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Abstract 

El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability of drought affecting 

the Chorotega region in Costa Rica facing the Pacific Ocean waters. It is a periodic alteration of Pacific Ocean 

surface temperature close to equatorial longitudes, which consists in an anomalous increase or diminution of 

Sea Surface Temperatures (SST) above or below average for a prolonged period, causing important changes in 

global patterns of climatic variables. Its warm phase “El Niño” is known to cause severe drought conditions in 

the with severe impact on natural resources, human health, water availability and more than any other fields, 

impact negatively agriculture which is one of the main economic activities in the region. This study aims to 

evaluate the impacts of the last two strongest El Niño events on agriculture with the help of remote sensing data 

from Landsat from 1990 to 2021, and modern cloud computing platforms such as Google Earth Engine. These 

technologies allow us to develop an improved outlook of historical patterns of key parameters correlated with 

ENSO. Landsat collection dataset was used to analyse the Normalized Difference Vegetation Index (NDVI) trends 

in the region from 1990 to 2021 and its response in cropland area after strongest El Niño events of the last 30 

years, which happened in 1997-1998 and 2015-2016. Previous studies have widely investigated El Niño event 

and its impact in the Chorotega region, but analysis of the impact on agriculture through a long time NDVI change 

in cropland area to understand continuous effects of El Niño have not been reported in literature. Results showed 

that cropland area for both events was negatively affected during El Niño events, and that 2015-2016 event had 

more severe impact on agriculture than the 1997-1998 event. The two events had different temporal 

development and intensity, also the severity in which they hit the region is different, underlying the 

unpredictability of El Niño at the local scale. It is crucial to have a better understanding of the impact of this 

phenomenon on agriculture, leveraging current knowledge of past events is key to better identify most affected 

areas, specific impacts, and find solutions to support resilience and adaptation. Albeit national environmental 

protection policies to improve resilience exists, more specific interventions for agriculture and water resources 

management, based on scientific evidence, are needed to advance the response to upcoming events. 
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Riassunto 

El Niño-Southern Oscillation (ENSO) è il principale responsabile della variabilità interannuale della siccità che 

colpisce la regione Chorotega in Costa Rica, affacciata sull’Oceano Pacifico. Si tratta di un'alterazione periodica 

della temperatura superficiale dell'Oceano Pacifico vicino alle longitudini equatoriali, che consiste in un aumento 

o in una diminuzione anomala delle temperature della superficie del mare (SST) al di sopra o al di sotto della 

media per un periodo prolungato, causando importanti cambiamenti negli andamenti globali delle variabili 

climatiche. La sua fase calda, "El Niño", è nota per causare gravi condizioni di siccità nella regione, con un forte 

impatto sulle risorse naturali, sulla salute umana, sulla disponibilità di acqua e, più di ogni altro campo, 

sull'agricoltura, che è una delle principali attività economiche della regione. Questo studio si propone di valutare 

l'impatto degli ultimi due eventi El Niño più forti sull'agricoltura con l'aiuto di dati di telerilevamento presi dalla 

raccolta Landsat dal 1990 al 2021 e di moderne piattaforme di cloud computing come Google Earth Engine. 

Queste tecnologie ci permettono di sviluppare una migliore visione dei modelli storici dei parametri chiave 

correlati all'ENSO. Il set di dati della raccolta Landsat è stato utilizzato per analizzare le tendenze dell'indice di 

vegetazione normalizzato (NDVI) nella regione dal 1990 al 2021 e la sua risposta nelle aree coltivate dopo gli 

eventi El Niño più forti degli ultimi 30 anni, verificatisi nel 1997-1998 e nel 2015-2016. Studi precedenti hanno 

ampiamente analizzato l'evento El Niño e il suo impatto nella regione di Chorotega, ma non è stata riportata in 

letteratura un'analisi dell'impatto sull'agricoltura attraverso la variazione dell'NDVI nel lungo periodo nelle aree 

coltivate per comprendere gli effetti continui di El Niño. I risultati hanno mostrato che l'area coltivata per 

entrambi gli eventi è stata colpita negativamente da El Niño, e che l'evento 2015-2016 ha avuto un impatto più 

grave rispetto a quello del 1997-1998. I due eventi hanno avuto uno sviluppo temporale e un'intensità diversi, 

anche la gravità con cui hanno colpito la regione è diversa, evidenziando l'imprevedibilità di El Niño a scala locale. 

È fondamentale avere una migliore comprensione dell'impatto di questo fenomeno sull'agricoltura, sfruttando 

le conoscenze attuali degli eventi passati per identificare meglio le aree più colpite, gli impatti specifici e trovare 

soluzioni per sostenere la resilienza e l'adattamento. Sebbene esistano politiche nazionali di protezione 

ambientale per migliorare la resilienza, sono necessari interventi più specifici per l'agricoltura e la gestione delle 

risorse idriche, basati su evidenze scientifiche, per migliorare la risposta ai prossimi eventi. 
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1. Introduction 
The El Niño-Southern Oscillation (ENSO) is the most relevant climate variability mode and one of the 

most broadly studied climatic phenomenon because its impact on global climate, particularly its effect on 

changes in precipitation patterns worldwide  (Slyunyaev et al., 2021; Yang et al., 2018). ENSO is divided in an 

oceanic component (El Niño) and an atmospheric component (Southern Oscillation) (McGregor & Ebi, 2018). The 

oceanic component consists of an anomalous change in Sea Surface Temperature (SST) in the central and eastern 

tropical Pacific, with two opposite events which often but not always are consecutive, El Niño, also referred to 

as “warm event” because of the positive SST anomalies and the opposite “cool event” is called La Niña and it is 

characterized by negative SST anomalies (Hoell & Funk, 2013; McGregor & Ebi, 2018; Yang et al., 2018).  

Length, entity, and characteristics of SST anomalies are driven by a wide range of climatic factors and 

depend on their location and the month in which they occur. ENSO plays a relevant role in determining the 

interannual SST pattern near the equator, changes in the the Mixed Layer Depth (MLD) cycles are also modulated 

in the process in which ENSO develops (P. Q. Huang et al., 2018; Slyunyaev et al., 2021). MLD is the thickness of 

the upper-ocean Mixed Layer (ML) which by the alteration of its components (temperature, salinity, and density) 

caused by processes like wind, turbulence and waves, couples with the atmosphere weather and climate patterns 

(P. Q. Huang et al., 2018; Slyunyaev et al., 2021). Prolonged SST anomalies occur mainly during the boreal winter 

particularly in eastern and central Pacific, influencing, among others, phytoplankton bloom, cyclone formation 

and, climate variability (Bulgin et al., 2020). Equatorial SST anomalies related to ENSO are studied by zones 

(Figure 1.1) (McGregor & Ebi, 2018). Starting from the coasts of South America and moving westward, there is 

the El Niño 1+2 zone, characterized as the smallest area compared to the other three but the highest anomalies 

followed by El Niño 3 zone (Bulgin et al., 2020). El Niño 3.4 zone, placed between 5S – 5N latitudes and 120 – 170 

W longitudes (around the dateline), is the most important, its anomalies are broadly used to estimate different 

ENSO indices because the trend of SST anomalies is more significant for this zone (Bulgin et al., 2020; McGregor 

& Ebi, 2018). Finally, Niño 4 region, placed in central Pacific, shows few SST anomalies than other areas and so it 

is not utilized in the calculation of the most famous SST anomalies indices  (McGregor & Ebi, 2018). 
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Figure 1.1. Regions in which Pacific Ocean is divided based on SST anomalies dynamic during ENSO 

The Southern Oscillation component is represented by the surface atmospheric pressure “seesaw” 

between Eastern and Western hemispheres, or the barometric seesaw between eastern and western Pacific 

which determines trade winds strength (Hoell & Funk, 2013). Trade winds are weakened during El Niño, this 

allows the migration of warm waters towards the east (Hoell & Funk, 2013; McPhaden et al., 2020). Both El Niño 

and La Niña events are part of the ENSO phenomenon, which duration varies between 12 and 24 with the two 

events typically (but not always) succeeding one another (Hoell & Funk, 2013). 

By interacting with other climatic factors and variability modes, ENSO impacts are not limited to 

temperatures and precipitation patterns, as it also affects the occurrence and severity of extreme events (Hoell 

& Funk, 2013; Yang et al., 2018). Many studies have studied changes in ENSO patterns and teleconnections over 

the years highlighting the non-stationary behaviour of the phenomenon contributes to forecasting uncertainty 

as there are no two identical ENSO events registered until now (McGregor & Ebi, 2018; Timmermann et al., 2018; 

Yang et al., 2018). Such large variability results from negative and positive feedbacks between the atmosphere 

and ocean that modulates SST anomalies, causes changes in the atmospheric deep convection and consequently 

on affects the Walker Circulation, upsetting normal annual temperature and precipitation patterns 

(Timmermann et al., 2018).  
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Different indices are used to study and diagnose ENSO development, the main indices developed by the 

National Oceanic and Atmospheric Administration (NOAA) are described as follows: 

- Southern Oscillation Index (SOI): the index (Figure 1.2) estimates the intensity of the atmospheric 

component as it indicates the standardized air pressure difference between the stations of Darwin 

(Australia) and Tahiti (French Polynesia), located at the opposite extremes of the barometric seesaw 

(respectively of the Western and Eastern Hemispheres) spanning the Pacific Ocean (Hoell & Funk, 2013). 

La Niña is identified by strengthened trade winds caused by below average pressure in Darwin and above 

average pressure in Tahiti, and El Niño is characterized by below average pressure in Tahiti and above 

average pressure in Darwin (Hoell & Funk, 2013; McGregor & Ebi, 2018; McPhaden et al., 2020). Negative 

values of SOI indicate lower than normal air pressure at Tahiti while positive values indicate higher than 

normal air pressure values at Darwin, negative SOI values perpetuating in time reflect warmer ocean 

temperatures and so El Niño occurrence, opposite parameters describe La Niña conditions (Southern 

Oscillation Index (SOI) | El Niño/Southern Oscillation (ENSO) | National Centers for Environmental 

Information (NCEI) (noaa.gov)). Anomalies values are departures from 1981-2010 baseline (NOAA, 

https://www.ncdc.noaa.gov/teleconnections/enso/ ). 

https://www.ncdc.noaa.gov/teleconnections/enso/soi
https://www.ncdc.noaa.gov/teleconnections/enso/soi
https://www.ncdc.noaa.gov/teleconnections/enso/soi
https://www.ncdc.noaa.gov/teleconnections/enso/
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Figure 1.2. a) SOI anomalies from 1990 to 2021 expressed in hPa b) Standardized SOI values from 1990 to 2021. Data downloaded from 
https://www.cpc.ncep.noaa.gov/data/indices/soi 

- Equatorial Pacific Sea Surface Temperature (SST): five consecutive 3-months running mean of sea surface 

temperature (SST) anomalies in the Niño 3.4 region of +0.5 °C or -0.5 °C indicates El Niño or La Niña 

occurrence respectively and are expressed by the Oceanic Niño Index (ONI, Figure 1.3) (McGregor & Ebi, 

2018, Equatorial Pacific Sea Surface Temperatures (SST) | El Niño/Southern Oscillation (ENSO) | National 

Centers for Environmental Information (NCEI) (noaa.gov)). 

https://www.cpc.ncep.noaa.gov/data/indices/soi
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Figure 1.3. ONI Index 1990-2021. Data taken from https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt 

- Outgoing Longwave Radiation (OLR): recurrent annual storms during ENSO are shifted towards east. It 

is possible to identify them by looking at the cloud presence with remote sensing and their emission of 

longwave radiations which will indicate El Niño conditions when cloud cover is higher than normal in the 

centre equatorial Pacific and so longwave radiations will have a lower value (colder conditions) and will 

indicate La Niña occurrence with opposite conditions (Figure 1.4) (McGregor & Ebi, 2018). Radiation data 

are taken from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA satellite and 

elaborated to create a standardized anomaly index (Outgoing Longwave Radiation (OLR) | El 

Niño/Southern Oscillation (ENSO) | National Centers for Environmental Information (NCEI) (noaa.gov)). 
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Figure 1.4. OLR Index from 1997 to 2017. Data dowloaded from https://www.cpc.ncep.noaa.gov/data/indices/olr 

Several studies have tried to classify El Niño by using different indices, however, it does not exist an event 

equal to another one and variables affecting the phenomenon are numerous (Hoell & Funk, 2013; Wen et al., 

2020; Yu & Kim, 2013). The conventional and best known one is called Eastern Pacific (EP) El Niño characterized 

by a significant warming of the eastern part of the Pacific Ocean, (Niño 3 region), the most intense El Niño events 

and weak La Niña belong to this type (Cai et al., 2018; Hoell & Funk, 2013). The warming or cooling of most of 

the central equatorial part close to the Date Line is called El Niño Modoki, (also known as the dateline El Niño, 

Central Pacific (CP) El Niño, or Warm Pool El Niño), normally creating strong to moderate La Niña ad moderate 

El Niño, this type appears to be the more recurrent in the last years(Cai et al., 2018; Hoell & Funk, 2013; Wen et 

al., 2020; Yu & Kim, 2013). Finally, the Mixed-Type Pacific (MP) El Niño shows intermediate characteristics 

between the two mentioned above (Wen et al., 2020; Yu & Kim, 2013).  Other attempts to classify El Niño include 

Kane (1999) work that categorized El Niños according to the positive SST anomalies along the Peruvian and 

Ecuadorian coasts as strong (SST anomalies > 3°C), moderate (2°C < SST anomalies < 3°C) and weak (1°C < SST 

anomalies < 2°C). 

It has been determined that the impact of ENSO is proportional to the intensity of the event.   

Strong EP El Niño causes flooding in southeast USA, northeast Peru and Ecuador and droughts in west 

Pacific coasts. It also impacts the oceans as the typical warming of the Humboldt current during El Niño causes 

also the death of plankton and fishes near the coast and coral bleaching (Cai et al., 2018; Kane, 1999). In India, 

severe droughts and less frequently higher than normal rainfalls are associated with El Niño, independently by 

its strength, also south-eastern Australian droughts over the years showed a correlation with the event (Kane, 

1999).  In California, strong El Niño events are linked to high precipitations spreading all over the state, as weaker 
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events only affect the southern California (Hoell et al., 2016). The 1997-98 event was very strong, the increase 

of precipitation in California even provide the conditions for the desert areas to bloom, heavy rainfall and floods 

affected Arizona, and wetter than normal conditions during winter and spring were observed in the northeast 

of the US and Florida (Adams et al., 1999; Kane, 1999).  Effects on East Asian precipitation were variable and 

relative to the type of El Niño, for EP El Niño dried than normal conditions were observed in North China and 

wetter than normal condition in Southeast China, the MP El Niño was linked to heavy rainfall in the Yangtze-

Huaihe River valley and reduced rainfalls over South and North China, while CP El Niño caused wetter than 

normal conditions in South and North China and drought in the Jianghuai region (Wen et al., 2020).  

 

Figure 1.5. Desert flowering after El Niño event of 2015-2016. a) Flowers bloom in Chile's Atacama Desert (photo downloaded from: 
https://www.telesurenglish.net/multimedia/Flowers-Bloom-in-Chiles-Atacama-Desert-20151102-0017.html); b) Flowers bloom in 
California's Death Valley (photo of Jack Dykinga downloaded from: https://en.protothema.gr/death-valley-is-alive-again-pics/) 

Strong El Niño play a role in cooling winters in Europe, especially in the Northeast (e.g., 1940-41-42) as 

it interacts with other variability modes, such as the NAO (North Atlantic Oscillation) for which El Niño induced 

negative conditions tends to increase precipitation in the northern Mediterranean and decrease precipitation in 

Scandinavia (Brönnimann, 2007). More recent studies (Hoell & Funk, 2013) have shown that repercussions in 
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Europe are more likely to be related to La Niña event. The El Niño 1997-1998 event caused higher than normal 

precipitation on Christmas Island, Australia and India, drought conditions which enhanced wildfires conditions 

were observed in southern Peru, western Bolivia, North East Brazil, Amazonia and Roraima, Micronesia, 

Thailand, Vietnam, Malaysia, Indonesia, Western Fiji, Philippines and West Papua New Guinea, floods and heavy 

rains were recorded in eastern and northern Peru, eastern Bolivia, South Brazil, Paraguay, Uruguay, North East 

Argentina, Chile and Ecuador (Kane, 1999). The recent 2015-2016 event caused wildfires in Indonesia with the 

consequent haze hazard in the surrounding regions, extreme floods in Peru, the flowering of Atacama Desert in 

Chile and of Death Valley in California (Figure 1.5), coral bleaching, health issues, and other disasters similar to 

impacts recorded during 1997-1998 event in many areas of the Pacific (McGregor & Ebi, 2018). Tropical pacific 

regions often suffer precipitation deficit and irregularity during El Niño, and independently from the season in 

which the event occurs, dry season tend to last more and wet season to be shorter (Lyon, 2004; J. Retana et al., 

1999). Our study region is located in the Central America and during ENSO event its Pacific side shows almost 

opposite climatic conditions compared to the Atlantic regions (Lyon, 2004; V. O. Magaña et al., 2003).  

As mentioned, the impact of ENSO and associated influence on extreme precipitation and temperature 

extends to affectations on human health, water resources, forestry, ecosystems, and agriculture. Health 

conditions are proven to be affected by the phenomenon as the spread and/or intensity of many diseases are 

directly correlated with humidity or temperature conditions, factors which typical seasonal patterns are directly 

altered by ENSO (McGregor & Ebi, 2018).  Scientists have found evidence of this correlation mainly with diseases 

brought by vectors or water-borne because population fluctuations of vectors and microorganisms are highly 

affected by climatic conditions (Anyamba et al., 2019; J. Retana et al., 1999). Some examples of ENSO-worsened 

diseases were malaria in Africa, dengue and Zika around the Equator, cholera, and diarrhoea mostly in Asia and 

Africa (Anyamba et al., 2019). In 1993, in southeast USA, rats’ population increased of ten times causing the 

spread of a mortal pulmonary hantavirus (Anyamba et al., 2019; McGregor & Ebi, 2018; J. Retana et al., 1999). 

In Costa Rica, cases of dengue increased both in the Pacific and the Caribbean, malaria increased mainly during 

the rainiest months in the Caribbean and, to a lesser extent in the Chorotega and Huetar Norte regions (United 

Nations, 1998). Diseases are also a threat for ecosystems as vectors and plagues are often opportunistic 

communities and adapt more rapidly to extreme climatic conditions than their natural enemies, belonging to this 

category of plagues are locusts and leafhoppers, mosquitos, worms and rodents (J. Retana et al., 1999). In Costa 

Rica, during ENOS of 1994, government spent more than $20 million to upfront a big and rapid rat invasion (J. 

Retana et al., 1999). In Costa Rica, warm ENSO have been found to favour conditions for on forest fires 

intensification, due to high temperatures and strong winds (Moraga Peralta, 2010). Altered precipitation normal 
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spatial and temporal patterns (Waylen et al., 1996) and anomalous high tides (Lizano, 2014) are also part of the 

impacts of ENSO that cause further disruptions in the region ecosystems. 

In the Pacific coast of Central America, reduction of precipitation is one of the main impacts of El Niño, 

which results in drought conditions, inevitably affecting agriculture, both rainfed and irrigated crops, and 

therefore, monitoring food production in terms of yield and economic losses can be a great indicator of the 

magnitude and gravity of this event. J. A. Retana (1999) individuates two ways in which the agricultural sector 

can be affected by climatic variability by the direct impact of precipitation deficit in plant growth and therefore 

yield, and by indirect impact on farms and other activities of the production chain like transportation, local 

markets and commercialization. After the event of 1958 inhabitants of northeast Brazil left their homes after 

severe ENSO-induced precipitation deficit (J. A. Retana, 1999), the event of 1982-1983 caused famine in Australia 

and Indonesia, Peru experienced a catastrophic drought which affected more than 200000 ha of cultivated land, 

causing a loss for the agricultural sector of $650 million, in southern Africa losses reached one thousand million 

dollars (J. A. Retana, 1999). In Mexico and Central America losses were around $600 million of which $100 million 

in Nicaragua and Costa Rica (J. A. Retana, 1999). Adams et al., 1999 have calculated change in crop yield and 

prices over California after the strong 1997-98 event, consumers lost over $15 million with the increase in 

strawberry prices due to yield losses in spring 1998. During the same event Mexico registered losses for 

agriculture of around 2-billion dollars, Bolivia lost 41% of barley production, 40% of potato, 39% in corn and 34% 

in broad bean, Peru lost 4,7% of cultivated land (V. O. Magaña et al., 2003; J. A. Retana, 1999).  After 1997-1998 

ENSO event in Costa Rica, livestock production suffered because water and food had to be rationed, especially 

in Guanacaste and the Northern Zone, where pastures dried completely and heads of cattle died, palm and 

orange plantations were negatively affected (United Nations, 1998). Fisheries and pelagic species suffered the 

increase of SST which in December 1997 reached 4 °C above the average and caused ocean salinity alterations 

(United Nations, 1998). Soils started to lose water content at a dangerous rate because of the increase in air 

temperature from October 1997 (up to °C above the average in the Chorotega region and the Northern Zone in 

May and April 1998), causing important agricultural production loss in which most affected crops were basic 

grains, coffee, rice (usually during ENSO loses 3000 ha or more of cultivated land), beans, sugar cane, and melon 

(compromised because of changes in its sowing dates) and forest fires caused by traditional burning of post-

harvest residuals in combination with strong winds were increased (Jiménez et al., 2016; J. A. Retana, 1999). The 

1997-1998 El Niño event brought 32,8 million dollars losses in the agricultural sector (Table 1.1) which 

corresponded to the equivalent of the 58% of all economic damages caused by the event, Guanacaste alone 

registered damages in rice production of 80% (Birkel, 2005; IICA, 2001; Jiménez et al., 2016; J. A. Retana, 1999).  
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Sector and subsector Damage (in million dollars) 

 Total (in million 
dollars) 

Direct (in million 
dollars) 

Indirect (in 
million dollars) 

TOTAL $ 54,4 34,4 18,0 

Agriculture 32,8 25,6 7,2 

For internal consumption 23,7 16,6 7,00 

Rice 11,9 9,1 2,8 

Beans 11,1 7,2 3,9 

Corn 0,7 0,4 0,3 

For export 9,2 9,0 0,2 

Sugar cane 3,0 3,0  

Other 6,2 6,0 0,2 

Livestock 16,0 8,6 7,4 

Fishery sector 3,6 0,2 3,4 
Table 1.1. Economic losses (in million dollars) in the agricultural sector in Costa Rica after the 1997/1998 event (Birkel, 2005) 

Negative impacts in the agriculture sector in Costa Rica caused by the 1997-1998 El Niño event were 

more severe in the Huetar Norte and Chorotega regions, where beans and rice for domestic production and 

livestock production are concentrated. The combined effect of a prolonged drought and changes in the timing 

of rainfall, caused inhibition of blooming and/or the use of agricultural machinery (United Nations, 1998). At the 

time of the event the impact was reduced thanks to public aid and mitigation projects undertaken in a preventive 

way because of the long history of droughts in the region, such measures including the functioning of the Arenal 

Tempisque irrigation district in supplying water to farmers (United Nations, 1998). 

The 2015-2016 El Niño event caused a similar situation in the Chorotega region, precipitation deficit 

affected population, touristic sector, livestock and agricultural production. A main concern for that area is the 

increase in water consumption that have caused a large use of groundwater reservoirs, in 2015 water supply 

came for 78% from underground waters, causing conflicts and environmental problems like groundwater 

salinization (Hund et al., 2018; Jiménez et al., 2016). Furthermore, there is a faster decease in groundwater 

resources due to deficits in the average annual wet season groundwater recharge (Hund et al., 2018). 
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Figure 1.6. December 1997 vs. December 2015 El Niño events (NASA, 2016; https://sealevel.jpl.nasa.gov/data/el-nino-la-nina-watch-
and-pdo/el-nino-2015/). 

The 1997-1998 and 2015-2016 events have some common characteristics but different timing, peak 

months (November 1997 and January 2016) and overall different dynamics. The 2015-2016 event was stronger, 

longer and affected larger areas compared to the 1997-1998 event (Figure 1.6) (NASA, 2016). It is important to 

remember that the impact of ENSO varies according to the precipitation regime in Costa Rica, despite the 

relatively small size of the country. While El Niño is linked to drought in the northern Pacific area, rainfall over 

the Caribbean slope tends to increase under the same conditions. For the 1997-1998 event in Costa Rica, the 

different impact of El Niño for rainfall distribution between the Caribbean and Pacific was marked. During that 

event, rainfall amount in the Caribbean supered of 10% the average and a surplus of 30% caused overflowing 

rivers, floodings and landslides from April to November 1997 (United Nations, 1998). However, the Pacific side, 

and more than anywhere else the area the Chorotega region, suffered a strong precipitation deficit (50% below 

average), the Huetar Norte zone suffered a less severe precipitation deficit (30% below average) causing drought 

conditions and forest fires from November 1997 to May 1998 (United Nations, 1998). 

All the reasons explained above and many more clarify the big interest on the study of this climatic 

phenomenon which can be said to be one of the most important worldwide, affecting climatic patterns of a big 

percentage of the world area. Our research area is placed in one of the directly affected regions, that is the Pacific 

side of Central America, characterized by common climatic features and located within the so-called the Dry 

Corridor of Central America (CADC, Gotlieb et al., 2019), where the most dramatic effects on many economic and 

social aspects are observed for Central America. The CADC stretches from the north of Costa Rica to Nicaragua, 

Honduras, Guatemala, and a part of the Pacific coast of Panama (Imbach et al., 2017). Climate is characterized 
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the dry season from November-December to April-May and the wet season from May-June to October-

November interrupted by a reduction of rainfall between July and August, feature known as the Mid-Summer 

drought (V. Magaña et al., 1999). The tropical dry forest is the most endangered ecosystem in the region (Birkel, 

2005; Imbach et al., 2017) and this area is characterized by a high vulnerability to climate change and climate 

variability as its population is mainly rural and involved in the agricultural sector, hence socioeconomical 

activities are largely dependent from ecosystem services for its livelihood and jeopardized by increasingly 

frequent droughts, floods and storms (Eduardo Quesada-Hernández et al., 2019; Imbach et al., 2017; Pascale et 

al., 2021). Despite many studies have analysed ENOS impacts on Costa Rican environment and agriculture, no 

previous studies related to long-term changes in NDVI are reported, this is key to understand the continuous 

effects of El Niño in one of the most important regions of Costa Rica for agricultural production. The goal of this 

study is to evaluate the impacts of the last two strongest El Niño events, the 1997-1998 event and the 2015-2016 

event, on agriculture with the help of remote sensing data from Landsat from 1990 to 2021, and modern cloud 

computing platforms such as Google Earth Engine. These technologies allow us to develop an improved outlook 

of historical patterns of NDVI and key parameters correlated with ENSO. 

2. Materials and Methods 

2.1. Study area 
The study area is the Chorotega region (Guanacaste province with an area of 10.141 km²), located in the 

northern Pacific part of Costa Rica (Figure 2.1b) and that belongs in the CADC sub-region of Central America 

(Figure 2.1a). As previously introduced, CADC covers a large part of Central America, and a common feature of 

this area is its drought prone behaviour compared with the other areas of Central America. Such conditions 

involve multiple processes and interactions and key elements for drought development include topography, 

ENSO and its impact on the Caribbean Low Level Jet and associated transport of moisture for precipitation  

(Durán-Quesada et al., 2017, 2020; Eduardo Quesada-Hernández et al., 2019; Harvey et al., 2021). In the area, 

drought is the climatic phenomenon that have the most negative impact on the population which mainly rely on 
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agriculture for its livelihood and salary, and climate change causes uncertainty in the future suitability of this 

land d for the cultivation of the traditional crops (Imbach et al., 2017).  

 

Figure 2.1. a) Location of Costa Rica in Central America; b) location of the Chorotega Region (Guanacaste province) in Costa Rica 

The bimodal pattern of precipitation is the main characteristic of the Chorotega region (Birkel, 2005; J. 

Retana et al., 1999). Differences in precipitation amount are more marked in the part of the country belonging 

to the CADC, the average annual precipitation is 1710 mm (Benavides et al., 2021; Harvey et al., 2021). Mean 

monthly temperature is around 27,7 °C, with the average minimum reaching 23.1 °C and the average maximum 

32.2 °C (J. Retana et al., 1999). East and northeast trade winds are relevant to shape the distribution of 

precipitation and characteristic large-scale patterns of the region are subject to variations due to the influence 

of tropical waves, low-pressure systems, tropical cyclones, convective systems, the Inter Tropical Convergence 

zone and ENOS which is the main driver of interannual variability (Durán-Quesada et al., 2020). In the study 

region, the influence of El Niño events often begins with an anomalous increase of the trade winds, inhibiting 

rainfall due to a decrease in the transport of moisture (Durán-Quesada et al., 2017) which can cause a rainfall 

reduction of nearly 30-40%, a longer MSD and overall temperatures increases of 1 to 2°C that for the 1997-98 

event reached up to 4 °C (J. Retana et al., 1999). 

It is possible to distinguish two areas with different type of predominant ecosystems and topography 

(Figure 2.2). The Nicoya Peninsula, covered by both tropical dry and tropical humid forests unsuitable for 

agriculture because of its steep slopes and infertile soils, and the Tempisque North-eastern Basin a fertile lowland 
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highly suitable and exploited for agriculture and pastures, originally typical ecosystems in the area were tropical 

dry forest and natural savannah(Calvo-Alvarado et al., 2009) . 

 

Figure 2.2. Guanacaste rivers, forests, and its Northeast Basin, Nicoya Peninsula, and the Tempisque-Arenal Irrigation District 

A crucial contribution to the life of existing cultivated land is the Tempisque-Arenal Irrigation District 

(TAID, Figure 2.2) with its 366 km of channels is the largest in the country. The TAID takes water from the artificial 

Lake Arenal (with an area of 85,5 km2) into the central lowlands of the region, in natural conditions the Lake 

supplies water to the Caribbean side of the country (Benavides et al., 2021; Birkel et al., 2017). The flow of rivers 

in Guanacaste is low and slow compared to the rest of Costa Rica and is highly affected by the annual cycle of 

rainfall and meteorological systems, e.g., the Tempisque river (the third longest river in the country with 144km 

of length, Figure 2.2) has an average flow of 24,6 m3/s but towards the end of dry season can arrive to a flow of 

2,6 m3/s even lower mean flow and lower peaks are measured for the other important river in the catchment, 

the Bebedero river (Figure 2.2), emphasizing the important role of TAID in supporting production (Birkel et al., 



19 
 

2017). During El Niño events, runoff volumes of less than 400mm/year were observed and during La Niña even 

higher than 1200 mm/year with resulting catastrophic drought and floods (Birkel et al., 2017). 

Most cultivated crop in the region are, in decrescent quantity produced order, sugar cane, irrigated rice 

and rainfed rice cultivated during the wet season often in rotation (since 2002 in some farms) with melons grown 

during dry season irrigated with drip irrigation systems (Morillas et al., 2019). Melon is an opportunity crop and 

its production started in 1980 and mainly took the place of abandoned pastures, they are planted from mid-

December to early February and grow for approximately 75 days, normally from January to April depending on 

climatic conditions and planting date with the harvest lasting until the end of April (Morillas et al., 2019).  Rainfed 

rice is planted the firsts week of July when soil is dry and grows for 120 days between July and November getting 

abundant water during wet season, and it is harvested, depending on meteorological conditions, between the 

end of October and mid-November (Morillas et al., 2019). Irrigated rice is planted for the first cycle between the 

end of February and the beginning of March and for the second cycle in July (Lizano S, 1991). Sugar cane can be 

planted any time of the year, non-irrigated plants during the wet season from May to August and irrigated plants 

during the dry season from February to April, important is the apport of water during dry season and growing 

stages, once it is mature, after 12 months, it remains available continuously during the year (Flores Q, 2007; 

Lizano S, 1991). Albeit introduction of modern production methods at farm scale, production methods used in 

the area for both agriculture and pastures tend to be obsolete and therefore characterized by a low efficiency. 

This leads to a general waste of resources causing pollution and degradation, especially waste and overexploiting 

of water resources during dry periods leads to lack of water and problems for agriculture (Birkel et al., 2017). 

Supplied by TAID are rice and sugar cane cultivations (Benavides et al., 2021). Rice is sowed during dry season 

from December to February and during wet season from May to August, sugar cane is planted from January to 

March (Benavides et al., 2021). Hence, improvement of water use and sustainable agricultural practices is a 

priority for this region. 

Costa Rica is well known to be one of the most successful countries in terms of landscape requalification 

and forest recuperation, but it has not always been like this, the big push towards innovative environmental 

policies and conservation initiatives came after a period of catastrophic land use change and deforestation due 

to a fast economic development. Between 1960 and 1979 Costa Rican deforestation rate was of 35000 ha/year 

and from 1979 to 1986 of 39000 ha/year, at the time between the highest rates in the world, after that, the 

country started to introduce conservation and reforestation policies and the land was reforested at a rate of 

17000 ha/year between 1986 and 2000 and 26000 ha/year from 2000 to 2005, reforestation continued until 

2013 and the biggest effort took place in the Chorotega region (Stan & Sanchez-Azofeifa, 2019; Tapia Arenas, 

2016). The prevalent ecosystem in the area is the Tropical Dry Forest (TDF) which have been affected by the 
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expansion of agricultural and livestock production leading to high deforestation rates (Calvo-Alvarado et al., 

2009). Contributing to this rapid change was the expansion of cattle industry aided by government incentives in 

the 50s consequently to the increase of international beef demand (Stan & Sanchez-Azofeifa, 2019). In the 60s 

livestock production increased by 62%, and over 40% of the production came from the Chorotega region (Stan 

& Sanchez-Azofeifa, 2019). Originally the region hosted the 97% of the tropical dry forests of Costa Rica, from 

the 50s have experienced a big economic development in primary, secondary and tertiary sectors followed by 

an important land use change which led to catastrophic deforestation rates, the highest in the country, until the 

80s, when meat market declined (Stan & Sanchez-Azofeifa, 2019; Tapia Arenas, 2016).  Since the 90s, 

environmental problems, market decline, conflicts linked to water overexploitation increased and pointed out 

the need for a change in direction and the introduction of conservation policies with the creation of protected 

areas (25% of the region) and shifting economic incentives towards other activities like sustainable tourism, 

Payments for Environmental Services (PES), and clean energy production but cash crops and livestock production 

remain the main activities in the region, jeopardizing natural and protected areas together with population 

growth (Stan & Sanchez-Azofeifa, 2019). From 1986 to 2000, forest cover increased from 23,1% to 40,4% to 

around 50% in 2005, to 60 % in 2015, mainly due to the abandonment of pastures and degraded lands no more 

suitable for agriculture, shift of the regional economy towards touristic sector, the prohibition of wood extraction 

from natural forests, the policies introduced by the country like the Payment for Environmental Services (PES) 

contributing to the protection of 31 2017 ha of forest until 2015, and the forest restoration efforts (Calvo-

Alvarado et al., 2009; Tapia Arenas, 2016). 

2.2. Selection of the most significant events 
Given the relevance of intense El Niño events for the region, the most severe events in terms of strength 

and duration analysing official historical records of the area were selected. Information from the Costa Rica 

National Meteorological Institute (IMN) records, monthly updated section for early warning of El Niño 

phenomenon and available from https://www.imn.ac.cr/boletin-enos was used. As shown Figure 2.3 from NOAA, 

normalized SST anomalies are used to identify the most significant events. SST anomalies can be considered 

between the best parameters to identify El Niño influence over the analysis region, because the warm current 

typical of the event directly touches the Pacific coasts of Costa Rica. In the selection of the events, the different 

indices explained in the introduction (i.e., SOI, ONI and OLR, Figure 1.2, Figure 1.3, and Figure 1.4) were compared 

with IMN bulletin information, together with precipitation data from regional IMN network and NASA 

publications about ENSO. 

https://www.imn.ac.cr/boletin-enos
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Figure 2.3. Sea Surface Temperature Anomalies record from January 1989 to July 2018 (https://www.imn.ac.cr/boletin-enos) 

2.3. Precipitation data 
ENSO is the main driver of alterations of normal seasonal patterns in the region, its development varies 

for the events as it does not have a fixed timing to develop. It is well known that the El Niño tends to cause severe 

drought in the CADC, with the consequent precipitation reduction, which is noticeable from time series. 

Precipitation reduction leads to river flows reduction, groundwater recharge reduction and consequently to 

vegetation stress that together with increased temperature and strong winds increases evapotranspiration from 

plants. 

In this study, precipitation data from the IMN historical record and available for this research as parto of 

the B7507 project (MCITT grant) was used to observe drought conditions induced by precipitation deficit during 

the selected El Niño events and compare it with NDVI trends. Precipitation records from 27 stations in the region 

from 1990 to present were used and their distribution is shown in Figure 2.4. Ten stations for every month were 

selected between the ones containing fewer missing data (Table 2.1). 
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Table 2.1. Selected stations for precipitation time series. Precipitation data were provided by IMN 

Some months contained data gaps which were filled by calculating the average of the same month for 

the ten previous or closest years, lowest and highest value were excluded from the calculation. Stations with 

more than 55% missing data were not considered. 

Period

Code CR00000122 CR00000033 CR00000036 CR00000018 CR00000132 X74008 X74002 X74006 X74037  X76041

Name
Cañas, 

Guanacaste

Llano Grande, 

Liberia
Bagaces

Nicoya Extension 

Agricola
Santa Cruz

Pelon de la Bajura, 

Liberia
Filadelfia

La Guinea, 

Filadelfia

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000122 CR00000033 CR00000036 CR00000018 CR00000132 X72129 X74002 X74006 X74037  X76041

Name
Cañas, 

Guanacaste

Llano Grande, 

Liberia
Bagaces

Nicoya Extension 

Agricola
Santa Cruz Murciélago Filadelfia

La Guinea, 

Filadelfia

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000122 CR00000033 CR00000036 CR00000018 CR00000132 X74008 X74002 X74006 X74037  X76041

Name
Cañas, 

Guanacaste

Llano Grande, 

Liberia
Bagaces

Nicoya Extension 

Agricola
Santa Cruz

Pelon de la Bajura, 

Liberia
Filadelfia

La Guinea, 

Filadelfia

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000122 CR00000033 CR00000036 CR00000129 CR00000132 X74008 X74002 X74006 X74037  X76041

Name
Cañas, 

Guanacaste

Llano Grande, 

Liberia
Bagaces

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia
Filadelfia

La Guinea, 

Filadelfia

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000122 CR00000033 CR00000036 CR00000129 CR00000132 X74008 X74002 CR0000001 X74037  X76041

Name
Cañas, 

Guanacaste

Llano Grande, 

Liberia
Bagaces

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia
Filadelfia

Nicoya 

Extension 

Agricola

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000122 CR00000033 CR00000036 CR00000129 CR00000132 X74008
CR0000013

1

CR0000001

8
X74037  X76041

Name
Cañas, 

Guanacaste

Llano Grande, 

Liberia
Bagaces

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Nicoya 

Extension 

Agricola

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000033 CR00000036 CR00000129 CR00000132 X74008
CR0000013

1

CR0000001

8
X74037  X76041

Name
Llano Grande, 

Liberia
Bagaces

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Nicoya 

Extension 

Agricola

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000033 CR00000036 CR00000129 CR00000132 X74008
CR0000013

1
X74037  X76041

Name
Llano Grande, 

Liberia
Bagaces

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Finca Las Huacas, 

Liberia

Ingenio Taboga, 

Cañas

Code CR00000033 CR00000036 CR00000129 CR00000132 X74008
CR0000013

1

CR0000013

3
X74037 X72129

Name
Llano Grande, 

Liberia
Bagaces

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Hacienda 

Mojica, 

Bagaces

Finca Las Huacas, 

Liberia
Murciélago

Code CR00000033 CR00000129 CR00000132 X74008
CR0000013

1

CR0000013

3
X74037 X72129

Name
Llano Grande, 

Liberia

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Hacienda 

Mojica, 

Bagaces

Finca Las Huacas, 

Liberia
Murciélago

Code CR00000033 CR00000129 CR00000132 X74008 CR0000013 CR0000013 X74037

Name
Llano Grande, 

Liberia

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Hacienda 

Mojica, 

Bagaces

Finca Las Huacas, 

Liberia

Code CR00000129 CR00000132 X74008
CR0000013

1

CR0000013

3
X74037

Name

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Hacienda 

Mojica, 

Bagaces

Finca Las Huacas, 

Liberia

Code CR00000129 CR00000132 X74008
CR0000013

1

CR0000013

3

Name

Finca la Ceiba, 

Pueblo Viejo, 

Nicoya

Santa Cruz
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Hacienda 

Mojica, 

Bagaces

Code X74008
CR0000013

1

CR0000013

3

Name
Pelon de la Bajura, 

Liberia

Aeropuerto, 

Liberia

Hacienda 

Mojica, 

5/2020 to 

4/2021

12/2013 

to 4/2014

5/2015 to 

11/2015

12/2015 

to 

11/2017

12/2017

1/2018 to 

11/2019

12/2019 

to 4/2020

12/1989 

to 

11/1994

Selected stations

12/1994 

to 

11/1998

12/1998 

to 4/1999

5/1999 to 

11/2006

12/2006 

to 4/2011

5/2011 to 

11/2011

12/2011 

to 

11/2013
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Figure 2.4. Selected stations 

Then annual, dry and wet season time series charts were developed. To build annual charts, values were 

averaged for the 12 months of every year from 1990 to 2021. To build dry seasons charts, values were averaged 

for the 5 months (December to April) of every dry season from 1990 to 2021, the same was done for the 7 months 

(May to November) of the wet seasons for every year from 1990 to 2021. 

2.4. Remote sensing images 

2.4.1. What is remote sensing 
Remote sensing consists in the detection of physical information of a surface from distance by a sensor 

(usually a camera) belonging to a platform (e.g., satellite, aircraft, UAV, UGV or a probe) (Weiss et al., 2020). The 

information acquired can be used in many fields and for different purposes, some examples are detection of 

forest fires, observation of clouds and storms, tracking land use changes over time, study topography, 

hydrological characteristics of a territory, even vegetation status and temperatures of surfaces through the 

analysis of their reflected or emitted electromagnetic radiation (Weiss et al., 2020).  

Electromagnetic radiation is a type of energy characterized by a spatial and temporal wave-like motion, 

oscillating in all directions perpendicularly to their travel direction, in the form of radio waves, X-rays, microwaves 

and gamma rays depending on their characteristic wavelength or frequency (period) (Emery & Camps, 2017). 
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The wavelength (λ) is the distance between one crest of the wave and the adjacent one, the frequency (ν or f) 

often reported in Hertz (Hz or s-1) describes the number of oscillations (or cycles) per second (Figure 2.5) (Emery 

& Camps, 2017). In free space (or vacuum) electromagnetic radiations travel at a constant speed (λ ν ≈ 300 000 

km/s) given by the wavelength multiplied by the frequency, which corresponds to the speed of light (Emery & 

Camps, 2017). 

 

Figure 2.5. Electromagnetic waves behaviour 

The fundamental particle of electromagnetic radiation is the photon, which contains emitted, reflected 

and absorbed radiation and is characterized by a specific energy (E) described by the Planck’s equation (2.1): 

𝐸 = ℎ ∙ 𝜈, 

            (2.1) 

Where h is the Planck’s constant (ℎ =  6,62607 ×  10.−34 𝐽 ∙ 𝑠) and ν the frequency. 

With remote sensing, we can analyse the meaning of different reactions (in terms of photons emissions 

characterized by different wavelengths and frequencies from which we can understand determined 

characteristics of the object) of a surface excited by a certain external radiation or internal process (Emery & 

Camps, 2017). Energy changes cause emission of photons in case of a decrease and an absorption in case of 

increase, and its frequency and wavelength values depend on the how big is the energy change, the complete 

range of values of frequencies and wavelengths (energies) a photon can assume, is described by the 

electromagnetic spectrum (Figure 2.6) (Emery & Camps, 2017). 
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Figure 2.6. Electromagnetic spectrum properties from (https://commons.wikimedia.org/wiki/File:EM_Spectrum_Properties_edit.svg) 

The human eye can see only a small range (0,4 to 0,7 μm) of this radiation, called the visible region, which 

results of a surface excitement by incoming solar radiation, going from the red colour (long wave, 0,7 μm, low 

frequency, low energy) to the blue colour (short wave, 0,4 μm, high frequency, high energy), the white colour 

contains all the radiations from the visible region mixed, these are all reflected radiations and are used for the 

remote sensing of colours (Figure 2.7) (Emery & Camps, 2017). With remote sensing we can go beyond the limits 

of human eyes because it allows us to observe lager areas and analyse surface’s radiation at wavelengths and 

frequencies invisible for us (Huete, 2004). 

 

Figure 2.7. Visible colours spectrum from(Emery & Camps, 2017) 

Shorter wavelengths than the visible range are characteristic of Ultraviolet (UV), X-Ray, and Gamma-ray 

radiations, longer wavelengths are characteristic of Near Infrared Radiations and Middle Infrared Radiations (NIR 

https://commons.wikimedia.org/wiki/File:EM_Spectrum_Properties_edit.svg
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and MIR, 0,7 to 3 μm) both are still detected by sensors as reflected radiation, longer wavelengths from 10-5 until 

10-3 m contain thermal emissions and are called TIR (Thermal Infrared radiation) (Emery & Camps, 2017). 

 

Figure 2.8. Chlorophyll, water and dry matter light specific absorption coefficient at different wavelengths (Emery & Camps, 2017). 

NIR and MIR are widely used to study vegetation status because it responds very well to water contained 

in the leaf which can be a good indicator of plants health (Figure 2.8) (Emery & Camps, 2017). Spatial, temporal, 

optical characteristics of data acquired with remote sensing depend on the proprieties of the sensor (spatial, 

temporal, spectral and radiometric resolution) and the platform on which is mounted on, and on surface’s 

emitted or reflected radiation (Huete, 2004; Weiss et al., 2020). The dimension of detectable objects in an image 

which is composed of pixels, each of which contain a specific square area determining the spatial resolution 

(Huete, 2004). The number of detectable wavelengths by a sensor determine its spectral resolution, the time 

taken by the satellite to pass over a specific area for the second time is the temporal resolution (Huete, 2004). 

A surface’s emitted (thermal) or reflected radiation is unique and characteristic, it is called spectral 

signature (Figure 2.9) and allow us to see its mineral, organic composition, and moisture, by observing surface’s 

luminosity and shadowing we can easily see its structural properties (Huete, 2004). The capability of a sensor to 

distinguish reflectance or light intensity differences defines the radiometric resolution (Huete, 2004). 
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Figure 2.9. Spectral reflectance signatures of snow, vegetation, dry soil, litter and water. From (Huete, 2004) 

Leaf pigments absorb light in the visible region (400-700 nm), in fact, chlorophyll (green pigment) a and 

b absorb respectively blue (400-500 nm) and red (600-700 nm), green colour (500-600 nm) is the least absorbed 

and mostly is reflected and that’s why healthy leaves are green (Huete, 2004). Carotene (orange-red pigment) 

and xanthophyll (red and blue pigment) have a strong absorption of blue (400-500 nm) (Huete, 2004). Not 

healthy vegetation reflects and absorb lights over different wavelengths, so it becomes easy to discriminate 

stressed from healthy plants (Huete, 2004). NIR wavelengths (700-1300 nm) are strongly reflected by vegetation, 

and pigments and cellulose are transparent to them, observable only by specific sensors different from human 

eyes (Huete, 2004). The red edge is the evident increase of reflectance between red and NIR wavelengths and it 

is widely used to observe plants status, MIR wavelengths (1300-2500 nm) are absorbed by soil and leaf moisture 

and reflected as moisture decreases, especially at 1400 and 1900 nm (Huete, 2004). 

2.4.2. Remote sensing environmental applications 
The study of the environment and its evolutions and dynamics over time, includes the analysis of climate 

and atmospheric features, land use, land cover and vegetation characteristics. Remote sensing can provide all 

the needed information for such task if data acquisition and process is known. In this way, satellites retrievals 

enable the estimation of surface temperature, wetness, shape, atmospheric parameters, physical characteristics, 

aerosols, fires and recognized gases based on their spectral signatures (Table 2.2) (Huete, 2004). This information 

allows to monitoring climate change, droughts and floods, extreme climate phenomena, trace deforestation, and 

volcanic eruptions among others (Huete, 2004). 
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Spectral Region Wavelengths Application 

Ultraviolet (UV) 0,003 to 0,4 μm Air pollutants, ozone depletion 

monitoring 

Visible (VIS) 0,4 to 0,7 μm Pigments, chlorophyll, iron, ice 

Near infrared (NIR) 0,7 to 1,3 μm Canopy structure, biomass 

Middle infrared (MIR) 1,3 to 3,0 μm Leaf moisture, wood, litter 

Thermal infrared (TIR) 3 to 14 μm Drought, plant stress, 

temperature 

Microwave 0,3 to 300 cm Soil moisture, roughness 

Table 2.2. Spectral regions used in environmental studies. From (Huete, 2004) 

Ultraviolet, Visible, Near and Middle Infrared are shortwave radiations, TIR and microwave are longwave 

radiations (Huete, 2004). Atmospheric gases alter radiation reaching the sensor by scattering or absorbing it, 

therfore images acquired by satellites need to be corrected from these disturbances (caused by gases and clouds) 

(Huete, 2004). 

To map landscape changes over time by analysing series of images of the same area for long periods and 

observe land use and land cover modifications, global remote-sensed products normally divide landscape 

features in wide land cover type classes such as grassland, forest, urban areas and water bodies is very useful to 

monitor and understand environmental changes (Weiss et al., 2020). More precise information, such as mapping 

of specific crop type or species is difficult to obtain for large areas with satellites because for this purpose finer 

spatial and temporal resolution are needed as well as spectral information of how to recognize a specific plant 

by reading satellite data (Weiss et al., 2020). Satellites used for environment-related studies orbit Earth with a 

low (600 to 950 km above the surface) polar orbit, most used and chosen depending on the extension of the 

study area and the purpose of the study, are sensors with a spatial resolution ranging from 1m to 100 m (fine 

spatial resolution but with a temporal resolution higher than 16 days) and from 250m to 1km (moderate spatial 

resolution but with a higher temporal resolution, from 1 or 2 days) (Huete, 2004). 

2.4.2. Remote sensing product selection 
Landsat series are widely used for environmental applications, the orbit is at 705 km above the surface 

and have a temporal resolution of 16 days (Huete, 2004). First Landsat satellite was launched in 1976 and had 

mounted on board a Multispectral Scanner (MSS) sensor with four broad bands able to detect visible and NIR 

regions, with a spatial resolution of ~ 80 m and a temporal resolution of 18 days (Huete, 2004). With the launch 

of Landsat 4 and 5 respectively in 1982 and 1984, the Thematic Mapper (TM) sensor, with seven spectral bands 
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of which two in the MIR, one in the thermal, two shortwave infrared (SWIR) channels, and a finer spatial 

resolution (30 m), was added to the MSS (Huete, 2004). In April 1999 Landsat 7 was launched, with and added 

sensor, the Enhanced Thematic Mapper Pluc (ETM+) with a 15 m resolution panchromatic band and a 60 m 

(instead of 120 m of TM) resolution thermal band (Huete, 2004). A big turn in Landsat history was made in 2008, 

thanks to the choices made from the two federal Landsat partners, NASA, and the U.S. Geological Survey (USGS), 

which contributed to the opening of databases to public, making data accessible for free (Wulder et al., 2019). 

Before 2008, data purchase was expensive (around $4000), and every year were sold only 25000 images. After 

the dataset was opened, the number of images distributed increase to about 250000 images per month, 

increasing enormously the potential of the products and opening new frontiers for research (Schmid, 2017).  

Landsat 8 was launched in February 2013, with improved overall radiometric, spectral and geometric resolutions 

of the OLI (Operation Land Imager) sensor, with new channels, enhanced blue for coastal aerosols detection and 

cirrus channels for aquatic studies and correct cloud disturbance, and a Thermal Infrared Sensor (TIRS) (Wulder 

et al., 2019). Cloud-based computing such as Google Earth Engine (GEE) code editor allow scientist to process 

and analyse data efficiently opening new frontiers in environmental studies. Landsat 9 was launched successfully 

in September 2021. 

Landsat has been monitoring Earth continuously for nearly 50 years now, allowing the study of a global 

long time series of fine resolution images. It was because of Landsat programs, and its long term precise 

environmental monitoring characteristics, that many environmental initiatives to monitor and mitigate climate 

change have been possible. Focus on the climate change issue was highlighted during the UNFCCC (United 

Nations Framework Convention on Climate Change) held in Rio de Janeiro in 1992, in which a tool to “reduce 

emissions from deforestation and forest degradation” known as REDD+ was launched. Landsat is regarded as the 

only free available product with the required spatial and temporal coverage to support conservation policies to 

protect carbon stocks and improve forest management (Wulder et al., 2019). 

Landsat products can be used to monitor the area of interest because of the high spatial resolution 

(30m), perfect for the small study area, temporal resolution (16 days), spectral resolution and big archive of 

information allowing the assessment of changes over a long period of time, 1990 – 2021 in the case of this 

research. It is the aim of this work to analyse NDVI changes after the strongest El Niño events of the last 30 years 

which were the 1997-1998 event and the 2015-2016 event, selected by considering the three ENSO indices 

described above (Figure 1.2, Figure 1.3 and Figure 1.4) as well as available literature and public Costa Rican 

observational records (NASA, 2016). The analysis herein presented considered retrievals from Landsat 5 

(functional from 1984 to 2012), Landsat 7 (functional from 1999 to date) and Landsat 8 (functional from 2013 to 

date). 
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On 31st May 2003, Landsat 7 Enhanced Thematic Mapper Plus (ETM+) Scan Line Corrector (SLC), 

essential for the continuous acquisition of the image, failed, resulting in damaged images which show gaps, zigzag 

patterns and overlaps as shown in Figure 2.10b (Markham et al., 2004; Scaramuzza & Barsi, 2005). The failure 

was irreversible, and ETM+ sensor continued to operate but with SLC turned off, so SLC-off images became 

available in November 2003 (Scaramuzza & Barsi, 2005). Efforts were made to fix damaged images by USGS and 

NASA which have developed a gap-filled product launched in November 2004, the product still has limitations 

such as gaps appearing as clouds in cloud-free images and dark spots (Scaramuzza & Barsi, 2005).

 

Figure 2.10. Landsat 7 images downloaded from Google Earth Engine code editor of April a) before the failure, 2001; b) after the failure, 
2005 

As observed in the northwest of the region in Figure 2.10, Landsat images are often affected by clouds 

and cloud shadows because of the optical nature of its sensors and this does not depend on the sensor 

characteristics but on climatic condition of the area studied, which is often covered by clouds because of the 

recurrent turbulences and most of all during the long annual wet season (Cao et al., 2021). To overcome this 

problem, USGS developed an algorithm called Function of mask (Fmask) to create the Quality Assessment (QA) 

band for each image of Landsat 4, Landsat 5, Landsat 6, Landsat 7, and Landsat 8. Pixels recognized as clouds or 

cloud shadows are reconstructed in the QA band, this method is not very precise, and it does not work for pixel 

entirely composed by clouds (Cao et al., 2021). In this study, images from the Landsat collection were chosen for 

their fine spatial resolution and temporal coverage. Landsat 5 was used for the time period from 1990 to 1999. 

Landsat 7 was used from 2000 (the first year in which complete images were available for the Chorotega region) 

until 2014 because it is a more advanced and complete product than the previous one. Since 2014, images have 
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been available from Landsat 8, of the three datasets the most complete, which was chosen to analyse the time 

period from 2014 to 2020. For this work, images were downloaded from GEE code editor platform, through 

which mean NDVI values were calculated for dry season, wet season, and the entire year. 

2.5 Google Earth Engine 
After the big turn of 2008 with the free Landsat product distribution policy, the next step for public to 

widen the use of imagery was to find an efficient and accessible computing platform able to store and process 

available datasets such as Amazon Web Services (AWS) by Amazon, Azure by Microsoft and Google Earth Engine 

(GGE) by Google (Amani et al., 2020). Google have created a massive free-access computing platform, launched 

in 2010, grouping a large set (more than 10 PB) of remote sensing data, downloadable in raster format, from 

most important satellites and datasets to improve Earth monitoring and research project (Amani et al., 2020; 

Schmid, 2017). 

The GGE platform includes three components: the Earth Engine (EE) Explorer, The Earth Engine (EE) Code 

Editor, and the Earth Engine Timelapse (Amani et al., 2020). The Earth Explorer allows the user to display data of 

the big Data Catalog (Annex A) online, and in the Workspace section, to zoom the map in the desired location, 

display in RGB or grey/pseudocolor, modify luminosity, contrast or opacity and add different layers from different 

datasets (Amani et al., 2020). The GEE Code Editor is accessible by a free online application and is a web-based 

integrated development environment (IDE) for running datasets in a JavaScript and Python application 

programming interface (API) extremely simplifying geospatial analyses also for less skilled researchers in web 

programming because Google have facilitated data processing to a point that operations with manipulation of 

massive amount of data that before could have taken millions of hours now have drastically reduced to hundred 

hours or even less depending on users’ objective (Amani et al., 2020; Schmid, 2017). With the code editor it is 

possible to process and extract from images a big variety of information, and in addition to data accessible from 

Google Data Catalog, user can upload his own data (e.g., rasters and/or shapefiles) if he needs it, it is also possible 

to write polygons, lines and point by using the “Geometry” tool (Amani et al., 2020). The Time Lapse section 

allow users to see the surface evolution through cloud-free global remote sensed images years from 1984 to 

date, very useful to see effects of climate change and natural or anthropogenic world surfaces’ modifications 

(Amani et al., 2020). 

Among the most important datasets, we find the Landsat series (from 1984 to present), very useful for 

studies observing changes of parameters over time and for their fine resolution to study small regions, the only 

problem are clouds, which can be masked by working with multitemporal images (Amani et al., 2020). Another 

famous database is the Sentinel series developed by the European Space Agency (ESA) characterized by a very 
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high spatial resolution, in orbit from 2014 to date (Amani et al., 2020). The well-known MODIS series from 2000 

to present is also included in GEE Data Catalog, with its near-real-time (NRT) national and global surface mapping 

and a spatial resolution from 250m to 1km (Amani et al., 2020). GEE can be applied to many fields such as Urban 

monitoring and modelling, vegetation characteristics such as biodiversity mapping, hydrology, natural disasters 

monitoring, the study of land cover dynamics, atmosphere and climate analysis, image processing, soil 

characterization and monitoring, and most important for this study, can be widely applied in the agricultural 

sector (Amani et al., 2020). NDVI images composites were generated and downloaded from GEE Code Editor 

platform in .tif format and the mean NDVI value for the period selected in .csv format, in this study were used 

Landsat images elaborated with specific scripts. 

2.6. The Normalized Difference Vegetation Index (NDVI) 

2.6.1. NDVI characterization 
Images acquired by optical sensors such as the ones on board of Landsat, are composed by multiple 

bands which can be combined to derive desired information (S. Huang et al., 2021). The objective of this study is 

to evaluate the vegetation conditions trends over time and space which can be easily observed through the 

calculation of a wide set of multispectral vegetation indices which use canopy reflectance. The most known is 

the NDVI, which analyse reflectance in red and NIR wavelengths (Huete, 2004; Schmid, 2017). NDVI can be easily 

correlated with vegetation status and density and is obtained by calculating the normalized difference between 

two satellite bands (2.2), the near infrared (NIR) (0.7-1.3µm) and the red band (R) (0.6-0.7µm) reflectance as 

follows: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

             (2.2) 

The index can assume values ranging from -1 to +1, negative values indicate water bodies, values close 

to 0,1 could indicate stones, sand, concrete and snow, positive values are typical of vegetation, e.g., 0,3 indicate 

sparse vegetation, 0,6 to 1 indicate different types of forest/vegetation densities, the higher the value the 

“greener” the vegetation is (S. Huang et al., 2021; Schmid, 2017). NDVI is useful to discriminate different land 

covers (Figure 2.11), forecast crop yields, estimate biomass and Leaf Area Index (LAI), and plant response to 

different climatic conditions (S. Huang et al., 2021). 

Remote sensing images allows the observation of the dynamics in the NDVI which can be easily 

correlated and often shows a direct relationship with climate and precipitation dynamics because vegetation 

conditions mainly depend on these variables. However, this relationship is not always obvious, especially in 
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tropical regions, unless for extreme events such as El Niño (Erasmi et al., 2009). Drought conditions should inhibit 

photosynthesis and reduce evapotranspiration causing a decrease in red light absorption by the leaf resulting in 

a decrease of NDVI value, Erasmi et al., 2009 have studied NDVI change in Indonesia after El Niño events under 

different land uses and found that tropical forest resulted almost undisturbed while cropland and shrubland have 

visibly suffered the anomalous changes of climatic conditions (Erasmi et al., 2009).  

This study aims to measure vegetation response to drought conditions through NDVI calculation, which 

is expected to be negative, as observed in many previous studies (Rembold et al., 2016). Figure 2.11 is an example 

of how it is possible to interpretate different values of NDVI to discriminate different land cover types, the 

comparison between Figure 2.11b, representing mean NDVI distribution of January and February 2021 calculated 

with GEE Code Editor on multitemporal Landsat 8 images, Figure 2.11a, derived by 2020 Global land cover map 

from GlobeLand30 database and Figure 2.11c, an aerial image of the same area taken from Google Earth 

Explorer. 

 

Figure 2.11. Comparison between a) GlobeLand30 2020 land cover map; b) mean NDVI of January-February 2021; c) Aerial photo, 

screenshot from Google Earth Explorer. All three images represent the same area. 

2.6.2. NDVI calculations in Google Earth Engine Code Editor 
Using GEE Code Editor, multitemporal monthly mean NDVI values were calculated from Landsat 5,7 and 

8 for the period from 1990 to 2021. From 1990 to 1999 was used Landsat 5 dataset. First, it was selected and 

imported the collection (LANDSAT/LT05/C01/T1_SR) and imported the region boundaries shapefile of the region, 

derived from ArcGis Online, as shown in the input script (Annex B). For Landsat 5 the USGS Landsat 5 Collection 
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1, Surface Reflectance, Tier 1 dataset from the ETM sensor creating images containing 4 bands in the visible and 

NIR and 2 bands in the short-wave infrared (SWIR) (Table 2.3) was selected. 

 

Table 2.3. Band composition of Landsat 5 ETM sensor. 

Data were processed to get the least cloudy images by using the quality assessment band (QA), in the 

script was indicated the dataset selected, the regional boundaries (geometry), and the period of interest, then 

bands correspondent to Red, Green, and Blue were inserted (Annex B). Then NDVI was calculated and limit for 

possible output values were restricted to the normal range NDVI can assume (-1 to 1) as showed in Annex B. A 

graph containing the count of all NDVI values in each pixel was created and values contained in the histogram 

were available to be downloaded in .csv format. NDVI images of our study region could be exported to Drive and 

downloaded from there in .tif format. Once the script and the process were set, the interface is very clear and 

easy to use, you should press the “Run” button and automatically appears the map with the mean NDVI layer, in 

the “Console” section you can find the number of images per selected period and the histogram with the pixel 

count, in the “Task” section is possible to export the data in Drive (Figure 2.12). 

 

Name Units Scale Wavelenght Description 

B1  0,0001 0,45 – 0,52 μm Band 1 (blue) SR 

B2  0,0001 0,52 – 0,60 μm Band 2 (green) SR 

B3  0,0001 0,63 – 0,69 μm Band 3 (red) SR 

B4  0,0001 0,77 – 0,90 μm Band 4 (near infrared) SR 

B5  0,0001 1,55 – 1,75 μm Band 5 (shortwave infrared 1) SR 

B6 Kelvin 0,1 10,40 – 12,50 μm Band 6 brightness temperature 

B7  0,0001 2,08 – 2,35 μm Band 7 (shortwave infrared 2) SR 

Table 2.3. Band composition of Landsat 5 ETM sensor 

Name Units Scale Wavelenght Description 

B1  0,0001 0,45 – 0,52 μm Band 1 (blue) SR 

B2  0,0001 0,52 – 0,60 μm Band 2 (green) SR 

B3  0,0001 0,63 – 0,69 μm Band 3 (red) SR 

B4  0,0001 0,77 – 0,90 μm Band 4 (near infrared) SR 

B5  0,0001 1,55 – 1,75 μm Band 5 (shortwave infrared 1) SR 

B6 Kelvin 0,1 10,40 – 12,50 μm Band 6 brightness temperature 

B7  0,0001 2,08 – 2,35 μm Band 7 (shortwave infrared 2) SR 

Table 2.3. Band composition of Landsat 5 ETM sensor 
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Figure 2.12. Google Earth Engine Code Editor interface 

From 2000 to 2014 USGS Landsat 7 Surface Reflectance Tier 1 dataset from Collection 1 was used, which 

is the atmospherically corrected Surface Reflectance from the Enhanced Thematic Mapper Plus (ETM+) sensor. 

The Earth Engine Snippet is ee.ImageCollection("LANDSAT/LE07/C01/T1_SR"). 

Images captured by Landsat 7 are composed by (Table 2.4) 4 bands from visible and NIR wavelengths, 

and 2 SWIR bands with 30m spatial resolution, one TIR band originally with 60m spatial resolution then resamples 

using cubic convolution to 30m resolution. 

 

The process to extract the information of interest is the same as for Landsat 5, the only change in this 

case is the initial Snippet to make sure that the Editor accesses the right database, band numbers are the same. 

Name Units Scale Wavelenght Description 

B1  0,0001 0,45 – 0,52 μm Band 1 (blue) SR 

B2  0,0001 0,52 – 0,60 μm Band 2 (green) SR 

B3  0,0001 0,63 – 0,69 μm Band 3 (red) SR 

B4  0,0001 0,77 – 0,90 μm Band 4 (near infrared) SR 

B5  0,0001 1,55 – 1,75 μm Band 5 (shortwave infrared 1) SR 

B6 Kelvin 0,1 10,40 – 12,50 μm Band 6 brightness temperature 

B7  0,0001 2,08 – 2,35 μm Band 7 (shortwave infrared 2) SR 

Table 2.4. Landsat 7 band composition 
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 From 2014 to 2021 USGS Landsat 8 Surface Reflectance Tier 1 was used.  Data are acquired by the 

OLI/TIRS sensors and contains (Table 2.5) 5 visible and NIR bands, 2 SWIR bands, one TIR band, and intermediate 

bands. EE Snippet is ee.ImageCollection("LANDSAT/LE07/C01/T1_SR"). 

 

The script used to calculate NDVI maps is the same, there is only the need to reformulate the snippet 

section to make sure that data are downloaded from the right dataset, and the bands’ correspondences with 

RGB colours and NIR, different from Landsat 5 and 7. 

2.6.3. NDVI maps quality assessment 
Monthly mean NDVI images were processed and downloaded from 1990 to 2021, counted in order to 

check missing data/months with results and monthly images were divided in dry and wet season (December to 

April and May to November) for each year (Table 2.6 and Table 2.7).  

Name Scale Wavelenght Description 

B1 2,75e-05 0,435 – 0,451 μm Band 1 (ultra blue, coastal aerosol) SR 

B2 2,75e-05 0,452 – 0,512 μm Band 2 (blue) SR 

B3 2,75e-05 0,533 – 0,590 μm Band 3 (green) SR 

B4 2,75e-05 0,636 – 0,673 μm Band 4 (red) SR 

B5 2,75e-05 0,851 – 0,879 μm Band 5 (near infrared) SR 

B6 2,75e-05 1,566 – 1,651 μm Band 6 (shortwave infrared 1) SR 

B7 2,75e-05 2,107 – 2,294 μm Band 7 (shortwave infrared 2) SR 

B10 0,000341802 10,60 – 11,19 μm Band 10 surface temperature 

Table 2.5. Landsat 8 band composition 
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Table 2.6. Monthly available images (dry seasons, from 1990 to 2021) 

Year December (prev. Year) January February March April Total

1990 3 4 1 1 4 13

1991 0 0 0 4 5 9

1992 2 0 0 2 0 4

1993 0 0 1 0 0 1

1994 0 0 0 0 0 0

1995 0 0 0 0 0 0

1996 0 0 0 0 0 0

1997 6 5 6 6 3 26

1998 4 4 3 6 6 23

1999 6 4 5 6 4 25

2000 0 3 0 2 1 6

2001 3 3 1 1 3 11

2002 3 0 0 3 4 10

2003 4 4 2 0 1 11

2004 4 5 3 1 3 16

2005 3 3 5 2 3 16

2006 5 3 6 3 1 18

2007 0 0 4 2 2 8

2008 3 3 6 5 3 20

2009 8 5 5 5 4 27

2010 3 4 2 4 4 17

2011 4 3 3 6 0 16

2012 6 6 4 3 2 21

2013 3 6 3 4 1 17

2014 3 6 6 5 3 23

2014 5 6 6 6 4 27

2015 6 6 4 6 6 28

2016 6 6 4 6 6 28

2017 4 6 6 6 5 27

2018 5 6 5 6 6 28

2019 6 5 6 6 6 29

2020 6 6 6 6 4 28

2021 6 6 4 6 5 27
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 Table 2.7. Monthly available images (wet seasons, from 1990 to 2021) 

Seasonal multitemporal mean NDVI images were downloaded from GEE Code Editor and processed in 

ArcMap to have a clearer visualization of mean NDVI values. Even if the use of satellites, and more than any other 

for the aim this study, is one of the best methods to observe extended areas’ changes over time, they have 

limitations, especially if we look to older Landsat 5 and Landsat 7. In this case limitations were missing data for 

long periods of time, e.g., in Landsat 5 were not available 1990 dry season, and from 1992 to 1996 dry season 

almost no data at all, incomplete and cloudy images. The latter was in part overcame with the use of the quality 

assessment (QA) band, and the minimum composite of multiple images was adopted to generate the optimal 

image.  

Figure 2.13 and Figure 2.14 show the most cloudy and damaged multitemporal images for the wet and 

the dry seasons of the selected time period, annual damaged or cloudy images were not included because we 

can explain unusual annual mean NDVI values by looking at seasonal anomalies. 

Year May June July August September October November Totale

1990 0 0 0 0 0 0 0 0

1991 3 6 2 3 0 2 5 21

1992 0 0 0 0 0 0 0 0

1993 0 0 0 0 0 0 0 0

1994 0 0 0 0 0 0 0 0

1995 0 0 5 0 0 0 0 5

1996 0 2 3 6 3 0 4 18

1997 0 0 0 2 0 4 1 7

1998 3 2 2 0 4 0 3 14

1999 5 5 0 6 2 2 3 23

2000 0 1 4 3 4 1 3 16

2001 0 1 0 0 3 2 4 10

2002 1 2 0 1 3 1 2 10

2003 1 0 1 1 0 2 4 9

2004 0 0 0 0 3 5 2 10

2005 1 1 1 2 3 1 2 11

2006 1 1 0 0 2 4 1 9

2007 1 0 1 2 2 4 2 12

2008 0 0 1 1 1 4 1 8

2009 3 1 0 1 3 4 4 16

2010 3 1 1 0 1 4 3 13

2011 2 0 0 2 4 3 3 14

2012 2 0 0 0 2 1 2 7

2013 1 0 1 2 1 4 4 13

2014 3 2 2 1 3 3 5 19

2014 6 6 6 6 5 4 6 39

2015 6 6 3 6 6 6 6 39

2016 5 3 4 5 5 6 3 31

2017 4 3 6 5 6 3 6 33

2018 5 5 5 4 6 3 6 34

2019 6 4 5 5 6 5 4 35

2020 6 5 5 5 5 5 5 36

2021 5 5 5 3 5 6 6 35
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Figure 2.13. Landsat 5 cloudy or images. a) dry season of 1992; b) dry season of 1993; c) wet season of 1996; d) wet season of 1997 

Clouds represent an issue for this analysis, especially when we are observing mean regional NDVI 

changes over time. Mean NDVI will be too compromised because clouds assume very low values, Landsat 5 NDVI 

calculations show a clear example of this is Figure 2.13a, even with the QA band and the minimum composite of 

multiple images, clouds were still clearly visible. This problem is very common since in the North-west and the 

Northern part of the region clouds are persistent because of the presence of the Guanacaste Mountain range 

and that for the dry season of 1992 only for images in five months were available, not allowing cloud masking. 

The dry season of 1993 (Figure 2.13b) is almost totally missing, the image was represented to show that 

sometimes available images does not cover all regional surface. Figure 2.13c represents the mean NDVI value for 
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the wet season of 1996, image seem to be complete, also, by looking at Table 2.7 the number of images could 

appear sufficient to obtain a clear image but the yellow alone is not and index of vegetation stress but a thin 

cloud layer together with cloud shadow. This is very common during the wet season because it rains almost every 

day. 

 

Figure 2.14. Landsat 7 most damaged or cloudy images. a) dry season of 2002; b)2004 dry season; c)2000 wet season; d)2003 wet season; 

e) wet season of 2004; f) wet season of 2008; g) wet season of 2010; h) wet season of 2012. 
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Evaluating Landsat 7, the database was more consistent and there were no missing years. Images from 

ETM+ sensor, in addition to cloud and cloud shadow disturbances, from the second half of 2003, after the Scan 

Line Corrector failure, all images were compromised, and so mean NDVI values are not the correct ones. Figure 

2.14 shows the Landsat 7 most damaged and cloudy images from 2000 to 2014. Wet season calculations showed 

more obvious disturbances and clouds compared to dry seasons. It is important to note that even if sometimes 

the problems caused by the SLC failure seem masked as in Figure 2.14b showing mean NDVI for the dry season 

of 2004, if you zoom in the image, the damage will be clearly recognizable for every image since 2004 (Figure 

2.15). Most consistent disturbance is obvious in the Southwest part of the region. 

  

Figure 2.15. A section of the region zoomed in of the dry season of 2004. a) mean NDVI b) screenshot from Google Earth Explorer 

For Landsat 8, conditions were overall clear and the dataset complete from 2014 to 2020, with clear, 

cloud free and complete images. 

2.7. Land Cover Maps 
Many land cover datasets were developed over the years, but global ones have very low resolution, not 

suitable for many studies and for small areas such as our study region or higher resolution databases do not 

cover all the globe, or they cover just a short period of time. To overcome these problems, China started to 

develop a 30-m resolution Global Land Cover in 2010 (Chen & Chen, 2018). In 2010, 30m spatial resolution global 

land cover maps of 2000 and 2010 were launched under the name of GlobeLand30 and donated to the United 

Nations to be distributed as a free access resource, with further improvements the maps arrived to reach an 

accuracy of 83% in the definition of the ten land cover classes (Chen & Chen, 2018). The ten classes (Table 2.8) 
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are Cultivated land, Forest, Grassland, Shrubland, Wetland, Water bodies, Tundra, Artificial surfaces, and bare 

soil. 

Code Class Name Class Description 

10 Cultivated land Arable land (cropland): dry land, paddy field, land for greenhouses, vegetable 

fields, artificial tame pastures, economic cropland in which shrub crops or 

herbaceous crops are planted, and land abandoned with the reclamation of 

arable land 

20 Forest Broadleaved deciduous forest, evergreen broad-leaf forest, deciduous coniferous 

forest, evergreen coniferous forest, mixed broadleaf-conifer forest 

30 Grassland Typical grassland, meadow grassland, alpine grassland, desert grassland, grass 

40 Shrubland Desert scrub, mountain scrub, deciduous and evergreen shrubs 

50 Wetland Lake swamp, river flooding wetlands, seamarsh, shrub/forest wetlands, 

mangrove forest, tidal flats/salt marshes 

60 Water bodies Open water, i.e., lakes, reservoirs/fishponds, rivers 

70 Tundra Brush tundra, poaceae tundra, wet tundra, bare tundra, mixed tundra 

80 Artificial surfaces Settlement place, industrial and mining area, traffic facilities 

90 Bareland Saline-alkali land, sand, gravel, rock, microbiotic crust 

100 Permanent 

snow/ice 

Permanent snow, ice sheet and glaciers 

Table 2.8. GlobeLand30 Classification 

Land cover maps of 2000, 2010 and 2020 were downloaded in .tif format from GlobeLand30 website 

(http://www.globeland30.org/home_en.html). This dataset was developed by using Landsat, HJ-1 (China 

Environment and Disaster Reduction Satellite), and the 16-meter resolution GF-1 (China High Resolution 

Satellite). Maps were uploaded in ArcMap (Figure 2.16) and the land cover type of interest was extracted (i.e., 

cropland) for the three years (2000, 2010, 2020). 

http://www.globeland30.org/home_en.html
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Figure 2.16. GlobeLand30 raster dataset of 2020 processed in ArcMap. a) Northern section of the Chorotega region; b) Southern portion 

of the Chorotega region; c) Merged sections; d) Clipped image with regional boundaries. 

The area of the Chorotega region occupy two quadrants of the global dataset (Figure 2.16a and Figure 

2.16b) which were united by using the “Mosaic to new raster” tool in ArcMap toolbox to create a single 

continuous map (Figure 2.16c). Then the figure was cut by using the “Extract by Mask” tool inside the regional 

boundaries, symbology was adjusted to have a better display of different land covers (Figure 2.16d). Figure 2.16 

shows the process for GlobeLand30 map of 2020, the same methodology was applied for 2000 and 2010 global 

land cover maps (Figure 2.17). 



44 
 

 

Figure 2.17. Land Cover Change maps re-elaborated from GlobeLand30 database of the Chorotega region.  

Then cropland area of 2000 and 2020 was divided from the other land cover classes. Cropland area of 

2000 was used to analyse the impact of El Niño 1997-1998 on cultivated land and cropland area of 2020 was 

used to analyse the impact of El Niño event of 2015-2016. The impacts of El Niño 1997-1998 was so severe that 

impacts were still present after 1-2 years. In the case of the 2015-2016 event, it is worth to notice that the 

drought after that event was prolonged even until 2019, so data for 2020 still contains the impacts of the severe 

and prolonged drought. 

2.8. NDVI time series 
From GEE Code Editor was possible to generate histogram charts by writing the formula in the script 

(Annex B) showing the pixel count for each NDVI value (Figure 2.18) calculated inside regional boundaries and 

data in .csv format can be downloaded, in order to be able to process them in Excel. 
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Figure 2.18. Histogram of NDVI, mean annual values for 1997 in the Chorotega region 

The .csv files downloaded from GEE platform were imported in Excel, data had to be reorganized with 

the “Data to Columns” tool. The two columns containing Band values and the pixel Counts were multiplied. The 

total NDVI value divided by the number of pixels gave the mean NDVI value for the period considered. The 

procedure was followed for Landsat 5, 7 and 8 for calculating mean NDVI values from 1990 to 2021, for dry 

seasons, wet seasons, and the whole year. To obtain mean annual NDVI foe each year dry and wet season mean 

NDVI was summed and divided by two. Graphs representing time series of mean NDVI were created and divided 

by satellite from which data were derived in order to have a clear idea of NDVI course over the years and during 

El Niño, compare them with precipitation charts to individuate critical periods, and check for an eventual 

correlation and/or trend between precipitation and NDVI.  

Trend analysis in Microsoft Excel were made for both precipitation and NDVI charts. In Microsoft Excel 

is possible to add a trendline in the chart, its formula and the R-squared value, in this study was chosen the linear 

regression as a statistical method to show the relationship between years and mean NDVI values. 

R-squared value is calculated through the Regression function in the Data Analysis section in Excel, the 

input Y range will be filled with the mean NDVI values and in the in input X range will be placed the years, the 

output of the regression analysis shows the R-square value in the Regression Statistics section, which basically 

indicates how much the change of mean NDVI values depends on the passing of the years, and the p-value in the 

Analysis of Variance (ANOVA) section. The p-value ranges from 0 to 1 and shows the statistical significance of the 

test, if p<0,05 data is significant, in this case does exist a correlation between the passing of the years and NDVI 

change. 
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2.9. Image processing in ArcMap 

 

Figure 2.19. a) mean NDVI of the dry season of 1997; b) mean NDVI of the dry season of 1999; c) NDVI change for the dry season of the 

1997-1998 event; d) NDVI change during the dry season of the 1997-1998 event in cropland area; e) mean wet season NDVI of 1997; f) 

mean wet season NDVI of 1999; g) NDVI change during wet season of the 1997-1998 event; h) NDVI change during the wet season of the 

1997-1998 event in cropland area. 

NDVI values from lower than 0 indicate inanimate objects, dead plants, and dry soil. Values from 0 to 

0,33 indicate unhealthy plants, 0,33 to 0,5 moderately unhealthy plants, 0,5 to 0,66 moderately healthy plant, 

and 0,66 to 1 shows healthy plants. NDVI change during dry and wet seasons in the middle of 1997-1998 event 

was calculated with the use of Raster Calculator tool in ArcMap: 

- For the dry season of the 1997-1998 event (Figure 2.19c), mean NDVI during the dry season of 1999 

(outside El Niño event, Figure 2.19b) was subtracted from mean NDVI of the dry season on 1997 (in the 

mid of El Niño event, Figure 2.19a). 

- Cropland area of 2000 from GlobeLand30 dataset was used to display NDVI change in cropland area 

during 1997-1998 event during dry season (Figure 2.19d). 

- For the wet season of the 1997-1998 event (Figure 2.19g), the difference between mean NDVI of the wet 

season of 1997 (Figure 2.19f) and the wet season of 1999 (Figure 2.19e) was calculated. 

- Cropland area of 2000 from GlobeLand30 dataset was used to display NDVI change in cropland area 

during 1997-1998 event during wet season (Figure 2.19h). 
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- Values for both wet and dry seasons NDVI change of 1997-1998 event were then reclassified in order to 

count the number of pixels corresponding to every range of difference of NDVI. 

 

Figure 2.20. a) mean NDVI of the dry season of 2015; b) mean NDVI of the dry season of 2017; c) NDVI change for the dry season of the 

2015-2017 event; d) NDVI change during the dry season of the 2015-2017 event in cropland area; e) mean wet season NDVI of 2015; f) 

mean wet season NDVI of 2017; g) NDVI change during wet season of the 2015-2017 event; h) NDVI change during the wet season of the 

2015-2017 event in cropland area. 

NDVI change during dry and wet seasons in the middle of 2015-2016 event was calculated with the use of 

Raster Calculator tool in ArcMap: 

- For the dry season of the 2015-2016 event (Figure 2.20c), dry season mean NDVI of 2017 (outside the 

event, Figure 2.20b) was subtracted from dry season cropland area mean NDVI of 2015 (during the event, 

Figure 2.20a) 

- Cropland area of 2020 from GlobeLand30 dataset was used to display NDVI change in cropland area 

during 2015-2016 event during dry season (Figure 2.20d). 

- The difference between wet season mean NDVI of 2015 (Figure 2.20e) and wet season cropland area 

mean NDVI of 2017 (Figure 2.20f) was computed to observe NDVI change during the wet season of the 

2015-2016 event (Figure 2.20g). 

- Cropland area of 2020 from GlobeLand30 dataset was used to display NDVI change in cropland area 

during 2015-2016 event during wet season (Figure 2.20h). 
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- Values for both wet and dry seasons NDVI change of 2015-2016 event were then reclassified in order to 

count the number of pixels corresponding to every range of mean NDVI difference. 

3. Results 

3.1. Most significant events 
For the analysis period the most intense El Niño events occurred in 1997-1998 and 2015-2016 even 

though they were not the only ones since 1990. SST positive anomalies indicate the occurrence of the 

phenomenon in 1991-1992, 2002-2003 and 2009-2010. Apart from that, less pronounced but still present SST 

anomalies are observable in 1993, in 1995, between 2006-2007 and 2012. According to the ENSO monitoring 

bulletin of the IMN (https://www.imn.ac.cr/en/boletin-enos) and to more recent measurements, an important 

El Niño event took place in 2018-2019, which contributed to conditions for a prolonged drought (2015-2019, 

Pascale et al., 2021) 

The exact month of beginning and ending of the event differs according to the source examined, so 

information on the development of the events from the National Meteorological Institute, NOAA indices, and 

NASA information were combined. 

For the 1997-1998 event starting period was set for the first trimester of 1997 and ending period for the 

second trimester of 1998 (Figure 3.1a). El Niño 2015-2016 event lasted more than any other before, it started 

the third trimester of 2014 and ended the second trimester of 2016 (Figure 3.1b). 

https://www.imn.ac.cr/en/boletin-enos
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Figure 3.1. Most significant El Niño events timelines. a) 1997-1998 event; b) 2015-2016 event. 

3.2. El Niño influence on NDVI 

The behaviour of NDVI in regional cropland area during El Niño event was analysed for the dry and the 

wet season, and the whole year in the most affected period.  
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3.2.1. Dry season NDVI 

 

Figure 3.2. Regional dry season mean NDVI. a) Landsat 5 from 1990 to 1999; b) Landsat 7 from 2000 to 2014; c) Landsat 8 from 2014 to 

2021. 

The regional dry season mean NDVI (Figure 3.2) was determined to increase over the years based on the used 

satellites, however only Landsat 5 trend was statistically significant. 

- Albeit for Landsat 5 (Figure 3.3), few images were available from 1990 to 1992 dry seasons, a drop in 

NDVI values was identified, which can be explained by the occurrence of a strong El Niño in 1991-1992, 

vegetation is negatively affected in the entire regional surface. During dry season of 1997, in the middle 

of 1997-1998 event, NDVI decreases between consecutive years, the most affected areas are the central 

ones where crops are concentrated. 1990 and 1999 dry seasons show similar spatial distribution of NDVI 

but with a visible increase in stress in the northern part of the region. 
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Figure 3.3. Landsat 5 dry seasons NDVI maps from 1990 to 1999. a)1990; b)1991; c)1992; d)1997; e)1998; f)1999 

- For Landsat 7 (Figure 3.4), lower peaks were observed for 2002 and 2007, the 2002 low peak during the 

dry season is attributed to cloud interference (Figure 2.14a) but also by the damaged caused in the region 

by hurricane Michelle (Vallejos Vásquez et al., 2012), 2007 and 2008 saw a strong la Niña event and 

strong tropical storm (Vallejos Vásquez et al., 2012) which could have caused negative vegetation 

response. All imagery shows vegetation stress in the central part of the region, only 2002 (Figure 3.4c), 
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2005 (Figure 4.3f), 2007 (Figure 4.3h) and 2008 (Figure 4.3i) show a propagation of the stress to the 

north-west. 

 

Figure 3.4. Dry season regional mean NDVI images from Landsat 7 from a)2000; b)2001; c) 2002; d) 2003; e) 2004; f) 2005; g) 2006; h) 

2007; i) 2008; j)2009; k) 2010; l)2011; m) 2012; n) 2013; o) 2014 
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- Landsat 8 data imagery (Figure 3.5) showed clear drops of mean NDVI value from 2014 to 2017, 

consistent with the affectations associated to the severe El Niño event, the NDVI values drop was also 

observed for the dry season of 2019 in concomitance with following weaker El Niño conditions that 

allowed the prolongation of the of the drought conditions in the region which extended between 2015 

and 2019. The reduction of the NDVI values reduction for 2019 is higher, aspect that is highlighted as can 

be associated with a stronger response of the vegetation which had slim chances to recover after the 

extended drought conditions. This aspect is relevant as it motivates further studies such as evaluations 

of the soil water content conditions as under the circumstances in which the 2015-2019 drought 

occurred, the propagation of the drought was favoured, meaning a more pronounced impact across the 
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hydrological cycle. All the years show a concentration of vegetation stress in the lowlands in the centre 

of the region. 

 

Figure 3.5. Landsat 8 dry season mean NDVI images. a) 2014; b) 2015; c) 2016; d) 2017; e) 2018; f) 2019; g) 2020; h) 2021 
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3.2.2. Wet season NDVI 

 

Figure 3.6. Wet season mean NDVI charts from 1990 to 2021. a ) Landsat 5; b)Landsat 7; c) Landsat 8 

Mean NDVI values during the wet season (Figure 3.6) showed higher overall values compared with dry season, 

consistent with the abundance of rainfall typical of the wet season. For these periods the cloud masking is more 

common in the data because of the almost permanent cloud cover characteristic of the rainfall systems during 

the wet season. The slight increasing trend of the mean NDVI is statistically significant only for Landsat 5. 

- Based on Landsat 5 imagery (Figure 3.7) for the wet seasons, the representation of the period between 

1992 and 1995, excluding 1991 which had a consistent number of images, it was not possible because of 

missing, cloudy, or damaged data. During 1991, even the wet season showed a NDVI drop that can be 

related with the El Niño conditions of the 1991-1992 period that has spread across the entire surface of 

the region. In 1997 wet season mean NDVI value slightly decreases in response to the most important El 

Niño event, however, by looking at Figure 3.7c, it is possible to note that the drop in NDVI value is 

worsened by cloud presence in the northeast side of the region, the presence of cloudiness under the 

conditions that dominated the period for this case may have altered the surface fluxes and increased the 

atmospheric demand, which could potentially enhanced drought conditions due to surface water loss. 

According to the p-value NDVI values have a significant positive trend, which is explained by the dry years 

at the beginning of the series which lower initial NDVI values. All years show stress concentrated in the 

plains in the centre of the region, in the 1997 and 1998 images there are clouds in the northern part. 
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Figure 3.7. LT05 wet season regional mean NDVI. a) 1991; b)1996; c)1997; d)1998; e)1999 

- From Landsat 7 imagery (Figure 3.8), a drop in 2003 is observes, in this case the drop corresponds to 

strong cloud disturbance, while the drop in 2007 is less pronounced than in the dry season but still visible. 

Information for 2008 and 2012 cannot be properly interpreted for the wet season due to high cloudiness 

conditions and damaged imagery (Figure 3.8i and Figure 3.8m). If we exclude the damaged and cloud-

covered images usually in the east or north (the images from 2003, 2008 and 2012 being the most 

compromised), low NDVI values are concentrated in the central part of the region. 
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Figure 3.8. wet season mean NDVI maps from Landsat 7. a) 2000; b) 2001; c) 2002; d) 2003; e) 2004; f) 2005; g) 2006; h) 2007; i) 2008; j) 

2009; k) 2010; l) 2011; m) 2012; n) 2013; o) 2014 

- Mean NDVI values from Landsat 8 (Figure 3.9) suggest a marked negative impact on regional vegetation 

during the two events of 2015-2016 and 2018-2019 also in wet seasons. In this case, the evaluation of 
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the most recent drought event is relevant as the observed long-term impact on vegetation suggests 

further transitioning in the type of drought. As the drought evolves to hydrological drought, impacts are 

more severe and albeit ecosystems are also strongly affected, due to vegetation conditions the crops are 

less keen to show resilience in this type of conditions unless irrigation is available. Low NDVI values are 

observed in the central part of the region. 

 

 

Figure 3.9. Landsat 8 mean NDVI maps from 2014 to 2021 
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3.2.3. Annual NDVI 

 
Figure 3.10 Annual mean regional NDVI. a) Landsat 5, 1991-1999; b) Landsat 7, 2000-2014; c) Landsat 8, 2014-2021 

The regional annual mean NDVI (Figure 3.10) shows overall an increasing trend over the years, but statistically 

significant only in the case of Landsat 5. Hence, no significant trends can be defined, and long-term trends impact 

of drought on NDVI cannot be attributed to observed climate change. In this regard, impact of drought on NDVI 

are dominated by interannual variability associated to ENSO, climate change impacts on vegetation cannot be 

discarded as more information is needed. In the case of Landsat 5 imagery (Figure 3.11), information for 1990 

was eliminated for the annual analysis because no data were available for the wet season and only the dry season 

was not sufficient to have an annual overview. The 1991 data were consistent only for the wet season and still 

mean NDVI remains very low (Figure 3.11a), likely due to the El Niño of 1991-1992. For 1992,1993, 1994, and 

1995 were collected only 4 images in December and March of 1992, February 1993 1 image, and 1996 had data 

available only for the wet season. Therefore, 1992 to 1996 data were hided for the mean annual NDVI 

calculations. More complete data were available from 1997 to 1999. Overall, there was an increasing trend but 

not significant. The year 1997 showed low values because of El Niño. Low NDVI values are observed in the central 

part of the region for 1997,1998 and 1999. 1991 imagery shows high vegetation stress which covers all the 

region. 
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Figure 3.11. Landsat 5 annual mean NDVI. a) 1991; b) 1997; c) 1998; d) 1999 

Landsat 7 had a more complete dataset (Figure 3.12), with gaps in the dry seasons of 2000 (only 4 images in 

January and April), 2002 (7 images in December 2001, March, and April) and 2007 (8 images in February, March 

and April). Drops in NDVI values can be attributed to El Niño of 2002-2003 and La Niña of 2007-2008. Trend is 

increasing but in a non-significant way. Low NDVI values are observed in the central part of the region for all the 

years. 
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Figure 3.12. Annual mean NDVI maps from Landsat 7. a) 2000; b) 2001; c)2002; d) 2003; e) 2004; f) 2005; g) 2006; h) 2007; i) 2008; j) 2009; 

k) 2010; l) 2011; m) 2012; n) 2013; o) 2014. 

Landsat 8 have the more complete dataset from 2014 to 2021 (Figure 3.13), values below average clearly 

indicates El Niño occurrence of 2015-2016. Trend is increasing over the years and in a non-significant way. Low 

NDVI values are observed in the central part of the region for all the years. 
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Figure 3.13. Landsat 8 annual mean NDVI maps. a) 2014; b) 2015; c) 2016; d) 2017; e) 2018; f) 2019; g) 2020; h) 2021 

3.3. NDVI change 

3.3.1. El Niño 1997-1998 

During the El Niño event of 1997-1998, NDVI in the cropland area decreased significantly during the dry season 

(Figure 3.14a and Figure 3.15a) but not during the wet season (Figure 3.14b and Figure 3.15b) where overall, 

NDVI value increased. During dry season, irrigated crops such as sugar cane melon, and rice are grown, they will 
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be highly compromised by severe drought conditions induced by El Niño because concessions for water for 

irrigation are the first to be cut when water availability problems arise. During wet season rainfed crops such as 

rice and sugar cane are grown and even if there is a big reduction in precipitation, they are still abundant and 

they are generally enough to support production for almost all crops. Problems will arise again in the following 

dry season which will experience even more water deficit problem because of the lack of the normal 

groundwater recharge and limited flows which will inevitably reduce also eventual water storage systems to face 

the typical periodic dry seasons. 

 

Figure 3.14. NDVI change during a) dry season of El Niño 1997-98 and b) wet season of El Niño 1997-98 

Figure 3.15 shows the pixel count for every range of change of NDVI between 1997 dry and wet seasons (inside 

El Niño) and 1999 dry and wet seasons (outside El Niño). The dry season exhibits a larger decrease compared to 

the wet season, which means that irrigated crops suffered more than rainfed crops. The average NDVI change 

during the dry season of 1997 compared to the dry season of 1999 was of -0,008, the average NDVI change during 

the wet season of 1997 compared to the wet season of 1999 was of 0,034. 
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Figure 3.15. Pixel count of the NDVI change for El Niño 1997-1998 a) dry season and b) wet season 

3.3.2. El Niño 2015-2016 

El Niño of 2015-2016 caused a dramatic decrease of NDVI values in cropland area, comparing both dry (Figure 

3.16a) and wet (Figure 3.16b) seasons of 2015 with dry and wet seasons of 2017, we observe that negative effects 

were higher than the previous event studied. Here, wet season of 2015 showed an even higher vegetation stress 

compared with 2017 than the dry season, this is due to the early beginning of this phenomenon in the middle of 

the wet season of 2014. The average NDVI change during the dry season of 2015 compared to the dry season of 

2017 was of -0,011. The average NDVI change during the wet season of 2015 compared to the wet season of 

2017 was of -0,020. 



65 
 

 

Figure 3.16. NDVI change during a) dry season of El Niño 2015-16 and b) wet season of El Niño 2015-16 

Figure 3.17 shows the pixel count of each range of NDVI values change represented in Figure 3.16 and the total 

increase and decrease of NDVI values. Wet season for this event showed higher decrease of NDVI than dry 

season. The 2015-2016 event was favoured by conditions that lasted until 2019, worsening the conditions of 

drought and further impacts on the vegetation. 
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Figure 3.17. Pixel count of the NDVI change for El Niño 2015-2016 a) dry season and b) wet season 

4. Discussion 

4.1. Uncertainties in the analysis 

Even if it has optimal spatial resolution to monitor NDVI in the Chorotega region, and the optimal temporal 

resolution, different issues were identified for the use of Landsat imagery. Landsat 5 has many missing years or 

months and for many periods analysed had very few images which do not permit the correct masking of clouds, 

altering inevitably the final pixel value.  The missing data of Landsat 5 did not allow the characterization 

representation of the strong 1991-1992 event and compromised regression analysis, to create a continuous 

graph without gaps it was necessary to put the average value in place of missing data. In general, data from 

Landsat 5 showed overall missing and damaged images which inevitably compromised results and created 

uncertainties in the analysis. 

The damaged in the images of Landsat 7 dataset after the Scan Line Corrector + failure, had the effect of 

lowering mean NDVI values, altering real values. Landsat 8 was the only collection providing a complete and 
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exhaustive dataset, but this time the problem was that it is too recent, in fact it starts in 2014, therefore covering 

only a short part of the analysed timeline. For the reasons explained above, it wasn’t possible to a continuous 

timeline, values were from one satellite to the other. For example, annual mean NDVI value for Landsat 7 in 2014 

is 0,661 while for Landsat 8 is 0,736. 
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4.2. Precipitation charts 

 

Figure 4.1. Mean regional precipitation. a) Annual mean precipitation from 1990 to 2021; b) Dry season mean precipitation from 1990 to 

2021; c) Wet season mean precipitation from 1990 to 2020. 
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Precipitation trends from 1990 to 2021, for annual, dry and wet seasons are plotted in Figure 4.1, based 

on the observations anomalous decrease in precipitation was related to El Niño event. 

- The annual chart (Figure 4.1a) shows a drop of precipitation under the average from 1990 to 1994, which 

could be associated with El Niño of 1991-1992 and a weaker event in 1993. The low peak of 1997 is due 

to El Niño of 1997-1998, a drop in precipitation in 2000-2001 which could represent the early beginning 

of the 2002-2003 event. The impact of the 2006-2007 event is reflected in precipitation drop during 2006 

and the 2009-2010 event is also consistent with the observed rainfall decrease during 2009. From the 

end of 2011 and from 2012 until 2016 the precipitation remains dramatically below average, due to a 

succession of close events which have negatively affected normal annual precipitation patterns for more 

than 4 years. Finally, during the 2018-2019 event precipitation deficit was a characteristic of the drought 

conditions still present. 

- The dry season precipitation chart (Figure 4.1b) starts with two low peaks in 1991 and 1995, and a slight 

increase above the average in 1993 that not so obvious in the annual chart. For the other events until 

2012 precipitation remained above the average line although during the above-mentioned events (1997-

1998, 2002-2003, 2006-2007) precipitation reduction is still clear. No significant reduction in 

precipitation for the dry season of 2009 during the 2009-2010 event was identified. From 2012 to 2020 

precipitation remain below the seasonal average values even during years in which El Niño conditions 

were not present. 

- Looking at the wet season precipitation chart (Figure 4.1c), first thing to notice is that every year, more 

than 80% of total rainfall is concentrated in this season. From 1990 to 1994 rainfall amount stays below 

the average, 1997-1998, 2006-2007, 2009-2010, 2012, 2015-2016 and 2018-2019 event are clearly 

recognizable by the peaks below the average line. Anomalous low values are present in 2000-2001, 

maybe due to an early lowering of precipitation before 2002-2003 event.  

Anomalous reduction of rainfall below historical average during El Niño events in more marked during wet 

seasons than during dry seasons from 1990 to 2011-2012. After 2012, the clustering of dry years made 

precipitation fall under historical average also during the dry season.  

The unstable behaviour of weather systems leads to uncertainty in forecasts and management decisions, 

under ENSO events the forecast at the seasonal scale is fundamental, mainly because the region is highly 

dependent on natural resources. 

The significant decreasing trend in precipitation results from the concentration of dry years and El Niño 

events in the analysis period, this trend is not significant for annual and wet season but still is decreasing because 
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of the same reason. The 30-years’ time series analysed in this study is not enough to describe the effects of 

climate change given the bias to El Niño conditions. 

4.3. Land cover change 
The number of pixels belonging to cropland area, forest, shrubland and grassland (which in our region 

mostly corresponds to pastures) were counted to observe two-decade changes and land cover dynamics (Figure 

4.2.). 

 

Figure 4.2. Pixel count for selected land cover classes 

Land cover change maps showed a net increase of forest over the years from 2000, consistent with the 

efforts for forest restoration that has a longer history back to 1980. In this study, analysing regional NDVI trends, 

for the three satellited we have observed always an increasing trend, which seems to be strange because overall 

temperature are increasing and most of all precipitation is lowering. This should have a negative effect of 

environment and vegetation, but apparently in this region human impact had a positive effect regarding 

reforestation. The effort of the country in reforestation over the years have resulted in an increased resilience 

of the whole territory and an increased environmental health and better vegetation status.  

To have a better understanding of the reasons of NDVI trends and quantify even more in detail the 

impact on agriculture, more detailed agricultural data such as precise land cover maps indicating the type of 

crops grown in each area and historical yields records would have been very helpful to develop this research. 

However systematic datasets for the whole are not available, similar to the case of information on irrigation in 

the region. Furthermore, the fragmented agricultural landscape and the scale of the farms represents a difficulty 

even at the resolution for which Landsat is available. However, consistent results relate a visible impact of ENSO 
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events on vegetation by means of the NDVI, suggesting that in the long run, satellite imagery is a useful tool to 

assess impacts of ENSO related precipitation anomalies on agriculture in the southernmost part of the CADC. 

5. Conclusions 

This study used images of Landsat 5, Landsat 7 and Landsat 8 to calculate mean regional NDVI and NDVI 

change during the strongest El Niño events of the last 30 years, the 1997-1998 event and the 2015-2016 event. 

By looking at NDVI change during strongest events it was possible to demonstrate that El Niño have a negative 

impact on agriculture, caused by the influence of drought in the area. The El Niño impact on reduction of 

vegetation health was also identified for less intense El Niño event, showing that the impact is not restricted to 

the intense El Niño events. To better identify impacts on specific crops, more detailed information about type of 

crops cultivated in the region and their exact locations would have been useful for further considerations and 

more detailed analysis and would allow more specific results. Albeit El Niño causes drought conditions, the 

development of tropical cyclones in the eastern tropical Pacific is also enhanced which contributes to heavy 

rainfall over that area. Hence, the vegetation response to drought in time is often hindered by this type of heavy 

rainfall events. This is one of the reasons why attempts like this to identify drought and NDVI links often fail.  

The 30-years trend of precipitation is consistent with seasonal and interannual variability caused by the ENSO 

event.  However, the long meteorological drought that started between 2011-2012 and lasted until 2019, 

highlights an increase in the frequency of Nino occurrence and the severity of dry seasons in recent years. This 

inevitably led to an increase in vegetation stress, which was confirmed by the negative values in the NDVI trend 

between 2013 and 2019 especially during the dry seasons. If this trend continues in the coming years combined 

with the typical effects of climate change such as increasing temperatures and frequency of extreme events, 

water resource management will become increasingly complicated and challenging. 

Negative effects of El Niño events could be mitigated by better environmental policies focused on improve 

the resilience of agricultural areas to climate variability and extreme events. Water resources management must 

be improved by promoting hydrometeorological monitoring and sustainable agricultural practices oriented to 

optimize water use efficiency, avoiding wastes and improve water storage during wet periods to ensure 

sustainable irrigation is available for the most critic crops. 

This study gives a continuous vision in time and space of the impact of this phenomenon in the Chorotega 

region by analysing NDVI dynamics, it is a valid tool and aid for agricultural drought management at regional 

scale. However, more detailed studies which could fill the gaps in the information encountered would help to 

complete the research and have a better understanding of the impact of the phenomenon on agriculture. 
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Cloudiness remains the main issue in the use of satellite imagery to identify vegetation changes during the wet 

season. Further analysis should include soil moisture information to better follow the propagation of the 

meteorological drought to hydrological drought and better understand how the intensity of ENSO may drive 

more prolonged droughts that limit the recovery of the soil moisture and thus strongly affect agriculture and 

ecosystems. 
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6. Annex 

Annex A 

Google Earth Engine complete Data Catalogue 

Group Field of application/Program Datasets 

Climate and 
Weather 

Surface Temperature, Climate, 
Atmospheric, Weather 

ERA 5 

GRIDMET 

TerraClimate 

MOD08_M3.061 Terra Atmosphere 

MYD08_M3.061 Aqua Atmosphere 

AG100: ASTER Global Emissivity Dataset 

FLDAS 

GLDAS 

NEX-DCP30 

NEX-GDDP 

Ocean Color SMI 

Daymet V4 

NCEP/NCAR 

NOAA CDS OISST v02r01 

NOAA CDR PATMOSX 

NOAA AVHRR 

CFSR 

RTMA 

PRISM 

WorldClim 

Sentinel-5P 

Copernicus Atmosphere Monitoring Service (CAMS) 

MACAv2-METDATA 

GCOM-C/SGLI 

GSMaP 

GPM 

NDAS-2 

GOES-16 

GOES-17 

NCEP-DOE 

PERSIANN-CDR 

TOMS and OMI 

TRMM 

CHIRPS 
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Global Power Plant Database 

YCEO 

CFSV2 

GFS 

NOAA NHC HURDAT2 

Imagery 

Landsat 

Landsat 1-5MSS 

Landsat 4 TM 

Landsat 5 TM 

Landsat 7 ETM+ 

Landsat 8 OLI/TIRS 

Landsat 9 OLI-2/TIRS-2 

MODIS 

MCD43A4.006 

MCD43A3.006 

MCD43A2.006 

MOD09GQ.006 

MOD10A1.006 

MOD11A1.006 

MOD09GA.006 

MODOCGA.006 

MOD14A1.006 

MCD43A1.006 

Sentinel 

Sentinel-1 SAR GRD 

Sentinel-2 MSI 

Sentinel-3 OLCI EFR 

Sentinel-5P TROPOMI 

High-Resolution Imagery 
Planet SkySat Public Ortho Imagery 

NAIP:National Agriculture Imagery Program 

Geophysical Terrain 

AHN Netherlands 

Australian 5m DEM 

DEM-H 

DEM-S 

SRTM Digital Elevation Data 

CryoSat-2 Antarctica 

Global ALOS 

Global SRTM 

US NED 

US Lithology 

US Physiography 

HYCOM 

ALOS DSM 

GEDI L2A 
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GEDI L4B 

MERIT 

AG100 

NASADEM 

ETOPO1 

Canadian Digital Elevation Model 

USGS 3DEP 

GMTED2010 

GTOPO30 

NASA SRTM 

WWF HydroSHEDS 

Land Cover 

Canada AAFC 

Copernicus CORINE 

Copernicus Global Land Cover Layers 

CSP gHM 

World Settlement Footprint 2015 

FireCCI51 

GlobCover 

ESA WorldCover 

GLIMS 

Dynamic World 

Global PALSAR-2/PALSAR Forest/Non-Forest Map 

LUCAS Harmonized 

Iran Land Cover Map 

MCD12Q1.006 

Oxford MAP 

DESS China Terrace Map 

USDA NASS 

USFS Landscape Change Monitoring System 

USGS GAP 

GFSAD1000 

NLCD 2016 

NLCD 2019 

Cropland 
USDA NASS 

GFSAD1000 

Other Geophysical Data 

FIRMS 

GRIDMET DROUGHT 

MACAv2-METDATA 

TerraClimate 

JRC 

MCD64A1.006 
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MOD44B.006 

MOD44W.006 

MOD44W.005 

Global Forest Canopy Height, 2005 

NLDAS-2 

NASA-USDA Enhanced SMAP 

Hansen Global Forest Change 

ArcticDEM 

REMA 

WHRC 

Annex B 

Google Earth Engine codes used to download all NDVI maps and values. 

Input script with imported data: 

var imageCollection = ee.ImageCollection("LANDSAT/LT05/C01/T1_SR"), 

    geometry = ee.FeatureCollection("users/irenedellolio/Esporta_Output"); 

 

NDVI map calculations and download codes, in the screenshot below is shown the code to download 1990 dry 

season mean NDVI map and dataset from Landsat 5. 
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Figure B.1. Codes used in GEE platform to compute and download NDVI maps from Landsat imagery 
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Annex C 

Results of the regression analysis carried out in Microsoft Excel for NDVI and precipitation data. 

 

Figure C.1. Regression analysis results of dry season regional mean NDVI. a) Landsat 5; b) Landsat 7; c) Landsat 8 
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Figure C.2. Regression analysis results of regional wet season mean NDVI trend. a) Landsat 5; b) Landsat 7; c) Landsat 8 
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Figure C.3. Results of the regression analysis of mean annual regional NDVI. a) Landsat 5; b) Landsat 7; c) Landsat 8 
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Figure C.4. Regression analysis results for precipitation trend. a) Annual; b) Dry season; c) Wet season. 
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