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Introduction

The evolution of electricity markets in the last decades has been significant, moving

from centralised monopolies to decentralised, competitive models. The evolution began

in the 20th century with a single entity managing all phases of electricity supply, based

on the belief that electricity was a natural monopoly best managed by a central entity.

Starting in the 1970s, politicians began to push for the liberalisation of the market,

reducing government interference and promoting competition. This movement brings

potential benefits, such as increased innovation, improved products and lower prices,

while promoting economic growth.

This process started in several countries in the 1990s, significantly influenced by the

Chilean reform in the 1980s. The European Union embarked on this path in the mid-

1990s, although member states had different speeds of implementation. These changes

led to the entry of new competitors, increasing competition and further disrupting tra-

ditional market structures. In the 21st century, these trends continue, driven by tech-

nological innovation, policy reforms and market mechanisms, leading to a more diverse

and competitive energy landscape.

Electricity prices are a linchpin in the market, influencing economic activities, thus

making price forecasting a crucial aspect of investment planning and market strategy

formulation. For market operators, accurate price forecasts are invaluable. In the short

term, they inform buying or selling decisions, maximising profits. Medium to long-term

forecasts guide future investment planning in new infrastructure and generation capac-

ity, ensuring the stability of the electricity supply. Additionally, in the field of risk

management, these forecasts are essential for mitigating volatility exposure, efficient re-

source allocation, and informed investment decision-making. However, single forecasts

may occasionally be off-target, presenting potential financial risks for market partici-

pants. Herein lies the significance of forecast combinations or blending different models’

forecasts. This approach provides more accurate predictions, reducing uncertainty in
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energy markets and risks associated with investment decisions. The quality of individual

forecasts and the weight attributed to each in the combination are both extremely impor-

tant for achieving an improvement in forecast combination. This technique, also known

as model averaging, is designed to yield superior forecasts by leveraging the strengths of

several individual forecasts, offsetting each model’s errors and biases to generate a more

accurate prediction. Forecast combination gained recognition with Bates and Granger’s

seminal 1969 work (Bates & Granger, 1969). They demonstrated that a blend of mul-

tiple forecasts could reduce mean-square error. This principle was further reinforced

in the more recent M4 competition (Makridakis et al., 2020), a large-scale predictive

analysis contest, where combinations showed impressive results.

In Chapter 1 the evolution and liberalisation of electricity markets is discussed. The

shift began in the 1970s, driven by a desire for improved competition, efficiency, and

consumer choice. This liberalisation involved the separation of monopolistic entities

into distinct functions. The narrative continues by explaining the mechanisms of the

marketplace, focusing on wholesale electricity trading, which encompasses day-ahead

markets and intra-day markets, vital for balancing supply and demand in real-time.

In Chapter 2, the text introduces the literature on Forecasting Combinations and

provides an overview of the methods used to evaluate the performance of forecasts.

Moreover, the chapter explores five distinct methods for determining the weights for

forecast combinations. These methods are crucial for optimizing the use of different

forecasts in creating a combined, and typically more accurate, forecast.

In Chapter 3, various models used for time series forecasting are introduced. These

models include ARIMA, Exponential Smoothing, Random Forest, and Spline. The

chapter dives into the specifics of each model, illustrating their characteristics, benefits,

and applications in time series forecasting.

In Chapter 4, an exploratory data analysis is conducted on 24 distinct time series.

This analysis includes the application of Stationarity tests to these series. Moreover,

forecasting plots are presented, juxtaposing actual data with predictions from selected

forecasting models. Finally, the chapter concludes with a summary of the forecasting

performance for each model, providing an informative comparison of their respective

predictive capabilities.



Chapter 1

Electricity markets

The history of electricity markets has evolved significantly from a highly centralised

and vertically integrated system to a decentralised and market-oriented model. At the

beginning of the 20th century, the electricity sector was characterised by a monopolistic

structure in which a single player managed the entire process of electricity generation,

transmission and distribution to end consumers. This structure was based on the belief

that electricity was a natural monopoly and that therefore one central entity was best

placed to manage the entire system. In the 1970s, however, politicians began to question

the effectiveness of this system and started to look for ways to introduce competition

and liberalise the electricity sector. As the name suggests, liberalisation is a process of

reducing or eliminating the government’s presence in an industry to increase competition

and create the conditions for a free market.

In general, a free market can be beneficial in that it allows competition between

companies for the supply of goods and services, which can ultimately lead to higher

quality products, lower prices and more innovation. Companies are then motivated to

be efficient and innovative to attract customers and increase their market share, which

can lead to increased productivity, economic growth and job creation. Consumers also

benefit, as they have more choices and can make purchases that better suit their needs

and budget, having the freedom to choose from a wider group of suppliers. Furthermore,

the free market allows individuals and businesses to pursue their interests and allocate

resources according to market demand, rather than relying on government intervention

or central planning. This can lead to a more efficient allocation of resources and a better

overall economic outcome.
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On the other hand, in industries characterized by stringent regulations and monopo-

lies, firms often find themselves bounded by inflexible rules that can impede innovation

and limit their ability to adapt to market fluctuations. The process of deregulation and

liberalisation provides corporations with the latitude to function more autonomously

and base their decisions on market dynamics rather than governmental mandates. An

additional benefit of deregulation is its capacity to boost competitiveness within a mar-

ket. Indeed, in a regulated industry, the provision of specific products or services is

typically restricted to a solitary entity or a limited number of companies, potentially

escalating prices while compromising on quality. Deregulation simplifies the process for

new entrants in the market, as it diminishes entry barriers and incites increased compe-

tition, which could ultimately translate to more affordable prices and superior quality

goods and services for the end consumer. However, to make a market entry, certain

prerequisites need to be fulfilled, for instance, an electricity utility is required to adhere

to specific regulations and undertake its own set of obligations and responsibilities.

1.1 The Liberalisation Process

In the 1990s, several countries started to reorganise and liberalise their electricity

markets, following in the footsteps of the pioneering Chilean reform of the 1980s. The

United Kingdom and the Nordic countries of Europe were among the first to begin the

transition, leading the way for many nations around the world to embrace deregulation

as a means of creating competitive energy markets. In Australia, for example, the

National Electricity Market (NEM) was established in 1998 to replace a previously state-

run electricity market. New Zealand followed suit a year later with the introduction of

the New Zealand Electricity Market (NZEM).

Nevertheless, the real impetus for deregulation was observed in Europe. The Eu-

ropean Union (EU) began its path towards energy market liberalisation in the 1990s,

starting with the publication of the first electricity directive in 1996. This was followed

by a second electricity directive in 2003, which required all EU member states to have

fully liberalised electricity markets by 2007. While some countries, such as Germany,

liberalised their markets quickly, others, such as France and Italy, were slower to adopt

these changes.
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In Italy, the first steps were taken in 1992, when Enel was transformed into a joint-

stock company, and then Italy liberalised its electricity market in February 1999 (Giuli-

etti & Sicca, 1999), following the adoption of the European Union Electricity Directive

in 1996. At the legal level though, the complete liberalisation of the entire Italian energy

market was implemented with Decree Law 73 of 2007, later converted into Law 125 of

03/08/2007.

As already mentioned, the liberalisation process involved the separation of the in-

tegrated monopolies that previously managed the production, transmission and distri-

bution of electricity and the introduction of competition through the creation of an

electricity wholesale market. Formed under Law No. 481/95 in the year 1995, the

Autorità per l’Energia Elettrica e il Gas (AEEG), or the Italian Regulatory Authority

for Electricity and Gas, was instituted with the purpose of overseeing and regulating

public utility services related to electricity and gas. The AEEG’s task was to promote

competition and efficiency in the sectors, to ensure fair remuneration for companies and

to guarantee service through a transparent and geographically uniform tariff system.

In particular, the AEEG played a significant role in the liberalisation of the Italian

electricity market, operating from 1996 to 1998. Over time, the AEEG extended its

regulatory scope to other aspects of the energy sector, eventually taking on the name

ARERA. Today, ARERA continues to regulate the Italian energy market and protect

the interests of users and consumers.

The liberalisation of the electricity market in Italy has led to the entry of new com-

petitors and the emergence of new players such as wholesalers, producers, distributors,

traders and consortia. Intermediaries and service providers have played an increasingly

important role in the liberalised market and new specialised entities have emerged to

provide such services. Enel S.p.A., a major electricity company, was obliged to divest

15,000 MW of capacity by 2003, according to Legislative Decree No. 79/99. The govern-

ment set the guidelines for divestment, including the requirement that new generators

have a mix of base and peaking plants, diversified primary energy sources, and adequate

geographic distribution to avoid local monopolies. The divestment process involved the

creation of three joint-stock companies by Enel S.p.A. and their subsequent sale to new

operators. (ARERA Annual Report “The liberalisation of the market” 2000)
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1.2 The marketplace

Since the 1990s, the deregulation and introduction of competitive markets in many

countries have transformed traditionally monopolistic energy sectors under state con-

trol. Electricity is now traded through spot and derivative contracts, but cannot be

economically stored in a cheap way and therefore requires a constant balance between

production and consumption. Unlike other goods, electricity is difficult to store as many

technologies for the storage of energy on a large scale are still very limited. As a re-

sult, electricity must be produced at the same moment it is consumed and the price

of electricity varies throughout the day, depending on the balance between supply and

demand. Excess supply and low demand lead to low prices, while high demand and low

supply drive prices up. The power system must be kept in balance; electricity must be

produced and consumed in equal amounts at all times.

This balance is granted on the market via trading electricity in one-hour cycles.

In the electricity market, there are different trading products with different periods

between purchase and actual delivery. On the forward market, electricity can be traded

several years in advance, while long-term contracts are used by buyers to cushion the

risk of price increases. By paying a premium for this planning certainty, buyers generate

additional revenue for sellers, which can be used to finance new generation capacity. The

closer the delivery date, the more accurate the consumption and production forecasts

become, and the short-term spot market divides into two markets with different delivery

times: a day-ahead market and an intra-day market. One of the largest markets for

electricity exchange is the European internal energy market exchange and the majority

of electricity trading takes place on day-ahead markets.

Day-ahead markets, a crucial component of the wholesale electricity markets, func-

tion as a forward market where electricity quantities and prices are determined a day

in advance based on forecasted demand. Participants—generators, retailers, and large

consumers—submit their bids and offers for each hour of the upcoming day, indicating

how much electricity they plan to produce, consume, or sell and at what price. These

bids and offers are then processed by the market operator using complex optimization

algorithms to match supply and demand for every hour, resulting in a market clearing

price, also known as the locational marginal price. This market price represents the

marginal cost of electricity supply for each hour and serves as the reference price for all

market transactions for that day. This mechanism ensures that the generation resources
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are scheduled economically, prioritizing the lowest-cost electricity first, while maintain-

ing system reliability. The day-ahead market provides market participants with a degree

of financial certainty and allows for efficient resource planning, thus playing a pivotal

role in the functioning of modern electricity markets.

In most electricity exchanges, day-ahead markets are complemented by additional

types of markets that allow the participants to trade electricity in real-time or in ad-

vance. These markets include intra-day markets, which allow participants to adjust

their positions during the day, and futures markets, which allow participants to trade

electricity for delivery in the future. Together, these markets offer market participants

a range of options to manage their exposure to price and supply risks in the electricity

market. In order to enable the market to be balanced at every time of the day, an im-

portant mechanism plays a role. To take on uncertainties derived from external factors

such as weather conditions, the intra-day market allows indeed for operations once the

day-ahead market closes. Trades can take place immediately when purchases and sales

bids meet. All intra-day market activities need to be completed at least 30 minutes

before the start of the electricity delivery hour. Participants in the day-ahead market

trade electricity for the next day and submit bids before noon specifying the quantity

and time of delivery. The exchange then determines the wholesale price for each hour of

the following day and accepts the successful bids. This wholesale price is an important

reference for the electricity market, similar to the closing price of a share on the stock

exchange. On the intraday market, on the other hand, electricity can be traded up to

30 minutes before delivery, although within the regulation zone, it is only traded five

minutes in advance. In the electricity market, there are different trading products with

different time periods between purchase and actual delivery. On the forward market,

electricity can be traded several years in advance, while long-term contracts are used

by buyers to cushion the risk of price increases. By paying a premium for this planning

certainty, buyers generate additional revenue for sellers, which can be used to finance

new generation capacity. The closer the delivery date, the more accurate the consump-

tion and production forecasts become, and the short-term spot market divides into two

markets with different delivery times: a day-ahead market and an intraday market.

In the electricity sector, there is a wholesale market in which electricity producers

compete to offer their electricity production to retailers who then reprice and sell it

to consumers. In general, wholesale prices have been limited to large retail suppliers.

However, there is a recent trend in markets such as New England to open up to end-users

seeking to reduce unnecessary overheads in their energy costs by purchasing directly from
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generators. This shift by consumers towards buying electricity directly from generators

is a relatively new phenomenon, as in the past it was believed that large retail suppliers

were better equipped to handle the complexities of electricity markets. However, as end-

users seek greater control over their energy costs, purchasing directly from generators

is becoming increasingly attractive. The advantages of buying electricity directly from

generators include lower prices and greater control over the energy sources used. By

eliminating middlemen, consumers can save money and ensure that their electricity is

generated from specific sources, such as renewable energy. In overall terms, the shift by

end users to purchasing electricity directly from generators is part of a broader trend

where consumers are seeking more control and transparency in their energy consumption

and as markets continue to open up and technology advances, this trend is likely to

continue.

The wholesale market is where commodities (electricity) are bought and sold and the

trading process includes electricity generators, electricity suppliers (whose job it is to

trade electricity for sale to end consumers), and traders, who carry out the daily trans-

actions that contribute to the liquidity of the market. Competition is high in wholesale

markets, where electricity is traded before it is sold to consumers. Electricity companies

compete to sell their electricity at the lowest possible price but also take into account

the reliability and stability of the grid. These markets typically operate in two phases:

a day-ahead market, where transactions are made based on demand forecasts, and a

real-time market, which responds to immediate demand and compensates for deviations

from the day-ahead forecast. These markets, with their sophisticated auction mecha-

nisms and pricing algorithms, ensure an efficient and economic allocation of electricity,

always favouring the cheapest resources to meet demand, just like in any other efficient

financial market. With the advent of renewable energies, these markets have become

even more complex, as the fluctuations of solar and wind energy require innovative

strategies to balance the grid. However, the further development of wholesale electric-

ity markets plays a key role in maintaining grid reliability, promoting competition and

facilitating the transition to a more sustainable energy future.

As we navigate the third decade of the 21st century, global electricity markets present

a picture of dynamic transformation, marked by a confluence of technological innovation,

policy reforms and market mechanisms. Traditional boundaries have been blurred by

the proliferation of decentralised power generation, giving rise to a more diverse and

competitive energy landscape.



Chapter 2

Forecast Combinations

As described in Chapter 1 electricity prices are an important component of the mar-

ket, due to the crucial role they play in economic dynamics, so price forecasting is an

indispensable component for companies and institutions when considering the macroe-

conomic scenario and planning future investments and strategies in the markets.

For market operators, price forecasts help in planning electricity supply and choos-

ing trading strategies. For example, short-term price forecasts allow traders to decide

whether to buy or sell electricity in the market to maximize profits, while medium and

long-term price forecasts help the operators to plan future investments in new gener-

ation capacity and infrastructure, ensuring a long-term stable and reliable supply of

electricity. Moreover, electricity price forecast plays a determining role while looking at

the risk management side of market participants; indeed, it is extremely useful to re-

duce exposure to volatility, allocate resources efficiently and make informed investment

decisions.

Single forecasts in the context of electricity prices can sometimes be inaccurate, lead-

ing to potential financial losses and risks for market participants. Therefore combining

different forecasts coming from different models can result helpful as it can allow us to

obtain a better and more accurate forecast.

In the context of electricity prices, the forecast combination can be useful, for in-

stance, to mitigate uncertainty in energy markets and to reduce the risk associated with

investment decisions. In addition, one model could outperform others while looking

at a specific hourly timeframe but not for others. It is important to consider that to

achieve a substantial improvement in forecast combination, it is not only the quality of

9
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the single forecasts that is important but also the estimation of the weights attributed

to each of them.

Forecast combination, also known as model averaging, is a method used in statistical

forecasting to generate improved forecasts by combining more individual forecasts. The

underlying idea is that by combining forecasts from different models, the errors and

biases inherent in each individual model can be reduced in order to obtain a more

accurate forecast. One important assumption while considering the implementation of

combining forecasts is that models taken into account are generally accurate enough.

Indeed, if we are using specific models that are not suited for the data considered and

thus inaccurate in forecasting, this may as well be leading to worse forecasts than just

a single accurate model.

The work conducted by Bates and Granger in 1969 (Bates & Granger, 1969) is

considered one of the seminal works in the field of forecast combinations. In this work,

they explore the potential benefits of combining several forecasts to improve forecast

accuracy. Considering a particular example in their work, they report that ” ... the

composite set of forecasts can yield lower mean-square error than either of the original

forecasts.”. In this paper, one of the various aspects analysed is that the variance of a

combination of forecasts as simple as the arithmetic mean of two forecasts has a smaller

variance than both forecasts taken alone.

Another major early contribution to this field was made by Clemen (Clemen, 1989)

where he also concluded that ”forecast accuracy can be substantially improved through

the combination of multiple individual forecasts.”. Moreover, an important finding of

Clemen is that simple combinations perform relatively well compared to other more

complex combinations and in line with this, more recent research found that during the

M4 competition Makridakis et al. (2020) the simple combinations achieve good perfor-

mances and are sufficiently competitive. The M4 Competition is a large-scale competi-

tion in predictive analysis in which the final goal is to evaluate the precision of diverse

forecasting methodologies and to identify the most effective ones for different kinds of

temporal data sequences. This contest incorporated 100,000 time series data from a va-

riety of fields, such as macroeconomic factors, financial sequences, and population data,

among others. Contestants had the freedom to employ any forecasting technique they

preferred, with the precision of their predictions assessed through a comprehensive set

of metrics. The outcomes of this competition have been extensively utilized to inform

and shape both the practical application and academic study of forecasting.
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One of the most significant aspects that emerged from the competition was the supe-

riority of combined methods, especially statistical models, based on two main evaluation

indicators: mean absolute symmetrical percentage error (sMAPE) and mean absolute

scalar error (MASE). These error metrics serve as benchmarks to assess the accuracy

of the various forecasting models. An interesting feature is that these two metrics were

not used independently during the competition. Rather, the overall weighted average

(OWA) of both measures was used to evaluate the forecasts submitted by the partici-

pants. This method facilitated a more holistic assessment, taking into account both the

proportionality of the error (as noted by sMAPE) and the comparative effectiveness of

the approach with respect to baseline forecasts (as noted by MASE).

The following information is derived from a table (see Table 2.1) presented in the

work of Makridakis et al. (2020) showing the effectiveness of the combinations, which

only by using simple arithmetic mean for all predictions of the M4 competition had lower

values of sMAPE and MASE than Single, Holt and Damped Exponential Smoothing.

Table 2.1: Accuracy of the Single, Holt and Damped exponential smoothing PFs, as
well as those of Comb and ARIMA, across the M4 dataset (Makridakis et al., 2020)

Method sMAPE MASE OWA Rank
SES 13.087 1.885 0.975 34
Holt 13.775 1.772 0.971 33
Damped 12.661 1.683 0.907 22
Comb 12.555 1.663 0.898 19
ARIMA 12.669 1.666 0.903 20

An additional significant finding in the competition was that a top-performing combi-

nation was one that combined one ML model and seven statistical models. The weights

for this combination were given on the basis of a ML model that was trained to minimise

forecasting errors.
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2.1 Forecasting Performance Measures

Hereafter are presented the statistics that have been considered for the evaluation of

the fitted models and the combination of forecasts.

Mean squared error (MSE)

MSE =
1

m

m∑
t=1

(
Pt − P̂t

)2

(2.1)

Root mean squared percentage error (RMSPE)

RMSPE =

√√√√ 1

m

m∑
t=1

(
100× Pt − P̂t

Pt

)2

(2.2)

Mean absolute percentage error (MAPE)

MAPE =
1

m

m∑
t=1

∣∣∣∣∣100× Pjt − P̂jt

Pjt

∣∣∣∣∣ (2.3)

Mean absolute scaled error (MASE)

MASE =
m− 1

m

∑m
t=2

∣∣∣Pt − P̂ t
∣∣∣∑m

t=2 |Pt − Pt−1| (2.4)

Where:

• m: This is the total number of observations in the dataset.

• Pt: This represents the actual observed value at time t.

• P̂t: Represents the predicted value at time t.

In this thesis, forecasting techniques are implemented and final observations are

reserved for comparison with predicted values ( out-of-sample forecasting), using metrics

in equations (2.1-2.4)
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2.2 How to choose the optimal weights?

A critical aspect of model combining techniques is the choice of the optimal weights

and an assumption that can be made is that the performance of one individual forecast

model would be consistent over time.

Again, as pointed out in Wang et al. (2022), the straightforward strategy of taking

the arithmetic mean of different forecasts is not only a commonly employed method

but also showcases impressive stability as a combination approach. This method, in its

simplicity, treats each model equally, irrespective of its individual forecasting accuracy.

However, a more reasonable approach would be to assign greater weight to the model

exhibiting superior forecast accuracy. It stands to reason that a model demonstrating

a higher degree of precision should have a more significant influence on the combined

forecast, thereby potentially enhancing the overall predictive performance.

Bates and Granger (Bates & Granger, 1969) express the variance of the combination

as follows:

σ2
c = k2σ2

1 + (1− k)2σ2
2 + 2ρkσ1(1− k)σ2 (2.5)

where k is the proportionate weight given to the first set of forecasts and ρ is the

correlation coefficient between the errors in the first set of forecasts and the second.

The final goal is to minimize the variance σ2
c and by differentiating with respect to k we

obtain:

k =
σ2
2 − ρσ1σ2

σ2
1 − σ2

2 − 2ρσ1σ2

(2.6)

Bates and Granger show that if k is determined by equation (2.5), the value of σ2
c is no

greater than the smaller of the two individual variances. This process is implemented in

the ForecastComb R package with the function comb BG created by authors: Christoph

E. Weiss and Gernot R. Roetzer. (Weiss et al., 2018)

2.3 ForecastComb Packages for Choosing Weights

In this section, we are going to illustrate the functions used in the analysis conducted

in this thesis to find optimal weights. Functions are part of the R Statistical Software

Package. Weiss et al. (2018)
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2.3.1 comb CSR

The function comb CSR, represents the Complete Subset Regression method utilized

for combining forecasts. The function iteratively generates all possible subsets of the

ensemble of base-forecasters (i.e., all possible combinations of the columns in the predic-

tion matrix). For each subset, it estimates a linear regression model with the observed

vector as the response variable and the selected base-forecasters as the predictors. This

is done using the lm function, which performs Ordinary Least Squares (OLS) regression.

For each estimated model, it calculates four Information Criteria (AIC, AICc, BIC,

HQ). These criteria are then normalized using the comp normalized weights function.

The expression for the weights is:

wi =
e−0.5∗ICi∑n
j=1 e

−0.5∗ICj
(2.7)

Where:

• wi is the weight for model i.

• ICi is the information criterion (e.g., AIC, BIC, etc.) for model i.

2.3.2 comb LAD

The comb LAD() function is employed to combine forecasts using the Least Absolute

Deviation (LAD) approach. Unlike the Ordinary Least Squares method which minimizes

the sum of squared differences between observed and predicted values, the LAD method

minimizes the sum of absolute differences. This characteristic makes the LAD approach

more robust against outliers, as it is less influenced by extreme values compared to the

OLS method. Inside the function, linear programming techniques are utilized to solve

the optimization problem that seeks to find the optimal weights by minimizing the sum

of absolute forecast errors.

The problem for LAD can be expressed as follows:

min
β

n∑
i=1

|yi − x′
iβ| (2.8)
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Where:

• yi is the i-th observed value

• x′
i is the i-th row of the matrix of predictors (including a 1 for the intercept term)

• β is the vector of coefficients (weights in the forecast combination context)

The estimation of the regression coefficients (or weights, β) in LAD regression is a

linear programming problem and it requires numerical methods to solve for the coeffi-

cients.

2.3.3 comb NG

The comb NG (Newbold & Granger, 1974) function is an implementation of the

Newbold and Granger (1974) method for combining forecasts. This method calculates

optimal weights for each model’s forecast based on the inverse of the sample mean

squared prediction error matrix. First, the function computes the error matrix by

subtracting the prediction matrix from the observed vector. Then, it calculates the

sample mean squared prediction error matrix, which is used to compute the optimal

weights for combining forecasts. The weights are calculated by solving the linear system

involving the inverse of the sample mean squared prediction error matrix and a vector

of ones.

Let yt be the target variable and ft = (f1t, . . . , fNt)
′ a set of N predictors, with Σ

being the mean squared prediction error matrix of ft and e an N×1 vector of (1, . . . , 1)′.

Their method minimizes the mean squared prediction error, subject to the normalization

condition e′w = 1.

The combination weights derived are:

wNG =
Σ−1e

e′Σ−1e
(2.9)

The combined forecast is then computed using:

ŷt = f ′tw
NG (2.10)
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2.3.4 comb OLS

In the ForecastComb package, the comb OLS() function is used to perform the Or-

dinary Least Squares (OLS) combination of forecasts. This method aims to find the

best linear fit by minimizing the sum of the squared differences between the observed

values and the predicted values. The comb OLS() function assigns weights to each in-

dividual forecast based on the OLS method, therefore, the weights are equal to the

coefficients estimated by the OLS method. In doing so, the function offers a systematic

and statistically sound method for capitalizing on the strengths of multiple forecasts

to generate a more accurate combined forecast. Internally, the function employs linear

regression techniques to determine the optimal weights that minimize the sum of the

squared forecast errors.

This technique estimates the weights, denoted as wOLS = (w1, . . . , wN)
′, along with

an intercept, b, for consolidating the forecasts.

Given N not perfectly collinear predictors, represented as ft = (f1t, . . . , fNt)
′, the

combination of forecasts for a single data point can be formulated as follows:

yt = b+
N∑
i=1

wifit

2.3.5 comb SA

The comb SA function utilizes the Simple Average (SA) combination method. In

this approach, all forecasting models are given equal weight, and their average is used

as the final forecast.

Consider yt as the target variable, with N distinct, non-collinear predictors denoted

by ft = (f1t, . . . , fNt)
′. A simple averaging approach assigns equal weights to all predic-

tors:

wSA =
1

N
(2.11)

The combined forecast using this strategy is thus given by:

ŷt = f ′tw
SA (2.12)



Chapter 3

Forecasting Models

3.1 ARIMA processes

Autoregressive Integrated Moving Average (ARIMA) processes are commonly esti-

mated in time series forecasting. These models take into account three aspects of the

time series: autoregression (AR), differencing (I), and moving average (MA).

An ARIMA model is typically denoted as ARIMA(p, d, q) where:

• p is the order of the Autoregressive part

• d is the degree of first differencing involved

• q is the order of the Moving average part

The general form of the ARIMA model is expressed as follows:

(1−
p∑

i=1

φiL
i)(1− L)dyt = (1 +

q∑
i=1

θiL
i)εt (3.1)

Where:

• yt is the time series

• φi are the parameters of the autoregressive part of the model

• d is the order of differencing

17
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• L is the lag operator

• θi are the parameters of the moving average part of the model

• εt is white noise

The ARIMA model is fitted to the time series data for predicting future points in

the series.

3.1.1 ARIMA(7,1,0) Model

The ARIMA(7,1,0) model is a particular case of the general ARIMA model. In this

model:

• The order of the autoregressive part (p) is 7. This means that the value at a given

time t is predicted as a linear combination of the past 7 values.

• The order of differencing (d) is 1. This means that we don’t model the time series

itself, but the difference between consecutive values of the time series. This is

typically used to make the time series stationary.

• The order of the moving average part (q) is 0. This means that the error at a

given time is not a linear combination of past errors.

The mathematical representation of the ARIMA(7,1,0) model is:

(1−
7∑

i=1

φiL
i)(1− L)yt = εt (3.2)

Where:

• yt is the time series

• φi are the parameters of the autoregressive part of the model

• L is the lag operator

• εt is white noise
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The ARIMA(7,1,0) model is particularly useful for time series data where the value

at a given time is influenced by the values at the previous 7-time points and where

differencing is needed to make the time series stationary.

3.1.2 ARIMA(7,0,0) Model

The ARIMA(7,0,0) model is another specific case of the general ARIMA model. In

this model:

• The order of the autoregressive part (p) is 7. This implies that the value at a given

time t is predicted as a linear combination of the past 7 values.

• The order of differencing (d) is 0. This signifies that we model the time series

itself, as opposed to the difference between consecutive values of the time series.

This model is appropriate for time series that are already stationary.

• The order of the moving average part (q) is 0. This indicates that the error at a

given time is not a linear combination of past errors.

The mathematical representation of the ARIMA(7,0,0) model is:

(1−
7∑

i=1

φiL
i)yt = εt (3.3)

Where:

• yt is the time series

• φi are the parameters of the autoregressive part of the model

• L is the lag operator

• εt is white noise

The ARIMA(7,0,0) model is especially useful for time series data where the value

at a given time is significantly influenced by the values at the previous 7-time points

and where the series is already stationary, thus not requiring differencing. This model

primarily relies on the autoregressive component, capturing the dependencies among

the previous observations and disregarding the moving average part, which accounts for

the dependencies among the prediction errors.
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3.2 Exponential Smoothing

Exponential Smoothing Models are a suite of forecasting methods which use weighted

averages of past observations to forecast future data. The weights decay exponentially

as the observations get older, hence the name ”Exponential Smoothing”.

The simplest form of Exponential Smoothing is Single Exponential Smoothing, rep-

resented as follows:

ŷT+1|T =
T−1∑
j=0

α(1− α)jyT−j + (1− α)T 	0 (3.4)

Where:

• ŷT+1|T is the smoothed value at time T + 1

• yT−j is the smoothed value at time T − j

• α is the smoothing parameter, 0 ≤ α ≤ 1

Which can also be written in another form:

Forecast equation ŷt+h|t = 	t

Smoothing equation 	t = αyt + (1− α)	t−1

Exponential smoothing models are particularly useful for time series data where there

is a need to give more weight to more recent observations in predicting the future.

3.2.1 Innovation State Space Models

The innovation state space models are described in Hyndman & Athanasopoulos

(2018) and are an extension of exponential smoothing models. ETS models provide a

general and flexible framework as they extend the exponential smoothing technique to

capture three components of time series data: Error, Trend, and Seasonality, hence the

abbreviation ETS.

Error (E): Residual (or the difference) between the actual and predicted value. ETS

models can handle both additive and multiplicative error structures.
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Trend:This captures any consistent upward or downward movement in the data over

time. ETS models can handle both additive and multiplicative trends. They can also

handle situations where there is no trend.

Seasonality: This captures any repeating patterns or cycles in the data that occur at

regular intervals. ETS models can handle both additive and multiplicative seasonality,

as well as situations where there is no seasonality.

3.3 Random Forest

Originating from the work of Leo Breiman in 2001 (Breiman, 2001), the Random

Forest model has established its place as a key tool in the realm of machine learning.

This model excels in tackling tasks such as regression and classification, and exhibits

strength in handling issues like dimensionality reduction, outliers, missing values, and

deriving feature importance.

In the context of Random Forests, the ensemble is made up of decision trees. A ”for-

est” of decision trees is constructed, each with slight differences, and the final prediction

is determined by aggregating the predictions of all the trees - for classification, this is

often the mode of the classes, and for regression, it is typically the average of predictions

(Breiman, 2001).

Two layers of randomness are employed in the creation of a random forest:

• Each tree is grown on a sample drawn with replacement (a bootstrap sample) from

the original dataset, a process known as Bagging.

• When each tree is split, a subset of predictors is selected randomly from all pre-

dictors. The best split is found amongst these. A common choice for the number

of predictors is m =
√
p, where p is the total number of predictors.

The Random Forest model can be represented mathematically as:

RF (y) =
1

B

B∑
b=1

Tb(y) (3.5)

where:
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• RF (y) denotes the prediction of the Random Forest for an input vector y.

• B represents the number of trees in the forest.

• Tb(y) is the prediction made by the b-th decision tree for the input vector y.

In the code implemented the model looks like this where the train data is a data-frame

where the explicatives, which are 7, are the original time series lagged 7 times:

model <- randomForest(PUN ~ ., data = train, ntree = 1000)

‘PUN‘ is the dependent variable to be predicted, ‘ .‘ implies all other variables in

the ‘train‘ data frame are the predictors, and ‘ntree = 1000‘ indicates that the model

will be built using 1,000 trees.

Upon running this code, the Random Forest model is trained by fitting 1,000 decision

trees to various bootstrap samples of the training dataset. To predict a new observation,

each tree provides its own prediction. If the task is regression, the final prediction of

the model is computed as the average of the 1,000 individual tree predictions. For

classification, it’s determined by majority voting.

The decision to utilize lagged features in conjunction with the Random Forest model

is rooted in the nature of the forecasting problem. By working with time-series data,

where temporal dependencies are key - current values often depend on previous values

in the series. Random Forests, as they are, do not inherently consider the sequential

nature of the data, treating each input independently. To account for the temporal

dependencies, lagged features are inserted as the independent variables: features that

incorporate information from previous time steps. This is done by creating new features

that are the ’lagged’ versions of existing ones, effectively shifting the series back by a

certain number of steps In this context, seven lagged times series of the ‘PUN‘ feature

have been created, meaning that information from the preceding week is being incorpo-

rated into the model. With these temporal dependencies in the features, the Random

Forest model can make more accurate predictions, as it now can model the effects of

previous time steps on the current prediction.
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3.4 Spline Modeling

Splines are a statistical tool often used for smoothing, interpolation, and curve fitting.

A spline represents a defined polynomial function which is typically designed to be

smooth and continuous over the range of the data. The key advantage of using splines

is their flexibility in capturing complex non-linear patterns.

In the context of time series analysis, one common challenge is the presence of un-

derlying trends in the data. These trends can often be non-linear and can complicate

the task of forecasting. This is where splines can provide significant benefits. By fitting

a spline to the time series data, we are effectively estimating the underlying trend in a

flexible, non-linear manner.

In this specific scenario, a spline is initially fitted to each of the 24 time series within

the dataset. This fitting process is designed to capture the underlying non-linear trend

in each series. Subsequently, the fitted spline values are subtracted from the original

time series data. This action, often referred to as “de-trending”, produces residual series

that are hopefully simpler and more suited to further modeling.

In the next step, an ARIMA(7,0,0) model is used to forecast the de-trended series.

The ARIMA model is chosen for its effectiveness in capturing autocorrelations in time

series data. Following the ARIMA modeling, we then add back the spline values to the

forecasts. This re-integrates the original non-linear trend into our forecasts, resulting in

final predictions that are consistent with the original series in terms of their underlying

trends. This combined approach of spline de-trending and ARIMA modeling effectively

handles both the non-linear trend and the autocorrelations in the time series data,

resulting in reliable forecasts.





Chapter 4

Case Study. Italian Electricity

Prices

This chapter presents an analysis of real data taken from the official website of the

Italian electricity market by https://www.mercatoelettrico.org/en/ . The loaded

dataset contains observations from 1 January 2021 to 30 April 2023. However, for the

purpose of analysing and validating the model, a subset of the original financial time

series was created, consisting of observations from 1 January 2021 to 31 January 2023.

This subset was used to fit various models and evaluate their performance. However,

the models are, in a rolling window forecasting framework, rescaled at each iteration

to forecast at time t+1. So in the case of both the ARIMA models and the ETS class

models, what has been done, is to evaluate the model orders on the series until 31

January 2023, and then by keeping the constant orders, at each step forward, the model

was being refitted.

The objective of the analysis is to show that by combining forecasts of the Unic Na-

tional Prices (PUN), the forecasting performance measures used to compare the good-

ness of models, will indicate that combinations perform generally better than single

models.

The last three months of data will be used to evaluate how well the models perform

in predicting the PUN values.

The analysis is conducted on the prices for the 24 hours, so, for each day, we will

have 24 forecasts.

25



26

4.1 Exploratory Data Analysis

4.1.1 Time Series Charts

The following charts illustrate the hourly PUN values for the period under consid-

eration. These charts have been created to provide a visual representation of the data,

making it easier to identify any patterns, trends, or anomalies that may be present in

the data. The charts have been created using the ggplot2 package in R.

Figure 4.1: Hourly prices from 1 to 6. The continuous line is the non-linear estimated
by splines.
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Figure 4.2: Hourly prices from 7 to 12. The continuous line is the non-linear
estimated by splines.

Figure 4.3: Hourly prices from 13 to 18. The continuous line is the non-linear
estimated by splines.

As can be seen from the charts (4.1-4.4), prices tend to be higher in the morning,

from 8 to 10, and in the evening, from 17/18 to 23. This pattern can be attributed to

the high demand for electricity during these times when people wake up and get ready
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Figure 4.4: Hourly prices from 19 to 24. The continuous line is the non-linear
estimated by splines.

for work/school and when they return home after work/school. This high demand leads

to an increase in the PUN values, which reflects the market price for electricity in Italy.

The charts displayed in figure 4.5-4.6 show the distribution of the hourly PUN values

in the Italian electricity market from January 1st, 2021 to January 31st, 2023. The

PUN values are displayed in box plot format, with each box representing the interquar-

tile range (IQR) of the data, the line inside the box representing the median, and the

whiskers extending to the minimum and maximum values within 1.5 times the IQR.

Additionally, a horizontal dashed red line is displayed above the plot to indicate the

threshold for identifying potential outliers. These plots provide insight into the distri-

bution of PUN values over the course of the day and allow us to identify any extreme

values that may warrant further investigation.
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Figure 4.5: Hourly prices from 1 to 12

Figure 4.6: Hourly prices from 13 to 24

4.1.2 Stationarity Tests

The Dickey-Fuller (DF) test, proposed by David Dickey and Wayne Fuller (Dickey

& Fuller, 1981), is a common statistical procedure designed to test the null hypothesis

that a unit root is present in an autoregressive model. In the context of time series



30

analysis, a unit root indicates non-stationarity, suggesting that the statistical properties

of the series vary over time.

A simple autoregressive model of order one, AR(1), can be written as Yt = φYt−1+εt,

where Yt is the variable of interest, φ is the autoregressive coefficient, and εt is a white

noise error term. The DF test specifically tests the null hypothesis H0 : φ = 1 against

the alternative hypothesis H1 : φ < 1. If the null hypothesis is not rejected, it implies

the presence of a unit root and thus, the series is non-stationary.

Following are the results of the Dickey-Fuller Test done on the log-prices, and as we

could expect there is a non-rejection of the null Hypothesis for all the time series and a

rejection of the differenced time series:

Series p value p value diff
Time Series 1 0.59 0.01
Time Series 2 0.54 0.01
Time Series 3 0.52 0.01
Time Series 4 0.46 0.01
Time Series 5 0.51 0.01
Time Series 6 0.53 0.01
Time Series 7 0.55 0.01
Time Series 8 0.46 0.01
Time Series 9 0.41 0.01
Time Series 10 0.37 0.01
Time Series 11 0.44 0.01
Time Series 12 0.44 0.01
Time Series 13 0.48 0.01
Time Series 14 0.43 0.01
Time Series 15 0.34 0.01
Time Series 16 0.45 0.01
Time Series 17 0.52 0.01
Time Series 18 0.58 0.01
Time Series 19 0.59 0.01
Time Series 20 0.62 0.01
Time Series 21 0.65 0.01
Time Series 22 0.73 0.01
Time Series 23 0.70 0.01
Time Series 24 0.71 0.01

Table 4.1: Dickey-Fuller Test Results

The Phillips & Perron (1988) test, developed by Peter C.B. Phillips and Pierre Per-

ron, is a statistical methodology employed to investigate the presence of a unit root in a

time series, thereby testing for stationarity. Much like the Dickey-Fuller test, the PP test
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considers an autoregressive model, however, it makes an adjustment for autocorrelated

residuals, a feature not contemplated in the original Dickey-Fuller setup.

The PP test improves upon the Dickey-Fuller test by considering the possibility of

autocorrelation within the error terms. Autocorrelated residuals can lead to inefficient

and biased estimates if not accounted for, making the PP test a valuable tool when this

assumption may be violated. As such, both the Dickey-Fuller and Phillips-Perron tests

are fundamental in preliminary time series analysis, ensuring the correct identification

of the data’s underlying properties, and thus, the appropriateness of the subsequent

modeling and forecasting.

Following are the results of the test:

Series p value original p value differenced
Time Series 1 0.12 0.01
Time Series 2 0.02 0.01
Time Series 3 0.01 0.01
Time Series 4 0.01 0.01
Time Series 5 0.01 0.01
Time Series 6 0.01 0.01
Time Series 7 0.01 0.01
Time Series 8 0.01 0.01
Time Series 9 0.01 0.01
Time Series 10 0.01 0.01
Time Series 11 0.01 0.01
Time Series 12 0.01 0.01
Time Series 13 0.01 0.01
Time Series 14 0.01 0.01
Time Series 15 0.01 0.01
Time Series 16 0.01 0.01
Time Series 17 0.01 0.01
Time Series 18 0.02 0.01
Time Series 19 0.05 0.01
Time Series 20 0.10 0.01
Time Series 21 0.31 0.01
Time Series 22 0.50 0.01
Time Series 23 0.55 0.01
Time Series 24 0.37 0.01

Table 4.2: Phillips-Perron Test Results

Since the p-value for the time series from 2 to 19 is smaller than the chosen significance

level (0.05), we reject the Null Hypothesis, which suggests the presence of a Unit Root.

Therefore, a model without differentiating the series is estimated.
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4.2 Forecasting Plots

The presented time series plots 4.7-4.10 portray the Actual data, the best ETS (Error,

Trend, Seasonality) model, and the LAD (Least Absolute Deviation) method over the

period going from February 1st to April 30th.

The ‘Actual’ lines depict the true data points, which offer a clear picture of the

inherent trend, and seasonal changes.

The ‘Best ETS’ line displays the predictive outcome of the ETS model. Although this

model offers good forecasts in general, it may struggle with sudden shocks or anomalies

in the data due to its inherent structure.

The ‘Least Absolute Deviation’ model is the third line, which by combining the

forecasts shows to perform better specifically at certain time periods, hours that go

from 7 to 20.

This conclusion is strengthened by looking at the comparison between the LAD

combination and the ETS model in Table A.8 and in Table 4.3.

Figure 4.7: Hourly Forecasting Plots from 1 to 6
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Figure 4.8: Hourly Forecasting Plots from 7 to 12

Figure 4.9: Hourly Forecasting Plots from 13 to 18
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Figure 4.10: Hourly Forecasting Plots from 19 to 24



35

4.3 Forecasting Performance Comparison

Table 4.3: Forecasting Performance Table

MSE RMSPE MAPE MASE

ARIMA 440.6827 50.46526 15.76433 0.8640057
ETS 378.8342 48.73549 14.92897 0.8072066
SPLINE 448.2502 48.74873 15.43225 0.8596179
RandomForest 433.4511 50.55933 16.49392 0.8939981

CSR 335.5321 48.77521 14.62746 0.7748925
LAD 345.9516 50.23261 14.44716 0.7345586
NG 349.4714 47.85949 14.67107 0.7872265
OLS 328.5656 48.10136 14.47071 0.7677305
SA 384.4519 49.07497 15.10721 0.8141691

Table 4.3 presents a comparison of various forecasting models based on four error

metrics. The models being compared are ARIMA, ETS, SPLINE, RandomForest, CSR,

LAD, NG, OLS, and SA. The last five models (CSR, LAD, NG, OLS, SA) are all

combined versions of the models.

Observing the Mean Squared Error (MSE), we notice that combination models like

CSR and OLS yield lower values than the non-combination models, indicating they may

provide better fits for the dataset. Specifically, CSR yields the smallest MSE.

Considering the Root Mean Squared Percentage Error (RMSPE), the NG model,

another combination model, shows the least error, suggesting it could be more accurate

in terms of percentage error than the other models.

When we look at the Mean Absolute Percentage Error (MAPE), which measures the

absolute percentage deviation, the LAD model performs the best.

Finally, for the Mean Absolute Scaled Error (MASE), the LAD model again performs

the best among all models.

In summary, while individual performance varies across metrics, the combination

models (CSR, LAD, NG, OLS, SA) generally perform better than the non-combination

models. Particularly, the LAD model appears to perform most consistently across dif-

ferent metrics.





Conclusions

In the case study of this thesis, the focus has been on hourly prices in the Italian

market.

The study embarked on a journey to investigate the forecasting efficiency of forecast

combinations over single forecasts. The culmination of this thesis validates the initial

hypothesis by demonstrating the superiority of forecast combination methods over single

forecast models.

This study is based on the realization that no single forecast model can enclose all the

complexities inherent in a data set. Consequently, it explored the potential benefits of

integrating multiple forecasts. The fundamental hypothesis underlying this investigation

was the belief that combining different forecasts could mitigate the individual weaknesses

of each model, thereby producing more accurate and reliable forecasts. The results of the

study confirmed this hypothesis, as the combination of multiple forecasts demonstrated

superior statistical performance over the majority of the time intervals tested.

Among the different time series, we noticed a consistent pattern in which forecast

combinations, particularly the Least Absolute Deviation (LAD) model, outperformed

individual models. They showed greater robustness to data variability, better adapt-

ability to sudden changes, and overall higher forecast accuracy. Thus, the premise that

the strength of one model can compensate for the weakness of another in a forecast

combination became more than theoretical as it became empirical.

The results of this study invite a more comprehensive exploration. Further investiga-

tion could explore the effects of using different methods to find optimal weights, as well

as testing additional forecasting methodologies. It would also be interesting to replicate

this analysis under different circumstances, such as under different market conditions

or using different data sets. This approach could provide broader insights and confirm

the robustness of the results under various scenarios. In addition, the incorporation of

37
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emerging forecasting techniques and technologies, such as machine learning and artificial

intelligence, could provide new insights into forecast combinations.



Appendix A

A.1 The choice of the models

Forecasting performances are calculated following formulas in (2.1).

Holt

Table A.1: Forecasting performance for Holt

Series Model MSE RMSPE MAPE MASE

1 Holt 194.8086 10.855146 6.302005 0.9408369
2 Holt 148.1555 10.167490 7.008713 0.9234718
3 Holt 157.8804 11.239068 8.080082 0.9376083
4 Holt 160.7750 11.755738 7.702118 0.8900411
5 Holt 169.3648 11.564038 8.085371 0.9110387

6 Holt 131.7862 9.332468 6.718754 0.9941569
7 Holt 254.4639 11.379268 7.816679 0.9914582
8 Holt 871.4160 19.562437 14.824912 0.9838628
9 Holt 1498.7990 24.749134 19.464241 1.0085774
10 Holt 1125.5406 22.105870 17.470053 0.9279978

11 Holt 620.9925 31.976775 15.130060 0.8983710
12 Holt 671.8066 61.083466 21.903252 0.9376296
13 Holt 673.0553 85.063688 27.797333 0.9288163
14 Holt 881.1546 340.651496 61.816760 0.9439775
15 Holt 996.6939 292.429422 62.599573 0.9424394

16 Holt 941.3615 277.915877 53.231427 0.9323206
17 Holt 705.6174 40.319172 18.087995 0.9259500
18 Holt 267.4454 10.349543 8.037564 0.9585507
19 Holt 632.4892 14.394546 10.949379 0.8986839
20 Holt 680.7859 14.366259 10.720625 0.8966905

21 Holt 518.4657 12.815911 9.358799 0.8700798
22 Holt 444.0631 13.364764 8.733549 0.9129820
23 Holt 297.6628 10.811756 5.933634 0.9358160
24 Holt 240.6778 10.715756 5.920313 0.9303616
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Holt Winters

Table A.2: Forecasting performance for HW

Series Model MSE RMSPE MAPE MASE

1 HW 223.2951 11.103812 7.927016 1.2062210
2 HW 159.1844 10.422394 7.685758 1.0220869
3 HW 176.2076 11.604933 8.641012 1.0123150
4 HW 223.4655 13.380111 9.652779 1.1370332
5 HW 217.1186 12.410038 9.387004 1.0762351

6 HW 143.8335 9.487889 7.207469 1.0713845
7 HW 277.0372 11.466450 9.397788 1.2116823
8 HW 508.7870 14.846123 11.538539 0.7629945
9 HW 637.1899 15.544263 12.006930 0.6422378

10 HW 708.9168 17.113227 14.095837 0.7638317

11 HW 515.5839 27.412640 14.504867 0.8836680
12 HW 585.1271 53.712606 20.100213 0.8942854
13 HW 619.1490 85.533787 26.884384 0.9112153
14 HW 646.4234 278.732006 52.782732 0.7839232
15 HW 678.6356 256.290439 54.906655 0.7577869

16 HW 693.0034 224.849464 44.644742 0.7994695
17 HW 659.9844 38.507084 18.499131 1.0123804
18 HW 421.3075 13.895780 11.383747 1.3206185
19 HW 744.2616 15.514813 11.690438 0.9521283
20 HW 725.3770 14.268561 10.870189 0.9140285

21 HW 609.7793 13.762692 10.510212 0.9764334
22 HW 514.0478 14.437687 9.175783 0.9561884
23 HW 315.7357 11.351057 6.275969 0.9817543
24 HW 290.3343 11.709628 6.384747 1.0107247
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Error - Trend - Seasonality

Table A.3: Forecasting performance for ETS

Series Model MSE RMSPE MAPE MASE

1 MNN1 184.6831 10.607575 6.237616 0.9302095
2 MNN2 136.6914 9.897417 6.663537 0.8742342
3 MMN3 148.8034 11.102841 7.641282 0.8805286
4 MMN4 150.9118 11.479671 7.592068 0.8752864
5 MNN5 152.6548 11.070017 7.908901 0.8858238

6 MNN6 118.9297 9.161862 6.518719 0.9553698
7 MAM7 178.8186 9.380201 6.902508 0.8818575
8 MAM8 362.1473 12.280675 8.842705 0.5942302
9 MNM9 542.9782 13.744564 9.826246 0.5381555
10 MNM10 607.2737 14.975616 11.642245 0.6458244

11 MNM11 453.5964 26.105807 12.741553 0.7677768
12 MAM12 561.4296 54.814551 19.328247 0.8129077
13 MMM13 567.3150 85.119430 25.689179 0.8169438
14 MMM14 579.0504 290.313727 52.042128 0.7194401
15 MAM15 592.2110 253.560292 53.073903 0.6773723

16 MAM16 631.1892 227.414801 43.991383 0.7175340
17 MNM17 461.1064 37.570493 15.654902 0.7866310
18 MAA18 192.0367 9.454097 7.397545 0.8633879
19 MAM19 535.2290 13.631803 9.974751 0.8060217
20 MNA20 555.9144 12.869354 9.548618 0.7996341

21 MNN21 474.0191 12.256668 9.012410 0.8373547
22 MNN22 412.0743 12.767834 8.534586 0.8917543
23 MMM23 272.9105 10.267774 5.752409 0.9028979
24 MNM24 220.0467 9.804722 5.777878 0.9117822

It can be easily seen from tables A.1-A.3 that the best ETS (Error - Trend - Sea-

sonality) model found per each time series (all possible combinations have been tried

and model that presented the best forecasting performance has been selected) performs

better both than Holt and Holt-Winters models (cases of RMSPE being better for Holt

or HW are rare and the difference is little, thus there is no reason to prefer that model

over the ETS class).
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ARIMA

Table A.4: Forecasting performance for ARIMA

Series Model MSE RMSPE MAPE MASE

1 ARIMA(7,1,0) 176.6261 10.226969 6.025099 0.9034882
2 ARIMA(7,0,0) 134.3910 9.660383 6.716115 0.8854125
3 ARIMA(7,0,0) 160.6189 11.322622 8.095812 0.9402004
4 ARIMA(7,0,0) 159.0919 11.659499 7.904977 0.9162143
5 ARIMA(7,0,0) 169.0728 11.503034 8.152361 0.9198143

6 ARIMA(7,0,0) 125.7102 9.190372 6.798955 1.0041442
7 ARIMA(7,0,0) 183.5310 9.806684 6.771965 0.8521611
8 ARIMA(7,0,0) 513.4157 14.412356 11.416072 0.7704144
9 ARIMA(7,0,0) 821.9761 16.835542 13.692489 0.7389685
10 ARIMA(7,0,0) 781.5655 17.677961 14.244470 0.7685053

11 ARIMA(7,0,0) 502.7964 27.874463 13.717404 0.8290781
12 ARIMA(7,0,0) 582.2985 54.246475 19.175474 0.8494999
13 ARIMA(7,0,0) 648.2412 80.609722 26.333537 0.9286192
14 ARIMA(7,0,0) 728.2519 305.507780 55.071638 0.8319788
15 ARIMA(7,0,0) 836.2139 263.150720 55.788957 0.8284879

16 ARIMA(7,0,0) 752.6635 239.478251 45.091894 0.7919211
17 ARIMA(7,0,0) 543.5687 36.541867 16.249653 0.8307360
18 ARIMA(7,0,0) 204.0451 9.241608 7.130843 0.8454128
19 ARIMA(7,0,0) 549.0851 13.267790 10.259716 0.8435085
20 ARIMA(7,1,0) 643.3754 14.041045 10.310906 0.8597128

21 ARIMA(7,1,0) 494.5999 12.543323 9.161942 0.8523164
22 ARIMA(7,1,0) 399.2890 12.669806 8.375965 0.8755426
23 ARIMA(7,1,0) 246.0518 9.623547 5.901374 0.9301790
24 ARIMA(7,1,0) 219.9065 10.074421 5.956210 0.9398217
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Random Forest

Table A.5: Forecasting performance for Random Forest

Series Model MSE RMSPE MAPE MASE

1 Random Forest 195.3439 10.927763 6.906471 1.0238869
2 Random Forest 141.5748 10.093316 6.860839 0.8953425
3 Random Forest 145.8494 11.187560 7.784235 0.8954344
4 Random Forest 158.0006 11.822360 7.957520 0.9158449
5 Random Forest 164.6214 11.608516 8.228056 0.9154591

6 Random Forest 115.7709 9.177513 6.404533 0.9318559
7 Random Forest 203.3077 10.850381 7.495310 0.9231312
8 Random Forest 566.3334 16.295990 11.877128 0.7684845
9 Random Forest 806.2015 19.082347 14.529780 0.7353361
10 Random Forest 846.0731 21.153088 16.378293 0.8320517

11 Random Forest 504.9666 30.145489 15.151382 0.8674940
12 Random Forest 598.9582 58.408337 22.372208 0.9366856
13 Random Forest 591.1828 80.558665 27.437350 0.8997803
14 Random Forest 681.1398 294.249731 55.090274 0.8322420
15 Random Forest 718.9896 257.863625 55.504128 0.7829670

16 Random Forest 676.6943 239.361460 46.523632 0.8125187
17 Random Forest 524.8039 35.748602 16.608465 0.8500867
18 Random Forest 284.3108 11.487639 8.992773 1.0313544
19 Random Forest 537.1972 13.963308 11.635903 0.9144822
20 Random Forest 579.2392 13.869078 10.322038 0.8396361

21 Random Forest 487.2534 12.871046 9.322590 0.8522893
22 Random Forest 417.7612 13.049046 9.341134 0.9626416
23 Random Forest 242.8352 9.803799 6.622250 1.0228310
24 Random Forest 214.4184 9.845303 6.507670 1.0141175
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SPLINE

Table A.6: Forecasting performance for SPLINE

Series Model MSE RMSPE MAPE MASE

1 SPLINE - ARIMA (7,0,0) 186.6574 10.301139 6.098368 0.9249691
2 SPLINE - ARIMA (7,0,0) 142.8329 9.735062 6.807050 0.9060594
3 SPLINE - ARIMA (7,0,0) 157.3336 10.999902 7.998411 0.9361670
4 SPLINE - ARIMA (7,0,0) 150.9003 11.184962 7.535804 0.8776735
5 SPLINE - ARIMA (7,0,0) 161.9937 11.148226 7.702580 0.8723717
6 SPLINE - ARIMA (7,0,0) 125.4922 8.998134 6.410208 0.9568498

7 SPLINE - ARIMA (7,0,0) 215.7137 10.312699 6.865994 0.8782949
8 SPLINE - ARIMA (7,0,0) 639.8368 15.766229 12.139912 0.8320489
9 SPLINE - ARIMA (7,0,0) 939.8511 17.637440 14.397296 0.7856129
10 SPLINE - ARIMA (7,0,0) 816.8854 17.721509 14.135198 0.7735174
11 SPLINE - ARIMA (7,0,0) 495.4144 27.536790 13.398690 0.8153052
12 SPLINE - ARIMA (7,0,0) 537.4199 53.285797 19.172080 0.8335872

13 SPLINE - ARIMA (7,0,0) 570.0708 77.058191 25.300666 0.8632863
14 SPLINE - ARIMA (7,0,0) 655.3167 287.946243 52.161283 0.7944469
15 SPLINE - ARIMA (7,0,0) 705.4506 248.541601 52.673262 0.7773521
16 SPLINE - ARIMA (7,0,0) 706.2945 231.888963 44.178165 0.7844451
17 SPLINE - ARIMA (7,0,0) 590.1085 36.612533 16.642432 0.8657552
18 SPLINE - ARIMA (7,0,0) 218.0134 9.197366 6.993712 0.8470011

19 SPLINE - ARIMA (7,0,0) 622.6959 13.928481 10.375852 0.8690786
20 SPLINE - ARIMA (7,0,0) 657.3000 13.841010 10.280060 0.8679845
21 SPLINE - ARIMA (7,0,0) 515.9001 12.556743 9.257284 0.8697232
22 SPLINE - ARIMA (7,0,0) 428.0644 12.952249 8.536109 0.8994696
23 SPLINE - ARIMA (7,0,0) 281.0446 10.345627 5.700367 0.9069098
24 SPLINE - ARIMA (7,0,0) 237.4147 10.472701 5.613324 0.8929204

According to the results, it’s evident that the model performance varies significantly

across different series. Across all models, the Mean Squared Error (MSE), Root Mean

Squared Percentage Error (RMSPE), Mean Absolute Percentage Error (MAPE), and

Mean Absolute Scaled Error (MASE) were utilized to evaluate the model’s predictive

capabilities.

Looking at the ARIMA model results in Table A.4, it can be seen that this model

performed well on certain series while performing worse on others. The same can be

said for the Random Forest model, as shown in Table A.5 and for the SPLINE model, as

shown in Table A.6. This indicates that the performance of the model depends highly

on the characteristics of the individual series.
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A.2 Comparison with Diebold Mariano test

Following are the results of the Diebold Mariano test. To show the statistical gain of

Forecast combinations, the best model in terms of Combinations is compared with the

single forecasting models, and even against the best single forecasting model according

to MSE, RMSPE, MAPE and MASE, the combinations show a statistical improvement.

ARIMA

Table A.7: LAD vs Arima

Hour Combination Individual DM Stat p value
DM...1 1 LAD Arima -1.14 0.26
DM...2 2 LAD Arima -1.40 0.17
DM...3 3 LAD Arima -2.03 0.05
DM...4 4 LAD Arima -2.05 0.04
DM...5 5 LAD Arima -1.93 0.06
DM...6 6 LAD Arima -2.05 0.04
DM...7 7 LAD Arima -2.19 0.03
DM...8 8 LAD Arima -3.33 0.00
DM...9 9 LAD Arima -4.54 0.00
DM...10 10 LAD Arima -3.69 0.00
DM...11 11 LAD Arima -3.20 0.00
DM...12 12 LAD Arima -1.82 0.07
DM...13 13 LAD Arima -2.60 0.01
DM...14 14 LAD Arima -2.45 0.02
DM...15 15 LAD Arima -2.94 0.00
DM...16 16 LAD Arima -2.23 0.03
DM...17 17 LAD Arima -3.57 0.00
DM...18 18 LAD Arima -2.62 0.01
DM...19 19 LAD Arima -1.55 0.13
DM...20 20 LAD Arima -2.89 0.00
DM...21 21 LAD Arima -1.71 0.09
DM...22 22 LAD Arima -0.90 0.37
DM...23 23 LAD Arima -1.93 0.06
DM...24 24 LAD Arima -2.21 0.03

Upon inspecting the data presented in Table A.7, several points can be discussed

about the performance of the Least Absolute Deviation (LAD) forecast combination

method compared to the individual ARIMA model across 24 hours.

The Diebold-Mariano (DM) Statistic is used to compare the predictive accuracy of

these two models, and the associated p-value provides a statistical significance level

for this comparison. A negative DM Statistic indicates the LAD method’s superior
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forecasting performance over the ARIMA model, while a p-value less than 0.05 implies

statistical significance at the 95% confidence level.

We observe that the DM Statistic is negative for all 24 hours, indicating that the

LAD combination forecast consistently outperforms the ARIMA forecast. Moreover,

the DM Statistic becomes increasingly negative from hour 8 onwards, indicating that

the performance of the LAD model becomes increasingly superior to the ARIMA model

during these hours.

In this case, the p-value is less than 0.05 for hours 4, 6-11,13-18, as well as at hour

20 and 24. This suggests that for these hours, the superior performance of the LAD

forecast over the ARIMA forecast is statistically significant.

However, it is important to note that during the other hours the p-value is above

the 0.05 threshold, suggesting that we cannot reject the null hypothesis that the two

methods perform equally well.
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ETS

Table A.8: LAD vs ETS

Hour Combination Individual DM Stat p value
DM...1 1 LAD ETS -1.37 0.17
DM...2 2 LAD ETS -1.18 0.24
DM...3 3 LAD ETS -1.36 0.18
DM...4 4 LAD ETS -1.27 0.21
DM...5 5 LAD ETS -1.40 0.16
DM...6 6 LAD ETS -1.37 0.18
DM...7 7 LAD ETS -2.24 0.03
DM...8 8 LAD ETS -1.24 0.22
DM...9 9 LAD ETS -1.99 0.05
DM...10 10 LAD ETS -2.77 0.01
DM...11 11 LAD ETS -1.84 0.07
DM...12 12 LAD ETS -2.09 0.04
DM...13 13 LAD ETS -1.53 0.13
DM...14 14 LAD ETS -1.34 0.18
DM...15 15 LAD ETS -1.90 0.06
DM...16 16 LAD ETS -2.46 0.02
DM...17 17 LAD ETS -3.18 0.00
DM...18 18 LAD ETS -2.73 0.01
DM...19 19 LAD ETS -1.19 0.24
DM...20 20 LAD ETS -2.20 0.03
DM...21 21 LAD ETS -1.56 0.12
DM...22 22 LAD ETS -1.07 0.29
DM...23 23 LAD ETS -1.64 0.10
DM...24 24 LAD ETS -2.21 0.03

Table A.8 shows the comparison of forecast performance between the LAD forecast

combination method and the individual ETS model. Here, we see the DM Statistic is

negative for every hour, suggesting that the LAD consistently outperforms ETS over 24

hours.

Moreover, the p-value is below the 0.05 threshold (indicating significant outperfor-

mance by the LAD model over the ETS model) for hours 7, 10, 12, 16-18, 20, and

24.

However, there are hours (1-6, 8, 9, 11, 13-15, 19, and 21-23) where the p-value

is above the 0.05 level. This indicates that, while the LAD method shows superior

performance in these periods, the results are not statistically significant. This led,

during the analysis, to consider the ETS as a whole as the best model with which to

compare the LAD, in the 4.2 section.
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RandomForest

Table A.9: LAD vs Random Forest

Hour Combination Individual DM Stat p value
DM...1 1 LAD RandomForest -3.13 0.00
DM...2 2 LAD RandomForest -1.91 0.06
DM...3 3 LAD RandomForest -1.86 0.07
DM...4 4 LAD RandomForest -2.00 0.05
DM...5 5 LAD RandomForest -1.74 0.08
DM...6 6 LAD RandomForest -0.95 0.35
DM...7 7 LAD RandomForest -2.23 0.03
DM...8 8 LAD RandomForest -3.07 0.00
DM...9 9 LAD RandomForest -4.51 0.00
DM...10 10 LAD RandomForest -4.54 0.00
DM...11 11 LAD RandomForest -3.58 0.00
DM...12 12 LAD RandomForest -3.06 0.00
DM...13 13 LAD RandomForest -2.95 0.00
DM...14 14 LAD RandomForest -2.86 0.01
DM...15 15 LAD RandomForest -3.28 0.00
DM...16 16 LAD RandomForest -2.85 0.01
DM...17 17 LAD RandomForest -4.32 0.00
DM...18 18 LAD RandomForest -3.78 0.00
DM...19 19 LAD RandomForest -2.60 0.01
DM...20 20 LAD RandomForest -3.45 0.00
DM...21 21 LAD RandomForest -2.00 0.05
DM...22 22 LAD RandomForest -2.42 0.02
DM...23 23 LAD RandomForest -2.46 0.02
DM...24 24 LAD RandomForest -2.58 0.01

Table A.9 represents the comparative forecast performance of the LAD forecast combi-

nation method and the individual Random Forest model. The DM Statistic is negative

across all hours, suggesting the LAD model’s consistent outperformance over the Ran-

dom Forest.

It’s noteworthy that p-values are below the significance level (0.05) for hours 1, 4,

7-20 and 22-24. This indicates a statistically significant superior performance of the

LAD model over the Random Forest model during most of the hours of the day.

However, during hours 2, 3, 5, 6 and 21 we cannot reject the null hypothesis that the

two methods perform equally well. Despite these hours, the results reinforce the overall

finding that the LAD combination forecast method generally yields better results than

individual models.
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SPLINE

Table A.10: LAD vs SPLINE

Hour Combination Individual DM Stat p value
DM...1 1 LAD SPLINE -1.35 0.18
DM...2 2 LAD SPLINE -1.61 0.11
DM...3 3 LAD SPLINE -1.96 0.05
DM...4 4 LAD SPLINE -1.49 0.14
DM...5 5 LAD SPLINE -1.45 0.15
DM...6 6 LAD SPLINE -1.23 0.22
DM...7 7 LAD SPLINE -2.87 0.01
DM...8 8 LAD SPLINE -3.79 0.00
DM...9 9 LAD SPLINE -4.79 0.00
DM...10 10 LAD SPLINE -3.74 0.00
DM...11 11 LAD SPLINE -2.89 0.00
DM...12 12 LAD SPLINE -1.63 0.11
DM...13 13 LAD SPLINE -2.18 0.03
DM...14 14 LAD SPLINE -2.12 0.04
DM...15 15 LAD SPLINE -2.81 0.01
DM...16 16 LAD SPLINE -2.38 0.02
DM...17 17 LAD SPLINE -3.59 0.00
DM...18 18 LAD SPLINE -2.40 0.02
DM...19 19 LAD SPLINE -1.71 0.09
DM...20 20 LAD SPLINE -3.05 0.00
DM...21 21 LAD SPLINE -1.87 0.06
DM...22 22 LAD SPLINE -1.08 0.28
DM...23 23 LAD SPLINE -1.53 0.13
DM...24 24 LAD SPLINE -1.36 0.18

Table A.10 contrasts the forecast performance of the LAD combination method and the

individual SPLINE model.

The DM Statistic is negative across all hours, implying the LAD model generally

provides better forecasts. This difference is statistically significant (p-value < 0.05) for

hours 7-11, 13-18, and 20.

However, for the remaining hours even though LAD outperforms SPLINE we cannot

reject the null hypothesis that the two methods perform equally well.

As can be seen from the previous tables A.7-A.10 the DM statistic is always negative

and in most cases statistically significant.
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