4: [18] Depiction of a Wick
rotation.

In quantum mechanics, to transition from classical to quantum
descriptions, one often employs the concept of a path integral,
where all possible paths of a particle or őeld contribute to the
őnal quantum state. To perform these path integrals and eval-
uate probabilities, it’s often advantageous to work with the Eu-
clidean action, which is obtained by Wick rotating the time
coordinate.
The Wick rotation is a mathematical procedure in which one
analytically continues the real time axis (which can be both
positive and negative) to a purely imaginary axis. This involves
a rotation of the time coordinate by 90 degrees in the complex
plane, which transforms the Minkowski spacetime (character-
ized by a metric with both positive and negative signs) into a
Euclidean spacetime (with a purely positive metric). Mathe-
matically, this can be expressed as t → −iτ , where t is real

time and τ is imaginary time.

Quantum gravity deals with the interplay of quantum mechanics and gravity, and path integrals are a
crucial tool in such studies. Wick rotation simpliőes these path integrals by transforming the oscilla-
tory nature of quantum ŕuctuations in Minkowski spacetime into an exponentially damped behavior
in Euclidean spacetime. This makes the path integral more manageable mathematically.
In many cases in fact, calculations involving quantum gravity yield divergent results due to the highly
curved spacetime near black holes or singularities. Wick rotation can help in regularizing these di-
vergences, making it easier to apply regularization and renormalization techniques to obtain őnite,
meaningful results.
In the context of quantum gravity, the role of instantons is not as well-established or understood as in
other areas of theoretical physics like quantum őeld theory [19].
In theories of quantum gravity, such as String theory, instantons can arise as solutions to the equa-
tions of motion. These instantons are often associated with nonperturbative effects, which means they
provide insights into the behavior of the theory beyond what can be described by the standard per-
turbative methods.
One of the intriguing aspects of instantons in the context of quantum gravity is their potential role in
the understanding of black hole physics. Instantons have been used to study tunneling processes that
could lead to evaporation of black holes [20]. These processes are related to the Hawking radiation
phenomenon, where black holes are predicted to emit radiation due to quantum effects near their event
horizons.

1.5 Traversable wormholes

The term wormhole was introduced for the őrst time in a paper by Fuller and Wheeler [21]. The very
őrst wormhole wormhole solution to ever be found can be considered the Einstein-Rosen bridge [22],
which connected anyway two causally disconnected universes. This idea was later expanded to that of
a wormhole linking two patches of the same universe with the same boundary behaviors. We will refer
to this, upon making some assumption, as to the traversable wormhole solution.
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Many choices have been made in history to indicate a metric which is the one of a traversable wormhole
space-time solution. To make general considerations and outline the main criticities of such a solution,
we’ll őrst choose, following [23], the metric ansatz for a Lorentzian traversable Wormhole as (what will
turn out to be important here, is that gtt should be deőned negative, troath incuded, and Φ(r) should
be everywhere differentiable):

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)/r
+ r2(dθ2 + sin2θdϕ2) (1.25)

where Φ(r) and b(r) are arbitrary functions of the radial coordinate.
The metric has a singularity at b(r0) = r0, representing the radius at which we őnd the wormhole
throat. This is a cordinate singularity that does not represent a physical horizon, thus keeping the
wormhole traversable, as long as gtt = −e2Φ(r) ̸= 0.

To picture the structure of such a geometry, one can take a slice of space-time őxing the time t and
considering θ = π/2. This choice yields a 2D curved space

ds2 =
dr2

1− b(r)/r
+ r2dϕ2 (1.26)

which, embedded in a Euclidean 3D space parametrized by cylindrical coordinates gives

ds2 = dz(r)2 + dr2 + r2dϕ2 =

[

1 +

(

dz

dr

)2]

dr2 + r2dϕ2 ⇒
(

dz

dr

)

= ±
(

r

b(r)
− 1

)−1/2

(1.27)

This solution gives a vertical embedded surface at r0, while for r → ∞ the surface is asymptotically ŕat.
Another requirement, known as the "flaring-out condition" [23] is imposed. This requires

Figure 1.5: [23] Projection of a 4-dimensional
wormhole in the 3 dimensions.

d2r

d2z
=
b− b′r
2b2

> 0 (1.28)

in the proximity of the throat r0, establishing the
openness of the geometry.
Calculating the Einstein tensor and exploiting the
Einstein equations one can therefore derive the
stress-energy tensor Tµν needed for the wormhole
geometry to arise. The components of the ten-
sor which do not vanish can be proved to be the
diagonal one. The remaining tensor components
can thus be given a simple physical interpreta-
tion, and we take in consideration Ttt, which is
interpreted as an energy density ρ and one can
esily (see again [23]) derive

ρ(r) =
1

8π

b′(r)
r2

(1.29)

and the (rr) component τ , the radial tension, as:

τ(r) =
1

8π

[

b

r3
− 2

(

b

r

)

Φ′

r

]

(1.30)

In the paper that pioneered the geometry of this open wormhole, [24], a function ξ, called exoticity

function, is deőned as

ξ =
τ − ρ

|ρ| =
2b2

r|b′|
d2r

d2z
− 2r

(

1− b

r

)

Φ′

|b′| (1.31)
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This expression implies that, given that Φ and b are regular functions for r = r0, the second term in
(1.31) vanishes and we are left, imposing (1.28) with a positive deőned quantity in the proximity of
the throat. The matter satisfying condition ξ > 0 and which must be present at the throat of the
traversable wormhole is called exotic matter [25].
This matter is called exotic because it violates the null energy condition, which is satisőed for all
known matter as of today. This implies that, taken a null vector kµ and a stress-energy tensor Tµν ,
the condition Tµνk

µkν > 0 holds. For a diagonal stress-energy tensor as the one we have in our case,
this implies ρ− τ ≥ 0. This request is clearly violated by (1.31) at the troath.
Thus such a traversable wormhole requires the presence of matter going beyond the standard model,
which is later identiőed in our calculations with the axion [26], providing the required negative energy
density, or quantum effects such as the Casimir effect.

1.5.1 Euclidean wormholes and their uses in quantum gravity

Interest in Euclidean wormholes within the realm of quantum gravity has seen a recent and consistent
upswing. The driving forces behind this surge can be traced back to two primary factors: a deeper
exploration of the path integral for low-dimensional gravity, as discussed in [27], and a substantial
body of research dedicated to the Swampland program [4], [28]. Recent investigations have shed light
on wormholes as signiőcant saddle points, yet a comprehensive understanding of these solutions within
a higher-dimensional context remains elusive. As a result, our aim is to incorporate the wormhole
solution into the framework of String theory, speciőcally within a ten-dimensional theory.
The most direct way for embedding such wormholes relies on axion őelds, which naturally provide
the requisite negative Euclidean energy-momentum tensor necessary to generate wormhole geometries
(see also Chapter 3). One plausible interpretation of these Giddings-Strominger (GS) wormholes [29]
is as instantons describing the birth or absorption of baby universes [17]. Since these baby universes
carry a so called "axion charge", this could seemingly violate axion charge conservation, a phenomenon
expected given that axion shifts are global symmetries. In this context, wormholes could serve as instan-
tons generating Planck-suppressed potential terms for the axion [30]. Giddings-Strominger wormholes
have been moreover interesting object when talking about the "axion-version" of the weak gravity con-
jecture. Therefore, we notice that the GS Euclidean wormhole solution pops up in several much recent
topics of research and has been the main interest of many present-day works (just to mention some,
[27], [31], [32], [33]). However, the ultimate fate of these wormholes hinges on various factors, including
their stability, which, despite numerous papers on the topic, remained unresolved until recently. It has
now been demonstrated that GS wormholes, in the absence of a dilaton, are perturbatively stable [31].
The question of wormhole stability in the presence of both axions and dilatons remains an ongoing
area of investigation.
Remarkably, it has taken a considerable amount of time to integrate GS-like wormholes into string
theory. The őrst proofs of regular GS wormholes in string theory surfaced in two of the papers this
thesis work has been most inspired by, [34] and [35]. Their construction yields regular solutions in four
ŕat Euclidean dimensions and is applicable to numerous compactiőcations without ŕuxes, particularly
Calabi-Yau compactiőcations of type II Supergravity. In this work, we try to apply the same reasoning
for a compactiőcation on S6 of massive Type IIA String theory.
In the context of AdS compactiőcations, the situation becomes considerably more intricate yet equally
intriguing, given the availability of the AdS/CFT correspondence. Initial proposals for AdS embed-
dings of Euclidean wormholes in AdS were made, although these were not of the GS type, meaning
they were not sourced by axion charges [36],[37]. Despite the absence of classical wormhole saddles in
this scenario, the path integral over wormhole geometries can be performed though presenting many
challenges.
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Chapter 2

Dimensional Compactification

We give an overview on the process of dimensional reduction and compactiőcation ([3], [38]), methods
that will be vastly applied in the next chapters to restrict from ten-dimensional theories, namely
massive and massless Type IIA and Type IIB String theories, to four dimensional theories which we
will call Supergravities.

In Chapter 2.1 we shortly summarize the uses of dimensional reduction and the basics of dimensional
compactiőcation.
With Chapter 2.2 we reproduce the őrst attempt at dimensional reduction performed by Kaluza and
Klein in the Twenties, from őve to four dimensions. We refer to [39], [40] and [41] for our calculations.
Finally, in Chapter 2.3 we do the same for Freund-Rubin dimensional compactiőcation, introducing
to the appearance of scalar potential in the reduced theory and therefore to ŕux compactiőcation and
moduli stabilization.

2.1 Basics of dimensional compactification

In the pursuit of a uniőed theory that can reconcile the fundamental forces of nature, physicists have
long been drawn to the concept of extra dimensions beyond the familiar three spatial dimensions and
one time dimension. Among the various approaches to achieving this uniőcation, Kaluza-Klein and
Freund-Rubin compactiőcations stand as remarkable frameworks. These theories propose the existence
of additional compact dimensions, curled up to subatomic scales, which are imperceptible at everyday
scales but play a crucial role in shaping the dynamics of the universe.

The Kaluza-Klein compactiőcation [41], formulated by Theodor Kaluza and Oskar Klein in the early
20th century, integrates the gravitational őeld of general relativity with electromagnetism by intro-
ducing an extra spatial dimension. This additional dimension is assumed to be compactiőed, meaning
it forms a closed, compact loop, and its effects manifest themselves as a new gauge őeld, a massless
vector őeld corresponding to the electromagnetic force.
This is achieved by dividing the higher dimensional space-time into an internal and an external space,
assuming we can describe it as the product M4×Yn, where in the speciőc case of the simplest Kaluza-
Klein reduction Yn is the 1-D circumference S1. Therefore one expands the EH action background
metric as:

gMN (x
µ, y) =

[

g
(0)
µν (xµ, y) 0

0 g(0)(xµ, y)

]

(2.1)

known as KK background metric.
Therefore, having an S1 background metric, we Fourier expand all our őelds as

ϕ(xµ, y) =
∑

n

ϕn(x
µ)e

iny
R (2.2)
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where R is the radius of S1 and we managed to separate the internal geometry depending part of the
őelds from the external coordinates depending one. This process is known as KK expansion, and in
can obviously generalized to Sn using appropriate angular functions.
The last step is assuming our őelds do not depend on the y coordinates, therefore eliminating all the
"excitations" along S1 in (2.2). This is why we say we only retain the "zero-modes" of our őelds. This
is called the KK ansatz, and it is applied to (2.1) as well as reported step by step in Chapter 2.2.

However, while the Kaluza-Klein theory (apparently) successfully uniőed gravity and electromagnetism,
it raised an intriguing challenge related to the scalar potential.
The scalar potential problem in Kaluza-Klein compactiőcation therefore arises due to the presence
of an additional scalar őeld originating from the higher-dimensional metric components. This scalar
őeld, often referred to as the "dilaton," interacts with matter in ways that are not directly observed
in our four-dimensional spacetime. This raises questions about the stability of the theory and the
nature of these scalar interactions. Inconsistencies in the scalar potential can lead to physical effects
that contradict experimental observations, demanding a resolution to this problem for the theory to
be physically viable.
The Freund-Rubin compactiőcation, introduced later in the mid-20th century by Peter G. O. Freund
and Marcel J. Rubin, extends the ideas of compactiőcation to incorporate higher-dimensional theories
with non-Abelian gauge őelds. However, like the Kaluza-Klein theory, the Freund-Rubin approach also
confronts the scalar potential problem as it deals with scalar őelds associated with the compactiőcation
process.
Indeed, in this process, we take a manifold for d external and (D-d) internal space MD = Xd × YD−d.
We assume in the theory we have a (D-d)-form. The curvature of the internal space will generate
a potential, which will anyway be generically out of control and set the dimensions of the internal
geometry to zero or inőnity. We rely on the (D-d)-form to generate the desired scalar potential to
stabilize the modulus.
In both Kaluza-Klein and Freund-Rubin compactiőcations, this scalar potential issue represents a sig-
niőcant theoretical challenge. Physicists continue to investigate ways to address this issue, seeking
solutions that would harmonize the predictions of these higher-dimensional theories with the observed
behavior of the physical universe, through the process of the so called moduli stabilization. Ap-
proaches such as stabilization mechanisms, modiőcations to the compactiőcation scheme, and the
incorporation of additional őelds have been proposed to tackle the scalar potential problem and render
these theories more consistent with empirical observations.

2.2 Kaluza-Klein Hilbert-Einstein action reduction

An extensive review of Kaluza and Klein approach to dimensional reduction is given in [42]. For
explicit calculations similar to the ones we’ll do, check [40] and [39].
We consider a 5-D space M, which is a product of a 4-D space mapped by a Lorentz-signature metric
gµν and S1, a 1-D sphere with radius R.
A consistent truncation at 0th order of Kaluza-Klein 5D theory needs a non-linearly modiőed metric
of the form [39]:

G5D
MN =

[

g4Dµν + e2ϕ(x)AµAν e2ϕ(x)Aµ
e2ϕ(x)Aν e2ϕ(x)

]

(2.3)

Hence we have

det[G5D
MN ] = det[gµνe

2ϕ(x)] (2.4)

in which we think of Aµ(x) as a U(1) gauge őeld and ϕ(x) is a scalar őeld.
The EH action in 5D reads:

S5D =
1

16πG′

∫

d5x
√

−|G5D|R5D (2.5)
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where G’ is the Newton constant in our 5-dim frame.
First we need to compute the 5-dim Ricci scalar:

R5D = R4D − 2e−ϕ∇2eϕ − 1

4
e2ϕFµνF

µν (2.6)

We then have:

S5D =
1

16πG′

∫

d5x
√−geϕ

(

R4D − 2e−ϕ∇2eϕ − 1

4
e2ϕFµνF

µν
)

=
1

16πG′

∫

d5x
√−g

(

RJordan
4D − 2∇2eϕ − 1

4
e3ϕFµνF

µν
)

(2.7)

where ∇2eϕ = ∇µ∂
µeϕ is a total derivative in the complete space and we can cancel it in the 5D

integral [40] if ϕ only depends on the four space-time coordinate, since:

∫

d4x
√−g∇2eϕ =

∫

d4x∂µ(
√−g∇µeϕ) = 0 (2.8)

Now, assuming, as we may when we compactify on S1, to Fourier expand both scalar and vector
őelds in the 5th dimension in such a way that we keep in KK ansatz only the 0th, internal coordinate
independent excitation, we are able integrate the S1 volume out obtaining:

S4D =
2πR

16πG′

∫ √−g
(

RJordan
4D − 1

4
e3ϕFµνF

µν
)

(2.9)

whence we can extract:

G =
G′

2πR
(2.10)

suggesting that if R ≪ 1 as expected, G is much larger than G’.
We rememeber:

RJordan
4D = eϕR4D (2.11)

and we can get back to the usual Einstein-frame action by setting:

gµν = Ω2gEµν (2.12)

so that: √−geϕR4D =
√

−gEΩ4eϕ(RE
4D

1

Ω2
) (2.13)

where we are taking in consideration for the moment only the term in the Weyl transformation of the
Ricci scalar we are interested in to őnd Ω, namely the R itself proportional one. Later, we’ll discuss
the full expression of the tranformed Ricci scalar.
This implies:

Ω2 = e−ϕ (2.14)

Now, considering that we found that Ω is not a constant, we rewrite the full expression for the confor-
mally rescaled R in D dimensions in the Einstein frame:

Rd = e−
2φ
2−d

[

R̃d −
2(d− 1)

2− d
∇̃2ϕ− d− 1

d− 2
g̃µν∇̃µϕ∇̃ϕ

]

(2.15)

and eliminating the total derivative part and adjusting for D=4, we őnally get (rewriting RE as R as
well as the metric):

S =
1

16πG

∫

d4x
√−g

(

R4D − 3

2
∇µϕ∇µϕ− 1

4
e3ϕFµνF

µν

)

(2.16)

since the Weyl rescaling cancels in the EM term (easy looking at transformations for gµν and
√−g).
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2.3 Freund-Rubin reduction

Freund-Rubin approach to dimensional compactiőcation ([13], [43], [44]) and őrst attempt to ŕux
compactiőcation is well reviewed in [45], we will only redo the calculations and outline the main steps.
The action is a 6-dimensional one, where we take the ansatz:

M6 = X4 × Y2 (2.17)

and a metric GMN deőned on such a space, M,N = 0, ..., 9, and it shall contain the EH term plus a
kinetic term for the 2-form FMN :

S =

∫

d6x
√
−G(M4

p6R6 −M2
p6|F |2) (2.18)

where M2
p6 is the equivalent of the Planck mass squared in 6 dimension, intended as the coupling

constant of gravity in such a space.
We call external coordinates xµ and internal ones ym and take the metric ansatz:

ds2 = gµνx
µxν +R2hmny

myn (2.19)

where R is the characteristic dimension associated to internal geometry, is a varying function whose
value will be determined by the minimization of the potential and is called "modulus". hmn is the unit
volume metric of internal space and one can formally write g̃mn = R2hmn. As for the Kaluza-Klein
case, all the scalar and vector őelds stemming from the reduction are assumed to depend on xµ solely.
We wish to focus on the gravitational term őrst. In trying to recover a term ascribable to the 4-
dimensional EH action as in (2.6), using (2.19) and the imposition of internal-coordinates dependence
only, we őnd that the only non-zero Christoffel terms are (in the introduced index notation):

Γmnµ =
1

2R(x)2
hml∂µ(R(x)

2hnl)

Γµmn = −1

2
gµλ∂λ(R(x)

2hmn)

Γµνρ =
1

2
gµλ(∂νgρλ + ∂ρgνλ − ∂λgνρ)

(2.20)

which yield 8 non-vanishing Riemann tensor components with different internal-external coordinate
combinations.
In the following we only report the 4 components entering the Ricci tensor and that we’ll need for our
reduction:

Rσµνρ = ∂νΓ
σ
µρ − ∂ρΓ

σ
µν + ΓσνλΓ

λ
µρ − ΓσρλΓ

λ
µν

Rσmνr = −1

2
∂σ(g

σλ∂λ(R(x)
2hmr))−

1

4

[

gσπ(∂νgλπ + ∂λgνπ − ∂πgνλ)g
λϕ∂ϕ(R(x)

2hmr)

− 1

R(x)2
gσπ∂π(R(x)

2hrl)h
lp∂νR(x)

2hmp)

]

Rsmnr = − 1

4R(x)2
[hsp∂λ(R(x)

2hnp)g
λπ∂π(R(x)

2hmr)− hsp∂λ(R(x)
2hrp)g

λπ∂π(R(x)
2hmn)]

Rsµnρ = −1

2
∂ρ

(

1

R(x)2
hsp∂µ(R(x)

2hnp)

)

− 1

4R(x)2
[hsp∂ρ(R(x)

2hlp)h
lf∂µ(R(x)

2hnf )

−R(x)2hsp∂λ(R(x)
2hpn)g

λπ(∂µgρπ + ∂ρgµπ − ∂πgµρ)]

(2.21)

and deőning the Ricci tensor RMN = RS
MSN , we will őnd the surviving terms of such a tensor are:

Rµν = Rσ
µσν +Rs

µsν = R4
µν + ...

Rmn = Rσ
mσn +Rs

msn

(2.22)
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such that the effective Ricci scalar is:

R = gMNRMN = gµνRµν +
hmn

R2
Rmn

= R4 + ...
(2.23)

so that one can see that we will recover a term:

M2
p6R

2

∫

d6x
√−g

√
hR2R4 (2.24)

and assuming again no dependence of the őelds on ym and remembering we normalized the volume
of the internal geometry, we can write M4

p6R
2 as the Planck mass squared in 4 dimensions, M2

p , thus
yielding a total reduced action:

S =M2
p

∫

d4x
√−g

(

R2R4 +

[
∫

d2
√
hR2

])

+ ... (2.25)

where one can show that the formal second term is a topological invariant and is equal to (2-2g), a
function of the genus g ("number of holes" of the internal manifold, so g=1 for a torus, 0 for a sphere,
...) of the internal manifold.
The dots ... stand for higher orders in derivative terms of R(x) and we neglect them.
We see that in order to go back to the Einstein frame we need to introduce a term Ω2, just as in (2.12),
which implies:

√−gR4 =
√

−gEΩ4R2(RE
4

1

Ω2
) ⇒ Ω2 = R−2 (2.26)

so that passing from g → gE = R2g, we will eventually get the 10-dimensional gravitational action
gives in the 4 dimensions:

SR =M2
p4

∫

d4x
√

−g̃[R4 − V (R)] (2.27)

where V (R) is a potential setting the value of the modulus R(x).

Figure 2.1: Graphical representation of the
way ŕux compactiőcation modiőes the mod-
uli potential and stabilizes the dimension of
the compactiőed geometry to a őnite value. In
blue we draw the potential after compactify-
ing the ŕuxes, in yellow we draw the potential
with no ŕuxes.

After passing to the Einstein frame, the potential takes
the form:

V (R) =
(2g − 2)

R4
(2.28)

where it is clear the factor 1/R4 comes from the factor
Ω4 in the determinant.
Therefore, because of minimization of the potential,
for a torus or a sphere, the value of R will tend to
0 and the coupling in 6 dimensions would become in-
őnitely strong, thus busting our low-energy approxi-
mation. On the other hand, for an internal geometry
with genus > 2, R would tend to ∞, thus giving too
large internal dimensions.
We use then the 2-form, switching it on only in the
internal space, not to spoil the external space isome-
tries. We thus recover the magnetic charge of the ŕux
F as:

∫

Y2

F = n (2.29)

where n is an integer after charge quantization. Thus, introducing (2.29) in (2.18), we recover a term
which will have many ∝R terms, namely:
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• a factor R2 from the determinant of the metric in the Jordan frame;

• a factor R−4 from the internal terms of the metric contracting Fmn;

• a factor R−4 coming from going to the Einstein frame.

Altogether, this gives a factor proportional to n2/R6, which we insert in the previously derived potential
(2.28), so to get

V (R) ∝ (2g − 2)

R4
+ k

n2

R6
(2.30)

where k is an appropriate constant. As we can see, once one adjusts the coupling constants, it can
yield a prediction for the v.e.v. of our theory that could in principle be correct. This of course requires
our internal geometry to have g < 2.
In this sense, we can predict a way to justify compactiőcation of internal dimensions, interpreting
such a "strange" way physics chooses to behave as a result of energy minimization with a scalar őeld
potential in the presence of magnetic őelds named ŕuxes. This "flux compactification" thus is
identiőed as a way to stabilize the moduli appearing when compactifying.

The issue with this solution is that the minimized potential introduces a cosmological constant inside
the action, which turns out to be

V0 = Λ = −O(1)× 1

R
(2.31)

thus yielding unacceptable values once we compare to data. Such a small measured value of Λ would
in fact set R → ∞, spoiling our assumption of dimensional compactiőcation and yielding an almost
ŕat 6-dimensional space-time.
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Chapter 3

Giddings-Strominger Wormholes

Giddings-Strominger wormholes are wormhole solutions named after physicists Steven Giddings and
Andrew Strominger, who proposed the idea in a paper titled "Axion Induced Topology Change in
Quantum Gravity and String Theory" [29] in 1988.

The Giddings-Strominger wormholes [46], [47] are distinct, for instance, from Einstein-Rosen closed
wormhole solutions in that they involve certain exotic properties and arise in the context of string
theory, thus linking directly to quantum gravity. These wormholes are often associated with topolog-
ical changes induced by axions, which are hypothetical particles that arise in some extensions of the
Standard Model of particle physics. In a particle physics frame, they were introduced by means of an
anomalous symmetry of the Lagrangian called Peccei-Quin symmetry, while in a cosmological context
they are one of the candidates for Dark Matter.
The Giddings-Strominger wormholes are intriguing because they could potentially allow for a kind
of "topology change" in spacetime, meaning that the structure of spacetime itself could undergo a
transformation [48].

3.1 Action and equations of motion

If one takes an action in d ≥ 3 with a non-null cosmological constant [35]:

S =
1

2k2d

∫
(

∗(Rd − 2Λ)− 1

2
Gij(φ)dφ

i ∧ ∗dφj
)

(3.1)

where ’ stand for radial derivative and

• Rd is the d-dimensional Ricci scalar;

• kd is the d-dimensional gravitational constant;

• Λ is a gravitational constant;

• Gij is the target space metric deőned on the space parametrized by scalars φi,j

one can őnd a spherically-symmetric solution being:

ds2 = f(r)2dr2 + a(r)2dΩ2
d−1

(

a′

f

)2

= 1 +
a2

l2
+

c

2(d− 1)(d− 2)a2d−4

c = Gij(φ)
dφi

dh

dφj

dh
= Gij(φ)φ

i′φj
′ a(r)2d−2

f(r)2

(3.2)

21



where h(r) is a harmonic function such that h′ = f
ad−1 , c is the geodesic velocity on the target space

and h acts as an affine parameter.
The Cosmological Constant is deőned as a function of the AdS length l as:

Λ = −(d− 1)(d− 2)

2l2
(3.3)

The őelds φi are clearly only r-dependent, since we are considering a spherically-symmetric solution.

We checked the consistency of such a solution in D=4, since it is a useful generalization of the calcula-
tions done in Chapter 4 for the speciőc case of D=4 Supergravity with Λ ≡ 0 arising from dimensional
reduction of Type IIA String Theory on T 6.
The Einstein equation reads

Rµν −
1

2
Rgµν + Λgµν = Gij(φ)φ

′iφ′j − 1

2
gµνGij(φ)∂ρφ

i∂ρφj (3.4)

while the equations of motion for the scalar φi is

(∂iGij)∂µφ
i∂µφj − 1√

g

(

∂µ(
√
ggµνGij∂νφ

j)i ̸=j + 2∂µ(
√
ggµνGii∂νφ

i)

)

= 0 (3.5)

and we are going to leave their solution to the speciőc deőnitions of the target space metric Gij(φ) we
have case by case.
We őnd the only non-null Ricci tensor components to be:



































Rrr = 3a
′(r)f ′(r)−f(r)a′′(r)

a(r)f(r)

Rθθ = 2 + a(r)a′(r)f ′(r)−f(r)(2a′(r)2+a(r)a′′(r))
f(r)3

Rϕϕ = sin2(θ)

(

2 + a(r)a′(r)f ′(r)−f(r)(2a′(r)2+a(r)a′′(r))
f(r)3

)

Rηη = sin2(θ)sin2(ϕ)

(

2 + a(r)a′(r)f ′(r)−f(r)(2a′(r)2+a(r)a′′(r))
f(r)3

)

(3.6)

while the Ricci scalar R turns out to be:

R =
6[f(r)3 + a(r)a′(r)f ′(r)− f(r)(a′(r)2 + a(r)a′′(r))]

a(r)2f(r)3
(3.7)

so that the Einstein tensor Gµν = Rµν − 1
2Rgµν can be deőned as:

Gµν =











−3f
2−a′2
a2

0 0 0

0 −1− 2a(r)a′(r)f ′(r)−f(r)(a′(r)2+2a(r)a′′(r))
f(r)3

0 0

0 0 sin2(θ)Gθθ 0
0 0 0 sin2(θ)sin2(ϕ)Gθθ











(3.8)

First we consider a vacuum solution with no scalar őeld in the (rr) component of the stress-energy
tensor. As we can see, introducing a Cosmological Constant Λ as deőned in (3.3) yields a solution of
the type

−3
f(r)2 − a′(r)2

a(r)2
− 3f(r)2

l2
= 0 =⇒

(

a′(r)
f(r)

)2

= 1 +
a(r)2

l2
(3.9)

as in (3.2), apart from the őeld-dependent term.

Condition (3.9) implies a′′(r) = 1
a′(r)

(

f ′(r)f(r)(1 + a(r)2

l2
) + a(r)a′(r)f(r)2

l2

)

and one sees the equation

satisőes the request for the three remaining components as well.
The generalization to a theory with scalar őelds as in (3.5) is then straightforward once we remember
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they only depend on the radial coordinate.
Indeed, once again taking in consideration just the (rr) component for simplicity, we obtain a term:

Gij(φ)φ
′iφ′j − 1

2
f(r)2Gij(φ)∂rφ

i∂rφj =
1

2
Gij(φ)φ

′iφ′j (3.10)

If we put together the solution for this "reduced" Einstein equation with (3.9), we obtain the complte
result:

(

a′(r)
f(r)

)2

=

(

1 +
a(r)2

l2
+
Gijφ

′iφ′ja(r)2

6f(r)2

)

(3.11)

Upon iserting the third of (3.2) into the second one, we obtain back the result.

3.2 Regularity of the solutions

The following discussion is based on and expands the results of [47].

We notice that a(r) can be identiőed as the radius of the hyper-spheric Sd−1 section of space-time at a
certain radius r from the origin, thus to őnd whether the solution is an open wormhole geometry one
needs to check a(r = 0) = a0 is bigger than 0.

Wormholes are deőned to be c ≥ 0 "time-like" geodesics, but in full generality the metric signature is
not deőned, and one needs to check that regularity of the solution implies the statement above.
Indeed, in order to őnd regular wormhole metric solutions one needs to őx c≥ 0, since the geodesic
equation imposes, when used in the a(r) e.o.m. for the scalar terms in the metric in (3.2):

a′2 − 1− c

2(d− 1)(d− 2)a2d−4
= 0 (3.12)

and therefore, setting

c = −2(d− 1)(d− 2)a2d−4
0 ≤ 0 (3.13)

one gets a regular solution with a(r) → r2 for r → ±∞ and a(r = 0) = a0.
If we chose c = 0, we would recover a(r) = r, thus an extremal instanton metric with ŕat Euclidean
space, while setting c ≥ 0 we would end up with a singular solution, as a′ would diverge when a→ 0.

Thus, scalars travel along "time-like" geodesics in moduli space, but in order to őnd regular solutions for
the őelds, one needs to impose boundary conditions on the extrema of the őelds.

Figure 3.1: Mechanism keeping the wormhole
stably open of closed, depending on the values
the őelds take in the space-time geometry.

We will őrst try to explain this simply and intuitively.
We need to check whether the őelds are regular along
the trajectories they take within the target space due
to the curvature of the physical space-time. In order
to do this, we check the different values they take,
being only interested in seeing whether they diverge
for a space-time coordinate value. If this happens,
as one can see from (3.2), the derivative of the őelds
diverges and so does the metric solution, yielding a
metric that looks more like the one of a singularity
than a smooth, traversable wormhole. Therefore, we
need to check whether the geometry of the entire target
space, encoded in the metric Gij(φ), allows us to have
a "time-like" (it would be more sensible saying "axion-

like") geodesic along which we can freely move, that is longer than the one treaded by our őelds, i.e.
the range of values they take. In this way, the őelds will vary along what will be perceived by the
observer "moving" in the target space as "time-like" trajectories and one will be able to probe their
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variation step by step without "losing track" of a too fast soaring in their values.
This approach is particularly likeable because this request of "time-like"ness for geodesics in the target
space to have a traversable wormhole somehow mirrors the request of being able to follow a (proper)
time-like geodesic in space-time without falling in the case of a closed Schwarzschild-like wormhole
geometry.

Passing to the matemathical side of the question, if one calls the space-time boundaries values of a
őeld φ±∞ and its value at the neck φ0, one can őnd that the distance between the extramal values in
the target space along the geodesic is, using ŕat (3.2):

Dd = d[φ−∞, φ+∞] = 2d[φ−∞, φ0] =2

∫ 0

−∞
dr

√

|c|
a(r)

= π

√

2(d− 1)

d− 2

(3.14)

and thus, to have bounded scalars, one needs to őnd a compact time-like geodesics in the moduli space
geometry that is longer than the one in (3.14). All these considerations were made in a ŕat space
(l → ∞). Adding a cosmological constant Λ implies trading the integration constant r with h deőned
as above, and gives a dependence to the solution in (3.14) on the relation a0

l . This relates the AdS
scale and the width of the wormhole mouth, and one őnds

π

√

2(d− 1)

d− 2
= Dd(0) ≥ Dd(

a0
l
) ≥ Dd(∞) = π

√

2(d− 2)

d− 1
(3.15)

where we relax our condition in the case of a much curved background (a0 >> l).

In an axion-only theory, one would őnd
ds2 = −da2 (3.16)

and thus it would always be possible to őnd a őtting time-like geodesic due to the "wrong" sign for
axions. Anyway, in a compactiőcation of String Theory one always őnds a dilaton joining the axion in
such a way that

ds2 = dφ2 − e2φda2 (3.17)

and generalizing the factor multiplying the dilaton in the exponential back to β as in (3.1), one őnds
the maximal time-like geodesic length to be 2π

β , so that one needs to require:

1

β2
>

d− 1

2(d− 2)
(3.18)

In case of multiple axio-dilaton pairs, the constraint is relaxed and one can follow a "diagonal" path
in the target space, őnding the condition:

∑

i

1

β2i
>

d− 1

2(d− 2)
(3.19)

One can in principle have multiple axio-dilaton pairs, as emerging from several scalar components of
compactiőed String Theory őelds. This is what we are going to test in the next chapter.
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Chapter 4

Reduction from a 10-dimensional IIA

theory to a scalar 4d theory

What we wish to achieve in this chapter is truncating the reduced spectrum of massless Type IIA String
theory to a four-dimensional Supergravity where we can recover a Giddings-Strominger wormhole so-
lution for space-time geometry. We subsequently want to use the ansatz we imposed for dimensional
reduction to build back our ten-dimensional string theory where we őxed the form of our őelds from
imposing the wormhole solution. This will yield the embedding of our Supergravity theory in a higher
dimensional high-energy frame, thus justifying our geometry from a String point of view.

In Chapter 4.1 we introduce the action of the truncated massless Type IIA theory using an ansatz (see
Appendix C to check the consistency of such a truncation and of the ansatz) and őnd the corresponding
four-dimensional theory by dimensional compactiőcation with Kaluza-Klein null modes. In doing this,
we follow the steps of [35].
Chapter 4.2 deals with handling the scalar content of the theory in order to őnd a wormhole solution in
Einstein equations. Inherently, we re-uplift our theory to the ten dimensions performing an embedding.
In Chapter 4.3 we check that this wormhole solution is indeed an open Giddings-Strominger solution
by means of the criteria given in Chapter 2. We use equations of motion and regularity condition.
Finally, we conclude with Chapter 4.4, where we brieŕy introduce a Type IIB dimensional compactiőca-
tion to a Giddings-Strominger solution and introduce a method we will use later to check asymptotically
the possibility of having axio-dilaton wormhole solutions in a certain frame.

4.1 Truncation of massless Type IIA String Theory

In the following, we will refer to the dimensional compactiőcation studied in [35] and based on the
previous work of [49].
The action we start with is a 10-dimensional one including EH term, a dilaton and the RR 3-form C3

őeld strength.
The action is

1

2k210

∫

d10x
√−g

(

R− 1

2
(∂ϕ)2 − 1

2 ∗ 4!e
ϕ/2F 2

4

)

(4.1)

and we use it to describe D2-branes.
The aim is to reduce it dimensionally on a T 6 to a 4-dimensional theory.
We use three ansatz to simplify our calculations in the reduction:
• The metric is written in a block form as

ds210 = e2aφds24 + e2bφMαβdθ
αdθβ (4.2)
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• We neglect all the vector and tensor őelds coming from the 10-dimensional C3 and only keep 4 of
the 15 scalar őelds and we identify the remaining őelds as 4 axions. Namely we deőne

C3 = χ1dθ
1 ∧ dθ2 ∧ dθ3 + χ2dθ

1 ∧ dθ4 ∧ dθ5 + χ3dθ
2 ∧ dθ5 ∧ dθ6 + χ4dθ

3 ∧ dθ4 ∧ dθ6 (4.3)

We need the matrix Mαβ to describe the torus metric, as much as to have unit determinant, be positive
and symmetric.

We consider a diagonal torus metric , writing M = diag(eβ⃗1·Φ⃗, ...).
• We consider all őelds to depend only on the main space coordinates, using Kaluza-Klein ansatz
extended to the torus.
For a check on the consistency of this ansatz in the 10D frame and for massless Type IIA equations of
motion refer to Appendix C.
First we need to rewrite the 10D scalar curvature R̂ as a sum of terms containing the 4-D R and the
scalar őelds contained within the metric.
For such a purpose we used the RGTC Mathematica package to calculate useful GR quantities and
got from the metric of interest

R̂ =e−2aφ

(

R4 +
1

2

[

−12(a2 + 4ab+ 7b2)(∂φ)2 − 2(2a+ 7b)((
∑

i=1,6

βi)∂µφ∂
µΦ−

[
∑

i,j=1,6,j ̸=i
(β2i +

1

2
βiβj)]

∑

a=1,5

(∂Φa)
2 − (12a+ 24b)(∂2φ)− 2

∑

1=1,6

βi(∂
2Φ)

) (4.4)

Neglecting the ∂2 terms which are total derivatives, we observe that the mixed term vanishes for
unitarity of M and we can get a standard kinetic term for the radion by setting

a =

√
3

4
(4.5)

a = −3b (4.6)

and by normalizing the βi internal products to

(βi · βj) = 2δij −
1

3
(4.7)

we obtain a canonical term for the Φ’s as well.
Now, we move to the RR sector 3-form őeld strength.
Applying the exterior derivative to our previously deőned 3-form, keeping in mind that the axion őelds
only depend on the 4d coordinates, we obtain the desired 4-form F4, such that when contracting the
indices with the already mentioned assumed metric, we obtain a term

(4!)e−2aφ−6bφ+ϕ/2

[

e−(β⃗1+β⃗2+β⃗3)·Φ⃗(∂χ1)
2 + e−(β⃗1+β⃗4+β⃗5)·Φ⃗(∂χ2)

2+

e−(β⃗2+β⃗5+β⃗6)·Φ⃗(∂χ3)
2 + e−(β⃗3+β⃗4+β⃗6)·Φ⃗(∂χ4)

2

] (4.8)

which is the kinetic term for axions.
Now we notice that the usual metric term in the action, switching from a 10d theory to a 4d one,
changes only by a total exponential factor, namely

√−g10 =
√−g4[e4aφ+6bφ+

∑
i=1,6 β⃗i ] (4.9)

and for unitarity of the M matrix and from the choices we made for a and b, this amounts to

√
g4e

2aφ (4.10)
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Thanks to our choices we can write the action directly in the Einstein frame and we get a őnal

S4d =
Vol(T 6)

2k210

∫

d4x
√−g4

(

R4 −
1

2
(∂φ)2 − 1

2
(∂ϕ)2 − 1

2

∑

a=1,5

(∂Φa)
2 + Laxions

)

(4.11)

where

Laxions =− 1

2
(eϕ/2−6bφ)(e−(β⃗1+β⃗2+β⃗3)·Φ⃗(∂χ1)

2 + e−(β⃗1+β⃗4+β⃗5)·Φ⃗(∂χ2)
2

+ e−(β⃗2+β⃗5+β⃗6)·Φ⃗(∂χ3)
2 + e−(β⃗3+β⃗4+β⃗6)·Φ⃗(∂χ4)

2)

(4.12)

4.2 Wormhole solution in 4 dimensions

Now we need to solve the equations of motion for a wormhole geometry with the reduced 4 dimensional
action.
We thus initially require an instanton metric of the most general form

ds2 = e2B(r)(dr2 + r2dΩ2
3) (4.13)

with őelds as speciőed in the action only dependend on the radial coordinate.
We őrst simplify the metric requiring a unique axion coupling constant and therefore reduce to one
effective axio-dilaton pair. In order to do this we simply consistently set Φ⃗ = 0⃗ and by setting χi =

1
2χ

we derive an effective axion Lagrangian of the form

Laxion = −1

2
eϕ/2−6bφ(∂χ)2 (4.14)

By orthogonality condition in the target space, we would recover an exponential term where the dilaton
is multiplied by a constant β = 1, thus setting a deőnite axion charge. In full generality, here we apply
the same reasoning but we leave a free parameter b standing for the effective axion coupling. With
this choice we recover a simpler expression just in terms of the dilaton őeld:

Laxion = −1

2
ebϕ(∂χ)2 (4.15)

With the assumption made above, we őnally end up with an effective Lorentzian axio-dilaton-gravity
coupled action

S =
1

2k24

∫

d4x
√

|g4|
(

R4 −
1

2
(∂ϕ)2 − 1

2
ebϕ(∂χ)2

)

(4.16)

Now that we have the desired action, we Wick-rotate the action to obtain the Euclidean-action frame,
resulting in the rotation of the axion őeld χ → −iχ and we can write the 4-dimensional equations of
motion as

Rµν =
1

2
∂µϕ∂νϕ− ebϕ∂µχ∂νχ

0 = ∂µ(
√
ggµνebϕ∂νχ)

0 =
b

2
ebϕ(∂χ)2 +

1√
g
∂µ(

√
ggµν∂νϕ)

(4.17)

We őrst try and solve the equations using coefficients derived from the conserved charges of the SL(2, R)
symmetry the Lagrangian enjoys (this is made clear writing the action in a Scalar-Matrix formalism,
highlighting the geometry of the target space), following the approach of [49] and [34]. Taking the
value q̃ as a proper combination of the three conserved charges we őnd the solutions of (4.17) as

ds2 =

(

1 +
q̃2

r4

)

(dr2 + r2dΩ2
3)

ebϕ(r) =

(

q−
q̃

sin
(

bcarctan

(

q̃

r2

)

+ C1

)

)2

χ(r) =
2

bq−

(

q̃ cot
(

bcarctan

(

q

r2

)

+ C1

)

− q3

)

(4.18)
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where c is given for a n-dimensional theory as c =
√

2(N−1)
D−2 , which in our case is equal to

√
3, while

C1 is a constant of integration setting the value of the dilaton őeld at inőnite radius.
To verify this choice of the metric solves the equations of motion we report the explicit form of the
Riemann tensor:

Rµν =











24q̃r2

(−q23+q−q++r4)2
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0











(4.19)

and as one can see, the tensor only has a non-null (rr) component, which is what we desired for a theory
with only radius-dependent őelds. Indeed, the tensor arising from the energy-momentum tensor in the
őrst equation in (4.17) only involves radial derivatives of the őelds and thus only has a non-null (rr)
component as well, which turns out to satisfy Einsten.
For what concerns the equations of motion of the őelds, the forms given in (4.18) satisfy our bound
and are thus solutions of the system.
We need to impose some costraints to our solutions in order for them to be regular. We indeed notice
that, for bc > 2, the cotangent deőning the prospect of χ(r) őeld explodes, as the arcotangent reaches
the value of π/2. Therefore, we need to set bc < 2, which we have in four dimensions for b < 2√

3
.

We notice that the metric we have as a solution of Einstein in (4.17) has the features we require for
our wormhole solutions:

• it is symmetric under the reŕection r2 → q
r2

,

• we have a őxed point in this reŕection, namely

r2SD = q (4.20)

deőned as the self-dual radius,

• we can deőne a őnite thickness of this throat as

ρ2SD = 2q (4.21)

taken as the value of the minimum radius squared of the 3-dimensional "angular" section in
Euclidean space-time.

We can thus give a visual description of the system just described (in a 3-dimensional projection) as:

Figure 4.1: [49] Wormhole solution (4.18) as envisioned in a 3-dimensional projection of the solution.

Rewriting the constants in these expressions in a less explicit, at least in terms of the symmetries
of the theory, but more direct formalism employed in [35], using the radius of the wormhole neck a0,
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we can then consistently uplift this wormhole solution to:

ds2 = A2 sin2
[√

3 arctan

(

a20
2r2

)

+ C1

](

1 +
a40
4r4

)

(dr2 + r2dΩ2
3) +

6
∑

i=1

dθ2i

e2ϕ = A2 sin2
[√

3 arctan

(

a20
2r2

)

+ C1

]

C3 =
i

A
cot

[√
3 arctan

(

a20
2r2

)

+ C1

]

(dθ123 + dθ145 + dθ256 + dθ346)

(4.22)

where we can identify the constant A with q−
q̃ by comparing these solutions to (4.18) and remembering

the reduction ansatz (4.2) and the structure of the three-form C3 as (4.3). For simplicity of notation
we wrote:

dθijk = dθi ∧ dθj ∧ dθk (4.23)

Therefore, we succesfully managed to uplift the Supergravity theory showing a wormhole geometry
solution to Strin theory, őnding a proper analytic embedding of the solutions for our metric and scalar
őelds.

4.3 Regular Giddings-Strominger Wormhole Structure

4.3.1 Equations of motion

We now check that the four-dimensional theory results we just obtained from the compactiőcation
of type IIA on T 6 are compatible with those of a four-dimensional Giddings-Strominger Wormhole
obtained in Chapter 3 with null Cosmological Constant Λ = 0.

First, we notice that in the properly truncated action (4.16), the target-space metric appearing in (3.1)
is deőned as

Gij(ϕ, χ) =

[

Gϕϕ Gϕχ
Gχϕ Gχχ

]

=

[

1 0
0 −ebϕ

]

(4.24)

and, upon setting Λ to zero or equivalently the characteristic AdS length l to ∞, one can easily see
that the remaining terms in the equations of motion (3.5) and Einstein equation (3.4) reduce indeed
to the case of (4.17).
We can therefore identify the general functions multiplying the radial and angular parts of the Eu-
clideanized metric f(r) and a(r), respectively, with

f2(r) =

(

1 +
q̃2

r4

)

a2(r) =

(

1 +
q̃2

r4

)

r2 (4.25)

The just identiőed functions need to satisfy condition (3.2). Let’s check this out:
• on the left hand side we have:

(

a′(r)
f(r)

)2

=
(q̃2 − r4)2

(q̃2 + r4)2
(4.26)

• on the right hand side we őnd:

Gij(φ)φ
′iφ′j a(r)

2

f(r)2
= (ϕ′2 − ebϕχ′2)r2 (4.27)

and we thus őnd that all the constraints are indeed satisőed inserting (4.18):

r2

12
(ϕ′(r)2 − ebϕχ′(r)2) = − 4c2q̃2r4

3(q̃2 + r4)2
(4.28)

Setting c =
√

2(d−1)
d−2 =

√
3, we see that the expressions (4.18) satisfy the requests (3.2) exactly, and

therefore we found a GS Wormhole geometry.
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4.3.2 Regularity

In order to check for regularity condition, we need to make sure that (3.19) is satisőed before truncating
the different βis to the single axion charge or equivalently that (3.18) is satisőed for the only effective
coupling β.

As anticipated in Chapter 4.2, the effective coupling stemming from our reduction is

β = 1 ⇒ 1

β2
= 1 >

3

4
(4.29)

thus yielding a regular traversable wormhole.
If one wanted to recover the theory with four different axio-dilaton pair to check whether

∑

i
1
β2
i
> 3

4 ,

one would őnd that, upon writing the axion Lagrangian as (4.12) and grouping the seven scalars of
the theory (φ, ϕ, Φ⃗) into a 7-vector t⃗ [35], one would őnd a Lagrangian written as

Laxions =
1

2

4
∑

i=1

eα⃗i t⃗(∂χi)
2 (4.30)

where α⃗i are four orthonormalized 7-vectors.
Then what we are left to do is to match the effective dilaton number with the axion number by deőning
a new basis of scalars

si =
1

2
α⃗it⃗ (4.31)

for i = 1, ..., 4 such that the remaining s5, s6, s7 are orthogonal to them by construction and decouple.
The őnal result would give four axio-dilaton pairs, each with βi = 2, such that

4
∑

i=1

1

β2i
= 1 >

3

4
(4.32)

and our regularity condition is satisőed.

4.4 Reduction from a 10-dimensional IIB theory to a scalar 4d theory

We studied the reduction of Type IIB String Theory to Euclidean AdS4 ([35], [50]) in order to recover
some consideration that will be very useful when treating the necessary truncation in the case of
massive Type IIA in Chapter 7.3.

We want to consider a consistent truncation of Type IIB on T 1,1. We support our Type IIB theory
only with its F5 − ŕux. The geometric ansatz leads to

ds210 = l2
(

dr2

1 + r2
+ r2dΩ2

4

)

+ l2(ds2KE + η2)

eΦ = gs

H3 = F1 = F3 = 0

F5 = 4l4(1− i∗)volT 1,1

(4.33)

where the i term appears after going to Euclidean signature, while the internal metric is expressed in
such a way to highlight the T 1,1 nature of U(1) őbration over an S2 × S2 Kahler-Einstein [51] base.
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We now wish to build a 4-dimensional wormhole solution. Therefore, looking at (3.2), we write

ds210 = l2e−
2
3
(4u−v)[f(r)2dr2 + a(r)2dΩ2

4] + l2(e2uds2KE + e2vη2)

eΦ = gse
ϕ

B2 = l2g
1
2
s bΦ2

C0 = ig−1
s χ

C2 = il2g
− 1

2
s cΦ2

F5 = 4l2(1− i∗)volT 1,1

(4.34)

where we normalized |Φ|2 = 1 and set ϕ→ 0 at the boundary.
From this reduction it is immediately clear which ones among the scalar őelds will have a kinetic terms
switching sign in the Euclidean.
One can show that the 5-dimensional effective action already in the Euclidean frame turns out to be

S5 =
1

2k25

∫
(

∗(R− V)− 1

2
dϕ ∧ ∗dϕ− 1

2
e−4u−ϕdb ∧ ∗db

+
1

2
e2ϕdχ ∧ ∗dχ+

1

2
e−4u+ϕ(dc− χdb) ∧ ∗(dc− χdb)

− 28

3
du ∧ ∗du− 8

3
du ∧ ∗dv − 4

3
dv ∧ ∗dv

)

(4.35)

where V is a scalar potential written as

V = 2e−
8
3
(4u+v)(2e4u+4v − 12e6u+2v + 4) (4.36)

which we can see has a minimum V0 = −12 for both the scalar u and v sitting at 0, which yields AdS
vacuum conőgurations.

As we can immediately see, the 5-dimensional action is much more complicated than (4.16), and
őnding an effective axio-dilaton pair to give regular GS wormhole solutions will indeed turn out to be
analytically impossible, because of the dependence of the potential on the őelds we would like to keep
in order to have the wormhole geometry. If one therefore set these őelds to a constant, obtaining a
cosmological constant Λ, the possibility to derive the GS geometry would be lost, as one can see from
(3.2). On the other hand, if we keep the őelds the potential changes the equations of motion and the
simple GS wormhole geometry cannot be recovered.

Nevertheless, we can examine some interesting cases.
We use the same strategy that we’ll use for the dyonically gauged ISO(7) Supergravity model in
Chapter 7.3.
It consists in an asymptotic-case approximation, according to which we set the potential V to its
minimum value, thus recovering a cosmological constant Λ, whose value is Λ = −12, as was proved
earlier. Then, we just retain some of the őelds in the action that we interpret as axio-dilaton pairs.
This limit case is studied in detail in [35].
In the following, we analyze the possibilities case by case, as a useful exercise for our model:
• Case 1: we set b and c to a constant. u and v therefore decouple and we remain with an axio-dilaton
pair given by (ϕ, χ). The coupling constant β is equal to 2, therefore the conditions of smoothness for
the őelds in (3.18) are not satisőed and the wormhole closes up.
• Case 2: setting u and v to 0, we keep the őelds ϕ and c. Here we have a coupling constant 1, which
satisőes the regularity condition, since

1

β2
= 1 >

3

4
=

(

D4(0)

2π

)2

(4.37)
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Therefore, in this case, we have an open GS wormhole solution.
• Case 3: in the third case we switch off the χ őeld and keep c, while for the "dilaton-like" őelds we
keep ϕ, u and v.
What we then need to do is to őnd an effective group of dilaton őelds, which will be given by linear
combinations of the three previous őelds, in order to be able to write −4u+ ϕ as a single φ1. We őnd

φ1 =
−4u+ ϕ√

2
φ2 =

4u+ ϕ√
2

φ3 =
4u+ 4v√

2
(4.38)

so that the other two linear combinations decouple as we expected and the effective coupling constant
turns out to be β =

√
2, thus yielding another case in which we can have a smooth GS wormhole limit

geometry.

32



Chapter 5

Massive Type IIA String Theory

reduction to maximal N=8, D=4 ISO(7)c
dyonically gauged Supergravity

Maximally gauged Supergravity can usually be extended with the usual symplectic formalism to dy-
onically gauged N = 8 theories respecting the Supersymmetry and the gauge symmetry invariances.
Introducing magnetic őelds deforms the covariant derivative to a generic

D = d− g(AΛ − cÃΛ) (5.1)

where c is constant that distinguishes between electric and magnetic coupling constants.
In the ungauged case, one can set c→ 0 by a symplectic transformation. When adding gauging and in-
herently a non trivial covariant derivative (5.1), one breaks the symplectic transformations- invariance
of the theory and the frame one works with becomes relevant. Depending on the chosen gauge group
then, the theory acquires interesting properties. For instance, chosing the ISO(7) group, one recovers,
as we will show, several AdS vacuum solutions. This is not the case for the exclusively electrically
gauged theory, which has been studied for instance in [52].

One of the most interesting features of these dyonic Suprgravity theories is they can descend from
String theories.
This is the case for a dyonically gauged theories under an ISO(7) = SO(7) ⋊⋉ R [53], whose symplectic
deformation to a dyonic theory has been discussed in [54] and [55].
In the following we derive the work of [56] and [53] to discuss [57], summarizing the process of showing
how ISO(7) dyonically gauged N = 8 D=4 Supergravity can be obtained as a consistent truncation
of massive Type IIA String theory on the six-sphere S6.

In Chapter 5.1 we write the massive Type IIA Lagrangian density and derive its equations of motion
for scalars and vector őelds and the Einstein equation.
In Chapter 5.2 we rewrite the őelds of massive Type IIA in such a way to stress their covariance under
SO(1, 3) × SO(6) in the bosonic and fermionic case. Then we make the őelds compatible with the
tensor hierarchy of the 10-dimensional theory by performing a rewriting, indexing them in such a way
to make them covariant under SU(8).
In Chapter 5.3 we perform our dimensional reduction, displaying the chosen ansatz for the őelds’ struc-
ture. Then we embed our choice in the 10-dimensional form of the őelds to rewrite the internal space
components in terms of the quantities appearing in the 4-dimensional Supergravity action.
In Chapter 5.4 we perform a consistency check of the Supersymmetry transformations and Bianchi
identities in the 10-dimensional theory. This is done using the ansatz of Chapter 5.3 in SUSY transfor-
mations and Bianchi identities of the string theory and matching them with the known N = 8, D=4
dyonically gauged ISO(7) theory ones.
In Chapter 5.5 we write the dymensionally reduced Supergravity action and its equations of motion.

33



5.1 Massive type IIA theory

We can write the general Lagrangian for the bosonic content of massive type IIA theory [58],[59] as:

2k̂2L10 =R̂v̂ol10 +
1

2
dϕ̂ ∧ ∗̂dϕ̂− 1

2
e

3
2
ϕ̂F̂(2) ∧ ∗̂F̂(2)

+
1

2
e−ϕ̂Ĥ(3) ∧ ∗̂Ĥ(3) −

1

2
e

1
2
ϕ̂F̂(4) ∧ ∗̂F̂(4)

− 1

2
(dÂ(3))

2 ∧ B̂(2) −
1

6
mdÂ(3) ∧ (B̂(2))

3 − 1

40
m2(B̂(2))

5 − 1

2
m2e

5
2
ϕ̂v̂ol10

(5.2)

where theˆsymbol is used for 10 dimensional quantities.
As one can see, the content of the action is expressed in terms of:

• Ĥ(3)=dB̂(2) the őeld strength tensor of the NS two-form;

• F̂(2) as the őeld-strength of RR one-form;

• F̂(4) as the őeld-strength of RR three-form.

The powers of one-forms indicate the degree of the form.
k̂ is the gravitational coupling in the 10-dimensional theory and it is given as usual in terms of the
string length.
The Romans mass [58] given by the 0-form F̂(0) is identiőed with m, the magnetic coupling constant.
We have the following equations of motion deriving from (5.2):

d(e
1
2
ϕ̂∗̂F̂(4)) + Ĥ(3) ∧ F̂(4) = 0

d(e
3
2
ϕ̂∗̂F̂(2)) + e

1
2
ϕ̂Ĥ(3) ∧ ∗̂F̂(4) = 0

d(e−ϕ̂∗̂Ĥ(3)) +
1

2
F̂(4) ∧ F̂(4) +me

3
2
ϕ̂∗̂F̂(2) + e

1
2
ϕ̂F̂(2) ∧ ∗̂F̂(4) = 0

d∗̂dϕ̂+
5

4
m2e

5
2
ϕ̂v̂ol10 +

3

4
e

3
2
ϕ̂F̂(2) ∧ ∗̂F̂(2) +

1

2
e−ϕ̂Ĥ(3) ∧ ∗̂Ĥ(3) +

1

4
e

1
2
ϕ̂F̂(4) ∧ ∗̂F̂(4) = 0

(5.3)

These are, respectively, the equations of motion for Â(3), Â(1), B̂(2) and ϕ̂.
To express the Einstein equation, we introduce the local indices in 10-dimension M,N = 0,...,9 and őnd
the expression:

R̂MN =
1

2
∂M ϕ̂∂N ϕ̂+

1

16
m2e

5
2
ϕ̂ĝMN +

1

12
e

1
2
ϕ̂(F̂MPQRF̂

PQR
N − 3

32
ĝMN F̂PQRSF̂

PQRS)

+
1

4
e−ϕ̂(ĤMPQĤ

PQ
N − 1

12
ĝMNĤPQRĤ

PQR)

+
1

2
e

3
2
ϕ̂(F̂MP F̂

P
N − 1

16
ĝMN F̂PQF̂

PQ)

(5.4)

5.2 Massive type IIA fields rewriting

The őelds in the ten-dimensional frame need őrst to be written in their explicitly SO(1,3)×SO(6)
symmetrical form, in order to stress the degrees of freedom we will need in our 4-dimensional theory.
In order to do this, we’ll distinguish between the space-time coordinates xµ and the internal space
coordinates ym.
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5.2.1 Bosonic fields

The őelds we take in consideration are

• the 10-dimensional metric dŝ210;

• the RR 1-form Â(1), depending on the 10 coordinates;

• the RR 3-form Â(3), depending on the 10 coordinates;

• the NS 2-form B̂(2), depending on the 10 coordinates;

• the NS scalar őeld, the dilaton ϕ̂.

We then write an expansion for the just mentioned őelds, singling out the internal geometry components
of the tensor őelds as:

• dŝ210 = ∆−1ds24 + gmn(dy
m +Bm)(dyn +Bn)

• Â(3) =
1

6
Aµνρdx

µ ∧ dxν ∧ dxρ + 1

2
Aµνmdx

µ ∧ dxν ∧ (dym +Bm)

+
1

2
Aµmndx

µ ∧ (dym +Bm) ∧ (dyn +Bn)

+
1

6
Amnp(dy

m +Bm) ∧ (dyn +Bn) ∧ (dyp +Bp)

• B̂(2) =
1

2
Bµνdx

µ ∧ dxν +Bµmdx
µ ∧ (dym +Bm) +

1

2
Bmn(dy

m +Bm) ∧ (dyn +Bn)

• Â(1) = Aµdx
µ +Am(dy

m +Bm)

(5.5)

where

∆ =

√

det(gmn)

det(g̃mn)
(5.6)

for a background internal metric g̃mn of S6.
By dimensional compactiőcation, using the KK ansatz, we then get the 4D Supergravity bosonic
content

IIA őeld SuGra őeld(s) SO(6)

d̂s
2

10 metric ds24 1

scalars gmn 21

Â(1) scalars Am 6

vector Aµ 1

B̂(2) scalars Bmn 15

vectors Bµm 6

two-form Bµν 1

Â(3) scalars Amnp 20

vectors Aµmn 15

two-forms Aµνm 6

three-form Aµνρ 1

ϕ̂ scalar ϕ 1

Table 5.1: Bosonic őelds derived in the 4-dimensional Supergravity theory by dimensional reduction
of massive Type IIA String theory.

for a total of 1 metric, 21 + 6 + 15 + 20 + 1 = 73 scalar őelds, 1 + 6 + 15 = 22 vector
őelds, 1 + 6 = 7 two-form and 1 three-form őeld. We will keep fewer őelds by exploiting duality
conditions binding some degrees of freedom.
It is important to remember that these őelds depend both on xµ and ym coordinates.
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5.2.2 Fermionic fields

In the massive IIA theory we then introduce fermionic őelds by requiring supersymmetric invariance
of our theory. This introduces the quantities:

• gravitino ψ̂M ;

• dilatino λ̂;

• supersymmetry parameter ϵ̂, appearing in the SuperSymmetry transformations.

These őelds are all Majorana.
We wish to rewrite these őelds in their components, stressing their SO(1, 3)×SO(6)→ SO(1, 3)×SU(8)
invariance, where we expanded the SO(6) invariance of the internal tangent space components of the
fermionic őelds to the R-symmetry group of maximal D=4, N=8 Supergravity, stressing the covariance
under such group of the internal degrees of freedom.
We introduce a rewriting of the fermion őelds:

ψ̂′
µ = ∆− 1

4 eαµ(ψ̂α +
1

2
Γ̂αΓ̂

aψ̂a)

ψ̂′
a = ∆− 1

4 ψ̂a

λ̂′ = ∆− 1
4 λ̂

ϵ̂′ = ∆
1
4 ϵ̂

(5.7)

where α = 0, ..., 3 and a = 4, ..., 9 are tangent space indices in the vector representation of SO(1,3) and
SO(6), while Γα,a are the 4 and 6-dimensional gamma matrices.

5.2.3 Rewriting of the fields

In order to make the supersymmetry transformations compatible with the tensor hierarchy of D=4
ISO(7) Supergravity (explicitly, the supersymmetric variations for each őeld in ten dimensions need
to contain the same type of őelds that the SUSY variations for their ISO(7) theory counterpart do),
we need to rearrange some degrees of freedom of the IIA theory. Writing the standard supersymmety
variations of massive IIA with its őelds in the form (5.5), we end up with equations that in some cases
are compatible with the 4D theory, while in some other cases we need to erase some terms which do
not appear in our Supergravity theory. In order to do so, we deőne new vector and tensor őelds as
combinations of the previously deőned ones (in a SO(6) covariant form):

1-forms : Cm8
µ = Bm

µ C78
µ = Aµ C̃µmn = AµBmn C̃µm7 = Bµm

2-forms : C8
µνm = −Aµνm + Cn8[µ C̃ν]nm + C78

[µ C̃ν]m7 C8
µν7 = −Bµν + Cm8

[µ C̃ν]m7

3-forms : C88
µνρ = Aµνρ − Cm8

[µ Cn8ν C̃ρ]mn + Cm8
[µ C78

ν C̃ρ]m7 + 3C78
[µC

8
νρ]7

(5.8)

We end up with SL(6) covariant forms that can be regarded as components of SL(7) covariant forms.
We therefore derive electric vectors in the 7

′, magnetic vectors in the 21, two-forms in the 7 and three
forms that are singlets under SL(7). The newly deőned tensors satisfy SL(7) covariant supersymmetry
variations, compatible with the D=4 ones.
In these transformations we also collect the scalar degrees of freedom in the relevant components of
the newly deőned generalized vielbein

V I8
AB = (V m8

AB , V
78
AB) ṼIJAB = (ṼmnAB, Ṽm7AB) (5.9)

where m=1,...,6 are SO(6) indices, I,J=1,...,7 are SL(7) indices and A,B=1,...,8 are SU(8) indices and
[AB] parametrizes the 28 of SU(8).
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Finally, we derive an expression for the őelds that appear in the String theory and are compatible with
the structure of the Supergravity:

Fields SL(7)

metric ds24 1

generalized vielbein V I8
AB, ṼIJAB 7

′ + 21

vectors CI8µ , C̃µIJ 7
′ + 21

two-forms C8
µνI 7

three-form C88
µνρ 1

Table 5.2: IIA őelds in a SL(7) representation

where all the őelds depend on (xµ, ym) and AB indices run over the 28 representation of SU(8).
We also deőne the fermion őelds in a SU(8) covariant form

ψAµ (x, y) (5.10)

χABC(x, y) (5.11)

where clearly the gravitons are in the 8 of SL(8), while the spin-12 őelds χ(x, y), deőned as an ap-
propriate combination of internal-space components of the gravitino and the gaugino, are in the 56

irrepresentation of SL(8).

5.3 The S6 truncation

The previously deőned SO(1, 3)×SL(7)-covariant formalism for bosons and SO(1, 3)×SU(8)-covariant
formalism for fermions turns out to be particularly suitable to truncate type IIA Supergravity down
to D=4, N=8 maximal Supergravity in a restricted tensor hierarchy.
The bosonic content of a dyonically ISO(7) gauged 4D, N=8 Supergravity in a SL(7) representation
is [53]:

Fields SL(7)

metric ds24(x) 1

coset representatives VIJij(x), VI8ij(x), Ṽ ijIJ(x), Ṽ
ij
I8(x) 21

′ + 7
′ + 21+ 7

vectors AIJ
µ (x), AI

µ(x), ÃµIJ(x), ÃµI(x) 21
′ + 7

′ + 21+ 7

two-forms BJµνI(x), BIµν(x) 48+ 7
′

three-forms CIJµνρ(x) 28
′

Table 5.3: Field content of a D=4, N=8 dyonically gauged Supergravity in SL(7)-covariant represen-
tation.

where i,j parametrize the D=4 SU(8) representation.
For the fermions, in an SU(8) covariant formalism, we recover:

ψiµ(x) χijk(x) (5.12)

where all őelds depend only on the 4 space-time coordinates xµ, since we are analyzing the zero modes
of the őelds following the KK ansatz (see Chapter 2) approach.

We notice that the SL(7) representation in Supergravity differs from the type IIA case for many
reasons, őrst of all being the fact that in the őrst case we have 21 and 7 both for the electric and
magnetic case, while in String Theory we only have half the vector őelds.
Moreover, in one case we have a 7 representation, while in the other we have the adjoint 7′ one. These
representations are inequivalent, thus yielding different supersymmetry variations.
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5.3.1 The Kaluza-Klein ansatz

We now need to set our KK ansatz on the őelds in massive IIA theory to reconduct them to our D=4
ISO(7) gauged Supergravity particle content.
We start by simply assuming:

ds24(x, y) = ds24(x) (5.13)

where the term on the right is the term in the 10-dimensional metric describing the geometry of the
four space-time dimensions in the string frame, thus depending on all the 10 coordinates of type IIA
theory, and we state this is dependent only on the xµ coordinates previously deőned.
We wish to set our KK ansatz on the vector and tensor őelds using their SL(6) representation, which
comes particularly in handy for this purpose. We thus use our m,n coordinates parametrizing the
representations of SL(6) and we write

Cm8
µ (x, y) =

1

2
gKm

IJ(y)AIJ(x) C78
µ (x, y) = −µI(y)AI

µ(x) (5.14)

C̃µmn(x, y) =
1
4K

IJ
mn(y)ÃµIJ(x) C̃µm7(x, y) = −g−1(∂mµ

I)(y)ÃµI(x)

where the µI(y) (deőned in the 7
′) describe the geometry of S6 in terms of R7 coordinates by the

deőning S6 as the geometrical space given by µIµ
I=1, while their derivatives ∂mµ

I(y) are deőned with
respect to the 6 angles parametrizing S6, ym (deőned in the 6

′ of SO(6)). By deőning the metric of
the internal space as g̃mn, we used its killing vectors written as Km

IJ (in the (6′,21) of SO(6)×SL(7))
and their derivatives KIJ

mn.
For the two-forms we choose

C8
µνm(x, y) = −g−1(µI∂mµ

J)(y)BIµνJ(x) C8
µν7(x, y) = µI(y)BIµν(x) (5.15)

while the three forms are deőned as

C88
µνρ(x, y) = (µIµJ)(y)CIJµνρ(x) (5.16)

For the generalized vielbein we choose the ansatz

V m8AB(x, y) =
1

2
gKm

IJ(y)η
A
i (y)η

B
j (y)VIJij(x)

V 78AB(x, y) = −µI(y)ηAi (y)ηBj (y)VI8ij(x)

Ṽ AB
mn (x, y) =

1

4
KIJ
mn(y)η

A
i (y)η

B
j (y)Ṽ ijIJ(x)

Ṽ AB
m7 (x, y) = −g−1(∂mµ

I)(y)ηAi (y)η
B
j (y)Ṽ ijI8(x)

(5.17)

Finally, the ansatz for the fermions turns out to be

ψAµ (x, y) = ηAi (y)ψ
i
µ(x) χABC(x, y) = ηAi (y)η

B
j (y)η

C
k (y)χ

ijk(x) (5.18)

where we used the indices conventions:

• SL(6) m,n = 1,...,6 indices;

• SU(8) A,B = 1,...,8 indices;

• SL(7) I,J = 1,...,7 indices;

• D=4 SU(8) i,j = 1,...,8 indices.
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We rotated from one index formalism to another in order to compare őelds in the IIA and ISO(7)
gauged D=4 theories.
The ηAi (y) are the Killing spinors on S6, rotating indices from the string frame SU(8) representation
to the D=4 one.

Finally, we can see the derivation of all the particle content of D=4 ISO(7) dyonically gauged Super-
gravity as deriving from the massive type IIA 10-D string theory.
We can also notice that the Romans mass m never appears in these expressions, thus seemingly iden-
tifying the massive and non-massive cases reductions. We will see that this simmetry is broken at the
level of the equations of motion.

5.3.2 The embedding

Now we need to insert the KK ansatz in the deőnitions of our 10-D őelds and invert the rewriting of
these ones performed previously in order to őnd the resulting expressions of the őelds in (5.5).
After some calculations, inverting the deőnition of the tensorial őelds C as deőned in (5.8) to őnd the
KK ansatz meaning for the original type IIA n-forms, we őnd the expressions:

• d̂s
2

10 = ∆−1ds24 + gmnDy
mDyn (5.19)

• Â(3) = µIµJ(CIJ +AI ∧ BJ +
1

6
AIK ∧ AJL ∧ ÃKL +

1

6
AI ∧ AJK ∧ ÃK)

+g−1(BIJ +
1

2
AIK ∧ ÃKJ +

1

2
AI ∧ ÃJ) ∧ µIDµJ +

1

2
g−2ÃIJ ∧DµI ∧DµJ

−1

2
µIBmnAI ∧Dym ∧Dyn + 1

6
AmnpDy

m ∧Dyn ∧Dyp

(5.20)

• B̂(2) = −µI(BI +
1

2
AIJ ∧ ÃJ − g−1ÃI ∧DµI +

1

2
BmnDy

m ∧Dyn (5.21)

• Â(1) = −µIAI +AmDy
m (5.22)

where the covariant derivatives:

Dym = dym +
1

2
gKm

IJAIJ DµI = dµI − gAIJµJ (5.23)

were deőned.
We notice how only the electric gauge őelds AIJ enter these expressions.
Now we need to őnd the embedding for the scalars. In order to do this we substitute our ansatz for
the generalized vielbein (5.17) in the previously given expression as a combination of internal scalar
d.o.f’s for the latter. Then we take products of the vielbein in order to eliminate their dependence on
the orthogonal S6 killing spinors and we write such products naturally in terms of the SL(7)-covariant
blocks of the scalar matrix MMN , quadratic in the SL(7)/SU(8) coset representatives V ijM , where
M,N = 1, ..., 7 are SL(7) indices.
We thus őnd the expressions:

MIJKLKm
IJK

n
KL = 4g−2∆−1gmn

MIJK8Km
IJµK = 2g−1∆−1gmnAn

MIJ
KLK

m
IJ∂nµ

K = −2∆−1gmpBpn

MIJ
KLK

m
IJK

KL
np = 8g−1∆−1gmq(Aqnp −AqBnp)

MI8J8µIµJ = ∆−1(e−
3
2
ϕ̂ + gmnAmAn)

(5.24)

With these expression one can thus sequentially őnd the embedding of the D=4 scalars in IIA by őrst
solving the őrst equation and relating the D=4 scalars to gmn and then using the results to őnd with
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the second equation the embedding of the scalars in the internal-space components of Â(1) and so on.
To explicitly see what the expression to insert inside the IIA Lagrangian is in order to recover D=4
ISO(7) Supergravity, we invert (5.24) and write the internal-space components of the bosonic őelds
as:

gmn =
1

4
g2∆Km

IJK
n
KLMIJKL

Am =
1

2
g∆gmnK

n
IJµKMIJK8

Bmn = −1

2
∆gmpK

p
IJ∂nµ

KMIJ
K8

Amnp = AmBnp +
1

8
g∆gmqK

q
IJK

KL
np MIJ

KL

(5.25)

5.4 Consistency check

5.4.1 Supersymmetric transformations

One can then check the consistency of the truncation (5.19), (5.20), (5.21) by evaluating the super-
symmetry transformations of the őelds of type IIA String Theory. One would őnd that plugging in
the reduction ansatz the S6-dependent terms factorize both on the left and right hand sides of the
equations and thus őnd back the supersymmetry transformations of D=4 ISO(7) Supergravity.
Explicitly, the Supersymmetry transformations for the IIA vielbein is

δeαµ =
1

4
ϵ̄Aγ

αψAµ +
1

4
ϵ̄AγαψµA (5.26)

while for the tensor őelds the transformations are

δCI8µ = iV I8
AB

(

ϵ̄AψBµ +
1

2
√
2
ϵ̄Cγµχ

ABC

)

+ h.c. (5.27)

δC̃µIJ = −iVIJAB
(

ϵ̄AψBµ +
1

2
√
2
ϵ̄Cγµχ

ABC

)

+ h.c. (5.28)

δC8
µνI =

[

2

3
(V J8
BC Ṽ

AC
IJ + ṼIJBCV

J8AC)ϵ̄Aγ[µψ
B
ν]]

+

√
2

3
V J8
ABṼIJCD ϵ̄

[Aγµνχ
BCD] + h.c.

]

− CJ8[µ δC̃ν]IJ − C̃[µ|IJδC
J8
|ν]

(5.29)

δC88
µνρ =

[

4i

7
V I8
BD(V

J8DC ṼIJAC + Ṽ DC
IJ V J8

AC)ϵ̄
Aγ[µνψ

B
ρ]

−
√
2i

3
V I8AEV J8

[EB|ṼIJ |CD]ϵ̄Aγµνρχ
BCD + h.c.

]

+ 3C8
[µν|IδC

I8
|ρ] − CI8[µ (C

J8
ν δC̃ρ]IJ + C̃ν|IJδC

J8
|ρ] )

(5.30)

Equation (5.26), upon using (5.13) and (5.18), reduces to the transformation of D=4 vielbein.
We notice that the internal space dependencies in the ansatz (5.14) and (5.17) are the same for each
component. Thus, looking at (5.27) and (5.28), we see that the S6 indeed factorize and we recover the
D=4 vector Susy transformations for electric and magnetic gauge őelds in the SL(7) representation,
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with D=4 SU(8) indices i, j:

δAIJ
µ = iVIJij

(

ϵ̄iψjµ +
1

2
√
2
ϵ̄kγµχ

ijk

)

+ h.c.

δAI
µ = iVI8ij

(

ϵ̄iψjµ +
1

2
√
2
ϵ̄kγµχ

ijk

)

+ h.c.

δÃµIJ = −iṼIJij
(

ϵ̄iψjµ +
1

2
√
2
ϵ̄kγµχ

ijk

)

+ h.c.

δÃµI = −iṼI8ij
(

ϵ̄iψjµ +
1

2
√
2
ϵ̄kγµχ

ijk

)

+ h.c.

(5.31)

Recovering Supersymmetry transformations for 2-forms has been more difficult, and one need to make
considerations on the internal geometry to factorize the resulting terms. Anyway, by plugging the
ansatz in (5.29), we őnd:

δBIµνJ =

[

2

3
(VIKjk Ṽ ikJK + VI8jk Ṽ ikJ8 + ṼJKjkVIKik + ṼJ8jkVI8ik)ϵ̄iγ[µψiν]

−
√
2

3
(VIKij ṼJKkl + VI8ij ṼJ8kl)ϵ̄[iγµνχjkl] + h.c.

]

+ (AIK
[µ δÃν]JK +AI

[µδÃν]J + Ã[µ|JKδAIK
|ν] + Ã[µ|JδAI

|ν])−
1

7
δIJ(trace)

(5.32)

δBIµν =

[

2

3
(VIJjk Ṽ ikJ8 + ṼJ8jkVIJik)ϵ̄iγ[µψjν] +

√
2

3
VIJij ṼJ8klϵ̄[iγµνχjkl] + h.c.

]

− (AIJ
[µ δÃν]J + Ã[µ|JδAIJ

|ν])
(5.33)

and doing the same for the three form in (5.30):

δCIJµνρ =
[

−4i

7

(

VK(I
jl (VJ)LlkṼKLik + Ṽ lkKLVJ)Lik

+ VK(I
jl (VJ)8lkṼK8ik + Ṽ lkK8VJ)8ik )

+ V(I|8
jl (V |J)KlkṼK8ik + ṼK8ik + Ṽ lkK8V |J)K

ik )

)

ϵ̄iγ[µνψ
j
ρ]

+ i

√
2i

3

(

VK(I|hiV |J)L
[ij| ṼKL|kl] + VK(I|hiV |J)8

[ij| ṼK8|kl]

+ V(I|8hiV |J)K
[ij| ṼK8|kl]

)

ϵ̄hγµνρχ
jkl + h.c.

]

− 3

(

B(I
[µν|KδA

J)K+B[µν

|ρ]
(IδAJ)

ρ]

)

+AK(I
[µ (AJ)L

ν δÃρ]KL + ÃνKLδAJ)L
ρ] ) +AK(I

[µ (AJ)
ν δÃρ]K + ÃνKδAJ)

ρ] )

+A(I
[µ(A

J)K
ν δÃρ]K + ÃνKδAJ)K

ρ] ).

(5.34)

These are exactly the D=4 ISO(7) Supergravity transformations that one can őnd in [57].
The fact that BPS equations are satisőed in D=4 N=8, should imply consistency also at the equations
of motion level.
One would also őnd that these supersymmetry transformations are independent on the magnetic cou-
pling constant m as well, thus giving, at this level, a seemingly equal embedding process both for
dyonic and electric-only gauged Supergravity in massive and massless type IIA string theory.
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5.4.2 Bianchi identities

The difference between the purely-electric and the dyonic theory is seen when dealing with gauging-
dependent terms, namely covariant derivatives and őeld-strengths.
First Bianchi identities in ten dimensions need to be rewritten in terms of the D=4 őeld-strengths
related to electrical and magnetic gauge őelds and two/three-forms of the restricted tensor hierarchy.
Therefore, one needs to check if the Bianchi identities of type IIA őeld-strengths are equivalent in
shape to the Supergravity Bianchi identities. We őnd that such a request is satisőed.
Moreover, one can prove that hodge-duality relations bound magnetic őeld-strengths and scalar-
dependent combinations of electric őelds. Thus, by duality, the fact that Bianchi identities are satisőed
with our chosen truncation bot in D=4 and D=10, partially implies the consistency of our truncation
at the level of equations of motion as well.
Exploiting the so called "duality hierarchy", relating non-independent different-order tensorial degrees
of freedom by hodge-duality, one can thus express the D=4 őeld-strengths by means of independent
type IIA őelds.
The őeld-strengths of type IIA String theory can be recovered by integrating the Bianchi identities

dF̂(4) − F̂(2) ∧ Ĥ(3) = 0 dĤ(3) = 0 dF̂(2) −mĤ(3) = 0 (5.35)

őnding

F̂(4) = dÂ(3) + Â(1) ∧ dB̂(2) +
1

2
mB̂(2) ∧ B̂(2)

Ĥ(3) = dB̂(2)

F̂(2) = dÂ(1) +mB̂(2)

(5.36)

Inserting our reduction ansatz (5.19) in the previous relations, the resulting expressions turn out to
be:

F̂(4) = µIµJHIJ
(4) + g−1HI

(3)J ∧ µIDµJ +
1

2
g−2H̃(2)IJ ∧DµI ∧DµJ + ...

Ĥ(3) = −µIHI
(3) − g−1H̃(2)I ∧DµI + ...

F̂(2) = −µIHI
(2) + g−1(gδIJAJ −mÃI) ∧DµI + ...

(5.37)

where the dots indicate terms containing Suprgravity scalars.
It is using the explicit expressions (5.37) in (5.35) one can indeed check that Bianchi identities for the
őelds in IIA imply that Bianchi identities are also satisőed in the D=4 theory.
Many terms in the expression above can actually be expressed as functions of other őelds of the theory.
Indeed, the hodge-duality conditions impose:

H̃(2)IJ =
1

2
I[IJ ][KL]HKL

(2) + I[IJ ][K8]HK
(2) +

1

2
R[IJ ][KL]HKL

(2) +R[IJ ][K8]HK
(2) (5.38)

H̃(2)I =
1

2
I[I8][KL]HKL

(2) + I[I8][K8]HK
(2) +

1

2
R[I8][KL]HKL

(2) +R[I8][K8]HK
(2) (5.39)

HJ
(3)I =

1

12
(tJI )

P
MMNPDMMN − 1

7
δJI (5.40)

HI
(3) =

1

12
(tI8)

P
MMNPDMMN (5.41)

HIJ
(4) =

1

84
XS
NQ((t

(I|
K )RPM|J)KN + (t

(I|
8 )RPM|J)8N )(MPQMRS + 7δPS δ

Q
R)vol4 (5.42)

where I[IJ ][KL] and R[IJ ][KL] are the imaginary and real part of the SL(7)-covariant scalar matrix of

the gauged theory, while XS
NQ is the constant tensor constructed by contracting the embedding tensor

Θα
N of the dyonically ISO(7) gauged theory with the generators of the symmetry group E7(7) (tα)

S
Q:

XS
NQ = Θα

N (tα)
S
Q (5.43)
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One interesting term in our embedding formula (5.37) is the so called Freund-Rubin term HIJ
(4)µIµJ ,

which can be related to the scalar potential of ISO(7) Supergravity upon using Bianchi identities and
an expression involving the four-form őeld strengths by

HIJ
(4)µIµJ = −1

3
g−1V vol4 + (őeld strengths dependent terms) (5.44)

where V is indeed the scalar potential of the D=4 theory.
At a critical point of the potential, we can consistently set all gauge őelds to zero, thus remanining
with the relation

HIJ
(4)0µIµJ =

1

3
g−1V0vol4. (5.45)

Thus, at the minimum of the potential, the Freund-Rubin term becomes constant, and can thus be
seen as a Cosmological Constant in the lower dimensional theory.

5.5 The D=4 action

The dyonically ISO(7) gauged Supergravity bosonic action [57] őnally is:

L =Rvol4 −
1

48
DMMN ∧ ∗DMMN +

1

2
IΛΣHΛ

(2) ∧ ∗HΣ
(2) +

1

2
RΛΣHΛ

(2) ∧HΣ
(2)

− V vol4 −m

[

BI ∧ (H̃(2)I −
g

2
δIJBJ)−

1

4
ÃI ∧ ÃJ ∧ (dAIJ +

g

2
δKLAIK ∧ AJL)

] (5.46)

where the scalar potential is deőned as

V =
g2

168
XR
MPX

S
NQMMN

(

MPQMRS + 7δPS δ
Q
R

)

(5.47)

The theory is expressed in term of the 21
′ + 7

′ electric gauge őelds A∗ = (AIJ ,AI) and their corre-
sponding őeld strengths HΛ

(2) = (HIJ
(2),HI

(2)) as well as their magnetic duals ÃΛ = AI , because one can

prove that the 21 AIJ do not participate in the gauging, and H̃(2)
Λ .

Moreover we can write the scalar matrix MMN in terms of the components of a complex scalar matrix
N = R+ iI. Indeed, we deőne M contracting the SU(8) indices of the coset representatives in such
a way that

MMN = 2V ij(MVN)ij =

[

MΛΣ MΣ
Λ

MΛ
Σ MΛΣ

]

=

[

−(I +RI−1R)ΛΣ (RI−1)ΣΛ
(I−1R)ΛΣ −(I−1)ΛΣ

]

(5.48)

Now, having deőned all the relations that connect this theory to the type IIA String Theory, we could
insert relations (5.24) and invert relations (5.37) in order to recover the high-energy theory Lagrangian.

Furthermore, from (5.36) one can recover an expression for the ŕuxes in the ISO(7) four-dimensional
theory as:

HIJ
(2) = dAIJ − gδKLAIK ∧ ALJ

HI
(2) = dAI − gδJKAIJ ∧ AK +

1

2
mAIJ ∧ ÃJ +mBI

H̃(2)IJ = dÃIJ + gδK[IAKL ∧ ÃJ ]L + gδK[IAK ∧ ÃJ ] −mÃI ∧ ÃJ + 2gδK[IBKJ ]
H̃(2)I = dÃI −

1

2
gδIJAJK ∧ ÃK + gδIJBJ

(5.49)
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Chapter 6

N = 8, ISO(7)c gauged model restricted to

N = 2 SuperSymmetry with residual

SU(3) global and SO(1, 1)×U(1) gauge

symmetries

As we can notice from Chapter 5.5, the dyonically gauged ISO(7) four-dimensional theory has a quite
involved Lagrangian expression (5.46).
The formalism includes deőnition of a scalar matrix MMN and subsequent deőnition of gauge-scalar
matrices RΛΣ and IΛΣ, which collect all the scalar degrees of freedom.
In some way, this formalism is useful for writing the action in a compact form, but keeps us from
having a clear view on what are the standard kinetic and interaction terms for the scalar őelds.
Because of this, in order to carry out our analysis of wormhole geometry, we exploit useful truncations
to subsectors of the ISO(7) theory which display consistency in terms of closure of their equations of
motions and invariance under symmetry sub-groups of ISO(7).
We őrst carry out a detailed analysis of the SU(3) invariant subsector, with a residual SO(1, 1)×U(1)
gauge symmetry, while in the following we will also use particle content of the G2 and SO(4) subsectors.

In Chapter 6.1 we restrict the ISO(7) dyonically gauged theory to its subsector with SU(3) residual
symmetry. We give its action with its scalar potential.
We derive the equations of motion for this subsector in Chapter 6.2. These will be used extensively in
the following.
In Chapter 6.3 we analyze the vacua of the theory and try to őnd Minkowski, dS and AdS vacuum
conőgurations.
Finally, in Chapter 6.4,for completeness, we rapidly analyze the supersymmetric black hole solution of
the SU(3) invariant subsector.

6.1 The SU(3)-invariant subsector

First, one need to give a branching of all the őelds in the ISO(7) dyonically gauged theory in terms
of of their transformation rules under SU(3). One should then only retain the őelds that behave as
singlets under the sub-group, and doing so we observe [57] that we are left with six scalar őelds, one
őeld stemming from AIJ , AI , ÃIJ and ÃI each, two invariant őelds coming from BJI , one from BI and
two other residual őelds left from the three-form CIJ .
The SU(3)-invariant sector cerresponds to an extended N = 2 Supergravity theory, where we couple
our supermultiplet to one vector multiplet and one hypermultiplet (see Chapter 1.2.1 for further
reference).
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The 2+4 real scalar őelds paramatrize two coset spaces, which are one Special Kahler (SK) and one
Quaternionic Kahler (QK) manifolds:

SU(1, 1)

U(1)
× SU(2, 1)

SU(2)× U(1)
(6.1)

We derive from this scalar őeld truncation a gauge theory including an abelian dyonic gauge group
U(1)× SO(1, 1).

6.1.1 Particle content of the theory

We wish to recover a subsector of the main theory using only SU(3) invariant quantities stemming
from the Lagrangian (5.46).
In order to do this, we use a sub-group chain

SO(7) ⊃ SO(6) ⊃ SU(3) (6.2)

to write our theory embedding the SU(3) indices formalism in the SO(6) one of the main theory.
By doing so, we recover the following particle content:

• metric: gµν

• scalar matrix: MMN → (χ, φ) + (ϕ, a, ζ, ζ̃)

• gauge vectors: A0, A1, Ã0, Ã1

• two-forms: B0, B1, B2

• three-forms: C0, C1

We deőned the restricted gauge vector boson particle content as

AI → A1 ≡ A0

AIJ → Aij ≡ A1J ij

ÃI → Ã1 ≡ Ã0

ÃIJ → Ãij ≡
1

3
Ã1Jij

(6.3)

where we introduced the SU(3)-invariant two-form

J = e2 ∧ e3 + e4 ∧ e5 + e6 ∧ e7 (6.4)

The index Λ = 0, 1 in AΛ numbers the two gauge őelds and we assign index 0 to the graviphoton (gauge
őeld stemming from the gravity supermultiplet) and index 1 to the vector in the vector multiplet. The
same is valid for the index Λ in ÃΛ for the magnetic őelds.
A0 and Ã0 gauge dyonically the SO(1, 1) group (1 d.o.f.) while A1 gauges electrically U(1).
The two-form őelds are restricted to

BI → B1 ≡ B0

BJI → B1
1 =

6

7
B1, Bji ≡ −1

7
B1δ

j
i +

1

3
B2J

j
i

(6.5)

while for the three-forms we truncate

CIJ → C11 ≡ C0, Cij ≡ C1δij (6.6)

Of these, the three-forms, B1 and B2 and the magnetic potential Ã1 do not enter the Lagrangian of
the bosonic sector.
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6.1.2 The Lagrangian and scalar potential

We restrict (5.46) to its SU(3), N=2 invariant subsector and, using the just introduced őeld truncations
in ((6.3)-(6.6)), we őnd a őnal expression for the Lagrangian density L [57]:

L =
(

R− V
)

vol4 −
3

2
[dφ ∧ ∗dφ+ e2φdχ ∧ ∗dχ]

− 2dϕ ∧ ∗dϕ− 1

2
e2ϕ[Dζ ∧ ∗Dζ +Dζ̃ ∧ ∗Dζ̃]

− 1

2
e4ϕ[Da+

1

2
(ζDζ̃ − ζ̃Dζ)] ∧ ∗[Da+ 1

2
(ζDζ̃ − ζ̃Dζ)]

+
1

2
IΛΣHΛ

(2) ∧ ∗HΣ
(2) +

1

2
RΛΣH

Λ
(2) ∧HΣ

(2) −mB0 ∧ dÃ0 −
1

2
gmB0 ∧B0

(6.7)

To see the full derivation of scalar matrix MMN that deőnes the kinetic and interaction terms for
scalars, as well as for the derivation of the restricted gauge group invariance, refer to Appendix B.

The scalar őeld content is as usual divided between RR-sector and NS-NS derived őelds. The scalars ζ
and ζ̃ come from the former, while a and ϕ come from the dimensional reduction process of the latter
in the hypermultiplet scalar content. For what concerns the vector multiplet, we have φ stemming
from the NS-NS string sector and χ coming from the R-R sector.

The restricted gauge symmetries are generated by the killing vectors:

kR = ∂a (6.8)

kU(1) = 3(ζ∂ζ̃ − ζ̃∂ζ) (6.9)

The 2-forms that deőne the electric gauge őelds’ ŕuxes are:

H0 = dA0 +
1

2
mB0 H1 = dA1 (6.10)

The electric and magnetic gauge őelds deőne of course the covariant derivatives setting the interaction
terms with the gauged scalars. These covariant derivatives are deőned as:

Da = da+ gA0 −mÃ0 Dζ = dζ − 3gA1ζ̃ Dζ̃ = dζ̃ + 3gA1ζ (6.11)

The scalar potential Vg appearing in (6.7) is explicitly [57]:

Vg =
1

2
g2[e4ϕ−3φ(1 + e2φχ2)3 − 12e2ϕ−φ(1 + e2φχ2)− 24eφ+

+
3

4
e4ϕ+φ(ζ2 + ζ̃2)2(1 + 3e2φχ2) + 3e4ϕ+φ(ζ2 + ζ̃2)χ2(1 + e2φχ2)+

− 3e2ϕ+φ(ζ2 + ζ̃2)(1− 3e2φχ2)]− 1

2
gmχe4ϕ+3φ[3(ζ2 + ζ̃2) + 2χ2] +

1

2
m2e4ϕ+3φ

(6.12)

which is obtained applying our scalar őeld truncation deőned through the coset representatives in
Appenidx B to (5.47).
We will often use a more direct rewriting for the ζ and ζ̃ őelds as the linear combination:

ζ̃ + iζ = 2ρeiβ (6.13)

6.2 Equations of motion

We derived from (6.7) the equations of motion for all the őelds in our theory. We report in the following
all the equations for:
• Gauge fields

dB0 = −e4ϕ ∗ [Da+ 1

2
(ζDζ̃ − ζ̃Dζ)] (6.14)

47



dÃ0 +
1

2
gB0 = I0Λ ∗ HΛ +R0λH

Λ (6.15)

d(I0Λ ∗HΛ +R0ΛH
Λ) =

1

2
ge4ϕ ∗ [Da+ 1

2
(ζ Dζ̃ − ζ̃Dζ)] (6.16)

d(I1Λ ∗HΛ +R1ΛH
Λ) =

3

2
ge4ϕ(ζ2 + ζ̃2) ∗ [Da+ 1

2
(ζDζ̃ − ζ̃Dζ)]− 3

2
ge2ϕ(ζ̃ ∗Dζ − ζ ∗Dζ̃) (6.17)

We notice that (6.14), (6.15) and (6.16) are redundant: we can obtain easily the őrst one from the
second one and the third one.
• Hypermultiplet scalars

d[e4ϕ ∗ (Da+ 1

2
(ζDζ̃ − ζ̃Dζ))] = 0 (6.18)

1

2
d[e2ϕ ∗Dζ] = 3

2
ge2ϕA1 ∧ ∗Dζ̃ + 1

2
e4ϕDζ̃ ∧ ∗[Da+ 1

2
(ζDζ̃ − ζ̃Dζ)] + ∂ζVg ∗ 1 (6.19)

1

2
d[e2ϕ ∗Dζ̃] = −3

2
ge2ϕA1 ∧ ∗Dζ − 1

2
e4ϕDζ ∧ ∗[Da+ 1

2
(ζDζ̃ − ζ̃Dζ)] + ∂ζ̃Vg ∗ 1 (6.20)

2d ∗ dϕ =e4ϕ[Da+
1

2
(ζDζ̃ − ζ̃Dζ)] ∧ ∗[Da+ 1

2
(ζDζ̃ − ζ̃Dζ)]

+
1

2
e2ϕ[Dζ ∧ ∗Dζ +Dζ̃ ∧ ∗Dζ̃] + ∂ϕVg ∗ 1

(6.21)

• Vector multiplet scalars

3

2
d ∗ dφ =

3

2
e2φdχ ∧ ∗dχ− 1

2
∂φIΛΣHΛ ∧ ∗HΣ − 1

2
∂φRΛΣHΛ ∧HΣ + ∂φVg ∗ 1 (6.22)

3

2
d[e2φ ∗ dχ] = −1

2
∂χIΛΣHΛ ∧ ∗HΣ − 1

2
∂χRΛΣHΛ ∧HΣ + ∂χVg ∗ 1 (6.23)

• Einstein equations

Rµν −
1

2
gµνR = T scalarsµν + T vectorsµν (6.24)

T vectorsµν = −IΛΣ[HΛ
µρHΣρ

ν − 1

4
gµνHΛ

ρσHΣρσ] (6.25)

T scalarsµν =
3

2
(∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ) +
3

2
e2φ(∂µχ∂νχ− 1

2
gµν∂ρχ∂

ρχ)

+ 2(∂µϕ∂νϕ− 1

2
gµν∂ρϕ∂

ρϕ) +
1

2
e2ϕ(DµζDνζ −

1

2
gµνDρζD

ρζ)

+
1

2
e2ϕ(Dµζ̃Dν ζ̃ −

1

2
g − µνDρζ̃D

ρζ̃) +
1

2
e4ϕ(ξµξν −

1

2
gµνξρξ

ρ)

− gµνVg

(6.26)

with ξµ = Dµa+
1
2(ζDµζ̃ − ζ̃Dµζ).

6.3 The vacua of the theory

We aim to őnd the possible vacuum sulutions of this theory by looking at the potential Vg in (6.12).
We will examine the different cases and try to deőne whether our model yield a positive, negative or
null cosmological constant Λ when minimized and set to a constant value. These cases correspond
to a deSitter, an Anti-deSitter and a Minkowski space-time respectively.
All these vacuum solutions come with a certain extension of Supersymmetry, which we can easily check
by imposing that the constant solutions for the őelds satisfy BPS equations.
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Furthermore, we notice that no minimum can be found in an exclusively electrically gauged theory.
Indeed, setting m, i.e. the Romans mass, to 0 and reducing consistently to a solution with ρ = 0 = χ
(this is done just in order to be able to give a graphical depiction of the potential) the potential takes
the form:

Figure 6.1: Plot of potential in an exclusively electrically gauged theory (m = 0) for a slice with χ(r)
and ρ(r) consistently set to 0. The second subőgure shows a closeup for small values of the ϕ and φ
őelds where we observe no critical points, to compare with (Figure 6.2).

which has no minima, and this can be shown to keep on being valid also for general values of χ
and ρ.

6.3.1 Minkowski and deSitter vacua

The assumption of a Minkowski solution implies a minimization of the potential which leads us to
an effective Λ = 0. This has not been found, thus we reject the possibility of having such a vacuum
solution.

In our calculations we also found no positive value for a local minimum of the potential. This mirrors
the fact that also no deSitter vacuum solutions have been found.

6.3.2 Anti-deSitter vacua

Many AdS vacua have been found in our N = 2 sector which lead to an AdS vacuum. As anticipated,
the potential (6.12) depends only on four degrees of freedom, namely φ, χ, ϕ and ρ. The latter is
deőned writing

ζ̃ + iζ = 2ρeiβ (6.27)

We shall derive the potential with respect to the őelds it depends on, and őnd vacuum conőgurations
giving a negative value of the potential in order to have an AdS solution.
Therefore we write:

•

∂χVg =
1

8
g2[6e4ϕ−φχ(1 + e2φχ2)2 − 24e2ϕ+φχ+

9

2
e4ϕ+3φ(4ρ2)2χ+ 6e4ϕ+φ(4ρ2)χ+

+ 12e4ϕ+3φ(4ρ2)χ3 + 18e2ϕ+3φ(4ρ2)χ− 3

8
gmχe4ϕ+3φ(4ρ2)]− 3

4
gme4ϕ+3φχ2 = 0

(6.28)

•

∂ϕVg =
1

8
g2[4e4ϕ−3φ(1 + e2φχ2)3 − 24e2ϕ−φ(1 + e2φχ2) + 48e4ϕ+φρ4(1 + 3e2φχ2)

+ 48e4ϕ+φρ2χ2(1 + e2φχ2)− 24e2ϕ+φρ2(1− 3e2φχ2)]

− 1

2
gmχe4ϕ+3φ[12ρ2 + 2χ2] +

1

2
m2e4ϕ+3φ = 0

(6.29)
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•

∂φVg =
1

8
g2[−3e4ϕ−3φ(1 + e2φχ2)3 + 3e4ϕ−3φ(1 + e2φχ2)2(2e2φχ2)

+ 12e2ϕ−φ(1 + e2φχ2)− 24e2ϕ+φχ2 − 24eφ +
3

4
e4ϕ+φ(16ρ4)(1 + 3e2φχ2)

+
9

2
e4ϕ+3φ(16ρ4)χ2 + 3e4ϕ+φ4ρ2χ2(1 + e2φχ2) + 6e4ϕ+3φ4ρ2χ4

− 3e2ϕ+φ4ρ2(1− 3e2φχ2) + 18e2ϕ+3φ4ρ2χ2]

− 3

8
gmχe4ϕ+3φ[12ρ2 + 2χ2] +

3

8
m2e4ϕ+3φ = 0

(6.30)

•

∂ρVg =3ρe4ϕ+φ
[

g2[2ρ2(1 + 3e2φχ2) + χ2(1 + e2φχ2)

− e−2ϕ(1− 3e2φχ2)]− gmχe2φ
]

= 0

(6.31)

We need to solve this system of equation in order to őnd our vacua.
In the following, we will write

c = gm (6.32)

To őnd the values we őrst noticed that taking ρ = 0 minimizes the potential along ρ itself (6.31), and
thus we try to őnd vacua with such a value for the őeld.
With this choice also the other extremizations simplify a lot. For instance (6.28) is null if we take also
χ = 0. Thus we recover a potential in two free variables ϕ and φ. Our őrst approach in trying to őnd
out whether such a potential holds some critical points has been visualizing it graphically. With this
őrst method we’ve been able to spot indeed numerous minima and identify the values of the remaining
free scalar őelds in the potential at those critical points. We report our graphic result in (Figure 6.2):

Figure 6.2: Potential in the full dyonically gauged theory with g = m = 1 for a slice with χ(r) and
ρ(r) consistently set to zero. The plot clearly shows a minimum close to the null value of ϕ and φ that
we report in (Table 6.1). The difference in the presence of a critical point is glaring when we compare
with (Figure 6.1).

We will need to check the consistency of the equations of motion when taking constant values of
őelds at the minima of the potential of course, and inserting these values in the BPS equations we’ll
őnd whether some supercharges are conserved or whether supersymmeytry is broken at the minima.
As we can see from (Figure 6.2) we have in fact some critical points (local minima) for small values of
the two őelds.
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Now, plugging the null values for χ and ρ into (6.29) and (6.30) and summing the two equations, we
can őnd two different set of values for ϕ and φ minimizing the potential, namely

eϕ
1
0 = c−1/351/6 eφ

1
0 = c−1/351/6 (6.33)

eϕ
2
0 = c−1/32−1/6 eφ

2
0 = c−1/325/6 (6.34)

If we insert these values in the explicit expression of the potential (6.12) we őnd the two values of the
potential at the minima:

V 1
0 = −g2c−1/3357/6 V 2

0 = −g2c−1/33217/6 (6.35)

and as we see this gives us the expexted negative Λ need in AdS.

The last two solutions were just examples of the rich landscape of vacua we can őnd in our system.
Therefore we used Mathematica to solve the system of equations consisting in setting ((6.28)-(6.31))
equa to zero. We obtained the following vacuum solutions:

c−1/3χ c−1/3e−φ c−1/3ρ c−1/3e−ϕ g−2c1/3V0

−1
2

√
3
2 0 1√

2
−4(33/2)

− 1
27/3

√
15

27/3
− 1

27/3

√
15

27/3
−228/3

√
3

55/2
1
4

√
15
4 −

√
3
4

√
5
4 −2833/2

55/2

0 1
51/6

0 1
51/6

−357/6

0 21/6 0 1
25/6

−3217/6

1
24/3

31/2

24/3
1

24/3
31/2

24/3
−216/3√

3

Table 6.1: Vacuum expectation value for the scalar őelds of the SU(3)-invariant theory. In the last
column we report the value taken by the potential at the minimun, showing it always yields an asymp-
totically AdS space.

As we can see, all of the vacua yield a negative value of the potential, thus giving us the desired
AdS solution.
In the Euclidea frame, some of the scalar őelds will be rotated because of Wick rotation of the co-
ordinates. Therefore, we report the Euclidean version of the scalar potential of the SU(3)-invariant
subsector:

V E
g =

1

2
g2[e4ϕ−3φ(1− e2φχ2)3 − 12e2ϕ−φ(1− e2φχ2)− 24eφ]

+ igme4ϕ+3φχ3 +
1

2
m2e4ϕ+3φ

(6.36)

As it is easy to observe, this potential will yield vacuum conőguration with possibly complex extremal
values of the őeld. We point out the fact that, in general, the results we will derive in the following
will not depend on which particular vacuum we choose, therefore these complex vacua will not affect
our calculations.

6.4 Supersymmetric Black-Hole

The SU(3)-invariant subsector Lagrangian (6.7) has been used to study the static supersymmetric black
hole solution equations, imposing spherical or hyperbolic horizon symmetry ([60]-[61]). The purpose
of this section is to brieŕy introduce the reader to the matter, as a őnal remark on the properties on
the SU(3)-invariant subsector of our theory.

In the following we derive this geometry as arising from our Lagrangian.
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The metric ansatz for a static spheric/hyperbolic geometry is:

ds2 = −e2U(r)dt2 + e−2U(r)dr2 + e2(ψ(r)−U(r))

(

dθ2 + (
sin

√
kθ√
k

)2dϕ2
)

(6.37)

The functions ψ(r) and U(r) depend only on the radial coordinate, assumption made valid also for the
scalars in the theory.
We see from ζ’s e.o.m.’s that it is possible to consistently set those őelds to zero, keeping valid their
own equation. Moreover, ∂ζ/ζ̃Vg(ζ/ζ̃ = 0) = 0 setting the őelds to 0 at the vacuum. Therefore in the

following we will always consistently assume ζ = 0 = ζ̃.
The potential is independent on the axion őeld a, and we can set the őeld consistently to 0 as well.
The ansatz on the electric gauge őelds are

AΛ = AΛ
t (r)dt− pΛ

cos
√
kθ

k
dϕ (6.38)

where pΛ are the constant magnetic charges of the electric gauge őelds.
The ansatz for the magnetic őeld is

Ã0 = Ãt0(r)dt− e0
cos

√
kθ

k
dϕ (6.39)

where e0 is identiőed with the constant electric charge of A0 upon the duality relation with the electric
őeld, while the one for the two-forms is

B0 = b0(r)
sin

√
kθ√
k

dθ ∧ dϕ (6.40)

Now, inserting these last two ansatz in (6.14), we get some constraints for a and b0:

me0 − gp0 = 0 (6.41)

b′0 = e4ϕ+2ψ−4U (gA0
t −mÃt0) (6.42)

a′ = 0 (6.43)

We thus have a constraint on the charges, the eqations of motion for b0 and set a to a constant.
We notice that with these choices the equation of motion (6.21) for ϕ reduces to:

2d ∗ dϕ = ∂ϕVg ∗ 1 (6.44)

From (6.15) we derive the equations of motion at őrst order for the gauge őelds, which are:

A0′

t =e2U−2ψ−3φ[(p0 +
1

2
mb0)e

6φχ3 + 3p1e2φχ(1 + e2φχ2)2

− (e0 +
1

2
gb0)(1 + e2φχ2)3 − e1e

4φχ2(1 + e2φχ2)]

(6.45)

A1′

t =e2U−2ψ+3φ[(p0 +
1

2
mb0)χ+ 2p1e−2φχ(1 + 3e2φχ2)

− (e0 +
1

2
gb0)e

−2φχ2(1 + e2φχ2)− 1

3
e1e

−2φ(1 + 3e2φχ2)]

(6.46)

Ã′
t0 = e2U−2ψ+3φ[(p0 +

1

2
mb0) + 3p1χ2 − (e0 +

1

2
gb0)χ

3 − e1χ]. (6.47)

and we are also able to write equations of motion for our metric componets U(r) and ψ(r), which turn
out to be

ψ′′ − U ′′ + (ψ′ − U ′)2 + ϕ′2 +
3

4
(φ′2 + e2φχ′2) +

1

4
e4ϕ−4U (α−

t )
2 = 0

ψ′′ + 2ψ′2 − e−2ψ + 2e−2UVg −
1

2
e4ϕ−4U (α−

t )
” = 0

(6.48)
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where we deőned α−
t = gA0

t −mÃt0.
Upon solving these equations, we can recover a black hole geometry.
To impose the asymptotic AdS behaviour and deőne a proper spherical/hyperbolical geometry close
to the horizon, we should set

e2U =
r2

L2
AdS2

e2(ψ−U) = L2
Σ2

(6.49)

Furthermore, one can prove BPS equations can be satisőed, thus yielding a supersymmetric solution.

53





Chapter 7

Searching for Wormholes

We wonder whether equations of motion ((6.14)-(6.24)) can be consistently truncated to recover, in
the case of no gauge őelds, a solution of Giddings-Strominger Wormhole. The theory should grant us
to keep a particle content akin to the one we have in Chapter 3, in order to yield the desired wormhole
geometry solutions.
We would need, in order to have a proper GS solution, to keep an effective negative Cosmological
Constant on, coming from a minimized potential, in order to recover an asymptotically AdS geometry
hinted by the AdS vacua of the theory as in Chapter 6.3. It will turn out that the dependency of the
potential on the axio-dilaton pair will prevent us from obtaining a real GS solution, which we will then
try to approximate.

In Chapter 7.1, we try to give consistent truncations of our theory to a GS particle content, trying to
interprete different particles in the SU(3)-invariant subsector of the theory as axions and dilatons.
In Chapter 7.2 we generalize our ŕat space Giddings Strominger wormhole solution to a non-ŕat space.
In Chapter 7.3 we apply to our model a method also used in [35] that approximates the solutions we
have to GS ones. We will őnd new interesting relations that suggest the possibility of having GS-like
solutions in our model. We will not only limit to the previously introduced SU(3)-invariant subsector,
but we will also analyze the G2 and SO(4)-invariant ones in our journey to őnd wormhole solutions.
In Chapter 7.4 a new model is introduced, keeping only vector őelds and neglecting scalar őelds. This
will not yield a GS wormhole solution by deőnition, but by proving it is linked to the open wormhole
solution we will try to embed it in our model.

7.1 Field content truncations

First we need to decide which őelds to keep on in our theory and which őelds to set to a constant.
For such a purpose we need to compare the őeld content in (6.7) and the one we have in (4.16). The
two theories stem from the dimensional compactiőcation of two different frames in String theory, thus
we do not expect to have the same solutions, especially because in one theory we have a Minkowski
vacuum, while in the other one we have AdS4.
We will therefore take the equations of motion found in Chapter 6.3 and write them for our purposes
in the Euclidean frame.

7.1.1 Hypermultiplet

First we see that taking ζ and ζ̃ as constants, as already noticed, solves (6.19) and (6.20), once one
minimizes the potential along their directions in target space. Rewriting ζ and ζ̃ using the combination
ρ (see (6.27)), we see that ∂ρVg is null for the choice ρ = 0, thus also this choice is one that will often
be made.

With this assumtpion also the equation of motion of a, (6.18) is satisőed once we set this őeld to a
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constant as well. As we mentioned multiple times, the potential does not depend on a, thus such a
őeld will often be put consistently to 0 in our calculations.
Nevertheless, we will occasionally be interested in leaving this őeld free and treat it as an axion őeld
in full generality, thus we will extremize other őelds in turn, as the above mentioned ζ and ζ̃ and χ.

Plugging the null values for ρ and a that we found to be consistent with the theory, in (6.21), one gets
the simpliőed equation of motion:

1√−g∂r(
√−ggrr∂rϕ) =

1

4
∂ϕVg (7.1)

which again can be solved setting ϕ to a constant and minimizing the potential Vg along this őeld.
Nevertheless, we őnd that setting ϕ to a deőned constant in this case is more complicated than in the
previous cases, because the potential has exponential terms in this őeld, multiplying the őelds in the
vector multiplet, which we’d like to leave funbounded. We see that, in the case in which ρ = 0,

∂ϕV
E
g =

1

2
g2[e4ϕ−3φ(1− e2φχ2)3 − 6e2ϕ−φ(1− e2φχ2)

+ igme4ϕ+3φχ3 +
1

2
m2e4ϕ+3φ

≡ 0

⇒ a non trivial relation between ϕ, φ and χ.

(7.2)

We therefore recover that all the hypermultiplet scalars cannot be easily set to constants consistently,
and we will need to work on this issue.

7.1.2 Gauge fields

We can make some choices for our hypermltiplet scalars that allow us to consistently switch off all the
gauge őelds in our theory (see(6.14)-(6.17)). This is one of the multiple possible choices, but it allows
us to recover equations of motion very similar to the ones we found in the non-massive Type IIA case
of Chapter 3. In some cases we will choose to keep the gauge őelds on, namely when we will treat a
as our designated axion őeld.

7.1.3 Vector multiplet

Now that we established some relations among the hypermultiplet scalar őelds and the gauge őelds, we
can turn to the vector multiplet scalars, which in most of the cases will be the ones of main interest.
The őrst thing we want to do is to select in our theory the őelds that could possibly work as an
axio-dilaton pair to derive Giddings-Strominger wormholes solutions:

• We use the results of the previous sections and we rewrite the newfound equations of motion for the
őelds φ and χ in the vector multiplet and the potential Vg in the theory where ρ is bounded to be
ρ = 0.
First, we keep the gauge potentials off by assuming a = const.
The potential in the Euclidean frame therefore restricts to

V E
g =

1

2
g2[e4ϕ−3φ(1− e2φχ2)3 − 12e2ϕ−φ(1− e2φχ2)− 24eφ]

+ igme4ϕ+3φχ3 +
1

2
m2e4ϕ+3φ

(7.3)

and it gives the same issues that we had with the Lorentzian frame potential, since it has interaction
terms among ϕ, φ and χ that do not let us set one of the dilaton-like őelds to a constant consistently.
In the Euclidean, (6.23) can be written as

1√−g∂r(
√−ggrr∂rφ) = −e2φ(∂rχ)2 +

1

3
∂φVg (7.4)
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while (6.24) takes the form
1√−g∂r(

√−ggrre2φ∂rχ) = −1

3
∂χVg (7.5)

The Einstein equations instead have a scalar stress-energy tensor contribution written as

T scalars
µν =

3

2
(∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ)− 3

2
e2φ(∂µχ∂νχ− 1

2
gµν∂ρχ∂

ρχ)

+ 2(∂µϕ∂νϕ− 1

2
gµν∂ρϕ∂

ρϕ)− gµνVg

(7.6)

while the vectorial part of the tensor is set to zero.

We can now compare (7.4)-(7.6) with (4.17) and see that, apart from a a factor 3
2 that can be reabsorbed

redeőning the őelds, they look alike once we pass to the Euclidean action and change signs to the axionic
terms. The matter is, as anticipated in (7.2), we cannot set consistently ϕ to a constant, eliminating
its interaction with the preferred axio-dilaton pair (φ, χ).
We can now try to őnd a solution for these őelds such that we remain with one effective axio-dilaton pair.
In this case, this would imply the identiőcation of the vector multiplet őeld φ and the hypermultiplet
scalar ϕ by. Introducing ϕ = φ = Φ, with the truncations made above, this would reduce the dilatons
equation of motion to an effective

1√−g∂r(
√−ggrr∂rφ) = −3

7
e2φ(∂rχ)

2 +
1

7
∂ϕV

ϕ=φ
g (7.7)

We can also use the reasoning that we will explain in Chapter 7.3 and consider what we found as a
"perturbation" around the exact AdS-GS wormhole solution and check the stability of the geometry
applying the methods of Chapter 3. The kinetic term for the new dilaton would be

LΦ
kin = −7

2
dΦ ∧ ∗dΦ (7.8)

which, upon redeőnition yields a coupling constant

Φ → Φ̃ =
√
7Φ ⇒ β =

2√
7

(7.9)

therefore 1
β2 = 7

2 and the wormhole would be regular according to (3.18).

In order to give the two dilatons the same expression they need to solve the same equations of motion.
Therefore we obtain

1

4
∂ϕVg = −e2φ(∂rχ)2 +

1

3
∂φVg, ϕ(r) = φ(r)

⇒ −e2φ(∂rχ)2 = e−3φg2(4e4φ + e4ϕ(1− e2φχ2)2 − e2(ϕ+φ)(5− e2φχ2))
(7.10)

and imposing ϕ=φ we őnd the condition

grr∂rχ∂rχ = g2e−φχ2(1− e2φχ2) (7.11)

so once this is satisőed the two dilaton-like őelds can be thought to be equal.
If we take the usual ansatz for the metric

ds2 = f(r)2dr2 + a(r)2dΩ2
3 (7.12)

we őnd an equation of the őrst grade

∂rχ = gf(r)χe−φ/2
√

1− e2φχ2 (7.13)
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The other equation of motion for χ, when imposing our constraint on the dilatons, becomes

1√
g
∂r(

√
ggrre2φ∂rχ) = e3φgχ[g(e4φχ4 − 3− 2e2φχ2)− e4φimχ] (7.14)

while the Einstein equation structure is clearly derived from (7.6):

T scalars
µν =

7

2
(∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ)− 3

2
e2φ(∂µχ∂νχ− 1

2
gµν∂ρχ∂

ρχ)− gµνVg (7.15)

Using (7.13) in (7.14) we simplify to an equation of the őrst order:

1

f(r)a(r)3
∂r(a(r)

3e3φ/2χ
√

1− e2φχ2) = e3φχ[g(1− e2φχ2)2 − 4g − e4φimχ] (7.16)

The next step would be solving these őrst order differential equations numerically, since no analytical
solution has turned out to be derivable, as we expected comparing our theory to [35].

• The second case we are interested in is the case of a charged wormhole with a dilaton ϕ and an axion
a. We notice that a is the only particle in action (6.7) not to appear in the potential. Because of this, a
shows a shift symmetry typical of axions. In this case the wormhole would need to be charged since we
cannot switch off consistently the gauge őelds (compare with equations of motion (6.14)-(6.17)). We
őnd that keeping the gauging on, we cannot consistently put χ to a constant and thus we would end
up with two seemingly unmatchable axio-dilaton pairs (different charges and different dilaton őelds).
We therefore try not to solve this system as an axio-dilaton one.

• The third case is the one in which we keep an axionic ζ or ζ̃. This case yields particularly simple
equations of motion compared to the previous ones, since we can now consistently put both a and χ
to 0.
We would also like to have a single dilaton in our Lagrangian, but we once again have the problem of
having both ϕ and φ appearing in the potential and inherently in the equations of motion. Therefore,
we would like to identify the two as we did in the previous case. This turns out to yield a system of
őrst order equations of motion that one could solve numerically.
We impose the two őelds ϕ and φ solve the same equation of motion and thus have the same proőle.
This brings to equations of motion that mirror the ones we found in the őrst case we analyze, with ζ
instead of χ.
In particular, requiring that the dilaton’s equations of motion are solved by the same őeld reads

1

4
∂ϕVg = +

1

4
e2ϕ(∂rζ)

2 +
1

3
∂φVg, ϕ(r) = φ(r)

⇒ grr∂rζ∂rζ = g2eϕζ2(e2ϕζ2 − 1)
(7.17)

or equivalently for ζ̃.
The equation of motion for ζ instead reads

1√−g∂r(
√−ggrre2ϕ∂rχ) =

3

2
e3ϕg2ζ(e2ϕζ2 − 2) (7.18)

which is even simpler than case (7.14).
The Einstein equations on the other hand display a much more involved scalar stress-energy tensor of
the form:

T scalarsµν /2 =
3

2
(∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ) + 2(∂µϕ∂νϕ− 1

2
gµν∂ρϕ∂

ρϕ)

+
1

2
e2ϕ(∂µζ∂νζ −

1

2
gµν∂ρζ∂

ρζ) + +
1

2
e2ϕ(∂µζ̃∂ν ζ̃ −

1

2
gµν∂ρζ̃∂

ρζ̃)

+
1

2
e4ϕ(ξµξν −

1

2
gµνξρξ

ρ)− gµνVg

(7.19)

As we anticipated, also in this case it is not possible to őnd an analytical solution for the őeld, and a
more accurate numerical analysis would be needed., solving őrst order equations.

58



7.2 Exact AdS4-GS Wormhole solutions

We wish to recover Giddings-Strominger solutions as in (3.2) with an explicit spectrum given by an
axio-dilaton couple as in (4.16).
As we have seen in the previous paragraph, such a conőguration is not practically achievable in our
model, because we have a potential depending on the axio-dilaton paair(s), but we would like to see
whether it gives simple analytic solutions of the metric and scalar őelds.

The Euclidean action we would work with is

1

2k2

∫

d4x
√−g

(

(R− 2Λ)− 1

2
(∂φ)2 +

1

2
e2φ(∂χ)2

)

(7.20)

where we őxed the axio-dilaton coupling b to 2 as this is its value when such an interactive term is
derived both from IIB (on S5) and massive IIA in our reduction. Such an Euclidean action is already
studied and the results we are seeking for have already been derived in 5 and 3 dimensions in [62]. We
try and őnd new similar solutions in 4 dimensions, using the same line of reasoning.
We wish to use the results (4.18) and generalize them to a curved background space.
From the action, we recover once again the general equations of motion (3.5) and the Einstein equation
(3.4), with the difference of having a cosmological constant-dependent terms as in the usual AdS case:

Rµν −
1

2
∂µϕ∂νϕ+

1

2
e2ϕ∂µχ∂νχ− Λgµν = 0 (7.21)

with Λ = − (D−1)(D−2)
2l2

as usual.
The solutions found in [62] for the 5 dimensions in the sub-extremal case are:

ds2 =
dr2

1 + r2

l2
− q̃2

r6

+ r2dΩ2
4

ebϕ(r) =

(

q−
q̃

sin(q̃H(r))

)2

χ(r) =
2

bq−
(q̃ cot(q̃H(r)− q3))

(7.22)

and as we expected they mirror (4.18).
With this solution in mind, exploiting our knowledge of the sub-extremal instanton solution [49],
corresponding to a wormhole one, in 4 dimensions, we guess a solution for the metric of the type

ds2 =
dr2

1 + r2

l2
− q̃2

r4

+ r2dΩ2
3 (7.23)

while the forms of the őelds ϕ and χ are the same as in (7.22), but with a different shape for H(r).
It is clear that once again this ansatz for the metric was chosen in order to recover, in the limit
r → ∞, the pure AdS solution (1.20). The q̃ dependent term instead is the one ensuring the wormhole-
symmetric geometry.
It turns out the function H(r) needs to be harmonic and, simply using our ansatz and trying to solve
the e.o.m. for the őeld χ, ϕ and Einstein, one őnds that it need to be shaped like

∂rH(r) =

√
6

r3

√

1

1− q2

r4
+ r2

l2

(7.24)

When one tries and solve this analytically, no solution is found. Thus we’ll leave the solution implicitally
written as a function of H(r), where the condition (7.24) is intended as a constraint.
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For completeness, we give also the general result (which is anyway quite intuitive) for a solution of the
GS wormhole geometry with AdS background in d dimensions:

ds2 =
dr2

1 + r2

l2
− q̃2

r2(d−2)

+ r2dΩ2
d−1 ∂rH(r) =

√

(d− 1)!

rd−1

√

1

1− q2

r2(d−2) +
r2

l2

(7.25)

In this case, the symmetric structure of space-time due to wormhole geometry can appear more obscure,
so we’ll use a change of coordinates to make it clearer.
We want to write the metric with a new őtting effective radial coordinate ρ(r) as

ds2 = dρ2 + a(ρ)2dΩ2
3 (7.26)

where ρ is a radial coordinate that goes from −∞ to +∞ (i.e. the two asymptotic AdS regions).

Figure 7.1: [62] Wormhole geometry arising from an
asymptotically AdS space (the asymptotic spaces
are at ρ = ±∞).

The function a(ρ) can be viewed as a scale fac-
tor and is clearly equal to r in the old coordinate
system. From the relation between the two coor-
dinate systems we derive

dρ2 =

(

∂ρ

∂a

)2

dr2 ⇒

⇒
(

∂a

∂ρ

)2

= 1− q̃2

a4
+
a2

l2

(7.27)

which we are not interested to solve, but we no-
tice that:
• the coordinate system doubles the geometry,
with a(ρ) going to +∞ for both ρ = ±∞;
• we have a point named ρc, such that a reŕection
of a(ρ) with respect to this point leaves the ge-
ometry unchanged. We do not calculate directly
ρc, but we know in the old coordinates this cor-
responds to a derivable rc such that

a(2ρc − ρ) = a(ρ) (7.28)

where ρc is clearly a őxed point, thus corresponding to the middle of the throat of the wormhole.

7.3 Approximated solutions

If one wants to analytically őnd a wormhole geometry solution in the dyonically gauged ISO(7)
Supergravity model, it is no surprise by just looking at the complicated expression of Lagrangian
(5.46) and the theory’s plenty of őelds, that this is a very hard task. We showed this in the previous
sections.
This is why we restruct to subsectors of the main ISO(7) theory, keeping a residual invariance under
some symmetry.
What we try to do in the following is őnding approximate GS wormhole solution in an AdS background
by expanding the őelds around the vacuum value they assume when minimizing the potential arising
in these "sub-theories" by truncating potential (5.47) accordingly to the residual scalar őeld content.
This very useful tool to try and őnd asymptotic exact Giddings-strominger wormhole solutions has
been previously used in [35] as a starting point for numerical solutions.
Approximation will be made, and we will stress the fact in the following every time it will be necessary.
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7.3.1 The SU(3) invariant subsector

The őrst thing we need to do is őnding which ones of the őelds appearing in the action (6.7) have a
kinetic term swapping sing when taking the analytic continuation to Euclidean space-time. In order
to do this, we refer to [63] and spot the scalar degrees of freedom coming from the R-R sector and the
ones coming from the NS-NS sector. Since we have tensor őelds in both the R-R and NS-NS sector,
having a Levi-Civita tensor in front of their kinetic term, the őelds appearing as scalar degrees of
freedom stemming from the reduction of such kinetic terms will change sign in 4 dimensions, while this
does not happen for the ones derived in the reduction from the internal degrees of freedom of scalar
10-dimensional őelds. For a less String theory-dependent derivation of the swap in sign of the axion
kinetical term, refer to Appendix A, where a path integral derivation of the rotating term is obtained.
With the string-derived approach, we őnd that

• for the hypermultiplet, ζ and ζ̃ derive from p-forms in the R-R sector compactiőcation, while a
comes from the 2-form B2 of the NS-NS sector. On the other hand, ϕ comes from the metric
degrees of freedom. Therefore ζ, ζ̃ and a have sign-swapping kinetic terms and ϕ does not;

• for the vector multiplet, the őeld χ swaps sign, coming from the compactiőcation of R-R d.o.f.s,
while φ comes from scalar d.o.f.’s in the NS-NS sector.

We have seen that because of the potential Vg in (6.7) one cannot obtain Giddings-Strominger solutions.
Anyway, we can derive an approximate solution working at a minimum of the potential and expanding
some of the őelds (the ones that are useful for our purposes) around the vacuum. There are several
ways one can do this, choosing different őelds in the role of the axio-dilaton pair(s). We try to test all
these cases and check their stability using (3.18) as a criterion.
Notice that we are using an approximation and, in the case where we kept the őeld a, we also switched
off the vector bosons which would give a charged wormhole solution instead of the usual neutral one.
Thus, the following solutions are intended just as outlooks on interesting but asymptotical cases.
Anyway, they can give much insight on what the regular wormhole solution actually looks like, being
extrema of the solution. A numerical analysis of the full theory, in a similar fashion to what was done
in [35], would offer a clearer sight on the way these asymptotic case evolve once we unbind the potential
from its cosmological constant role.

We now review all of the choices for axio-dilaton pair made in Chapter 7.1 under this key, trying to
őnd stable asymptotic wormhole solution under the criteria exposed in Chapter 3.2:

• (φ, χ): The most obvious case is the one where the vector multiplet őelds are interpreted as the
axio-dilaton pair. We need to choose now a vacuum of the potential. For simplicity, we could
choose to use the őrst AdS4 vacuum conőguration in (Table 6.1). First, we set ρ and a to zero
, then we also set the other scalar őelds to the constants which will minimize the potential.
The gauge őelds will be all turned off (this time, since no a or ρ appears in the action, their
disappearance is fully consistent). The potential takes its minimum value V (φ) = −Λ, thus
yielding an Anti-deSitter vacuum solution. The action thus is

S =
1

2k2

∫

d4x(R+ Λ)− 1

2
dφ̃ ∧ ∗dφ̃+

1

2
e2/

√
3φ̃dχ̃ ∧ ∗dχ̃ (7.29)

where we reabsorbed the coefficient to give the standard kinetic terms for the dilaton and the
axion. In particular

φ→ φ̃ =
√
3φ χ→ χ̃ =

√
3χ (7.30)

Thus we end up with the axio-dilaton pair (φ̃, χ̃), with couling constant β = 2√
3

Checking the regularity of the solution, one őnds

3

4
=

(

D4(0)

2π

)2

=
1

β2
=

3

4
>

(

D4(∞)

2π

)2

=
1

3
(7.31)
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What does this mean? It signiőes that our coupling saturates exactly the condition of stability
for the wormhole. Thus, in this conőguration the solution will be smooth and we can recover our
approximated GS-AdS solution.
It is very important that such a result has been found, because, as already said, despite being
a strong approximation, it tells us that in the proximity of a minimum of the potential such a
solution must exist, but the full picture needs to be recovered numerically and not analytically.
If we had a value of 1

β2 in between the two values for null and inőnite curvature, we would have
that for some values of a0, the throat width of the wormhole, the solution would be unstable, and
one would have to distinguish which ones would be the case. We also point out that, actually,
the relevant quantity that separates stable and unstable solutions is a0

l , relating the throat size
and the typical scale of AdS. In the case of an ambiguous stability for the wormhole, we would
be able to easily őnd which is the value of a0

l which saturates our condition using the formulae
of Chapter 3.

• (ϕ, ζ/ζ̃): One could now try to keep only ζ (or equivalently ζ̃) as an axion-like particle inside the
action, again switching off the gauge őelds and choosing the same vacuum as before, keeping χ
and φ at the bottom of the potential, setting a to zero with the equations of motion.
One would therefore recover the action

S =
1

2k2

∫

d4x(R+ Λ)− 1

2
dϕ̃ ∧ ∗dϕ̃+

1

2
e2ϕ̃dζ̂ ∧ ∗dζ̂ (7.32)

where in this case we rescaled

ϕ→ ϕ̃ = 2ϕ ζ → ζ̂ = ζ (7.33)

The regularity check, with β = 1 reads

1

β2
= 1 >

3

4
=

(

D4(0)

2π

)2

>

(

D4(∞)

2π

)2

=
1

3
(7.34)

Again, we found that the wormhole would be stable with this axio-dilaton couple for any value
of a0

l .

• (ϕ, a): We now want to use the őelds a and ϕ as our axio-dilaton pair.
We set the gauge őelds to zero and "artiőcially" set the scalar őelds on the vacuum Vg = −Λ.
We wish to keep the őelds ϕ and a, setting all the other ones to constants. As we already pointed
out, this is just an expansion around the vacuum and its usefulness has been probed in past
works, but from (6.14)-(6.17) we can notice that a and the vector potentials are somehow bound
by e.o.m.’s, therefore keeping the scalar őeld on and setting the gauge őelds to constants is a
particularly strong approximation.
The action we get is

S =
1

2

∫

d4x(R+ Λ)− 1

2
dϕ̃ ∧ ∗dϕ̃+

1

2
e2ϕ̃dã ∧ ∗dã (7.35)

where again we set
ϕ→ ϕ̃ = 2ϕ a→ ã = a (7.36)

In this case we have β = 2, thus

(

D4(∞)

2π

)2

=
1

3
>

1

β2
=

1

4
(7.37)

Therefore, even if we were in the presence of a őeld that could generate a simple GS wormhole
geometry without the presence of gauge őelds, the solution would never yields a regular GS
wormhole solution and we reject the possibility of having these two őelds as our axio-dilaton
pair.
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In summary, what results have we obtained for the SU(3)-invariant subsector? We know that setting
χ and ρ to zero, keeping a as an axion, yields a non regular solution, and no open wormhole can exist.
On the other hand, putting a to zero and keeping χ will give an open wormhole geometry saturating
the stability bound. Setting alternatively this őelds to zero (and inherently decoupling from the theory
its associated dilaton φ) and keeping either ζ or ζ̃ and the dilaton ϕ, one recovers a fully stable GS
womhole geometry. Most likely, the real coupling β will lie below the instability region in (3.15),
yielding an open wormhole with 2√

3
< β < 1.

7.3.2 The G2 invariant sector

If we expand the residual symmetry to
SO(7) ⊃ G2 (7.38)

we can write the invariant bosonic Lagrangian density, which turns out to have no vector or tensor
őelds in it, (see for example [57]) as:

L = (R− V )vol4 −
7

2
[dφ ∧ ∗dφ+ e2φdχ ∧ ∗dχ] (7.39)

where the scalar potential is

V =
7

2
g2eφ(1 + e2φχ2)2(−5 + 7e2φχ2)− 7gme7φχ3 +

1

2
m2e7φ (7.40)

The only critical points of this potential are:

g−2c1/3V0 c−1/3χ c1/3eϕ

−15(51/6) 0 5
1
6

−32(21/3)√
3

1
2(21/3)

2(21/3)√
3

Table 7.1: Minima found for the Lorentzian scalar potential in the G2-invariant subsector.

and as we can see, they are all AdS, just like in the previous analyzed sector. We can therefore try
and apply our approximated calculations to this subsector as well.
The equations of motion associated to (7.39) are:

(d ∗ dφ) = e2φdχ ∧ ∗dχ+
1

7
(∂φVg)

d(e2φ ∗ dχ) = 1

7
(∂χVg)

(7.41)

The Einstein equations instead read

Rµν −
1

2
Rgµν = T scalars

µν

T scalars
µν =

7

2
(∂µφ∂νφ− 1

2
gµν∂ρφ∂

ρφ)

+
7

2
e2φ(∂µχ∂νχ− 1

2
gµν∂ρχ∂

ρχ)− 1

2
gµνVg

(7.42)

All the given equations are clearly deőned in the Lorentzian frame. Once turning to the Euclidean
theory, χ takes the role of the axion őeld and φ plays the part of the dilaton, as it should be clear from
a quick comparison with previous subsectors.
We now want to apply the same reasoning as before, approximating the action with a curved-space
GS one (minimizing the potential but keeping some őelds on) in order to derive (hopefully) stable GS
wormhole solutions. The vacuum conőgurations of the theory turn out to give a negative value of the
minimized potential in both cases (see Table 7.1). In our approximation, it will be indifferent which
one we’ll pick. Therefore, we’ll choose one and simply call (for instance the őrst one in Table 6) V0 = Λ.
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Figure 7.2: Minima of the full potential
in the G2-invariant subsector having set
m = g = 1.

• (φ, χ): The only axio-dilaton pair in the subset is the
one formed by (φ, χ) and we can rescale the őelds as

φ→ ϕ̃ =
√
7φ χ→ χ̃ =

√
7χ (7.43)

The coupling constant is then:

β =
2√
7

⇒ 1

β2
=

7

4
(7.44)

Therefore this subsector of the ISO(7) gauged theory
always yields smooth AdS4 GS approximated solu-
tions with β = 2√

7
.

Notice that this coupling β = 2√
7

was also present in our

attempt at őnding a proper axio-dilaton pair in the full
theory by reducing ϕ and φ to the same őeld.

7.3.3 The SO(4) invariant subsector

We now wish to analyze the particle content of the 4D theory displaying an invariance under the SO(4)
subgroup of ISO(7).
Such a sub-theory contains only the metric and four real scalars (φ, χ, ρ and ϕ). From the coset
representatives we recover as usual the scalar content of the action and one can prove that the action
[57] in the Lorentzian signature turns out to be

S =
1

2k2

∫

d4x(R− V )vol4 −
6

2
[dφ ∧ ∗dφ+ e2φdχ ∧ ∗dχ]

− 1

2
[dϕ ∧ ∗dϕ+ e2ϕdρ ∧ ∗dρ]

(7.45)

where the potential is, notably, a function of all four scalar őelds:

V =
1

2
g2e−ϕ(1 + e2φχ2)[−24eϕ+φ − 8e2ϕ + e2φ(−3 + (8χ2 − 3ρ2)e2ϕ)]

+ e4φχ2(9 + (3ρ+ 4χ)2e2ϕ)]− gmχ2(3ρ+ 4χ)e6φ+ϕ +
1

2
m2e6φ+ϕ

(7.46)

In order to perform our approximation, we need to make sure that our potential has some vacuum
conőgurations, and we would like them to be AdS as well.

g−2c1/3V0 c−1/3 c−1/3ρ c1/3eϕ c1/3eφ

−15(51/6) 0 0 51/6 51/6

−16(21/3) 0 0 21/3 2−2/3

Table 7.2: Minima of the potential of the SO(4)-invariant subsector.

We therefore őnd that the solution has vacuum conőgurations, just like in the SU(3), only when
the magnetic charged m ̸= 0. This once again proves the necessity of having a massive IIA theory for
the embedding. All these vacua are moreover Anti-deSitter.
As one can easily see from the expession of the action, once we minimize the potential along one of the
two axio-dilaton couples we have (namely along (φ, χ) or (ϕ, ρ)), we can set consistently those őelds
to constant values. Anyway, we do not recover a simple curved GS solution due to the dependence of
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the potential on the remaining őelds.
For this reason we once again use our approximation, setting the potential to a constant but keeping
the őelds of interest as an expansion around their minima.
Keeping one axio-dilaton pair we write

• (φ, χ): we rescale both the őelds as to őnd the action

S =
1

2k2

∫

d4(R− Λ)vol4 −
1

2
dφ̃ ∧ ∗dφ̃+

1

2
e2/

√
6φ̃dχ̃ ∧ ∗dχ̃ (7.47)

and the coupling β = 2√
6

yields regular GS wormholes in Anti-deSitter since

1

β2
=

3

2
>

3

4
=

(

D4(0)

2π

)2

(7.48)

• (ϕ, ρ): in this case we have no regular wormhole. Indeed the action is already in the canonical
form once we put φ and χ to constants, and the coupling constant is β = 2, which is always too
big for our purposes.

These results tell us that in all likelihood, the real solution will interpolate between the open wormhole
solution in which we set to a constant value the "axion-like" particle ρ, and a full-spectrum conőgu-
ration. Because of this, we will have an actual solution which will have an axio-dilaton coupling with
an upper bound of 1

β2 >
3
4 .

On top of this, remembering (3.19), one can allow for a solution including both axio-dilaton pairs. The
so-deőned metric in the target space would yield a time-like geodesic with length

∑

i

1

β2i
=

7

4
(7.49)

The geometry would then be smooth and the őelds regular.

7.4 Gauged model with no scalar fields

In this section, we would like to pass from a mainly scalar-driven wormhole solution to a frame where
we make use of gauge őelds to have a stable wormhole solution. Thus, we analyze some before known
Supergravity theories in 4 dimensions, justifying their connection to the wormhole solution, and try
and embed them in our dyonically gauged ISO(7) model. Clearly, since the spectrum does not show
any axion, our solutions are not of the Giddings-Strominger type.

7.4.1 The model

We wish to study the wormhole solution found in [36] and [37].

The model is much different from the ones we studied in previous chapters, but it still enables us to
őnd a non-GS traversable wormhole solution in the Lorentzian frame.
First, we shortly review the subject outlining the structure of the model and its main features.

We build an asymptotically Anti-deSitter 4D wormhole metric in Lorentzian space-time starting from
a 3-dimensional AdS metric and writing the 4D AdS metric in function of its 3D slices [37] (in an AdS
remodeling of Boyer-Lindquist [64] coordinates for J = 0):

ds2 =
l2dr2

r2 + 1
+ a(r)2ds2AdS3

=
l2dr2

r2 + 1
+
l2

4
(r2 + 1)[−cosh(θ)2dt2 + dθ2 + (du+ sinh(θ)dt)2] (7.50)

where the (r2 + 1) factor determines the expansion (and contraction) of the 3-sphere section as a
function of r. We see that it is symmetric with respect to r0 = 0 (as well as for the radial metric
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component), thus yielding an open wormhole geometry for the criteria we used above. For r → ∞
instead we recover AdS vacuum geometry. Anyway, with a change of coordinates we can actually prove
that this metric is simple AdS with a spherical boundary, as we can see from the fact that the metric
proves to be simple Einstein.
Anyway, considering a generalization of this metric

ds2 =
4l2dr2

σ2f(r)
+ g(r)(−cosh2(θ)dt2 + dθ2) + f(r)(du+ sinh(θ)dt)2 (7.51)

which satisőes the AdS-behavior Einstein equation:

Rµν = − 3

l2
gµν (7.52)

we őnd a solution

g(r) =
l2

σ
(r2 + 1)

f(r) =
4l2

σ2
r4 + (6− σ)r2 + lmr + σ − 3

r2 + 1

(7.53)

which is everywhere smooth iff 12 > σ > 3, |lm| < 2
3
√
3
(12 − σ)

√
σ − 3 for −∞ < r < ∞ and the

Kretschmann invariant is never ∞.
This metric cannot be rescaled to a simple AdS one and thus we interpret it as a wormhole solution.

We can generate such a solution in an N = 2 pure Supergravity model [36], with just a supermultiplet
(gµν , ψ

α
µ , Aµ), gauged under a subgroup H of the R-symmetry group of the theory SU(2).

If we restrict to the bosonic content of the Lagrangian, assuming that in the full action the Supersym-
metry conditions are satisőed for a killing spinor εα, we write the remaining őeld content as (Mp = 1)
[65],[66]:

S =
1

2

∫

d4x
√−g

(

R+
1

4
FµνF

µν − 3q2
)

(7.54)

where q is the charge of the gravitino under the gauge symmetry and, assuming H abelian, Fµν =
∂µAν − ∂νAµ.
We derive the equations of motion with ease, which turn out to be

∂µ(
√−gFµν) = 0

Rµν −
1

2
gµνR = −1

2
[FµρF

ρ
ν − 1

4
gµνFρσF

ρσ]− 6q2gµν
(7.55)

and comparing the Einstein equation in (7.55) with that in (7.52), we substitute l2 → 1
2q2

and a
"Reissner-Nordstrom"-like term accounting for the presence of gauge őelds and őnd a solution for the
metric:

g(r) =
1

2q2σ
(r2 + 1)

f(r) =
2

q2σ2
r4 + (6− σ)r2 +mr + σ − 3

r2 + 1
− Q2 + P 2

r2 + 1

(7.56)

Where P and Q are the magnetic and electric parameters determining the charges. The parameter m
is the "mass" of the space-time, while σ is linked to the warping of the asymptotic region.
The solution for the gauge őeld we őnd is instead given by:

A = Φ(r)(du+ sinh(θ)dt), Φ(r) =
2Qr + P (1− r2)

1 + r2
(7.57)

When translated to Fµν , it turns out that we will have both electric and magnetic components, thus
justifying the presence in the solution of both Q and P .
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7.4.2 Embedding within the dyonic ISO(7) theory

We would like to recover the same particle content of this model by truncating some subsector of the
main ISO(7) theory.

The requests will be that this subsector needs to enjoy from the start (at least) an N = 2 supersym-
metry, have (at least) one gauged scalar and have (at least) one AdS vacuum.
We őst look at our SU(3)-invariant subsector described in detail in Chapter 6:

• The theory has an extended N = 2 supersymmetry;

• The theory has a gauge invariance under SO(1, 1)× U(1), thus showing two different gauge po-
tentials. The further symmetry is gauged dyonically while the last one is gauged only electrically;

• As we pointed out in Chapter 6.3.2, we have several vacua upon setting our scalar őelds to
appropriate constant values, all of which are AdS as we desire.

Thus, we choose this subsector as a preferred frame in which to embed our theory. The other subsectors
of the theory, such as the G2 and SO(4)-invariant ones, do not show any supersymmetry left, and
therefore cannot be truncated to a N = 2 theory.

As we previously recovered, the scalar potential has minima only for a magnetic coupling constant
different from zero. Therefore we will need to keep our magnetic őelds on if we wish to have a symple
AdS asymptotical behaviour.
Therefore the equations of motion simplify to

dB0 = 0 dÃ0 +
1

2
gB0 = I0Λ ∗ HΛ +R0ΛH

Λ

d(I0Λ∗HΛ +R0ΛH
Λ) = 0 d(I1Λ ∗HΛ +R1ΛH

Λ) = 0
(7.58)

as one can see by only looking at (6.7). Again, the őrst three equations are redundant and we can
eliminate one without losing information.
The full Einstein equation reads:

Rµν −
1

2
gµνR = −IΛΣ[HΛ

µρHΣρ
ν − 1

4
gµνHΛ

ρσHΣρσ]− gµνΛ (7.59)

We notice that in the expression of the equations of motion, we need to take in account all three gauge
őelds of our theory (two electric őelds A0 and A1 and one magnetic őeld Ã0).
From the deőnition of the ŕuxes in the full theory (5.49), we recover the ŕuxes deőnitions in the
SU(3)-invariant subsector as [57]:

H0 = dA0 +mB0 H1 = dA1

H̃0 = dÃ0 + gB0 H̃1 = dÃ1 − 2gB2

(7.60)

From the expression of MMN for the SU(3) subsector (see Appendix B), we can recover the scalar-
gauge matrix [57]:

NΛΣ = RΛΣ + iIΛΣ =
1

2eφχ+ i

[

− e3ϕ

(eϕχ−i)2
3e2ϕχ
eϕχ−i

3e2ϕχ
eϕχ−i 3(eφχ2 + e−φ)

]

(7.61)

from which one can get its (constant values) choosing an AdS vacuum.
For instance, from the fourth vacuum in (Table 6.1), one gets

RΛΣ =

[

0 0
0 0

]

IΛΣ =

[

−
√
5
c 0

0 −3 c
1/3

51/6

]

(7.62)
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such that the equations of motion in (7.58) can be written in the more straightforward manner:

dB0 = 0 dÃ0 +
1

2
gB0 = −

√
5

c
∗ H0

d ∗ H0 = 0 d ∗ H1 = 0

(7.63)

we can therefore set consistently B0 to zero (we can easily verify it sits at a minimum of the gauge
őelds potential in (6.7)) and take the őrst electric gauge őeld A0 and Ã0 as constants, so that the őrst
three equations of (7.63) are satisőed. We keep A1 on, satisfying its regular Maxwell equation, so that
the only non-null ŕux is:

H ≡ H1 = dA1 ≡ dA (7.64)

We did this for a particular choice of the vacuum, but this is obiously valid in general for a theory
with constant scalar őelds and null RΛΣ plus null I01 = I10.
If only the őrst one of these two conditions is not satisőed, but we still have null off-diagonal components
for RΛΣ, we can still truncate all of the őelds except for the usual A1, recovering the same case as the
one we discussed, but with a "weighted" Maxwell equation, where terms R11 and I11 weight terms H
and ∗H respectively.
If the second condition is not satisőed as well, then we have off-diagonal components for the scalar-
gauge matrix real and imaginary parts, and to get our usual truncation we must impose a constraint
on the components of the A1 ŕux:

I01 ∗ H1 = −R01H1 (7.65)

If this constraint is satisőed, then we can safely set all our potentials to constants and B0 to zero and
still have a consistent embedding. We will always assume equation (7.65) to be valid in the cases where
I01 will be different from zero, and treat the theory as properly truncated. This will of course reŕect
on the structure of the Maxwell equation for A1 as well.

Figure 7.3: Visual depiction of the embedding of the only-gauge theory inside of the vacua of the
gauge-scalar ISO(7) theory. In the őgure, we are embedding the theory inside a χ = 0 = ρ vacuum.

Going back to the choice of vacuum in (7.63), we notice that recover a cosmological constant Λ =
V0 = −c−1/3g23(57/6).
Einstein equation (7.59) can be recast as:

Rµν −
1

2
gµνR = 3

c1/3

51/6
[HµρHρ

ν −
1

4
gµνHρσHρσ]− gµνΛ (7.66)
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and matching this expression to (7.59) one őnds

c = −1

8

√
5

27
q2 =

1

6
V0c

−1/3g2 = 3
57/6

6
c−1/3g2 (7.67)

We conclude that the theory of [36] can be succesfully embedded in our dyonically ISO(7) gauged
model choosing A1 as the U(1) potential (as we expected, since this is the gauge grouped gauged by
A1 in the full theory as well) and with an expression of the gravitino charge in terms of the electric
charge of the ISO(7) model given by:

q2 = 15g2 ⇒ q ≈ 4g (7.68)

In the following we report a table with all the possible scalar vacua choices in the SU(3) that one can
choose as suitable theories where to embed the theory of [36] in. We remind that for those vacua with
an expectation value for the őelds χ different from 0, we implied equation (7.65) to be valid. For every
vacuum we őnd the value of c = m

g and the relation between q and g as in (7.68):

g−2c1/3V0 I00 I01 = I10 I11 c q/g

−4(33/2) −3
√
3

7c
3
√
3

14c1/3
−6

√
3c1/3

7 −
(

7
6

)3 1
24

√
3

3,21

−228/3
√
3

55/2
−9

√
15

19c
3
√
15

38(22/3)c1/3
−6(22/3)

√
15c1/3

19 −
(

19
6

)3 1
320

√
15

0,99

−2833/2

55/2
−9

√
15

38c
3
√
15

76c1/3
−12

√
15c1/3

19 −
(

19
12

)3 1
120

√
15

0,94

−3(57/6) −
√
5
c 0 −3c1/3

51/6
−

√
5

216 3,87

−3(217/6) − 1√
2c

0 −3(21/6)c1/3 − 1
216

√
2

4,90

−216/3√
3

−6
√
3

7c
3
√
3

7(22/3c1/3
−3

√
322/3c1/3

7 −
(

7
3

)3 1
96

√
3

3,02

Table 7.3: In this table we summarize the value the magnetic-to-electric coupling ratio c = m
g must

take in order to be able to embed a residual U(1) gauge invariant N = 2 Supergravity theory with
no scalars canonically into each vacuum of the ISO(7) dyonically gauged model. Finally, we report
the approximate relation between the electric coupling g and the gravitino electric charge q in the two
models (we approximate it, reckoning it is a more meaningful and immediate value). We highlighted
those vacua that yield a simple truncation process recovering standard Maxwell equations for the ŕux.

Therefore we recover that in order to be able to embed the theory, m and g must have opposite
sign, while in each case both g and q are real quantities, as we desired for a physically meaningful
theory.

We remark the fact that those that we found are not Giddings-Strominger wormhole solution, therefore
we cannot recover a criterion for their stability based on the value of an axio-dilaton pair coupling
constant.
Nevertheless, we proved in Chapter 7.4.1 that the particle content of the model makes it possible to
have a theory with a traversable wormhole geometry solution for the Einstein equation. We proved
that this theory can be embedded in a higher-dimensional massive Type IIA String Theory by őrst
embedding it in the vacua of a four-dimensional Supergravity theory that was known to derive from a
ten-dimensional Sting theory. This is the őrst time such a proof is given for the analyzed model.
Eventually we found the relation between the two Supergravity electric charges for every different
embedding choice.
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Chapter 8

Conclusions

This thesis work provides an insight on the possibility of obtaining a traversable Giddings Strominger
wormhole solution in the N = 8 dyonically-ISO(7)-gauged Supergravity model [57], sustained by an
axio-dilaton pair. In particular, I őrst derived several vacua for an SU(3)-invariant subsector of the
theory, pointing out the importance of having a dyonic gauging of the theory. Therefore, I carefully
analyzed the particle content looking for a truncation that would yield a simple GS wormhole. Consid-
ering the AdS nature of the vacuum conőgurations of the theory, I derived an explicit solution for the
őelds in a four-dimensional Euclidean asymptotically AdS Giddings-Strominger wormhole geometry.
I showed that the straightforward circumstance of having simple truncations to these AdS-GS solu-
tions does not occur in the model. Thus, I detected, among the multiple őelds that this Supergravity
theory contemplates, some possible axio-dilaton pairs in the Euclidian action. I found many valuable
candidates and used a previously established method [35] in order to approximate our framework to
that of a GS theory by setting the potential to be a cosmological constant but still keeping some of
the őelds on. For every pair of őelds we identiőed as an axio-dilaton couple, I computed the stability
of the wormhole solution and found that in more than one case, taking in consideration numerous
truncations of the full theory, a stable wormhole solution is possible in this asymptotic environment.
This result hints that a Giddings-Stominger solution is possible in the full theory, still one would need
to verify the evolution of all the őelds along the wormhole throat and make sure their value does not
explode. This should be done numerically. Moreover, I managed to embed a Supergravity theory only
having a gauge bosonic particle content into the ISO(7) model.

Given the truncation to the SU(3) invariant subsector, I derived that one can truncate the theory
in such a way to remain with a (ϕ, φ, χ), (ϕ, φ, ζ/ζ̃) or (ϕ, φ, a) particle content. In the őrst two
cases, the gauge őelds can be consistently turned down, while in the third case they cannot. Not being
able to straightforwardly set either ϕ or φ to a constant keeping the other őeld free, I proposed an
identiőcation ϕ = φ in the őrst two cases, yielding őrst order differential equations that would need to
be solved numerically.
I derived a solution, starting from the results in [62], for a hypothetical exact Giddings-Strominger
truncation with asymptotic AdS behavior and found:

ds2 =
dr2

1 + r2

l2
− q̃2

r4

+ r2dΩ2
4

e2ϕ(r) =

(

q−
q̃

sin(q̃H(r))

)2

χ(r) =
1

q−
(q̃ cot(q̃H(r)− q3))

(8.1)

where we have a constraint on the form of H(r), which cannot be solved analytically:

∂rH(r) =

√
6

r3

√

1

1− q2

r4
+ r2

l2

(8.2)
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By using the methods applied in [35], I found the asymptotic behavior of the theory for small variations
of some chosen őelds around their vacuum, such to have an approximate Giddings-Strominger AdS
action with (8.1) as a solution. I veriőed the stability in different cases, using different perturbed
axio-dilaton pairs, and found the results collected in the following table:

Dyonic ISO(7)
subsector symmetry

Axio-dilaton

pair

Axio-dilaton

coupling β

Stability of

the solution

SU(3) (χ, φ) 2√
3

✓

(ζ/ζ̃, ϕ) 1 ✓

(a, ϕ) 2 ×
G2 (χ, φ) 2√

7
✓

SO(4) (χ, φ) 2√
6

✓

(ρ, ϕ) 2 ×

Table 8.1: Stable and unstable asymptotically AdS Giddings-Strominger approximated solutions. For
every case we report the residual invariance the subsector of the main dyonic ISO(7) theory holds,
the axio-dilaton pair we have for each case and the effective coupling we obtain by setting the action
in the canonical form. A yellow check in the last column means the axio-dilaton pair saturates the
stability condition exactly.

Therefore many of these asymptotic cases provide the possibility of building a stable Giddings-
Strominger solution. We would need to analyze the geometry in the full model with the őelds in the
potential free as well, using a numerical approach.
Finally, I passed to analyzing the gauge-on, scalar-off model of [36] and tried to embed it in our ISO(7)
model, speciőcally in the SU(3)-invariant subsector. I found that one can consistently truncate the
vacua of the aforementioned subsector to the only-gauge model easily when the axion-like particle χ,
appearing in the imaginary part of the scalar-gauge matrix IΛΣ, has a null vacuum expectation value.
On the other hand, when this is not true, we őnd that we must impose to the gauge őeld A1 the
additional constraint:

I01 ∗ H1 = −R01H1 (8.3)

Assuming this is always satisőed, I managed to embed the theory by matching the canonical form of
the Einstein equations in the two models, with particular attention to the cosmological constant of
[36], deőned in terms of the gravitino charge q. For every SU(3) vacuum, I found values for c = m

g
and q/g:

g−2c1/3V0 c = m
g q/g

−4(33/2) −
(

7
6

)3 1
24

√
3

3,21

−228/3
√
3

55/2
−
(

19
6

)3 1
320

√
15

0,99

−2833/2

55/2
−
(

19
12

)3 1
120

√
15

0,94

−3(57/6) −
√
5

216 3,87

−3(217/6) − 1
216

√
2

4,90

−216/3√
3

−
(

7
3

)3 1
96

√
3

3,02

Table 8.2: Values for the magnetic-to-electric coupling ratio c = m
g and the approximate expression

of q, charge of the gravitino, in terms of g, electric charge, in order to have an appropriate canonical
embedding of the theory presented in [36] within the theory studied in [57].
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Chapter 9

Outlooks on the traversable wormhole

solution

Following our work on the embedding of the traversable wormhole solution into String theory, we
would like to aknowledge some outlets that the topic of our research has in some different sectors
of physics. We therefore present a glimpse into potential research topics concerning the traversable
wormhole solution. These active research őelds are considered intriguing by the author and suitable
for prospective exploration, complementing the purpose of this thesis work.

Chapter 9.1 reviews multi-mouth traversable wormhole giving insight on their stability by means of
quantum gravity effects. It explores the chance of having a second wormhole close to the troath of the
őrst one, connecting different patches of the same space-time.
In Chapter 9.2 we give an overview on a well known multi-wormhole solution using a theory with gauge
őelds.
Chapter 9.3 is dedicated to the analysis of the GW signal coming from a hypotetical black hole orbiting
an open wormhole solution.

9.1 Multi-Mouth Traversable Wormholes

In this section, we refer to [67] and [68] for our dissertation and [69] for the concepts we will use.
Our focus lies in the creation of traversable wormholes featuring multiple mouths within a four-
dimensional space. This discussion also delves into the correlated quantum entanglement.
Typically, the principle of topological censorship enforces the non-traversability of wormholes due to
the null-energy condition. However, recent developments have revealed that őnely controlled quantum
effects could defy this condition in a manner permitting the establishment of traversable wormholes.
The management of these quantum effects on a smaller scale is imperative for ensuring control. To
address this, we necessitate a foundational solution that characterizes the conőguration of interest by
introducing slight perturbations. It is customary to disallow acausal shadows, thereby often restricting
our consideration to wormholes connecting distinct regions. Nevertheless, there exist more intriguing
scenarios that necessitate the existence of these shadows. Our initial focus is on the conventional worm-
hole structure with two mouths. By incorporating a count of Nf four-dimensional massless fermions,
we can generate the requisite negative energy.
One of our primary concerns pertains to the inherent delicacy of the wormhole’s structural equilibrium,
which could be compromised by the insertion of another black hole. To mitigate this issue, we rely on
the substantial redshift discrepancy between the central region and the opening of the initial passage.
We further extend this notion by encompassing smaller black holes, each harboring an additional con-
nection to distant regions within the same spacetime.
Initially, classical matter falls short of supplying the negative energy imperative for sustaining the
wormhole structure. However, alternative methods are available to circumvent this limitation. No-
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tably, we can consider the Casimir energy as a potential source.
Our journey commences with a near-extremal Reissner-Nordstrom black hole, approached within its
proximity to the event horizon. The associated metric is parameterized as follows:

ds2 = r2e

(

−(ρ2r − 1)dτ2r +
dρ2r
ρ2r − 1

+ dΩ2

)

(9.1)

where re is the horizon radius of the BH. We employ the Rindler coordinates ρ and τ and leverage the
AdS2 × S2 symmetry within close proximity to the horizon. A crucial aspect of achieving a wormhole
geometry involves the angular component of the metric expanding as we move away from the throat
of the wormhole. To account for deviations from the original symmetry and the alteration in angular
circumference, we introduce the parameter set ϕ and γ into the metric. It is essential for ϕ to exhibit
growth in both the positive and negative radial directions. This expansion necessitates the presence of
negative energy.
To generate this negative energy, we capitalize on the Casimir effect facilitated by a magnetic őeld
within a black hole, coupled with a massless charged fermion őeld. This combination yields a consid-
erable number of effective massless fermions (for more details, see [68]). Notably, this approach has
been shown to produce negative energy, a prerequisite for our endeavor.
It has been demonstrated that the energy of these wormholes deviates from the energy of two discon-
nected extremal black holes by an amount that can be expressed as:

E =
r3e
Gl2

− NfQ

6
(

π

πl + dout
− 1

4l
) (9.2)

Where πl equals the length of the throat in an appropriate metric rescaled conformally, dout is the gap
between the mouths in the outer region and Q is the magnetic charge of the black holes. We have that
the őrst contribution to this energy is nothing but the energy of a Reissner-Nordström black hole over
extremality.
Looking for a minimum in the energy, we can thus calculate the length of the wormhole at equilibrium
and from this derive the binding energy of the wormhole. We do this assuming that the wormhole
mouths are way closer to each other in asymptotically ŕat space-time than they are crossing the
wormhole (dout ≪ l)

l ≈ Q2lP
Nf

(9.3)

We can explore various scenarios based on the relative lengths of the wormhole compared to the dis-
tance between its two mouths. It’s essential to recall that the Casimir effect necessitates closed őeld
lines, which in turn requires the two ends of the wormhole to be within the same region of spacetime.
This mutual gravitational attraction between the two mouths leads to a őnite period before one col-
lapses onto the other, rendering the wormhole traversable during this interval. To prevent this collapse,
several strategies can be employed. One involves introducing an external magnetic őeld to separate
the mouths, or alternatively placing them in orbit around each other, albeit this approach would lead
to the emission of gravitational and electromagnetic waves from the mouths. Another avenue of ex-
ploration involves considering cosmic strings [70].
Moving forward, we aim to incorporate a nearly miniature black hole within the throat of the primary
wormhole. This new insertion is treated as a perturbation to the throat, while the other end of the
wormhole is treated as a metric perturbation extending towards inőnity. Throughout the calculation,
we’ll omit the backreaction from the mouths.
The challenges at hand revolve around establishing the stability of this new conőguration and deter-
mining how to attain the requisite negative energy to render the passage viable. Addressing these
queries necessitates selecting a speciőc model that encompasses particles within or beyond the stan-
dard model.
In one approach, the black hole inserted into the throat experiences a uniform static magnetic őeld,
propelling it towards an exit and establishing an equilibrium conőguration when counterbalanced by
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the strong gravitational potential within the throat. Alternatively, the black hole can be modeled as
a charged Reissner-Nordström black hole under a U(1) gauge distinct from electromagnetism, operat-
ing within a non-standard model. Just as with the two mouths of the initial wormhole, the stability
concerns of the new mouth can be addressed, utilizing methods analogous to those employed with the
őrst wormhole, thus extending its lifetime.
Regarding the realization of negative energy, crucial for binding the traversable wormhole, this can be
achieved through the presence of massless fermions that follow closed loops along the őeld lines. As
these fermions traverse the third gorge, they maintain its openness. Alternatively, the fermions could
be replaced by cosmic strings, serving the same purpose.
Constraints on the size of the new mouth can also be derived. Seminal analysis indicates that its size
must exceed the Planck length, particularly greater than

√

Nf lP . Furthermore, a limit arises from con-
siderations of the null energy condition, implying that the mass must not exceed the magnitude of the
Casimir energy. This ensures a total negative energy, thereby guaranteeing the wormhole’s traversabil-
ity. To derive this limit, we solve Einstein’s equations with terms from the energy-momentum tensor
contributed by fermionic Casimir energy, Maxwell’s őeld, and the mass of the central wormhole in the
őrst gorge.
We approximate the wormhole mouth’s location as δ, considerably smaller than the gorge’s length. As
our interest lies in the deformation of the S2 scale along the gorge, we can treat the black hole as a
wall defect, spread across the gorge’s width. This allows us to formulate the Gττ component of the
Einstein tensor and incorporate the energy-momentum tensor components according to:

Gττ = γ − (1 + ρ2)(−1 + ρϕ′ + (1 + ρ2)ϕ′′)− (1 + ρ2)ϕ (9.4)

and the three components of Tττ are

TBττ = − 1

4g2
gττF

2

TFermττ = − α

8πG
G

Tmassττ =
β

4πG
δ(ρ)

(9.5)

where α and β are two constants, in particular β is proportional to the mass of the black hole we set
in the throat.
Solving the Einstein equation we can obtain the solution for the ϕ parameter that governs the expansion
of S2:

ϕ(ρ) = α(1 + ρ arctan ρ)− β|ρ| (9.6)

We observe how increasing the mass enhances the radius while simultaneously reducing the width of
the throat. This reduction is to the extent that, when the energy contribution from the black hole
(BH) within the throat surpasses that from Casimir, the throat closes. By enforcing a requirement
for the total energy to be negative, a limit for β emerges, setting an upper bound on the mass. Once
normalized by the redshift outside the throat, this bound on the mass provides a limit on the energy
of the small black hole. Remarkably, this limiting energy aligns with the energy difference between a
traversable and an untraversable wormhole, as previously identiőed. Consequently, this insight implies
that introducing a third mouth inside the wormhole results in a traversable solution only when the total
energy is less than what would yield a sickly wormhole without the third mouth. In general, wormholes
featuring multiple mouths are expected to exhibit lower energy than an assembly of disconnected black
holes.
Exploring further, we might aim to ascertain whether our solution can be systematically constructed
by inserting the small black hole from an initial conőguration where it resides outside the throat
into a situation where it is within the primary wormhole. This inquiry concerns the maintenance of
sufficiently low total energy throughout the entire insertion process of the black hole into the throat.
To this end, we extend the term associated with the momentum-energy tensor linked to the black
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hole’s mass to encompass a radial position ρ0 for the black hole, not necessarily situated at the origin:

Tmassττ =
β

4πG
(1 + ρ20)δ(ρ− ρ0) (9.7)

Subsequently, we proceed to re-solve the equation of motion as prescribed by Einstein’s equation to
determine the shape of the function ϕ(ρ). To achieve this, we introduce an additional component
to the Energy-Momentum tensor attributed to cosmic strings, characterized by a tension denoted as
T. This tension exerts a force that endeavors to displace our black hole from its position within the
throat. By integrating the boundary conditions, we can derive an equation that governs the behavior
of the tension. Speciőcally, the tension diminishes to zero as the radial position of the black hole
approaches inőnity, corresponding to the black hole residing outside the throat. Additionally, the
tension also vanishes as the radius approaches zero, signifying an equilibrium state when the black hole
is optimally positioned within the throat.
The solution is a step function:

ϕ(ρ) = α(1 + ρ arctan ρ)− β

1 + ρ20
(Θ(ρ− ρ0)(ρ− ρ0)− k) (9.8)

The key parameters within the scope of the ϕ őeld, as a perturbation of the angular component of the
metric, include the constant integration factor ’k,’ ranging between zero and 0.5, and, of course, β. By
stipulating that ϕ experiences growth for both large positive and negative values of the radius, we can
establish an upper bound on β and, consequently, on the mass. Adherence to this constraint ensures
the feasibility of introducing our black hole into the throat, originating from an exterior position.
An intriguing phenomenon to investigate involves the exchange of signals between the mouths of the
initial wormhole and the subsequent absorption of these signals by the third mouth. This third mouth
can be likened to a ’leaky pipe,’ with signal absorption characteristics proportional to the mouth’s
area. A second noteworthy effect pertains to time and Shapiro delay, which are anticipated to exhibit
their customary forms and be explained by familiar underlying causes.

9.2 Multi-centered black holes in gauged D = 5 Supergravity

This review of multi-centered black holes solution, which we wish to expand in the future, to a possible
multi-wormhole solution, summarizes the works in from [71], [72], [73], [74] and [75].
The multi-center MP Reissner-Norstrom solution, contemplating a cosmological Einstein/Maxwell GR
theory, can be thought of as a restriction to the bosonic sector of D=5, N=2 gauged Supergravity.
We couple N=2 Supergravity to n-1 abelian vector multiplets.
The őelds we get are

• a metric gµν

• a gravitino ψµ

• n vector potentials AIµ

• n-1 gauginos λi

• n-1 scalars ϕi

The bosonic part of the Lagrangian turns out to be

e−1L =
1

2
R+ g2V − 1

4
GIJF

I
µνF

µνJ − 1

2
Gij∂µϕi∂µϕj +

e−1

48
ϵµνρσλCIJKF

I
µνF

J
ρσA

K
λ (9.9)

with

V (X) = VIVJ

(

6XIXJ − 9

2
Gij∂iXI∂jX

J

)

(9.10)
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where XI are the real scalar őelds, functions of ϕi and VI ’s are constants by means of which we deőne
the N=2 "graviphoton".
We deőne V = 1

6CIJKX
IXJXK setting it to 1, deőning a so called "very special geometry".

CIJK is deőned in such a way that, if we get our 5D theory compactifying M-theory on a Calabi-Yau
3-fold, XI =

1
6CIJKX

JXK corresponds to the size of 4-cycles on the manifold. The metrics GIJ and
Gij are functions of V .
The gauged-SUSY transformations for fermions are

where we deőned the covariant derivative.

9.2.1 Ungauged case

It was found that the solutions for such a particle content in the action is

ds2 = −e−4Udt2 + e2Udx⃗dx⃗ (9.11)

AIt = a−2UXI (9.12)

XI =
1

3
e−2UHI (9.13)

where HI are harmonic functions hI +Σj=1,N
qI j

|x⃗−x⃗j |2 where we summed over the black holes positions.

The constants hi are related to the values of XI at inőnity and qI are the charges.
If we try and solve SUSY conditions for fermions in the absence of gauging, g=0, we get a solution for
the killing spinor ϵ = e−U ϵ0.
Considering pure SUGRA, thus setting the scalars to 0, we get the solutions

ds2 = −H−2dt2 +Hdx⃗dx⃗ (9.14)

At = 3H−1 (9.15)

9.2.2 Single black hole

For a single BH H = 1 + q
r2

, so the metric is

ds2 = −(1 +
q

r2
)−2dt2 + (1 +

q

r2
)(dr2 + r2dΩ2

3) (9.16)

and deőning ρ2 = r2 + q we get a Schwarzschild solution

ds2 = −(1− q

ρ2
)2dt2 + (1− q

ρ2
)−2(dρ2 + ρ2dΩ2

3) (9.17)

Ftρ = −3∂ρ(1−
q

ρ2
) (9.18)

9.2.3 Guaged, single BH case

Turning on the gauging introduces a scalar potential generating Λ < 0 and deőning

f = 1 + g2r2e6U (9.19)

we őnd
ds2 = −e−4Ufdt2 + e2U (f−1dr2 + r2dΩ2

3) (9.20)

77



AIt = a−2UXI (9.21)

XI =
1

3
e−2UHI (9.22)

similar to the multi-center ungauged solution except for the function f and, obviously, the non-
assumption of isotropy.
We őnd that the killing spinor solution yields a killing spinor which satisőes a projection condition on
the starting one. Thus, our theory preserves only half of the original supersymmetries.

9.2.4 Finding the metric ansatz

If we turn on the gauging, we get the previously deőned term f which mimics a cosmological constant
Λ. Therefore, the new found vacuum AdS solution is, considering a single BH

ds2 = −(1 + g2r2)dt2 +
dr2

1 + g2r2
+ r2dΩ2

3 (9.23)

Still we are searching for a isotropic solution for multiple BH’s, so we assume a more generic ansatz

ds2 = −e2Adt2 + e2Bdx⃗dx⃗ (9.24)

where the exponentials are function of t and x⃗.
Assuming the asymptotic (BHs far away from each other) solution where we normalize the őrst expo-
nential factor and write

ds2 = −dt2 + e−2gtdx⃗dx⃗ (9.25)

we get a positive value of R, which we do not want. In order to bypass this matter, we need to have
either a complex coupling constant or complex time, thus going to Euclidean metric.

9.2.5 Solutions

We set SUSY invariance for the gravitino transformations and group them into the ones that remain
valid also in the non-gauged limit and the ones exclusive to the gauged case. From this we obtain

XIF
I
tm = −∂meA (9.26)

for the őelds,

B(t, x⃗) = −1

2
A(t, x⃗) + f(t) (9.27)

for the metric ansatz and
ϵ(t, x⃗) = e1/2A(tx⃗)ϵ̂(t) (9.28)

for the killing spinor.
Focusing on imposing the same conditions for the gaugino instead we őnd that gauge őelds and scalar
are related through

AIt = eAXI (9.29)

which is the same relation we had in the ungauged multi-center solution and in the gauged single BH
one.
The next equation we need to use is the EOM for the gauge őelds and we őnd two relations, stating

e−AXI =
1

3
HI(t, x⃗) (9.30)

and setting the shape of H as

HI = HI(e
f(t)x⃗) = hI +Σj=1,N

qIj

e2f(t)|x⃗− x⃗j |2
(9.31)

78



and using the gauged teory gaugino SUSY conditions we őnd the shape of f(t) as f(t) = −igt, in such
a way that

ds2 = −e2Adt2 + e−Ae−2igtdx⃗dx⃗ (9.32)

and the function A can be derived from the "very special geometry" assumption we made earlier.
Using the gauged gravitino SUSY conditions we can derive the shape of the killing spinor as

ϵ = e2Aeigtϵ0 (9.33)

9.2.6 Summary

In summary, we found that a D=5, N=2 Supergravity theory yields a Wick rotated solution breaking
half of the original supersymmetries. The solutions are

ds2 = −e2A + e−Ae−2igtdx⃗dx⃗ (9.34)

AIt = eAXI (9.35)

XI =
1

3
eAHI (9.36)

and A is set by the very special geometry condition we chose.
HI(t) is a harmonic function written as hI + e2igtΣj=1,N

qIj
|x⃗−x⃗j |2 .

For each and everyone of these solutions we can recover the ungauged limit by setting g → 0.

9.3 Gravitational Waves from a black hole orbiting in a wormhole

geometry

The analysis of gravitational waves has yielded insights into various systems, including the merging of
black holes, black holes and neutron stars, as well as neutron star mergers. Additionally, fractional
data from gravitational waves can be used to identify cosmic defects and exoplanets. More intriguingly,
it is even possible to detect more exotic phenomena such as a black hole spiraling towards the center
of a wormhole.
In the realm of wormhole gravitational waves analysis [76], [77] researchers predominantly focus on
two phases: the ringdown and the production of echoes. The paper under consideration delves into
the scenario where a black hole descends in circular orbits within a wormhole until its passage results
in a distinct signal before the ringdown phase. While the study does not delve into echo effects, it lays
the foundational groundwork for investigating the behavior of a simple black hole that undergoes a
collapse within a wormhole’s throat.
Our trajectory follows a black hole as it traverses the gorge, potentially oscillating back and forth to
create a temporal gap between the chirp signal and the subsequent anti-chirp signal. It’s noteworthy
that if a black hole emerges from another universe into our own, we will observe solely an anti-chirp
signal.
The wormhole in consideration comprises the fusion of two Schwarzschild black hole spacetimes, with
an additional black hole possessing a mass at least ten times smaller than the apparent mass of the
wormhole. The metric adopted is the standard Schwarzschild metric expressed in Gaussian coordinates.
Each of the two black holes has a sphere of radius ’a’ removed from it, lying outside the regular event
horizon at 2M, with this region hosting exotic matter violating the Null Energy Condition.
The model encompasses three parts: two external regions with known energy-momentum tensors and
a boundary. Introducing the Gaussian coordinate time variable, we formulate the energy-momentum
tensor as:

Tµν = Sµνδ(η) + Tµν1 Θ(η) + Tµν2 Θ(−η) (9.37)
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We do not analyze the nature of the exotic matter used to keep the wormhole open, nor the possible
alternatives to it. Choosing an exotic matter momentum energy tensor equal to

Sij = diag(σ, τ, τ) (9.38)

, where sigma is a negative energy density, as required, we get that the throat radius is equal to three
times the mass of the wormhole from Einstein’s equation. When a black hole approaches this throat,
the process closely resembles the collapse of two black holes until it reaches a radius of three times
the mass, at which point it interacts with the exotic matter on the throat. If the interaction is solely
gravitational, the black hole will shift as it passes the throat. By conőning this shift to the throat’s
region, it will eventually revert to its initial conőguration. A similar process occurs when the black
hole retreats to its initial universe, effectively leading to a back-and-forth motion between universes.
Assuming sufficient distance between the two throats to avoid signal interference between universes, a
strong signal in one universe will diminish as the black hole emerges in the other universe. The ob-
server in the second universe detects a pronounced anti-chirping signal, decreasing in frequency. The
signal reaches zero when the black hole attains its maximum radius in the second universe and rapidly
increases in frequency as it nears the throat. Subsequently, it crosses back into the őrst universe, thus
repeating the cycle until the black hole resides within the throat.
Distinguishing our process from the merger of two black holes involves the echo phenomenon of grav-
itational waves and the emission of gravitational waves due to coupling with particles beyond the
standard model.
In the simpliőed scenario, we treat the black hole’s mass as much smaller than the wormhole’s apparent
mass, permitting a perturbation-based approach using post-Newtonian techniques. This approach re-
mains valid as long as the black hole remains outside the false event horizon of the wormhole’s mouth,
which is situated beyond the throat.
Exploring the types of orbits the black hole can follow on its trajectory to the throat, we őnd four
cases:

• Bound orbits

• Two-world bound orbits

• Two-world escape orbits

• Escape orbits

Analyzing the gravitational waves from this process, we identify a frequency inversely proportional to
the apparent mass of the wormhole. The initial phase of the process bears resemblance to the merger of
two black holes. However, a notable deviation occurs as we encounter a gap in the frequency spectrum,
followed by periodic cycles of gravitational waves gradually decreasing in amplitude. These gaps,
resulting from the current model that neglects secondary wormhole structure effects, could potentially
exhibit echo effects.
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Appendix A

The axion term in Euclidean path integral

formulation

We wish to give a physical explanation for the rotation of the axionic term in the action when we
perform our Wick rotation in space time t → ix4. This will not follow the String theory dimensional
compactiőcation approach, which of course leads to the rotation of kinetic terms deriving from dimen-
sional reduction on p-forms, but we will try to focus directly on the 4D Supergravity theory and see
how we get this rotated term without the need of higher dimensional justiőcations.
We will follow the dissertiation of [62] on the topic, though the topic is more widely treated in [78] and
[79].

The path integral We wish to discuss the path integral formulation of a theory containing an axio-
dilaton couple and gravity.
We are interested in the partition function

Z = ⟨ϕF , χF |e−HT |ϕI , χI⟩ , T → ∞ (A.1)

where the ϕI , χI and ϕF , χF are evaluated at the space-like (in Euclidean space) surfaces ΣI and ΣF .
We can write Z explicitly as

Z =

∫

b.c.

d[ϕ]d[χ] e−
1
2

∫

M(dϕ ∧ ∗dϕ+ ebϕdχ ∧ ∗dχ) (A.2)

where we impose Dirichlet boundaries for the őelds.
We wish to calculate the partition function to obtain the quantum effects in the theory, but this is,
as usual, possible only in the semi-classical approach where we will get instanton contributions, which
will however be subdominant with respect to the perturbative terms.

Boundary terms and momentum space We deőne a set of momentum eigenstates

|π⟩ =
∫

d[χ]ei
∫

Σ πχ |χ⟩ (A.3)

with a deőnition similar to the position and coordinate eigenstates one in quantum mechanics.
Therefore we can write

Z =

∫

d[πI ]d[πF ] ⟨χF |πF ⟩ ⟨πF |e−HT |πI⟩ ⟨πI |χI⟩

=

∫

d[πI ]d[πF ] e

(

i
∫
ΣF

πFχF−i
∫
ΣI

πIχI

)

⟨πF |e−HT |πI⟩
(A.4)

We want to rewrite Z again in terms of the proper őeld variable, thus we go back to őeld space, using
an auxiliary variable χ̃, which has not the physical őeld meaning held by χ and therefore has no deőned
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boundary conditions.
We can write:

KE(πF , πI , T ) ≡ ⟨πF |e−HT |πI⟩ =
∫

d[χ̃I ]d[χ̃F ] ⟨πF |χ̃F ⟩ ⟨χ̃F |e−HT |χ̃I⟩ ⟨χ̃I |πI⟩ (A.5)

and interpreting ⟨χ̃F |e−HT |χ̃I⟩ as a path integral, we can rewrite, combining integration over χ and
χ̃I,F :

KE =

∫

no b.c.

d[χ]e
−1

2

∫

M ebϕdχ ∧ ∗dχ− i
∫

ΣF
πFχ+ i

∫

ΣI
πIχ (A.6)

We can now use the semi-classical approximation with no Dirichlet boundaries for the őelds, since we
integrated over them.

The dualization We now try and recover the instanton solution as usual solving the equations of
motion in our action:

d(ebϕ ∗ dχ) = 0 ebϕ ∗ dχ− iπ|ΣI,F
= 0 (A.7)

As we can see from these equations, the second equation imposes a boundary condition on the őeld χ. It
states that our őelds χ and π are not real, thus we recover a non acceptable saddle point approximation
following this approach.
What we want to do now is change our strategy: we will dualize the χ őeld to a (D-1)-form F .
The dual path integral is deőned as:

∫

d[F ]d[χ]e

∫

M(−1
2e

−bϕF ∧ ∗F + iχdF ) (A.8)

where the second term imposes our duality relation. One can easily eliminate one of the variables by
a simple integration by parts.
We can now easily derive the equation of motion for F

d(e−bϕ ∗ F ) = 0 ⇒ F = ebϕdλ (A.9)

Therefore F must be an exact form.
We now őnd the equations of motion for the entire system, including ϕ

d ∗ dϕ+
b

2
e−bϕF ∧ ∗F = 0

(A.9)
===⇒ d ∗ dϕ+

b

2
ebϕdλ ∧ ∗dλ = 0 (A.10)

where we notice that we have the "wrong" sign in front of the axionic term with respect to the
Lorentzian frame equations of motion.
Thereore, we recovered the equations of motion and the action we used all along this thesis work by
simple considerations on the instantonic nature of our solution using the path integral formulation.
We recovered a saddle point approximation of an imaginary őeld λ with an action:

S =

∫

M

1

2
[dϕ ∧ ∗dϕ− ebϕdλ ∧ ∗dλ+ 2d(λebϕ ∗ dλ)] (A.11)

and real boundary conditions
ebϕdλ|ΣI,F

= πI,F (A.12)
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Appendix B

Scalar content of SU(3) and G2 subsectors

of dyonically gauged ISO(7) Supergravity

We want to derive the explicit form for the scalar matrix MMN in (5.48) for the SU(3) and the G2

subsectors. In order to do this, we will need to write for each case the coset representatives of the target
space with residual symmetries, writing the result with an appropriate choice of covariant indices. We
will then contract the indices of the coset representative with its transposed to őnd MMN as written
in (B.7). Using this matrix it is not only possible to derive standard kinetic terms for the scalars but
also deriving the gauge kinetic matrix

NΛΣ = RΛΣ + iIΛΣ (B.1)

again from equation (B.7).
We derive again the results already found in [57] and therefore give a generic derivation of the scalar
kinetic terms in (6.7) and (7.39).

B.1 SU(3) invariant subsector

We embedded SU(3) in SO(7)⊂ ISO(7) in such a way that 7→1+3+3̄. In terms of the SL(8) indices,
we split A → (a ⊕ 8) ⊕ (1 ⊕ â) with a = 2, 4, 6 and â = 3, 5, 7, followed by a complexiőcation of the
form

z0 = x1 + ix8 z1 = x2 + ix3 z2 = x4 + ix5 z3 = x6 + ix7 (B.2)

When we restrict to this sector, the őelds we keep take value along three invariant tensors,
- the SU(3)-invariant metric δij
- the two-form Jij , i = 2, ..., 7
- the complex totally antisymmetric tensor of SU(3).
The splitting of indices is thus [AB] → [ij]⊕ [1j]⊕ [i8]⊕ [18].
With the choice of parametrization (B.2), the SU(3) invariant tensors can be written as

J = e2 ∧ e3 + e4 ∧ e5 + e6 ∧ e7

Ω = (e2 + ie3) ∧ (e4 + ie5) ∧ (e6 + ie7)
(B.3)

satisfying

J ∧ Ω = 0 Ω ∧ Ω = −4

3
iJ ∧ J ∧ J (B.4)

and we would like to express our SU(3)-invariant scalar matrix in terms of these forms.
We obtain the coset representatives, choosing the 6 combinations of generators of E7(7) that are in-
variant under SU(3) [57],

VSK = e−12g
(+)
4 e

1
4
φg1 VQK = eag

(+)
2 e−6ζg

(+)
5 e−6ζ̃g

(+)
6 eϕg3 (B.5)

83



and we introduce

X = 1 + e2φχ2 Y = 1 +
1

4
e2ϕ(ζ2 + ζ̃2) Z = e2ϕa

j1 = ζZ + ζ̃Y j2 = ζ̃Z − ζY
(B.6)

to write

MMN = 2V ij(MVN)ij =

[

MΛΣ MΣ
Λ

MΛ
Σ MΛΣ

]

=

[

−(I +RI−1R)ΛΣ (RI−1)ΣΛ
(I−1R)ΛΣ −(I−1)ΛΣ

]

(B.7)

So, the scalar matric can be written (in a SU(6) covariant formalism), that is particularly easy for the
residual symmetry frame.
• The "electric" part of the scalar tensor is:

M[18][18] = e3φ

M[i8][k8] = e2ϕ+φδik

M[18][kl] = e3φχ2Jkl

M[i8][kl] = −1

2
e2ϕ+φχ[ζ̃(ReΩ)ikl − ζ(ImΩ)ikl]

M[i8][1l] = eφ[Zδil + (Y − 1)Jil]

M[1j][1l] = e−2ϕ+φ(Y 2 + Z2)δjl

M[1j][kl] = −1

2
eφχ[j2(ReΩ)jkl − j1(ImΩ)jkl]

M[ij][kl] = e−φX(X − Y )JijJkl + 3e−φX(Y − 1)J[ijJkl] + 2e−φXY δk[iδj]l

(B.8)

• The "magnetic" part of the matrix on the other hand turns out to be:

M[18][18] = e−3φX3

M[i8][k8] = e−(2ϕ+φ)X(Y 2 + Z2)δik

M[18][kl] = eφχ2XJkl

M[i8][kl] = −1

2
eφχ[j1(ReΩ)

ikl + j2(ImΩ)ikl]

M[i8][1l] = −e−φX[Zδil + (Y − 1)J il]

M[1j][1l] = e2ϕ−φXδjl

M[1j][kl] =
1

2
e2ϕ+φχ[ζ(ReΩ)jkl + ζ̃(ImΩ)jkl]

M[ij][kl] = eφ(X − Y )J ijJkl + 3eφ(Y − 1)J [ijJkl] + 2eφY δk[iδj]l

(B.9)

• Finally, the "mixed" components read:

M[18]
[18] = e−3φχ3

M[i8]
[k8] = eφχ[ZJ ik − (Y − 1)δik]

M[18]
[kl] = −e−φχX2Jkl

M[i8]
[kl] =

1

2
e−φX[j1(ReΩ)

i
kl + j2(ImΩ)ikl]

M[i8]
[1l] = e−2ϕ+φχ(Y 2 + Z2)J il

M[ij]
[18] = −e3φχJ ij

M[ij]
[k8] =

1

2
e2ϕ+φ[ζ̃(ReΩ)ijk − ζ(ImΩ)ijk ]

M[1j]
[k8] = −e2ϕ+φχJ jk

(B.10)
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and
M[1j]

[1l] = −eφχ[ZJ jl + (Y − 1)δjl ]

M[ij]
[1l] =

1

2
eφ[j2(ReΩ)

ij
l − j1(ImΩ)ijl ]

M[1j]
[kl] = −1

2
e2ϕ−φX[ζ(ReΩ)jkl + ζ̃(ImΩ)jkl]

M[ij]
[kl] = eφχ(Y −X)J ijJkl − 3eφχY J [ijJrs]δr[kδl]s − 2eφχ(Y − 1)δijkl

(B.11)

The mirror sector of the mixed scalar matrix, M[CD]
[AB] , is equal to the one we found since the matrix is

symmetric by deőnition.

B.2 G2 invariant subsector

We split the SU(8) representation indices as 8→7+ 1 so that the index A will be written as I ⊕ 8,
I = 1, ..., 7 and the 28 can be written as [AB] → [IJ]⊕ [I8].
With this parametrization of the indices, the G2 invariant forms can be written as

δIJ ,

ψIJK = e123 + e145 + e167 − e246 + e257 + e473 + e635,

ψ̃IJKL = e4567 + e6723 + e2345 − e1357 + e1346 + e1562 + e1724

(B.12)

The coset representative, as usual written by writing G2 generators in terms of the ones of the 133

fundamental representation of E7(7), is

V = e−12χg
(+)
2 e

1
4
φg1 (B.13)

We also deőne the combination
X = 1 + e2φχ2 (B.14)

the relevant combinations of indices in our sectors (the other ones can be obtained by symmetricity of
the matrix) are:

M[IJ ][KL] = 2eφXδK[IδJ ]L + e3φχ2ψ̃IJKL

M[IJ ][K8] = eφχ2XψIJK

M[I8][K8] = e−3φX3δIK

M[IJ ]
[KL] = −2e3φχ3δIJKL − eφχXψ̃IJKL

M[IJ ]
[K8] = −e3φχψIJK

M[I8]
[KL] = −e−φχX2ψIKL

M[I8]
[K8] = −e3φχ3δIK

M[IJ ][KL] = 2e−φX2δK[IδJ ]L + eφχ2Xψ̃IJKL

M[IJ ][K8] = e3φχ2ψIJK

M[I8][K8] = e3φδIK

(B.15)
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Appendix C

Equations of motion of Type IIA String

Theory and consistency of the truncation

In the following, we review the equations of motion obtained by the massive Type IIA String Theory
Lagrangian (see [58], with conventions from [80]) , considering as usual just the massless modes. We
do not divide internal and external space őeld-components, in order to give a more polished form for
our equations.
We check the consistency of the truncation ansatz of (4.2) and (4.3) and őnd the equations of motion
fro the 4-dimensional theory (4.17) reducing the 10-dimensional ones.

C.1 Equations of motion

The equation of motion for the NS-NS sector őelds B2 and Φ and for the R-R sector tensor őelds C1

and C3 are [58]:

d ∗ dΦ = −1

2
e−ΦH3 ∧ ∗H3 +

∑

p=2,4

5− p

4
e(5−p)Φ/2Fp ∧ ∗Fp

d(e−Φ ∗H3) =
1

2
F4 ∧ F4 + eΦ/2F2 ∧ ∗F4

d(e3Φ/2 ∗ F2) = −eΦ/2H3 ∧ ∗F4

d(eΦ/2 ∗ F4) = −H3 ∧ F4

(C.1)

while the Einstein equation is given by

2RMN =∂MΦ∂NΦ+ e−Φ(
1

2
(H3)

2
MN − 1

24
gMNH

2
3 )

+
∑

p=2,4

e(5−p)Φ/2
(

1

(p− 1)!
(Fp)

2
MN − p− 1

8(p!)
gMNF

2
p

) (C.2)

and upon truncation of the F0 form identiőed with the Romans mass m, we recover as we expected
equations (5.3) and (5.4).
The Bianchi identities read

dH3 = 0 dF2 = 0 dF4 = H3 ∧ F2 (C.3)

and we can see that these two sets of equations can be derived again from (6.7) upon Romans mass
truncation.
These equations can be readily integrated to őnd an expression of the ŕuxes H3, F2 and F4 as a function
of the potentials B2, C1 and C3 (see (C.7).
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C.2 Bounds on the 10D String theory for consistency of the reduced

4D Supergravity theory

We need to check whether our ansatz:

ds210 = e2aφds24 + e2bφMαβdθ
αdθβ (C.4)

C3 = χ1dθ
1 ∧ dθ2 ∧ dθ3 + χ2dθ

1 ∧ dθ4 ∧ dθ5 + χ3dθ
2 ∧ dθ5 ∧ dθ6 + χ4dθ

3 ∧ dθ4 ∧ dθ6
H3 = 0 = F2

(C.5)

violate some of the constraints coming from the full 10-dimensional theory.
First we consider (C.1) and (C.2) without H3 and F2 tensor őelds to őnd the equations

(A) d ∗ dΦ =
1

4
eΦ/2F4 ∧ ∗F4

(B) 0 =
1

2
F4 ∧ F4

(C) d(eΦ/2 ∗ F4) = 0

(D) 2RMN = ∂MΦ∂NΦ+ eΦ/2
(

1

6
(F4)

2
MN − 1

64
gMNF

2
4

)

(C.6)

with Bianchi
dF4 = 0 ⇒ F4 = dC3 (C.7)

Since we assumed all the axions χi to depend only on the radial coordinate, equation (B) is satisőed.
It is really easy to check that, upon identiőcation of all the axions χi = χ/2 and thus setting all moduli
őelds Φ to zero, equations (A), (C) and (D) instead put constraints on our őeld that read as (4.17):

(A) ⇒ d ∗ dϕ =
1

2
eϕ/2

√
g(∂rχ)

2

(C) ⇒ 0 = ∂r(e
ϕ/2∂rχ ∗ dr)

(D) ⇒ Rµν =
1

2
∂µϕ∂νϕ− ebϕ∂µχ∂νχ

(C.8)

Therefore everything is consistent and we recover our 4D theory without any issue.
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