
DIPARTIMENTO DI INGEGNERIA

DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA

INFORMATICA

Unsupervised Anomaly Detection: investigations on Isolation Forest

Supervisor
Prof. Gian Antonio Susto
Co-supervisor
Tommaso Barbariol

Candidate
Vincenzo Savarino

Academical Year 2021-2022

Data 14/04/2022

ABSTRACT (ENG)

In today’s world, the increasing amount of available information makes it possible
to analyse several factors. One of these factors is anomaly detection. In recent
years, this problem has been addressed by machine learning, which makes it possible
to recognise instances that do not conform to the expected behaviour of a system,
so-called outliers.

One of the sectors that benefits most is the industrial sector, where data is the
new wealth of industries, just think of boosting sales or predictive maintenance.

Over the years several classes of methods have been proposed, recently a new
class based on isolation has been introduced. The first method of the isolation-based
class is Isolation Forest. This method has been very successful both in industrial
applications and in academic research, which has made a large number of variants
available. The basic intuition is very simple, that is, the anomaly score reflects the
propensity of each instance to be separated, based on the average number of random
splits required to completely isolate a data instance.

In this thesis, after a preliminary survey of the state of the art and an in-depth
study of the Isolation Forest method, several variants of this method are developed,
with the aim of improving anomaly detection. These variants were developed thanks
to insights into the two main phases, the phase where the feature and its split value
are selected and the phase where the anomaly score is calculated for each instance. In
conclusion, numerical experiments are provided, using both Artificial and Real World
datasets, with the aim of comparing performance in terms of anomaly detection.

These experiments have shown that the Prob Split method appears to be the most
promising of all those developed, because it has significant gains in detection and
maintains the same computational cost as the Isolation Forest method.

i

ABSTRACT (ITA)

Nel mondo di oggi, la crescente quantità di informazioni disponibili rende possibile
analizzare diversi fattori. Uno di questo fattori è il rilevamento delle anomalie. Negli
ultimi anni questo problema viene affrontato grazie al machine learning, il quale
permette di riconoscere le istanze che non sono conformi al comportamento atteso di
un sistema, i cosiddetti outlier.

Uno dei settori che trae maggiore beneficio è quello industriale, dove i dati sono
la nuova ricchezza delle industrie, basta pensare al potenziamento delle vendite o
alla manutenzione predittiva.

Negli anni sono stati proposti diverse classi di metodi, recentemente è stata
introdotta una nuova classe basata sull’isolamento. Il primo metodo della classe
basata sull’isolamento è Isolation Forest. Questo metodo ha riscosso un grande
successo sia nelle applicazioni industriali sia nella ricerca accademica rendendo
disponibile una notevole quantità di varianti. L’intuizione di base è molto semplice,
ovvero, il punteggio di anomalia riflette la propensione di ogni istanza ad essere
separata, in base al numero medio di suddivisioni casuali necessarie per isolare
completamente un istanza di dati.

In questo lavoro di tesi, dopo un’indagine preliminare dello stato dell’arte e un
approfondimento del metodo Isolation Forest, vengono sviluppate diverse varianti di
questo metodo, con l’obiettivo di migliorare il rilevamento delle anomalie. Queste
varianti sono state sviluppate grazie a delle intuizioni sulle due fasi principali, la
fase dove si selezione la caratteristica e il relativo valore di split e la fase dove si
calcola il punteggio di anomalia per ogni istanza. In conclusione vengono forniti degli
esperimenti numerici, utilizzando sia set di dati Artificiali sia set di dati del mondo
Reale, con lo scopo di confrontare le prestazioni con il metodo standard, in termini
di rilevamento di anomalie.

Questi esperimenti hanno dimostrato che il metodo Prob Split sembra essere il
più promettente tra tutti quelli sviluppati, perché ha incrementi delle prestazioni
significativi nel rilevamento e mantiene il costo computazionale invariato.

ii

Acknowledgements

In conclusione di questo percorso, sono tante le persone che sento di dover
ringraziare.
Il primo ringraziamento va al Professor Gian Antonio Susto, per avermi dato
l’opportunità di collaborare con il suo gruppo di ricerca, per i preziosi consigli,
per l’aver creduto in me e la pazienza dimostratami durante la stesura di questa tesi,.
Ringrazio Tommaso, per il suo supporto durante tutta la stesura della tesi, per il
continuo confronto con le nostre chiamate settimanali dove discutevamo del lavoro
da svolgere e dei progressi fatti, per la voglia e la passione che mi ha trasmetto.
Un sentito ringraziamento va inoltre ai miei genitori, per tutti i sacrifici che fate e che
avete fatto, per aver reso possibile questo traguardo. Il loro costante incoraggiamento
è stato fondamentale durante tutto il percorso di studi.
Grazie a mia sorella Annamaria per essere sempre presente. Grazie per le tue chia-
mate dopo gli esami (anche se già sapevi l’esito).
Ringrazio i miei amici Stefano, Jasmina, Mattia e Giulia, con voi ho iniziato e
concluso questo percorso.
Ringrazio Monica per essermi stata vicina e sempre pronta ad aiutarmi senza esitare.
Grazie per tutto il tempo che mi hai dedicato. Grazie perché ci sei sempre stata.
Grazie a me stesso, ai miei sacrifici e alla mia tenacia che mi hanno permesso di
arrivare fin qui.

iii

Contents

1 Introduction 1
1.1 Structure . 2

2 Anomaly Detection 3
2.1 Anomaly . 3

2.1.1 Types of anomalies . 3
2.2 Anomaly Detection Methods . 5

2.2.1 Statistical-Based methods . 6
2.2.2 Distance-Based methods . 7
2.2.3 Density-Based methods . 8
2.2.4 Model-Based methods . 10

2.3 Anomaly Detection Metrics . 13
2.3.1 Receiver Operating Characteristic 15
2.3.2 Precision-Recall Curve . 15

3 Isolation Forest 17
3.1 Training Algorithm . 18
3.2 Testing Algorithm . 20
3.3 A practical example of an isolation tree 21

4 Implementations 24
4.1 Split Criterion . 24

4.1.1 Prob split . 24
4.1.2 Neighbours . 26
4.1.3 Component Gap . 28
4.1.4 Bubble Forest . 30

4.2 Anomaly Score Criterion . 32
4.2.1 Weighted Path . 33
4.2.2 Bubble Forest Weighted Path 34

5 Results 35
5.1 Datasets . 35

iv

CONTENTS v

5.1.1 Artificial . 35
5.1.2 Real . 36

5.2 Experimental setup . 37
5.3 Results of the split criterion experiments 37

5.3.1 Prob Split . 37
5.3.2 Neighbours . 40
5.3.3 Component Gap . 43
5.3.4 Bubble Forest . 49
5.3.5 Discussion on artificial datasets 52
5.3.6 Discussion on real datasets . 54

5.4 Results of the anomaly score criterion experiments 56
5.4.1 Weighted Path . 56
5.4.2 Bubble Forest Weighted Path 59
5.4.3 Discussion on artificial datasets 62
5.4.4 Discussion on real datasets . 64

5.5 Other Results . 66

6 Conclusions 68

Chapter 1

Introduction

Continuous competition in industry is driving industries towards ever shorter
product development and improved production efficiency. This is possible thanks to
the increased automation and monitoring of production machines. In the context of
Industry 4.0, data is the new wealth for industry, just think about the enhancement
of sales processes (new customer groups can be defined using predictive analysis) or
predictive maintenance (identifying a failure using predictive analysis).

However, data acquisition by companies is a critical process both in terms of
correctness (they are not always labelled correctly) and cost. Factories and industrial
equipment generate more and more data that are difficult to monitor with traditional
approaches, so more reliable anomaly detection systems are needed to manage
industrial machines.

Machine learning (ML) and more recently deep learning (DL) enjoy considerable
popularity for anomaly detection. The main advantages of these data-driven systems
are their ability to capture non-linear phenomena, adapt to many different processes,
learn incrementally and improve over time Chalapathy and Chawla (2019a), Mah-
davinejad et al. (2018), Görnitz et al. (2014). There are several application cases
of industrial machinery monitoring in the literature, such as in power generation
systems Cuccu et al. (2017), industrial oil machinery such as engine turbines and
pipelines Martí et al. (2015), vehicle and aircraft engines Malhotra et al. (2016).

Nowadays, inadequate maintenance techniques can reduce the overall production
capacity of a piece of equipment by 5 to 20%. Machinery downtime that has not been
planned due to breakdowns costs industrial manufacturing organisations around $50
billion every year.

Anomaly detection has the important task of analysing data and detecting anoma-
lous data from a dataset. This is an interesting area of data mining research as it
involves the discovery of data patterns. Anomalies are considered important because
they indicate significant but rare events and can prompt critical actions in a wide
range of application domains such as fraud and fake news detection John and Naaz

1

CHAPTER 1. INTRODUCTION 2

(2019); Liu et al. (2019), financial surveillance, health and medical risk, healthcare
Šabić et al. (2021), astronomy Lochner and Bassett (2021), and cybersecurity.

As mentioned earlier, Anomaly Detection, also known as Outlier Detection, refers
to the process of identifying anomalous behaviour that does not conform to expected
patterns, in other words, it refers to the process of detecting data instances that
deviate significantly from the majority of data instances. Outliers were found as
part of the data cleaning process. However, this conception changed in 2000 when
researchers discovered that outlier detection can help solve real-world problems. The
importance of outlier detection is due to the fact that outliers can be translated into
important operational information in various application domains. For example, an
unusual traffic pattern in a network could mean that a computer has been hacked
and data is being transmitted to unauthorised destinations, abnormal behaviour in
credit card transactions could indicate fraudulent activity, and an anomaly in an
MRI image could indicate the presence of a malignant tumour.

A well-known algorithm in the field of anomaly detection is the Isolation Forest
(IF). It belongs to the class of so-called isolation-based algorithms, which are very
simple, efficient and have a very low computational cost compared to other anomaly
detection algorithms. Some authors have indicated it as the best performing anomaly
detection method in the state-of-the-art Emmott et al. (2015).

One of the main contributions of this thesis will be to provide new variants of the
standard IF algorithm. These variants have been divided according to two criteria,
modification of the feature selection process and modification of the anomaly score
function.

1.1 Structure

In Chapter 2, I provide a broad overview of the state-of-the-art of anomaly
detection, basically discussing the most popular approaches.

Chapter 3 is a deep dive into the Isolation Forest Algorithm. In the last part,
there is a practical example of building a forest consisting only of an isolation tree
with a step-by-step graphical presentation.

In Chapter 4 I present all the modifications made to the Isolation Forest algorithm.
These changes are grouped into two groups, the first group concerns changes to the
split criterion, while the second group concerns changes to the scoring function.

In Chapter 5, numerical experiments and results are described and discussed,
conducted in order to test the modifications and compare their performance against
Isolation Forest.

Chapter 2

Anomaly Detection

This chapter has two objectives: The first will be to present the basic terms
and concepts, and the second will be to present existing studies and algorithms on
anomaly detection.

2.1 Anomaly

Several definitions have been formulated concerning the anomaly and based on
that choice the behaviour of anomaly detection algorithms changes. The widely
accepted has been formulated by Hawkins (1980): "Observation which deviates so
much from other observations as to arouse suspicion it was generated by a different
mechanism".

2.1.1 Types of anomalies

To understand the dynamics of an anomaly detection technique, it is essential to
establish the nature of the anomalies. In the literature, following one of the most
cited surveys Chandola et al. (2009) anomalies are classified into the following three
categories: point anomalies, contextual anomalies and collective anomalies.

Point anomaly

A point anomaly occurs when a single instance in a given data set differs from
the others in terms of attributes, but clusters of such anomalies can also occur. An
example is shown in Figure 2.1 where o1, o2 are point anomalies and O3 is a cluster
of point anomalies.

Context anomaly

An anomaly is contextual or conditional when a data instance behaves abnormally
in the considered context. The context is defined by the nature of the data. An

3

CHAPTER 2. ANOMALY DETECTION 4

Figure 2.1: Example of point anomalies Chandola et al. (2009)

example is shown in Figure 2.2 where the context is defined by a monthly temperature
series at a specific location, The Figure shows that the temperature at time t1 is
equal to time t2, but in relation to the context, the temperature at time t2 could be
anomalous with respect to the temperature at time t1.

Figure 2.2: Example of contextual anomaly Chandola et al. (2009)

Collective anomaly

An instance may be normal when taken individually, but when a set of similar
data instances behave anomalously with respect to the entire data set, the group of

CHAPTER 2. ANOMALY DETECTION 5

data instances is referred to as a collective anomaly, an example is shown in Figure
2.3 which shows a human electrocardiogram, where the low value persists over time
and replaces the next waveform. In the literature, anomalies are classified into two

Figure 2.3: Example of collective anomalies Chandola et al. (2009)

groups, the first group distinguishes anomalies based on their proximity from normal
instances (global or local), the second group classifies anomalies based on their data
distribution (clustered or scattered).

2.2 Anomaly Detection Methods

Several factors must be considered in anomaly detection, such as the input data,
the type of anomalies, the availability of data labels and the output of anomaly
detection.

Input refers to a collection of instances or observations that are described by a
number of features that can take discrete or continuous values.

The existence of data labels is a factor that plays an important role in anomaly
detection systems. Depending on the existence or non-existence of these labels,
supervised, unsupervised or semi-supervised anomaly detection techniques may be
used. Supervised techniques require the existence of all labels, semi-supervised
techniques require only a small number of labels, while unsupervised techniques do
not require the existence of any labels.

The output of such a system may be a label or score that provides a measure or
degree of how abnormal an observation is considered to be.

Several anomaly detection algorithms have been developed over the years and
each anomaly detection method uses one of the definitions of anomaly described
above (Section 2.1). Depending on the method chosen, a point may have a different
anomaly score due to the different behaviour of the algorithm.

The purpose of this section is to introduce some of the most popular techniques,
grouped into categories based on their principle of operation, in order to provide the

CHAPTER 2. ANOMALY DETECTION 6

basics of fundamental algorithms

2.2.1 Statistical-Based methods

Outliers can be identified by creating a statistical distribution model and identifying
as anomalies data points that occupy the ends of the distribution. An example is
shown in Figure 2.4. The normal distribution is the basis of these techniques because
it approximates many natural phenomena. The key parameters, mean and standard
deviation, for creating the normal distribution curve can be estimated from the
dataset.

Figure 2.4: Normal distribution and outliers.

It is possible to identify outliers according to their position in the standard
distribution curve, usually a threshold is specified to assess whether a point is outlier
or not, for example 3σ, and all points that are beyond this threshold are classified
as anomalous, since they deviate from normal behaviour represented by the normal
distribution Muruti et al. (2018). This method considers only one dimension at
a time (univariate statistical analysis), but there are static methods that consider
multiple dimensions (multivariate statistical analysis), for example, they calculate
the Mahalanobis distance, which was introduced by P. C. Mahalanobis in 1936
Mahalanobis (1936). This metric expresses the measure of the distance between a
point P and a distribution D, in other words, it is a multidimensional generalization,
it is intended to measure how many standard deviations of P are away from the
mean of multivariate D.

These methods are the simplest, in fact, a limitation of using this method to detect
outliers is that the distribution of the data set is not known a priori, in this case
non-parametric techniques are used, an example of this case is the histogram-based

CHAPTER 2. ANOMALY DETECTION 7

model, but even if it were known a priori, in this case parametric techniques are
used, but the actual data does not always fit the model.

2.2.2 Distance-Based methods

Distance or proximity-based approaches are based on the principle that outlier
instances are distant far from normal instances (inliers), this is because outlier
instances are different from normal instances in the dataset in at least one feature.

Considering the multidimensional Cartesian plane, outlier instances are distant
from normal instances, as shown in Figure 2.5 . Distance-based algorithms use a
fairly simple property to identify anomalous instances from normal instances, i.e.,
Calculating the average distance of the k nearest neighbours, normal instances will
have a smaller distance than the anomalous instances. The fundamental concept of

Figure 2.5: Distance-based outlier.

this method is to assign a distance-based score which reflects how far a data point is
separated from the rest of the data points.

To use these methods, the following parameters must be chosen:

• Number of neighbours, k, for which the distance is calculated;

• Number of outliers, which is a stop condition;

• A measure of distance, the most widely adopted is the Euclidean distance;

• Score;

CHAPTER 2. ANOMALY DETECTION 8

It is important to note that the number of neighbours, k, plays a key role. A k value
that is too high, with a very dense cluster with fewer points than k, is labelled an
outlier. On the other hand, if k is too small, two neighbouring outliers are labelled
as normal.

One of the best known algorithms based on this principle is the k-Nearest Neighbors
(k-NN) Dixon (2002), Cover and Hart (1967), initially developed for supervised
classification, then later adapted to unsupervised classification. It follows the principle
that a new instance is correctly classified if neighbouring instances, previously
classified in the feature space, are considered.

One of the most common improvements is to speed up the distance computation,
which is computationally expensive in high-density environments, e.g., some of them,
use an indexing structure and data partitioning to speed up the computation, such
as the use of binary search trees, KD-Tree Bentley (1975), Chaudhary et al. (2002).

2.2.3 Density-Based methods

By definition, the outliers, occur less frequently than the inliers, density-based
approaches are based on the principle that instances in low-density regions are
considered anomalies, since they are separated from most instances.

Density can be defined as the number of points in a considered unit of space and
is inversely proportional to the distance between the considered points. Since this
method relates distance and density, it can be explained by two parameters, the
distance (d) and the portion of instances (p).

Given a point X, it is considered an outlier, if at least a portion of points p is
located at distance d from point X, as shown in Figure 2.6. Given the definition of
density and the definition of outlier, we can say that point X occupies an area of low
density, so it is an outlier instance. There are several implementations, some similar
to the K-NN seen above, the best known is the Local Outlier Factor (LOF) and
its variants, Connectivity-based Outlier Factor (COF), Local Correlation Integral
(LOCI).

Each approach has a different density function that the authors design to improve
anomaly detection. These approaches are expensive to compute, especially in high-
dimensional environments.

Local Outlier Factor (LOF)

Local Outlier Factor (LOF) Breunig et al. (2000a), attempts to overcome a key
limitation of density-based methods by detecting variable density outliers. LOF
considers both the density of the point and the density of the neighbourhood of the
point, combining these two densities yields the relative density (RD) of the point
which is used to calculate the score of the point considered, which is the key idea of

CHAPTER 2. ANOMALY DETECTION 9

Figure 2.6: Density-based outlier.

this algorithm. The relative density of a data point X with k neighbours is given by
the following Equation 2.1:

RD(X)=
Density of X

Average density of all data points in the neighbourhood
(2.1)

Where the density of X is the inverse of the average distance of the k nearest
neighbours, or the inverse of the maximum distance of the k nearest neighbours. It
is important to note the importance of the parameter k, because it forms the size of
the neighbourhood. Considering the ratio between the density of the point and the
average density of the points belonging to the neighbourhood, if the density of the
point is less than the density of the neighbourhood then, we are in the presence of
an outlier.

One of the improvements made to this method is the search for neighbours.
operation is very similar to that of K-NN, for this we use a fairly efficient variant,
which uses binary search trees Munaga and Jarugumalli (2011).

Connectivity-based Outlier Factor (COF)

Connectivity-based Outlier Factor (COF) Tang et al. (2002) is a variant of LOF,
the main difference is the way the neighbourhood for an instance is constructed. In
COF, the neighbourhood of a considered instance is constructed incrementally, i.e.,
in the first iteration, the closest instance to the considered instance is added to the

CHAPTER 2. ANOMALY DETECTION 10

set of neighbours, in subsequent iterations, the instance that is added to the set of
neighbours is chosen such that its distance from the existing set of neighbours is
minimum among all remaining data instances. The distance between an instance
and a set of instances is defined as the minimum distance between the considered
instance and every apparent instance to the considered set. The set of neighbours is
populated until the parameter k is reached and once the neighbourhood construction
is finished, we proceed with the calculation of the score which is the same as that
seen earlier in the LOF.

LOcal Correlation Integral (LOCI)

Multi-Granularity Deviation Factor (MDEF) is a variation of LOF, this anomaly
detection technique has been called LOcal Correlation Integral (LOCI) Breunig et al.
(2000b) by the authors. MDEF for a given data instance is equal to the standard
deviation of the local densities of the instances present in the neighbourhood, the
inverse of the standard deviation is used as the anomaly score for the considered
instance, this is the substantial difference from LOF.

This modification allows not only finds anomalous instances but also anomalous
micro-clusters.

2.2.4 Model-Based methods

To detect anomalies, a model of the data is built and anomalies are identified as
the data points that do not fit the model well. Well-known examples are:

• Classification-based methods;

• Clustering-based methods;

• Isolation-based methods;

Classification-Based methods

Classification-based anomaly detection techniques operate in two phases (training
and testing). The first phase consists of training a classifier using labelled data, the
second phase, consists of classifying a test instance as normal or abnormal, using
the previously trained classifier. These techniques are based on the principle that
a classifier can distinguish between different classes, and this distinction can be
learned in feature space. These approaches can be grouped into two broad categories,
multi-class and one-class, this distinction is made taking into account the data labels
available in the training phase.

One-class includes training instances that have a single class label, these techniques
learn a boundary around normal instances using a one-class classification algorithm

CHAPTER 2. ANOMALY DETECTION 11

and all instances that fall outside the learned boundary is declared as anomalous.
Multi-class includes training data that contains labelled instances belonging to

more than one normal class De Stefano et al. (2000). These techniques train a
classifier so that it can distinguish between each normal class and the rest of the
classes, and a test instance is considered abnormal if it is not classified as normal by
any of the classifiers.

One-Class Support Vector Machines

An SVM Cortes (1995) is a supervised learning model that given a set of input-
output (instance,label) pairs, where input ∈ Rd and output ∈ {−1, 1}. Rd denotes
the d-dimensional feature space. For d = 2, a linear SVM aims to create a linear
boundary separating data instances of two classes, this is applicable if the data
is linearly separable in the considered space. More generally, the aim is to find
the optimal hyperplane in Rd that guarantees the best (read maximum margin)
separation between two classes of data. If the data is not linearly separable in the
considered space it can be projected into a high-dimensional feature space through
a non-linear kernel function ϕ(), once the problem is solved in the new space, the
hyperplane is projected into the space of the starting features, the linearity constraint
for the separation hyperplane is relaxed and the boundary can take a non-linear
form, this procedure is called the kernel trick Hofmann et al. (2006).

As mentioned earlier, SVM does not separate the data with respect to their
membership classes but tries to create a boundary to delimit the region where the
normal data reside. There are two main approaches, one is to project the data via
the kernel trick and separate them from the origin by the maximum margin Schölkopf
et al. (1999), or, use spherical boundaries instead of taking a planar approach Liu
et al. (2010).

Neural Networks

Neural networks (NNs) have been applied to methods of detecting anomalies in a
one-class Hawkins et al. (2002), Williams et al. (2002) or multi-class Hinton (2009)
setting. An artificial neural network is a set of connected nodes, called artificial
neurons, that resemble the neurons in a biological brain. With these functional
units underlying the neural networks, it is possible to build an enormous variety
of complex and deep models in all supervised, semi-supervised and unsupervised
configurations. The general approach for multi-class anomaly detection is to train an
NN on normal multi-class instances, subsequently, the NN determines whether a test
instance is normal or anomalous by accepting or rejecting such instances De Stefano
et al. (2000). These techniques often outperform machine learning approaches, but
with higher computational cost and have little or no explainability (black box models)

CHAPTER 2. ANOMALY DETECTION 12

Chalapathy and Chawla (2019b).

Clustering-Based Methods

Clustering-based approaches are popular approaches whose goal is to group similar
data instances into clusters by maximizing inter-cluster distances and minimizing
intra-cluster distances Pecht and Kang (2019). This approach is based on the principle
that normal data instances belong to a cluster in the data, while anomalies do not
belong to any cluster. Although clustering and anomaly detection appear to have
nothing in common, since, in anomaly detection one does not want to cluster normal
instances but to quickly find anomalies, some clustering algorithms do not force every
data instance to belong to a cluster, this is because an anomalous instance could be
assigned to a large cluster being considered as a normal instance. Some examples of
algorithms that do not force instances to belong to a cluster are DBSCAN Ester et al.
(1996), ROCK Guha (2000), FindOut Yu et al. (2002). Other clustering algorithms
force all data to belong to a cluster, they have also been used for purposes of anomaly
detection, the best known is the K-Means MacQueen et al. (1967).

The first step in the K-Means algorithm is to define a parameter k that indicates
the number of clusters you want to obtain.

The next step is to define the centroid for each cluster obtaining k centroids. The
choice of these centroids greatly affects the final result, the easiest method is to
choose them at random from the data set, but this is not a recommended choice
because we want to put the centroids as far away from each other as possible. Lloyd’s
algorithm is actually used Chen and Xia (2009) that returns the centroids.

The next step is to calculate the distance between the data and each centroid and
a partition is made considering the minimum distance.

The last step is to update the centroids by calculating an average of all the data
instances of the same cluster.

These steps are repeated iteratively until a termination condition is reached, for
example, if no data instance moves to other clusters. K-Means can only guarantee
a local optimum Steinley (2003). In the context of outlier detection, the distance
between an instance and the centroid of its cluster reflects the anomaly score.

Isolation-Based Methods

As seen earlier, model-based approaches for anomaly detection build a profile of
normal instances, then identify instances that do not conform to the normal profile
as anomalies. In other words, a model is built and all instances that do not fit the
model well are labelled as anomalies. The other model-based approaches have been
adapted to the problem, as they arise to solve other problems such as classification
or clustering.

CHAPTER 2. ANOMALY DETECTION 13

In recent years, there has been a tendency to use an isolation-based approach,
which was born precisely to solve the problem of anomaly detection. This method is
based on two properties of anomalies, the first is that anomalies outnumber inliners,
the second is that anomalies are very different from inliners in terms of features. In
other words, they are "few and different", this led to the following insight, it is easier
to separate an outlier from the data than an inliner. The first isolation method,
Isolation Forest, first described in Liu et al. (2008), is a tree method and is based
on a binary tree data structure, called isolation Tree. Actually, the isolation Forest
uses a number of trees and the set of these trees form the forest, each isolation tree
recursively subdivides the data domain in a hierarchical manner.

The Isolation Forest uses the previous intuition to define the anomaly score, i.e.,
this score reflects the average amount of random cuts required to completely isolate
a data instance. In other words, the easier it is to isolate a data point, the fewer cuts
required to achieve isolation, thus, the more isolated the instance. The instances are
evaluated from the root to the leaves of the tree and the expected number of cuts
to isolate the data point is estimated. There are several modifications made to this
algorithm, mainly we modify the splitting criterion or the anomaly score.

Further details about Isolation Forest are discussed in Chapter 3 so that the
algorithm is discussed in more detail.

PyOD

Some of the algorithms discussed in the previous sections have been implemented
and made available through a Python library, PyOD Zhao et al. (2019), which,
makes available more than 30 detection algorithms. This library is of considerable
importance both in academia and in the Machine Learning community with several
dedicated posts/tutorials, e.g., Analytics Vidhya, Towards Data Science.

2.3 Anomaly Detection Metrics

This section presents the concepts of the most widely used anomaly detection
metrics in the literature.

Evaluating the performance of a classifier is of great importance both to attest its
validity and to make comparisons with other models, the so-called competitors, in
the literature have been proposed several evaluation metrics Sokolova et al. (2006),
Powers (2020), Tharwat (2020).

As for binary classification, the classifier makes a prediction of all data instances
and divides them into two different classes, positive (P) and negative (N). This
procedure produces four types of results, two types of correct classification, true
positive (TP) and true negative (TN), and two types of incorrect classification, false

CHAPTER 2. ANOMALY DETECTION 14

positive (FP) and false negative (FN), from these four results one can construct a
2x2 matrix, as shown in the Figure 2.7, called the confusion matrix, from which all
the basic evaluation measures used in binary classification are derived.

Figure 2.7: Confusion matrix

The basic measures most commonly used in the literature to evaluate the perfor-
mance of a classifier are accuracy, recall or sensitivity, specificity Altman and Bland
(1994), precision, F1-score, these metrics are shown in Table 2.1. These metrics
behave differently in balanced and unbalanced data sets Saito and Rehmsmeier
(2015), it is important to consider the class distribution of the data so that the
appropriate measures can be chosen to evaluate performance. Other popular metrics
are the area under the Receiver Operating Characteristics (ROC) curve (AUC ROC)
Hanley and McNeil (1982) and the area under the Precision-Recall curve (AUC PRC)
He and Garcia (2009).

Measure Formula

Accuracy (ACC) (TP + TN) / (TP + TN + FN + FP)

Recall (REC)
Sensitivity (SN)
True Positive Rate (TPR)

TP / (TP + FN)

Specificity (SP) TN / (TN + FP)
1- FPR

False Positive Rate (FPR) FP / (TN + FP)

Precision (PREC),
Positive Predictive Value (PPV) TP / (TP + FP)

F1 2 * PREC * REC / (PREC + REC)
Table 2.1: Metrics table

All metrics shown in the Table 2.1, are single threshold measures, therefore, they

CHAPTER 2. ANOMALY DETECTION 15

are defined for single anomaly score thresholds, so they cannot give an overview of
the range of performance with varying thresholds. To overcome this limitation, the
ROC curve and the PRC curve were introduced.

2.3.1 Receiver Operating Characteristic

The ROC curve Fawcett (2006) is a two-dimensional graph where the y-axis
represents TPR and the x-axis represents FPR, thus the ROC curve, shows the
trade-off between specificity and sensitivity Hanley and McNeil (1982). The ROC
curve is plotted by changing the discrimination threshold on the anomaly score, thus,
each threshold value generates a point in the ROC space. In addition, the ROC
curve has several properties, such as:

• provides a single performance value called the area under the curve;

• the major diagonal [(0, 0), (1, 1)] represents the performance of a random
classifier, which is defined as the baseline;

• The AUC is 0.5 for random classifiers and 1.0 for perfect classifiers.

2.3.2 Precision-Recall Curve

The Precision-Recall curve is another popular metric for comparing classifiers, it
plots recall on the x-axis against precision on the y-axis.

It has been shown in the literature that the PR curve is more informative than
the ROC curve Saito and Rehmsmeier (2015).

The shape of the PR curve has not some of the properties of the ROC curve,
for example, the baseline of the PRC curve is no longer fixed but is determined by
the ratio of positives (P) to negatives (N) as y = P / (P + N), thus it represents a
horizontal line whose position depends on the distribution of classes.

The left-hand side of the Figure 2.8 shows the ROC curve with non-dominated
points (red circles) and convex hull (dashed red line). The right-hand side shows the
corresponding Precision-Recall curve with non-dominated points (red circles).

CHAPTER 2. ANOMALY DETECTION 16

Figure 2.8: Illustrative graphs of Receiver Operating Characteristic, Precision-Recall
curves (from left to right). Flach and Kull (2015)

Chapter 3

Isolation Forest

This chapter introduces the Isolation Forest algorithm. Part of this chapter is
adapted from "A Review of Tree-Based Approaches for Anomaly Detection" Barbariol
et al. (2022). written in collaboration with PhD students Tommaso Barbariol, Davide
Marcato and Professor Gian Antonio Susto.

In 2008, a real revolution took place in the field of anomaly detection, that is, a
new algorithm was introduced, the Isolation Forest Liu et al. (2008), which is based
on the principle of isolation, in a field dominated by algorithms based on density
and distance. Only in 2016 this algorithm was officially implemented in the Python
Scikit-learn library (since v0.18) Pedregosa et al. (2011), after this implementation,
as illustrated in Figures 3.1, the interest from the academic community literally
exploded and this resulted in a significant amount of new research papers published
in the last few years. This success is not only due to its performance but also due to
its simplicity, the authors relied on the fact that anomalies are rare and different in
features, therefore, an anomalous instance is more likely to be isolated than a normal
instance. IF is an ensemble algorithm that resembles in some respects the popular
Random Forest algorithm revised in the unsupervised anomaly detection settings, in
fact, IF uses a set of binary trees, called isolation trees, that aim to isolate a region
of space where only a data point or a predefined number is found, while in Random
Forest decision trees are used. Each Isolation Tree uses only a small portion of the
data (generally 256 subsamples), moreover, the authors have shown that it is possible
to train the model using only normal instances while still obtaining good anomaly
detection performance Liu et al. (2008).

The algorithm is divided into two phases. The first is the training phase followed
by the testing phase, which will be discussed in the next section.

17

CHAPTER 3. ISOLATION FOREST 18

Figure 3.1: Combined citations of IF original paper Liu et al. (2008) and its extended
version Liu et al. (2012) by the same authors. Source: Scopus. Retrieved on
the 30th of March 2021.

3.1 Training Algorithm

In the training phase, the forest is defined, that is, all isolation trees are constructed
by recursively partitioning the data into random partitions of the domain. In this
phase, the entire dataset is not used, but a subset of the dataset.

For the sake of clarity, the pseudo-codes for training, testing and path length are
given (Algorithm 1, 2 and 3)

Algorithm 1: IsolationForest(X, n, ψ)
Input: X - finite set of data in Rd, n – number of trees, ψ – sample size
Output: list of Isolation Trees

1 forest← empty list of size n;
2 hmax ← ⌈log2(|X|)⌉;
3 for i = 1 to n do
4 X̂ ← sample(X,ψ);
5 forest[i]← IsolationTree(X̂, 0, hmax);
6 end
7 return forest

Algorithm 1 has the task of creating the entire forest, and this algorithm needs
three input parameters:

• X: the entire dataset, each instance belongs to Rd.

• n: number of trees to be created, this parameter also defines the number of
random subsets of X

CHAPTER 3. ISOLATION FOREST 19

Algorithm 2: IsolationTree(X, h, hmax)

Input: X̂ - finite set of data in Rd, h - current depth of the tree, hmax –
depth limit

Output: Isolation Tree (root node)
1 if h ≥ hmax or |X| ≤ 1 then
2 return Leaf {
3 size← |X|;
4 };
5 else
6 q ← randomly select a dimension from {1, 2, . . . , d};
7 p← randomly select a threshold from [min X(q), max X(q)];
8 XL ← filter(X,X(q) ≤ p);
9 XR ← filter(X,X(q) > p);

10 return Node {
11 left← IsolationTree(XL, h+ 1, hmax);
12 right← IsolationTree(XR, h+ 1, hmax);
13 splitdim ← q splitthresh ← p

14 };
15 end

• ψ: sample size, i.e., defines the number of instances used to create each tree

The first step is to calculate the parameter hmax that defines the maximum height of
the tree, this is because it is not necessary to grow the tree completely, since the
interest is in identifying the anomalies that reside in the upper part of the tree and
therefore have a shorter than average path length.

The second step is to call n times the Algorithm 2, through the function Iso-
lationTree(), passing as input not the entire dataset but a subsampling of size ψ,
this parameter not only defines the size, but also controls the processing time and
memory size.

Algorithm 2 has the task of creating the isolation tree, and needs three input
parameters:

• X̂: the ψ size subset dataset;

• h: the current tree depth

• hmax: tree limit depth

The first step is to check if one of two termination conditions is satisfied:

• h > hmax

• |X| ≤ 1

If these conditions are not satisfied, a feature with a uniformly distributed probability
on all features, denoted by q, is randomly chosen at each node in the tree. The split

CHAPTER 3. ISOLATION FOREST 20

point is uniformly sampled between the minimum and maximum values of the data
along the selected feature, denoted with p.

The split criterion consists of comparing all values of q with p, this procedure
produces two partitions, left and right.

This procedure is repeated recursively on the two newly created partitions until
one of the two stop conditions is reached.

3.2 Testing Algorithm

In the second phase (Test), all instances are examined, in particular, once an
instance is taken, the isolation tree is traversed (Algorithm 3) to obtain the path
length, which reflects the anomaly score for each instance in the isolation tree
considered, using the assumption that an anomalous instance is easier to separate
than a normal instance, we obtain that the inliers live in a leaf in the deepest part of
the tree, while the outliers live in a leaf near the root, in other words, the anomaly
score associated with each instance is proportional to the average depth of the leaf
E(h(x)).

Algorithm 3: PathLength(x, T, h)
Input: x - instance in Rd, T – node of IsolationTree, l – current length (to

be initialized to 0 when first called on the root node
Output: path length of x

1 if T is a leaf node then
2 return return h + c(T.size);
3 end
4 q ← T.splitdim;
5 if x(q)<T.splitthresh then
6 return PathLength(x, T.left, l + 1);
7 else
8 return PathLength(x, T.right, l + 1);
9 end

Algorithm 3 has the task of calculating the path length of an instance in the
isolation tree, i.e. the nodes traversed to reach the leaf where the instance resides
starting from the root, needs three input parameters:

• x: generic instance contained in the subset X̂ ∈ Rd

• T: an isolation tree

• h: current height, initialised to 0 (root node)

The first step of the algorithm is to check if the node considered is a leaf, in case
of positive result, the algorithm ends by returning the length of the path plus a

CHAPTER 3. ISOLATION FOREST 21

correction factor (c(n)) that takes into account a subtree not built beyond the height
limit of the tree. Otherwise, the projection of the instance is compared with the
previously chosen split value, so as to choose the next node to be examined. The
procedure continues recursively through the nodes of the considered tree until the
termination condition is reached, i.e. the considered node is a leaf.

For example, the anomaly score for an instance, s (x, n), is calculated using
Equation 3.1

s(x, n) = 2−
E(h(x))

c(n) (3.1)

Where the parameter E(h(x)) represents the average path length, in more detail, an
instance is fixed and the Algorithm 3 is applied to all isolation trees, so that all path
lengths (from root to leaf) are obtained, finally, the average is calculated.

The parameter c(n) is a normalization factor, it estimates the average depth of
the outer nodes in case of a fully branched tree and takes into account the path
length of the failed searches in a binary search tree, more in detail it is defined as
3.2, where, the parameter H(i) is the harmonic number and can be estimated by
ln(i) + 0.5772156649 (Euler’s constant).

c(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2H(n− 1)− 2(n− 1)/n for n > 2

1 for n = 2

0 for n < 1

(3.2)

3.3 A practical example of an isolation tree

This section shows a practical example of the construction of an isolation tree
using the Algorithms 1 and 2.

The dataset used is illustrated in Figure 3.2a, has been artificially created and
consists of a central cluster of normal data instances and a few anomalies scattered
throughout the space considered, more in detail, the whole dataset consists of 1000
normal data instances and 100 anomalous data instances, each instance x ∈ Rd with
d = 2, that is, it has only two features.

Based on Algorithm 1, the entire dataset is subsampled (ψ = 256), as shown in
Figure 3.2b, then the maximum height is calculated, in this case hmax= 8 but let’s
consider hmax= 6 for simplicity, finally Algorithm 2 is invoked n times to create all
individual isolation trees, in this case n=1.

Based on Algorithm 2, at each iteration, a feature is randomly chosen, which
determines the orientation of the cut, as illustrated in Figure 3.3, which is a step-
by-step representation of the growth of a tree. This procedure is repeated until the
depth hmax is reached or the number of points in the subspace generated by the cut
is less than or equal to two. Once this phase is completed, the tree is formed and

CHAPTER 3. ISOLATION FOREST 22

(a) Artificial Dataset X
(b) Artificial Dataset Subsampled X̂

added to the forest, and then the anomaly scores are calculated using Equation 3.1,
where h(x) is calculated using Algorithm 3.

Figure 3.3: Step-by-step tree growth

Regarding the results obtained, in Figure 3.4, the Score Map is illustrated and in
Figure 3.5 the metrics obtained AUC ROC and AUC PRC are reported.

CHAPTER 3. ISOLATION FOREST 23

Figure 3.4: Score map over the whole dataset X

Figure 3.5: AUC ROC and AUC PRC metrics

Chapter 4

Implementations

In this chapter, we will present and discuss all the changes made to the Isolation
Tree algorithm, i.e. the part of the method responsible for creating each individual
tree in the forest (Algorithm 2), while the Isolation Forest algorithm (1) is not
changed.

The modifications made have been grouped into two families, according to the
modified criterion, split criterion or scoring function.

4.1 Split Criterion

In this section, we propose several changes to the process of selecting a feature
and calculating the split value.

4.1.1 Prob split

This method weighs the choice of split value, so the probability of choosing the
split value to the left or right of a randomly chosen projection (q) on a randomly
chosen feature is calculated. The general idea of this method is to choose one feature
at random from all those considered, then the distance between the projection (q)
and the two extremes (maximum and minimum projection) is calculated through the
equations 4.2 and 4.1, called left gap and right gap respectively. The choice of the
side with respect to q depends on the gap, so a random choice is made considering
the weight of the gap.

left gap =
q−min

max−min
(4.1)

right gap =
max− q

max−min
(4.2)

Once the side is chosen, the split value is calculated and two variants are implemented
to do this:

24

CHAPTER 4. IMPLEMENTATIONS 25

First variant

In this case the mean value between q and the extreme is chosen. The extreme
can be the maximum or the minimum of the projections, as mentioned above, and
this depends on the random choice of the side which is affected by the gap

Second variant

In this case, the split point is uniformly sampled between q and one of the two
extremes.

Graphical intuition

Assuming that both the feature and the random value (excluding the maximum
and minimum projections) have already been chosen as shown in Figure 4.1, the
next step is to calculate the split value based on one of the two variants as shown in
Figure 4.2.

Figure 4.1: Representation of the left and right gap

Figure 4.2: Choice of split value

CHAPTER 4. IMPLEMENTATIONS 26

General steps

1. A dimension is chosen at random, i.e. a feature is chosen at random;

2. The maximum and minimum projections for the previously selected feature
are found;

3. A random value is chosen from the projections, in other words, a random value
is chosen from the feature considered;

4. Equations 4.1 and 4.2 are used to calculate the respective gaps, which influence
the choice of side where the split value will be calculated;

5. A random choice is made to choose the weighted side on the calculated gap;

6. The split value is calculated using one of two variants

7. The split is performed, which creates two nodes in the tree;

8. The procedure from step 1 is repeated for each node created in the tree until the
depth of the tree is less than the maximum depth or the number of instances
is greater than two.

4.1.2 Neighbours

This method takes inspiration from Tokovarov and Karczmarek (2022), where the
feature to calculate the split value is chosen randomly, then the data projections are
sorted, and finally the split value is chosen according to the Cumulative Distribution
Function (CDF). Our method proposes a new criterion for selecting the split value.

The general idea is to exploit the sorting by a randomly chosen feature and not
use the CDF to choose the split value. Our method instead calculates the distance
between neighbours, called the gap, using the equation 4.3, where q is the projection
of an instance with respect to the chosen feature.

gap(i) = diff(qi+1, qi) with i ∈ [0, . . . , n− 1] where n=|X| (4.3)

Once all gaps have been calculated, the maximum gap is chosen to calculate the
split value, we have implemented two variants for this calculation:

First variant

This variant chooses as the split value the mean value between the two neighbours
with maximum gap from the randomly chosen feature.

In this case, the aim is to eliminate the part of randomness in the selection of the
split value.

CHAPTER 4. IMPLEMENTATIONS 27

Second variant

This variant, chooses as split a value uniformly sampled between the two neighbours
with the maximum gap.

Graphical intuition

Assuming that the feature has already been randomly selected and that the data
have already been sorted with respect to the chosen feature. Figure 4.3 shows the
gap between neighbours, once the maximum gap has been selected, the split value is
calculated using one of the two proposed variants as a criterion (Figure 4.4).

Figure 4.3: Representation of the gap between two neighbours

Figure 4.4: Choice of split value

CHAPTER 4. IMPLEMENTATIONS 28

General steps

1. A feature is chosen randomly;

2. The data is sorted according to the chosen feature;

3. The gap between the projections qi+1 and qi is calculated;

4. The two neighbours with maximum gaps are selected, i.e. the two projections
with the maximum distance;

5. The split value is calculated using one of the two variants described above;

6. The split is performed, which creates two nodes in the tree;

7. The procedure from step 1 is repeated for each node created in the tree until the
depth of the tree is less than the maximum depth or the number of instances
is greater than two.

4.1.3 Component Gap

This method tries to weight the choice of split value against all features or fixed
number (chosen randomly).

The general idea is that for each feature, the data are sorted and the distance
between the neighbours is calculated by choosing the maximum, called the maximum
gap, thus obtaining a list of possible candidate neighbours on which to calculate
the split value. The calculation of the split value has been implemented in several
variations.

The first and second variants are reminiscent of the Neighbours method seen above
but with the difference that the gap is calculated on all the features considered.

The third and fourth variants introduce a randomness in the selection of the split
value.

First variant

This variant, calculates the mean value between the two neighbours, of all possible
candidates, obtaining a list of mean values.

The maximum value of the list of mean values is chosen as the split value.

Second variant

This variant, calculates a uniformly sampled value between the two neighbours,
of all possible candidates, obtaining a list of random values.

The maximum value of the list of random values is chosen as the split value.

CHAPTER 4. IMPLEMENTATIONS 29

Third variant

This variant, calculates the mean value between the two neighbours in the list of
possible candidates.

To calculate the split value, a weighted random choice is made from the calculated
mean values (the higher the value, the higher the probability of being selected as the
split value).

Fourth variant

This variant, calculates a uniformly sampled value between the two neighbours of
the list of possible candidates.

Graphical intuition

Assume that all gaps have been calculated for each feature. Figure 4.5 shows the
process of selecting the maximum gaps for each feature. Applying one of the variants
described above, the split value is calculated as shown in Figure 4.6.

Figure 4.5: Choice of split value

Figure 4.6: Choice of split value

CHAPTER 4. IMPLEMENTATIONS 30

General steps

1. For each feature considered;

(a) A sorting of the data is carried out;

(b) The gap between neighbours is calculated

(c) The maximum gap is selected

2. One of the variants described above is applied to calculate the split value;

3. The split is performed, which creates two nodes in the tree;

4. The procedure from step 1 is repeated for each node created in the tree until the
depth of the tree is less than the maximum depth or the number of instances
is greater than two.

4.1.4 Bubble Forest

This method was developed by introducing a new definition of split, it is no longer
considered left or right with respect to the split but outside or inside with respect to
a geometric figure. In this case, we used three different types of norms (∥ · ∥1,∥ · ∥2
and ∥ · ∥∞) to calculate the subspace generated by the split. All the points that
reside in the generated subspace will always occupy the left-hand side of the tree,
whereas those outside will occupy the right-hand side.

The nodes created are numbered according to a global index. The global index
induces a new reading of the tree with respect to the standard method, both from
left to right and from top to bottom.

To choose the radius of the subspace to be created, we used two criteria, data-
dependent or data-independent.

Data-dependent

In this case, we want to choose the radius based on the available data.
There are two approaches to this:

• A subsampling of k samples is performed, then the norm between the centre
and the k samples is calculated and the mean (V1), minimum (V2) or maximum
(V3) value of these distances is chosen;

• The condition presented in Choudhury et al. (2021) is used, more in detail, the
radius is selected randomly and must satisfy the following condition Rmin < R <

Rmax, where Rmin and Rmax are defined in Equations 4.4 and 4.5 respectively,
i ∈ {1, . . . , N} and xj is a data point in the branch. This strategy was called
V6.

CHAPTER 4. IMPLEMENTATIONS 31

Rmin = min{min((max(xj,i)− ci), (ci −min(xj,i)))} (4.4)

Rmax = max{max((max(xj,i)− ci), (ci −min(xj,i)))} (4.5)

Data-independent

In this case we want to scale the radius by depth using one of the Equations 4.6
(V5) or 4.7 (V6).

radius =
1

1 + depth
(4.6)

radius =
1

2depth (4.7)

Graphical intuition

Assuming a centre has already been chosen and a subsample of size three has been
performed as shown in Figure 4.7. Subsequently, the distance between the centre
and the subsamples is calculated. Finally, one of the variants described above is
applied to choose the radius.

Figure 4.8 shows the subspace generated for the different types of norms.

Figure 4.7: Chosen subsamples

CHAPTER 4. IMPLEMENTATIONS 32

(a) ∥ · ∥1 (b) ∥ · ∥2

(c) ∥ · ∥∞

Figure 4.8: Subspace generated using the different norms

General steps

1. A point is chosen at random, which is called the centre;

2. The radius must be chosen to create the subspace according to one of the
criteria described above

3. A split is made by checking if the distance between the centre and all instances
considered is less than or equal to the radius, then a node is created on the
left-hand side of the tree, otherwise, on the right-hand side;

4. The procedure from step 1 is repeated for each node created in the tree until the
depth of the tree is less than the maximum depth or the number of instances
is greater than two;

4.2 Anomaly Score Criterion

In this section, two anomaly scoring functions are proposed to replace the standard
function, for which we have modified the Algorithm 3.

The proposed anomaly scoring functions do not consider only the depth of the tree
but consider additional information to calculate the anomaly score of each instance
in the dataset.

The general idea is to weigh the path from root to leaf. Adding the various path
weights and the normalisation value c(n) defined in Equation 3.2 gives the new
anomaly score.

CHAPTER 4. IMPLEMENTATIONS 33

4.2.1 Weighted Path

The general idea is to weight the path according to the result of the split. In
particular, once the split has been made, two nodes are created in the tree. Since the
split is a random process, the number of instances on the two nodes is not always
balanced. Therefore, one node may contain more instances than the other.

This is the key idea that allowed us to develop three variants to weight the path.

First variant

Weighted left-hand path =
leftsize

nodesize
(4.8)

Weighted right-hand path =
rightsize

nodesize
(4.9)

Second variant

Weighted left-hand path =
leftsize

nodesize
∗ gap (4.10)

Weighted right-hand path =
rightsize

nodesize
∗ gap (4.11)

Third variant

Weighted left-hand path =
leftsize

nodesize
∗maxGap (4.12)

Weighted right-hand path =
rightsize

nodesize
∗maxGap (4.13)

Where:

• nodesize is the number of instances belonging to the considered node

• leftsize is the number of instances that will occupy the left-hand side of the tree

• rightsize is the number of instances that will occupy the right-hand side of the
tree

• gap is the distance between the two projections where the random choice of
the split value falls.

• maxGap is the distance between the minimum value of the projections and the
maximum value of the projections.

CHAPTER 4. IMPLEMENTATIONS 34

Once the variant has been chosen, for each instance, all the weights of the path
(from root to leaf) must be added together, which must then be summed with the
normalisation value c(n) defined by Equation 3.2 to obtain the final weight which is
used as the anomaly score.

4.2.2 Bubble Forest Weighted Path

This anomaly score function can only be used in the Bubble Forest method
described in Section 4.1.4, because it has been designed based on the global index
assigned to each node.

The general idea is to weight the path on the basis of the global index of each
node. In particular, after splitting, the two nodes are created (left node and right
node), then the weight of each node is calculated, to do this, we have designed two
variants.

First variant

The weight assigned to each node is equal to the sum of the weights of the nodes
on the path, where the weight of each individual node is defined as the global index
(ordered from left to right and top to bottom), as defined in Equation 4.14

Weighted path = nodeindex (4.14)

Second variant

The weight assigned to each node is equal to the sum of the weights of the nodes
on the path, where the weight of each individual node is defined by Equations 4.15
and 4.16. in other words, the number of nodes occupying the left and right sides as
a result of the split is calculated and multiplied by the global index of the node.

Weighted left-hand path =
leftsize

nodesize
∗ nodeindex (4.15)

Weighted right-hand path =
rightsize

nodesize
∗ nodeindex (4.16)

Chapter 5

Results

In this Chapter, the results obtained from the various experiments carried out
with the methods introduced in Chapter 4 will be presented and discussed. The
discussion focuses on the comparison of the AUC PRC metric with the standard
method.

The results obtained are divided by the modification criteria (split and anomaly
score). This choice allows us to select the best method from all the variants proposed.
For the sake of clarity, for each method, we present the variants with the best results.

It is important to note that in order to obtain the most truthful results, the results
obtained are an average of 10 repetitions of the Algorithms.

For each method, is provided:

• A Table showing the values of the AUC PRC metric and their standard
deviation. From this Table a chart is created that allows a visual comparison
of the results obtained;

• A chart to evaluate the performance of the proposed methods compared to the
standard method (IF);

In addition, this chapter will also present the data sets used to carry out the
experiments.

5.1 Datasets

5.1.1 Artificial

The data sets in Table 5.1 have been created specifically for conducting the
experiments.

The data sets are represented graphically in Figure 5.1

35

CHAPTER 5. RESULTS 36

Dataset name Number of instances Number of outliers Number of inliers

Square Toroid 561 100 461
Anomalous Cluster 600 48 552
Double Clusters 1050 56 994
Central Cluster 1100 107 993
Four Clusters 2100 109 1991

Table 5.1: Description of artificial data sets

(a) Square Toroid (b) Anomalous Cluster

(c) Double Clusters (d) Central Cluster

(e) Four Clusters

Figure 5.1: Graphical representation of artificial data sets

5.1.2 Real

All data sets used for the experiments were made available to the UCI machine
learning repository Dua and Graff (2017).

Table 5.2 lists them and their properties.

CHAPTER 5. RESULTS 37

Dataset name Number of instances Number of features Number di outliers

Annthyroid 7200 6 534
Arrhythmia 452 274 66
Breastw 683 9 239
Cardio 1831 21 176
Glass 214 9 9
Ionosphere 351 33 126
Mammography 11183 6 260
Pendigits 6870 16 156
Pima 768 8 268
Satellite 6435 36 2036
Thyroid 3772 6 93
Wine 129 13 10

Table 5.2: Real Datasets

5.2 Experimental setup

For the standard method, we used the Scikit-learn implementation.
The parameters used to conduct both experiments are as follows:

• n=100, number of isolation trees in the forest;

• ψ = 256, number of samples used for each isolation tree extracted randomly
from the whole dataset;

• hmax = 8, maximum depth of each isolation tree

• The minimum number of instances per partition is two

5.3 Results of the split criterion experiments

5.3.1 Prob Split

The AUC PRC values and standard deviation for the Artificial and Real experi-
ments are shown in Tables 5.3 and 5.4 respectively.

In the experiment with Artificial data sets, the first variant of the proposed method
performs better than the second. This is because when the split value is uniformly
sampled in a large gap, it does not ensure a good cut, especially when the chosen
split value is very close to q. On the contrary, when the split value is chosen as the
mean value of the gap, a better cut is obtained, since all instances closer to q are
considered normal.

In the experiment with Real data sets, the second variant of the proposed method
performs better than the first. This is because by using real-world data sets and not

CHAPTER 5. RESULTS 38

specially created data sets, the random strategy from the results obtained ensures a
better cut.

Artificial

Dataset names Isolation Forest Prob Split

Standard V1 V2
Anomalous Cluster 0.9024 ± 0.0170 0.9123 ± 0.0080 0.9064 ± 0.0134
Central Cluster 0.9992 ± 0.0005 0.9964 ± 0.0018 0.9989 ± 0.0016
Double Clusters 0.9546 ± 0.0132 0.9700 ± 0.0078 0.9416 ± 0.0124
Four Clusters 0.9287 ± 0.0132 0.9742 ± 0.0054 0.9270 ± 0.0086
Square Toroid 0.2385 ± 0.0258 0.8930 ± 0.0275 0.2349 ± 0.0221

Table 5.3: Precision-Recall AUC

Figure 5.2: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.3: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 39

Real

Dataset names Isolation Forest Prob Split

Standard V1 V2
AnnThyroid 0.3042 ± 0.0323 0.2757 ± 0.0237 0.3227 ± 0.0195
Arrhythmia 0.4729 ± 0.0140 0.4655 ± 0.0333 0.4344 ± 0.0371
Breastw 0.9707 ± 0.0043 0.9610 ± 0.0050 0.9715 ± 0.0032
Cardio 0.5776 ± 0.0343 0.5534 ± 0.0299 0.5490 ± 0.0369
Glass 0.1033 ± 0.0106 0.0905 ± 0.0073 0.0931 ± 0.0112
Ionosphere 0.8095 ± 0.0072 0.7912 ± 0.0076 0.8021 ± 0.0085
Mammography 0.2211 ± 0.0357 0.2211 ± 0.0439 0.2286 ± 0.0476
Pendigits 0.2631 ± 0.0639 0.2579 ± 0.0269 0.2843 ± 0.0574
Pima 0.5005 ± 0.0089 0.5293 ± 0.0104 0.5024 ± 0.0135
Satellite 0.6583 ± 0.0237 0.7081 ± 0.0203 0.6651 ± 0.0221
Thyroid 0.5257 ± 0.0908 0.4788 ± 0.0670 0.5461 ± 0.0380
Wine 0.2133 ± 0.0257 0.2080 ± 0.0307 0.1877 ± 0.0472

Table 5.4: Precision-Recall AUC

Figure 5.4: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 40

Figure 5.5: Graphical view of performance against the standard method

5.3.2 Neighbours

The AUC PRC values and standard deviation for the Artificial and Real experi-
ments are shown in Tables 5.5 and 5.6 respectively.

In the experiment with artificial data sets, the two variants are almost identical,
although the second performs slightly better. This is because by exploiting the
ordering of the data and the concept of neighbours, a gap is obtained that better
separates the data.

In the experiment with real datasets, the difference between the two variants can
be seen. In this case, the first variant performs better than the second. This is
because very close cuts to the neighbours are avoided.

Artificial

Dataset names Isolation Forest Neighbors

Standard V1 V2
Anomalous Cluster 0.9024 ± 0.0170 0.9392 ± 0.0091 0.9438 ± 0.0045
Central Cluster 0.9992 ± 0.0005 0.9971 ± 0.0005 0.9969 ± 0.0008
Double Clusters 0.9546 ± 0.0132 0.9928 ± 0.0033 0.9936 ± 0.0038
Four Clusters 0.9287 ± 0.0132 0.9834 ± 0.0049 0.9850 ± 0.0045
Square Toroid 0.2385 ± 0.0258 0.7172 ± 0.0469 0.6928 ± 0.0468

Table 5.5: Precision-Recall AUC

CHAPTER 5. RESULTS 41

Figure 5.6: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.7: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 42

Real

Dataset names Isolation Forest Neighbors

Standard V1 V2
AnnThyroid 0.3042 ± 0.0323 0.2006 ± 0.0215 0.1991 ± 0.0124
Arrhythmia 0.4729 ± 0.0140 0.4547 ± 0.0233 0.4335 ± 0.0187
Breastw 0.9707 ± 0.0043 0.6671 ± 0.0277 0.6715 ± 0.0251
Cardio 0.5776 ± 0.0343 0.5983 ± 0.0278 0.6060 ± 0.0226
Glass 0.1033 ± 0.0106 0.1222 ± 0.0363 0.1149 ± 0.0364
Ionosphere 0.8095 ± 0.0072 0.8485 ± 0.0055 0.8469 ± 0.0067
Mammography 0.2211 ± 0.0357 0.1217 ± 0.0155 0.1370 ± 0.0220
Pendigits 0.2631 ± 0.0639 0.3239 ± 0.0347 0.3196 ± 0.0161
Pima 0.5005 ± 0.0089 0.4115 ± 0.0060 0.4114 ± 0.0045
Satellite 0.6583 ± 0.0237 0.7139 ± 0.0050 0.7125 ± 0.0081
Thyroid 0.5257 ± 0.0908 0.3076 ± 0.0272 0.2971 ± 0.0243
Wine 0.2133 ± 0.0257 0.2541 ± 0.0205 0.2451 ± 0.0231

Table 5.6: Precision-Recall AUC

Figure 5.8: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 43

Figure 5.9: Graphical view of performance against the standard method

5.3.3 Component Gap

The AUC PRC values and standard deviation for the Artificial and Real experi-
ments are shown in Tables 5.7 and 5.9 respectively.

Additional tests were performed in which a random number of features or half of
the available features were considered to select the split value. The results obtained,
for both the Artificial and Real datasets, from these additional tests in terms of AUC
PRC are shown in Tables 5.8 and 5.10 respectively.

In the experiment with Artificial datasets, when all features are considered, the
best version is undoubtedly the fourth (Table 5.7). This is because once all split
values have been calculated (uniformly sampled), the split value is chosen randomly
(influenced by the gap). This means that the maximum value is not always chosen.
It is important to note that when using a random or fixed number of features (Table
5.8), the results are better. This is because uninformative features are avoided.

In the experiment with Real datasets, when all features are considered, the best
version is undoubtedly the fourth (Table 5.9), as in the previous case. When using a
random or fixed number of features, the results improve considerably (Table 5.10).

CHAPTER 5. RESULTS 44

Artificial

Dataset names Isolation Forest Component Gap

Standard V1 V2 V3 V4
Anomalous Cluster 0.9024 ± 0.0170 0.7988 ± 0.0221 0.8684 ± 0.0142 0.9068 ± 0.0096 0.9160 ± 0.0077
Central Cluster 0.9992 ± 0.0005 0.9934 ± 0.0028 0.9940 ± 0.0021 0.9963 ± 0.0006 0.9960 ± 0.0004
Double Clusters 0.9546 ± 0.0132 0.9279 ± 0.0139 0.9304 ± 0.0134 0.9795 ± 0.0131 0.9847 ± 0.0084
Four Clusters 0.9287 ± 0.0132 0.9246 ± 0.0186 0.9375 ± 0.0123 0.9718 ± 0.0105 0.9805 ± 0.0076
Square Toroid 0.2385 ± 0.0258 0.4941 ± 0.0345 0.5248 ± 0.0300 0.5571 ± 0.0553 0.6142 ± 0.0440

Table 5.7: Precision-Recall AUC

Figure 5.10: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.11: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 45

Dataset names Isolation Forest Component Gap Component Gap Component Gap

Standard V4 V4 n/2 features V4 random number of features
Anomalous Cluster 0.9024 ± 0.0170 0.9160 ± 0.0077 0.9432 ± 0.0066 0.9398 ± 0.0062
Central Cluster 0.9992 ± 0.0005 0.9960 ± 0.0004 0.9967 ± 0.0005 0.9969 ± 0.0005
Double Clusters 0.9546 ± 0.0132 0.9847 ± 0.0084 0.9928 ± 0.0037 0.9939 ± 0.0045
Four Clusters 0.9287 ± 0.0132 0.9805 ± 0.0076 0.9876 ± 0.0028 0.9889 ± 0.0031
Square Toroid 0.2385 ± 0.0258 0.6142 ± 0.0440 0.7099 ± 0.0488 0.6936 ± 0.0727

Table 5.8: Precision-Recall AUC

Figure 5.12: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.13: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 46

Real

Dataset names Isolation Forest Component Gap

Standard V1 V2 V3 V4
AnnThyroid 0.3042 ± 0.0323 0.0812 ± 0.0014 0.0795 ± 0.0022 0.1207 ± 0.0058 0.1246 ± 0.0085
Arrhythmia 0.4729 ± 0.0140 0.3334 ± 0.0045 0.3394 ± 0.0072 0.4796 ± 0.0149 0.4750 ± 0.0123
Breastw 0.9707 ± 0.0043 0.7689 ± 0.0343 0.9476 ± 0.0040 0.7341 ± 0.0361 0.7032 ± 0.0485
Cardio 0.5776 ± 0.0343 0.4671 ± 0.0176 0.4495 ± 0.0229 0.5598 ± 0.0180 0.5727 ± 0.0283
Glass 0.1033 ± 0.0106 0.1460 ± 0.0000 0.1460 ± 0.0000 0.2023 ± 0.0076 0.2044 ± 0.0062
Ionosphere 0.8095 ± 0.0072 0.7360 ± 0.0056 0.8030 ± 0.0047 0.8514 ± 0.0039 0.8469 ± 0.0076
Mammography 0.2211 ± 0.0357 0.2285 ± 0.0336 0.2282 ± 0.0226 0.1756 ± 0.0146 0.1740 ± 0.0195
Pendigits 0.2631 ± 0.0639 0.0823 ± 0.0074 0.0881 ± 0.0102 0.2471 ± 0.0182 0.2606 ± 0.0268
Pima 0.5005 ± 0.0089 0.4860 ± 0.0057 0.4499 ± 0.0060 0.4647 ± 0.0055 0.4605 ± 0.0080
Satellite 0.6583 ± 0.0237 0.4873 ± 0.0078 0.4923 ± 0.0054 0.6758 ± 0.0113 0.6827 ± 0.0060
Thyroid 0.5257 ± 0.0908 0.0486 ± 0.0033 0.0474 ± 0.0068 0.1295 ± 0.0076 0.1242 ± 0.0091
Wine 0.2133 ± 0.0257 0.9587 ± 0.0000 0.9587 ± 0.0000 0.9375 ± 0.0221 0.9384 ± 0.0178

Table 5.9: Precision-Recall AUC

Figure 5.14: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 47

Figure 5.15: Graphical view of performance against the standard method

Dataset names Isolation Forest Component Gap

Standard V4 n/2 features V4 random number of features
AnnThyroid 0.3042 ± 0.0323 0.1471 ± 0.0078 0.1533 ± 0.0090
Arrhythmia 0.4729 ± 0.0140 0.4749 ± 0.0170 0.4798 ± 0.0123
Breastw 0.9707 ± 0.0043 0.6123 ± 0.0399 0.5839 ± 0.0256
Cardio 0.5776 ± 0.0343 0.5585 ± 0.0152 0.5843 ± 0.0260
Glass 0.1033 ± 0.0106 0.1714 ± 0.0031 0.1750 ± 0.0042
Ionosphere 0.8095 ± 0.0072 0.8456 ± 0.0050 0.8472 ± 0.0052
Mammography 0.2211 ± 0.0357 0.1545 ± 0.0353 0.1672 ± 0.0249
Pendigits 0.2631 ± 0.0639 0.2785 ± 0.0198 0.2620 ± 0.0185
Pima 0.5005 ± 0.0089 0.4457 ± 0.0071 0.4461 ± 0.0086
Satellite 0.6583 ± 0.0237 0.6882 ± 0.0110 0.6893 ± 0.0050
Thyroid 0.5257 ± 0.0908 0.1647 ± 0.0087 0.1776 ± 0.0127
Wine 0.2133 ± 0.0257 0.6898 ± 0.0366 0.7117 ± 0.0430

Table 5.10: Precision-Recall AUC

CHAPTER 5. RESULTS 48

Figure 5.16: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.17: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 49

5.3.4 Bubble Forest

The AUC PRC values and standard deviation for the Artificial and Real experi-
ments are shown in Tables 5.11 and 5.12 respectively.

To our great surprise, for the experiment with the Artificial dataset, the variant
that performed well was the data-independent variant (V5).

On the other hand, for the experiment with the real dataset, the variant that
performed well was the data-dependent one (V4). This happens because the features
are correlated.

Artificial

Dataset names Isolation Forest Bubble Forest L1 Bubble Forest L2 Bubble Forest LINF

Standard V4 random component V5 1
1+depth

V5 1
1+depth

Anomalous Cluster 0.9024 ± 0.0170 0.9579 ± 0.0155 0.9641 ± 0.0062 0.9376 ± 0.0053
Central Cluster 0.9992 ± 0.0005 0.9991 ± 0.0005 0.9696 ± 0.0090 0.9790 ± 0.0080
Double Clusters 0.9546 ± 0.0132 0.9737 ± 0.0077 0.9959 ± 0.0024 0.9928 ± 0.0036
Four Clusters 0.9287 ± 0.0132 0.9900 ± 0.0050 0.9987 ± 0.0008 0.9974 ± 0.0012
Square Toroid 0.2385 ± 0.0258 0.8082 ± 0.0570 0.3394 ± 0.0529 0.5907 ± 0.0549

Table 5.11: Precision-Recall AUC

Figure 5.18: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 50

Figure 5.19: Graphical view of performance against the standard method

Real

Dataset names Isolation Forest Bubble Forest L1 Bubble Forest L2 Bubble Forest LINF

Standard V1 mean V4 random component V2 max
AnnThyroid 0.3042 ± 0.0323 0.2119 ± 0.0102 0.1257 ± 0.0042 0.1331 ± 0.0051
Arrhythmia 0.4729 ± 0.0140 0.4974 ± 0.0175 0.4269 ± 0.0243 0.3515 ± 0.0088
Breastw 0.9707 ± 0.0043 0.7894 ± 0.0455 0.7497 ± 0.0770 0.9209 ± 0.0282
Cardio 0.5776 ± 0.0343 0.6253 ± 0.0462 0.6041 ± 0.0218 0.4557 ± 0.0096
Glass 0.1033 ± 0.0106 0.1629 ± 0.0258 0.1190 ± 0.0126 0.1033 ± 0.0145
Ionosphere 0.8095 ± 0.0072 0.4978 ± 0.0299 0.8831 ± 0.0298 0.6638 ± 0.0396
Mammography 0.2211 ± 0.0357 0.1634 ± 0.0175 0.1746 ± 0.0114 0.1852 ± 0.0067
Pendigits 0.2631 ± 0.0639 0.3710 ± 0.0897 0.1178 ± 0.0816 0.1589 ± 0.0406
Pima 0.5005 ± 0.0089 0.4815 ± 0.0146 0.4793 ± 0.0109 0.4863 ± 0.0058
Satellite 0.6583 ± 0.0237 0.3369 ± 0.0138 0.3904 ± 0.0174 0.5349 ± 0.0909
Thyroid 0.5257 ± 0.0908 0.3545 ± 0.0515 0.1849 ± 0.0191 0.1655 ± 0.0109
Wine 0.2133 ± 0.0257 0.8923 ± 0.0664 0.9294 ± 0.0174 0.7044 ± 0.0476

Table 5.12: Precision-Recall AUC

CHAPTER 5. RESULTS 51

Figure 5.20: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.21: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 52

5.3.5 Discussion on artificial datasets

Table 5.13 shows the AUC PRC values of the best implementations regarding the
split criterion on artificial datasets.

Dataset names Isolation Forest Bubble Forest L2 BFWP V2 Prob Split

Standard V5 Bubble Forest V4 V1
Anomalous Cluster 0.9024 ± 0.0170 0.9641 ± 0.0062 0.9572 ± 0.0067 0.9123 ± 0.0080
Central Cluster 0.9992 ± 0.0005 0.9696 ± 0.0090 0.9998 ± 0.0002 0.9964 ± 0.0018
Double Clusters 0.9546 ± 0.0132 0.9959 ± 0.0024 0.9886 ± 0.0071 0.9700 ± 0.0078
Four Clusters 0.9287 ± 0.0132 0.9987 ± 0.0008 0.9910 ± 0.0069 0.9742 ± 0.0054
Square Toroid 0.2385 ± 0.0258 0.3394 ± 0.0529 0.2135 ± 0.0302 0.8930 ± 0.0275

Table 5.13: Precision-Recall AUC

Bubble Forest

In this case, norm 2 is used and V5 is used to choose the radius, i.e., the radius is
independent of the data and is scaled by depth, as described above.

As can be seen in Table 5.13 and Graph 5.23 the AUC PRC values are always
greater than the standard method, except for the Central Cluster dataset.

Bubble Forest Weighted Path (BFWP)

In this case, the Bubble Forest V4 approach is used, where the choice of radius is
data-dependent. As for the anomaly score assigned to each instance, V2 is used.

As we can see from Table 5.13 and graph 5.23 the AUC PRC values are always
greater than the standard method except for the Square Toroid dataset. This is
the only method that manages to outperform the standard method in the Central
Cluster dataset, this is due to the definition of the new scoring function.

Prob split

In this case, V1 of the proposed method is used, where the split value is chosen as
the midpoint between a point q and the chosen extreme (influenced by the gap). As
we can see from Table 5.13 and Graph 5.23 the AUC PRC values are always greater
than the standard method except for the Central Cluster dataset. Furthermore we
can observe a significant increase in performance in the Square Toroid dataset of
about 65% compared to the standard method.

It is important to note that this method is the simplest and least expensive in
terms of computational cost among all the proposed methods.

CHAPTER 5. RESULTS 53

Figure 5.22: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.23: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 54

5.3.6 Discussion on real datasets

Table 5.14 shows the AUC PRC values of the best implementations concerning
the split criterion on real datasets.

The method Bubble Forest has a noticeable performance increase, but in a few
datasets.

The Prob split method, although it does not have any noticeable increase in
performance compared to the standard method, works on average well on datasets.

Dataset names Isolation Forest Prob Split Bubble Forest L1

Standard V2 V1
AnnThyroid 0.3042 ± 0.0323 0.3227 ± 0.0195 0.2119 ± 0.0102
Arrhythmia 0.4729 ± 0.0140 0.4344 ± 0.0371 0.4974 ± 0.0175
Breastw 0.9707 ± 0.0043 0.9715 ± 0.0032 0.7894 ± 0.0455
Cardio 0.5776 ± 0.0343 0.5490 ± 0.0369 0.6253 ± 0.0462
Glass 0.1033 ± 0.0106 0.0931 ± 0.0112 0.1629 ± 0.0258
Ionosphere 0.8095 ± 0.0072 0.8021 ± 0.0085 0.4978 ± 0.0299
Mammography 0.2211 ± 0.0357 0.2286 ± 0.0476 0.1634 ± 0.0175
Pendigits 0.2631 ± 0.0639 0.2843 ± 0.0574 0.3710 ± 0.0897
Pima 0.5005 ± 0.0089 0.5024 ± 0.0135 0.4815 ± 0.0146
Satellite 0.6583 ± 0.0237 0.6651 ± 0.0221 0.3369 ± 0.0138
Thyroid 0.5257 ± 0.0908 0.5461 ± 0.0380 0.3545 ± 0.0515
Wine 0.2133 ± 0.0257 0.1877 ± 0.0472 0.8923 ± 0.0664

Table 5.14: Precision-Recall AUC

Figure 5.24: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 55

Figure 5.25: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 56

5.4 Results of the anomaly score criterion experi-

ments

5.4.1 Weighted Path

The AUC PRC values and standard deviation for the Artificial and Real experi-
ments are shown in Tables 5.15 and 5.16 respectively.

In the experiment with Artificial datasets all variants have good but similar
performance, the one with the best performance is V2 with the Component Gap V4
method.

In the experiment with the datasets, there are performance gains, but in a few
datasets.

Artificial

Dataset names Isolation Forest Weighted Path V1 Weighted Path V2 Weighted Path V3

Standard Component Gap V4 Component Gap V4 Component Gap V4
Anomalous Cluster 0.9024 ± 0.0170 0.9180 ± 0.0079 0.9184 ± 0.0105 0.8811 ± 0.0096
Central Cluster 0.9992 ± 0.0005 0.9968 ± 0.0005 0.9970 ± 0.0007 0.9968 ± 0.0005
Double Clusters 0.9546 ± 0.0132 0.9915 ± 0.0052 0.9918 ± 0.0046 0.9935 ± 0.0050
Four Clusters 0.9287 ± 0.0132 0.9858 ± 0.0040 0.9780 ± 0.0051 0.9843 ± 0.0038
Square Toroid 0.2385 ± 0.0258 0.6978 ± 0.0447 0.7267 ± 0.0549 0.4560 ± 0.0773

Table 5.15: Precision-Recall AUC

Figure 5.26: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 57

Figure 5.27: Graphical view of performance against the standard method

Real

Dataset names Isolation Forest Weighted Path V1 Weighted Path V2 Weighted Path V3

Standard Component Gap V4
random number of features

Component Gap V4
random number of features

Component Gap V4
random number of features

AnnThyroid 0.3042 ± 0.0323 0.1472 ± 0.0054 0.1476 ± 0.0110 0.1467 ± 0.0105
Arrhythmia 0.4729 ± 0.0140 0.4722 ± 0.0120 0.4316 ± 0.0502 0.4435 ± 0.0240
Breastw 0.9707 ± 0.0043 0.5594 ± 0.0491 0.8761 ± 0.0176 0.8351 ± 0.0259
Cardio 0.5776 ± 0.0343 0.5839 ± 0.0314 0.5610 ± 0.0242 0.5720 ± 0.0286
Glass 0.1033 ± 0.0106 0.1734 ± 0.0041 0.1735 ± 0.0044 0.1806 ± 0.0048
Ionosphere 0.8095 ± 0.0072 0.8424 ± 0.0038 0.8459 ± 0.0079 0.8423 ± 0.0056
Mammography 0.2211 ± 0.0357 0.1679 ± 0.0336 0.1863 ± 0.0380 0.1195 ± 0.0319
Pendigits 0.2631 ± 0.0639 0.2808 ± 0.0323 0.2982 ± 0.0285 0.2890 ± 0.0288
Pima 0.5005 ± 0.0089 0.4476 ± 0.0051 0.4219 ± 0.0181 0.4251 ± 0.0077
Satellite 0.6583 ± 0.0237 0.6988 ± 0.0139 0.6609 ± 0.0271 0.6861 ± 0.0084
Thyroid 0.5257 ± 0.0908 0.1698 ± 0.0151 0.1822 ± 0.0069 0.1700 ± 0.0152
Wine 0.2133 ± 0.0257 0.7152 ± 0.0023 0.7594 ± 0.1033 0.7403 ± 0.0944

Table 5.16: Precision-Recall AUC

CHAPTER 5. RESULTS 58

Figure 5.28: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.29: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 59

5.4.2 Bubble Forest Weighted Path

The AUC PRC values and standard deviation for the Artificial and Real experi-
ments are shown in Tables 5.17 and 5.18 respectively.

In the experiment with Artificial datasets, there is a noticeable increase in perfor-
mance except for the Square Toroid dataset.

In the experiment with the datasets, there are performance gains, but in a few
datasets.

Artificial

Dataset names Isolation Forest BFWP V1 BFWP V2

Standard Bubble Forest V4 Bubble Forest V4
Anomalous Cluster 0.9024 ± 0.0170 0.9361 ± 0.0071 0.9572 ± 0.0067
Central Cluster 0.9992 ± 0.0005 0.9998 ± 0.0002 0.9998 ± 0.0002
Double Clusters 0.9546 ± 0.0132 0.9888 ± 0.0087 0.9886 ± 0.0071
Four Clusters 0.9287 ± 0.0132 0.9903 ± 0.0040 0.9910 ± 0.0069
Square Toroid 0.2385 ± 0.0258 0.2220 ± 0.0437 0.2135 ± 0.0302

Table 5.17: Precision-Recall AUC

Figure 5.30: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 60

Figure 5.31: Graphical view of performance against the standard method

Real

Dataset names Isolation Forest BFWP V1 BFWP V2

Standard Bubble Forest L1 V1
AnnThyroid 0.3042 ± 0.0323 0.2159 ± 0.0145 0.2135 ± 0.0119
Arrhythmia 0.4729 ± 0.0140 0.5242 ± 0.0110 0.5282 ± 0.0195
Breastw 0.9707 ± 0.0043 0.7034 ± 0.0628 0.4756 ± 0.0444
Cardio 0.5776 ± 0.0343 0.6106 ± 0.0245 0.5968 ± 0.0166
Glass 0.1033 ± 0.0106 0.1408 ± 0.0289 0.1370 ± 0.0098
Ionosphere 0.8095 ± 0.0072 0.6599 ± 0.0117 0.6203 ± 0.0241
Mammography 0.2211 ± 0.0357 0.1630 ± 0.0204 0.1540 ± 0.0247
Pendigits 0.2631 ± 0.0639 0.3291 ± 0.1006 0.3736 ± 0.0508
Pima 0.5005 ± 0.0089 0.4885 ± 0.0104 0.4803 ± 0.0136
Satellite 0.6583 ± 0.0237 0.4782 ± 0.0170 0.4747 ± 0.0202
Thyroid 0.5257 ± 0.0908 0.3596 ± 0.0499 0.3491 ± 0.0585
Wine 0.2133 ± 0.0257 0.9596 ± 0.0151 0.9026 ± 0.0327

Table 5.18: Precision-Recall AUC

CHAPTER 5. RESULTS 61

Figure 5.32: Comparison of AUC PRC Metrics with Standard Deviation

Figure 5.33: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 62

5.4.3 Discussion on artificial datasets

This new anomaly score function improves the performance of the method com-
pared to the same method with the standard anomaly score function, as can be seen
in Table 5.19.

It is important to note that this method is the only one that manages to outperform
the standard method in the Central Cluster dataset.

Dataset names Isolation Forest BFWP V2

Standard Bubble Forest V4
Anomalous Cluster 0.9024 ± 0.0170 0.9572 ± 0.0067
Central Cluster 0.9992 ± 0.0005 0.9998 ± 0.0002
Double Clusters 0.9546 ± 0.0132 0.9886 ± 0.0071
Four Clusters 0.9287 ± 0.0132 0.9910 ± 0.0069
Square Toroid 0.2385 ± 0.0258 0.2135 ± 0.0302

Table 5.19: Precision-Recall AUC

Figure 5.34: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 63

Figure 5.35: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 64

5.4.4 Discussion on real datasets

In Table 5.20, the best performance is shown against all the proposed implemen-
tations of the anomaly score criterion. There is a significant increase in performance
compared to the standard method, but only in a few datasets.

Dataset names Isolation Forest BFWP V1 WP V2

Bubble Forest L1 V1 Component Gap V4
random number of features

AnnThyroid 0.3042 ± 0.0323 0.2159 ± 0.0145 0.1476 ± 0.0110
Arrhythmia 0.4729 ± 0.0140 0.5242 ± 0.0110 0.4316 ± 0.0502
Breastw 0.9707 ± 0.0043 0.7034 ± 0.0628 0.8761 ± 0.0176
Cardio 0.5776 ± 0.0343 0.6106 ± 0.0245 0.5610 ± 0.0242
Glass 0.1033 ± 0.0106 0.1408 ± 0.0289 0.1735 ± 0.0044
Ionosphere 0.8095 ± 0.0072 0.6599 ± 0.0117 0.8459 ± 0.0079
Mammography 0.2211 ± 0.0357 0.1630 ± 0.0204 0.1863 ± 0.0380
Pendigits 0.2631 ± 0.0639 0.3291 ± 0.1006 0.2982 ± 0.0285
Pima 0.5005 ± 0.0089 0.4885 ± 0.0104 0.4219 ± 0.0181
Satellite 0.6583 ± 0.0237 0.4782 ± 0.0170 0.6609 ± 0.0271
Thyroid 0.5257 ± 0.0908 0.3596 ± 0.0499 0.1822 ± 0.0069
Wine 0.2133 ± 0.0257 0.9596 ± 0.0151 0.7594 ± 0.1033

Table 5.20: Precision-Recall AUC

Figure 5.36: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 65

Figure 5.37: Graphical view of performance against the standard method

CHAPTER 5. RESULTS 66

5.5 Other Results

In this section we show two methods that, while not achieving significant gains,
perform on average well, which prompts careful consideration of the proposed new
split function (Weighted path).

Table 5.21 shows the AUC PRC values, from which the chart 5.39 is constructed
and as we can see the WP V1 Standard IF method where only the anomaly scoring
function is replaced, in some cases, performance is improved.

Table 5.21 shows the AUC PRC values, from which the chart 5.39 is constructed,
and, as we can see, the WP V1 Standard IF method where only the anomaly scoring
function is replaced, in some cases performance is improved.

It is important to note that with the introduction of this new anomaly scoring
function, the performance of the Prob Split method improves.

Dataset names Isolation Forest WP V1

Standard Prob Split V2 Standard IF
AnnThyroid 0.3042 ± 0.0323 0.3008 ± 0.0282 0.3107 ± 0.0184
Arrhythmia 0.4729 ± 0.0140 0.4681 ± 0.0304 0.4623 ± 0.0241
Breastw 0.9707 ± 0.0043 0.9759 ± 0.0034 0.9753 ± 0.0037
Cardio 0.5776 ± 0.0343 0.5776 ± 0.0256 0.5569 ± 0.0299
Glass 0.1033 ± 0.0106 0.0903 ± 0.0043 0.0897 ± 0.0050
Ionosphere 0.8095 ± 0.0072 0.8028 ± 0.0059 0.8080 ± 0.0054
Mammography 0.2211 ± 0.0357 0.2375 ± 0.0515 0.2114 ± 0.0425
Pendigits 0.2631 ± 0.0639 0.2936 ± 0.0433 0.2708 ± 0.0545
Pima 0.5005 ± 0.0089 0.5114 ± 0.0195 0.5067 ± 0.0122
Satellite 0.6583 ± 0.0237 0.6628 ± 0.0166 0.6754 ± 0.0189
Thyroid 0.5257 ± 0.0908 0.5048 ± 0.0679 0.5185 ± 0.1037
Wine 0.2133 ± 0.0257 0.2179 ± 0.0245 0.2109 ± 0.0339

Table 5.21: Precision-Recall AUC

Figure 5.38: Comparison of AUC PRC Metrics with Standard Deviation

CHAPTER 5. RESULTS 67

Figure 5.39: Graphical view of performance against the standard method

Chapter 6

Conclusions

In this work we focused on improving anomaly detection, in particular, we tried
to improve the Isolation Forest algorithm.

The first part of the thesis consists of exposing the problem, introducing anomaly
detection, the various methods used to address this problem and the metrics most
commonly used to compare the proposed methods, choosing the AUC PRC metric.
We have seen how the Isolation Forest algorithm defines a new concept to explicitly
isolate anomalies instead of creating a profile of normal instances like the other model-
based methods. This algorithm is very advantageous in terms of computational
cost compared to other classical methods based on distance or density. Indeed, the
research community is investing time and resources on this algorithm in the hope of
further improving its performance in terms of detection.

Subsequently, we concentrated on modifying the algorithm in its two main aspects:
First in the training phase, different methods were proposed to select the feature
and split value, and then in the Evaluation phase, where two new anomaly scores
were defined that consider additional information in addition to the simple depth.

In the last part of the thesis, we tested all proposed variants both with specially
created Artificial datasets and with Real datasets in order to compare the results
obtained with the standard method. In experiments with Artificial datasets all
the proposed methods show remarkable performance. In the experiments with real
datasets the best performing method is definitely Prob Split.

In conclusion, the aim of this work was to try to overcome some limitations of the
standard method, such as central cuts. The hope is that this work will be useful to
the research community.

68

Bibliography

Altman, D. G. and Bland, J. M. (1994). Diagnostic tests. 1: Sensitivity and specificity.
BMJ: British Medical Journal, 308(6943):1552.

Barbariol, T., Chiara, F. D., Marcato, D., and Susto, G. A. (2022). A review
of tree-based approaches for anomaly detection. Control Charts and Machine
Learning for Anomaly Detection in Manufacturing, pages 149–185.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000a). Lof: Identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’00, page 93–104, New York,
NY, USA. Association for Computing Machinery.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000b). Lof: Identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’00, page 93–104, New York,
NY, USA. Association for Computing Machinery.

Chalapathy, R. and Chawla, S. (2019a). Deep learning for anomaly detection: A
survey. CoRR, abs/1901.03407.

Chalapathy, R. and Chawla, S. (2019b). Deep learning for anomaly detection: A
survey. arXiv preprint arXiv:1901.03407.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey.
ACM Comput. Surv., 41(3).

Chaudhary, A., Szalay, A. S., and Moore, A. W. (2002). Very fast outlier detection
in large multidimensional data sets. In DMKD.

Chen, Z. and Xia, S. (2009). K-means clustering algorithm with improved initial
center. In 2009 Second International Workshop on Knowledge Discovery and Data
Mining, pages 790–792.

69

BIBLIOGRAPHY 70

Choudhury, J., Ky, P., Ren, Y., and Shi, C. (2021). Hypersphere for branching
node for the family of isolation forest algorithms. In 2021 IEEE International
Conference on Smart Computing (SMARTCOMP), pages 418–423.

Cortes, C. (1995). Wsupport-vector network. Machine learning, 20:1–25.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21–27.

Cuccu, G., Danafar, S., Cudré-Mauroux, P., Gassner, M., Bernero, S., and Kryszczuk,
K. (2017). A data-driven approach to predict nox-emissions of gas turbines. In
2017 IEEE International Conference on Big Data (Big Data), pages 1283–1288.

De Stefano, C., Sansone, C., and Vento, M. (2000). To reject or not to reject: that is
the question-an answer in case of neural classifiers. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 30(1):84–94.

Dixon, P. M. (2002). Nearest neighbor methods. Encyclopedia of environmetrics,
3:1370–1383.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Emmott, A., Das, S., Dietterich, T., Fern, A., and Wong, W.-K. (2015). A meta-
analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In kdd, volume 96,
pages 226–231.

Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters,
27(8):861–874.

Flach, P. and Kull, M. (2015). Precision-recall-gain curves: Pr analysis done right.
Advances in neural information processing systems, 28.

Görnitz, N., Kloft, M., Rieck, K., and Brefeld, U. (2014). Toward supervised anomaly
detection. CoRR, abs/1401.6424.

Guha, S. (2000). Rastogi, rajeev. shim, kyuseok. CURE: An Efficient Clustering
Algorithm for Large Databases.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology, 143(1):29–36.

Hawkins, D. M. (1980). Identification of outliers, volume 11. Springer.

BIBLIOGRAPHY 71

Hawkins, S., He, H., Williams, G., and Baxter, R. (2002). Outlier detection using
replicator neural networks. In International Conference on Data Warehousing and
Knowledge Discovery, pages 170–180. Springer.

He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering, 21(9):1263–1284.

Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5):5947.

Hofmann, T., Schölkopf, B., and Smola, A. J. (2006). A review of kernel methods in
machine learning. Mac-Planck-Institute Technical Report, 156.

John, H. and Naaz, S. (2019). Credit card fraud detection using local outlier factor
and isolation forest. International Journal of Computer Sciences and Engineering,
7(4):1060–1064.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413–422. IEEE.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2012). Isolation-based anomaly detection.
ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1):1–39.

Liu, W., He, J., Han, S., Cai, F., Yang, Z., and Zhu, N. (2019). A method for the
detection of fake reviews based on temporal features of reviews and comments.
IEEE Engineering Management Review, 47(4):67–79.

Liu, X., Li, M., Sun, Y., Deng, X., et al. (2010). Support vector data description
for weed/corn image recognition. Journal of Food, Agriculture and Environment,
8(1):214–219.

Lochner, M. and Bassett, B. (2021). Astronomaly: Personalised active anomaly
detection in astronomical data. Astronomy and Computing, 36:100481.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. National
Institute of Science of India.

Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., and
Sheth, A. P. (2018). Machine learning for internet of things data analysis: a survey.
Digital Communications and Networks, 4(3):161–175.

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., and Shroff, G.
(2016). Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR,
abs/1607.00148.

BIBLIOGRAPHY 72

Martí, L., Sanchez-Pi, N., Molina, J. M., and Garcia, A. C. B. (2015). Anomaly
detection based on sensor data in petroleum industry applications. Sensors,
15(2):2774–2797.

Munaga, H. and Jarugumalli, V. (2011). Performance evaluation: Ball-treeand
kd-tree in the context of mst. In International Joint Conference on Advances in
Signal Processing and Information Technology, pages 225–228. Springer.

Muruti, G., Rahim, F. A., and bin Ibrahim, Z.-A. (2018). A survey on anomalies
detection techniques and measurement methods. In 2018 IEEE Conference on
Application, Information and Network Security (AINS), pages 81–86.

Pecht, M. G. and Kang, M. (2019). Machine learning: Anomaly detection.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine learning in python. the Journal of machine Learning research,
12:2825–2830.

Powers, D. M. (2020). Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.

Šabić, E., Keeley, D., Henderson, B., and Nannemann, S. (2021). Healthcare and
anomaly detection: using machine learning to predict anomalies in heart rate data.
AI & SOCIETY, 36(1):149–158.

Saito, T. and Rehmsmeier, M. (2015). The precision-recall plot is more informative
than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS
one, 10(3):e0118432.

Schölkopf, B., Williamson, R. C., Smola, A., Shawe-Taylor, J., and Platt, J. (1999).
Support vector method for novelty detection. Advances in neural information
processing systems, 12.

Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006). Beyond accuracy, f-score and
roc: a family of discriminant measures for performance evaluation. In Australasian
joint conference on artificial intelligence, pages 1015–1021. Springer.

Steinley, D. (2003). Local optima in k-means clustering: what you don’t know may
hurt you. Psychological methods, 8(3):294.

Tang, J., Chen, Z., Fu, A. W.-C., and Cheung, D. W. (2002). Enhancing effectiveness
of outlier detections for low density patterns. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 535–548. Springer.

BIBLIOGRAPHY 73

Tharwat, A. (2020). Classification assessment methods. Applied Computing and
Informatics.

Tokovarov, M. and Karczmarek, P. (2022). A probabilistic generalization of isolation
forest. Information Sciences, 584:433–449.

Williams, G., Baxter, R., He, H., Hawkins, S., and Gu, L. (2002). A comparative
study of rnn for outlier detection in data mining. In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings., pages 709–712. IEEE.

Yu, D., Sheikholeslami, G., and Zhang, A. (2002). Findout: Finding outliers in very
large datasets. Knowledge and information Systems, 4(4):387–412.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable
outlier detection. arXiv preprint arXiv:1901.01588.

	1 Introduction
	1.1 Structure

	2 Anomaly Detection
	2.1 Anomaly
	2.1.1 Types of anomalies

	2.2 Anomaly Detection Methods
	2.2.1 Statistical-Based methods
	2.2.2 Distance-Based methods
	2.2.3 Density-Based methods
	2.2.4 Model-Based methods

	2.3 Anomaly Detection Metrics
	2.3.1 Receiver Operating Characteristic
	2.3.2 Precision-Recall Curve

	3 Isolation Forest
	3.1 Training Algorithm
	3.2 Testing Algorithm
	3.3 A practical example of an isolation tree

	4 Implementations
	4.1 Split Criterion
	4.1.1 Prob split
	4.1.2 Neighbours
	4.1.3 Component Gap
	4.1.4 Bubble Forest

	4.2 Anomaly Score Criterion
	4.2.1 Weighted Path
	4.2.2 Bubble Forest Weighted Path

	5 Results
	5.1 Datasets
	5.1.1 Artificial
	5.1.2 Real

	5.2 Experimental setup
	5.3 Results of the split criterion experiments
	5.3.1 Prob Split
	5.3.2 Neighbours
	5.3.3 Component Gap
	5.3.4 Bubble Forest
	5.3.5 Discussion on artificial datasets
	5.3.6 Discussion on real datasets

	5.4 Results of the anomaly score criterion experiments
	5.4.1 Weighted Path
	5.4.2 Bubble Forest Weighted Path
	5.4.3 Discussion on artificial datasets
	5.4.4 Discussion on real datasets

	5.5 Other Results

	6 Conclusions

