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Chapter 1

Introduction

This thesis deals with the discriminative power of metagenomics
in the field of Inflammatory Bowel Diseases. Currently, endoscopy
represents the gold standard in the diagnosis of these conditions,
but it is necessary to identify novel molecular biomarkers in order
to use less invasive methods.

More specifically, this thesis is focused on the implementation
and the performance assessment of two algorithms of feature se-
lection, and on the classification on microbiome data.

1.1 The DNA

The Deoxyribonucleic acid (DNA) is a molecule composed of two
chains that coil around each other to form a double helix carrying
genetic instructions for the development, growth and reproduc-
tion of all organisms and many viruses. The two DNA strands are
also known as polynucleotides as they are composed of simpler
monomeric units called nucleotides, respectively: cytosine (C),
guanine (G), adenine (A) and thymine (T). Each of which is com-
posed also by a sugar, called deoxyribose, and a phosphate group.
The nucleotides are joined together to one another in a chain by
covalent bonds between the sugar of one nucleotide and the phos-
phate of the next. The nucleotides of the two chains are bound
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together according to base pairing rules (A with T and C with G)
with hydrogen bonds to make the double-stranded DNA.

Both strands of the double-stranded DNA store the same bio-
logical information; this information is replicated as and when the
two strands separate. A large part of the DNA (more than 98%
for humans) is non-coding, meaning that these sections, probably,
do not serve as patterns for protein sequences.

The two strands of DNA run in opposite directions to each
other and are thus antiparallel. It is the sequence of these four
bases along the backbone that encodes genetic information. RNA
strands are created using DNA strands as a template in a process
called transcription, where DNA bases are exchanged for their
corresponding bases except in the case of thymine (T), which RNA
substitutes for uracil (U). Under the genetic code, these RNA
strands specify the sequence of amino acids within proteins in a
process called translation.

Within eukaryotic cells, DNA is organized into long structures
called chromosomes. Before cell division, these chromosomes are
duplicated in the process of DNA replication, providing a complete
set of chromosomes for each daughter cell. Chromatin proteins,
such as histones, compact and organize DNA to better control
which parts of the DNA are transcribed.

The set of chromosomes in a cell makes up its genome; the
human genome has approximately 3 billion base pairs of DNAs
arranged into 46 chromosomes. The information carried by DNA
is held in the sequence of pieces of DNA called genes. Transmis-
sion of genetic information in genes is achieved via complementary
base pairing. For example, in transcription, when a cell uses the
information in a gene, the DNA sequence is copied into a comple-
mentary RNA. This RNA copy is then used to make a matching
protein sequence in a process called translation.

To sum up we can say that genes, through the RNA, give in-
structions and proteins carry out these instructions to do a specific
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job.
Each type of protein is a specialist that only does one job, so if

a cell needs to do something new, it must make a new protein to do
this job. Similarly, if a cell needs to do something faster or slower
than before, it makes more or less of the protein responsible of that
job. Genes tell cells what to do by telling them which proteins
to make and in what amounts. The structure of a gene consists
of many elements of which the actual protein coding sequence
is often a small part. These include DNA regions that are not
transcribed as well as untranslated regions of the RNA.

Flanking the open reading frame, genes contain regulatory se-
quence that is required for their expression. First, genes require a
promoter sequence. The promoter recognized and bound by tran-
scription factors that recruit and help RNA polymerase bind to
the region to initiate transcription. The recognition typically oc-
curs as a consensus sequence like the TATA box. A gene can have
more than one promoter, highly transcribed genes have ”strong”
promoter sequences that form strong associations with transcrip-
tion factors, thereby initiating transcription at a high rate. Other
genes have ”weak” promoters that form weak associations with
transcription factors and initiate transcription less frequently.

In all organisms, two steps are required to read the informa-
tion encoded in a gene’s DNA and produce the protein it specifies.
First, the gene’s DNA is transcribed to messenger RNA (mRNA).
Second, that mRNA is translated to protein. RNA-coding genes
must still go through the first step but are not translated into pro-
tein. The process of producing a biologically functional molecule
of either RNA or protein is called gene expression, and the result-
ing molecule is called a gene product.

The nucleotide sequence of a gene’s DNA specifies the amino
acid sequence of a protein through the genetic code. Sets of three
nucleotides, known as codons, each correspond to a specific amino
acid.
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Additionally, a ”start codon”, and three ”stop codon” indicate the
beginning and end of the protein coding region. There are 64 pos-
sible codons (four possible nucleotides at each of three positions,
hence 43 possible codons) and only 20 standard amino acids; hence
the code is redundant and multiple codons can specify the same
amino acid. The correspondence between codons and amino acids
is nearly universal among all known living organisms.

Transcription produces a single-stranded RNA molecule known
as messenger RNA; whose nucleotide sequence is complementary
to the DNA from which it was transcribed. The mRNA acts as an
intermediate between the DNA gene and its final protein product.
The gene’s DNA is used as a template to generate a complemen-
tary mRNA. The mRNA matches the sequence of the gene’s DNA
coding strand because it is synthesized as the complement of the
template strand.
Transcription is performed by an enzyme called an RNA poly-
merase, which reads the template strand in the 3′ to 5′ direction
and synthesizes the RNA from 5′ to 3′. To initiate transcription,
the polymerase first recognizes and binds a promoter region of the
gene. Thus, a major mechanism of gene regulation is the blocking
or sequestering the promoter region, either by tight binding by
repressor molecules that physically block the polymerase, or by
organizing the DNA so that the promoter region is not accessible.
In eukaryotes, transcription occurs in the nucleus, where the cell’s
DNA is stored. The RNA molecule produced by the polymerase is
known as the primary transcript and undergoes post-transcriptional
modifications before being exported to the cytoplasm for transla-
tion. One of the modifications performed is the splicing of introns
which are sequences in the transcribed region that do not encode
protein.

Translation is the process by which a mature mRNA molecule
is used as a template for synthesizing a new protein. Transla-
tion is carried out by ribosomes, large complexes of RNA and
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protein responsible for carrying out the chemical reactions to add
new amino acids to a growing polypeptide chain by the formation
of peptide bonds. The genetic code is read three nucleotides at a
time, in units called codons, via interactions with specialized RNA
molecules called transfer RNA (tRNA). Each tRNA has three un-
paired bases known as the anticodon that are complementary to
the codon it reads on the mRNA. The tRNA is also covalently at-
tached to the amino acid specified by the complementary codon.
When the tRNA binds to its complementary codon in an mRNA
strand, the ribosome attaches its amino acid cargo to the new
polypeptide chain. During and after synthesis, most new proteins
must fold to their active three-dimensional structure before they
can carry out their cellular functions.
Genes are regulated so that they are expressed only when the
product is needed, since expression draws on limited resources. A
cell regulates its gene expression depending on its external envi-
ronment, its internal environment, and its specific. Gene expres-
sion can be regulated in many ways: from transcriptional initi-
ation, to RNA processing, to post-translational modifications of
the protein and through biological pathways.
A biological pathway is a series of actions among molecules in a
cell that leads to a certain product or a change in the cell. It can
trigger the assembly of new molecules, such as a fat or protein,
turn genes on and off, or spur a cell to move.
These biological pathways control a person’s response to the world.
For example, some pathways subtly affect how the body processes
drugs, while others play a major role in how a fertilized egg devel-
ops into a baby. Other pathways maintain balance while a person
is walking, control how and when the pupil in the eye opens or
closes in response to light and affect the skin’s reaction to chang-
ing temperature.
There are many types of biological pathways. Among the most
well-known are pathways involved in metabolism, in the regula-
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tion of genes and in the transmission of signals.
Metabolic pathways make possible the chemical reactions that
occur in our bodies. An example of a metabolic pathway is the
process by which cells break down food into energy molecules that
can be stored for later use.
Gene-regulation pathways turn genes on and off.
Signal transduction pathways move a signal from a cell’s exterior
to its interior. Different cells are able to receive specific signals
through structures on their surface called receptors. After inter-
acting with these receptors, the signal travels into the cell, where
its message is transmitted by specialized proteins that trigger a
specific reaction in the cell. For example, a chemical signal from
outside the cell might direct the cell to produce a particular pro-
tein inside the cell. In turn, that protein may be a signal that
prompts the cell to move.
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1.2 Shotgun Sequencing

DNA sequencing is the process of determining the nucleotide order
of a given DNA fragment.
In shotgun sequencing, DNA is broken up randomly into numer-
ous small segments, which are sequenced using the chain termi-
nation method to obtain reads. Multiple overlapping reads for
the target DNA are obtained by performing several rounds of this
fragmentation and sequencing. Computer programs then use the
overlapping ends of different reads to assemble them into a con-
tinuous sequence. One important thing to take into account in
the sequencing process is the Sequencing Depth, this term refers
to the number of unique reads that include a given nucleotide in
the reconstructed sequence. Deeper is the sequencing higher is
the number of unique reads of each region of a sequence [1].
Nowadays shotgun techniques are still applied, but they have im-
proved a lot over the years. Indeed, the shotgun strategy currently
has new sequencing technologies: the next-generation sequencing
ones.
These technologies produce shorter reads but many hundreds of
thousands (even millions) of reads in a relatively short time. This
results in high coverage, but the assembly process is much more
computationally intensive. These technologies are vastly superior
to Sanger sequencing due to the high volume of data and the rel-
atively short time it takes to sequence a whole genome [2].
In what follows, some examples of next-generation sequencing
methods are described.

Illumina (Solexa) sequencing

The Illumina sequencing technology follows three basic steps: am-
plifying, sequencing, and analyzing. The process begins with puri-
fied DNA. The DNA gets chopped up into smaller pieces and given
adapters, indices, and other kinds of molecular modifications that
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act as reference points during amplification, sequencing, and anal-
ysis [4].
The modified DNA is loaded onto a specialized chip where am-
plification and sequencing will take place. Along the bottom of
the chip are hundreds of thousands of oligonucleotides (short, syn-
thetic pieces of DNA). They are anchored to the chip and able to
grab DNA fragments that have complementary sequences. Once
the fragments have attached, a phase called cluster generation be-
gins. This step makes about a thousand copies of each fragment
of DNA. Next, primers and modified nucleotides enter the chip.
These nucleotides have reversible 3’ blockers that force the poly-
merase to add on only one nucleotide at a time as well as fluores-
cent tags. After each round of synthesis, a camera takes a picture
of the chip.
A computer determines what base was added by the wavelength
of the fluorescent tag and records it for every spot on the chip.
After each round, non-incorporated molecules are washed away.
A chemical deblocking step is then used in the removal of the 3′

terminal blocking group and the dye in a single step. The pro-
cess continues until the full DNA molecule is sequenced. With
this technology, thousands of places throughout the genome are
sequenced at once via massive parallel sequencing.

Ion Torrent semiconductor sequencing

This method of sequencing is based on the detection of hydrogen
ions, which are released during the polymerization of DNA, as
opposed to the optical methods used in other sequencing systems
[5].
A microwell containing a template DNA strand to be sequenced
is flooded with a single type of nucleotide. If the introduced nu-
cleotide is complementary to the leading template nucleotide it is
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incorporated into the growing complementary strand.
This causes the release of a hydrogen ion that triggers a hypersen-
sitive ion sensor, which indicates that a reaction has occurred. If
homopolymer repeats are present in the template sequence, mul-
tiple nucleotides will be incorporated in a single cycle. This leads
to a corresponding number of released hydrogens and a propor-
tionally higher electronic signal.
The major benefits of ion semiconductor sequencing are rapid se-
quencing speed and low upfront and operating costs. This has
been enabled by the avoidance of modified nucleotides and opti-
cal measurements.

Even more sophisticated sequencing methods has been imple-
mented in the last years, the so called Third-generation sequencing
methods. An example of these method is:

Nanopore DNA sequencing

Nanopore sequencing is a third-generation approach used in the
sequencing of polynucleotides in the form of DNA or RNA. Using
nanopore sequencing, a single molecule of DNA or RNA can be
sequenced without the need for PCR amplification or chemical
labeling of the sample [3].
Nanopore sequencing uses electrophoresis to transport an unknown
sample through an orifice of 10−9 meters in diameter.
A nanopore system always contains an electrolytic solution when
a constant electric field is applied, an electric current can be ob-
served in the system. The magnitude of the electric current den-
sity across a nanopore surface depends on the nanopore’s dimen-
sions and the composition of DNA or RNA that is occupying the
nanopore.
Sequencing is made possible because, when close enough to nanopores,
samples cause characteristic changes in electric current density
across nanopore surfaces.
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1.3 Metagenomics

Metagenomics is the study of microbes in their natural living en-
vironment, which involves the complex microbial communities in
which they usually exist. Metagenomics examines the genomic
composition of an entire organism, including each of the microbes
that exist within it. It is an important concept for the microbes
and the host to be thought of as interdependent and observed as
a community, rather than considered to be separate entities.
In the past, these microbes were only cultivated in vitro. On the
other hand, lately, thanks to the spreading of metagenomics, the
scientific community was able to deepen its research and observe
not-known-microbes.
Therefore, this opens up a new playing field in the metagenomics
research. If we were able to deepen our understanding of the mi-
crobial communities that regularly interact with humans (such as
those that reside inside the gastrointestinal tract) we could shed
some light on the interplay between microbes and human health.
Microbes may encode metabolic pathways, which are essential for
the survival of humans while being absent in the human genome
[7].
Indeed, changes in the symbiotic microbial levels can be associ-
ated with several health conditions such as inflammatory bowel
disease (IBD), cardiovascular disease, eczema or cancer [6].
The microbes responsible for these changes are not likely to be the
type of microbes that directly cause illness or infection. Instead,
the more likely explanation is that the microbes and the human
body ordinarily work together to successfully digest food, remove
toxins from the body and prevent infection from taking over the
body. If there is a change in the function of the microbe that is
so closely involved with human health, this may translate to the
presentation of a health condition in the affected human.
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Chapter 2

The Dataset

The dataset is composed by abundance values of biological path-
ways of three kind of subjects. One of these in healthy state and
two affected by Inflammatory Bowel Diseases, namely: Ulcerative
Colitis and Crohn’s Disease [8, 9].

2.1 The Diseases

The umbrella term ”Inflammatory bowel diseases” (IBD) includes
a spectrum of chronic inflammatory disorders which recurrently
affect the gastro-intestinal tract. Ulcerative colitis (UC) and Crohn’s
disease (CD) are the two main clinically defined manifestations of
IBD, each with distinctive clinical and pathological features.

Ulcerative Colitis

Ulcerative Colitis (UC) is a long-term condition that results in
inflammation and ulcers of the colon and rectum. The primary
symptoms of active disease are abdominal pain and diarrhea mixed
with blood. Weight loss, fever, and anemia may also occur. Of-
ten, symptoms come on slowly and can range from mild to severe.
Symptoms typically occur intermittently with periods of no symp-
toms between flares. Complications may include inflammation of
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eye, joints, or liver and colon cancer. The cause is, nowadays, un-
known but some new theories involve immune system dysfunction,
genetics, changes in the normal gut bacteria and environmental
factors.

Crohn’s Disease

Crohn’s Disease is an inflammatory disease that may affect any
segment of the gastrointestinal tract from the mouth to the rec-
tum. Symptoms are very similar with the Ulcerative Colitis and
can include fever, diarrhea, abdominal pain and weight loss. Other
complications outside the gastrointestinal tract may include ane-
mia, skin rashes, arthritis, inflammation of the eye, and tiredness.
Bowel obstruction may occur as a complication of chronic inflam-
mation, and those with this disease are at greater risk of bowel
cancer.
The cause of Crohn’s disease it is believed to be due to a combi-
nation of environmental, immune, and bacterial factors in geneti-
cally susceptible individuals. It results in a chronic inflammatory
disorder, in which the body’s immune system attacks the gastroin-
testinal tract.

These two Inflammatory Bowel Diseases may appear very sim-
ilar, but they can be distinguished by two main differences:

• Location: Ulcerative Colitis affects only the large intestine
while in Crohn’s Disease, inflammation can appear anywhere
in the digestive tract, from mouth to the anus.

• Continuous Inflammation: People with Crohn’s Disease of-
ten have healthy areas in between inflamed spots. But with
Ulcerative Colitis, there are no healthy areas in between in-
flamed spots.

Currently, endoscopy constitutes the gold standard for the diag-
nosis and the monitoring of IBD. Its diagnosis is usually confirmed
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by biopsies on colonoscopy and complemented with measurement
of molecular biomarkers including fecal calprotectin, serum C-
reactive protein (CRP), and serum antibody markers including
autoantibodies and microbial and peptide antibodies. However,
their low sensitivity and high variability limit the clinical efficacy.
Thus, there is a need to identify novel molecular biomarkers that
could be assessed with less invasive methods and could benefit
IBD clinical management and treatment.

Concerning the worldwide prevalence and incidence of these
diseases, a systematic review of population-based studies from
1990 to 2016 provides some interesting data. Europe and North
America show the highest prevalence values worldwide, e.g., 505
and 286 UC subjects per 100000 in Norway and USA, respectively
and 322 and 319 CD subjects per 100000 in Germany and Canada,
respectively. We can say that IBD has become a global disease
with accelerating incidence in newly industrialized countries.

2.2 Structure

The dataset is composed by metagenomics data from two pub-
lished human studies as training datasets, and from one internal
human study as test dataset (called PMI).
The two published human studies used as training set are respec-
tively:

IBDMDB/Schirmer et al. dataset: This first training dataset
includes paired-end whole genome sequencing reads from a pub-
licly available longitudinal study conducted in North America as
a part of the second edition of the human microbiome project,
namely the integrative Human Microbiome Project [9]. It con-
tains a total of 1338 paired fastq files including raw data obtained
from fecal samples of adults and children collected at multiple
time points. Following quality checking, and after selecting one
sample per adult subject, the dataset provided for training in-
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cludes a total of 54 samples from 23 CD, 17 UC and 14 non-IBD
subjects.

He et al. dataset: The second training dataset comprises paired-
end whole genome sequencing reads from a publicly- available
cross-sectional study conducted in China. It contains a total of
123 paired fastq files including raw data obtained from fecal sam-
ples of adults. Following quality checking, the dataset provided
for training included a total of 116 samples from 63 CD and 53
non-IBD subjects [8].

Regarding the quality check mentioned before the sample selec-
tion was based on the sample metadata. One common criterion
for all samples selected for this project was the age of the sub-
jects to whom the sample belong as adult subjects (age>=18).
In addition, for the IBDMDB/Schirmer dataset, only the earliest
time-point per subject has been kept, and for the He et al. dataset
has been included only the subjects that are not marked as ”host
contamined” in the original research metadata.

PMI: The internal dataset used as test set consists of 105
paired-end whole genome sequencing of fecal samples from CD,
UC and non-IBD. No other information has been published.

Figure 2.1: Summary of Challenge’s datasets

The data matrices used for the data analysis and classification was
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the Pathway abundances matrices. These matrices, for all three
datasets, were generated using the Biobakery’s pipeline starting
from the raw reads, using default settings and reference databases,
except the 16S database that was generated using a text search
for ”16S” in the NCBI nucleotide database, selecting all sequences
which belong to ”Fungi”, ”Protists”, ”Bacteria”, ”Archaea” and
”Viruses”, with a range of length between 700 and 2000 base pairs
and storing those sequences into a fasta file.
More specifically, the HUMAnN2 component of the Biobakery
pipeline [14] computed pathway abundances for each sample by as-
sociating reads with MetaCyc reaction pathways, stratified where
possible by species. So, in the pathway abundance matrix there
are two levels of pathways:

• The highest level known as Community pathways

• The deepest level known as Species pathways

Pathway abundance files generated for each sample using the
Biobakery pipeline were joined into a single matrix with the sam-
ple identification numbers as column names and the unique path-
ways identification number as row names, as illustrated. When
pathway abundance was missing for a sample, the pathway abun-
dance value was set to 0.
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organization.png

Figure 2.2: Dataset organization

In addition to the pathway matrices, they also provide a ”PathID
description” file that contains the full pathway information asso-
ciated with each PathID as shown in the next figure.
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Figure 2.3: PathIDs matrix organization

Finally, Class labels associated with each selected sample from
subjects diagnosed with UC, CD and non-IBD are provided for
both training datasets by the Challenge organizers.

2.3 IMPROVER Challenge

This thesis is based on the International Challenge called SBV Im-
prover project funded by PMI Research and Development. This
year’s challenge is called MEDIC: Metagenomics Diagnosis for
Inflammatory Bowel Disease Challenge.
The aim of the challenge is to investigate the diagnostic poten-
tial of metagenomics data to classify patients with Inflammatory
Bowel Disease (IBD) and non-IBD subjects. Furthermore, within
the IBD category, the participants have to attempt to classify
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Ulcerative Colitis (UC) and Crohn’s Disease (CD) subjects.
In literature many studies demonstrate that IBD comprises

complex genetic disorders, with multiple contributing genes. How-
ever, not all subjects carrying mutations in those identified genes
develop IBD. Indeed, other components, such as diet and micro-
biota, seem to play a role in the etiology of the disease.
The human microbiome composed of various microorganisms col-
onize different body sites, such as the gut, mouth, genitals, skin,
and airways, and vary in compositions. The microbiome is recog-
nized to play a positive role in host supporting the maintenance
of homeostasis, by contributing in the metabolism of nutrients,
detoxification, helping immunity, preventing the propagation of
pathogenic microbes for examples. A balanced interaction of mi-
crobes with the host plays an important part in preserving health.
The dynamics and function of the microbiota can be influenced by
many host-related and environmental factors, such as age, gender,
diet, and drugs. Dysbiosis, a disruption of this balance, is associ-
ated with skin and neurological disorders as well as many diseases
such as immune-related diseases, metabolic diseases, inflamma-
tory bowel disease.

The link between pathogenesis of IBD and the intestinal micro-
biota has been established in animal models of colitis showing that
germ-free conditions prevent inflammation and in human studies,
showing that probiotics or surgical diversion of the fecal stream
help the management of IBD and improve inflammation. Evidence
also points out that microbiome dysbiosis may cause an inappro-
priate immune response that results in alteration of the intestinal
epithelium barrier integrity. An increase of epithelial permeabil-
ity allows further infiltration of microbial organisms that, in turn,
provoke further immune responses.

The characterization of the microbiome relies on 16S or shotgun
sequencing of metagenomes from fecal or intestine biopsy samples.
Recent studies investigated microbiome changes in CD and/or UC
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compared to non-IBD using metagenomics sequencing data, and
reported differences in composition and abundances between sub-
jects suffering from IBD compared with non-IBD subjects.
The pathway abundances matrix constitutes the starting point
for machine learning and identification of discriminative metage-
nomics features and model predictive of IBD status. This Chal-
lenge aims to explore this new avenue.
More in the specific what the organizers wants is to build up four
binary classifiers to discriminate between healthy states in these
ways:

• IBD vs non-IBD

• UC vs non-IBD

• CD vs non-IBD

• UC vs CD

Moreover, we also had to provide a confidence value in the interval
[0,1], with 1 being the highest confidence that the sample belongs
to ”class 1”.

To do this I can briefly sum up the pipeline in 3 different steps:

• Data Preprocessing and Visualization
In this step, I examine the nature of the data in the pathway
matrix to better understand its abundance unit of measure
and choose the better normalization technique. After this
step, I apply 3 different approaches of data visualization to
see how good the classes divide between each other.

• Feature Selection
The large number of PathID in the pathway abundance ma-
trix (around 12 thousands) made impossible to make a clas-
sifier using all of them so, in this step, I use different algo-
rithms, known in literature, to perform a feature selection on
the entire matrix to search for the most informative one.
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• Classification
Knowing the most informative features chosen by the dif-
ferent methods I trained an SVM classifier for every binary
classification required for the Challenge.

In the next chapters I’ll describe these 3 steps more in depth.
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Chapter 3

Data Preprocessing and
Visualization

3.1 From RAW data to OTU table: HumanN2
tool

A first important step, before the data analysis of the matrix, is
to understand how they moved from RAW data format to OTU
tables in order to have the knowledge of how this data are struc-
tured.
The tool used to do so is HumanN2 [16]: this tool determines
the presence, absence and abundance of metabolic pathways in a
microbial community from metagenomic sequencing data.
In the following we can see the computational pipeline imple-
mented in HumanN2, through a process of seven steps:
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Figure 3.1: PathIDs matrix organization

1. Short reads are sequenced from a community sample, quality
and length filtered, and screened for residual host (human)
DNA. This process is carried out by the organizers of the
Challenge, externally to HumanN2.

2. Reads are searched against a characterized protein sequence
database. HumanN2 can operate using results from several
standard or accelerated BLAST implementation and from
different orthologous protein family catalogs; the organizers
employed MetaCyc and KEGG Orthology.
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3. For each metagenomic sample, HumanN2 recovers the abun-
dance of individual orthologous gene families by counting its
reads' BLAST hits in a weighted manner, normalized by each
gene family’s average sequence length.

4. Genes are assigned to pathways using MinPath, a maximum
parsimony approach to explaining observed genes with avail-
able pathways [17].

5. Pathways unlikely to be present based on the BLAST hits'
approximate organismal profile are removed in a taxonomic
limitation step, which also allows normalization for genes'
average copy number.

6. A biological smoothing or gap filling step is performed, pre-
venting small numbers of apparently absent genes in an oth-
erwise abundant pathway from diminishing its presence due
to noise.

7. Finally, HumanN2 assigns each pathway a coverage (pres-
ence/absence) score in each sample based on the detection of
all its constituent genes, as well as an abundance score indi-
cating its relative abundance in the sample’s metagenome.

3.2 Gene and Pathway abundance concepts and
calculus

Before choosing the normalizing method to apply to the data ma-
trix we need to understand more in depth how HumanN2 calculate
genes, and consequently, pathways abundance [15]. To do so, we
will focus on the last 5 steps:
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Orthologous gene family Abundances

Figure 3.2: gene abundance

In this step HumanN summarizes the BLAST results, as the num-
ber of reads that matched each protein family, weighted by the
quality of the matches. To do so, they used KEGG Orthology
gene families (KOs), a catalog of organisms-independent identi-
fiers corresponding to groups of gene sequences carrying out com-
parable biochemical functions. KO i consists of a set of one or
more specific gene sequences Gi = {gi,1, gi,2, ...} from individual
organisms annotated in KEGG.
Orthologous family abundance wi were calculated independently
within each metagenome for KO i and read j as:

wi = |Gi|
∑
g∈Gi

1

|g|
∑
j

1− pg,j∑
g′1− pg′ ,j(3.1)

Where |g| is the nucleotide length of gene sequence g in KO i.
|Gi| is the number of such sequences, and pij is the p-value of
the BLAST hit of read j to sequence g. That is, the relative
abundance of KO i in a metagenome is the number of reads j
that map to a gene sequence in the family, weighted by the inverse
p-value of each mapping and normalized by the average length of
all gene sequences in the orthologous family.
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Assign gene families to pathways

Figure 3.3: Pathways assigning

In this step KOs are consolidated into one or more pathways using
MinPath. MinPath defines each pathway as an unstructured gene
set and selects the fewest pathways that can explain the genes
observed within each community.
More specifically, HumanN associates each KO family i with a vec-
tor of relative abundances w = [wi1, wi2, ...] in each metagenome.
KOs were then assigned to zero or more pathways using MinPath
v1.2. KOs assigned to two or more pathways are effectively du-
plicated and their abundance included in each; this results in two
independent vectors of abundance tuples of the form (KO, path-
way ID) for each metagenome.
wp = [wj1,p1, wi1,p2, wi2,p1, wi2,p2, ...], where wi,p = wj for all path-
ways p.
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Filtering Pathways by taxonomic limitation

Figure 3.4: Pathway filtering step

HumanN2 employs an additional pathway filter step to be useful
in removing false positive pathways selected by MinPath.
Specifically, by retaining a very approximate organismal abun-
dance profile of gene families hit during the initial BLAST pro-
cess, HumanN is able to remove pathways in gross disagreement
with observed taxa in an unsupervised manner.
Specifically, taxonomic limitation is performed by removing only
(KO, ID) tuples for which the same KO was assigned to multiple
pathways. For each sample, approximate abundances for each or-
ganism o in KEGG were calculated as a sum over all weighted,
normalized BLAST hits to sequences from that organism:

wo = |Go|
∑
g∈Go

1

|g|
∑
j

1− pg,j∑
g′1− pg′ ,j(3.2)

Each pathway was then assigned an approximate expected relative
abundance by summing wo values over all organisms' genomes in
which it was annotated.
Finally, any (KO, ID) pair with two or more IDs and correspond-
ing to a pathway with observed relative abundance below the av-
erage expected abundance for that ID was removed. That is, for
δo,p = 1 if pathway p was annotated to organism o in KEGG and
0 otherwise.
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Smoothing by gap filling

Figure 3.5: Gap filling step

Taxonomic limitation was used by HumanN to reduce false pos-
itive pathways, they found a small degree of replacement or gap
filling of certain missing genes to likewise reduce false negatives.
A small number of low abundance genes within otherwise abun-
dant pathways often occurred due to noise or poor BLAST hits.
Biological gap filling was added to increase the effective contribu-
tion of unobserved members of otherwise abundant pathways.
Within each retained pathway ID, KOs with relative abundance
1.5 inter-quartile ranges below the pathway median were boosted
to an effective abundance equal to median. That is, for all path-
ways p such that there existed some wi,p > 0, let w̃i,p be the lower
inner fence of wi,p over all i ∈ p, and each wi,p for i ∈ p was set
to max(wi,p, w̃i,p).
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Smoothing by gap filling

Figure 3.6: Coverage and abundance step

The final outputs for each sample were thus coverage (presence/ab-
sence) and abundance values for KEGG pathways.
Coverage is calculated to indicate the likelihood that all genes
needed to operate the pathway are present; Abundance is calcu-
lated as the average copy number of the pathway’s operational
subset.
Given the vector wp, coverage for each pathway p in a sample
was calculated as the fraction of KOs in the pathway that were
confidently present, specifically with abundance greater than the
overall sample median. That is:

covp =
2

|p|
∑
i∈p

∂{wi,p > w̃i,p} (3.3)

Pathway abundance was calculated as the average of the upper
half of its individual gene abundances, that is:

abdp =
2

|p|
∑
i∈[p/2]

wi,p (3.4)

for [p/2] the most abundant half of wi,p

3.3 CPM normalization

Normalization is a necessary step before data analysis to make
accurate comparisons between samples. Normalization is usually
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applied when the data matrix deals with gene expression and is the
process of scaling raw count values to remove some ”uninteresting”
factors. In this way the expression levels are more comparable
between and/or within samples.
The main factors often considered during normalization are:

• Sequencing depth:
Accounting for sequencing depth is necessary for comparison
of gene expression between samples. In the example below,
each gene appears to have doubled in expression in sample A
relative to sample B, however this is a consequence of sample
A having double the sequencing depth.

Figure 3.7: sequencing depth problem

• Gene length:
Accounting for gene length is necessary for comparing expres-
sion between different genes within the same sample. In the
example, gene X and gene Y have similar levels of expression,
but the number of reads mapped to gene X would be many
more than the number mapped to gene Y because gene X is
longer[18].
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Figure 3.8: gene length problem

In the Challenge case we don not deal with gene expression di-
rectly, but from a data type derived from a gene expression.
Because of the pathway abundance calculation aforementioned, if
we want to compare a specific pathway abundance between two
sample, we have to deal with a size factor derived from the se-
quencing depth in the gene abundance calculus.
A simple but effective normalization methods to overcome this
problem is the CPM normalization.

In the following a brief 3 step description of this technique:

• Sum the entire abundance values of a specific sample

• Divide every abundance value of that sample by the sum of
the abundances and multiply by 106

• Apply the first two steps for every sample

To apply this method, I used an R script in which is applied the
cpm function by edgeR v3.14.0.
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From now on, if not differently specified, every time Iâll mention
the pathway abundance matrices, Iâll consider their normalized
versions.

In the next sections Iâll examine 3 different ordination/visual-
ization methods to see how the IBD, UC and CD classes divides
in a 2-dimensional space.
These techniques can be seen as multivariate methods which sum-
marize a multidimensional dataset in such a way that, when it is
projected onto a low dimensional space, any intrinsic pattern the
data may possess becomes apparent upon visual inspection.

3.4 PCA: concept and plot comparisons

PCA uses a rotation of the original axes to derive new axes, which
maximize the variance in the dataset. Computationally, PCA is
an eigen analysis and the most important consequences are:

• There is a unique solution to the eigen analysis

• The axes (also called principal components or PC) are or-
thogonal to each other, and thus independent

• Each PC is associated with an eigenvalue. The sum of the
eigenvalues will equal the sum of the variance of all variables
in the dataset. The eigenvalues represent the variance ex-
tracted by each PC and are expressed as a percentage of the
sum of all eigenvalues. The relative eigenvalues thus tell how
much variation that PC is able to ”explain”

• Axes are ranked by their eigenvalues. Thus, the first axis has
the highest eigenvalues and thus explains the most variance,
the second axis has the second highest eigenvalues, etc...

To implement PCA in R there are many packages but, in this
case, the high dimension of the data matrix made necessary to
implement the method in a more computationally efficient way.
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PCA_SVD <- function(sample) {
Z<-t(t(sample)-apply(sample ,2,mean))
SVdec <-svd(Z) # singular value decomposition
d<-SVdec$d # diagonal of d
varperc <-rep(0,length(d))
for (i in (1:length(d))) varperc[i]<-sum((d^2)[1:i])/ sum(d^2)
# compute % of variance explained
PCs_SVD <-SVdec$v # Principal Components
Y_SVD <-sample %*%PCs_SVD # projection of the N samples
# in the new coords along the PCs
return(Y_SVD)

}

To see how good the classes divide in a two-dimensional space and
if the normalization process leads to some improvement in the two-
class division, I made some PCA plots comparisons between the
data before and after normalization. In the following we can see
some examples of the plots I did.

Figure 3.9: comparison of pathways at community level in He et al. dataset
pre and post CPM normalization
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Figure 3.10: comparison of pathways at species level in He et al. dataset pre
and post CPM normalization

Figure 3.11: comparison of pathways at community level in Schirmer et al.
dataset pre and post CPM normalization
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Figure 3.12: comparison of pathways at species level in Schirmer et al.
dataset pre and post CPM normalization

3.5 PCoA: concept and plot comparison

Principal coordinate analysis attempts to represent the distances
between samples in a low-dimensional, Euclidean space. In partic-
ular, it maximizes the linear correlation between the distances in
the distance matrix, and the distances in a space of low dimension
(typically 2 axes are selected).
The first step of a PCoA is the construction of a dissimilarity
matrix. While PCA is based on Euclidean distances, PCoA can
handle dissimilarity matrices calculated from quantitative, semi-
quantitative, qualitative, and mixed variables. As always, the
choice of dissimilarity measure is critical and must be suitable
to the data in question. In this case, since we are dealing with
abundance data, Bray-Curtis distance is often recommended in
literature.
When the distance metric is Euclidean, PCoA is equivalent to
Principal Components Analysis.

To apply this method in R I used two packages: vegan v2.4-2
and ape v5.3.
PCoA <- function(sample) {
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dist=vegdist(sample , method = ’’bray’’) # compute the dissimilarity
# matrix
PCOA=pcoa(dist) # compute PCoA
PC<- PCOA$vectors[,c(1,2)] # take only the first two components
return(PC)
}

In the following graphs we can see some comparisons using this
technique pre and post normalization.

Figure 3.13: comparison of pathways at community level in He et al. dataset
pre and post CPM normalization

Figure 3.14: comparison of pathways at species level in He et al. dataset pre
and post CPM normalization
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Figure 3.15: comparison of pathways at community level in Schirmer et al.
dataset pre and post CPM normalization

Figure 3.16: comparison of pathways at species level in Schirmer et al.
dataset pre and post CPM normalization

3.6 NMDS: concept and plot comparison

NMDS (Non-metric Multidimensional Scaling) attempts to repre-
sent the pairwise dissimilarity between objects in a low-dimensional
space. Any dissimilarity coefficient or distance measure may be
used to build the distance matrix used as input.
NMDS is a rank-based approach, this means that the original dis-
tance data is substituted with ranks. While information about the
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magnitude of distances is lost, rank-based methods are generally
more robust to data which do not have an identifiable distribu-
tion.
NMDS is an iterative algorithm and its routines often begin by
random placement of data objects in ordination space. Then, the
algorithm starts to refine this placement by an iterative process.
Its attempt is to find the ordination in which ordinated object
distances closely match the order of the object’s dissimilarities in
the original distance matrix. The resulting stress value reflects
how the ordination summarizes the observed distances among the
samples.
NMDS is not an eigen analysis and this has three important con-
sequences:

• There is no unique ordination result

• The axes of the ordination are not ordered according to the
variance they explain

• The number of dimensions of the low-dimensional space must
be specified before running the analysis

• There is no unique solution

The end solution depends on the random placement of the objects
in the first step. Running the NMDS algorithm multiple times to
ensure that the ordination is stable is necessary, as any one run
may get trapped in local optima which are not representative of
true distances.

To implement this method in R I used the same packages used
for PCoA but this time, instead of using the pcoa() function I
used metaMDS() function that automatically runs NMDS multi-
ple time to ensure not to trap into a local optima.
NMDS <- function(sample) {

set.seed(2)
dist=vegdist(sample , method = ’’bray’’) # compute the dissimilarity
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# matrix
NMDS1=metaMDS(dist , k = 2, trymax = 100, trace = F) # compute NMDS
# 100 times
PC=NMDS1$points
return(PC)

}

In the following graphs we can see some comparisons using this
technique pre and post normalization.

Figure 3.17: comparison of pathways at community level in He et al. dataset
pre and post CPM normalization

Figure 3.18: comparison of pathways at species level in He et al. dataset pre
and post CPM normalization
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Figure 3.19: comparison of pathways at community level in Schirmer et al.
dataset pre and post CPM normalization

Figure 3.20: comparison of pathways at species level in Schirmer et al.
dataset pre and post CPM normalization

The past graphs can give us a first impression on how good the
classifier we will build could be.
A good separation between classes means that it will be easy to
build a classifier to discriminate them, in contrary, if we donât see
a clear separation means that it could be harder to classify them
with high precision. It’s important to underline that these graphs
show the problem only in 2-dimensional space and so the classes
may appear harder to separate than in a higher dimensional space.
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From the Schirmer et al. dataset graphs we can see that the
separation between classes is not clear at all, something better
we can see in the He et al. Species where we can see a better
separation.

What we can try to do now is to merge the two dataset and
do the PCoA or NMDS taking only the subjects requested in the
4 comparisons, namely:

• IBD vs non-IBD

• UC vs non-IBD

• CD vs non-IBD

• UC vs CD

Figure 3.21: PCoA plot of the IBD vs non-IBD subjects on the entire dataset
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Figure 3.22: PCoA plot of the CD vs non-IBD subjects on the entire dataset

Figure 3.23: PCoA plot of the UC vs non-IBD subjects on the entire dataset
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Figure 3.24: PCoA plot of the UC vs CD subjects on the entire dataset

In this way what we can see is a clearer separation in the case of
IBD vs non-IBD, a slightly better separation in CD vs non-IBD
case and not improved results in the last two comparisons (UC
vs non-IBD and UC vs CD) probably because these health states
are less different in a biological point of view.
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Chapter 4

Classification Method

After a first screening of the data the next step is choosing the
classification method.
There are many types of methods, from the simpler and faster
Naive Bayes classifier to the more complex and more computa-
tionally onerous like Random Forest. The one we have chosen
is a good tradeoff between these two characteristics, the Support
Vector Machine (SVM).

4.1 Introduction to SVM classifier

A Support Vector Machine is a discriminative classifier formally
defined by a separating hyperplane. In other words, given labeled
training data (supervised learning), the algorithm outputs an op-
timal hyperplane which categorizes new examples.
In two-dimensional space this hyperplane is a line dividing a plane
in two parts where in each class lay in either side.
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Figure 4.1: svm’s hyperplane

The algorithm, implemented by Vapnik et al., minimizes the up-
per bound of the generalization error by maximizing the margin
between the separating hyperplane and the data, abiding to the
structure risk minimization principle for model selection [10].

A usual binary classification problem usually involves separat-
ing data into training and test sets. The samples of the training
set are the pairs (xi, yi), where xi is a vector representing the fea-
tures of the given sample and yi ∈ {1, 1} is the corresponding
class label. The goal of SVM is to produce a model based on the
training data which predicts the class labels of the test data given
only the feature vectors of the test data.

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subjecttoyi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l

(4.1)

where φ(xi) maps xi into a higher-dimensional (and potentially
even an infinite-dimensional) space, and C > 0 is the penalty
parameter of the error term. In practice the dual formulation of
this problem is solved instead, due to high dimensionality of the
vector variable w:
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min
α

1

2
αTyiyjφ(xi)

Tφ(xj)α− eTα

subjecttoyTα

0 ≤ αi ≤ C, i = 1, ..., l

(4.2)

Where e is rhe vector of all ones.
After solving the dual problem, the optimal w is given by:

w =
l∑

i=1

yiαiφ(xi) (4.3)

and by setting K(xi, xj) = φ(xi)
Tφ(xj)K(xi, xj) = φ(xi)

Tφ(xj)
the decision function is give by:

f(x) = sgn(wTφ(xi) + b)

= sgn(
l∑

i=1

yiαiK(xi, x) + b)
(4.4)

Lastly, is important to notice that there is no need to compute
the mapped feature vectors φ(x) explicitly. Instead, only the dot
products between mapped feature vectors are calculatedK(xi, xj) =
φ(xi)

Tφ(xj)K(xi, xj) = φ(xi)
Tφ(xj).

K(xi, xj) is also known as Kernel function.
The function of Kernel is to take data as input and transform it
into the required form. Different SVM algorithms use different
types of kernel functions. These functions can be different types,
for example: linear, nonlinear, polynomial, radial, and sigmoid.
The role of the Kernel is to project the data into a higher dimen-
sion space in order to find the hyperplane which classifies the data
without increasing the computational cost much.

During this work I used to different types of Kernels:

• For feature selection purpose I used a simpler and slightly
faster Linear Kernel: K(xi, xj) = xTi xjK(xi, xj) = xTi xj
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• For build up the main classifier I used a more sophisticated
one, the Radial Basis Function (RBF) Kernel: K(xi, xj) =
exp(−γ||xi − xj||2), γ > 0

4.2 SVM Implementation

In order to implement this type of classifiers in R I used two pack-
ages: e1071 the one in which is implemented the SVM classifier
and caret which contains functions to streamline the model train-
ing process.
One of the primary tools used in this package is the train function
which can be used to:

• Evaluate, using resampling, the effect of model tuning pa-
rameters on performance

• Choose the optimal model across these parameters

• Estimate model performance from training set

These processes can be summarized by the following figure.

Figure 4.2: caret’s workflow

The tuning parameters can be chosen automatically or can be
passed to the train function by the tuneGrid argument.
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SVM classifier can be tuned mainly by two parameters: C and
Gamma (or Sigma).

• For large values of C, the optimization will choose a smaller-
margin hyperplane if that hyperplane does a better job of
getting all the training points classified correctly. Conversely,
a very small value of C will cause the optimizer to look for a
larger margin separating hyperplane, even if that hyperplane
misclassifies more points.

• The Gamma (or Sigma) parameter defines how far the in-
fluence of a single training example reaches. In other words,
with low gamma, points far away from plausible separation
line are considered in calculation for the separation line. Whereas
high gamma means the points close to plausible line are con-
sidered in calculation.

Figure 4.3: Gamma’s tuning effect

Figure 4.4: Gamma’s tuning effect

In order to modify the resampling method, a ”trainControl” func-
tion is used. Moreover, with the option ”method” is it possible to
control the type of resampling. For this purpose, it was necessary
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to use ”repeatedcv” to specify repeated K-fold cross-validation.
Finally, to choose different measures of performance, additional
arguments are given to trainControl. The ”summary Function”
argument is used to pass in a function that takes the observed
and predicted values and estimate some measure of performance.
Two such functions are already included in the package: default-
Summary and twoClassSummary. I used the latter that compute
measures specific for to two-class problems, such as the area under
the ROC curve, the sensitivity and specificity.
Since the ROC curve is based on the predicted class probabili-
ties (which are not computed automatically), another option is
required. The classProbs = TRUE option is used to include these
calculations.
Lastly, the function will pick the tuning parameters associated
with the best results. Since I am using custom performance mea-
sures, the criterion that should be optimized must also be speci-
fied. In the call to train, I used metric = ”ROC” to do this.
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# trainControl object setup for 10 fold CV
control <- trainControl(method = ’’repeatedcv ’’,

number = 10,
repeats= 10,
classProbs = TRUE ,
summaryFunction = twoClassSummary ,
search = ’’grid’’,
allowParallel = TRUE ,
preProcOptions = c(’’center ’’, ’’scale ’’),
savePredictions=’’final ’’)

C = 2^(-5:15) # grid of C values
sigma = 2^(-15:3) # grid of sigma values
grid <- expand.grid(C = C, sigma = sigma)

tic()
best.svm.model <- train(Label~.,

data=whole.dataset[, c(best.features , ’’Label ’’)],
method = ’’svmRadial ’’,
preProcess = c(’’center ’’, ’’scale ’’),
trControl=control ,
tuneGrid=grid ,
maximize=TRUE ,
metric = ’’ROC’’)

toc()
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Chapter 5

Feature Selection Methods

One of the main obstacles in the classification of this dataset in
the huge number of PathIDs that the dataset contains (around
12k). In this situation is impossible to apply any type of classi-
fiers and a process of feature selection is necessary [12]. In litera-
ture there are many types of feature selection algorithms; in this
case I used/implemented two of them: a modified version of Re-
cursive Feature Elimination (RFE) [13] and Randomised Logistic
Regression (RLR) [11].

5.1 Recursive Feature Elimination

The most known Recursive Feature Elimination is a technique
that begins by building a model on the entire set of the features
and computing an importance score for each feature. The least
important predictor is then removed, the model is re-build, and
the importance scores are computed again. This procedure con-
tinues until it reaches a pre-selected number of features.

There are many ways to compute importance scores and the
one implemented is the one described in [13].

The parameters that the algorithm takes as input are the fol-
lowing:

• feat.select.sample: the samples to use for feature selection
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• class.labels: the class label for each subject

• positive.label: the positive class label

• negative.label: the negative class label

• bootstrap.iterations: number of bootstrapping iterations

• percentage.to.remove: percentage of features to remove after
each iteration

• feature.number.threshold: when to start removing just one
features per iteration

• parallel.bootstrap: if the user wants to parallelize the boot-
strap iterations

The idea is to define the importance of a feature for a SVM in
terms of its contribution to a cost function J(α). At each step of
the RFE procedure, an SVM is trained on the given dataset, J is
computed and the feature less contributing to J is discarded. In
the case of linear SVM, the variation due to the elimination of the
i-th feature is ∂J(i) = w2

i . Where w is calculated multiplying
coefs (the weights of each support vector) by SV (the support
vectors).
The elimination of the less informative features takes now a dif-
ferent direction from the one described in the paper.
At the beginning of the algorithm, and for each bootstrap.iterations,
the feat.select.sample are partitioned in a training set and in a test
set and from now on the feature selection begins. As input we can
find feature.number.threshold and percentage.to.remove parame-
ters.
These two parameters work in this way:

• If the number of remaining features (after the computations
of their score) are greater than feature.number.threshold the
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algorithm removes the percentage.to.removee less informative
features

• If the number of remaining features (after the computations
of their score) are less than feature.number.threshold the al-
gorithm removes just the last informative one

The algorithm proceeds until the last feature has been removed.
Proceeding through these steps, the algorithm measures the per-
formance of the features kept in each iteration using the test set
trough an MCC metric.

The Matthews correlation coefficient (MCC) is a measure of the
quality of a binary classification introduced by BrianW. Matthews
in 1975. The MCC is a correlation coefficient between the ob-
served and predicted binary classifications; it returns a value be-
tween â1 and 1. A coefficient of 1 represents a perfect prediction,
0 no better than random prediction and â1 indicates total dis-
agreement between prediction and observation. The MCC can be
easily calculated from a confusion matrix through this formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.1)

At the end, the algorithm takes the mean of the feature impor-
tance and of the MCC values through all the bootstrap iterations
and selects the number of features that maximizes the average
MCC.
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Figure 5.1: MCC’s values through the number of features selected

The code is also parallelized using doMC R package that permits
to choose the number of cores to use for parallel execution with
foreach package.

The algorithm then returns a list containing the following ob-
jects:

• average.MCC: the average MCC values of the bootstrap it-
erations

• median.MCC: the median of the MCC values of the boot-
strap iterations

• stdev.MCC: the standard deviation of the MCC values of the
bootstrap iterations

• optimal.number.of.features : the optimal number of features

57



calculated as the index in which average.MCC reaches its
maximum

• best.features: the features names corresponding with the op-
timal number of features

• sorted.average.feature.rank: a sorted list of feature by their
importance

5.2 Randomized Logistic Regression

Randomised Logistic Regression works by resampling the train
data and computing a Logistic Regression on each resampling. In
short, we can say that the features selected more often are good
features.

Also known as stability selection, this algorithm is an example
of an embedded feature selection method that tends to work well
in high-dimensional, sparse problems like the one we are facing
with. The rationale behind the algorithm is to bootstrap many
times the dataset and use a base structure algorithm to find out
which features are important in every sampled version of the data.
A feature to be selected as important for the classification of the
subjects has to be selected in a high number of bootstrap iterations
of the algorithm. On the contrary, a feature not related to the
target variable has not to be selected in any iteration with the
consequences that this tends to filter out features weakly related
to the classification problem.

The parameter that the algorithm takes as input are the fol-
lowing:

• feat.select.sample: a matrix or data frame containing the
samples to be used for feature selection

• metadata: the class labels of the subjects

58



• positive.label: the label of the positive class

• negative.label: the labels of the negative class

• n.bootstrap.iterations: the number of bootstrapping itera-
tions

• lambda.values: list of regularization parameters

• alpha: scale value for the regularization parameters used in
the internal randomization step (default 0.2)

• p.w: the probability for a feature to be penalized with a
(lambda/alpha) regularization factor (default 0.5)

• sample.fraction: fraction of the overall samples to be re-
sampled at each bootstrap iteration (default 0.5)

• regularization.type: ”1”: for LASSO regression; ”0”: for ridge
regression; a value between 0 and 1 for elastic net regression
(default 1)

• epsilon: threshold used to determine if the Logistic Regres-
sion model coefficients are not-null (defaults to 1e−3)

• selection.threshold: the threshold value used to determine
the selected features

• parallel: if TRUE, the iterations are performed in parallel

The procedure used to list the feature importance is the General-
ized Linear Model implemented in the glmnet R package.
The function has been used as follows:
lr.model <- glmnet(x = x.train ,
y = y.train ,
lambda = lambda ,
penalty.factor = w,
alpha = regularisation.type ,
family = ’’binomial ’’,
standardize = TRUE)
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Where:

• x.train : the dataset

• y.train : the class labels passed as factor in the form (0,1)

• lambda: a regularization parameter that identifies the regu-
larization strength

• w: a number that multiplies lambda to allow differential
shrinkage. Can be 0 for some variables, which implies no
shrinkage, and that variable is always included in the model

• regularization.type: same as mentioned before

• family: the type of distribution that the regression follows

• standardize: a flag for the variable standardization

The algorithm then takes the parameter coef from the output of
the lr.model. This parameter contains the coefficients of the linear
model used as feature weights.
In a first nested loop the algorithm calculates the feature weights
for every bootstrap iterations with a fixed lambda, and on a sec-
ond external loop iterates on different lambda.values passed as
initial input of the algorithm. During these steps the algorithm
computes the mean of the feature importance for every bootstrap
iterations and then, for every lambda.values, returns a vector of
feature selection probabilities; if a feature’s selection probability
is greater than selection.threshold is then selected.
The algorithm returns a list containing the following items:

• feature.selection.probabilities: the probability that each fea-
ture is selected by the algorithm

• stability.scores: the stability scores for each feature

• selected.features: the list of features with feature.selection.probabilities
greater than the selection.threshold
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Figure 5.2: selection frequency of the selected features through the
lambda.values

5.3 Training and Test set partition

Once we completed our feature selection and classification pipeline,
another important aspect is how to test the classification perfor-
mance.
For testing it we decided to split the provided training set pro-
vided in another Training and Test set in order to apply the fea-
ture selection and classification on the new training set and use
the classifier in a label known dataset (the new Test set) in order
to measure the performance of the pipeline.
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To decide in which measure split the original Training set we
had to deal with two competing concerns: with less training data,
the parameter estimates have greater variance. With less testing
data, the performance statistic will have greater variance.
Knowing that, we went for an 80/20 division keeping the same
proportion between the two health states considered in the classi-
fication task.
In the following an R script that exemplifies the process of divi-
sion:

## Train -test split
## Here we split the dataset into training and test sets.
## We split *IBD* and *nonIBD* patients with the same proportions.
set.seed(42)
### 80%-20% split
train.IBD.class.idx <- sample(IBD.class.idx ,
size = floor(0.80 * length(IBD.class.idx)))
train.nonIBD.class.idx <- sample(nonIBD.class.idx ,
size = floor(0.80 * length(nonIBD.class.idx)))
train.idx <- c(train.nonIBD.class.idx ,train.IBD.class.idx)

training.set <- whole.dataset[train.idx ,]
training.class.labels <- class.labels[train.idx ,]
training.class.labels$group=droplevels(training.class.labels$group)

test.set <- whole.dataset[-train.idx , ]
test.class.labels <- class.labels[-train.idx , ]
test.class.labels$group=droplevels(test.class.labels$group)

For the first tests, we divided test and training as mentioned, using
the only information we had on the patients. Looking for the two
original datasets (Schrimer et al. and He et al.) on the web, we
found that there were many more metadata on them such as age
and sex.
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Figure 5.3: example of the metadata table

In the literature it is known that our microbiome changes during
our life. According to [19], age is a key factor in the diversification
of our microbiome. For this reason, it was necessary to take these
metadata into account for keeping the training and test set as
balanced as possible.

In order to do so, we use a function called stratified which takes
as input:

• the aforementioned metadata data.frame

• the column names of the metadata to take into account

• the percentage of the data in the first split

• a flag parameter to choose if you want to keep the proportion
also in the second split

Which returns a list containing the IDs of the patients in the first
and in the second split.
stratified.split <- stratified(metadata , group = c(’’age’’,
’’sex’’, ’’diagnosis ’’, ’’dataset ’’), size = 0.8, bothSets=TRUE)
training.set.metadata <- stratified.split$SET1
test.set.metadata <- stratified.split$SET2
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From now on, every result showed was obtained with this stratified
partition.
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Chapter 6

Results and Comparisons

6.1 Pipeline performance on Test set

The results and the performance obtained by the two feature se-
lection methods are shown in this section. The main comparison
metric used is the ROC’s Area Under the Curve (AUROC).

ROC is a plot of the false positive rate (x-axis) versus the true
positive rate (y-axis) for a number of different candidate threshold
values between 0 and 1.
The true positive rate is calculated as the number of true positives
divided by the sum of the number of true positives and the number
of false negatives. It describes how the model is at predicting the
positive class when the actual outcome is positive.
The false positive rate is calculated as the number of false positives
divided by the sum of the number of false positives and the number
of true negatives.
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Figure 6.1: AUROC example

The AUROC provides a measure of performance across all possible
classification thresholds. Higher is the value of the AUC higher
is the ability of the classifier to discriminate between two classes.
For example, a classifier with AUROC of 0.5 has an ability to
equal to a random classification model.

The pipeline has been applied in 3 different partitions of the
entire Pathways matrix: Firstly, keeping only Pathways at Com-
munity level. Secondly, keeping only Pathways at Species level.
Lastly, using the entire Pathway matrix.
During these steps the pipeline has been applied at the different
data matrixes keeping only the subjects for the specific classifi-
cation task, that is: IBD vs non-IBD, CD vs non-IBD, UC vs
non-IBD and UC vs CD. Both using RFE and RLR feature selec-
tion algorithms.

The tuning parameters set for the two feature selection algo-
rithms are the following:
RFE:
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• bootstrap.iterations=100

• percentage.to.remove=0.05

• feature.number.threshold=100

RLR:

• n.bootstrap.iterations=1000

• sample.fraction=0.5

• selection.threshold=0.1

• lambda.values=2ŝeq(-10,0,2)

Kept for every matrix and every classification task.

In total, for every classification task has been build 6 different
classifiers. In the following the results achieved using the different
partitions and methods.

IBD vs non-IBD classification performance

Community Matrix
RFE (number of feature selected: 158)
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Figure 6.2: AUROC

Figure 6.3: AUROC

RLR(number of feature selected: 153)
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Figure 6.4: AUROC

Figure 6.5: AUROC

Species Matrix
RFE (number of feature selected: 616)
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Figure 6.6: AUROC

Figure 6.7: AUROC

RLR(number of feature selected: 58)

Figure 6.8: AUROC
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Figure 6.9: AUROC

Entire Matrix
RFE (number of feature selected: 249)

Figure 6.10: AUROC
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Figure 6.11: AUROC

RLR(number of feature selected: 62)

Figure 6.12: AUROC
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Figure 6.13: AUROC

CD vs non-IBD classification performance

Community Matrix
RFE (number of feature selected: 93)

Figure 6.14: AUROC
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Figure 6.15: AUROC

RLR(number of feature selected: 122)

Figure 6.16: AUROC
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Figure 6.17: AUROC

Species Matrix
RFE (number of feature selected: 408)

Figure 6.18: AUROC
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Figure 6.19: AUROC

RLR(number of feature selected: 50)

Figure 6.20: AUROC
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Figure 6.21: AUROC

Entire Matrix
RFE (number of feature selected: 607)

Figure 6.22: AUROC
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Figure 6.23: AUROC

RLR(number of feature selected: 55)

Figure 6.24: AUROC
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Figure 6.25: AUROC

UC vs non-IBD classification performance

Community Matrix
RFE (number of feature selected: 71)

Figure 6.26: AUROC
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Figure 6.27: AUROC

RLR(number of feature selected: 45)

Figure 6.28: AUROC
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Figure 6.29: AUROC

Species Matrix
RFE (number of feature selected: 24)

Figure 6.30: AUROC
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Figure 6.31: AUROC

RLR(number of feature selected: 37)

Figure 6.32: AUROC
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Figure 6.33: AUROC

Entire Matrix
RFE (number of feature selected: 381)

Figure 6.34: AUROC
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Figure 6.35: AUROC

RLR(number of feature selected: 30)

Figure 6.36: AUROC
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Figure 6.37: AUROC

UC vs CD classification performance

Community Matrix
RFE (number of feature selected: 190)

Figure 6.38: AUROC

85



Figure 6.39: AUROC

RLR(number of feature selected: 71)

Figure 6.40: AUROC
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Figure 6.41: AUROC

Species Matrix
RFE (number of feature selected: 336)

Figure 6.42: AUROC
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Figure 6.43: AUROC

RLR(number of feature selected: 28)

Figure 6.44: AUROC
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Figure 6.45: AUROC

Entire Matrix
RFE (number of feature selected: 201)

Figure 6.46: AUROC
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Figure 6.47: AUROC

RLR(number of feature selected: 30)

Figure 6.48: AUROC
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Figure 6.49: AUROC

Analyzing the previous graphs, we can make some final consider-
ations on the problem given by the challenge organizers.

On IBD vs non-IBD classification

The AUROC shows that this task is the easiest to deal with, every
type of pipeline used gave high AUC values reaching the highest
value with the RFE algorithm on the entire matrix (AUC∼=0.96).
One important thing to notice is that, using just Community Ma-
trix, which contains only 448 features over twelve thousand (3.7%
of the total) it’s possible to reach AUC≈ 0.95.

On CD vs non-IBD classification

In this case, on every matrix except the Community one (simi-
lar results), the RLR algorithm outperforms RFE, reaching his
maximum AUROC value on the Species Matrix (AUC∼= 0.91).
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On UC vs non-IBD classification

The performance of the classifiers shows that this task is the hard-
est one, both for RFE and RLR algorithm. What we can see are
very high AUC’s on the training set with every algorithm and in
every matrix but, when we try to classify the test set, we see very
poor performance probably caused by overfitting. The best per-
formance belongs to the RLR algorithm on the entire matrix with
an AUROC∼= 0.86.

On UC vs CD classification

For this last classification the performances of the two methods
are almost similar and quite good in the case of Community and
Species matrix showing results between 0.8 and 0.9 of AUC. On
the entire matrix, instead, RLR outperforms RFE both in train-
ing and in test set reaching an AUROC on test set of 0.93.

In order to make a double check on the pipeline performance it is
necessary to test it with a LOOCV procedure.
Indeed, this methodology uses a single observation from the origi-
nal matrix as the validation data, and the remaining observations
as the training data. Since this methodology is very computa-
tional demanding, it has been only applied in one case: on the
entire Pathways matrix with RLR feature selection method (be-
cause it is the less computational demanding).
The results are the following:
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IBD vs non-IBD classification performance

Figure 6.50: AUROC

CD vs non-IBD classification performance

Figure 6.51: AUROC
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UC vs non-IBD classification performance

Figure 6.52: AUROC

UC vs CD classification performance

Figure 6.53: AUROC

It is possible to see that, on average, the AUROC’s results are
lower than the ones obtained with an 80/20 partition. Conse-
quently, this can underline the existence of an inter-subject vari-
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ability that lowers the discriminative power of the classifier.
One of the sources of this variability may be the country in which
the two datasets have been collected. For Schirmer et al. it was
North America, while, for He et al. it was China. Since we are
dealing with gut microbiome, the geographical location can make
a great difference, because different meal habits influence a lot
this type of data.

With these pipelines we underline that the diagnosis of Inflam-
matory Bowel Diseases through metagenomics marker is viable.
In the future, more efforts in the collection of the data have to
be done, since classifying subjects with very far origins from the
dataset ones is harder and less accurate.
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6.2 Challenge submissions

Since the challenge organizers permits multiple submissions and
only the best one will be kept for the scoring, we decided to submit
different versions of the RLR pipeline varying the input matrix
and the selection.threshold parameter.
For the RFE pipeline, instead, since the tuning parameters does
not change the results much, we varied only the input matrix.
In the following a sum up of the different submissions.

RLR submissions:

• Input matrix: Pathways matrix, selection.threshold=0.1

• Input matrix: Pathways matrix, selection.threshold=0.15

• Input matrix: Pathways matrix, selection.threshold=0.2

• Input matrix: Pathways matrix, selection.threshold=0.25

• Input matrix: Pathways matrix, selection.threshold=0.3

• Input matrix: Pathways matrix, selection.threshold=0.35

• Input matrix: Pathways matrix, selection.threshold=0.4

• Input matrix: Entire matrix, selection.threshold=0.1

• Input matrix: Entire matrix, selection.threshold=0.15

• Input matrix: Entire matrix, selection.threshold=0.2

• Input matrix: Entire matrix, selection.threshold=0.25

• Input matrix: Entire matrix, selection.threshold=0.3

• Input matrix: Entire matrix, selection.threshold=0.35

• Input matrix: Entire matrix, selection.threshold=0.4
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RFE submissions:

• Input matrix: Pathways matrix

• Input matrix: Entire matrix
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