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Abstract

Phenotyping is the process of identifying desirables traits of plants, i.e. drought resistance
or yield productivity, and their health status by analysing them. These traits do not depend
only on the genome of the plant but also on the environment in which it grows. For this
reason a great amount of data has to be gathered to have a complete analysis of a plant species.
Imaging techniques can be applied on this field to help relieving the bottleneck caused by
manual gathering technique.

Climate changes represent a challenge to satisfy the demand of food of the increasing
world population. Phenotyping can help to relieve this problem. Once the mapping and
the characterization of the plant is completed, through the analysis of the plant in the first
stages of its growth, we can see if e.g. it meets the optimal traits for food production and con-
tinue its growth only in the positive case. Moreover a plant variety that has good drought
resistance property can be selected to relieve the problem that desertification will cause in
the next years.

In this work I developed a robust pipeline to build a 3D model of plants with multispec-
tral information as a basis for phenotyping. Fusing multispectral information coming from
different images, we created a 3D multispectral point cloud. Multispectral information, es-
pecially the Near-Infrared band, can help to better understand the status of the plant. Then
we registered the behaviour of plants over time and under water stress to see how their spec-
tral reflection changes. Finally we used vegetation indices to see the evolution of the plant
during the acquisition period.
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1
Introduction

Phenotyping is the procedure tounderstand the good characteristic and the future behaviour
of a plant from its structure and composition. Given that these desirable traits are not only
the expression of the genome of the plant but depends also on the environment inwhich the
plant grows, a lot of information needs to be gathered to perform this task.

In the last years imaging techniques were applied to this field to replace destructive, man-
ual phenotyping procedures that were labour-intensive, time consuming and that require
the presence of an expert. Simple imaging technique, e.g. processing of RGB images, are lim-
ited because they cannot gather information about the structure or the health of the plant,
unless the plant is already largely compromised.

For this reason in this thesis we created a 3Dmultispectral reconstruction of a plant to be
used as a basis for phenotyping. Thanks to the fusion procedure applied on multispectral
information coming fromdifferent images of the same plant, we have amore robustmeasure
of the multispectral values for each 3D point in the point cloud. Acquiring information of
the same plant over time, we studied the changes in its spectral behaviour under water stress.
This can be done thanks to the non-destructiveness of the used imaging technique.

Using the 3D reconstruction information, we have a better understanding of the plant
structurewhile themultispectral data can give us information about the environmental stress
that affects the health of the plant.

This thesis is structured as follows: in chapter 2 we can find the description of the 3D re-
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construction procedure using structure frommotion andCOLMAP.The description of the
setup used to gather data can be found in chapter 3. Chapter 4 describes the basis of pheno-
typing and the advantages to apply multispectral information to this problem. Chapter 5
contains the description of the approach that was used to perform the reconstruction and
the processing of the data. The result of the work can be found in chapter 6 while chapter 7
contains the conclusions and possible extensions of this thesis.
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2
Structure fromMotion and 3D

Reconstruction

3D reconstruction is a complex task due to the high number of information re-
quired to perform it. The main problem is to estimate the depth of the points that was
lost with their projection in the 2D world.

This chapter will give an overview on the main approaches to build a 3D model starting
from at least two images [1][2].

Firstly camera calibration will be describe to estimate the mapping parameters from the
3D to the 2Dworld. Then triangulation, matching and stereo calibration will be considered.
Finally Structure-from-Motion (SfM) and dense point cloud reconstruction, as performed
by COLMAP, will be described

2.1 Calibration and pose estimation of a single camera

Apicture is the projection of the 3Dworld into the 2D domain. To define this mapping, the
parameters that model the camera, that performs the projection, have to be retrieved. This
process is called calibration.

To know the number of parameters that have to be estimated, the cameramodel has to be
introduced.

3
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Figure 2.1: Projection of the 3D pointM intom, 2D point.

2.1.1 Pinhole model

Pinhole model is the basic model of a camera and holds under some assumptions.

In this model the world reference system is represented by (X, Y, Z) and it is centred in
C, called Centre Of Projection (COP). The Z axis is called principal axis. In this model it
coincides with the optical ray, so the world reference system and the camera one coincide.
The plane F, that is the perpendicular plane to the principal ray and it is centred in the COP,
is called focal plane. The parallel plane to F, called Q in figure 2.1, is called image plane. Its
distance from F is f, where f is called focal length. It is centred on the principal point p and
it contains the camera reference system (u, v).

Therefore we can write a 3D point, in Cartesian coordinates, as M̃ =

XY
Z

 and its 2D

projection through C, belonging to Q, as m̃ =

[
u

v

]
.

From similar triangles, figure 2.2, we can see that
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Figure 2.2: 2D view of the projection of the 3D pointM intom.

f

Z
= − u

X
= − v

Y

u = − f
Z
X

v = − f
Z
Y

(2.1)

This mapping is non linear if we consider Cartesian coordinates. To have a linear relation,
homogeneous coordinates need to be used instead.

The 2D and 3D points in homogeneous coordinates are represented as:

m =

uv
1

 M =


X

Y

Z

1

 (2.2)

The mapping can then be written as:

Z

uv
1

 = Z

−f
X
Z

−f Y
Z

1

 =

−fX−fY
Z

 =

−f 0 0 0

0 −f 0 0

0 0 1 0



X

Y

Z

1

 (2.3)

Therefore the projection of a 3D point into a 2D one is:

m =
1

Z
PM or m ≃ PM (2.4)

where the last equation gives us equality up to a constant and with P, called Camera Pro-
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jection Matrix, defined as:

P =

−f 0 0 0

0 −f 0 0

0 0 1 0

 (2.5)

2.1.2 GeneralModel

This model is an extension of the pinhole model: it takes in consideration differences be-
tween camera and world coordinate frames and the conversion frommeters to pixels.

To have this last transformation, the matrix A is used:

A =

−ku 0 u0

0 −kv v0

0 0 1

 (2.6)

with (u0, v0) coordinates of the principal point and ku and kv the number of pixels per
unit distance in image coordinates in u and v directions.

P can now be defined as:

P =

−ku 0 u0

0 −kv v0

0 0 1


−f 0 0 0

0 −f 0 0

0 0 1 0

 = K
[
I | 0

]
(2.7)

where

K =

αu 0 u0

0 αv v0

0 0 1


with αu = fku and αv = fkv.

K contains the internal characterization of the camera defined by four internal camera
parameters: αu, αv, u0 and v0.

To completely describe the internal structure of the camera, we have also to consider a
parameter called skew: it is the angle between the u and v axis. If it is considered, we can
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rewrite K as:

K =

fku − fku
tanθ

u0

0 fkv
sinθ

v0

0 0 1


where the skew is defined as γ = − fku

tanθ
.

Usually θ is considered equal to
π

2
therefore γ = 0, i.e. the skew can be neglected.

When the camera reference system is different from the world coordinate frame, we need
to introduce an isometry to make the two systems coincide.

It is composed by a rotation, R, followed by a translation, t. We can write this transforma-
tion as

Mc = VM (2.8)

whereMc is the point in the camera coordinate frame,M is the one in the world reference
system and V is the view matrix:

V =

[
R t

0 1

]
(2.9)

V provides information about the orientation and position of the camera with respect to
the world reference system.

The parameters contained in V are called external parameters of the camera.
Therefore we can describe the mapping from the 3D world to the 2D camera sensor as:

m ≃ K
[
I | 0

]
VM = K

[
R | t

]
M = PM (2.10)

with
P = K

[
R | t

]
2.1.3 Zhang calibration technique

To compute the internal parameters of our cameras, the Zhang calibration [3] method was
used. It requires several pictures of the same planar pattern, usually a checkerboard-like pat-
tern, taken with different orientations without changing the internal parameters of the cam-
era.

Without loss of generality, we can assume that the checkerboard is on the plane Z = 0

of the world coordinate system. For each picture, a projection matrix P = K
[
Ri | ti

]
is
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computed. The intrinsic parameters,K , are the same for each image whileRi and ti change
for each image.

Using the identified corners of the board, for each picture the homography can be com-
putedup to a scale. It has 8 degrees of freedom so to estimate the parameters of the projection
matrix, that has 11 degrees of freedom, at least 3 picture are needed. 5 of these 11 degrees of
freedom are given by the intrinsics, so they are the same for all the images, while 6 are for the
extrinsics and they differ from image to image.

Re-projecting the corner projection back to the image, we can minimize the error with an
iterative process. In this way the calibration procedure gives more accurate results.

2.1.4 Radial distortion

The introduction of real lenses in the camera model generates distortion effects.

Figure 2.3: Distortion effects caused by the lens. The black rectangle is the undistorted ideal case, the red one represents

the effect of pin-cushion distortion while the blue one is the barrel distortion case.

We can write the transformation from undistorted, ideal coordinates (u, v) to the dis-
torted ones (û, v̂) as: û = (u− u0)(1 + k1r

2
d) + u0

v̂ = (v − v0)(1 + k1r
2
d) + v0

(2.11)

where r2d = ( (u−u0)
αu

) + ( (v−v0)
αv

) and (u0, v0) are the coordinates of the principal point.
The coefficient that represents radial distortion is k1.

Writing x = (u−u0)
αu

and y = (v−v0)
αv

we have:

8



x̂ = x(1 + k1(x
2 + y2))

ŷ = y(1 + k1(x
2 + y2))

(2.12)

To compute the distortion coefficient, the camera projection matrix P is needed but to
compute P, we need to know k1.

This problem is therefore solved iteratively: firstly P is estimated. Using this result k1
is then computed and P is refined after distortion removal. This process is repeated up to
convergence.

OpenCVcalibration considers 5 distortion coefficients to achievemore accuracy. 3 of them
are given by radial distortion, k1, k2 and k3, and 2 by tangent one, p1 and p2.

2.2 Stereo rig

When a 3D point is projected into a 2D one, information regarding its position in the 3D
world are lost.

To recover them, we can use two different images taken from a slightly different point of
view one from the other. This operation is called triangulation and can be performed when
calibration parameters of the two cameras are known.

Of course the correspondence between the same point in the two images has to be known.

2.2.1 Triangulation

Triangulation is the procedure that allows us to estimate the position of a point in the space
starting from its projections on two images (conjugate points). To do that, we have to know
the camera matrix of the two different cameras that took the pictures.

Simple stereo case

Let us consider a couple of cameras with the same focal length f and with parallel image
planes. C and C’, the corresponding centres of projection, are on the X axis at a distance b
called baseline. The left camera reference system corresponds to theworld coordinates (figure
2.4).

The 3D point M (in the figure only X and Z axes are represented) is mapped into two 2D
points: m = (u, v) and m’ = (u’, v’). The first belongs to the image plane of the left camera,
the second to the one of the right camera.

9



Using the similitude among triangles, we can write:

f
z
= −u

x

f
z
= u′

b−x

(2.13)

where b and f depend on the camera: the former is related to the extrinsic parameters and
the latter to the intrinsic ones. From 2.13 we can write:

x =
−bu
u′ − u

(2.14)

Using equations 2.13 and 2.14, we can finally write the equation for the z component:

z =
bf

u′ − u
(2.15)

We have now the relation between the depth z and the disparity d = u′ − u given by
equation 2.15: z is inversely proportional to the disparity.

Computing the disparity we can therefore estimate the depth z and reconstruct the coor-
dinates of M.

General case

The situation described in the previous section is very restrictive, therefore we need a more
general solution.

We can write the two camera matrices in the following way:

P =

pT
1

pT
2

pT
3

 P ′ =

p
′T
1

p
′T
2

p
′T
3

 (2.16)

where each element of the vector is a row of the camera matrix.

We can then write:
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Figure 2.4: Naive triangulation case.
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uv
1

 = PM


u = pT

1M

v = pT
2M

1 = pT
3M

(2.17)

from which we obtain:upT
3M = pT

1M

vpT
3M = pT

2M

[
pT
1 − upT

3

pT
2 − vpT

3

]
M = 0 (2.18)

Repeating this process also for the second camera we have:

AM =


pT
1 − upT

3

pT
2 − vpT

3

p
′T
1 − u

′
p

′T
3

p
′T
2 − v

′
p

′T
3

M = 0 (2.19)

The solution of the equation 2.19 is the kernel of thematrix A.We can decomposeAusing
SVD and selecting the last eigenvector. The problem with this solution is that it is algebraic
and does not consider the geometric error. Tominimize the geometric cost, we can re-project
back the point and compute the error with respect to its original position and iteratively try
to minimize it. The cost function is the following:

ϵ(M) =

∥∥∥∥∥∥
[
u

v

]
−

pT
1 M

pT
3 M

pT
2 M

pT
3 M

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
[
u

′

v
′

]
−

p
′T
1 M

p
′T
3 M

p
′T
2 M

p
′T
3 M

∥∥∥∥∥∥
2

(2.20)

2.2.2 Rectification

The rectification operation consists in bringing back the two cameras to the configuration
presented in section 2.2.1, without changing the coordinates of the two centres of projections
C and C’. That setup simplifies the computation because the two conjugate points, that we
are trying tomatch, lay on the same line: we reduce the number of possible conjugate points
(our search becomes unidimensional frombi-dimensional) therefore the number of possible

12



false matches.
Weneed the rectification operation because usuallywe have a different systemwith respect

to the naive one.
To perform this operation, the two cameras are rotated around their center of projection

(to make the two image planes parallel) and their reference systems are translated to obtain
the situation in which v = v′. We can write the rotation matrix:

R =

rT1rT2
rT3



r1 =

C̃′−C̃
||C̃′−C̃||2

r2 = k× r1

r3 = r1 × r2

(2.21)

where k is an arbitrary versor that is orthogonal to the new Y axis. The optical ray associ-
ated to m and m’ do not change.

If, after these operations, we have still v ̸= v′, we can obtain the equality translating the
reference systems.

2.2.3 Stereo rig calibration

Stereo calibration is the process that allows to estimate the transformations between two
camera orientations of a rig. These transformations will be constant during the acquisitions
if the rig is not modified.

The needed information to perform stereo calibration are the intrinsic parameters of the
two cameras and pairs of acquisitions of the same planar cheeseboard-like pattern. It will
be therefore possible to compute Rstereo and tstereo that are the rotation matrix and the
translation vector that defines the cameras orientation difference. From them it is possible
to estimate also the baseline as b = ||tstereo||.

2.3 Matching strategies

Having two views of the same object taken with a small, but not too small, baseline, it is
possible to find the same point that is projected in the two different images: we can associate
m with m’. Using triangulation, we can then recover the position of the point in the space.
Repeating this procedure for all the pixels in the picture, we can build a dense 3Dmodel. We
call this process disparity estimation.
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To perform the matching process, two different approaches can be used:

• local methods: they consider only a small window around the pixel that we want to
match;

• global methods: they pose the constraint on the whole line or on the whole image.

2.3.1 Block matching

Block matching is a local method to compute the disparity.
Having two images I and I ′, we want to find the correspondent (u + d, v) in I’ for the

point (u,v) in I . The window centered in m = (u, v), with dimensions (2N + 1)(2N + 1), is
comparedwith the one of the same dimensions centered inm’ = (u+d, v) using a coupling
metric.

The procedure is repeated for different disparity values d in a range [dmin, dmax] where
dmin depends on the largest distance z we want to measure.

The final disparity d0(u, v) for m is the value that minimize or maximize the coupling
metric.

There are different coupling metrics that can be used:

• based on the intensity differences (we want to minimize them): SSD, SAD;

• based on correlation (we want their maximization): NCC, ZNCC;

• based on the intensity transformations: Census transform.

The metric used by COLMAP is the Normalized Cross Correlation (NCC). It is a simi-
larity metric to be maximized. NCC is defined as the normalized scalar product of the two
considered windows:

NCC(u, v, d) =

∑
k,l I(u+ k, v + l)I

′
(u+ k + d, v + l)√∑

k,l I(u+ k, v + l)2
√

I ′(u+ k + d, v + l)2
(2.22)

and the disparity is:

d0(u, v) = argmax
d∈[dmin,dmax]

NCC(u, v, d) (2.23)
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Once the disparity is known, the depth can be found using the equation 2.15.
The accuracy of the estimation is affected by occlusions and uniform regions due to false

detection of conjugate points.

2.4 COLMAP

COLMAP is a general-purpose program to perform 3D reconstruction through incremental
Structure-from-Motion [4] [5].

2.4.1 SfM in COLMAP

SfM aims to build a 3D reconstruction of an object starting from more than two images of
the object taken with different points of view. Images can be taken also with uncalibrated
cameras: SfM is able to estimate internal and external camera parameters during the recon-
struction procedure.

First of all the matches regarding the same point among the different images have to be
found. SIFT [6] is used to extract the images features in a robust way, invariant to radiomet-
ric and geometric changes.

Then the most similar features are searched and matched so correspondences among the
relative points are created. To have robust matches, SfM computes the transformation to
project linked points from an image to another. If the majority of the mapped points are
correct, the matches are verified. RANSAC [7] is used to remove outliers during this phase.
Once the robust matching is computed, the basis for the 3D reconstruction procedure is

available. COLMAP uses the incremental SfM procedure: the 3D model is initialized per-
forming the reconstruction from two images. Then a new image, the one that introduces
more information having still enough redundancy, is iteratively added to themodel and new
points are added to the reconstruction by triangulation.

Redundancy and newly added points are fundamental for the camera parameters estima-
tion and for the Bundle Adjustment [8] procedure, a joint non linear refinement of the cam-
era parameters.

COLMAP applies a bundle adjustment run on the most connected images after each
added image, this is called local bundle adjustment, and a global bundle adjustment on the
whole model when it grows of a certain percentage.

Whennomore images are available orwhen the addition of a new image does not improve
the model, the incremental procedure ends and a global bundle adjustment is performed on

15



the entire model.
Once the final 3D sparse model is built, COLMAP gives the possibility to run a final bun-

dle adjustment with the so called rig constraint: if a stereo rig is used, the cameras parameters
are tuned to keep the baselines between the defined cameras constant.

There is not the possibility to set the value for the baseline so the reconstruction given by
COLMAP will be up to a scale.

2.4.2 Depth and normal estimation

View selection, depth and normals estimation processes performed by COLMAP are based
on the work of Zehng et al.[9].

View selection is performed considering the probability of taking similar patches to the
considered one from the colour point of view.

In [9] the NCC is used as matching metrics. COLMAP [5] uses a bilaterally weighted
adaptation of the NCC to be more robust against blurred depth discontinuity. Weights are
function of the grayscale distance between the considered pixel and the central one and their
spatial distance. This allows also to take in consideration the photometric consistency. More-
over geometric consistency is considered to avoid outliers due to noise and occlusions. This
is done by integratingmulti-view geometric consistency constraint to the analysis. A filtering
noise process is then applied to discard the noise. Differently from Zehng, in COLMAP per
pixel depth and normals are estimated.

To perform the fusion operation of depth and normal maps, a graph of consistent pixels
is built considering their normal and depth similarity and re-projection error. The fusion is
then performed by taking themedian of the consistent points to remove outliers. Finally the
dense point cloud is created using the fused information.
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3
Capturing setup description

During my internship, I worked with an experimental setup kindly provided by Sony
Europe B.V. in the Stuttgart Technology Center.

Different attempts were made to optimize the background and illumination before reach-
ing the final setup. Saturation, change of natural illumination, fixed matches found on the
backgroundweremajor issues during the reconstruction procedure. Moreover the sensor po-
sition in two of the cameras had to be tuned (see difference in figure 3.1a and 3.1b), otherwise
useful information was lost by two of the three cameras.

The final setup was composed by a stereo rig of three cameras, a turntable, two halogen
lamps, a programmable socket, all controlled by a computer, and by a ChArUco board and
some pieces of uniform black cardboard to be used as background.

3.1 Stereo rig

The rig were formed by three cameras: one multispectral camera and two RGB ones.

3.1.1 Multispectral camera

Multispectral sensors are devices that can acquire visible and non-visible portion of the spec-
trum. The gathering of spectral information can be done by capturing a band at a time in
subsequence exposure times (scanning technique) or simultaneously (snapshot technique)
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(a) First setup from b1 (b) First setup from b3

(c) Second setup from b1 (d) Second setup from b3

(e) Final setup from b1 (f) Final setup from b3

Figure 3.1: Evolution of the setup.
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Figure 3.2: Spectral data cube created by a snapshot multispectral sensor [11].

[10]. The collected data are organized in a three-dimensional matrix called datacube (figure
3.2).

The main advantage of scanning technique is that every band is acquired with full resolu-
tion butmultiple exposures lead tomotion artifacts and to an higher cost of production due
to a more complex architecture (e.g. turnable filters and tunable illumination).

Using snapshot techniques, we have a less artifacts and lower costs. One of the most used
technique to build a snapshot sensor is theMultiSpectral Filter Array (MSFA, figure 3.3): it
is an extension of the Color Filter Array (CFA) for more than three bands. Given that the
finalmultispectral image is the result of a demosaicing procedure, a good design of theMSFA
is fundamental and it is usually application specific with respect to the number of bands it
has to capture. If the geometric filters arrangement of the MSFA is not well designed, there
can be a huge loss in the image resolution.

Multispectral sensor of the setup

The multispectral camera we used during the acquisition procedure has a snapshot sensor
that captures spectral information in the wavelength interval from 450nm to 800nm with
uniform spacing of 10nm. This range allows to gather information regarding the Near-
InfraRed (NIR) component of the spectrum, band of particular interest for phenotyping
purposes.
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Figure 3.3: Visualization of theMultispectral Filter Array [10].

3.2 Illumination of the scene

The setup was placed in a room without windows to have more control on the light con-
ditions. Two 28W halogen light bulbs were chosen as light sources given their broad spec-
trum (figure 3.4). To avoid saturation and have an uniform illumination, the two lamps
were placed inside two light diffusers situated on two stands on the left and on the right of
the camera rig.

3.3 Elements to aid data gathering for SfM

The 3D reconstruction of the plants was performed using SfM technique combined with a
turntable: the object to be reconstructed was placed on the turntable and acquisitions were
performed during the rotation of the table.

The background was composed by some pieces of black cardboard to avoid too many
outliers in thematching procedure. The problem caused by those fixedmatches was awrong
pose estimation and a wrong parameters correction performed by COLMAP during the
bundle adjustment procedure.

The turntable had an high precision rotation mechanism. However the information pro-
vided by the precise rotation angle were not used to estimate the external parameters of the
cameras. The speed and acceleration of the table were set to avoid movements in the leaves.
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(a) Spectrum of the light sources measuredwith a

spectrometer

(b) Position of the light sources with respect to the stereo rig

Figure 3.4: Spectrum of the light sources measuredwith a spectrometer and their positions with respect to the stereo

rig.

The poses of the cameras during the rotation of the table were obtained thanks to the
ChArUco board placed on top of the turntable.

3.3.1 ArUco markers and ChArUco Board

ArUco markers are fiducial square markers that can be used to estimate the camera pose by
finding correspondences between the known marker and its respective camera projection
[12].

The advantage of squaremarkers is that the pose can be estimated from their four corners,
if the camera calibration parameters are known.

The inner part of themarker, that contains a binary code, is used formarker identification,
false positives rejection and errors correction. Once the actual markers are detected, the pose
can be estimated by iteratively minimizing the reprojection errors of the corners.

To have an approach that is robust against occlusions, more markers are placed in a struc-
tured grid called marker board, figure 3.5. In this way we achieve not only robustness against
occlusions, unless the board is mostly covered, but also less influence of the noise, given that
more corners can be used to compute the pose.

However ArUcomarkers have a drawback: the estimation of the corner position is not so
accurate.

To overcome this problem a ChArUco board, figure 3.6, can be used: it is a combination
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Figure 3.5: ArUcomarker and ArUco board.

of a chessboard pattern and several ArUco markers placed in the white squares of the chess-
board. In this way high precision corner detection can be achieved by using the corners of
the chessboard together with a sub-pixel refinement procedure and robustness against occlu-
sions is given by the ArUco markers.

Figure 3.6: AChArUco board: it is a combination of a chessboard pattern and of ArUcomarkers.

3.4 Automation of the setup

One of the main task performed to improve the setup performance was completely automa-
tize the acquisition procedure.

The first stepwas synchronizing data acquisitionwith the rotation of the turntable. Three
pictures (one for each camera) were taken each five degrees of rotation of the table. This
procedure was repeated 72 times to have a complete 360◦ rotation. In the end 72 images per
each camera were available.

The second step was having a system that automatically performed one acquisition every
six hours (4 acquisitions per day) for one week. This allowed to capture also the temporal

22



evolution of the plants.
To optimize energy consumption and assure a correct cycle of light to the plant, a pro-

grammable socket was added to the setup. In this way the lights were switched on during
the acquisition procedure and remained on twelve hours per day.

3.5 Plants

The plants used for the acquisitions, figure 3.7, were a fake plastic plant, an aloe vera, a cu-
cumis sativus (cucumber plant) and a capsicum annuum (pepper plant). The first two were
used to perform 3D reconstructions trials and mapping tests, the other two to study the be-
haviour of plants under water stress.

3.6 Limitations of the setup

The setup works in a controlled environment: changes in illumination and weather condi-
tion, e.g. wind, can affect the result of the 3D model reconstruction. Moreover the multi-
spectral sensor will saturate if illumination conditions are too strong.

The turntable and the fix camera rig position set a constraint on the maximum height of
the plants to be acquired.

Lastly an initialization for the cameraposes, computedusing theChArUcoboard, is needed
to have an accurate result to further process the 3D data.
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(a) Fake plant (b)Aloe vera

(c) Cucumis sativus (d) Capsicum annuum

Figure 3.7: Plants used to perform the 3D reconstructions
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4
Phenotyping with multispectral and 3D

information

The increase ofworld population together with the changes in the climate represent
a new challenge to meet the growing demand of food. Therefore new approaches to help
identifying desirable agricultural traits in crops, e.g. stress tolerance, yield stability, yield po-
tential, are needed.

4.1 Phenome and genome

To understand why identifying the good characteristic of crops is a complex task, we have to
distinguish among phenome, phenotype and genome. Genome is the total set of genes that
are present in an individual. A phenotype is a trait or a characteristic that is observable in an
organism. The phenome refers to the phenotype as a whole [13], i.e. to all the phenotypical
traits that belong to an organism. Plant phenomics is therefore the study of plant growth,
performance and composition. [14].

Crop selection, i.e. choose the best genotype that has the desired characteristics, makes use
of plant phenotyping by analysing the phenotypic expression of crops.

It is possible to have a complete characterization of the gene, e.g. using DNA sequencing,
while is extremely difficult to have a complete description of phenome. This because phe-
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(a) Spectrum of a pixel belonging to the Cucumis sativus (blue

line) and the one of the background (orange line)

(b) Zoomed in version of the comparison

Figure 4.1: Comparison between plant spectrum and the background spectrum.

nome can be described as phenome = genome × environment [14]. So plants which
have the same genotypical constitution but growing in different environment, can have dif-
ferent phenotypical traits [15].

To have a complete description of a phenotypical trait of interest, there is the need of repli-
cated information gathering made in different environment and in different season. This
work is destructive for crops, extremely time-consuming, labour intensive and requires a lot
of precision. Moreover experts are needed to study the resulting data.

To overcome this phenotyping bottleneck, imaging technique started to be applied to this
problem to reach non-invasive and non-destructive high-throughput phenotyping.

4.2 Multispectral sensor applied to plant phenotyping

Multispectral imaging can enhance the information we can gather from plants. Vegetation
has in fact a specific spectral behaviour that can help distinguish it from other elements
present in the environment [16]: plants have a low reflection in the blue and red bands, due
to strong absorbance performed by chlorophyll, while they have high reflection in the green
and Near-InfraRed (NIR) bands, figure 4.1. Moreover the spectral property of plants can
change among different species and depending on the health of the plant. The blue band is
generally considered to study carotenoids content of the leaves [17], aspect on which we did
not focus in our study.
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(a)Color-InfraRed image of the alive cucumber plant (b)RGB image of the alive cucumber plant

(c)Color-InfraRed image of the dead cucumber plant (d)RGB image of the dead cucumber plant

Figure 4.2: Visualization of a plant using the CIR false color composite representation created from themultispectral

information comparedwith the correspondent RGB image.

4.2.1 False colour composite images

Giving the high number of bands of amultispectral image, new possibility of representation,
other than RGB, are available combining different bands. False colour composite images are
image that does not maintain the original colour of objects because instead of the red, blue
and green bands, other ones are used in the RGB representation.

To visualize vegetation, the most common false colour composite representation, called
Color-InfraRed (CIR), has the following structure: the NIR band is used instead of the red
one, the red band takes the position of the green one and the green band canbe found instead
of the blue one (NIRRB instead of RGB).

In this schema the parts belonging to plants appear with different tone of red depending
on the characteristics of the plants themselves (figure 4.2a). This is due to the fact that we
visualize the image as if it was a normal RGB image.
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4.2.2 Vegetation indices

A non destructive way to gather information about the health, growth and stress of plants
is computing Vegetation Indices (VIs). There are multiple indices computed using different
combinations of spectral bands and their application can vary depending on the species of
the plants. These indices were used mainly to monitor the vegetation from the satellites, for
this reason a lot of variations take in account clouds and atmosphere sensibility.

Ratio Vegetation Index

TheRatio Vegetation Index, also called simple ratio vegetation index or ratio vegetation index,
is one of the basic vegetation indices that employs the spectral behaviour of plants [18]:

RV I =
NIR

RED
(4.1)

Regions corresponding to vegetation areas will have a RVI value larger than one and the
value will depend on the type of vegetation and its health. Soil will have values close to one
because its NIR reflection si similar to the red one while water and snow will have values
smaller than one given that their red band reflectance is larger than the NIR band one.

This index in not bounded, so if there is a big difference of intensity between NIR and
red component, it can assume very high values. For this reason normalized indices were in-
troduced.

Normalized Difference Vegetation Index

One of the most widely used VI is theNormalized Difference Vegetation Index (NDVI) [19].
This index exploits the fact that healthyplants absorb visible light and reflectNIRbandwhile
unhealthy plants reflect less NIR light and more visible spectrum:

NDV I =
NIR800 −RED680

NIR800 +RED680

(4.2)

NDVI can range from−1 to 1: it assumes a value close to 1when a high density of green
leaves is detected, 0 if no plant is detected and negative values if there is the presence of snow,
water or clouds. Its behaviour is similar to the RVI one but it has the advantage to be nor-
malise so it is easier to interpret its output.

This index is sensible to green vegetation.
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Red Edge NDVI

Red Edge NDVI is similar to NDVI but it is more sensible to smaller changes in vegetation
health:

Red_Edge_NDV I =
RED750 −RED705

RED750 +RED705

[17] (4.3)

Enhanced Vegetation Index

The Enhanced Vegetation Index corrects the distortion, present in the NDVI, that particles
of air cause due to reflection.

EV I = G× NIR−RED

NIR + C1RED − C2BLUE + C3

(4.4)

whereC1 = 6,C2 = 7.5,C3 = 1 andG = 2.5 [20].

Kim in [21] used thirteen different VIs to study the evolution of five different sets of ap-
ple trees under water stress. Each set has a different water treatment: 100%, 90%, 75%, 60%
and 45% of needed water over about two months. The used setup was composed by one
RGB camera, two normalized difference vegetation index sensors and an hyperspectral cam-
era with range [385, 1000] nmwith 5nm interval.
The author noticed that the two sets with least water (60% and 45%) showed an increase

in the red band reflection and a decrease in the NIR with respect to the other sets. Kim
identified NDVI and Red Edge NDVI as the indices with the highest correlation with water
stress of the plants.

The conclusion of hiswork is that a difference in reflectance is found amongwater stressed
andnon-stressed plants even before some visible symptoms are present. This is of fundamen-
tal importance because it allows to act in advance and avoid damages on the plants and on
the yield.

4.3 Phenotypingwith depth information and 3D plant
models

Usually plants have a very complex canopy so 2D images can only give limited information
on their structure. For this reason 3D models of plants are used instead: they can give infor-
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mation about the angle of the leaves, plant topology and can be useful if robots are used to
prune them [22].

A stereo rig approach with two RGB cameras was used by Biskup et al. [23] to perform a
partial 3D reconstruction of plants with triangulation. To do that the calibration parameters
and the stereo calibration of the cameras were needed. The authors segmented the plant
from the background by using the colour of the leaves in theHSV colour space performing a
thresholding operation. They also segment the single leaves using graph-based segmentation
algorithm combinedwith plane fitting and keeping only the segmented regionwith a certain
area. A plane fitting approachwas also used to compute the orientation of the leaves to study
how it changes during the day and under water stress.

Santos et al. in [24] perform 3D reconstruction of plants from images acquired by a single
camera that was moved producing a short baseline. SIFT [6] was used to find local invariant
features to be employed in the SfM technique. Also calibration parameters were estimated
during SfM.A region growing approach andmultiple view stereo procedure were applied to
reach a dense model. Ball pivoting algorithmwas finally used to obtain a triangular mesh for
the surfaces. ToperformSfMSantos usedBundler [25]while in ourwork the reconstruction
was performed using COLMAP: the latter has better performance than the former [4] and
produces also the dense model as output.

An extension of this work can be found in [22]. Here the proper scale of the model is
recovered using eight points of a known planar pattern placed on the pot of the plant. The
plant was then segmented and clusters corresponding to leaves were produced with spec-
tral clustering. In [26] Santos compute also plant height and leaves length. Moreover an
computer-aided image acquisition was used to capture the optimal number of images mov-
ing the camera around the plant by hand.

In [27] McCormick et al. tried to perform different measurement on the 3D models of
different sorghum plants acquiredmore than once in a 17 days interval. The 3D point clouds
were created from 12 depth maps acquired by a time-of-flight camera and 12 RGB images
taken as the sorghum rotated on a turning table. The 12 partial point clouds were than
registered and registration errors were corrected manually. A mesh was generated from the
point clouds. In this work the idea of the turning table is used: it allows to have a stable
baseline among the images and a more structured and repeatable acquisition procedure.

The plants were then clustered: shoot and inflorescences were classified manually while
leaves were segmented by using supervoxel adjacency.
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Figure 4.3: Views of point clouds of the same plant created using 600, 800, 850, 900 nmwavelength information [28].

From the 3D models, different measures were computed e.g. shoot height, shoot surface
area, shoot centre of mass, leaves length, leaves surface area and leaf angle.

Liang et al. [28] created a 3D model directly from hyperspectral information obtained
with a acousto-optical tunable filter. Consistent illumination conditions and a turning plat-
form were used to facilitate the reconstruction procedure. An acquisition was performed
by the hyperspectral camera for each three degrees of rotation of the turning table. The
plant was segmented from the background and from the pot using Support VectorMachine
(SVM): the classifier was trained on manually labelled images and then was used to classify
parts related to the plant. SIFT keypoints were extracted on the output of Canny edge de-
tection performed on the image to avoid the problem of insufficient features due to low
resolution images.

One 3Dmodel was built per each band (61 in total). A problem of Liang’s approach is that
one of the 3Dmodel alone cannot reconstruct the entire plant (figure 4.3).

Differently from the authors of thiswork, we created a complete point cloud starting from
RGB information and mapping the selected multispectral band or index on it. In this way
more points are reconstructed.

Also Behmann in [29] underlines the importance that a hyperspectral 3Dmodel can have
in plant phenotyping and the problems that need to be solved to create one.
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5
Reconstruction Approach

The work that was performed during the internship can be divided in four main parts:

• data acquisition,

• image processing,

• 3D reconstruction,

• 3D data processing.

Data acquisition, 3D reconstruction anddata processingwere the tasks that requiredmore
time, resources and effort.

Data acquisition implied the tuning of the setup and its automation. The generation
of dense depth and normal maps during the 3D reconstruction was time consuming and
required a GPU.

Finally the 3D data processing was a complex operation due to the high dimensionality of
data belonging to the fused 3D reconstructions.
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5.1 Acquisition pipeline

The optimization of the setup was of fundamental importance to have good data, so a good
starting point, to perform all the further processing.

The procedure to perform an acquisition, described in section 3.4, generated three images
(one per camera) for the 72 different positions of the object to have a complete 360◦ rota-
tion. In the end 72 images per each camera were available. When we started to consider the
temporal behaviour of the plants, this process was repeated 4 times per day, once every 6
hours.

5.2 Image processing

The acquisitions provided raw data for the multispectral and RGB images. From them it
was possible to create the RGB and luminance images for the two bayer cameras and the
luminance image for the multispectral one.

The luminance versions of the images were used both for calibration and pose estimation.

5.2.1 Camera calibration and pose estimation

The intrinsic parameters of the three cameras of the stereo rig were computed independently
with the Zhang calibration method [3] using a 11x7 chessboard pattern. In this way the
camera matrix and the five distortion coefficients (k1, k2, p1, p2, k3) were available.

The extrinsic parameters of the camera were estimated, using the intrinsic parameters,
with the ChArUco board in figure 3.6. It was placed on top of the turntable and 72 acqui-
sitions per camera, covering all the 360◦ range, were performed to have information about
every camera position. The estimation can be done both without the object (more accurate
result, figure 5.1) or with the object placed on the board, if it does not occlude the majority
of the ArUco markers (figure 5.2).

Estimate the pose directly from the object acquisitionwas only possiblewith the fake plant
and not with real ones: to water the plant during the acquisitions a saucer was needed and it
covers most of the marker.

The rotation vectors were converted in quaternions because this is the structure of the
rotation information required by COLMAP.
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Figure 5.1: Pose estimation performed using ChArUco board without occlusions.

Figure 5.2: Pose estimation performed using ChArUco board with occlusions.

5.2.2 Undistortion and padding

Using the cameramatrices and distortion coefficients obtained by the calibration, the images
were undistorted. For the RGB and luminance images this procedure was performed using
the OpenCV undistortion function directly on the images.

The multispectral images, in the first two dimensions, had a different size with respect to
the images of the RGB cameras and the luminance ones of themultispectral camera (1920×
1080 compared to 1952 × 1110). To have correct undistortion and alignment with the
luminance images, a fixed padding was applied along the four borders of the multispectral
images.

After that each channel was undistorted independently given the high dimensionality of
the data.

5.3 3D model creation and processing

The 3D reconstruction performed by COLMAP was one of the most time consuming part
of the procedure. To perform the bundle adjustment, the global bundle adjustmentwith the
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stereo rig constraint and to build the sparse 3D model of a plant using 216 images (72 per
camera), COLMAP took less than 2minutes. To build the dense 3D model, i.e. the fused
depthmaps and normalmapswith both photometric and geometric constraint were created,
the time required by COLMAP was about 253 minutes. The final fusion procedure took
about 4minutes.

To perform the dense reconstruction procedure, we used a Nvidia GeForce GTX 1060
6GB.MeshLab [30] was used to visualize the point clouds.

5.3.1 COLMAP input and output

To have a correct reconstruction of the plant, four inputs were required:

• the 72 undistorted images for each camera,

• intrinsic parameters for each camera,

• pose estimation for each camera for all the 72 poses,

• a file containing the matching procedure.

Thiswas duemanly to the structured acquisition procedure performedwith the turntable.

Input files

First of all the undistorted images obtained by processing the acquisitions, 216 in total (72
for each camera), were given as input.

Then the intrinsic and extrinsic parameters of the cameras were given to COLMAP in
two different files. Given that COLMAP changes the size of the images while undistorting
them (it crops images to avoid black padding due to undistortion) and as a consequence also
of the depth maps related to the images, the distortion coefficients were fixed to 0. In this
way the images considered by COLMAP were the same given in input, already undistorted,
for all the three cameras and no manual padding had to be applied to find the correct align-
ment with the depth maps. The program was allowed to change only the provided pose
estimations during the bundle adjustment procedure and no tuning was performed on the
internal parameters of the cameras.

A file containing the matching pattern among images was also created taking in consider-
ation the acquisition procedure. Let itb1 be the t-th image taken with the first RGB camera,
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it
ms be the same image but taken with the multispectral camera and itb3 taken with the sec-

ondRGBcamera. For each camera, each imagewasmatchedwith five images before and after
it. The matches were searched in the interval [it−5, ..., it−1, it, it+1, ..., it+5]. Cross matches
regarding the same image but taken with a different camera were also considered: itb1 was
matched both with itms and itb3 with t ∈ [0, ..., 71].
This file was required to optimize the time and efficiency of the matching procedure: a

lot of non visible images by the camera point of view were not considered so the number of
wrong matches decreased.

Output files

The outputs of COLMAP, that were used for the multispectral reconstruction, were the
dense point cloud given in output by the dense fusion and fused depth and normal maps
(figure 5.3). Moreover the refined pose estimations resulting from the bundle adjustment
with the stereo rig constraint were considered: they are composed from quaternions to de-
scribe the rotation component and translation vectors.

5.4 Naive approach to create a multispectral point cloud

To generate a multispectral point cloud, the simplest approach was taking 4 depthmaps cor-
respondent to themultispectral images acquired at 0◦, 90◦, 180◦ and 270◦. From these infor-
mation, 4 partial multispectral point clouds were created. Using the pose estimation given
in output by COLMAP, we registered these point clouds and create a unique 3Dmodel.

This approach is very simple but it does not take in account duplicate points. They can
have different multispectral values because they are acquired by different angle with respect
to the camera. Moreover if pose estimation is not too accurate, the different point clouds are
not perfectly aligned so further registration procedures are needed. Another problem is that
not all the points are reconstructed in this way.

To have amore precise 3Dmodel, we used the spatial information coming from image and
depth maps created considering one of the two RGB cameras. Using the stereo calibration
parameters, we mapped the multispectral information from the multispectral images to the
RGB ones and then on the point clouds. This approach leads to a problem: COLMAP
perform the 3D reconstruction up to a scale factor. To perform this mapping, the scale was
needed.
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(a)Cucumber fused depthmap (b)Cucumber fused normal map

(c) Cucumber dense point cloud (d) Cucumber dense point cloud with normals

(e) Position of cameras plotted with COLMAP

Figure 5.3: Fused depthmap, normal map, dense point cloud (with andwithout normal visualization) and cameras pose

estimation given as output by COLMAP.
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Figure 5.4: Superposition of four different point cloudwith CIRmapping created from four depthmaps.

To recover it, we used the information coming from the stereo calibration and the rig con-
straint on the bundle adjustment of COLMAP. The actual baseline in mm was computed
from the translation vector (t) given by the stereo calibration taking the RGB camera as ref-
erence:

baseline = ||t|| (5.1)

Weperforma similar operationon thedata coming fromthepose estimationofCOLMAP:
we took the difference between the translation vectors for every pose of themultispectral cam-
era and the ones of the selectedRGB camera taken as reference. We compute the difference in
rotation between the two using their respective quaternions. This difference was converted
in a rotation matrix and we used equation 5.1 to compute the baselines used by COLMAP
between the two cameras in different poses. To have an unique baseline, we took the average
of all the baselines obtained with the aforementioned procedure (one per each pose). The
scale factor was then recovered:

scale_factor =
calibration_baseline
COLMAP_baseline

(5.2)

The advantage of this approach is that the created point cloud is already scaled back to the
original size of the plant. Also in this case we have duplicate points and the pose estimations
need to be accurate. The resulting point cloud looks therefore noisy, figure 5.4.
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(a)Depthmap created from the point cloud (b) Fused depthmap created by COLMAP

(c) Filtered depth resulting from the comparison between (a)

and (b)

Figure 5.5: Depthmap creation and filtering

5.5 Information mapping

The best approach to have a robust measure of the multispectral values on the point cloud
was mapping multispectral information coming from all the 72 multispectral images on the
RGB point cloud resulting from the 3D COLMAP reconstruction. Given that a 3D point
is reconstructed from more than one image, the multispectral values coming from different
images had to be fused before this mapping.

5.5.1 Tracking of points in the images

The first step to map any information on the 3D model was understanding the correspon-
dences among 3D points of the point cloud and 2D points of the images.

The tracking of the points was performed on one of the two RGB cameras (b1): the 3D
points were projected on the RGB images and the valid ones were selected. Those were then
projected into themultispectral images. In thisway someprecisionwas lost due to occlusions
between the two cameras but we had more accuracy in the identification of the valid points:
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the multispectral camera has a lower resolution with respect to the RGB ones, therefore also
the depth maps connected to the multispectral images have less resolution.

Mapping from one single view

To create a map between the COLMAP point cloud in the world reference system and an
image, the 3D points were brought in the camera reference system. The depth components
were sorted and then projected on the image reference system creating a depth map (figure
5.5a). This depth map does not account for any visibility constraint: a lot of non visible
points are displayed.

To filter out the wrong points, this depth map was compared to the one given as output
by COLMAP:

valid_depth =
|cloud_depth− fused_depth|

cloud_depth
< t (5.3)

where cloud_depth is the depth createdprojecting the depth components of the point cloud,
fused_depth is the fused depth of COLMAP and t = 0.0099999997764825821 is the
threshold used by COLMAP during the depth maps fusion procedure.

In thisway the indices of the visible 3Dpointswere found. These points are thenprojected
to the multispectral camera reference system and to the multispectral image to assign them
their correspondent multispectral values. We can see the result of the mapping of one view
containing the CIR representation of the plant in figure 5.6.

This procedure was repeated for all the 72 images of the multispectral camera and a table
containing the 3D points indices and their respective multispectral values was created.

Different types ofmultispectral information canbe gatherd for each 3Dpoint e.g. theNIR
value, the NDVI value, the CIR representation or the NDVI mapped in the RGB domain.

5.6 Fusion

For each 3D point, different values coming from different images are available. To have an
unique and more robust representation, a fusion procedure among these values is needed.

5.6.1 Fusion metrics

I considered four different metrics to fuse the information coming from the mapping proce-
dure: mean, median, robust statistic and weighted average.
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Figure 5.6: Mapping of CIRmultispectral information coming from a single image to the point cloud.

Mean is themost simple of the four but itsmain disadvantage is that it is not robust against
outliers while median is less affected by presence of outliers. In fact the breakdown point, so
the largest number of outliers that can be tolerated before the model breaks, for the average
is 0while for the median is 1

2
[31].

5.6.2 Weighted average

To compute a weighted average among the different values corresponding to the same 3D
point, we decided to consider the normals information of the point compared with the di-
rection of the camera.

We computed the camera normal taking the third rowof the rotationmatrix of the camera
and compare it to the normal direction of each point in the image that was considered:

normal_diff = normal_pt · −normal_camT (5.4)

where we did not consider the normalization factors because the norm of a normal vector
is 1.

The angle between the two normals can be computed in radiants by:

θ = arccos(normal_diff) (5.5)
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Then the conversion into degrees was performed.

We repeated this computation for all the 72 different poses and images. At the end of this
procedure we had a difference value for each 2D point corresponding to a 3D point. These
angles were normalized to be used as weight during the averaging process.

The weights are larger if the angle between the camera normal and the point normal is
small. As this angle becomes bigger, the weights are smaller and smaller.

This can help to decrease the way in which outliers affect the final value associated with
the 3D point: usually the most reliable values of the point are given when the point is facing
the camera they will have the larger impact on the total value.

However in the weighted average we consider outliers, also if in a small part.

5.6.3 Robust statistic

Outliers can highly affect the accuracy of the final fused result. To overcome this problem,
robust statistic can be used. Robust statistic aims detecting the outliers by searching for the
model fitted by the majority of data [32].

In the algorithm we considered, algorithm 5.1, we start from an initialization value, the
median, and iteratively update its value shifting it towards the majority of the data. The
process is repeated until the△s converges to a specified value or if the number of iteration
reaches amaximum fixed by the user. The convergence is however fast. In this way, assuming
that the outliers are not the most of the data, we will have a final value that is only lightly
affected by them. This because the weighting function will give a larger weight to the values
close to the median or, after the first iteration, to its update values. So given that median is
robust against outliers, we can assume that they will have smaller weights. Therefore they
will affect less the updating procedure of the value.
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Algorithm 5.1 Robust statistic
Input: s vector of values, max number of iteration
Output: robust estimation
1: s← median(s)

2: threshold← e−5

3: △s← Inf

4: σ ← 8 ▷ number of bits needed to represent the number
5: while△s > threshold or i > max number of iterations, do
6: err = s− s

7: w = 1
1+( err

σ
)2

▷weights computation

8: s_up =
∑

s·w∑
w

▷ value update
9: △s = |s− s_up|
10: s = s_up
11: i++

12: end while
13: return s ▷ robust estimation

5.7 Segmentation process

Given that in the 3D reconstruction some noise is present due tomatches on the background
and some wrong reconstruction of the background around the leaves, a segmentation tech-
nique was used to divide the plant information from the noise.

As explained in section 4.2, the plants have a peculiar spectral behaviour. Therefore we
decided to use this property to perform segmentation.

5.7.1 Thresholding segmentation

Once the data fusion procedure was performed, we have one single values corresponding to
theNIR representation per eachmetric. Wewere able to discard points belonging to the pot
or to the background just performing a simple thresholding procedure on the NIR values.

5.7.2 Neighbourhood segmentation

To preserve more points related to plant information, we also threshold the NIR values con-
sidering the average andmedianof theneighbourhoodof thepoint. This procedure required
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Figure 5.7: 4 closest neighbours (in red) of the considered point (in white).

the identification of the neighbours in the 3D domain.
An exhaustive neighbours search among somany points is computational expensive sowe

decided to simplify the problem: the points were sorted using the height component. Then
each point of the point cloud was considered and its four nearest neighbours were searched
inside a window of 1000 points centred around that point 5.7.
Then the average and the median of the NIR values belonging to the point and to its

neighbours were computed, in this way a more robust measure was obtained and used to
perform the segmentation procedure.

45



46



6
Results

In this chapter the results obtained during my internship will be presented. Firstly we
will introduce the 3D reconstruction andmultispectral mapping results. Then the temporal
information analysis will be presented

6.1 3D reconstruction

After the partial automation of the second setup (figure 3.1c and 3.1d), we started testing the
3D reconstruction procedure using COLMAP. To perform it, a plastic plant was used.

First of all the poses estimation was required otherwise false matches in the background
would affect the capability of SfM procedure of directly estimating them. With a wrong or
not accurate poses estimation, a precise reconstruction and mapping would not be possible,
as can be seen in figure 6.1.

Using the poses obtained with the ChArUco board, COLMAP already had the initializa-
tion of the poses. It tuned them using the bundle adjustment and the rig bundle adjustment
considering only the valid points, coherent with the poses.

With the introduction of the last setup, to solve the saturation and noise problem, and
the injection of the poses, a precise 3Dmodel of the fake plant could be created, figure 6.2.

To test our 3D reconstruction pipeline, we tried also to build a 3Dmodel of an aloe plant:
it is very complex to have a good reconstruction of this plant due to its structure and the
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(a)Matches between a pair of images used to perform the

reconstruction and the bundle adjustment procedure.

(b)Wrong poses estimation and reconstruction

by COLMAP

Figure 6.1: Wrong poses estimation due to fixedmatches belonging to the background.

(a)One of the images used for the reconstruction. (b) Plastic plant 3D reconstruction

(c)Correct poses estimation

Figure 6.2: Correct 3D reconstruction thanks to the injection of the poses estimation in COLMAP.
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Figure 6.3: 3Dmodel of the aloe plant that was used to test the reconstruction pipeline.

high number of occlusions given by the leaves. The result was however a quite precise recon-
struction: thanks to the acquisition procedure, also the parts of the plant, thatwere occluded
from one view, could be rebuilt using information given by another view 6.3.

At this point we had a robust pipeline to perform 3D reconstruction performing acqui-
sitions with our. The outputs of this process were one fused depth map and normal map
for each input image, a dense point cloud and the refined poses estimation with the rig con-
straint, as the ones shown in figure 5.3.

6.2 Mapping procedure

Thanks to the rig constraint, the scale of the point cloud can be recovered from the average
of the 72 baselines provided by COLMAP.

Baseline values in mm
Calibration
baseline 82.346

COLMAP
baselines 2.2029 2.2017 2.2005 2.1992 2.1968 2.1975

Table 6.1: Values of the baseline between the first RGB camera and themultispectral one coming from stereo calibration

and some of the ones provided by COLMAP for the fake plant reconstruction.
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(a) Partial point cloud created from image and

depthmap related to the first RGB camera

(b) Partial point cloud created from gray scale

image and depthmap related to the

multispectral camera

(c) Partial point cloud created from depthmap

related to the first RGB camera and image taken

with themultispectral one

Figure 6.4: Informationmapping from gray scale image of themultispectral camera to the partial point cloud created

from depth information linked to the first RGB camera.

This allowed themapping of information from themultispectral camera to a partial point
cloudbuilt using the fuseddepthmap connected to aRGBcamera. With awrong scale factor,
this informationmappingwas not effective because the values coming form themultispectral
camera weremapped into the wrong points. Once this mapping was correct, mapping other
values like wavelength informations, NDVI values or CIR colourmapwas a straightforward
process. The difference of multispectral information connected with real and fake plant can
be seen from the CIR representation obtained with the partial mapping.
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(a)CIR representation of the cucumber plant (b)CIR representation of the pepper plant

(c)CIR representation of the plastic plant

Figure 6.5: Comparison of the CIR representations of two real plants with the one of the fake plastic plant.

Superimposing four of these partial mappings, we obtained a complete point cloud of the
plants. Performing a thresholding operation on the NIR values, we discarded all the points
withNIR < 800. In figure 6.6, we can see that the information regarding the real plants are
still preserved while the one of the fake plant are completely rejected. Therefore considering
multispectral values, NIR band in particular, can help us to distinguish real plants from fake
ones.
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(a)Naive 3D reconstruction of the cucumber plant (b) Thresholding operation on the naive reconstruction of

the cucumber plant

(c)Naive 3D reconstruction of the pepper plant (d) Thresholding operation on the naive reconstruction of

the pepper plant

(e)Naive 3D reconstruction of the plastic plant (f) Thresholding operation on the naive reconstruction of

the fake plant

Figure 6.6: Naive 3Dmultispectral reconstructions with CIR information and their corresponding thresholded version.
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6.3 Acquisition over time

Our interest was to see how plants change during time, especially under water stress, both
from their structure and from a spectral point of view. This acquisition over time was per-
formed on two different real plants: the cucumber and the pepper one. Acquisitions on the
cucumber plant were performed from the 28.06.2019 to the 22.07.2019 while the ones on the
pepper plant were performed from the 22.07.2019 to the 19.08.2019, figure 6.7 and 6.8. The
acquisition of one plant ended when it was dead.

6.4 Tracking of points and fusion procedure

The mapping of the multispectral values on the dense point cloud created with COLMAP
was performed using data that were acquired during the temporal acquisitions of the real
plants.

Performing the mapping on the dense point cloud, the number of points that were con-
sidered was higher than the one of the naivemapping, table 6.2. Some of them belong to the
non useful part of the reconstruction (background, pot, turntable) but we have also to take
in consideration that in the naive approach duplicate points are present.

Number of points in the point cloud

Plant Naive approach Complete mapping
Cucumber 1545838 1819548
Pepper 1214389 1742578

Table 6.2: Number of points that were reconstructed in the 3Dmodel using the naive approach and the onewith tracking

of points from the dense point cloud.

6.4.1 Fusion metrics and multispectral information mapping

Evaluating the quality of the four fusion metrics was not easy because we did not have a
ground truth as reference. Therefore we based our analysis on the percentage of recon-
structed pointswith anhighNIRvalue and the visual result of themapping (e.g. considering
the CIR representation).
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(a)Reconstruction from acquisition performed on

28.06.2019

(b)Reconstruction from acquisition performed on

09.07.2019

(c)Reconstruction from acquisition performed on

13.07.2019

(d)Reconstruction from acquisition performed on

16.07.2019

(e)Reconstruction from acquisition performed on

19.07.2019

(f)Reconstruction from acquisition performed on

22.07.2019

Figure 6.7: Reconstruction of the cucumber plant over time.

54



(a)Reconstruction from acquisition performed on

25.07.2019

(b)Reconstruction from acquisition performed on

01.08.2019

(c)Reconstruction from acquisition performed on

05.08.2019

(d)Reconstruction from acquisition performed on

09.08.2019

(e)Reconstruction from acquisition performed on

11.08.2019

(f)Reconstruction from acquisition performed on

19.08.2019

Figure 6.8: Reconstruction of the pepper plant over time.

55



As canbe seen in figure 6.9, only the result obtainedwith the simple average ismuchworse
that the others. This because the average is highly affected by outliers while the othermetrics
are more robust against them.

(a) Fusion of the CIR values using the average (b) Fusion of the CIR values using the weighted average

(c) Fusion of the CIR values using themedian (d) Fusion of the CIR values using the robust statistic

Figure 6.9: Visual comparison of the values of the CIR representation fused using the four metrics described in section

5.6.

To see the differences among the other three metrics, the percentage of points having a
certain NIR value was considered. The plots show how the percentage of points changes
while a NIR value taken as threshold increases. In the plots the percentage of both the alive
and dead cucumber plant are shown.
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(a) Fusion of the CIR values using the average (b) Fusion of the CIR values using the weighted average

(c) Fusion of the CIR values using themedian (d) Fusion of the CIR values using the robust statistic

Figure 6.10: Comparison of the NIR information fused using the four metrics described in section 5.6.

Aswe can see from this comparison,median and robust statistic are less affectedbyoutliers
so the percentage of points with a NIR value greater than 700 is larger than the one in the
two average metrics. In fact weighted average considers outliers anyway, even if with a small
weight.

After the fusionprocedurewe alsomapped information related to vegetation indices (with
and without colour map) and wavelength information.

To visualize the other mappings, we decided to use the robust statistic fused values given
that it should be the less affected by outliers.
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6.4.2 Wavelength mapping

Differently from the Liang’s approach [28], we already had a complete point cloud onwhich
wemappedmultispectral information related to thewavelength, so for each band a complete
reconstruction was possible. However we used a multispectral camera so the comparison of
the result will be displayed only in the available common bands (600 and 800 nm).

(a) Liang’s approach (b)Reconstructions obtained using our approach by

mapping wavelength information

Figure 6.11: Comparison between the reconstruction of Liang and ours considering 600 and 800 nm bands.

The difference in the 800 nm reconstruction is quite visible: our approach allows to have
a dense point cloud without merging different partial point clouds.

6.4.3 NDVI mapping and CIR mapping

To map the NDVI, a colour map is usually used: the NDVI values close to 1 are mapped to
a red colour while low values, close to -1, to blue. This false colour map allows to highlight
the presence of healthy vegetation. In figure 6.12 we can see the NDVI and CIRmapping on
the cucumber and pepper 3Dmodels.

From the NDVI mapping, we can see clearly that the part of the point cloud associated
with the plant has very high NDVI values while the pot, background and turntable have
lower values (yellow is associated with values close to 0).
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(a)CIRmapping on cucumber plant with acquisition of

28.06.2019

(b)NDVImapping on cucumber plant with acquisition of

28.06.2019

(c)CIRmapping on cucumber plant with acquisition of

22.07.2019

(d)NDVImapping on cucumber plant with acquisition of

22.07.2019

(e)CIRmapping on pepper plant with acquisition of

25.07.2019

(f)NDVImapping on pepper plant with acquisition of

25.07.2019

Figure 6.12: CIR andNDVImapping in false colours on cucumber and pepper plants.

6.5 Segmentation result

To segment the plant from the background, we considered theNIR values for the naivemap-
ping and the fused NIR values with robust statistic for the complete mapping. We decided
to use robust statistic to preserve the highest number of points belonging to the plant.
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6.5.1 Simple thresholding

The thresholding operation on the NIR value is quite effective to separate the plant form
the other element in the setup. As can be seen from figure 6.13, just using a low NIR thresh-
old,NIR > 150, we are able to discard a lot of points belonging to the background while
preserving the ones belonging to the plant. However most of the points belonging to the
white part of the ChArUco board are not filtered out by the thresholding operation: this is
due to the fact that white regions not only reflect the visible light but also the NIR band[33].
Therefore an higher threshold is needed to discard those points.

(a) Segmented point cloud (b)Discarded points

Figure 6.13: Segmentation of the plant performedwith a threshold of 150 on the NIR robust fused value.

When using an higher threshold, NIR > 600, we start losing also points belonging to
the plant, figure 6.14.

(a) Segmented point cloud (b)Discarded points

Figure 6.14: Segmentation of the plant performedwith a threshold of 600 on the NIR robust fused value.

To have a fairer comparison between the naive reconstruction and the complete mapping,
figure 6.15, the number of points of the point clouds segmented with NIR values will be
considered. In this way we will consider mainly the points belonging to the plant, thus the
most interesting for us.
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Number of points in the point cloud

Plant Naive approach Complete mapping

Complete alive cucumber 1545838 1819548
Alive cucumber NIR > 150 1173432 1495161
Alive cucumber NIR > 500 697087 768570
Complete dead cucumber 838508 1155991
Dead cucumber NIR > 150 562674 908293
Dead cucumber NIR > 500 251065 349879

Complete alive pepper 1214389 1742578
Alive pepper NIR > 150 1040377 1458798
Alive pepper NIR > 500 598379 834429
Complete dead pepper 603719 910896
Dead pepper NIR > 150 445548 675493
Dead pepper NIR > 500 186327 260057

Table 6.3: Number of points that were reconstructed in the 3Dmodel using the naive approach and the complete one

over the time evolution of the cucumber and pepper plant considering also thresholds on the NIR band.

As we can see from table 6.3, the complete mapping approach preserves more points even
if an high NIR threshold is used. Therefore the complete mapping gives us more complete
information regarding the plant. We also have to consider the fact that in the naive approach
duplicate points belonging to the plants are not discarded with the NIR thresholding oper-
ation.

6.5.2 Neighbourhood thresholding

To try to preserve the most of the plant information, we used a thresholding operation that
considered also the neighbourhood of the point. Here we considered the average of the
neighbourhood NIR values (5 in total, the ones belonging to the 4 closest neighbours and
one of the considered point) previously fused with the robust statistic. We considered the
average because it discard less plant pointswith respect to themedian, figure 6.16with thresh-
oldNIR > 600 applied on the neighbours NIR value.
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(a) Segmented naive point cloudwith NIR > 150. Acquisition

28.06.2019

(b) Segmented complete point cloudwith NIR > 150.

Acquisition 28.06.2019

(c) Segmented naive point cloudwith NIR > 150. Acquisition

22.07.2019

(d) Segmented complete point cloudwith NIR > 150.

Acquisition 22.07.2019

Figure 6.15: Comparison of the thresholding segmentation approach on the naive and completemapping point cloud of

the alive and dead cucumber plant.
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(a) Simple thresholding, 1170854

points are discarded

(b)Discarded points using the

average of the neighbourhood.

1123456 points are discarded

(c)Discarded points using the

median of the neighbourhood.

1140921 points are discarded

Figure 6.16: Discarded points using NIR threshold of 600 on the simple robust NIR, on the average of the robust NIR of

the neighbours and on themedian of the robust NIR of the neighbours.

For low threshold of theNIR band,NIR > 150, we can say that the algorithm performs
slightly worse with respect to the simple thresholding because it discards less noise. How-
ever when we consider high threshold values, NIR > 600, the neighbourhood approach
preserves more plant points than the simple approach, see figure 6.17 and table 6.4.

Number of points in the point cloud

Thresholding Number of points
Simple threshold NIR = 150 1404696
Threshold NIR = 150 on neighbourhood 1433115
Simple threshold NIR = 600 648694
Threshold NIR = 600 on neighbourhood 696006

Table 6.4: Comparison of the segmented number of points obtained by simple thresholding and neighbourhood

thresholding approach.
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(a) Segmented point cloudwith average NIR > 150 (b)Discarded points with average NIR le 150

(c) Segmented point cloudwith average NIR > 600 (d)Discarded points with average NIR le 600

Figure 6.17: Segmentation of the plant using the average of the robust NIR values of the closest 4 neighbours of the

considered point.

6.6 Water stress multispectral results

To consider the spectral evolution of the plant under water stress, we considered a 5 × 5
window centred around a point belonging to a leaf of the plant tracked manually in the
different acquisitions. We then averaged the information coming from the considered pixels
for each channel and we computed the Vegetation indices (VIs) on them.

From the spectral plots of the two plants, figures 6.18 and 6.19, we can see a difference in
their evolution. The cucumber plant shows the expected behaviour: the NIR band reflec-
tion decreases while the red one increases. This is more evident in the period that goes from
the 16.07.19 to the death of the plant because the leaves started to become reddish. This be-
haviour is reflected also from the plotted VIs: their values start to decrease when the plant
starts to die. We can see that the value of the NDVI, figure 6.21, one of the easiest VIs to be
interpreted, changes from 0.7071 to 0.3310, so from a value connected to an healthy plant
to the value of a dead one.

Using this information we can understand that the plant is under stress and act to avoid
its death.
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The pepper plant, however, shows a different evolution from the spectral point of view:
the NIR reflection did not decrease so much as in the cucumber case and the reflection of
the red band did not increase. This behaviour can depend on the plant species: the pepper
plant did not become reddish while the plant was dying. They turned to a darker green. As
a consequence of the spectral evolution, the VIs values did not change during the evolution
of the plant status. The NDVI in this case stays inside the range [0.6801, 0.7725] that can
be considered as values related to a quite healthy plant.

In this last case, studying the evolution of a plant from the 3D point of view, e.g. the
direction of the leaves and their area, can give complementary information to understand
the health status of the plant. This can be done by e.g. clustering the leaves, so we know also
their number, and compute their direction, figure 6.23. We can then study the changes of the
canopy structure over time. The clustering procedure was applied on a filtered point cloud
using fusedNIR > 600 as a threshold. We used k-means++ to have a better initialization
and we set the number of centroid to 9.
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(a)Comparison of the spectrum between alive and dead cucumber plant

(b) Evolution of the spectrum of the cucumber plant

Figure 6.18: Evolution of the spectrum of the cucumber plant during the acquisitions over time.
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(a)Comparison of the spectrum between alive and dead pepper plant

(b) Evolution of the spectrum of the pepper plant

Figure 6.19: Evolution of the spectrum of the pepper plant during the acquisitions over time.
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(a) Simple ratio index values of the evolution of the cucumber plant

(b) Simple ratio index values of the evolution of the pepper plant

Figure 6.20: Comparison between the Simple Ratio evolution of the cucumber and the pepper plant.
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(a)NDVI index values of the evolution of the cucumber plant

(b)NDVI index values of the evolution of the pepper plant

Figure 6.21: Comparison between the NDVI evolution of the cucumber and the pepper plant.
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(a)Red EdgeNDVI index values of the evolution of the cucumber plant

(b)Red EdgeNDVI index values of the evolution of the pepper plant

Figure 6.22: Comparison between the Red Edge NDVI evolution of the cucumber and the pepper plant.
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(a)Clustering of the filtered cucumber plant (b)Cluster corresponding to a leaf

(c)Normals of the point belonging to

the leaf

(d)Direction of the leaf

Figure 6.23: Leaf direction computed by averaging the normals direction of the points belonging to the leaf. The

clustering procedure was performed using k-means++with 9 centres.

71



72



7
Conclusions and future works

During my internship I developed a robust pipeline to build a 3Dmultispectral model to be
used as basis for phenotyping. Starting from a camera rig and a turntable, an automatized
setup was built to gather information regarding plants in different time instants. In this way
the behaviour of the plant under water stress could be captured. The fusion of the multi-
spectral information allowed us to have a more robust value for each of the point of the 3D
model and exploiting them we could segment the plant information from noise and back-
ground data. In the end, from the multispectral information, we could study the changes
in the NIR band reflection due to lack of water. Vegetation indices were also computed to
have information about the status of the plant. One of the main advantage of our approach
is that it gathers information in a non destructive way: it is therefore possible to acquire in-
formation regarding the same plant multiple time. In this way a complete monitoring of a
plant during all its growth stages can be obtained.

The setup conformation conditioned the entire reconstruction procedure, especially the
way inwhichwe gave input data to COLMAP. It also introduce limitations to the generaliza-
tion of the approach: some of them are linked with the 3D reconstruction process, other are
connected to the plant. Our setup was placed in a controlled environment regarding both
the light conditions and the weather ones. Wind and changes in illumination can strongly
affect the precision during the matching procedure for the 3D reconstruction. Moreover a
strong illumination can saturate the multispectral sensor so multispectral information are
lost. The structure of the setup gives also a limit to the size of the plant if an accurate 3D
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model is the aim of the reconstruction. Lastly depth fusion and dense 3D reconstruction
required a lot of time and the use of at least one GPU.

Regarding future works, 3D information could be exploited more as complementary in-
formation to the multispectral one. Therefore a clustering procedure that is able to cluster
correctly and automatically, without having priors, the complex structure of different plants
has to be developed. Moreover, to reduce the reconstruction time and computational com-
plexity, the number of images, needed to have an accurate reconstruction, can be optimized.
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