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Riassunto

Lo studio della dissipazione meccanica nei vetri è fondamentale per la riduzione del rumore in ap-
parati ottici che richiedono un’elevatissima precisione, come gli interferometri per la rilevazione di
onde gravitazionali. In questi esperimenti, infatti, la maggiore limitazione alla sensibilità dello stru-
mento risulta essere l’agitazione termica nei rivestimenti a specchio delle masse di test, rivestimenti
nei quali sono impiegati materiali amorfi come la tantala (Ta2O5 amorfa).

Il rumore termico è causato da fluttuazioni microscopiche nella configurazione del materiale: dal teo-
rema fluttuazione-dissipazione, una misura della potenza spettrale del rumore si ottiene dal fattore
di perdita per la dissipazione meccanica. Per modellizzare tali movimenti microscopici e calcolarne
la dissipazione, è stato proposto più di quattro decenni fa un semplice modello teorico basato su una
doppia buca di potenziale, la quale definisce un sistema a due livelli. L’origine microscopica di tali
sistemi nel materiale, tuttavia, non è ancora chiara e una sua migliore comprensione è indispensabile
per indirizzare la ricerca di materiali che minimizzino il rumore.

In questa tesi, dopo aver esposto il modello e le sue predizioni per la dissipazione meccanica, si
analizzano i risultati della ricerca di sistemi a due livelli effettuata in modelli realistici di Ta2O5

amorfa. I campioni vengono creati usando potenziali interatomici classici e viene poi usato il metodo
di attivazione e rilassamento (ARTn) per trovare coppie di configurazioni strutturali vicine e la
corrispondente barriera di potenziale: queste sono realizzazioni fisiche dei proposti sistemi a due
livelli. Infine, vengono analizzate le caratteristiche microscopiche dei sistemi trovati e le quantità
richieste per poter calcolare a partire da questi il fattore di qualità per la dissipazione meccanica.

I risultati ottenuti riproducono qualitativamente le curve sperimentali, dimostrando l’utilità delle
simulazioni numeriche nella ricerca dei materiali da utilizzare nella prossima generazione di inter-
ferometri gravitazionali. I valori del fattore di qualità a temperatura ambiente sono, inoltre, in
ragionevole accordo quantitativo con i risultati sperimentali ottenuti su campioni dello stesso ma-
teriale. Questo accordo mette in evidenza come ARTn, l’algoritmo di ricerca utilizzato, sia una
promettente alternativa ai metodi basati sulla dinamica, in particolare per la ricerca dei sistemi a
due livelli con alta barriera di attivazione, che sono fondamentali per la dissipazione a temperatura
ambiente.

Grazie alla caratterizzazione microscopica dei sistemi trovati vengono poi messe in evidenza le
proprietà dei sistemi maggiormente responsabili della dissipazione maccanica nell’intervallo di tem-
perature e frequenze considerato. In particolare, si osserva che la maggior parte di questi sistemi più
dissipativi sembra essere riconducibile a un preciso movimento microscopico, osservato in precedenza
anche in modelli di SiO2 amorfo. Si evidenziano, infine, le potenzialità e le criticità dell’approccio
utilizzato, applicato qui per la prima volta alla tantala.
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Introduction

Computing the mechanical dissipation of a glass is a problem of interest in recent material science
research, and finds an important application in studying how to reduce noise in gravitational waves
interferometers [6]. For these experiments the most important source of noise are thermal fluctuation
arising in the mirror coatings of the test masses: these coatings are made of multiple strata of a low-
refractive material (amorphous SiO2) alternated with a high-refractive one (TiO2 doped amorphous
Ta2O5), the latter being the source of most noise. This is the main reason behind the efforts into
understanding the origin of mechanical dissipation in a-Ta2O5, also called tantala, at temperatures
ranging from room-temperature to cryogenic and for frequencies between 10 Hz and 10 kHz, where
the interferometers are most sensitive. This knowledge can then be used to select materials and
experimental conditions to minimize noise.

Thermal noise arises from mechanical dissipation due to structural relaxations. A possible model
for these movements is the so called two-level systems model (TLS), which was proposed almost 50
year ago and has been succesful in explaining both thermal and acoustic properties of amorphous
materials [7][3]. The model, however, does not provide any insight on the physical origin of these
two-level systems and cannot predict their properties and density. The speed reached in molecular
dynamics simulations has opened the possibility of observing these microscopical movements in
accurate models of amorphous materials. This has been done for both SiO2 [2] and Ta2O5 [14],
but this approach is computationally expensive: the characteristic time of a movement relevant to
dissipation is of the order of the inverse of the frequency of the dissipated excitation, and for our
range of frequencies these times are astronomically large with respect to microscopical timescales.
This drawback has led Barkema and Mousseau to develop a method that does not require to wait
for the system to move between two configurations but actively searches for possible reaction paths
in the configurational energy landscape [1]. This method, called activation-relaxation technique
(ART), was recently applied to TLS search in amorphous silicon [10].

In this thesis work we have applied the ART method to amorphous tantala in order to study its
mechanical dissipation, measured as a function of temperature and frequency by the loss angle Q−1.
In chapter 1 we review the TLS model, focusing on the derivation of the loss angle of the material,
while in chapter 2 we present our results for the distribution and properties of TLSs in tantala and
ultimately for the loss angle, obtained applying the TLS model to the TLSs found.
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Chapter 1

Theory of dissipation in glasses

1.1 Two level systems

The two-level system (TLS) model is based on the claim that the local configuration of a glass
can occasionally jump between two equilibrium configurations, close but separated by a potential
barrier. Let x be the reaction coordinate of the process: we assume that the movement between
the two local minima can be modelled as the motion of a particle of some mass m on the one
dimensional line under a bistable potential V (x). The details of the potential, as we will see, are
not important: the result depends only on a few parameters, shown in figure 1.1. Note that the
mass m and the x coordinate do not refer to a specific particle but should be interpreted as suitable
collective parameters that describe the movement. The precise microscopical meaning of these is
unknown and linked to the microscopical origin of these movements, which we will discuss in the
second chapter.

The jump between the two configurations is made possible by two different mechanisms: thermal
agitation and quantum tunneling. Thermally activated transitions are possible because the system
is part of a much bigger environment it can exchange energy and momentum with. Tunneling lets
the system move across a barrier thanks to the coherent superposition of the ground states of the
two minima. For a given TLS, at low temperatures we expect the thermally activated process
to be negligible and tunneling to be dominant; as the temperature rises, the coupling with the
external bath favors more frequent thermal jumps but tunneling becomes impossible due to the loss
of coherence. Conversely, at a fixed finite temperature, we will see that only TLS of a relatively high
barrier contribute significantly to dissipation via the thermal process, while tunneling is possible
only in TLS with relatively low barrier and small distance between the two minima.

In the section 1.2 we present a simple derivation of the loss angle term due to thermally activated
processes only, which we will call relaxation term. This derivation does not consider the quantum
mechanical nature of the system and therefore cannot account for coherent processes. In the fol-
lowing section 1.3 we will then see how to derive a generalisation of this result valid also in the low
temperature regime where quantum processes are significant. We will obtain two terms: the first is
the relaxation term, and reduces to the previous result in the classical limit; the second, which we
will call resonance term, is of purely quantum mechanical nature.
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Figure 1.1: The bistable potential V (x) of a two-level system

1.2 A simple model for elastic relaxation

1.2.1 Unperturbed Master equation

Let X(t) be the stochastic process describing the position of the particle at time t. In this model we
think of the particle as a mesoscopic particle of mass m moving on the line under a potential V (x),
immersed in a bath at temperature T . The particle is subject to Brownian motion: if X(0) = xL is
the initial position, it will stay for a time in the left well, until it receives a strong enough thermal
push to overcome the barrier, after which it will very quickly relax close to xR, and start the process
again. We call escape time the mean time the particle takes to jump across the barrier.

In the high friction limit one can derive that the mean first passage time over a high barrier U is
given by Kramer’s expression:

τ = τ0e
βU

where τ0 is the inverse attempt rate, a parameter that in principle depends on geometric factors
(the second derivatives of the potential at the minimum, i.e. its characteristic frequency, and at the
saddle point). A derivation of this classical result is shown in appendix A.

For our specific case (figure 1.1), the escape times from the left and right well are respectively

τ12 = τ0e
β(V+∆

2
)

τ12 = τ0e
β(V−∆

2
)

(1.1)

where we have assumed for simplicity that the two wells have the same characteristic frequency.

Since under our assumptions the particle spends most of the time in each well very close to its center,
we can coarsely describe the particle as having two possible states, 1 and 2, and some transition
probability between the two. Let us call p(t) the probability of finding the particle in state 1 at time
t. Its variation dp(t) in time dt has two contributions given by particles escaped in this time from 1
and 2: dp(t) = −p(t)/τ12dt+ (1− p(t))/τ21dt. In the absence of any perturbation the process then

3



evolves towards equilibrium following

ṗ(t) = −p(t)

τ12
+

1− p(t)

τ21
= −τ12 + τ21

τ12τ21
p(t) +

1

τ21
=: −1

τ
(p(t)− peq)

where peq :=
τ12

τ12+τ21
= 1

2(1 + tanh (β2∆)) is the equilibrium or asymptotical probability and

τ :=
τ12τ21

τ12 + τ21
=

τ0e
βV

e
β
2
∆ + e−

β
2
∆

=
τ0
2
eβV sech

(β
2
∆
)

is the relaxation time of the TLS. By defining q(t) = p(t)− peq we simply have

q̇(t) = −1

τ
q(t) (1.2)

In the absence of a perturbation, the solution for q(t) is a simple decaying exponential with char-
acteristic time τ .

1.2.2 Interaction with a phonon

We now want to consider the dynamics of the TLS when perturbed by the passage of an acoustic
perturbation: a periodic deformation of the surroundings of the system. Let Ve(x, t) be the per-
turbation of the potential caused by the deformation: Ve(x, t) is a wave, propagating let’s say in
the positive x direction. Since we are interested in small perturbations and will consider the first
order linear response of the system, we can simply choose Ve(x, t) to be a plane wave of pulse ω

and wave-number k: a generic perturbation can be obtained by superimposing plane waves. We
also assume that the wavelength of the perturbation is much greater than the size of the system δ:
typical two-level systems involve less then 100 atoms, located within a distance of order 10 Å, which
is much shorter that the wavelength of mechanical waves of the considered frequencies (between 10
Hz and 10kHz). In this dipole approximation the perturbation is

Ve(x, t) = Ve(ωt− kx) ≈ Ve(ωt)− V ′
e (ωt)kx+

1

2
V ′′
e (ωt)(kx)

2 + O((kx)3)

Since the 0th order is constant and physically irrelevant, the leading physical term is the first-order
term. Discarding higher-order terms, the perturbation is spatially anti-symmetric: its effect is a
periodic modification of the asymmetry ∆ which leaves the barrier height V constant. Let

∆̃(t) = ∆+ 2γe(t)

be the first order corrected asymmetry, where e ≪ 1 is the strain of the system and γ is the
deformation potential: γ = 1

2
∂∆
∂e

Assuming that the frequency of the perturbation is much lower that the attempt rate τ−1
0 the system
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still evolves according to 1.2 but with instantaneous time-dependent escape times

˜τ12(t) = τ0e
V

kBT e
β
2
∆̃(t) = τ12e

βγe(t)

˜τ21(t) = τ0e
V

kBT e−
β
2
∆̃(t) = τ21e

−βγe(t)

For e ≪ 1:

p̃eq(t) =
1

2

(
1 + tanh

(β
2
(∆ + 2γe)

))
≈ 1

2

(
1 + tanh

(β
2
∆
))

+
βγ

2
sech2

(β
2
∆
)
e =: peq + qDe

τ̃(t) =
τ0
2
eβV sech

(β
2
(∆ + 2γe)

)
≈ τ

(
1 + βγcotanh

(β
2
∆
)
e
)

Substituting into 1.2 and keeping only first order terms in e (and observing that asymptotically q

is also of order e):

q̇(t) = − 1

τ̃(t)
(p(t)− p̃eq(t)) = −1

τ

q(t)− qDe(t) + O(e2)

1 + O(e)
≈ −q(t)

τ
+

qD
τ
e(t) (1.3)

With e(t) = e0e
iωt an asymptotic solution to 1.3 is

q(t) = χ(ω)e(t) =
qD

1 + iωτ
e(t)

a compact expression of the linear response of the system. Introducing an analogy with the theory
of magnetisation which will become clearer in the following section, χ is called the (transverse)
dynamical susceptibility of the system.

1.2.3 Loss angle

We now compute the contribution δE of the single TLS to the complex elastic modulus E, defined
as the ratio between stress σ and strain e. The TLS’s contribution to the internal energy is

δU(T, p, e) = p
(∆
2
+ γe

)
+ (1− p)

(
−∆

2
− γe

)
= (∆+ 2γe)

(
p− 1

2

)
The stress is defined as σ = ∂u

∂e where u is the energy density. Using a reciprocity relation analogous
to a Maxwell’s relation in thermodynamics we can obtain the single TLS’s contribution to the stress
and to the elastic modulus:

∂(δσ)

∂p
=

∂

∂p

∂(δU)

∂e
= 2γ =⇒ δσ = 2γδp = 2γq = 2γχe

δE =
δσ

e
=

1

e
(2γχe) = 2γχ

Finally then the system’s contribution to the loss angle Q−1 is

δQ−1 =
Im(δE)

Re(E)
=

2γ

Y
Im(χ) =

γ2

kBTY

ωτ

1 + (ωτ)2
sech2

( ∆

2kBT

)
(1.4)

A few remarks on this result, which we will use in chapter 2:

• At a fixed temperature, δQ−1(ω) shows a resonance curve peaked at ωτ = 1: dissipation is
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highest when the inverse pulse of the phonon is equal to the relaxation time of the TLS;

• the relaxation time itself depends on the barrier height and the temperature, being much
higher at lower temperatures or for higher barriers: τ = 2τ0e

βV sech
(β
2∆
)
;

• the magnitude of δQ−1 decreases rapidly for increasing asymmetry ∆.

Now suppose we have a sample of volume Ω and N two-level systems: given the parameters of each
of these we might compute the total loss angle at a given temperature T and pulse ω

Q−1(ω, T ) =
1

Ω

N∑
i=1

δQ−1
i =

n

kBTY

1

N

N∑
i=1

γ2i ωτi
1 + (ωτi)2

sech2
( ∆i

2kBT

)
(1.5)

where n is just the number of TLS per unit volume.

The former expression will be useful in chapter 2 and is the exact computation for a specific fi-
nite sample of material. For theoretical purposes it is more meaningful to compute the expected
loss angle: let n(V,∆, γ, τ0) be the distribution of TLS as a function of the relevant parameters,
normalised to n: ∫

n(V,∆, γ, τ0) dV d∆dγdτ0 = n

Then the expected total loss angle is

Q(ω, T )−1 =
1

kBTY

∫
γ2ωτ(V,∆, τ0)

1 + (ωτ(V,∆, τ0))2
sech2

( ∆

2kBT

)
n(V,∆, γ, τ0) dV d∆dγdτ0

Note that often in literature it is assumed that γ and τ0 can effectively be taken as constants. Than
the summation reduces only over ∆ and V

Q(ω, T )−1 =
1

kBTY

∫
γ2ωτ(V,∆)

1 + (ωτ(V,∆))2
sech2

( ∆

2kBT

)
n(V,∆) dV d∆

and with further hypotheses on n(V,∆) the explicit calculation can be performed and compared
with experimental data [3].

1.3 The tunneling model: relaxation and resonance

The simple classical model outlined in section 1.2 is not applicable at very low temperatures, where
tunneling is important. In this section we review the quantum mechanical model of a two-level-
system, following steps very similar to those taken in section 1.2 with the classical model.

1.3.1 Unperturbed hamiltonian of the two-level system

Let H0 be the hamiltonian operator of a particle of mass m moving in the one-dimensional line
under the potential V (x), a bistable potential as the one in figure 1.1. Without loss of generality
we assume the saddle point to be located at the origin. Let VL(x) and VR(x) be the harmonic
potentials approximating V (x) near the center of the left and right well. For simplicity we assume,
as was done in section 1.2, that the two wells have the same characteristic frequency ωw. Let then
|ΨL⟩ and |ΨR⟩ be the eigenvectors of the ground states of VL(x) and VR(x), and HL and HR the
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hamiltonian operators of the two harmonic wells:

HL |ΨL⟩ =
∆

2
|ΨL⟩

HR |ΨR⟩ = −∆

2
|ΨR⟩

translating the potential by ℏωw
2 for simplicity.

We assume that ℏωw ≫ ∆ and the system is very close to equilibrium: this is an analogous request to
the high friction limit considered in section 1.2. Then the excited states of both wells are practically
not accessible. In this limit a generic state of the system is a linear combination of the two ground
states. This is why we refer to this model as a two-level system: only the two states of lowest energy
are allowed.

Since |ΨL⟩ and |ΨR⟩ are not orthogonal we use their symmetric and antisymmetric combinations

|Ψ+⟩ =
|ΨL⟩+ |ΨR⟩

∥ |ΨL⟩+ |ΨR⟩∥
=

|ΨL⟩+ |ΨR⟩√
2
√
1 + S

=
|ΨL⟩+ |ΨR⟩√

2
+ O(S)

|Ψ−⟩ =
|ΨL⟩ − |ΨR⟩

∥ |ΨL⟩ − |ΨR⟩∥
=

|ΨL⟩ − |ΨR⟩√
2
√
1− S

=
|ΨL⟩ − |ΨR⟩√

2
+ O(S)

where S := ⟨ΨL|ΨR⟩ ≈ e
− δ2

4x2w ≪ 1 and xw =
√
ℏ/(mωw)

as an orthonormal basis of the two dimensional space considered. We assume the overlap S of the
two ground states to be very small, note however that |Ψ+⟩ and |Ψ−⟩ are exactly orthonormal.

To find the matrix representation of the unperturbed hamiltonian operator H0 we first need to
compute the following, using H0 = HL + V − VL = HR + V − VR:

⟨ΨL|H0|ΨL⟩ = ⟨ΨL|HL + (V − VL)|ΨL⟩ =
∆

2
+ ⟨ΨL|V − VL|ΨL⟩ =:

∆

2
+AL

⟨ΨR|H0|ΨR⟩ = ⟨ΨR|HR + (V − VR)|ΨR⟩ = −∆

2
+ ⟨ΨR|V − VR|ΨR⟩ =: −

∆

2
+AR

⟨ΨL|H0|ΨR⟩ = ⟨ΨL|HR + (V − VR)|ΨR⟩ = −S
∆

2
+ ⟨ΨL|V − VR|ΨR⟩ =: −S

∆

2
+ SδVR

⟨ΨR|H0|ΨL⟩ = ⟨ΨR|HL + (V − VL)|ΨL⟩ = S
∆

2
+ ⟨ΨR|V − VL|ΨL⟩ =: S

∆

2
+ SδVL

Then we have

⟨Ψ+|H0|Ψ+⟩ =
1

2(1 + S)
(⟨ΨL|H0|ΨL⟩+ ⟨ΨR|H0|ΨR⟩+ ⟨ΨL|H0|ΨR⟩+ ⟨ΨR|H0|ΨL⟩)

=
1

1 + S
(
AL +AR

2
+ S

δVL + δVR

2
) =:

1

1 + S
(A+ SδV )

⟨Ψ−|H0|Ψ−⟩ =
1

1− S
(A− SδV )

⟨Ψ+|H0|Ψ−⟩ =
∆(1 + S)

2
√
1− S2

⟨Ψ−|H0|Ψ+⟩ =
∆(1− S)

2
√
1− S2
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so finally, only keeping the leading order in S

H0 =

(
⟨Ψ+|H0|Ψ+⟩ ⟨Ψ−|H0|Ψ+⟩
⟨Ψ+|H0|Ψ−⟩ ⟨Ψ−|H0|Ψ−⟩

)
≈ AI+

1

2

(
∆0 ∆

∆ −∆0

)
, ∆0 := 2SδV

and translating the potential by A

H0 =
1

2

(
∆0 ∆

∆ −∆0

)

Defining tan(2θ) = ∆
∆0

the eigenstates and eigenvalues of H0 are

|Ψ1⟩ =

(
cos(θ)

sin(θ)

)
= cos(θ) |Ψ+⟩+ sin(θ) |Ψ−⟩ E1 =

E

2
=

1

2

√
∆2 +∆2

0

|Ψ2⟩ =

(
sin(θ)

− cos(θ)

)
= sin(θ) |Ψ+⟩ − cos(θ) |Ψ−⟩ E2 = −E

2

1.3.2 Relevant parameters and limiting cases

We observe here that the matrix elements AL,R and δVL,R, and therefore ∆0, are in principle
dependent on the explicit form of the potential. We obtain a result that is independent of such
microscopic details by adding two additional hypotheses:

• the barrier is wide: δ ≫ xw. Then

AL := ⟨ΨL|V − VL|ΨL⟩ ≈
x4w
32

V (4)(xL)

AR := ⟨ΨR|V − VR|ΨR⟩ ≈
x4w
32

V (4)(xR)

SδVL := ⟨ΨR|V − VL|ΨL⟩ ≈ S(V (x)− VL(x)) x :=
xL + xR

2

SδVR := ⟨ΨL|V − VR|ΨR⟩ ≈ S(V (x)− VR(x))

• x ≈ 0, which is a request for good spacial symmetry. Then V (x) ≈ V (0) = V and

∆0 = 2SδV = S(δVL + δVR) ≈ S
(
V − ℏωw

2

δ2

4x2w

)

Under these assumptions the whole hamiltonian only depends on a few parameters: the distance δ,
the characteristic pulse ωw, the asymmetry ∆ and the barrier height V .

To verify the coherence of the results so far, it is useful to consider the following limiting cases:

• S → 0 =⇒ ∆0 → 0. In the limit of very large δ the overlap integral S vanishes. We expect
tunneling to be impossible in this limit, which can then be interpreted as a classical limit in
which quantum mechanical effects are negligible. We would have H0 = ∆/2σx in the |Ψ±⟩
basis, so the eigenfunctions of H0 would simply be the single well ground states ΨL and ΨR

with energy ±∆/2;
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• ∆ → 0. This is the particular case of an exactly symmetric potential. We would have
H0 = ∆0/2σz, diagonal in the |Ψ±⟩ basis. The eigenfunctions are then Ψ±, the symmetric
and anti-symmetric combinations of the single well ground states. This is not unexpected: if
the potential is symmetric the eigenvectors of H0 are also parity eigenvectors.

1.3.3 Interaction with a phonon

As already seen in section 1.2, the perturbing potential Ve(x, t) is, in first order approximation,
spacially anti-symmetric. In the |Ψ±⟩ basis of parity eigenvectors, the perturbation is completely
off-diagonal:

H = H0 +Hext =
1

2

(
∆0 ∆

∆ −∆0

)
+

(
0 1

1 0

)
γe(t)

where we have used γ := 1
2
∂∆
∂e as defined in section 1.2.

In the basis |Ψ1,2⟩ of eigenvectors of H0:

H = H0 +Hext =
1

2

(
E 0

0 −E

)
+

(
sin(2θ) − cos(2θ)

− cos(2θ) − sin(2θ)

)
γe(t)

=
1

2

(
E 0

0 −E

)
− 1

2

(
−D 2M

2M D

)
e(t) =

1

2

(
E +De(t)

)
σz −Me(t)σx

with D = 2∆
E γ and M = ∆0

E γ.

This hamiltonian is equivalent to that of a spin 1/2 in a constant magnetic field along the z direction
and perturbed by an additional time dependent magnetic field: the unitary time evolution of the
system would resemble the resonant rotation of a spin in a magnetic field described by the Bloch
equations, in the absence of the relaxation term. However, we are not interested in the unitary time
evolution of the system, but in the statistical non-unitary evolution of a collection of such states
when coupled with an external bath. Let ρ be the density matrix of the (mixed) state: its time
evolution will follow the Lindblad master equation

dρ

dt
= − i

ℏ
[
H, ρ

]
+

1

τ12

(
L†
12ρL12 −

1

2

{
L†
12L12, ρ

})
+

1

τ21

(
L†
21ρL21 −

1

2

{
L†
21L21, ρ

})
(1.6)

where L12 and L21 are jump operators that allow the system to "jump" or relax between the two
states and τ12 and τ21 are the inverse frequencies of the two jumps,

L12 = |Ψ2⟩ ⟨Ψ1| τ12(t) = τ0e
βV e

β
2
(E+De(t))

L21 = |Ψ1⟩ ⟨Ψ2| τ21(t) = τ0e
βV e−

β
2
(E+De(t))

using for τ12 and τ21 the classical result already used in 1.2, euristically substituting E +De(t) to
∆+ 2γe(t) as the splitting between the two levels.
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Using the parametrisation ρ(t) =

(
p(t) a(t) + ib(t)

a(t)− ib(t) 1− p(t)

)
equation 1.6 becomes:


ṗ(t) = − 1

τ(t)(p(t)− peq(t))− ωMbe(t) ωM = 2M
ℏ

ȧ(t) = − 1
2τ(t)a(t) + (ω0 + ωDe(t))b(t) ω0 =

E
ℏ

ḃ(t) = − 1
2τ(t)b(t)− (ω0 + ωDe(t))a(t) + ωM

(
p− 1

2

)
e(t) ωD = D

ℏ

where τ(t) = τ0e
βV sech

(β
2 (E+De(t))

)
and peq(t) =

1
2

(
1+tanh (β2 (E +De(t)))

)
, just like in section

1.2.

Defining again q(t) = p(t)− peq and keeping only first order terms in e ≪ 1 (again considering that
a, b and q are asymptotically of order e) we get

q̇(t) = − 1
τ q(t) +

qD
τ e(t) qD = βD

4 sech2(β2E)

ȧ(t) = − 1
2τ a(t) + ω0b(t)

ḃ(t) = − 1
2τ b(t)− ω0a(t) +

ωM
2 tanh

(β
2E
)
e(t)

The solution for e(t) = e0e
iωt is

q(t) = χze(t) =
qD

1 + iωτ
e(t)

a(t) = χxe(t) =
2ωMωτ2

1 + (2ω0τ)− (2ωτ) + 4iωτ
tanh

(β
2
E
)
e(t)

b(t) = χye(t) =
ωMτ(1 + 2iωτ)

1 + (2ω0τ)− (2ωτ) + 4iωτ
tanh

(β
2
E
)
e(t)

χz and χx are the longitudinal and transverse dynamical susceptibility, defined in analogy with the
magnetisation problem.

1.3.4 Loss angle

We can now compute the two-level system’s contribution to the elastic modulus:

δU(T, p, a, e) = ⟨H⟩ = Tr(ρH) =
1

2
(E +De)(2p− 1)− 2Mae

∂(δσ)
∂p = D

∂(δσ)
∂a = −2M

=⇒ δσ = Dq − 2Ma = (Dχz − 2Mχx)e

δE =
δσ

e
= Dχz − 2Mχx

In order to compare this result with the classical one it is convenient to remember D = 2γ∆
E and

M = ∆0
E γ:

δE = 2
∆

E
γ
(
χz −

∆0

∆
χx

)

We obtained this result with a quantum mechanical approach that accounts for coherence, and find
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that there are two contributions to the elastic modulus for each TLS. The first term

δErel = 2
∆

E
γχz

δQ−1
rel =

Im(δErel)

Y
=
(∆
E

)2 γ2

kBTY

ωτ

1 + (ωτ)2
sech2

(β
2
E
)

arises from the relaxation process. It is the generalisation of the classical result obtained before:
by taking the classical limit S → 0 (the limit in which tunneling is impossible) we have ∆0 → 0,
E → ∆ and thus we find again the classical result.

The second term

δEres = −2
∆0

E
γχx

δQ−1
res =

Im(δEres)

Y
=

4Mτ

ℏY
4ω0ωτ

2

(1 + (2ω0τ)2 + (2ωτ)2)2
tanh

(β
2
E
)

arises from coherent processes. It is purely quantum mechanical: in the classical limit ∆0 → 0 and
the term vanishes. This resonance term shows a peak at ω = ω0

√
1 + 1

(2ω0τ)2
T→0K−−−−→ ω0.

The expected loss angle of the material is obtained by integrating over the TLS parameters.
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Chapter 2

In silico two-level system search in
amorphous tantala

In this chapter we present the results of our TLS search in simulated samples of amorphous tantala.
We assume the physical realisations of two-level systems to be pairs of local minima of the potential
energy in configuration space, separated by a saddle. Our goal is then to look for such configurations
in realistic models of amorphous tantala, generated using LAMMPS MD software [13].

Once we have identified a set of TLSs we compute the loss angle for mechanical dissipation using
equation 1.5: at temperatures higher than a few Kelvin the resonance term is negligible and thus
the classical result may be used.

2.1 Methodology: event search and TLS identification

Sample preparation To prepare a sample the Ta2O5 crystal structure is first equilibrated at
300 K in an NVT ensemble for 50 ps, then melted to 5000 K in 140 ps using an NPT ensemble.
The sample is again equilibrated for 50 ps before being quenched to 300 K in 140 ps, for a quench
rate of 35.6 K/ps, using an NPT ensemble. After a final 50 ps of relaxation the energy is minimised
and the final configuration is saved as a sample.

Event search with ART We generated 325 samples of 336 atoms, and on each performed 150
event searches with pARTn [12], the latest implementation of the activation-relaxation technique.
The algorithm explores the potential energy landscape around the configuration of each sample:
starting from an initial minimum it pushes the system out of its basin (activation) towards a saddle
configuration sad and then relaxes from the saddle in both directions (relaxation), minimising
the energy and obtaining two configurations min1 and min2. We call an event each 3-tuple of
configurations (min1, sad, min2): each event is a candidate two-level system.

We must note here that

• the same two-level system may be found multiple times by the search algorithm, resulting
in physically equivalent events. The treatment of equivalent events is discussed in the next
paragraph.
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• since the potential landscape is rugged, not every event found by pARTn corresponds to a
physical two-level system: in many cases the algorithm finds saddles or minima that are only
a result of the rugged nature of the potential. We shall call this events non-physical : in this
category also fall events that are clearly pARTn failures, like events in which the saddle point
has lower energy than a minimum.

• the forward and backward relaxations may fall into the same basin, resulting once again in
non-physical events, since there is no significant movement of the system between the two
configurations.

To avoid events in which the initial and final configuration are in the same basin of attraction we
consider only events in which the two minima are separated by more than 1 Å in configuration
space. Similarly, we only consider events in which the saddle point has higher energy than both
minima.

Identifying TLSs: equivalent events Two events are said to be equivalent if they correspond
to the same physical two-level system, so if they connect the same two basins. To determine
whether two events are equivalent we use both a maximum distance cutoff between the configurations
as well as a minimum cutoff on the scalar product between the directions of the movements in
configuration space. We observe that this additional requirement greatly improves the accuracy
of the discrimination between pairs of equivalent events and pairs of non-physical events that are
by chance close-together. Let us call cluster each equivalency class identified using these criteria.
Observing that there is no physical distinction between a given event and the one obtained from it
by swapping the initial and final configurations, this scalar product is also useful to recognize and
flip these events so that they are correctly clustered.

We exploit the existence of equivalent events for two purposes: to distinguish physical events from
non physical events; and to compute averaged properties of the underlying two-level system.

We assume that two non-physical events have a much lower probability being clustered than physical
ones: we choose then to only consider clusters that include more then one event. The choice of this
cutoff is not unique and is dependent on the number of total searches.

TLS properties For each cluster we define a two-level system whose properties are computed as
the mean properties of the events in the cluster.

For simplicity we consider the attempt rate as constant τ0
2 = 0.5 ps. For a more thorough calculation,

one would need to compute τ0 for each events using the eigenvalues of the hessian matrix of the
potential at the minima and at the saddle [2] [14]. It has been shown, however, that the simplification
does not dramatically affect the final result [2]. The only parameters needed to compute the loss
angle using equation 1.5 are then: barrier height V , asymmetry ∆ and deformation potential γ.

For V and ∆ we use the mean values of the energies at the minima and at the saddle computed
across all events in the cluster.

The deformation potential was defined in section 1.2 as γ = 1
2
∂∆
∂e , where e is the strain applied to

the system. The direction of the applied strain was chosen arbitrarily and should not have any effect
on the result, provided that the simulation box is big enough to capture the long range disorder of
the amorphous material. Using this definition we calculated γ for each event by applying different
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Figure 2.1: Distribution of the TLS parameters. From left to right: barrier height V and asymmetry ∆;
number of active Ta and O atoms; distance between the two minima δ and displacement of the most active
atom δmax; number of bonds formed and broken by active atoms

values of strain to the two minima configurations and computing the slope of the asymmetry as a
function of the strain.

Other interesting features calculated for every event are: the distance δ between the two minima;
the displacement of the most active atom δmax; the number of active atoms and the number of bonds
broken and formed by active atoms. The minimum displacement for an atom to be considered active
is 0.1 Å. Two atoms are considered bonded if their distance is less then 2.55 Å, and not bonded if
it is more then 2.65 Å.

2.2 TLS analysis and classification

2.2.1 Density of TLS

The number of distinct TLS found was 121, for a density of 1.1 per 1000 atoms or 0.088 nm−3,
which is in accord with previos in silico searches [2][10].

This estimate depends of the criteria used for clustering and for defining TLSs. More importantly,
the number of TLSs found depends on the search algorithm’s sensibility. In our case, pARTn is best
at identifying events with activation energies between 0.1 and 1 eV. We can imagine there are many
events with lower activation energies: these, however, do not contribute significantly to dissipation
in the range of frequency and temperature considered, as will be shown in the next paragraph.

2.2.2 Barrier and asymmetry distribution

Figure 2.1 is a summary of the properties of the two-level systems found. Typical TLSs have 20 to
40 active atoms and 0 to 10 total bonds involved. The total displacement ranges form 1 to 2 Å, the
displacement of the most active atom accounting for approximately half of the total.

As anticipated in the previous paragraph, the search algorithm does not find events with very low
activation energies. The barrier and asymmetry distributions are then expected to not be accurate
for very small values of V and ∆.

In figure 2.2 each TLS is shown in the (V,∆) plane as a circle whose size scales logarithmically with
its maximum dissipation. Expanding some observations already made in section 1.2 we find that:

• TLS with high asymmetry (indicatively ∆ > V/3, outside of the inner dotted lines in figure
2.2) have very low dissipation;
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Figure 2.2: Barrier and asymmetry of each TLS. Size scales logarithmically with the TLS’s maximum
dissipation. On the left, color represents Tmax, the temperature of highest dissipation (for f = 1 kHz), on
the right the frequency of maximum dissipation fmax (for T = 300 K).

(a) (b)

Figure 2.3: Total and maximum displacement for each TLS. Size scales logarithmically with the TLS’s
maximum dissipation, while color represents the number of active atoms (2.3a) or bonds (2.3b), or the
temperature of maximum dissipation (2.3c).

(a) (b) (c)

• TLS whose peak dissipation (at a fixed f = 1 kHz) occurs near room-temperature have barriers
between 0.4 and 0.6 eV (see figure 2.2a), higher barriers corresponding to higher temperatures;

• TLS whose peak dissipation (at a fixed T = 300 K) occurs for frequency between 10 Hz and
10 kHz have barriers between 0.5 and 0.7 eV (see figure 2.2b), higher barriers corresponding
to lower frequencies.

2.2.3 Topological analysis

To gain further insight on the microscopical nature of the TLSs, let us examine the correlation
between the total displacement δ between the two minima and the displacement of the most active
atom δmax. In figure 2.3 we can see that there is, as expected, some correlation between the two.
This correlation, however, is not perfect: for a fixed maximum displacement δmax there is a wide
range in the total displacement δ observed. The intuition that events with higher δ and lower δmax

should involve more active atoms is confirmed in figure 2.3a, in which TLSs are colored according
to the number of active atoms. From further analysis we see that other features also show a similar
correlation with δ and δmax: among these the number of bonds involved, the maximum dissipation
and the temperature of maximum dissipation (see figure 2.3).

In light of these regularities, which point to the distinction of TLSs in two classes, it is natural
to ask if they have a microscopical origin, i.e. if the two sets of events arise from two essentially

15



Figure 2.4: Events A (left) and B (right). The initial and final configurations are shown side by side, on
the (x, y) plane; the size of the atoms is proportional to z; active atoms are opaque (blue for Ta, orange for
O) and arrows represent the movements of the atoms whose displacement is more that 0.2 Å; only bonds
between active atoms are shown, and broken and formed bonds are highlighted in red and green.

(a) (b)

different types of microscopical movements. Let us define a TLS to be of type A if it has less then
25 active atoms, and B otherwise. With this definition the two classes contain roughly the same
number of TLSs.

Let us consider two events chosen to belong two these two classes. In figure 2.4 the initial and
final configurations are shown side by side; configurations are projected in the (x, y) plane, while
the third dimension is rendered through the size of the atoms; only active atoms are opaque (blue
for Ta, orange for O), and arrows are added to represent the movements only of the atoms whose
displacement is more that 0.2 Å; only bonds between active atoms are shown, and broken and
formed bonds are highlighted in color.

The first event, which we will call A, is shown in figure 2.4a: the central tantalum atom breaks a
bond with an oxygen atom, and forms a new one with another oxygen. This is an example of a
bond-hopping event [10]: it involves the diffusion of a coordination defect, and is made possible by
the movement of a single atom, leading to the relaxation of the neighbors.

Event B, in figure 2.4b, is much more complicated as it features many atoms moving considerably.
Among these we can see a chain of three Ta atoms exchanging oxygen bonds. This event might
be interpreted as a bond-exchange TLS [10]: the two central Ta atoms, the most active, exchange
neighbors while the distance between them does not change considerably.

Notably, there is a significant difference in the asymmetry distribution between the two classes:
from figure 2.5 we see that systems of type A have generally very low asymmetry, to the point that
all events with asymmetry higher than 0.5 eV are of type B. This distinction can also be seen
to some degree in the barrier distribution. It is interesting to notice that analogous differences in
the barrier distribution where observed between bond-defect-hopping and bond-exchange events in
SiO2 [10], suggesting some kind of common features between different materials, simulated with
very different interatomic potentials.

Finally, we note that the majority of top dissipating systems belong to the first category or class: of
the 30 TLS with highest dissipation at 300 K and 1 kHz, 25 have less then 25 active atoms. Events
outside of these 30 have negligible dissipation, at least at this temperature and frequency: their
contribution is more then 1000 times smaller then that of the systems with highest dissipation.
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Figure 2.5: Distribution of the TLS barrier (left) and asymmetry (right) for events of type A and B

2.2.4 Deformation potential

The deformation potential γ measures how strongly each system is coupled to incoming mechanical
waves. These have both direction and polarisation, hence it would be more precise to regard γ as
a tensor. Here, however, we only consider longitudinal waves propagating in an arbitrarily chosen
direction, thus γ is effectively a scalar.

The deformation potential of a system as defined here obviously depends on the random direction
chosen for the perturbation, and consequently so does its contribution δQ−1 to the loss angle, which
is proportional to γ2 (see equation 1.4). In an ideal infinite sample of amorphous material (or even
in a finite macroscopic sample) we would expect to find infinitely many occurrences of similar events,
each with a different orientation. The resulting dissipation would then be independent on the wave’s
direction. In our case we only have a few events: as we shall see in section 2.3 our results greatly
depend on the contributions of single TLSs. We would hope to obtain an averaging effect similar
to having a much larger sample by using a mean value of γ2.

The average square deformation potential obtained across all TLSs (see figure 2.6) is

⟨γ2⟩ALL ≈ 276 eV2

This value is an order of magnitude higher than the one obtained by Trinastic et al [14] on Ta2O5.
The comparison, however, is not very significant as the set of TLS studied is different: in the cited
work, in which standard molecular dynamics is used for the search, the bulk of the TLSs found
have barriers lower than 0.1 eV, while our search method allowed us to only find events with much
higher barrier (see figure 2.1). As already pointed out by Damart et al [2] to explain the discrepancy
between their average deformation potential and the experimental value for SiO2 (both are shown
in figure 2.6), events with much lower barriers are expected to have lower values of γ.

The deformation potential, however, may also depend on the system’s microscopical details, and
not only on its orientation. This is indeed the case: the mean square value calculated using only
the 30 most dissipating systems (labeled HD for high dissipation) is significantly different that the
values obtained using the other TLSs (LD, low dissipation), indicating some correlation between
the TLS’s properties and the deformation potential:

⟨γ2⟩HD = (125± 26) eV2

⟨γ2⟩LD = (326± 51) eV2
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Figure 2.6: Square longitudinal deformation and barrier height for each TLS. The average value ⟨γ2⟩ is shown
along with values obtained in previous works on SiO2 and Ta2O5 (D for Damart et al [2], T for Trinastic et
al [14]), and the experimental value for SiO2; no experimental value is known for Ta2O5.

These averages are not compatible with very high confidence: the gaussian compatibility between
the two is 3.5. Having verified that the most dissipating events at any temperature and frequency
of interest are among these 30, in the following we will use ⟨γ2⟩HD as an estimate of the average
deformation potential for all averaged loss angle calculations.

2.3 Loss angle

Using equation 1.5 we can compute the total loss angle at any temperature and frequency. In figure
2.7a we show in blue the result for the total loss angle, while the pale lines show the single TLSs’
contributions. With this few data (the total number of systems found is just 121) the result has
not yet converged and big fluctuations due to single TLSs are visible. We obtain a smoother line by
assuming the mean value ⟨γ2⟩ as the square deformation potential for each system instead γ2i (see
figure 2.7a. In the following we always use this assumption, which has been shown to have little
effect on the loss angle calculation [2].

2.3.1 Qualitative analysis

Our calculation captures some of the features observed in experimental data. At room temperature,
dissipation is greater at higher frequencies [6]. This trend is clear in figure 2.7, even though our
result shows a stronger frequency dependence then experimentally observed. In figure 2.7c this
observation is further examined by showing the loss angle as a function of temperature for different
frequencies: after a low temperature peak, dissipation diminishes at higher temperatures and above
200 K lower frequencies are associated with lower dissipation. This finds confirmation both in
previous in silico calculations [14] and in experimental measurements [11].

Some additional observations can be made from our results, in particular regarding the link between
the microscopical details of the TLSs and their dissipation: figure 2.7b shows that most of the
dissipation comes from systems with relatively few bonds involved and active atoms, similar to
event A in section 2.2.3. We had already made a similar observation in section 2.2.3 regarding
dissipation at 300 K and 1 kHz, however figure 2.7b extends its validity to a much wider range of
temperature and frequency. Note that the cutoff values of 25 atoms and 10 bonds are chosen so
that in both cases the two sets of TLS contain half the total number of systems.
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Figure 2.7: Loss angle as a function of frequency (left) or temperature (right).

(a)

(b)

(c)
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2.3.2 Quantitative comparison with experimental data

As a reference for experimental measurements of the loss angle in Ta2O5 coatings we use the results
obtained on those provided by the Laboratoire des Matériaux Avancés (LMA) for the VIRGO
gravitational interferometer [4].

The computed loss angle at room temperature is higher than experimental values obtained on
annealed samples: reported values grow from 4 × 10−4 at 1 kHz to 5 × 10−4 at 20 kHz, while our
result is 3 to 10 times as large. These samples, however, are annealed or heat treated to reduce
dissipation: heat treating the Ta2O5 coatings at different temperatures has been shown [15] to
significantly reduce loss angle. Simulations, on the other hand, cannot account for this relaxation
process, which occurs over macroscopic time scales (samples are annealed for hours and then are
allowed to cool very slowly). Quantitative comparison with experimental data for not annealed
Ta2O5 [15][5] shows a better agreement, giving approximately the same value at 1 kHz and a value
that is 5 times as large at 12 kHz.
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Conclusions

In this thesis work we have applied activation-relaxation-technique (ART) to two-level system search
in realistic models of amorphous Ta2O5 in order to estimate the loss angle of the material: this was
the first time the method has been applied to tantala.

We generated 325 samples of Ta2O5 and performed almost 50000 event searches with pARTn. We
analysed the events in order to identify physical and distinct two-level systems and found 121 such
systems, for a density similar to those found in previous works on amorphous SiO2. We then studied
the properties of these TLSs, focusing on the activation barrier’s height and asymmetry and on the
active atoms: their number, their displacements and their bonds. In particular, we were interested
in how these microscopic features may be related to dissipation.

Finally we computed the loss angle of Ta2O5 as a function of temperature and frequency, applying
the prediction of the TLS model to the set of two-level systems found. The result is in qualitative
accord with experimental data, and also in reasonable quantitative agreement, at least in the range of
temperature and frequency of interest. This demonstrates once again the validity of the TLS model
that motivates the current efforts into the numerical study of dissipation in glasses, ultimately
with the intent of directing the research for new materials that minimize thermal noise. It also
testifies to ART as a promising alternative to classical molecular dynamics methods for TLS search
in amorphous materials; this is especially true for TLSs with high activation energies, which are the
most difficult to find using molecular dynamics but also the most important for dissipation close to
room temperature.

Our microscopic characterisation allowed us to make some additional observations, in particular
that, for a wide range of temperatures and frequencies, the two-level systems that account for most
of the dissipation are those with relatively few active atoms and bonds involved. We suggested a
possible distinction between two different classes of systems, which also show very different distribu-
tion of barrier height and asymmetry. Further analysis would be needed to confirm the identification
of these two classes with bond-hopping TLS and bond-exchange TLS, observed in amorphous SiO2.

Possible ways of extending and refining these results include the optimisation the force fields used,
which could improve quality and reliability of the TLS search, as well as the increase in both
sample size and number of searches. The former would allow for longer wavelength excitations,
possibly extending the validity of the final result to lower temperatures, while the latter would grant
better convergence of the loss angle calculation. At the same time, experimenting with different
initial pushes for pARTn could improve its efficiency and rule out any possible biases of the search
algorithm. Once the method is refined, it may be used on different materials, such as titania doped
tantala, or on differently prepared samples in order to investigate how this affects the distribution
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of two-level systems and the final result for dissipation. Finally, it might be worthwhile to combine
different search methods to complement their strengths: while ART is better suited to calculate
dissipation at room temperature and relatively low frequencies, other methods based on molecular
dynamics give better results at cryogenic temperatures or very high frequencies.
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Appendix A

Kramer’s escape time

A.1 Brownian motion

Brownian motion (in one dimension) describes how a mesoscopic particle moves in a one-dimensional
fluid at thermal equilibrium at a temperature T under an external potential U(x). We usually follow
Langevin [9] and model the effect of the many collisions with the particles of the fluid as the sum of
a deterministic friction force and some "white" noise, i.e. a δ-correlated, homogeneous and isotropic
stochastic addition. In our specific case we choose the friction to be proportional to the velocity and
the noise to be Gaussian. We treat the motion of the particle as a stochastic process in phase-space
(X(t), V (t)) with increments:

∆X = V (t)∆t

∆V =

(
−∂xU(X(t),t)

m − α
mV (t)

)
∆t+

√
2α
βm2∆Ŵ

(A.1)

where ∆Ŵ = Ŵ (∆t) is a normalised Wiener process at time ∆t. The dependence of the amplitude of
the noise on the temperature is a consequence of the fluctuation-dissipation theorem. We will denote
with p(x, v, t|x0, v0, 0) the probability density in phase-space for a particle with (X(0), V (0)) =

(x0, v0). For brevity of notation and to make the equations more readable I will use p(x, v, t)

and sometimes even p instead of p(x, v, t|x0, v0, 0). The Fokker-Plank equation associated with the
stochastic sistem A.1 is

∂tp = −∂x(vp) + ∂v
( α
m
vp+

∂xU

m
p
)
+

α

βm2
∂2
vvp (A.2)

known as Kramers’ equation.

Our goal is to obtain an equation for the probability density in real-space

ρ(x, t) :=

∫ +∞

−∞
p(x, v, t) dv j(x, t) :=

∫ +∞

−∞
vp(x, v, t) dv
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Integrating A.2 and using p(x, v, t)
v→∞−−−→ 0 we get

∂tρ(x, t) = −∂x

∫ +∞

−∞
vp(x, v, t) dv =: −∂xj(x, t) (A.3)

∂tj(x, t) = −∂x

∫ +∞

−∞
v2p(x, v, t) dv − α

m
j(x, t)− ∂xU(x, t)

m
ρ(x, t) (A.4)

a complete set of coupled equations for ρ(x, t) and j(x, t). To perform the integral left in A.4 we
would need some hypothesis on p(x, v, t).

A.2 The over-damped limit: Smoluchowski’s equation

In the high friction limit the effect of the Brownian forces on the velocity of the particle is much
larger then the external force acting on it, so the particle can thermalize very fast with the fluid at
temperature T . We will formally take this limit by performing an expansion for small m, observing
that if we keep α = γm constant in the limit for γ → +∞ we have m → 0. In this over-damped
limit we expect the distribution of the velocities to be close to a Maxwell-Boltzmann distribution:

p(x, v, t) ≈ Ne−
βm
2

v2ρ(x, t) N =
√
2π/βm

This is indeed the approach originally taken by Kramers in 1940 [8]. We realise, however, that
Kramers’ approximation is not self-consistent, as we would get

j(x, t) =

∫ +∞

−∞
vp(x, v, t) dv ≈ Nρ(x, t)

∫ +∞

−∞
ve−

βm
2

v2 dv = 0

a null probability current, which means a stationary probability density in real-space. To avoid this
we consider a velocity distribution close to a Maxwell-Boltzmann but locally shifted

p(x, v, t) = Ne−
βm
2

(v−v0(x,t))2ρ(x, t) (A.5)

and expand for small v0. Keeping only the first order terms

p(x, v, t) ≈ Ne−
βm
2

v2ρ(x, t)(1 + vβmv0(x, t))

and integrating we have

ρ(x, t) ≈ Nρ(x, t)

∫ +∞

−∞
e−

βm
2

v2(1 + vβmv0(x, t)) = ρ(x, t)

j(x, t) ≈ Nρ(x, t)

∫ +∞

−∞
ve−

βm
2

v2(1 + vβmv0(x, t)) = v0(x, t)ρ(x, t)

where the first is simply a consistency check, and from the second one we get

p(x, v, t) ≈ Ne−
βm
2

v2(ρ(x, t) + vβmj(x, t)) (A.6)
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which is an expansion of p(x, v, t) in orders of m in the over-damped limit. Now we can perform
the last integral in A.4:∫ +∞

−∞
v2p(x, v, t) dv ≈ N

∫ +∞

−∞
v2e−

βm
2

v2(ρ(x, t) + vβmj(x, t)) dv =
1

βm
ρ(x, t)

A.4 becomes

∂tj(x, t) =
−∂xρ(x, t)

βm
− α

m
j(x, t)− ∂xU(x, t)

m

and keeping only leading terms as m → 0:

j(x, t) ≈ −
(∂xρ(x, t)

β
+ ρ(x, t)∂xU(x, t)

)
/α

which in A.3 gives

∂tρ(x, t) ≈ −∂x
(
−∂xU(x, t)

α
ρ(x, t)

)
+

1

βα
∂2
xxρ(x, t) (A.7)

a Fokker-Plank equation for ρ(x, t) known as Smoluchowski’s equation.

A.3 Mean first-passage time

We can know turn to our original problem: finding the average time a mesoscopic particle of mass
m moving on the one-dimensional line under a potential U(x) takes to escape from the segment
I = (x1, x2), starting from x0 ∈ I. We include the cases where x1 −→ −∞ or x2 −→ +∞.
Let X(t) be the stochastic process describing the position of the particle at time t. The initial
condition is X(0) = x0. In the over damped limit p(x, t|x0, 0) satisfies A.7. To simplify let us define
V (x) = U(x)/α and D = kBT/mγ = 1/βα. Then we have ∂tp(x, t|x0, 0) = −∂x(−∂xV (x)p(x, t|x0, 0)) +D∂2

xxp(x, t|x0, 0) = LFP p(x, t|x0, 0)

p(x, 0|x0, 0) = δ(x− x0)
(A.8)

It is useful to write LFP in another way:

LFP = D∂xe
−V (x)

D ∂xe
V (x)
D (A.9)

As we are interested in the distribution of the first passage time, we want to discard every realisation
of X(t) after it has exited I for the first time. In other words we want to "remove" every particle
that gets to x1 or x2. This is achieved by restricting ourselves to I and considering its borders as
absorbing boundaries:

p(x1, t|x0, 0) = p(x2, t|x0, 0) = 0

Let us now define Px0(t) the probability that the process is still in I at time t. The subscript x0 is
to keep track of the starting position, and the starting time is fixed at t = 0 for simplicity. Then

Px0(t) =

∫ x2

x1

p(x, t|x0, 0) dx
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Defining wx0(t) the probability density of the first passage time, the probability of leaving I between
t and t+ dt is

wx0(t)dt = −d(Px0(t)) = −
(∫ x2

x1

∂tp(x, t|x0, 0) dx
)
dt

In principle we now have the distribution of the first passage time given a solution of the Fokker-
Plank equation. Let us now see how we can derive the moments of the distribution without using
an explicit solution for p(x, t|x0, 0).

E[T ] =
∫ +∞

0
Twx0(T ) dT = −

∫ +∞

0
T

∫ x2

x1

∂tp(x, T |x0, 0) dx dT =:

∫ x2

x1

p1(x, x0) dx

Integrating by parts we have

p1(x, x0) = −
∫ +∞

0
T∂tp(x, T |x0, 0) dT =

∫ +∞

0
p(x, T |x0, 0) dT

and applying LFP to each side, using A.8, we get

LFP p1(x, x0) =

∫ +∞

0
∂tp(x, T |x0, 0) dT = p(x, T |x0, 0)|T=+∞

T=0 = −δ(x− x0)

For the mean first passage time we have then E[T ] =
∫ x2

x1
p1(x, x0) dx

LFP p1(x, x0) = −δ(x− x0)
(A.10)

A.4 Kramer’s escape time

In this section we apply the method shown above to the problem of finding the mean time a particle
takes to jump across a high-potential barrier. The shape of the potential is that in figure A.1: note
that in the high barrier and low diffusion approximation we will consider, the details of the potential
are not important, and only affect the result by small corrections.

Figure A.1: Potential for Kramer’s escape problem
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We have I = (−∞, xmax) and restrict to the case of x0 = xmin. In this specific case we have:

E[T ] =
∫ x2

x1

p1(x, xmin) dx

LFP p1(x, xmin) = −δ(x− xmin)

And the boundary condition for the absorbing wall at xmax implies

p1(x3, xmin) = 0∀x3 > xmax (A.11)

We wish to solve the following differential equation, obtained using A.9:

D∂x[e
−V (x)

D ∂x(e
V (x)
D p1(x, xmin)] = −δ(x− xmin)

Integration between −∞ and y gives:

De
−V (y)

D ∂y(e
V (y)
D p1(y, xmin) = −

∫ y

−∞
δ(x− xmin) dx = −θ(y − xmin)

where θ(x) is the Heavside function. Integration between x and x3 > xmax now gives, using A.11:

− e
V (x)
D p1(x, xmin) = −

∫ x3

x

e
V (y)
D

D
θ(y − xmin) dy

Then

E[T ] =
∫ xmax

−∞

e
−V (x)

D

D

∫ x3

x
e

V (y)
D θ(y − xmin) dy dx

The integral can be in principle performed once the explicit form of the potential is known. It is
more interesting however to derive a result that is independent of such form and only depends on
the fact that xmin is a point of minimum and xmax of maximum for V (x). Then under the condition
that the barrier is high (∆V/D ≫ 1) we can expand V (x) and extend the integrals over the whole
line: ∫ x3

x
e

V (y)
D θ(y − xmin) dy ≈ e

V (xmax)
D

∫ +∞

−∞
e

−|∂2xxV (xmax)|(x−xmax)

2D dy =

√
2Dπe

V (xmax)
D√

|∂2
xxV (xmax)|∫ xmax

−∞
e−

V (x)
D dx ≈ e−

V (xmin)

D

∫ +∞

−∞
e

−∂2xxV (xmin)(x−xmin)

2D dy =

√
2Dπe−

V (xmin)

D√
∂2
xxV (xmin)

Then

E[T ] ≈ 2π
e

V (xmax)−V (xmin)

D√
∂2
xxV (xmin)|∂2

xxV (xmax)|
=

2πkBT

D

e
U(xmax)−U(xmin)

kBT√
∂2
xxU(xmin)|∂2

xxU(xmax)|
=: τ0e

β∆U
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