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The Art of Heart Rate Variability
Driver fatigue Application
FABIO FORCOLIN
Department of Signals and Systems
Chalmers University of Technology
Università degli Studi di Padova

Abstract
A substantial percentage of accidents are caused by drivers falling asleep at wheel.
Among the different ways of detecting sleepiness at wheel, physiological measure-
ments start changing at an earlier stage of fatigue what is crucial for accident avoid-
ance. This motivated to study how heart rate and its variability (HRV) relate to
drivers sleepiness. The study was conducted on a population of around 80 drivers
that drove 3 times (morning, afternoon, night) for about 90 minutes, with subjective
sleepiness evaluations every 5 minutes, leading to over 3500 epochs to analyse. In
order to derive HRV indices, outlier detection and spectral transformation need to
be applied to the data. Different technics are available for these purposes with no
consensus about their suitability. In this thesis, the most relevant HRV indices were
derived using the main technics for outliers detection and spectral transformation.
Two methods were used for outliers detection, one based on a heart beat interval
differing in more than 30% the average of the 4 beats before and the other consisting
in an interval deviating 5 std from mean. Regarding spectral transformation, DFT,
AR-model and LS Periodogram were considered. The agreement between meth-
ods was evaluated using Bland-Altman plots and Student T-Tests. The number of
samples classified as outliers and removed is, in average, 0.278% for the percentage
methods and 0.0648% for the standard deviation method. Outlier detection methods
showed to have a low influence on the value of the HRV indices calculated. Spectral
transformation methods showed, instead, to have much higher consequences on the
HRV indices. The outlier detection method does not have an influence on the ca-
pability of different HRV indices of discriminating between morning, afternoon and
night. The spectral transformation method does not show a significant influence
either. However LS-periodogram performed slightly worst in this regards.

Keywords: Heart rate variability, Driver fatigue, outliers detection, spectral trans-
formation, KSS.
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Nomenclature
• RR or NN: R-to-R or Normal-to-Normal. Interval (in seconds) between two

R peaks.
• HRV: Heart Rate Variability.
• HR: Heart Rate
• ECG: ElectroCardioGram.
• EEG: ElectroEncephaloGram.
• CAN BUS: Controller Area Network
• ANS: Autonomic Nervous System.
• CNS: Central Nervous System.
• PNS: Peripheral Nervous System.
• PN: Parasympathetic Nervous System.
• SN: Sympathetic Nervous System.
• KSS: Karolinska Sleepiness Scale.
• EBS: Estimated Breath Cycle.
• LS: Lomb-Scargle periodogram.
• FFT/DFT/FT: Fast/Discrete Fourier Transform.
• AR: AutoRegressive model.
• SDNN: Standard Deviation of NN intervals.
• RMSSD: Root Mean Square of Successive Differences.
• pNN50%: percentage of NN interval that differs more than 50 ms.
• mHR: mean HR.
• stdHR: HR standard deviation.
• RRTri: Triangular Index.
• TINN: Triangular Interpolated index.
• VLF: Very Low Frequency.
• LF: Low Frequency.
• HF: High Frequency.
• n.u.: normalized units.
• SD1, SD2: length of minor and major axis of Poincarè plot.
• BA: Bland-Altman
• BP: Boxplot
• CI: Confidence interval
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1
Background

1.1 Driver fatigue
Driver sleepiness is one of the main causes of road accidents. One of the factors
that influences sleepiness is driver fatigue: the transitory period between awake and
asleep that, if not interrupted, can lead to sleep [1]. From 2009 to 2013, concerning
the crashes caused by drowsiness, in 7% of the cases the occupants reported only
minor injuries and in 13% of them the occupants needed to be hospitalized. In for
21% of the cases the person was killed [2]. Driver fatigue accounts for 20-35% of
serious accidents, leading to a large number of deaths (almost 1550 in 100000 crashes
according to NTHSA) and serious injuries.
Different studies for understanding the causes of fatigue and its consequences were
conducted in different parts of the world, with different results mainly due to dif-
ferent road traffic nature and different ways of conducting the experiment (people,
simulator, real drive...). Even if the results are not identical, they converge to the
same fact that sleepiness in drivers increases sensibly the possibilities of crash and
thus its consequences.
Comparisons between different driving hours [3] or different ages [4], asses that
driving at night increases driver fatigue and thus the chances of falling asleep at
the wheel. Among the most exposed individuals to driver fatigue are young drivers
and professional shift workers. Beside night driving, other factors that have been
demonstrated increasing driver fatigue are low speeds and long driving tasks [3],
conclusion never achieved when simulators were chosen for the experiments. The
same study found also that sleepiness in drivers appears to be related to a reduced
speed and a leftward position of the vehicle on the road: the speed reduction is
probably due to a redirection of driver’s attention to more important tasks.

1.2 Subjective measurements of sleepiness
Different tests have been proposed to assess the degree of sleepiness and they base on
subjective perceptions of the person examined. Tests commonly used are Epworth
Sleepiness Scale (ESS), Stanford Sleepiness Scale (SSS), Oxford SLEep Resistance
(OSLER) and Karolinska Sleepiness Scale (KSS) [5], [6]. All those scales differ
mainly in the range of values and all record the sleepiness from subjective answers
about the feeling of sleepiness of the person under test.
To find a correlation between the measurements and the real need of sleeping, a
feedback from the driver is needed and it should be given in real-time. Therefore, a

1



1. Background

KSS Meaning
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep

awake
8 Sleepy, some effort to keep awake
9 Very sleepy, great effort to keep

awake, fighting sleep

Table 1.1: KSS values and their meanings.

passenger in the right front seat asks periodically how the driver feels and registers
the result, e.g., according to the KSS [7]. Since driver behaviour should not be
altered during the task, every interaction with humans or activities different from
driving (e.g. listening to music, drinking coffee, texting...) are forbidden. However,
there are no other ways to have a real-time feedback and thus this approach could
bias the results.
For this study, the KSS was used. KSS is a 9-point self-reported scale that measures
the subject’s fatigue. It spans from "extremely alert" to "extremely sleepy-fighting
sleep" [8]. Values and their meaning are reported in Table 1.1 [9].

1.3 Heart and Heart Rate Variability
Heart is one of the vital organs and it is located in the center of the chest cavity (over
the hypocondriac-epigastric quadrant), more precisely in the anterior mediastinum
between the two lungs, behind the sternum and the costal cartilages. Its main func-
tion is to pump the blood through all the body parts in order to sprinkle tissues and
organs with oxygenated blood and to lead the de-oxygenated blood to the lungs.
Heart works like a pump: by a series of contractions (systole and diastole) of the
ventricles and opening and closure of valves, blood enters and exits the heart contin-
uously. Heart is an involuntary organ, which means it is not controlled consciously
by the person itself but by its autonomic nervous system (ANS). The contraction
of the heart is mediated by the pacemaker cells (modified cardiomyocytes) that are
able to autonomously generate rhythmic action potentials[10].

1.3.1 Potential conduction
The signal generated by the pacemaker cells propagates through a long path from
its generation to death. Figure 1.1 represents it schematically.
The signal arises from the right atrium, specifically in the sinoatrial node (SA).
This signal stimulates the contraction of the atria with consequent blood ejection

2



1. Background

Figure 1.1: Heart potential conduction path [11].

and rapidly moves to the atrioventricular node where it is delayed in time to let the
blood fills the ventricula. The signal then propagates to the Purkinje fibers by means
of the right and left His bundle, reaching the left and right side of the heart and the
endocardium at the apex of the heart as well. The signal ends in the ventricular
epicardium. The shape of the signal, during its propagation, is schematized in Figure
1.2[12].
It can happen that the heart sometimes produces beats that differ from the normal
ones in shape or duration. Among the different abnormal beats there are ectopic
beats. Originating outside of the sinoatrial node, those beats cause disturbances
in the cardiac rhythm. Those can be symptoms of pathology but happen also to
healthy subjects and they are common in adult people but rare in young. Ectopic
beats lead to extra or skipped heartbeats and they are not dangerous, at least in
healthy patients [13]. The most common ectopic beats are Premature Ventricular
Contraction (PVC) and Premature Atrial Contraction (PAC). An example of PAC
is shown in Figure 1.3.

1.3.2 Heart Rate Variability
Heart Rate Variability (HRV) is defined as the variation in time interval between
heartbeats. The reference method to estimate HR is the ECG. When using ECG,
the beat-to-beat signal is also called "RR signal" because it refers to the interval
between two consecutive R peaks (Figures 1.4 and 1.5). The occurrence of an R
peak causes blood ejection and is called systole [15]. Excluding ectopic beats, the
HR is controlled by the autonomic nervous system (ANS). Therefore, HRV analysis
provides information about the ANS’ activity. By means of its innervation, ANS
can increase or decrease heart’s contraction frequency and strength. Some studies
state that a greater variability in heart rate means that heart can keep up better

3
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Figure 1.2: Signal shape during propagation [12].
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Figure 1.3: Atrial ectopic beat [14].

with changes [16].
Studies on HRV started in 1965 with Hon and Lee that found a more robust and
predictable way to diagnose fetal distress in the alterations of the heart beat interval
if compared to the heart rate [17]. That study, together with Ewing in the ’70s and
others later, contributed to the understanding of the correlation between the HRV
and the autonomic nervous system. The availability of cheaper, new, digital, robust
and powerful ECGs pushed lots of researchers to refine the previous knowledge and
lead to important results like the correlation between HRV and mortality after an
acute myocardical infarction[18].

Figure 1.4: Cardiac cycle [19].

Despite the large amount of studies performed, HRV variation meanings are still not
totally known yet. The sinoatrial node is responsible for the heart contraction, and
the variations in its activity are due the sympathetic and parasympathetic nervous
system and the humoral factors1. In turn, variations in the activity of the nervous
system are given by different factors like thermoregulation, stress, physical activity,
meals and, of more interest for this study, the sleep-wake cycle[15].
The ECG signal is composed by a set of different frequencies in the range 0-0.4Hz
as in Figure 1.6. The signal is usually divided in three bands: very low frequency
(below 0.04 Hz), low frequency (between 0.04Hz and 0.15Hz) and high frequency
(between 0.15Hz and 0.4Hz). The origins of the peak in the VLF band are not well
known, but scientists think they are linked to the chemoreceptors2 on the heart. The

1Factors transported by the circulatory system like hormones and humoral immunity factors.
2Sensory receptor that transduces a chemical signal into an action potential.

5



1. Background

Figure 1.5: RR (HRV) signal [20].

spectral power of the LF band, instead, is related to the activity of the baroreflexes3

and represents the sympathetic and parasympathetic activity. The last band, HF, is
related to the respiration and represents the parasympathetic activity only [21]. The
two frequencies of the two branches of the nervous system overlap and this problem
becomes more evident at low respiratory rates since parasympathetic activity shifts
into lower frequencies and overlaps the frequency interval where the sympathetic
region is defined [22]. This sort of overlapping can lead to misleading results and
thus it is safer to study the ratio of those frequencies instead of their absolute value.
HRV is linked with the sleep-wake cycle and thus it is interesting to find a correlation
between the incoming drowsiness and variability in the heart rate.
There are three main methods to analyze the heart rate variability: time domain
(linear and non linear like Poincaré), frequency domain and geometric [18]. Time
domain methods are the simplest to perform and include the extraction of different
features:

• SDNN: standard deviation of the NN intervals (intervals between adjacent
QRS complexes resulting from sinus node depolarization)

• Mean NN interval
• Mean heart rate
• Difference between longest and shortest NN interval
• Difference between night and day heart rate
• RMSSD: square root of the mean of the squares of the successive differences

between adjacent NNs
• NN50: number of pairs of successive NNs that differ by more than 50 ms
• pNN50: proportion of NN50 divided by total number of NNs
• SD1, SD2: major and minor axis of the ellipse that fits the Poincarè plot
3Mechanism that helps maintaining blood pressure at a constant level.
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1. Background

Figure 1.6: Power Spectral Density of an ECG and frequency bands.
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• EBC: Estimated Breath Cycle, the range within a moving window of a given
time duration within the study period

The HR spectrum is often divided in three frequency bands for frequency domain
analysis. This bands are:

• Very low frequency (VLF): from 0.0033 to 0.04Hz. Less interesting of the other
bands since its meaning is not clear.

• Low frequency (LF): from 0.04Hz to 0.15Hz
• High frequency (HF): from 0.15Hz to 0.4Hz

Several methods have been proposed for the time to frequency domain transforma-
tion. They are generally divided in parametric and nonparametric, each one with
pros and cons. Nonparametric methods, like discrete Fourier transform (DFT),
are simpler and faster compared to the others. The parametric ones, instead, give
smoother results, are easier to post-process and work better with a low number of
samples (typical for experimental data). They need to be validated after being im-
plemented. If parametric methods are an application of interest, it is possible to
choose between LS periodogram, wavelet transform and autoregressive models. In
particular, LS periodogram plays a special role in HRV analysis since, unlike the
other methods, it does not require an evenly sampled data set.
Concerning the geometric methods, the series of NN intervals is converted into a
geometric pattern and by a formula it is possible to get information about the
geometric/graphic properties of the pattern. The most known geometric method
is the triangular index that is defined as the integral of the density distribution
normalized on its maximum.

1.4 The nervous system

The nervous system is the organ of the body depicted to coordinate voluntary and
involuntary actions and transmits signals to the body’s organs. Figure 1.7 represents
it schematically. In mammals, the nervous system is divided in Central Nervous
System (CNS) and Peripheral Nervous System (PNS). The first one consists of two
important parts, the brain and the spinal cord, meanwhile the other one consists of
the nerves that connect the different parts of the body. The PNS can be divided by
the function that it performs and specifically these are:

• Motor neurons: enable the movement
• Autonomic Nervous System, which regulates the body’s unconscious actions
• Enteric nervous system: regulates the gastrointestinal function

The autonomic nervous system (ANS) is divided in two groups: sympathetic and
parasympathetic, which usually work as antagonists. ANS controls vital parts of the
body like the heart and the lungs. With the term controlling it is meant an increase
or decrease of performance and functionality, for example, increasing or decreasing
heart rate, breath rate or increasing/decreasing contractile force. In particular, the
sympathetic one acts in response to stress, causing, for example, an increase in
HR by increasing the firing rate of pacemaker cells. The parasympathetic, instead,
works as the opposite, decreasing the pacemaker cells’ fire rate.

8



1. Background

Figure 1.7: The Autonomic Nervous System.
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1.4.1 Parasympathetic nervous system

The parasympathetic nervous system, represented by the left side of Figure 1.7, is
responsible for the "rest-and-digest" or "feed-and-breed" activities and it prevails on
the sympathetic fibers for what it concerns salivary and lacrimal glands and erectile
tissue [23]. An activation of the PN usually, but not always, means a relaxation or
decrease in activity of the function of the organ which it is controlling. It prepares
the body for sleeping, resting, digesting and relaxing. Fibers of the PN arise from
the CNS and include cranial (facial, oculomotory, vagus), spinal and pelvic nerves.
From the vagus nerve, parasympathetic fibers go to the vital organs like heart,
lungs, intestine and stomach. It exploits several functions, of which the most known
are miosis, contraction of lungs and reduction of their volume, decrease in blood
pressure and frequency, and greater enteric mobility. Interesting for this study is
that the parasympathetic nervous system decreases the heart rate and therefore
modifies its variability. Its function is mediated by ganglia which uses different
chemicals. By means of the M2 muscarinic receptors, the PN acts to bring the heart
back to normal after the action of the sympathetic nervous system (slowing down
the heart rate, reducing contractile force). Exploiting the M3 muscarinic receptors,
it can control instead the lungs, causing bronchoconstriction. The PN signals are
characterized by frequencies that lie around 0.0−0.4 Hz but concentrated mostly in
the range 0.15− 0.4Hz [24], that is referred to as high frequency (HF) [23]. Studies
[25],[26],[27], show that its activity increases in those situations in which the body
is subject to fatigue, e.g. sleepiness.

1.4.2 Sympathetic nervous system

Working as an antagonist of the PN, the SN constitutes the other branch of the
nervous system (right side of Figure 1.7). Its primary process is to regulate the
"fight-or-flight" response but it is also constantly active at a basic level to maintain
homeostasis. It prepares the body to physical activity. The nerves of the sympa-
thetic nervous system arise from the middle of the spinal cord. The functions of
the SN are mostly the opposite of the one processed by the PN, but sometimes
they cooperate for the same function: everything is up to which receptor each fiber
activates/deactivates. For example, it inhibits the stomach, intestine and pancreas
instead of stimulating it. The SN dilates pupils, inhibits peristalsis, activates sweat
secretion and, more interesting for this study, increases heart rate and contractile
force and dilates bronchioles [28]. The activity of the SN is reflected in all the
frequencies but it is more concentrated in the LF band, 0.04 and 0.15 Hz [24].
According to literature the parasympathetic nervous system, which is reflected in
the high frequency range, overcomes the sympathetic during sleepiness. Thus it’s
reasonable to think of a decrease in the low frequency power spectrum and also
in the ratio between LF and HF power. An increase, instead, in the sympathetic
activity (driver awake) means an increase mainly (but not only) in the low frequen-
cies spectrum and a decrease in the parasympathetic activity (which would in turn
decrease the high frequency component). Therefore, it is the ratio between LF and
HF that represents better the variation.

10
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1.5 Statistical methods

The main statistical method used throughout the thesis is the student T-test of
association. A t-test is a statistical hypothesis test. It is usually applied to compare
whether two groups (data sets) belong to the same population or not. For instance,
one could test some measurements in patients who received a drug or a placebo to
see if the cure had any effect. In this study, the association between the different
HRV parameters and the KSS will be tested by means of the Student T-Test. The
two sample t-test is used but, for a complete understanding, the one-sample t-test
will be explained first [29], [30], [31].

1.5.1 One-sample t-test

Outcome of the t-test, is the rejection or not of a null hypothesis, denoted with H0,
under the assumption "Data are normally distributed".
Presupposing that one wants to test if a certain number of n samples with mean
X̄1 and standard deviation s originate from a population of mean µH0 . The null
hypothesis isH0: "True population mean score is µH0" and the alternative hypothesis
is thus Ha: "True population mean score is not µH0". The significance level is usually
set to α = 0.05: this means that we are sure of this hypothesis at 95%. It is
interesting to notice that, the bigger the difference between µH0and X̄1 the greater
the probability to reject the null hypothesis. To assess if the means are "far enough"
in a statistic way, the sample means need be to be standardized and the t-value
calculated according to eq. 1.1:

t = X̄ − µH0

σ̂X̄

(1.1)

where with σ̂X̄ the sample standard deviation error mean is denoted. Its value is
not known, thus it has to be estimated with eq. 1.2:

σ̂X̄ = σ̂√
n

(1.2)

where σ̂ denotes the sample’s standard deviation.
The t-value can thus be calculated and compared with the critical value of t, from
the t − table. The t-table gives the percentage points of the Student t-distribution
(Figure 1.8), which is a function of only the degrees of freedom df , eq. 1.3.

df = N1 +N2 − 2 (1.3)

N1 and N2 are the number of samples.
In the table, according to the degrees of freedom df and the significance level α, the
confidence interval CI is obtained. If the t − value is included in the CI the null
hypothesis is accepted, otherwise it is rejected.

11



1. Background

Figure 1.8: Student’s distribution as a function of the degrees of freedom DOF .

1.5.2 Two-sample t-test
The test works on the difference between the means of the two samples. It is almost
the same as the one-sample t-test with the following differences. In this case, the null
hypothesis is "The means of the two data sets are equal". The standard deviation
error becomes now:

σ̂X̄1−X̄2 =
√
σ̂2

1
n1

+ σ̂2
2
n2

(1.4)

Equation 1.4 is only valid with a large number of samples. If that is not the case,
variations for this formula exist. The t− value of eq. 1.1 becomes now:

t = (X̄1 − X̄2)− (µ1 − µ2)
σ̂X̄1−X̄2

(1.5)

The acceptance or rejection of the null hypothesis is the same as it is for the one-
sample t-test.

1.6 Methods’ agreement
Bland-Altman (BA) analysis is a process for assessing agreement between measure-
ment methods. The method is also known as Tukey mean-difference plot [32] but
popularized in medical statistics by Bland and Altman. The BA process is based
on the idea that any two methods used for measuring the same parameter, should
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have high correlation when a set of samples are chosen such that the property to be
determined varies considerably. The horizontal axis of the plot represents the mean
of each pair of measurements and the vertical axis the distance (difference) between
them. Thus, each pair is represented on the plot as a point p = (x1+x2

2 , x1−x2). In a
BA plot, data of interest are the bias (distance of the mean of differences from zero),
the variance (95% limit of agreement, ±2SD) and the magnitude of the measures.
Bias is a measure of the accuracy: a high bias means a low accuracy. The variance
is a measure of the precision: high variance means low precision. Accuracy is the
closeness of some measurements to the correct or accepted value of the measured
quantity. Precision is the closeness of a set of measurements to each other [33]. The
optimal condition is high accuracy and precision together, which is translated in
low bias (close to zero) and low variance. Standard deviation and bias only, give
an absolute information that is more complete if it refers to the magnitude. For
instance, a bias of 2 ± 1 gives rise to very different conclusion if the magnitude is,
e.g. 3 or 80.
A Bland-Altman assessment for agreement was used to compare the different meth-
ods for the transformation from time to frequency domain and for the two outliers
removal methods. Figure 1.9 shows an example of Bland-Altman plot: the ratio
between LF and HF power computed using the AR model is compared for the two
methods for detecting outliers, pct and std. It is possible to see that the magnitude
is close to 1, with a bias that is almost zero with low variance. Thus, the two meth-
ods, std and pct, lead to very similar results when dealing with the AR model. The
p-value computed with the t-Test gives us an estimate of how reliable those values
are.
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Figure 1.9: Bland-Altman Plot.
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1.7 HRV association to Driver Fatigue

Drowsy drivers are potentially dangerous as drunk drivers are. Several studies were
conducted in the previous years to find a correlation between drowsiness and heart
rate variability for minimizing accident risks while driving. It is valuable to look at
the different results they have achieved, the way of conducting the experiments and
their limitations. In this way it will be possible to understand which are the best
features to extract and which kind of results to expect. Moreover, it will be useful
for performing the analysis in the most efficient way and without repeating the
same errors. Each study, for how accurate it can be, is biased by some uncontrolled
factors or assumptions that are taken. Every study analyzed was conducted in a
specific way: some with real driving tasks, other with the help of driving simulators,
some during night and others in the morning, for longer or shorter periods of time,
with professional or normal drivers. Moreover, they differ also in the measured
quantity: some recorded vehicle measures (e.g. steering wheel movements), others
used behavioral or subjective measures and, probably the most reliable, physiological
measures. Each of those measurement methods has its advantages and limitations
as resumed in Table 1.2.
The study of Mahachandra et al. [34] deals with the HRV as an indicator of sleepi-
ness. It was conducted on 16 participants with at least one year of experience at
the wheel. They had to drive for 3.5 hours in a simulator representing a closed loop
circuit. Their EEG and heart rate were recorded continuously during the drive. The
drivers performed the task in normal and physiological conditions (e.g. not awake
from 24 hours as in other studies). The promising results presented are in accor-
dance with the literature and in general with all the studies analyzed: a reduction in
the performance of HRV due to sleepiness, a higher peak in the high frequency band
and a correlation between the decrement in RMSSD (28%) and the parasympathetic
activity were found. Also the SD1 of the Poincaré plot from fractal method of HRV
showed a decrement of 27% as an indicator of sleepiness. As in other studies ([35]
[36][37] [25]), a driving simulator was utilized to conduct the experiment. Simula-
tors are chosen for their cheaper costs, efficiency, experimental control and safety.
However, it is not recommendable to perform studies with simulators since results
could be biased: the driver does not perceive the same risk and thus has a different
behavior. Nevertheless, the newest and advanced simulators (like the motion-based
ones that provide a view close to 360° and an extensive moving base) have been
proved to have low influence in the behavioral changes of the driver [25].
Patel et al. [26], tried to find the best artificial intelligence based system able to
detect fatigue in drivers, analyzing the HRV in a pre-recorded set of 12 ECGs. Using
the Tompson algorithm, thresholding to reduce artifacts and transformations of the
signal from time to frequency domain, they implemented a neural network with a
precision of 90% (tested on only six data sets). The results show that LF/HF can
be an indicator of fatigue: it decreased with increasing fatigue and thus a decline
in driving control and performance of the driver. Moreover, the study assesses an
accuracy of 90% with ANN. The only limitation of this study is the low number of
subjects.
Yang et al. [36], instead, developed a dynamic Bayesian network to extract and
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Ref. Measures Parameters Advantages Limitations
[38] [39] Subjective

measures
Questionnaire Subjective Not possible

in real time
[40] [41] Vehicle

based
measures

Deviation from the lane posi-
tion; Loss of control over the
steering wheel movements

Nonintrusive Unreliable

[42] [43] Behavioral
measures

Yawning; Eye closure and
blink; Head pose

Non intru-
sive; Easy of
use

Light con-
ditioning,
background

[44] [45] Physiological
measures

Statistical and energy features
derived from EEG, EoG, EEG

Reliable;
Accurate

Intrusive

Table 1.2: Advanges and limitations of different measurement methods

classify features from an ECG (52 subjects) as LF, HF and their ratio, to recognize
drivers fatigue. The ECG is first smoothed with a low-pass filter and then trans-
formed by the FFT and analyzed. The study had a significantly statistic number of
subjects and concluded according to the study of Patel.
A study conducted by Michail [46], included 21 subjects driving in real road traffic
deprived of sleeping for 24 hours. Each subject drove 1 hour with EEG and ECG
connected to him. In eight cases the experiment had to be stopped because the level
of sleepiness was too high and thus unsafe to continue. The main parameters taken
into account for what it concerns HRV were its LF and HF power and the ratio
between them. In particular, they found a decrease in LF/HF during sleepiness
between 7 and 42%. Compared to different studies, it has a reasonable number of
subjects and it was performed on a real road. On the other hand, the conditions
of the subjects can not be considered physiological and thus the results lose their
statistical meaning.
The study of Gang [47], seems to show very good results. His implementation of
the support vector machine classifier (leave-one-out method) and wavelet analysis
for detecting a correlation between HRV and sleepiness had an accuracy of 95%.
Conventional LF/HF ratios had an accuracy of only 68%. In particular, they found
an interesting correlation between the entropy of the heart rate variability and the
incoming sleepiness. However, looking more into detail, those results appear strange
and not so meaningful since the correlation was found only for the VLF band: this
band of frequencies is not totally explained by the scientists and its origins are
mostly unknown (see VLF in section 1.4).
Also other groups of research , e.g. [35], have concluded finding a strict variation
in the PSD of the different frequency bands between alert and sleepy state. In
particular, Masahiro [37] found an increase in HRV when a decrease in the mental
workload was occurring.
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2
Introduction

Driving is a complex task that requires to be constantly aware of what it is happening
on the road. Drivers are really good at avoiding threats, taking actions when required
like braking, steering and changing direction. Sometimes, instead, threats are very
difficult to avoid because they do not depend on the driver, e.g. an incoming vehicle
from a blind spot, or are unpredictable. Among the last category, it lies drowsiness:
one of the causes of accidents and fatalities among the drivers that leads every year
to severe injuries and also to death. Numerous studies have demonstrated that a
substantial percentage of accidents are caused by drivers falling asleep at the wheel,
especially at night. NHTSA (US National Highway Traffic Safety Administration),
has estimated 100000 vehicle crashes due to drowsiness in 2012, of which 1550 deaths,
71000 injuries and 12.5 billion $ in monetary loss.
Scientists have studied different ways for trying to predict fatigue, basing their
hypothesis on three types of measures: vehicle-based, behavioral and physiological.
Among the vehicle-based measures it is possible to find steering and acceleration
patterns or deviations from lane position [25]. Behavioral measures, instead, record
and analyze visual signs like yawning or eye blinking. Using capacitive foils on
the car’s roof, it is also possible to measure the position and movements of the
head [48]. Physiological measures are obtained, instead, by the analysis of the
correlation between physiological signals and driver fatigue. Physiological signals
can be electrocardiograms (ECG), electromyograms (EMG), electroencephalograms
(EEG) or electrooculograms (EoG) [25].
Subjective parameters to evaluate sleepiness like KSS (see 1.2) were used in various
studies leading to KSS values ranging between 7-9 when drowsiness was occurring
[3]. It is of interest to study the possibility to detect those situations that are not
predictable for the human in an earlier stage [25]. Among the different ways to
detect sleepiness at the wheel, physiological measurements are the ones which start
changing at an earlier stage what is crucial for accident avoidance. It seems very
promising to study how heart rate and its variability relate to drivers’ different levels
of sleepiness, extracting particular features from the heart rate signal, in the time
and the frequency domain.
Most of the previous studies are inconclusive or inconsistent because of the low
number of subjects, the inaccurate method of analysis or the incorrect environment
(e.g. simulator instead of real road). Conversely, the high quality data and large
data set used in this study enables conclusive results. This study is conducted
on a population of 80 drivers that drove 3 times (morning, afternoon, night) for
80 to 90 minutes, with relative KSS evaluations every 5 minutes, leading to over
3500 epochs to analyse. When analysing HRV indices some choices need to be
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done. The ones having a highest effect on the values of the parameters are the
outlier detection method and the spectral transformation methods in the case of
the frequency domain. Among the outliers detection methods, two offer better
performance. They are the percentage method and the standard deviation method
[49]. In the same way for spectral transformation, the most commonly used methods
are Fourier Transform (FT), Autoregressive Model (AR-model) and Lomb Scargle
(LS) periodogram. As both choices have been reported having a significant influence
on the HRV indices values and there is no consensus about their suitability, there is
a need of assessment their influence.
The goal of this thesis is to determine dependency of the HRV indices values on
the methods utilized for outlier detection and spectral transformation. Agreement
between the different methods tested will be evaluated. Moreover how the different
methods allow separation of time of the day based on HRV will be tested as indirect
indicator of what methods are most suitable for driver fatigue detection.
The thesis begins with a brief background on the most important topics for under-
standing the thesis and the results. It includes an introduction to driver fatigue and
sleepiness and the subjective methods used for its measurement. It continues with
the functioning of the heart, signal propagation and how the autonomic nervous
system has influence on it. In the end, the statistical method used for understand-
ing which features can be meaningful for the goal are explained. Successively, the
methods and materials used for processing the data and extracting the features are
presented in details. Results, conclusions and future improvements are presented in
the last chapters.
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3
Materials and Methods

3.1 Participants, instrumentation and data col-
lection

The data set included 80 drivers selected randomly. Only healthy men and women,
sustaining a valid driving license and between 18 and 65 years old were included.
Each driver performed three drives in a day: one in the morning around 08:00-09:00,
one in the afternoon around 14:00 and one in the night around 21:00-23:00. The
drives were lasting 80 to 90 minutes each. During the drive, a Holter recorded the
ECG with a sampling frequency of 256 Hz. Every five minutes, the driver assistant
recorded the KSS by asking how the driver was feeling. The drivers were asked not
to speak or interact with people or devices in the car (radio, cellphone...) except for
the experimenter in the right front seat for recording the KSS (refer to 1.2). Visual
signs, like yawning, were also recorded but they are not of interest for this study.

3.2 Data pre-processing

Each file provided in the dataset(successively called "drive") is organized as a struc-
ture with the following fields:

• GPS data
• CAN BUS data: vehicle speed, yaw rate, acceleration, steering, brake, engine...
• Annotation: KSS, driver actions, drowsy warning, attend warning, drowsy

accept
• ECG, Respiration signal (only for some drives), start and end time of the drive
• Time vector for every parameter

Between all the parameters mentioned above, only ECG, KSS and time vector were
used. From each drive, the ECG signal and the time were used for the computation
of the features. A visual inspection on some random data-sets was done to check
the quality of the signal (e.g. noise, artifacts) and its characteristics. The ECGs
had an amplitude varying from -0.4 V up to 1.8 V. The frequency of sampling used,
256 Hz, provided a high-enough quality signal. Noise in the signal, like random
fluctuations, was present only in the P, Q S, and T waves. Thus it was not affecting
the successive R peaks detection. Some periods were blank in the ECG probably
because drivers moved, but this did not happen during the actual recording time.
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3. Materials and Methods

3.2.1 Peak detection and HRV computation
Every drive is analyzed independently from the others. For each of them, the ECG
signal is divided in epochs (sweeps) of 5 minutes, corresponding to the occurrences
of the KSS in time. Five minutes epochs find confirmation in different studies like
[50] and were chosen despite hindering the analysis of VLF because the meaning of
this frequency band is unclear [26]. Moreover, the KSS values are registered every
5 minutes, thus they give information on the 5 minutes prior to their recording.
For every sweep, the HRV signal had to be computed. To do so, it is necessary to
measure the length of each QRS complex. QRS complexes are difficult to detect
due to their shape, their physiological variability and the type of noise that can be
present in the signal. Thus the distance in time between two R peaks is detected
since it is the same [51]. The R peaks detection is done using the Pan-Tompkins
algorithm. An example of peak detection is shown in Figure 3.1.
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Figure 3.1: R peaks detected in a part of ECG with Pan-Tompkins algorithm.

After obtaining all the R peaks, the time interval between two consecutive peaks
is calculated. Each of the resulting points is also related to the time at which the
second of the two peaks has occurred. For example, if two peaks occurred at times
t1 and t2, the resulting point will be p = (t2 − t1, t2). An example of HRV signal is
shown in Figure 3.2.

3.2.2 Outliers detection and processing
The HRV signal presented some abnormalities like very high peaks. The correspon-
dent pairs of R-peaks that generated the spikes were thus checked. Those peaks
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Figure 3.2: HRV signal in a 5 minutes sweep.

were corresponding, in the ECG signal, to delayed, missing or ectopic beats (Ec-
topic beats: section 1.3). Even though ectopic beats are physiological in nature,
they need to be removed since they are not controlled by the ANS. Therefore, an
algorithm for detecting and correcting those beats is required.
Various methods have been presented in literature. For this study, two methods
were adopted according to study [49]. The first one, successively referred as pctChg,
classifies an RR interval as outlier if its value differs more than 30% from the mean
of the previous four accepted intervals. With the second method, called stdMethod,
all the points whose values differ more than five standard deviations from the mean
of all RR intervals, are classified as outliers. Both methods were implemented and
compared. Figures 3.3 and 3.4 show an example of outliers detected (red crosses) in
a sweep of HRV signal.
As it can be seen in the two figures, the two methods don’t give always the same
results. Samples that are detected as outliers with the first method are not nec-
essarily marked as outliers by the other. It is also possible that when one method
detects some outliers the other detects none. The reason is that pctChg is sensible
to the number of points that the peak is made of and the number of previous points
used for calculating the mean. If the peak is high but several points go gradually
increasing to that peak, the variation in percentage can be less than 30% and thus
no outliers are detected. This fact is not present when considering the stdMethod.
The outliers detection has been validated checking whether the detected outliers
were corresponding to abnormalities or not. Looking closer in the ECG in their
correspondence, it is possible to see that some of them actually are ectopic beats.
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Figure 3.3: Outliers (red crosses) with pctChg method with threshold 30%.
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Figure 3.4: Outliers (red crosses) with stdMethod.
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Figure 3.5 clearly displays the detection of an ectopic beat.
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Figure 3.5: Ectopic beat detected by the pctChg algorithm.

The samples detected and classified as outliers need to be processed. Several meth-
ods for processing outliers, for example removal, interpolation or replacement exist.
Each technique can be done in different ways. For instance, if one uses interpolation,
it can be linear, quadratic or cubic. Removal was recommended over interpolation in
[52]. Nevertheless [49] determined than the influence of the outlier removal method
is non-significant. It is clear that, regardless of the choice, errors will be introduced,
such as increases of the low or high frequency component, false shapes and trends
[52] [53]. For this study, simple removal of outliers has been chosen according to the
recommendation in [52]. Figure 3.6 shows the HRV signal after the removal of the
outliers detected by the pctChg method.

3.3 Data processing
The analysis of the data comes in four different domains: time domain, frequency
domain, geometrical and non-linear. In each section, the methods in Table 3.1
are discussed and some examples are given. A complete list of features and their
explanation can be found in Table 3.1.

3.3.1 Time domain
The simplest analysis to perform is the one in the time domain since it does not re-
quire transformations of the data. The features that have been extracted, according
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Figure 3.6: HRV signal after removal of pctChg’s outliers.

Domain Feature Symbol Physiological meaning
Time Mean heart rate mHR

Standard deviation of Heart
Rate

stdHR HR variation

Root mean square of successive
differences

RMSSD Short term component

Standard deviation of NN inter-
vals

SDNN Estimate of overall HRV

Percentage of NN interval that
differes more than 50 ms

pNN50% Short term component

Frequency Low frequency power LFP Simpathetic activity
High frequency power HFP Parasympathetic activity
Ratio between LFP and HPF LHRatio Simpathovagal balance
Low frequency power normalized LFP n.u.
High frequency power normal-
ized

HFP n.u.

Geometrical Triangular index RRtri Estimate of overall HRV
Triangular Interpolation Index TINN

Non-Linear Poincaré Poin SD1: Short, SD2: Long
term variability, Ratio:
randomness in HRV

Table 3.1: Features, symbol and physiological meaning.
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to recommendation in [50], are explained here.
Firstly HR and its standard deviation were calculated. Afterwards, the analysis
is extended to RMSSD, defined as the square root of the mean of the sum of the
squares of differences between adjacent NN intervals. Last parameter is pNN50%,
the number of pairs of adjacent NN intervals differing by more than 50 ms in the
entire recording divided by the total number of all NN intervals. Three variants are
possible: counting all such NN intervals pairs or only pairs in which either the first
or the second interval is longer. The first of the three approaches has been chosen.

3.3.2 Frequency domain
Particular attention needs to be dedicated to the analysis in the frequency domain
for calculating the power spectrum of the HRV signal computed in the previous steps.
First of all, there exists a large number of methods that can be used to perform this
analysis. There are several methods for spectral transformation: Fourier Transform
(DFT), Autoregressive Model (AR) and Lomb-Scargle periodogram (LS). All the
three methods have been implemented to compare their performance.
DFT and AR-model methods need an evenly sampled dataset. Thus, since RR is an
unevenly sampled signal it needs to be interpolated and resampled. This produces
an additional error. LS can work with unevenly sampled data representing this an
advantage [54] [55].
The Fourier spectrum can be calculated in different ways, either by squaring the
FFT transformed signal or by computing the DFT of the autocorrelation of the
signal. The second approach has been chosen. In this way, the spectrum is sensitive
to the order of autocorrelation used. Autocorrelation is estimated using eq. 3.1 (N
= number of samples, m = order of autocorrelation).

R̂x(m) = 1
N −m

N−m−1∑
n=0

x(n)x(n+m) (3.1)

Since this estimator is non-polarized, it converges to the true value (eq.3.2).

E[R̂x(m)] = Rx(m) (3.2)

It is also consistent, thus its variance sets to zero when N goes to infinite, but it
increases with m when N is a finite number (eq. 3.3).

var[R̂x(m)] ≈ N

(N −m)2 [...] (3.3)

A good trade-off between computational efficiency and quality of the spectrum has
been obtained with an order m = 40. Higher orders give a spectrum made of more
points, thus smoother and that can catch better the variations in frequency. On
the other hand, it follows more noise and artifacts as well. It is possible to see an
example of spectrum in Figure 3.7, where the green and red vertical lines demarcate
the VLF, LF and HF bands.
Concerning the autoregressive model, it leads to a smoother spectrum if compared
to the DFT method, but since it is a parametric method it depends on the order
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Figure 3.7: DFT: Power Spectral Density. Red and green vertical lines delimit
VLF, LF and HF frequency bands.

used. Different orders have been tried. Akaike creterion (AIC), Final prediction
Error (FPE) and Parzen index were all giving similar results for the orders between
10 and 20. Thus, after a trial on few drives, order p = 16 has been chosen agreeing
to recommendation of [56]. Similar consideration made for the DFT about using
higher orders are valid. An example of PSD estimation with AR(16) model is shown
in Figure 3.8.
The last method used was the Lomb-Scargle periodogram. As already mentioned,
it is the most robust of the three to missing or unevenly sampled data. An over-
sampling factor of 4, as recommended in Matlab’s documentation has been chosen
[57]. Example of PSD estimation with this method is provided in Figure 3.9.
The three plots are similar in terms of shape and values.
After obtaining the PSD with the three methods, a simple integration in the three
frequency bands leads to the features of interest: LFP, HFP, LHRatio, LFn.u. and
HFn.u.. The three methods are compared in Figure 3.10 for the power in LFn.u.
and HFn.u.

3.4 Geometric and non-linear index
The RR (HRV) signal can be converted to a histogram. Exploiting the geometrical
properties of the shape of the histogram, it is possible to extract the so-called geo-
metric indexes. Geometrical methods are robust to the analytic quality of the series
of NN intervals (low sensitivity to outliers) but they need a reasonable number of
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Figure 3.8: AR: Power Spectral Density. Red and green vertical lines delimit
VLF, LF and HF frequency bands.
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Figure 3.10: Examples of power (n.u.) in LF and HF band for the three methods

NN intervals to construct the geometric pattern [18].
To study the variations in the short and long term, the triangular index (RRTri) and
the Triangular interpolation index (TINN) have been calculated. RRTri corresponds
to the ratio between the number of RR intervals and the maximum height of the
histogram and gives an estimation of the overall HRV. A bin width corresponding to
1/fsampling was used [18]. TINN, instead, is the distribution baseline width measured
as a triangular base approximating the distribution of all RR intervals. To determine
the triangle that best approximates the histogram, the LS method was used [58]. An
example of Triangular Interpolation of NN interval is shown in Figure 3.11. When
the triangle that best fits the histogram is found, its base is returned as the feature.
Concerning the logarithmic index, what it is calculated is the best value of the pa-
rameter k for the curve y = Ae−k∗d that fits the histogram of the absolute difference
between successive intervals.
The only non-linear method considered is the Poincarè plot. Non-linear features are
interesting since the HRV regulation is probably non-linear [58]. The Poincaré plot
is the plot of the RRn interval against the RRn+1 one. All the points of the plot
which lie on the line y = x are representing no variations between an RR interval
and the consecutive. This because they have identical coordinates and thus there are
no variations in the HR: a point would be p = (RRn, RRn+1) = (RRn, RRn). Points
that lie over this line represent an increase in the HR since RRn+1 is greater than
RRn, points under this line represent, similarly, a decrease in the HR. Statistically,
in the Poincaré plot for a healthy person, each point over the line of identity would
find a correspondent point under it [59].
From the distributions of the points on the plot, it is possible to fit an ellipse from
which it is possible to obtain the parameters SD1, SD2, and their ratio. The center
of the ellipse corresponds to the average of the RR intervals. SD1 is calculated as
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Figure 3.11: TINN: Triangular Interpolation of NN intervals.
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the distance of the points to the diagonal y = x, SD2 the standard deviation of the
distance of the points to the line y = −x + mean(RR). SD1 and SD2 represent
the short and long term variability respectively. Their ratio is the ratio between the
short and long term variation of RR intervals [58]. In Figure 3.13 it is possible to
see an example of a Poincaré plot. Since there were multiple occurrences of some
pairs (RRn, RRn+1), the color is used to represent the number of occurrences.
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Figure 3.13: Poincaré plot. Length of the two semi-axis of the fitted ellipse are
the features of interests.

A scheme of the algorithm is presented in Figure 3.14.

3.5 Statistical tests
Once all the features are collected for all the drivers and all the drives, a t-Test is
performed to find a correlation between the HRV features and driver’s fatigue. The
Student t-Test is used to test whether the means of two populations are statistically
significant or not. Initially, the project was set to obtain this result using the KSS
values recorded during the drive. Since those values where not provided, it was
decided to substitute the KSS with the time at which the drive was performed.
Thus, the test is done dividing the features in three sets: the first one corresponds
to the morning, the second one to the afternoon, the third one to the night.
T-Test and Bland-Altman analysis (see section 1.6) are computed also for compar-
ing the agreement of two methods. When it is applied to agreement between two
methods, the t-Test tells whether the bias is statistically significant or not. For that
it also needs to be paired. A first analysis has been done for the outliers detection
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Figure 3.14: Flowchart for computing the features.

31



3. Materials and Methods

methods pctChg and stdMethod for a given feature. All the features were selected.
For HR, SDNN, pNN50%, TINN, SD1, SD2, Ratio the BA plot is shown, meanwhile
the remaining are summarized in Figures 4.1, 4.3, 4.4 and 4.2. A second t-Test and
BA analysis were computed for comparing the different methods for the frequency
domain analysis: AR vs FFT, AR vs LS and FFT vs LS, for the stdMethod. Same
for pctChg. If two drives (driveX with std and driveX with pct) have different
lengths in term of sweeps, the full drive is discarded. Thus we compare drives with
the same length. This, in most cases, means that no epochs were removed. It can
also mean than an epoch was discarded by both methods. As a last possibility, it
may happen that in one drive one method removed one epoch and the other a differ-
ent one leading to an error. However, since the percentage of outliers was generally
much smaller than 5%, the risk of doing this error is minimum.

Figure 3.15: Flowchart for the statistical information
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4
Results

In this chapter, the results achieved will be presented structured in two sections by
means of tables and plots. The first one shows how choices and assumptions in HRV
processing affect the results. The second part deals with the correlation between
the HRV features extracted and driver fatigue.

4.1 Influence of choices on the results: agreement
between methods

In this section, the consequences of choosing an outliers detection method rather
than another are evaluated. Successively, the differences in the values of the resulting
features in the frequency domain due to the adopted spectral transformation will
be presented. The tables and plots are intended to assess the agreement between
different ways of obtaining the same results.

4.1.1 Outliers detection methods
The first results presented concern the outliers detection methods. The number of
samples classified as outliers and removed is, in average, 0.278% for the percentage
methods and 0.0648% for the standard deviation method. The two methods have
discarded, respectively, 21 and 2 sweeps in total, due the large number of outliers
present (greater than 5%). In addition, it is interesting to see if the choice of using
one method or another affects the results and how: the two methods can remove
different outliers and also in different numbers. Thus, t-Test and Bland-Altman
plots between two sets of features processed with both outliers detection methods
are shown. The features selected are Heart Rate, SDNN, pNN50%, TINN, SD1 and
Ratio (evaluated for the three methods it was computed). In each plot, bias and
variance are taken into account with respect to the magnitude of the values. All
the HRV indices for the Bland-Altman plot are summarized at bias and confidence
interval. For an explanation of the Bland-Altman plot, refer to section 1.6.
It is possible to see, in Figure 4.1 and 4.1a, the influence on the results due to the
different choice for the outliers detection methods, for different features. Each point
in the plot has two dimensions: one is the mean between the value given by the
two methods for a specific feature, the other is their difference. For example, if HR
calculated choosing the pctChg method assumes a values of 70 and with stdMethod
assumes value 72, the point on the BA plot will be p = (−2, 71). In each plot is
shown the straight line represents the systematic error (bias), which asses the mean
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Figure 4.1: Influence on results due to the chosen outlier detection method.

difference between the two sets of values. The confidence interval CI (dashed line),
also referred as random error, corresponds at two stand deviations. Thus, 96% of
the values are, in principle, contained between the two dashed lines. Bias and CI
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Figure 4.2: Influence on results due to the chosen outlier detection method.

have to be compared to the mean magnitude of the measure, which correspond to
the vertical line.

4.1.2 Spectral transformation methods
Even though the three time-to-frequency domain transformation methods are in
principle equivalent, they give slightly different results due to errors, non-verified
hypothesis and assumptions. The differences in the resulting features computed
with those methods are thus evaluated. The comparison is done for the feature
Ratio, in pairs for all the methods: AR and FFT, AR and LS, FFT and LS. The
plots are shown in Figure 4.3.

4.2 Association between HRV and driver fatigue
Finding the difference in the values of the HRV indices for morning, afternoon
and night was considered as an indirect indicator of the capability of a feature
to discriminate between a driver suffering fatigue or not. This way, if the indices
obtained using a certain outlier detection or spectral transformation method would
show higher differences than others, it may be more suitable for our application.
The following box plots show how the features are distributed between morning,
afternoon, and night. Each box plot shows the median, the first and third quartile,
the minimum and the maximum value. The notches around each median give a
rough idea on how significantly different the medians are: if the notches do not
overlap, the medians are different at the 5% significance level. If a point is larger
than the 25th and 75th percentiles, it is marked as outlier and represented by a red
cross. The interval corresponds to approximately ±2.7σ and 99.3% coverage when
the data are normally distributed. The plotted whisker extends to the adjacent
value, which is the most extreme data value that is not an outlier [60].
Due to their large number, not all the features are shown in the plots. However,
their same parameters visible in the plots above, are summarized in Table 4.1-4.4.
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Figure 4.3: Influence on results due to the chosen spectral transformation
method.
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Feature t-test Bland-Altman
p-value Bias, 2std, magnitude

HF Std vs Pct 2,23E-33
2,86E-05
3,00E-04
4,72E-04

HFnu Std vs Pct 5,39E-02
1,04E-03
6,90E-02
3,01E-01

AR LF Std vs Pct 1,06E-63
4,78E-05
3,55E-04
1,00E-03

LFnu Std vs Pct 5,39E-02
-1,04E-03
6,90E-02
6,99E-01

Ratio Std vs Pct 2,43E-01
9,00E-03
9,81E-01
3,63E+00

HF Std vs Pct 5,39E-24
2,52E-05
3,16E-04
5,02E-04

HFnu Std vs Pct 1,52E-04
1,96E-03
6,57E-02
2,70E-01

FFT LF Std vs Pct 3,51E-47
4,02E-05
3,50E-04
1,24E-03

LFnu Std vs Pct 1,52E-04
-1,96E-03
6,57E-02
7,30E-01

Ratio Std vs Pct 2,11E-02
2,08E-02
1,15E+00
4,18E+00

HF Std vs Pct 9,44E-02
8,95E-04
6,81E-02
3,08E-01

HFnu Std vs Pct 2,45E-52
4,37E-05
3,60E-04
1,02E-03

LS LF Std vs Pct 9,44E-02
-8,95E-04
6,81E-02
6,92E-01

LFnu Std vs Pct 3,74E-37
-8,94E-04
8,84E-03
3,33E-02

Ratio Std vs Pct 4,47E-01
-4,94E-03
8,26E-01
3,11E+00

Table 4.1: Table of the p-values, bias and CI for the frequency domain features.
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Feature t-Test Bland Altman
p-value Bias, 2std, magnitude

HR Std vs Pct 1,56E-64
2,19E-02
1,61E-01
7,16E+01

logIndex Std vs Pct 5,61E-16
2,18E-05
3,42E-04
4,77E-04

pNN50 Std vs Pct 7,17E-69
-5,22E-02
3,71E-01
1,93E+01

RMSSD Std vs Pct 3,69E-37
-6,33E-04
6,26E-03
2,36E-02

RRTri Std vs Pct 9,15E-30
-4,20E-04
4,68E-03
6,52E-02

SD1 Std vs Pct 3,72E-42
-4,83E-04
4,46E-03
4,93E-02

SD2 Std vs Pct 1,35E-04
-7,91E-04
2,64E-02
1,62E-01

SDNN Std vs Pct 3,10E-04
-2,11E-02
7,42E-01
3,24E+01

TINN Std vs Pct 9,89E-34
-6,38E-02
6,65E-01
1,39E+01

Table 4.2: Table of the p-values, bias and CI for the time, geometrical and
non-linear domain features.
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Feature t-Test Bland Altman
p-value Bias, 2std, magnitude

Pct AR vs FFT 5,71E-125
-3,16E-05
1,63E-04
4,74E-04

Std AR vs FFT 3,58E-202
-2,82E-05
1,12E-04
5,01E-04

HF Pct AR vs LS 2,09E-05
-8,21E-06
2,45E-04
4,62E-04

Std AR vs LS 8,68E-05
-1,42E-06
2,38E-04
4,87E-04

Pct LS vs FFT 1,60E-40
-2,34E-05
2,21E-04
4,78E-04

Std LS vs FFT 2,95E-38
-2,68E-05
2,61E-04
5,01E-04

Pct AR vs FFT 2,43E-01
3,09E-02
5,23E-02
2,85E-01

Std AR vs FFT 2,45E-52
3,00E-02
5,19E-02
2,86E-01

Pct AR vs LS 4,08E-23
-7,08E-03
9,05E-02
3,04E-01

Std AR vs LS 4,14E-22
-6,93E-03
9,07E-02
3,05E-01

Pct LS vs FFT 4,53E-05
3,80E-02
7,93E-02
2,88E-01

Std LS vs FFT 2,35E-05
3,69E-02
8,13E-02
2,90E-01

Table 4.3: Table of the p-values, bias and CI for the frequency domain features.
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Feature t-Test Bland Altman
p-value Bias, 2std, magnitude

Pct AR vs FFT 9,87E-05
-2,40E-04
5,69E-04
1,10E-03

Std AR vs FFt 4,53E-05
-2,32E-04
5,44E-04
1,14E-03

LF Pct AR vs LS 1,32E-23
-2,43E-05
3,06E-04
9,91E-04

Std AR vs LS 3,67E-18
-2,01E-05
2,94E-04
1,04E-03

Pct LS vs FFT 0,00E+00
-2,15E-04
5,03E-04
1,11E-03

Std LS vs FFT 0,00E+00
-2,12E-04
5,15E-04
1,15E-03

Pct Ar vs FFT 0,00E+00
-3,09E-02
5,23E-02
7,15E-01

Std AR vs FFt 0,00E+00
-3,00E-02
5,19E-02
7,14E-01

LFnu Pct AR vs LS 4,08E-23
7,08E-03
9,05E-02
6,96E-01

Std AR vs LS 4,14E-22
6,93E-03
9,07E-02
6,95E-01

Pct LS vs FFT 0,00E+00
-3,80E-02
7,93E-02
7,12E-01

Std LS vs FFT 0,00E+00
-3,69E-02
8,13E-02
7,10E-01

Pct AR vs FFT 1,26E-219
-5,50E-01
2,08E+00
3,91E+00

Std AR vs FFT 2,17E-213
-5,38E-01
2,07E+00
3,90E+00

Pct AR vs LS 2,01E-56
5,29E-01
4,18E+00
3,37E+00

Std AR vs LS 5,07E-56
5,15E-01
4,09E+00
3,37E+00

Pct LS vs FFT 1,34E-169
-1,08E+00
4,71E+00
3,65E+00

Std LS vs FFT 2,83E-168
-1,05E+00
4,62E+00
3,64E+00

Table 4.4: Table of the p-values, bias and CI for the frequency domain features.
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Figure 4.4: Boxplots for different features in the time domain, comparing
morning, afternoon and night drives. Each feature is presented for the two outliers

detection methods.
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Figure 4.5: Boxplots for different features in the time domain, comparing
morning, afternoon and night drives. Each feature is presented for the two outliers

detection methods.

42



4. Results

Morning Afternoon Night

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Feature SD1
p-value MA: 0.77002   p-value NA: 8.486e-05   p-value MN: 5.7722e-05

(a) SD1, pctChg method

Morning Afternoon Night

0

0.02

0.04

0.06

0.08

0.1

Feature SD1
p-value MA: 0.40746, p-value NA: 4.7369e-05, p-value MN: 3.9575e-06

(b) SD1, stdMethod

Morning Afternoon Night

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Feature SD2
p-value MA: 0.012616, p-value NA: 0.075046, p-value MN: 0.64303

(c) SD2, pctChg method

Morning Afternoon Night

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Feature SD2
p-value MA: 0.023439, p-value NA: 0.095115, p-value MN: 0.71119

(d) SD2, stdMethod

Figure 4.6: Boxplots for different features in the non-linear domain, comparing
morning, afternoon and night drives. Each feature is presented for the two outliers

detection methods.
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Figure 4.7: Boxplots for the feature Ratio for the three transformation methods,
comparing morning, afternoon and night drives.
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Figure 4.8: Boxplots for the feature HFnu for the three transformation methods,
comparing morning, afternoon and night drives.
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Figure 4.9: Boxplots for the feature LFnu for the three transformation methods,
comparing morning, afternoon and night drives.
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5
Discussions

In this chapter, the results presented in the previous chapter will be discussed to
answer the research questions.

5.1 Comparison between outliers detection meth-
ods

The number of sweeps discarded and outliers detected by the two outliers detection
methods is significantly different. The pctChg method has marked and removed
0.278% of the samples and discarded 21 sweeps. The stdMethod has found, instead,
0.0648% of outliers and removed only two epochs. Thus, it is possible to say that the
stdMethod is more conservative than the pctChg method. This is strictly related
to the threshold adopted (30% variation and 5std), which were chosen according to
recommendation in [49].
From the analysis of Figures 4.1 and 4.2 is possible to infer whether choosing an
outlier detection method or another is useful or not for the results.
Frequency domain figures are shown in Figures 4.1a. Attending Figure 4.1a, it is
represented the difference between the feature Ratio, calculated with the autore-
gressive model, after removing the outliers with the pctChg method, and with the
stdMethod. From the picture, it is to compare the bias (systematic error, straight
horizontal line), the confidence intervals at two standard deviations (random error,
dashed lines) and the mean of both methods average (vertical line). It is possible
to notice that most of the points are spread along a line whose Difference value is
very close to zero and to the bias, whose value 0.008997 is sensibly small. The value
of the CI has to be compared with the mean magnitude of the measure. Since it
is close to 4 and the CI has a value of ± 0.98122, approximately 95% of the re-
sults given by the two methods has a variation within 25%, but most of them very
close to zero. The variation is significant but still not too big to clearly mark the
results as different. The p-value returned by the Student t-Test is around 24.3%,
which means that the Bias is not statistically significant. Similar conclusion can be
drawn for the same feature, calculated with Lomb-Scargle and Fourier Transform.
The latter shows, among the three, the biggest, but still small, difference (Figure
4.1b and Figure 4.1c. The Bias are generally very low as well as the variance in
HRV indices in the frequency domain. Thus, it can be concluded that the outlier
detection method does not significantly influence the values of HRV indices in the
frequency domain.
Regarding the time, geometric and non-linear domain features, Figure 4.1d, 4.1e,
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4.1f, 4.2a and 4.2b, it is possible to see that the confidence interval, if compared
to the magnitude of the mean, is very small. Figure 4.1d assess a variation of
±0.664 with respect to a magnitude of 14. Thus the variation is below 5% and thus
small enough to infer that the choice of the outliers detection method has almost
no influence on the results. The p-value is extremely small too, but this is due to
a large dataset rather than a high bias. This way, the Bias is around 200 times
lower than the mean of the magnitudes what is consistent among all time domain
features.
From the analysis it is thus possible to state that choosing pctChg or stdMethod for
detecting outliers has non-significant influence on the outcoming results. This result
is less evident for the features related to the frequency domain than the others.

5.2 Comparison between different time-to-frequency
domain transformation methods

In Figures 4.3 are shown the effects, on the results, of the different choice for the
time-to-frequency domain transformation method. Only the feature Ratio is shown,
but the following discussion can be similarly applied to the other features in the
frequency domain, which are summarized in the table in Tables 4.1, 4.3 and 4.4.
An analysis similar to the one in the previous section has been done. A detailed
examination of Figure 4.3a reveals that, contrary to what it was happening for the
outliers detection methods, the points of the BA plot are less aligned on the zero
and more spread as a cloud. The value assumed by bias is also bigger, around 0.5 in
absolute value instead of 0.008. Thus the mean difference between the two methods
is bigger. Concerning instead the CI, they are approximately 50% of the magnitude
mean when comparing AR and FFT and approximately 100% when comparing LS
to any other (Figure 4.3d, 4.3e and 4.3f). The variation is big enough for saying
that the choice of the transformation method is relevant for our application. The
fact that AR and FFT has higher agreement among them than compared to LS may
happen because, unlike the LS method, they are affected by unevenly sampled data.
Moreover, they show a marked increasing/decreasing trend that is not present when
comparing FFT with AR. Moreover AR is also sensitive to the order chosen for the
model. The results point at the time to frequency transformation methods having
a high influence over the HRV indices values, especially when referring to LS.

5.3 Capability of HRV indices of indirect fatigue
detection

The box plots of Figures 4.7-4.9, together with their p-values (MA = morning-
afternoon, NA = night-afternoon, MN = morning-night), show the capability of
the calculated HRV indices of discriminating between morning, afternoon and night
drives. This can be considered an indirect indicator of driver sleepiness. In par-
ticular, in Figure 4.7, it is possible to infer that the p-values for the feature Ratio
calculated with the pctChg method, is almost identical whether the transforma-
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tion method chosen is the FFT, the AR-model or the LS-periodogram. The LS-
periodogram performed slightly worse than the other two methods as highlighted
by its higher p-values. Moreover, the feature Ratio seems to perform better when
discriminating fatigue between morning and afternoon, and between morning and
night since those p-values are sensibly lower than 5%.
Similar conclusions can be drawn for the feature HFnu and LFnu calculated with
the three transformation methods (Figure 4.8 and 4.9). Differently from the the
feature Ratio and LFnu, the normalized high frequency shows a higher discriminative
potential since the lower overlapping between the boxes in the plot. The effect is
more evident with the AR-model, as shown in Figure 4.8a. Also in this case, the
LS-periodogram has slightly worse performances.
The very similar p-values of the time domain features calculated with the pctChg
method and the stdMethod, point out that there are no appreciable effects on the
results adopting one outlier detection method or the other, as shown in Figures 4.4.
Among the time domain features, HR is the one that allows a better discrimina-
tion between morning, afternoon and night since the lower overlapping between the
boxes.
Similarly to the time domain features, the geometrical and the non-linear (Figure
4.5 and Figure 4.6) are not affected by the outliers detection method used.
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6
Conclusions

The dependency of the HRV indices values on the methods utilized for outlier de-
tection and spectral transformation was tested on this thesis using data recorded
on drivers. Outlier detection methods showed to have non-significant influence on
the value of the HRV indices calculated. Spectral transformation methods showed,
instead, to have a substantial influence on the HRV indices.
Moreover, how the different methods allow separation of time of the day based
on HRV was tested as indirect indicator of what methods are most suitable for
driver fatigue detection. The outlier detection method chosen did not show an
influence on the capability of the different HRV indices of discriminating between
morning, afternoon and night. The spectral transformation methods did not show
a significant influence either. However, between the three transformation methods,
the LS-periodogram performed slightly worse in this regards.
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